1
|
Corradi C, Lencioni G, Felici A, Rizzato C, Gentiluomo M, Ermini S, Archibugi L, Mickevicius A, Lucchesi M, Malecka-Wojciesko E, Basso D, Arcidiacono PG, Petrone MC, Carrara S, Götz M, Bunduc S, Holleczek B, Aoki MN, Uzunoglu FG, Zanette DL, Mambrini A, Jamroziak K, Oliverius M, Lovecek M, Cavestro GM, Milanetto AC, Peduzzi G, Duchonova BM, Izbicki JR, Zalinkevicius R, Hlavac V, van Eijck CHJ, Brenner H, Vanella G, Vokacova K, Soucek P, Tavano F, Perri F, Capurso G, Hussein T, Kiudelis M, Kupcinskas J, Busch OR, Morelli L, Theodoropoulos GE, Testoni SGG, Adamonis K, Neoptolemos JP, Gazouli M, Pasquali C, Kormos Z, Skalicky P, Pezzilli R, Sperti C, Kauffmann E, Büchler MW, Schöttker B, Hegyi P, Capretti G, Lawlor RT, Canzian F, Campa D. Potential association between PSCA rs2976395 functional variant and pancreatic cancer risk. Int J Cancer 2024; 155:1432-1442. [PMID: 38924078 DOI: 10.1002/ijc.35046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 03/13/2024] [Accepted: 03/20/2024] [Indexed: 06/28/2024]
Abstract
Correlated regions of systemic interindividual variation (CoRSIV) represent a small proportion of the human genome showing DNA methylation patterns that are the same in all human tissues, are different among individuals, and are partially regulated by genetic variants in cis. In this study we aimed at investigating single-nucleotide polymorphisms (SNPs) within CoRSIVs and their involvement with pancreatic ductal adenocarcinoma (PDAC) risk. We analyzed 29,099 CoRSIV-SNPs and 133,615 CoRSIV-mQTLs in 14,394 cases and 247,022 controls of European and Asian descent. We observed that the A allele of the rs2976395 SNP was associated with increased PDAC risk in Europeans (p = 2.81 × 10-5). This SNP lies in the prostate stem cell antigen gene and is in perfect linkage disequilibrium with a variant (rs2294008) that has been reported to be associated with risk of many other cancer types. The A allele is associated with the DNA methylation level of the gene according to the PanCan-meQTL database and with overexpression according to QTLbase. The expression of the gene has been observed to be deregulated in many tumors of the gastrointestinal tract including pancreatic cancer; however, functional studies are needed to elucidate the function relevance of the association.
Collapse
Affiliation(s)
| | | | | | | | | | - Stefano Ermini
- Blood Transfusion Service, Azienda Ospedaliera-Universitaria Meyer, Children's Hospital, Florence, Italy
| | - Livia Archibugi
- Pancreato-Biliary Endoscopy and Endoscopic Ultrasound, Pancreas Translational and Clinical Research Center, IRSSC San Raffaele Scientific Institute, Milan, Italy
- Digestive and Liver Disease Unit, Sant'Andrea Hospital, Rome, Italy
| | - Antanas Mickevicius
- Department of Surgery, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Maurizio Lucchesi
- Oncology of Massa Carrara, Oncological Department, Azienda USL Toscana Nord Ovest, Carrara, Italy
| | | | - Daniela Basso
- Laboratory Medicine, Department DIMED, University of Padova, Padua, Italy
| | - Paolo Giorgio Arcidiacono
- Pancreato-Biliary Endoscopy and Endoscopic Ultrasound, Pancreas Translational and Clinical Research Center, IRSSC San Raffaele Scientific Institute, Milan, Italy
| | - Maria Chiara Petrone
- Pancreato-Biliary Endoscopy and Endoscopic Ultrasound, Pancreas Translational and Clinical Research Center, IRSSC San Raffaele Scientific Institute, Milan, Italy
| | - Silvia Carrara
- Endoscoopic Unit, Gastroenterology Department, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Mara Götz
- Department of General, Visceral and Thoracic Surgery, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Stefania Bunduc
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
- Digestive Diseases and Liver Transplantation Center, Fundeni Clinical Institute, Bucharest, Romania
- Center for Translational Medicine, Semmelweis University, Budapest, Hungary
- Division of Pancreatic Diseases, Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | | | - Mateus Nóbrega Aoki
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Curitiba, Parana, Brazil
| | - Faik G Uzunoglu
- Department of General, Visceral and Thoracic Surgery, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Dalila Lucíola Zanette
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Curitiba, Parana, Brazil
| | - Andrea Mambrini
- Oncology of Massa Carrara, Oncological Department, Azienda USL Toscana Nord Ovest, Carrara, Italy
| | - Krzysztof Jamroziak
- Department of Hematology, Transplantation and Internal Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Martin Oliverius
- Department of Surgery, University Hospital Kralovske Vinohrady, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | | | - Giulia Martina Cavestro
- Gastroenterology and Gastrointestinal Endoscopy Unit, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | | | | | - Jakob R Izbicki
- Department of General, Visceral and Thoracic Surgery, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Rimantas Zalinkevicius
- Clinics of Institute of Endocrinology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Viktor Hlavac
- Faculty of Medicine in Pilsen, Biomedical Center, Charles University, Pilsen, Czech Republic
| | - Casper H J van Eijck
- Department of Surgery, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Giuseppe Vanella
- Pancreato-Biliary Endoscopy and Endoscopic Ultrasound, Pancreas Translational and Clinical Research Center, IRSSC San Raffaele Scientific Institute, Milan, Italy
- Digestive and Liver Disease Unit, Sant'Andrea Hospital, Rome, Italy
| | - Klara Vokacova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Pavel Soucek
- Faculty of Medicine in Pilsen, Biomedical Center, Charles University, Pilsen, Czech Republic
| | - Francesca Tavano
- Division of Gastroenterology and Research Laboratory, Fondazione IRCCS "Casa Sollievo della Sofferenza" Hospital, San Giovanni Rotondo, Italy
| | - Francesco Perri
- Division of Gastroenterology and Research Laboratory, Fondazione IRCCS "Casa Sollievo della Sofferenza" Hospital, San Giovanni Rotondo, Italy
| | - Gabriele Capurso
- Pancreato-Biliary Endoscopy and Endoscopic Ultrasound, Pancreas Translational and Clinical Research Center, IRSSC San Raffaele Scientific Institute, Milan, Italy
- Digestive and Liver Disease Unit, Sant'Andrea Hospital, Rome, Italy
| | - Tamás Hussein
- Center for Translational Medicine, Semmelweis University, Budapest, Hungary
- Division of Pancreatic Diseases, Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Mindaugas Kiudelis
- Department of Surgery, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Juozas Kupcinskas
- Gastroenterology Department, Institute for Digestive Research, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Olivier R Busch
- Department of Surgery, Amsterdam UMC, University of Amsterdam, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Luca Morelli
- General Surgery, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - George E Theodoropoulos
- First Propaedeutic University Surgery Clinic, Hippocratio General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Sabrina Gloria Giulia Testoni
- Pancreato-Biliary Endoscopy and Endoscopic Ultrasound, Pancreas Translational and Clinical Research Center, IRSSC San Raffaele Scientific Institute, Milan, Italy
| | - Kestutis Adamonis
- Gastroenterology Department, Institute for Digestive Research, Lithuanian University of Health Sciences, Kaunas, Lithuania
- Department of Surgery, Amsterdam UMC, University of Amsterdam, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - John P Neoptolemos
- First Propaedeutic University Surgery Clinic, Hippocratio General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Gazouli
- Department of Basic Medical Sciences, Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Zita Kormos
- Division of Pancreatic Diseases, Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | | | | | - Cosimo Sperti
- Department of DiSCOG, University of Padova, Padua, Italy
| | - Emanuele Kauffmann
- Division of General and Transplant Surgery, Pisa University Hospital, Pisa, Italy
| | - Markus W Büchler
- Department of General Surgery, University of Heidelberg, Heidelberg, Germany
| | - Ben Schöttker
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Péter Hegyi
- Center for Translational Medicine, Semmelweis University, Budapest, Hungary
- Division of Pancreatic Diseases, Heart and Vascular Center, Semmelweis University, Budapest, Hungary
- Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
- János Szentágothai Research Center, University of Pécs, Pécs, Hungary
| | - Giovanni Capretti
- Pancreatic Surgery Department, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
- Humanitas University, Rozzano, Milan, Italy
| | - Rita T Lawlor
- ARC-NET Centre for Applied Research on Cancer, University and Hospital Trust of Verona, Verona, Italy
| | - Federico Canzian
- Genomic Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Daniele Campa
- Department of Biology, University of Pisa, Pisa, Italy
| |
Collapse
|
2
|
Ambalavanan A, Chang L, Choi J, Zhang Y, Stickley SA, Fang ZY, Miliku K, Robertson B, Yonemitsu C, Turvey SE, Mandhane PJ, Simons E, Moraes TJ, Anand SS, Paré G, Williams JE, Murdoch BM, Otoo GE, Mbugua S, Kamau-Mbuthia EW, Kamundia EW, Gindola DK, Rodriguez JM, Pareja RG, Sellen DW, Moore SE, Prentice AM, Foster JA, Kvist LJ, Neibergs HL, McGuire MA, McGuire MK, Meehan CL, Sears MR, Subbarao P, Azad MB, Bode L, Duan Q. Human milk oligosaccharides are associated with maternal genetics and respiratory health of human milk-fed children. Nat Commun 2024; 15:7735. [PMID: 39232002 PMCID: PMC11375010 DOI: 10.1038/s41467-024-51743-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/14/2024] [Indexed: 09/06/2024] Open
Abstract
Breastfeeding provides many health benefits, but its impact on respiratory health remains unclear. This study addresses the complex and dynamic nature of the mother-milk-infant triad by investigating maternal genomic factors regulating human milk oligosaccharides (HMOs), and their associations with respiratory health among human milk-fed infants. Nineteen HMOs are quantified from 980 mothers of the CHILD Cohort Study. Genome-wide association studies identify HMO-associated loci on chromosome 19p13.3 and 19q13.33 (lowest P = 2.4e-118), spanning several fucosyltransferase (FUT) genes. We identify novel associations on chromosome 3q27.3 for 6'-sialyllactose (P = 2.2e-9) in the sialyltransferase (ST6GAL1) gene. These, plus additional associations on chromosomes 7q21.32, 7q31.32 and 13q33.3, are replicated in the independent INSPIRE Cohort. Moreover, gene-environment interaction analyses suggest that fucosylated HMOs may modulate overall risk of recurrent wheeze among preschoolers with variable genetic risk scores (P < 0.01). Thus, we report novel genetic factors associated with HMOs, some of which may protect the respiratory health of children.
Collapse
Affiliation(s)
| | - Le Chang
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
- School of Computing, Queen's University, Kingston, ON, Canada
| | - Jihoon Choi
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Yang Zhang
- School of Computing, Queen's University, Kingston, ON, Canada
| | - Sara A Stickley
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Zhi Y Fang
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Kozeta Miliku
- Department of Medicine, McMaster University, Hamilton, ON, Canada
- Department of Nutritional Sciences, University of Toronto, Toronto, ON, Canada
| | - Bianca Robertson
- Department of Pediatrics and Larsson-Rosenquist Foundation Mother-Milk-Infant Center of Research Excellence (MOMI CORE), Human Milk Institute (HMI), University of California San Diego, La Jolla, CA, USA
| | - Chloe Yonemitsu
- Department of Pediatrics and Larsson-Rosenquist Foundation Mother-Milk-Infant Center of Research Excellence (MOMI CORE), Human Milk Institute (HMI), University of California San Diego, La Jolla, CA, USA
| | - Stuart E Turvey
- Department of Pediatrics, Division of Allergy and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Piushkumar J Mandhane
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
- Faculty of Medicine, USCI University, Kuala Lumpur, Malaysia
| | - Elinor Simons
- Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, MB, Canada
| | - Theo J Moraes
- Department of Pediatrics, Hospital for Sick Children and University of Toronto, Toronto, ON, Canada
| | - Sonia S Anand
- Chanchlani Research Centre, Dept. of Medicine, McMaster University, Hamilton, ON, Canada
| | - Guillaume Paré
- Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Janet E Williams
- Department of Animal, Veterinary and Food Sciences, University of Idaho, Moscow, Idaho, USA
| | - Brenda M Murdoch
- Department of Animal, Veterinary and Food Sciences, University of Idaho, Moscow, Idaho, USA
| | - Gloria E Otoo
- Department of Nutrition & Food Science, University of Ghana, Accra, Ghana
| | - Samwel Mbugua
- Department of Human Nutrition, Egerton University, Nakuru, Kenya
| | | | | | - Debela K Gindola
- Department of Anthropology, Hawassa University, Hawassa, Ethiopia
| | - Juan M Rodriguez
- Department of Nutrition and Food Science, Complutense University of Madrid, Madrid, Spain
| | | | - Daniel W Sellen
- Department of Anthropology, University of Toronto, Toronto, ON, Canada
| | - Sophie E Moore
- Department of Women and Children's Health, King's College London, London, UK
- The Medical Research Council Unit, The Gambia at the London School of Hygiene & Tropical Medicine, Fajara, Gambia
| | - Andrew M Prentice
- The Medical Research Council Unit, The Gambia at the London School of Hygiene & Tropical Medicine, Fajara, Gambia
| | - James A Foster
- Department of Biological Sciences, University of Idaho, Moscow, ID, USA
| | | | - Holly L Neibergs
- Department of Animal Sciences, Washington State University, Pullman, WA, USA
| | - Mark A McGuire
- Department of Animal, Veterinary and Food Sciences, University of Idaho, Moscow, Idaho, USA
| | - Michelle K McGuire
- Margaret Ritchie School of Family and Consumer Sciences, University of Idaho, Moscow, ID, USA
| | - Courtney L Meehan
- Department of Anthropology, Washington State University, Pullman, WA, USA
| | - Malcolm R Sears
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Padmaja Subbarao
- Department of Medicine, McMaster University, Hamilton, ON, Canada
- Department of Pediatrics, Hospital for Sick Children and University of Toronto, Toronto, ON, Canada
| | - Meghan B Azad
- Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, MB, Canada.
- Manitoba Interdisciplinary Lactation Centre (MILC), Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada.
| | - Lars Bode
- Department of Pediatrics and Larsson-Rosenquist Foundation Mother-Milk-Infant Center of Research Excellence (MOMI CORE), Human Milk Institute (HMI), University of California San Diego, La Jolla, CA, USA.
| | - Qingling Duan
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada.
- School of Computing, Queen's University, Kingston, ON, Canada.
| |
Collapse
|
3
|
Zhang W, Chen T, Zhao H, Ren S. Glycosylation in aging and neurodegenerative diseases. Acta Biochim Biophys Sin (Shanghai) 2024; 56:1208-1220. [PMID: 39225075 PMCID: PMC11466714 DOI: 10.3724/abbs.2024136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 06/23/2024] [Indexed: 09/04/2024] Open
Abstract
Aging, a complex biological process, involves the progressive decline of physiological functions across various systems, leading to increased susceptibility to neurodegenerative diseases. In society, demographic aging imposes significant economic and social burdens due to these conditions. This review specifically examines the association of protein glycosylation with aging and neurodegenerative diseases. Glycosylation, a critical post-translational modification, influences numerous aspects of protein function that are pivotal in aging and the pathophysiology of diseases such as Alzheimer's disease, Parkinson's disease, and other neurodegenerative conditions. We highlight the alterations in glycosylation patterns observed during aging, their implications in the onset and progression of neurodegenerative diseases, and the potential of glycosylation profiles as biomarkers for early detection, prognosis, and monitoring of these age-associated conditions, and delve into the mechanisms of glycosylation. Furthermore, this review explores their role in regulating protein function and mediating critical biological interactions in these diseases. By examining the changes in glycosylation profiles associated with each part, this review underscores the potential of glycosylation research as a tool to enhance our understanding of aging and its related diseases.
Collapse
Affiliation(s)
- Weilong Zhang
- />NHC Key Laboratory of Glycoconjugates ResearchDepartment of Biochemistry and Molecular BiologySchool of Basic Medical SciencesFudan UniversityShanghai200032China
| | - Tian Chen
- />NHC Key Laboratory of Glycoconjugates ResearchDepartment of Biochemistry and Molecular BiologySchool of Basic Medical SciencesFudan UniversityShanghai200032China
| | - Huijuan Zhao
- />NHC Key Laboratory of Glycoconjugates ResearchDepartment of Biochemistry and Molecular BiologySchool of Basic Medical SciencesFudan UniversityShanghai200032China
| | - Shifang Ren
- />NHC Key Laboratory of Glycoconjugates ResearchDepartment of Biochemistry and Molecular BiologySchool of Basic Medical SciencesFudan UniversityShanghai200032China
| |
Collapse
|
4
|
Wipplinger M, Mink S, Bublitz M, Gassner C. Regulation of the Lewis Blood Group Antigen Expression: A Literature Review Supplemented with Computational Analysis. Transfus Med Hemother 2024; 51:225-236. [PMID: 39135855 PMCID: PMC11318966 DOI: 10.1159/000538863] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 04/11/2024] [Indexed: 08/15/2024] Open
Abstract
Background The Lewis (Le) blood group system, unlike most other blood groups, is not defined by antigens produced internally to the erythrocytes and their precursors but rather by glycan antigens adsorbed on to the erythrocyte membrane from the plasma. These oligosaccharides are synthesized by the two fucosyltransferases FUT2 and FUT3 mainly in epithelial cells of the digestive tract and transferred to the plasma. At their place of synthesis, some Lewis blood group carbohydrate antigen variants also seem to be involved in various gastrointestinal malignancies. However, relatively little is known about the transcriptional regulation of FUT2 and FUT3. Summary To address this question, we screened existing literature and additionally used in silico prediction tools to identify novel candidate regulators for FUT2 and FUT3 and combine these findings with already known data on their regulation. With this approach, we were able to describe a variety of transcription factors, RNA binding proteins and microRNAs, which increase FUT2 and FUT3 transcription and translation upon interaction. Key Messages Understanding the regulation of FUT2 and FUT3 is crucial to fully understand the blood group system Lewis (ISBT 007 LE) phenotypes, to shed light on the role of the different Lewis antigens in various pathologies, and to identify potential new diagnostic targets for these diseases.
Collapse
Affiliation(s)
- Martin Wipplinger
- Institute of Translational Medicine, Private University in the Principality of Liechtenstein, Triesen, Liechtenstein
| | - Sylvia Mink
- Central Medical Laboratories, Feldkirch, Austria
- Medical-Scientific Faculty, Private University of the Principality of Liechtenstein, Triesen, Liechtenstein
| | - Maike Bublitz
- Institute of Translational Medicine, Private University in the Principality of Liechtenstein, Triesen, Liechtenstein
| | - Christoph Gassner
- Institute of Translational Medicine, Private University in the Principality of Liechtenstein, Triesen, Liechtenstein
| |
Collapse
|
5
|
Pongracz T, Mayboroda OA, Wuhrer M. The Human Blood N-Glycome: Unraveling Disease Glycosylation Patterns. JACS AU 2024; 4:1696-1708. [PMID: 38818049 PMCID: PMC11134357 DOI: 10.1021/jacsau.4c00043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/28/2024] [Accepted: 04/01/2024] [Indexed: 06/01/2024]
Abstract
Most of the proteins in the circulation are N-glycosylated, shaping together the total blood N-glycome (TBNG). Glycosylation is known to affect protein function, stability, and clearance. The TBNG is influenced by genetic, environmental, and metabolic factors, in part epigenetically imprinted, and responds to a variety of bioactive signals including cytokines and hormones. Accordingly, physiological and pathological events are reflected in distinct TBNG signatures. Here, we assess the specificity of the emerging disease-associated TBNG signatures with respect to a number of key glycosylation motifs including antennarity, linkage-specific sialylation, fucosylation, as well as expression of complex, hybrid-type and oligomannosidic N-glycans, and show perplexing complexity of the glycomic dimension of the studied diseases. Perspectives are given regarding the protein- and site-specific analysis of N-glycosylation, and the dissection of underlying regulatory layers and functional roles of blood protein N-glycosylation.
Collapse
Affiliation(s)
- Tamas Pongracz
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2333ZA Leiden, The Netherlands
| | - Oleg A. Mayboroda
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2333ZA Leiden, The Netherlands
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2333ZA Leiden, The Netherlands
| |
Collapse
|
6
|
de Graaf EL, Larsen MD, van der Bolt N, Visser R, Verhagen OJHM, Hipgrave Ederveen AL, Koeleman CAM, van der Schoot CE, Wuhrer M, Vidarsson G. Assessment of IgG-Fc glycosylation from individual RhD-specific B cell clones reveals regulation at clonal rather than clonotypic level. Immunology 2024; 171:428-439. [PMID: 38097893 DOI: 10.1111/imm.13737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 11/26/2023] [Indexed: 02/09/2024] Open
Abstract
The type and strength of effector functions mediated by immunoglobulin G (IgG) antibodies rely on the subclass and the composition of the N297 glycan. Glycosylation analysis of both bulk and antigen-specific human IgG has revealed a marked diversity of the glycosylation signatures, including highly dynamic patterns as well as long-term stability of profiles, yet information on how individual B cell clones would contribute to this diversity has hitherto been lacking. Here, we assessed whether clonally related B cells share N297 glycosylation patterns of their secreted IgG. We differentiated single antigen-specific peripheral IgG+ memory B cells into antibody-secreting cells and analysed Fc glycosylation of secreted IgG. Furthermore, we sequenced the variable region of their heavy chain, which allowed the grouping of the clones into clonotypes. We found highly diverse glycosylation patterns of culture-derived IgG, which, to some degree, mimicked the glycosylation of plasma IgG. Each B cell clone secreted IgG with a mixture of different Fc glycosylation patterns. The majority of clones produced fully fucosylated IgG. B cells producing afucosylated IgG were scattered across different clonotypes. In contrast, the remaining glycosylation traits were, in general, more uniform. These results indicate IgG-Fc fucosylation to be regulated at the single-clone level, whereas the regulation of other glycosylation traits most likely occurs at a clonotypic or systemic level. The discrepancies between plasma IgG and culture-derived IgG, could be caused by the origin of the B cells analysed, clonal dominance or factors from the culture system, which need to be addressed in future studies.
Collapse
Affiliation(s)
- Erik L de Graaf
- Immunoglobulin Research Laboratory, Department of Experimental Immunohematology, Sanquin Research, Amsterdam, The Netherlands
- Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| | - Mads Delbo Larsen
- Immunoglobulin Research Laboratory, Department of Experimental Immunohematology, Sanquin Research, Amsterdam, The Netherlands
- Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| | - Nieke van der Bolt
- Immunoglobulin Research Laboratory, Department of Experimental Immunohematology, Sanquin Research, Amsterdam, The Netherlands
- Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Department of Immunopathology, Sanquin Research, Amsterdam, The Netherlands
| | - Remco Visser
- Immunoglobulin Research Laboratory, Department of Experimental Immunohematology, Sanquin Research, Amsterdam, The Netherlands
- Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| | - Onno J H M Verhagen
- Immunoglobulin Research Laboratory, Department of Experimental Immunohematology, Sanquin Research, Amsterdam, The Netherlands
- Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | | | - Carolien A M Koeleman
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - C Ellen van der Schoot
- Immunoglobulin Research Laboratory, Department of Experimental Immunohematology, Sanquin Research, Amsterdam, The Netherlands
- Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Gestur Vidarsson
- Immunoglobulin Research Laboratory, Department of Experimental Immunohematology, Sanquin Research, Amsterdam, The Netherlands
- Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
7
|
Baltramonaityte V, Pingault JB, Cecil CAM, Choudhary P, Järvelin MR, Penninx BWJH, Felix J, Sebert S, Milaneschi Y, Walton E. A multivariate genome-wide association study of psycho-cardiometabolic multimorbidity. PLoS Genet 2023; 19:e1010508. [PMID: 37390107 DOI: 10.1371/journal.pgen.1010508] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 06/12/2023] [Indexed: 07/02/2023] Open
Abstract
Coronary artery disease (CAD), type 2 diabetes (T2D) and depression are among the leading causes of chronic morbidity and mortality worldwide. Epidemiological studies indicate a substantial degree of multimorbidity, which may be explained by shared genetic influences. However, research exploring the presence of pleiotropic variants and genes common to CAD, T2D and depression is lacking. The present study aimed to identify genetic variants with effects on cross-trait liability to psycho-cardiometabolic diseases. We used genomic structural equation modelling to perform a multivariate genome-wide association study of multimorbidity (Neffective = 562,507), using summary statistics from univariate genome-wide association studies for CAD, T2D and major depression. CAD was moderately genetically correlated with T2D (rg = 0.39, P = 2e-34) and weakly correlated with depression (rg = 0.13, P = 3e-6). Depression was weakly correlated with T2D (rg = 0.15, P = 4e-15). The latent multimorbidity factor explained the largest proportion of variance in T2D (45%), followed by CAD (35%) and depression (5%). We identified 11 independent SNPs associated with multimorbidity and 18 putative multimorbidity-associated genes. We observed enrichment in immune and inflammatory pathways. A greater polygenic risk score for multimorbidity in the UK Biobank (N = 306,734) was associated with the co-occurrence of CAD, T2D and depression (OR per standard deviation = 1.91, 95% CI = 1.74-2.10, relative to the healthy group), validating this latent multimorbidity factor. Mendelian randomization analyses suggested potentially causal effects of BMI, body fat percentage, LDL cholesterol, total cholesterol, fasting insulin, income, insomnia, and childhood maltreatment. These findings advance our understanding of multimorbidity suggesting common genetic pathways.
Collapse
Affiliation(s)
| | - Jean-Baptiste Pingault
- Department of Clinical, Educational, and Health Psychology, University College London, London, United Kingdom
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Charlotte A M Cecil
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Marjo-Riitta Järvelin
- Research Unit of Population Health, University of Oulu, Oulu, Finland
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
| | - Brenda W J H Penninx
- Department of Psychiatry, Amsterdam Public Health and Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit, Amsterdam, the Netherlands
| | - Janine Felix
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
- Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Sylvain Sebert
- Research Unit of Population Health, University of Oulu, Oulu, Finland
| | - Yuri Milaneschi
- Department of Psychiatry, Amsterdam Public Health and Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit, Amsterdam, the Netherlands
| | - Esther Walton
- Department of Psychology, University of Bath, Bath, United Kingdom
| |
Collapse
|
8
|
Sharapov SZ, Timoshchuk AN, Aulchenko YS. Genetic control of N-glycosylation of human blood plasma proteins. Vavilovskii Zhurnal Genet Selektsii 2023; 27:224-239. [PMID: 37293449 PMCID: PMC10244589 DOI: 10.18699/vjgb-23-29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/20/2023] [Accepted: 01/23/2022] [Indexed: 06/10/2023] Open
Abstract
Glycosylation is an important protein modification, which influences the physical and chemical properties as well as biological function of these proteins. Large-scale population studies have shown that the levels of various plasma protein N-glycans are associated with many multifactorial human diseases. Observed associations between protein glycosylation levels and human diseases have led to the conclusion that N-glycans can be considered a potential source of biomarkers and therapeutic targets. Although biochemical pathways of glycosylation are well studied, the understanding of the mechanisms underlying general and tissue-specific regulation of these biochemical reactions in vivo is limited. This complicates both the interpretation of the observed associations between protein glycosylation levels and human diseases, and the development of glycan-based biomarkers and therapeutics. By the beginning of the 2010s, high-throughput methods of N-glycome profiling had become available, allowing research into the genetic control of N-glycosylation using quantitative genetics methods, including genome-wide association studies (GWAS). Application of these methods has made it possible to find previously unknown regulators of N-glycosylation and expanded the understanding of the role of N-glycans in the control of multifactorial diseases and human complex traits. The present review considers the current knowledge of the genetic control of variability in the levels of N-glycosylation of plasma proteins in human populations. It briefly describes the most popular physical-chemical methods of N-glycome profiling and the databases that contain genes involved in the biosynthesis of N-glycans. It also reviews the results of studies of environmental and genetic factors contributing to the variability of N-glycans as well as the mapping results of the genomic loci of N-glycans by GWAS. The results of functional in vitro and in silico studies are described. The review summarizes the current progress in human glycogenomics and suggests possible directions for further research.
Collapse
Affiliation(s)
- S Zh Sharapov
- MSU Institute for Artificial Intelligence, Lomonosov Moscow State University, Moscow, Russia
| | - A N Timoshchuk
- MSU Institute for Artificial Intelligence, Lomonosov Moscow State University, Moscow, Russia
| | - Y S Aulchenko
- MSU Institute for Artificial Intelligence, Lomonosov Moscow State University, Moscow, Russia Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
9
|
Plećaš D, Mraz N, Patanaude AM, Pribić T, Pavlinac Dodig I, Pecotić R, Lauc G, Polašek O, Đogaš Z. Not-So-Sweet Dreams: Plasma and IgG N-Glycome in the Severe Form of the Obstructive Sleep Apnea. Biomolecules 2023; 13:880. [PMID: 37371460 DOI: 10.3390/biom13060880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/14/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
Obstructive sleep apnea (OSA) is a prevalent disease associated with increased risk for cardiovascular and metabolic diseases and shortened lifespan. The aim of this study was to explore the possibility of using N-glycome as a biomarker for the severe form of OSA. Seventy subjects who underwent a whole-night polysomnography/polygraphy and had apnea-hypopnea index (AHI) over 30 were compared to 23 controls (AHI under 5). Plasma samples were used to extract 39 glycan peaks using ultra-high-performance liquid chromatography (UPLC) and 27 IgG peaks using capillary gel electrophoresis (CGE). We also measured glycan age, a molecular proxy for biological aging. Three plasma and one IgG peaks were significant in a multivariate model controlling for the effects of age, sex, and body mass index. These included decreased GP24 (disialylated triantennary glycans as major structure) and GP28 (trigalactosylated, triantennary, disialylated, and trisialylated glycans), and increased GP32 (trisialylated triantennary glycan). Only one IgG glycan peak was significantly increased (P26), which contains biantennary digalactosylated glycans with core fucose. Patients with severe OSA exhibited accelerated biological aging, with a median of 6.9 years more than their chronological age (p < 0.001). Plasma N-glycome can be used as a biomarker for severe OSA.
Collapse
Affiliation(s)
- Doris Plećaš
- Mediterranean Institute for Life Sciences, 21000 Split, Croatia
| | - Nikol Mraz
- Genos Glycoscience Ltd., 10000 Zagreb, Croatia
| | | | - Tea Pribić
- Genos Glycoscience Ltd., 10000 Zagreb, Croatia
| | - Ivana Pavlinac Dodig
- Department for Neuroscience, School of Medicine, Sleep Medicine Center, University of Split, 21000 Split, Croatia
| | - Renata Pecotić
- Department for Neuroscience, School of Medicine, Sleep Medicine Center, University of Split, 21000 Split, Croatia
| | - Gordan Lauc
- Genos Glycoscience Ltd., 10000 Zagreb, Croatia
- Faculty of Pharmacy and Biochemistry, University of Zagreb, 10000 Zagreb, Croatia
| | - Ozren Polašek
- Department of Public Health, School of Medicine, University of Split, 21000 Split, Croatia
- Department of General Courses, Algebra University, 10000 Zagreb, Croatia
| | - Zoran Đogaš
- Department for Neuroscience, School of Medicine, Sleep Medicine Center, University of Split, 21000 Split, Croatia
| |
Collapse
|
10
|
Wang J, Mai X, He Y, Zhu C, Zhou D. IgG1-Dominant Antibody Response Induced by Recombinant Trimeric SARS-CoV-2 Spike Protein with PIKA Adjuvant. Vaccines (Basel) 2023; 11:vaccines11040827. [PMID: 37112739 PMCID: PMC10144704 DOI: 10.3390/vaccines11040827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/19/2023] [Accepted: 03/29/2023] [Indexed: 04/29/2023] Open
Abstract
Recombinant trimeric SARS-CoV-2 Spike protein with PIKA (polyI:C) adjuvant induces potent and durable neutralizing antibodies that protect against multiple SARS-CoV-2 variants. The immunoglobulin subclasses of viral-specific antibodies remain unknown, as do their glycosylation status on Fc regions. In this study, we analyzed immunoglobulins adsorbed by plate-bound recombinant trimeric SARS-CoV-2 Spike protein from serum of Cynomolgus monkey immunized by recombinant trimeric SARS-CoV-2 Spike protein with PIKA (polyI:C) adjuvant. The results showed that IgG1 was the dominant IgG subclass as revealed by ion mobility mass spectrometry. The average percentage of Spike protein-specific IgG1 increased to 88.3% as compared to pre-immunization. Core fucosylation for Fc glycopeptide of Spike protein-specific IgG1 was found to be higher than 98%. These results indicate that a unique Th1-biased, IgG1-dominant antibody response was responsible for the effectiveness of PIKA (polyI:C) adjuvant. Vaccine-induced core-fucosylation of IgG1 Fc region may reduce incidence of severe COVID-19 disease associated with overstimulation of FCGR3A by afucosylated IgG1.
Collapse
Affiliation(s)
- Jingxia Wang
- Department of Immunology and Pathogen Biology, Tongji University School of Medicine, 500 Zhennan Road, Shanghai 200331, China
| | - Xinjia Mai
- Department of Immunology and Pathogen Biology, Tongji University School of Medicine, 500 Zhennan Road, Shanghai 200331, China
| | - Yu He
- Department of Immunology and Pathogen Biology, Tongji University School of Medicine, 500 Zhennan Road, Shanghai 200331, China
| | - Chenxi Zhu
- Department of Immunology and Pathogen Biology, Tongji University School of Medicine, 500 Zhennan Road, Shanghai 200331, China
| | - Dapeng Zhou
- Department of Immunology and Pathogen Biology, Tongji University School of Medicine, 500 Zhennan Road, Shanghai 200331, China
| |
Collapse
|
11
|
Adua E. Decoding the mechanism of hypertension through multiomics profiling. J Hum Hypertens 2023; 37:253-264. [PMID: 36329155 PMCID: PMC10063442 DOI: 10.1038/s41371-022-00769-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 08/24/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022]
Abstract
Hypertension, characterised by a constant high blood pressure, is the primary risk factor for multiple cardiovascular events and a major cause of death in adults. Excitingly, innovations in high-throughput technologies have enabled the global exploration of the whole genome (genomics), revealing dysregulated genes that are linked to hypertension. Moreover, post-genomic biomarkers, from the emerging fields of transcriptomics, proteomics, glycomics and lipidomics, have provided new insights into the molecular underpinnings of hypertension. In this paper, we review the pathophysiology of hypertension, and highlight the multi-omics approaches for hypertension prediction and diagnosis.
Collapse
Affiliation(s)
- Eric Adua
- School of Clinical Medicine, Medicine & Health, Rural Clinical Campus, University of New South Wales, Wagga Wagga, NSW, Australia.
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia.
| |
Collapse
|
12
|
Tudor L, Nedic Erjavec G, Nikolac Perkovic M, Konjevod M, Uzun S, Kozumplik O, Mimica N, Lauc G, Svob Strac D, Pivac N. The Association of the Polymorphisms in the FUT8-Related Locus with the Plasma Glycosylation in Post-Traumatic Stress Disorder. Int J Mol Sci 2023; 24:ijms24065706. [PMID: 36982780 PMCID: PMC10056189 DOI: 10.3390/ijms24065706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/04/2023] [Accepted: 03/11/2023] [Indexed: 03/19/2023] Open
Abstract
The molecular underpinnings of post-traumatic stress disorder (PTSD) are still unclear due to the complex interactions of genetic, psychological, and environmental factors. Glycosylation is a common post-translational modification of proteins, and different pathophysiological states, such as inflammation, autoimmune diseases, and mental disorders including PTSD, show altered N-glycome. Fucosyltransferase 8 (FUT8) is the enzyme that catalyzes the addition of core fucose on glycoproteins, and mutations in the FUT8 gene are associated with defects in glycosylation and functional abnormalities. This is the first study that investigated the associations of plasma N-glycan levels with FUT8-related rs6573604, rs11621121, rs10483776, and rs4073416 polymorphisms and their haplotypes in 541 PTSD patients and control participants. The results demonstrated that the rs6573604 T allele was more frequent in the PTSD than in the control participants. Significant associations of plasma N-glycan levels with PTSD and FUT8-related polymorphisms were observed. We also detected associations of rs11621121 and rs10483776 polymorphisms and their haplotypes with plasma levels of specific N-glycan species in both the control and PTSD groups. In carriers of different rs6573604 and rs4073416 genotypes and alleles, differences in plasma N-glycan levels were only found in the control group. These molecular findings suggest a possible regulatory role of FUT8-related polymorphisms in glycosylation, the alternations of which could partially explain the development and clinical manifestation of PTSD.
Collapse
Affiliation(s)
- Lucija Tudor
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Rudjer Boskovic Institute, 10000 Zagreb, Croatia; (L.T.); (G.N.E.); (M.N.P.); (M.K.)
| | - Gordana Nedic Erjavec
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Rudjer Boskovic Institute, 10000 Zagreb, Croatia; (L.T.); (G.N.E.); (M.N.P.); (M.K.)
| | - Matea Nikolac Perkovic
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Rudjer Boskovic Institute, 10000 Zagreb, Croatia; (L.T.); (G.N.E.); (M.N.P.); (M.K.)
| | - Marcela Konjevod
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Rudjer Boskovic Institute, 10000 Zagreb, Croatia; (L.T.); (G.N.E.); (M.N.P.); (M.K.)
| | - Suzana Uzun
- Department for Biological Psychiatry and Psychogeriatrics, University Hospital Vrapce, 10000 Zagreb, Croatia; (S.U.); (O.K.); (N.M.)
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
- Faculty of Education and Rehabilitation Sciences, University of Zagreb, 10000 Zagreb, Croatia
| | - Oliver Kozumplik
- Department for Biological Psychiatry and Psychogeriatrics, University Hospital Vrapce, 10000 Zagreb, Croatia; (S.U.); (O.K.); (N.M.)
- Faculty of Education and Rehabilitation Sciences, University of Zagreb, 10000 Zagreb, Croatia
| | - Ninoslav Mimica
- Department for Biological Psychiatry and Psychogeriatrics, University Hospital Vrapce, 10000 Zagreb, Croatia; (S.U.); (O.K.); (N.M.)
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Gordan Lauc
- Glycobiology Laboratory, Genos Ltd., 10000 Zagreb, Croatia;
| | - Dubravka Svob Strac
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Rudjer Boskovic Institute, 10000 Zagreb, Croatia; (L.T.); (G.N.E.); (M.N.P.); (M.K.)
- Correspondence: (D.S.S.); (N.P.)
| | - Nela Pivac
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Rudjer Boskovic Institute, 10000 Zagreb, Croatia; (L.T.); (G.N.E.); (M.N.P.); (M.K.)
- University of Applied Sciences Hrvatsko Zagorje Krapina, 49000 Krapina, Croatia
- Correspondence: (D.S.S.); (N.P.)
| |
Collapse
|
13
|
Madunić K, Luijkx YMCA, Mayboroda OA, Janssen GMC, van Veelen PA, Strijbis K, Wennekes T, Lageveen-Kammeijer GSM, Wuhrer M. O-Glycomic and Proteomic Signatures of Spontaneous and Butyrate-Stimulated Colorectal Cancer Cell Line Differentiation. Mol Cell Proteomics 2023; 22:100501. [PMID: 36669592 PMCID: PMC9999233 DOI: 10.1016/j.mcpro.2023.100501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 01/08/2023] [Accepted: 01/11/2023] [Indexed: 01/19/2023] Open
Abstract
Gut microbiota of the gastrointestinal tract provide health benefits to the human host via bacterial metabolites. Bacterial butyrate has beneficial effects on intestinal homeostasis and is the preferred energy source of intestinal epithelial cells, capable of inducing differentiation. It was previously observed that changes in the expression of specific proteins as well as protein glycosylation occur with differentiation. In this study, specific mucin O-glycans were identified that mark butyrate-induced epithelial differentiation of the intestinal cell line CaCo-2 (Cancer Coli-2), by applying porous graphitized carbon nano-liquid chromatography with electrospray ionization tandem mass spectrometry. Moreover, a quantitative proteomic approach was used to decipher changes in the cell proteome. It was found that the fully differentiated butyrate-stimulated cells are characterized by a higher expression of sialylated O-glycan structures, whereas fucosylation is downregulated with differentiation. By performing an integrative approach, we generated hypotheses about the origin of the observed O-glycome changes. These insights pave the way for future endeavors to study the dynamic O-glycosylation patterns in the gut, either produced via cellular biosynthesis or through the action of bacterial glycosidases as well as the functional role of these patterns in homeostasis and dysbiosis at the gut-microbiota interface.
Collapse
Affiliation(s)
- K Madunić
- Center for Proteomics and Metabolomics, Leiden University, The Netherlands
| | - Y M C A Luijkx
- Department Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands; Department Biomolecular Health Sciences, Utrecht University, Utrecht, The Netherlands
| | - O A Mayboroda
- Center for Proteomics and Metabolomics, Leiden University, The Netherlands
| | - G M C Janssen
- Center for Proteomics and Metabolomics, Leiden University, The Netherlands
| | - P A van Veelen
- Center for Proteomics and Metabolomics, Leiden University, The Netherlands
| | - K Strijbis
- Department Biomolecular Health Sciences, Utrecht University, Utrecht, The Netherlands
| | - T Wennekes
- Department Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| | | | - M Wuhrer
- Center for Proteomics and Metabolomics, Leiden University, The Netherlands.
| |
Collapse
|
14
|
Trbojević-Akmačić I, Lageveen-Kammeijer GSM, Heijs B, Petrović T, Deriš H, Wuhrer M, Lauc G. High-Throughput Glycomic Methods. Chem Rev 2022; 122:15865-15913. [PMID: 35797639 PMCID: PMC9614987 DOI: 10.1021/acs.chemrev.1c01031] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Glycomics aims to identify the structure and function of the glycome, the complete set of oligosaccharides (glycans), produced in a given cell or organism, as well as to identify genes and other factors that govern glycosylation. This challenging endeavor requires highly robust, sensitive, and potentially automatable analytical technologies for the analysis of hundreds or thousands of glycomes in a timely manner (termed high-throughput glycomics). This review provides a historic overview as well as highlights recent developments and challenges of glycomic profiling by the most prominent high-throughput glycomic approaches, with N-glycosylation analysis as the focal point. It describes the current state-of-the-art regarding levels of characterization and most widely used technologies, selected applications of high-throughput glycomics in deciphering glycosylation process in healthy and disease states, as well as future perspectives.
Collapse
Affiliation(s)
| | | | - Bram Heijs
- Center
for Proteomics and Metabolomics, Leiden
University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands
| | - Tea Petrović
- Genos,
Glycoscience Research Laboratory, Borongajska cesta 83H, 10 000 Zagreb, Croatia
| | - Helena Deriš
- Genos,
Glycoscience Research Laboratory, Borongajska cesta 83H, 10 000 Zagreb, Croatia
| | - Manfred Wuhrer
- Center
for Proteomics and Metabolomics, Leiden
University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands
| | - Gordan Lauc
- Genos,
Glycoscience Research Laboratory, Borongajska cesta 83H, 10 000 Zagreb, Croatia
- Faculty
of Pharmacy and Biochemistry, University
of Zagreb, A. Kovačića 1, 10 000 Zagreb, Croatia
| |
Collapse
|
15
|
Oosterhoff JJ, Larsen MD, van der Schoot CE, Vidarsson G. Afucosylated IgG responses in humans - structural clues to the regulation of humoral immunity. Trends Immunol 2022; 43:800-814. [PMID: 36008258 PMCID: PMC9395167 DOI: 10.1016/j.it.2022.08.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/02/2022] [Accepted: 08/05/2022] [Indexed: 11/30/2022]
Abstract
Healthy immune responses require efficient protection without excessive inflammation. Recent discoveries on the degree of fucosylation of a human N-linked glycan at a conserved site in the immunoglobulin IgG-Fc domain might add an additional regulatory layer to adaptive humoral immunity. Specifically, afucosylation of IgG-Fc enhances the interaction of IgG with FcγRIII and thereby its activity. Although plasma IgG is generally fucosylated, afucosylated IgG is raised in responses to enveloped viruses and Plasmodium falciparum proteins expressed on infected erythrocytes, as well as during alloimmune responses. Moreover, while afucosylation can exacerbate some infectious diseases (e.g., COVID-19), it also correlates with traits of protective immunity against malaria and HIV-1. Herein we discuss the implications of IgG afucosylation for health and disease, as well as for vaccination.
Collapse
Affiliation(s)
- Janita J Oosterhoff
- Immunoglobulin Research Laboratory, Department of Experimental Immunohematology, Sanquin Research, Amsterdam, The Netherlands; Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| | - Mads Delbo Larsen
- Immunoglobulin Research Laboratory, Department of Experimental Immunohematology, Sanquin Research, Amsterdam, The Netherlands; Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| | - C Ellen van der Schoot
- Immunoglobulin Research Laboratory, Department of Experimental Immunohematology, Sanquin Research, Amsterdam, The Netherlands; Landsteiner Laboratory, Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam, The Netherlands
| | - Gestur Vidarsson
- Immunoglobulin Research Laboratory, Department of Experimental Immunohematology, Sanquin Research, Amsterdam, The Netherlands; Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
16
|
el Bouhaddani S, Uh H, Jongbloed G, Houwing‐Duistermaat J. Statistical integration of heterogeneous omics data: Probabilistic two‐way partial least squares (PO2PLS). J R Stat Soc Ser C Appl Stat 2022. [DOI: 10.1111/rssc.12583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Said el Bouhaddani
- Department of Data Science and Biostatistics UMC Utrecht UtrechtThe Netherlands
| | - Hae‐Won Uh
- Department of Data Science and Biostatistics UMC Utrecht UtrechtThe Netherlands
| | - Geurt Jongbloed
- Delft Institute of Applied Mathematics TU Delft Delft The Netherlands
| | - Jeanine Houwing‐Duistermaat
- Department of Data Science and Biostatistics UMC Utrecht UtrechtThe Netherlands
- Department of Statistics University of Leeds Leeds UK
- Department of Statistical Sciences University of Bologna Bologna Italy
| |
Collapse
|
17
|
de Haan N, Pučić-Baković M, Novokmet M, Falck D, Lageveen-Kammeijer G, Razdorov G, Vučković F, Trbojević-Akmačić I, Gornik O, Hanić M, Wuhrer M, Lauc G. Developments and perspectives in high-throughput protein glycomics: enabling the analysis of thousands of samples. Glycobiology 2022; 32:651-663. [PMID: 35452121 PMCID: PMC9280525 DOI: 10.1093/glycob/cwac026] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 04/02/2022] [Accepted: 04/13/2022] [Indexed: 11/19/2022] Open
Abstract
Glycans expand the structural complexity of proteins by several orders of magnitude, resulting in a tremendous analytical challenge when including them in biomedical research. Recent glycobiological research is painting a picture in which glycans represent a crucial structural and functional component of the majority of proteins, with alternative glycosylation of proteins and lipids being an important regulatory mechanism in many biological and pathological processes. Since interindividual differences in glycosylation are extensive, large studies are needed to map the structures and to understand the role of glycosylation in human (patho)physiology. Driven by these challenges, methods have emerged, which can tackle the complexity of glycosylation in thousands of samples, also known as high-throughput (HT) glycomics. For facile dissemination and implementation of HT glycomics technology, the sample preparation, analysis, as well as data mining, need to be stable over a long period of time (months/years), amenable to automation, and available to non-specialized laboratories. Current HT glycomics methods mainly focus on protein N-glycosylation and allow to extensively characterize this subset of the human glycome in large numbers of various biological samples. The ultimate goal in HT glycomics is to gain better knowledge and understanding of the complete human glycome using methods that are easy to adapt and implement in (basic) biomedical research. Aiming to promote wider use and development of HT glycomics, here, we present currently available, emerging, and prospective methods and some of their applications, revealing a largely unexplored molecular layer of the complexity of life.
Collapse
Affiliation(s)
- Noortje de Haan
- Copenhagen Center for Glycomics, University of Copenhagen, Blegdamsvej 3 Copenhagen 2200, Denmark
| | - Maja Pučić-Baković
- Genos, Glycoscience Research Laboratory, Borongajska cesta 83h, Zagreb 10000, Croatia
| | - Mislav Novokmet
- Genos, Glycoscience Research Laboratory, Borongajska cesta 83h, Zagreb 10000, Croatia
| | - David Falck
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, Leiden 2333ZA, The Netherlands
| | - Guinevere Lageveen-Kammeijer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, Leiden 2333ZA, The Netherlands
| | - Genadij Razdorov
- Genos, Glycoscience Research Laboratory, Borongajska cesta 83h, Zagreb 10000, Croatia
| | - Frano Vučković
- Genos, Glycoscience Research Laboratory, Borongajska cesta 83h, Zagreb 10000, Croatia
| | | | - Olga Gornik
- Faculty of Pharmacy and Biochemistry, University of Zagreb, A. Kovacica 1, Zagreb 10000, Croatia
| | - Maja Hanić
- Genos, Glycoscience Research Laboratory, Borongajska cesta 83h, Zagreb 10000, Croatia
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, Leiden 2333ZA, The Netherlands
| | - Gordan Lauc
- Genos, Glycoscience Research Laboratory, Borongajska cesta 83h, Zagreb 10000, Croatia
- Faculty of Pharmacy and Biochemistry, University of Zagreb, A. Kovacica 1, Zagreb 10000, Croatia
| |
Collapse
|
18
|
Adua E, Afrifa-Yamoah E, Peprah-Yamoah E, Anto EO, Acheampong E, Awuah-Mensah KA, Wang W. Multi-block data integration analysis for identifying and validating targeted N-glycans as biomarkers for type II diabetes mellitus. Sci Rep 2022; 12:10974. [PMID: 35768493 PMCID: PMC9243128 DOI: 10.1038/s41598-022-15172-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 04/28/2022] [Indexed: 11/08/2022] Open
Abstract
Plasma N-glycan profiles have been shown to be defective in type II diabetes Mellitus (T2DM) and holds a promise to discovering biomarkers. The study comprised 232 T2DM patients and 219 healthy individuals. N-glycans were analysed by high-performance liquid chromatography. The multivariate integrative framework, DIABLO was employed for the statistical analysis. N-glycan groups (GPs 34, 32, 26, 31, 36 and 30) were significantly expressed in T2DM in component 1 and GPs 38 and 20 were related to T2DM in component 2. Four clusters were observed based on the correlation of the expressive signatures of the 39 N-glycans across T2DM and controls. Cluster A, B, C and D had 16, 16, 4 and 3 N-glycans respectively, of which 11, 8, 1 and 1 were found to express differently between controls and T2DM in a univariate analysis [Formula: see text]. Multi-block analysis revealed that trigalactosylated (G3), triantennary (TRIA), high branching (HB) and trisialylated (S3) expressed significantly highly in T2DM than healthy controls. A bipartite relevance network revealed that HB, monogalactosylated (G1) and G3 were central in the network and observed more connections, highlighting their importance in discriminating between T2DM and healthy controls. Investigation of these N-glycans can enhance the understanding of T2DM.
Collapse
Affiliation(s)
- Eric Adua
- Rural Clinical School, Medicine and Health, University of New South Wales, Sydney, NSW, Australia.
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia.
| | | | | | - Enoch Odame Anto
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
- Department of Medical Diagnostics, Faculty of Allied Health Science, Kwame Nkrumah University of Science and Technology, 9800, Kumasi, Ashanti Region, Ghana
| | - Emmanuel Acheampong
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | | | - Wei Wang
- Centre for Precision Health, Edith Cowan University, Joondalup, Australia
| |
Collapse
|
19
|
Radovani B, Gudelj I. N-Glycosylation and Inflammation; the Not-So-Sweet Relation. Front Immunol 2022; 13:893365. [PMID: 35833138 PMCID: PMC9272703 DOI: 10.3389/fimmu.2022.893365] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/30/2022] [Indexed: 12/28/2022] Open
Abstract
Chronic inflammation is the main feature of many long-term inflammatory diseases such as autoimmune diseases, metabolic disorders, and cancer. There is a growing number of studies in which alterations of N-glycosylation have been observed in many pathophysiological conditions, yet studies of the underlying mechanisms that precede N-glycome changes are still sparse. Proinflammatory cytokines have been shown to alter the substrate synthesis pathways as well as the expression of glycosyltransferases required for the biosynthesis of N-glycans. The resulting N-glycosylation changes can further contribute to disease pathogenesis through modulation of various aspects of immune cell processes, including those relevant to pathogen recognition and fine-tuning the inflammatory response. This review summarizes our current knowledge of inflammation-induced N-glycosylation changes, with a particular focus on specific subsets of immune cells of innate and adaptive immunity and how these changes affect their effector functions, cell interactions, and signal transduction.
Collapse
Affiliation(s)
- Barbara Radovani
- Department of Biotechnology, University of Rijeka, Rijeka, Croatia
| | - Ivan Gudelj
- Department of Biotechnology, University of Rijeka, Rijeka, Croatia
- Genos Glycoscience Research Laboratory, Zagreb, Croatia
| |
Collapse
|
20
|
Genetic and Epigenetic Association of Hepatocyte Nuclear Factor-1α with Glycosylation in Post-Traumatic Stress Disorder. Genes (Basel) 2022; 13:genes13061063. [PMID: 35741825 PMCID: PMC9223288 DOI: 10.3390/genes13061063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/05/2022] [Accepted: 06/13/2022] [Indexed: 01/25/2023] Open
Abstract
Post-traumatic stress disorder (PTSD) is a complex trauma-related disorder, the etiology and underlying molecular mechanisms of which are still unclear and probably involve different (epi)genetic and environmental factors. Protein N-glycosylation is a common post-translational modification that has been associated with several pathophysiological states, including inflammation and PTSD. Hepatocyte nuclear factor-1α (HNF1A) is a transcriptional regulator of many genes involved in the inflammatory processes, and it has been identified as master regulator of plasma protein glycosylation. The aim of this study was to determine the association between N-glycan levels in plasma and immunoglobulin G, methylation at four CpG positions in the HNF1A gene, HNF1A antisense RNA 1 (HNF1A-AS1), rs7953249 and HNF1A rs735396 polymorphisms in a total of 555 PTSD and control subjects. We found significant association of rs7953249 and rs735396 polymorphisms, as well as HNF1A gene methylation at the CpG3 site, with highly branched, galactosylated and sialyated plasma N-glycans, mostly in patients with PTSD. HNF1A-AS1 rs7953249 polymorphism was also associated with PTSD; however, none of the polymorphisms were associated with HNF1A gene methylation. These results indicate a possible regulatory role of the investigated HNF1A polymorphisms with respect to the abundance of complex plasma N-glycans previously associated with proinflammatory response, which could contribute to the clinical manifestation of PTSD and its comorbidities.
Collapse
|
21
|
Wang D, Madunić K, Zhang T, Mayboroda OA, Lageveen-Kammeijer GSM, Wuhrer M. High Diversity of Glycosphingolipid Glycans of Colorectal Cancer Cell Lines Reflects the Cellular Differentiation Phenotype. Mol Cell Proteomics 2022; 21:100239. [PMID: 35489554 PMCID: PMC9157004 DOI: 10.1016/j.mcpro.2022.100239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/04/2022] [Accepted: 04/26/2022] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC)–associated changes of protein glycosylation have been widely studied. In contrast, the expression of glycosphingolipid (GSL) patterns in CRC has, hitherto, remained largely unexplored. Even though GSLs are major carriers of cell surface carbohydrates, they are understudied due to their complexity and analytical challenges. In this study, we provide an in-depth analysis of GSL glycans of 22 CRC cell lines using porous graphitized carbon nano–liquid chromatography coupled with electrospray ionization–mass spectrometry. Our data revealed that the GSL expression varies among different cell line classifications, with undifferentiated cell lines showing high expression of blood group A, B, and H antigens while for colon-like cell lines the most prominent GSL glycans contained (sialyl)-LewisA/X and LewisB/Y antigens. Moreover, the GSL expression correlated with relevant glycosyltransferases that are involved in their biosynthesis as well as with transcription factors (TFs) implicated in colon differentiation. Additionally, correlations between certain glycosyltransferases and TFs at mRNA expression level were found, such as FUT3, which correlated with CDX1, ETS2, HNF1A, HNF4A, MECOM, and MYB. These TFs are upregulated in colon-like cell lines pointing to their potential role in regulating fucosylation during colon differentiation. In conclusion, our study reveals novel layers of potential GSL glycans regulation relevant for future research in colon differentiation and CRC. Undifferentiated cell lines showed high expression of blood group A, B, and H antigens. Colon-like cell lines are high in GSLs carrying (sialyl)-LewisA/X and LewisB/Y antigens. (Sialyl)-LewisA/X and LewisB/Y antigens associated with expression of FUT3 and CDX1. I-branching was elevated in undifferentiated cells.
Collapse
Affiliation(s)
- Di Wang
- Leiden University Medical Center, Center for Proteomics and Metabolomics, RC Leiden, The Netherlands
| | - Katarina Madunić
- Leiden University Medical Center, Center for Proteomics and Metabolomics, RC Leiden, The Netherlands
| | - Tao Zhang
- Leiden University Medical Center, Center for Proteomics and Metabolomics, RC Leiden, The Netherlands
| | - Oleg A Mayboroda
- Leiden University Medical Center, Center for Proteomics and Metabolomics, RC Leiden, The Netherlands
| | | | - Manfred Wuhrer
- Leiden University Medical Center, Center for Proteomics and Metabolomics, RC Leiden, The Netherlands.
| |
Collapse
|
22
|
Yang Z, Macdonald-Dunlop E, Chen J, Zhai R, Li T, Richmond A, Klarić L, Pirastu N, Ning Z, Zheng C, Wang Y, Huang T, He Y, Guo H, Ying K, Gustafsson S, Prins B, Ramisch A, Dermitzakis ET, Png G, Eriksson N, Haessler J, Hu X, Zanetti D, Boutin T, Hwang SJ, Wheeler E, Pietzner M, Raffield LM, Kalnapenkis A, Peters JE, Viñuela A, Gilly A, Elmståhl S, Dedoussis G, Petrie JR, Polašek O, Folkersen L, Chen Y, Yao C, Võsa U, Pairo-Castineira E, Clohisey S, Bretherick AD, Rawlik K, Esko T, Enroth S, Johansson Å, Gyllensten U, Langenberg C, Levy D, Hayward C, Assimes TL, Kooperberg C, Manichaikul AW, Siegbahn A, Wallentin L, Lind L, Zeggini E, Schwenk JM, Butterworth AS, Michaëlsson K, Pawitan Y, Joshi PK, Baillie JK, Mälarstig A, Reiner AP, Wilson JF, Shen X. Genetic Landscape of the ACE2 Coronavirus Receptor. Circulation 2022; 145:1398-1411. [PMID: 35387486 PMCID: PMC9047645 DOI: 10.1161/circulationaha.121.057888] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
BACKGROUND SARS-CoV-2, the causal agent of COVID-19, enters human cells using the ACE2 (angiotensin-converting enzyme 2) protein as a receptor. ACE2 is thus key to the infection and treatment of the coronavirus. ACE2 is highly expressed in the heart and respiratory and gastrointestinal tracts, playing important regulatory roles in the cardiovascular and other biological systems. However, the genetic basis of the ACE2 protein levels is not well understood. METHODS We have conducted the largest genome-wide association meta-analysis of plasma ACE2 levels in >28 000 individuals of the SCALLOP Consortium (Systematic and Combined Analysis of Olink Proteins). We summarize the cross-sectional epidemiological correlates of circulating ACE2. Using the summary statistics-based high-definition likelihood method, we estimate relevant genetic correlations with cardiometabolic phenotypes, COVID-19, and other human complex traits and diseases. We perform causal inference of soluble ACE2 on vascular disease outcomes and COVID-19 severity using mendelian randomization. We also perform in silico functional analysis by integrating with other types of omics data. RESULTS We identified 10 loci, including 8 novel, capturing 30% of the heritability of the protein. We detected that plasma ACE2 was genetically correlated with vascular diseases, severe COVID-19, and a wide range of human complex diseases and medications. An X-chromosome cis-protein quantitative trait loci-based mendelian randomization analysis suggested a causal effect of elevated ACE2 levels on COVID-19 severity (odds ratio, 1.63 [95% CI, 1.10-2.42]; P=0.01), hospitalization (odds ratio, 1.52 [95% CI, 1.05-2.21]; P=0.03), and infection (odds ratio, 1.60 [95% CI, 1.08-2.37]; P=0.02). Tissue- and cell type-specific transcriptomic and epigenomic analysis revealed that the ACE2 regulatory variants were enriched for DNA methylation sites in blood immune cells. CONCLUSIONS Human plasma ACE2 shares a genetic basis with cardiovascular disease, COVID-19, and other related diseases. The genetic architecture of the ACE2 protein is mapped, providing a useful resource for further biological and clinical studies on this coronavirus receptor.
Collapse
Affiliation(s)
- Zhijian Yang
- Biostatistics Group, School of Life Sciences, Sun Yat-sen University, Guangzhou, China (Z.Y., J.C., R.Z., T.L., Z.N., C.Z., Y.W., X.S.)
- Center for Intelligent Medicine Research, Greater Bay Area Institute of Precision Medicine (Guangzhou), Fudan University, China (Z.Y., J.C., R.Z., T.L., X.S.)
| | - Erin Macdonald-Dunlop
- Centre for Global Health Research, Usher Institute, University of Edinburgh, UK (E.M.-D., N.P., Y.H., P.K.J., J.F.W., X.S.)
| | - Jiantao Chen
- Biostatistics Group, School of Life Sciences, Sun Yat-sen University, Guangzhou, China (Z.Y., J.C., R.Z., T.L., Z.N., C.Z., Y.W., X.S.)
- Center for Intelligent Medicine Research, Greater Bay Area Institute of Precision Medicine (Guangzhou), Fudan University, China (Z.Y., J.C., R.Z., T.L., X.S.)
| | - Ranran Zhai
- Biostatistics Group, School of Life Sciences, Sun Yat-sen University, Guangzhou, China (Z.Y., J.C., R.Z., T.L., Z.N., C.Z., Y.W., X.S.)
- Center for Intelligent Medicine Research, Greater Bay Area Institute of Precision Medicine (Guangzhou), Fudan University, China (Z.Y., J.C., R.Z., T.L., X.S.)
| | - Ting Li
- Biostatistics Group, School of Life Sciences, Sun Yat-sen University, Guangzhou, China (Z.Y., J.C., R.Z., T.L., Z.N., C.Z., Y.W., X.S.)
- Center for Intelligent Medicine Research, Greater Bay Area Institute of Precision Medicine (Guangzhou), Fudan University, China (Z.Y., J.C., R.Z., T.L., X.S.)
| | - Anne Richmond
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, UK (A. Richmond, L.K., T.B., E.P.-C., A.D.B., C.H., J.F.W.)
| | - Lucija Klarić
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, UK (A. Richmond, L.K., T.B., E.P.-C., A.D.B., C.H., J.F.W.)
| | - Nicola Pirastu
- Centre for Global Health Research, Usher Institute, University of Edinburgh, UK (E.M.-D., N.P., Y.H., P.K.J., J.F.W., X.S.)
- Human Technopole Viale Rita Levi-Montalcini, Milan, Italy (N.P.)
| | - Zheng Ning
- Biostatistics Group, School of Life Sciences, Sun Yat-sen University, Guangzhou, China (Z.Y., J.C., R.Z., T.L., Z.N., C.Z., Y.W., X.S.)
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden (Z.N., T.H., Y.C., Y.P., A.M., X.S.)
| | - Chenqing Zheng
- Biostatistics Group, School of Life Sciences, Sun Yat-sen University, Guangzhou, China (Z.Y., J.C., R.Z., T.L., Z.N., C.Z., Y.W., X.S.)
| | - Yipeng Wang
- Biostatistics Group, School of Life Sciences, Sun Yat-sen University, Guangzhou, China (Z.Y., J.C., R.Z., T.L., Z.N., C.Z., Y.W., X.S.)
| | - Tingting Huang
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden (Z.N., T.H., Y.C., Y.P., A.M., X.S.)
| | - Yazhou He
- Centre for Global Health Research, Usher Institute, University of Edinburgh, UK (E.M.-D., N.P., Y.H., P.K.J., J.F.W., X.S.)
- West China School of Public Health, West China Fourth Hospital, Sichuan University, Chengdu (Y.H.)
| | - Huiming Guo
- Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital Guangdong Academy of Medical Sciences, Guangzhou, China (H.G.)
| | - Kejun Ying
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA (K.Y.)
- T.H. Chan School of Public Health, Harvard University, Boston, MA (K.Y.)
| | - Stefan Gustafsson
- Department of Medical Sciences, Uppsala University, Sweden (A.S., S.G., L.W., L.L.)
| | - Bram Prins
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, UK (B.P., J.E.P., A.S.B.)
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge (B.P., J.E.P., A.S.B.)
| | - Anna Ramisch
- Department of Genetic Medicine and Development, University of Geneva Medical School, Switzerland (A. Ramisch, E.T.D., A.V.)
| | - Emmanouil T. Dermitzakis
- Department of Genetic Medicine and Development, University of Geneva Medical School, Switzerland (A. Ramisch, E.T.D., A.V.)
| | - Grace Png
- Institute of Translational Genomics, Helmholtz Zentrum München–German Research Center for Environmental Health, Neuherberg, Germany (G.P., A.G., E.Z.)
- Technical University of Munich (TUM), School of Medicine, Germany (G.P.)
| | | | - Jeffrey Haessler
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA (J.H., C.K., A.P.R.)
| | - Xiaowei Hu
- Center for Public Health Genomics, University of Virginia, Charlottesville (X.H., A.W.M.)
| | - Daniela Zanetti
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, CA (D.Z., T.L.A.)
- Stanford Cardiovascular Institute, Stanford University, CA (D.Z., T.L.A.)
| | - Thibaud Boutin
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, UK (A. Richmond, L.K., T.B., E.P.-C., A.D.B., C.H., J.F.W.)
| | - Shih-Jen Hwang
- Framingham Heart Study, MA (S.-J.H., C.Y., D.L.)
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (S.-J.H., C.Y., D.L.)
| | - Eleanor Wheeler
- MRC Epidemiology Unit, University of Cambridge, UK (E.W., M.P., C.L.)
| | - Maik Pietzner
- MRC Epidemiology Unit, University of Cambridge, UK (E.W., M.P., C.L.)
- Computational Medicine, Berlin Institute of Health at Charité–Universitätsmedizin, Germany (M.P., C.L.)
| | - Laura M. Raffield
- Department of Genetics, University of North Carolina at Chapel Hill (L.M.R.)
| | - Anette Kalnapenkis
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Estonia (A.K., U.V., T.E.)
- Institute of Molecular and Cell Biology, University of Tartu, Estonia (A.K.)
| | - James E. Peters
- Department of Immunology and Inflammation, Imperial College London, UK (J.E.P.)
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, UK (B.P., J.E.P., A.S.B.)
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge (B.P., J.E.P., A.S.B.)
| | - Ana Viñuela
- Department of Genetic Medicine and Development, University of Geneva Medical School, Switzerland (A. Ramisch, E.T.D., A.V.)
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, UK (A.V.)
| | - Arthur Gilly
- Institute of Translational Genomics, Helmholtz Zentrum München–German Research Center for Environmental Health, Neuherberg, Germany (G.P., A.G., E.Z.)
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK (A.G., E.Z.)
| | - Sölve Elmståhl
- Faculty of Medicine, Lund University, Sweden (S. Elmståhl)
| | - George Dedoussis
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University of Athens, Greece (G.D.)
| | - John R. Petrie
- Institute of Cardiovascular & Medical Sciences, University of Glasgow, UK (J. Petrie)
| | - Ozren Polašek
- University of Split School of Medicine, Croatia (O.P.)
- Algebra University College, Ilica, Zagreb, Croatia (O.P.)
| | | | - Yan Chen
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden (Z.N., T.H., Y.C., Y.P., A.M., X.S.)
| | - Chen Yao
- Framingham Heart Study, MA (S.-J.H., C.Y., D.L.)
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (S.-J.H., C.Y., D.L.)
| | - Urmo Võsa
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Estonia (A.K., U.V., T.E.)
| | - Erola Pairo-Castineira
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, UK (A. Richmond, L.K., T.B., E.P.-C., A.D.B., C.H., J.F.W.)
- Roslin Institute, University of Edinburgh, Easter Bush, UK (E.P.-C., S.C., K.R., J.K.B.)
| | - Sara Clohisey
- Roslin Institute, University of Edinburgh, Easter Bush, UK (E.P.-C., S.C., K.R., J.K.B.)
| | - Andrew D. Bretherick
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, UK (A. Richmond, L.K., T.B., E.P.-C., A.D.B., C.H., J.F.W.)
| | - Konrad Rawlik
- Roslin Institute, University of Edinburgh, Easter Bush, UK (E.P.-C., S.C., K.R., J.K.B.)
| | | | | | - Tõnu Esko
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Estonia (A.K., U.V., T.E.)
| | - Stefan Enroth
- Department of Immunology, Genetics and Pathology, Uppsala Universitet, Science for Life Laboratory, Sweden (S. Enroth, A.J., U.G.)
| | - Åsa Johansson
- Department of Immunology, Genetics and Pathology, Uppsala Universitet, Science for Life Laboratory, Sweden (S. Enroth, A.J., U.G.)
| | - Ulf Gyllensten
- Department of Immunology, Genetics and Pathology, Uppsala Universitet, Science for Life Laboratory, Sweden (S. Enroth, A.J., U.G.)
| | - Claudia Langenberg
- MRC Epidemiology Unit, University of Cambridge, UK (E.W., M.P., C.L.)
- Computational Medicine, Berlin Institute of Health at Charité–Universitätsmedizin, Germany (M.P., C.L.)
| | - Daniel Levy
- Framingham Heart Study, MA (S.-J.H., C.Y., D.L.)
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (S.-J.H., C.Y., D.L.)
| | - Caroline Hayward
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, UK (A. Richmond, L.K., T.B., E.P.-C., A.D.B., C.H., J.F.W.)
| | - Themistocles L. Assimes
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, CA (D.Z., T.L.A.)
- Stanford Cardiovascular Institute, Stanford University, CA (D.Z., T.L.A.)
| | - Charles Kooperberg
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA (J.H., C.K., A.P.R.)
| | - Ani W. Manichaikul
- Center for Public Health Genomics, University of Virginia, Charlottesville (X.H., A.W.M.)
| | - Agneta Siegbahn
- Department of Medical Sciences, Uppsala University, Sweden (A.S., S.G., L.W., L.L.)
| | - Lars Wallentin
- Department of Medical Sciences, Uppsala University, Sweden (A.S., S.G., L.W., L.L.)
| | - Lars Lind
- Department of Medical Sciences, Uppsala University, Sweden (A.S., S.G., L.W., L.L.)
| | - Eleftheria Zeggini
- Institute of Translational Genomics, Helmholtz Zentrum München–German Research Center for Environmental Health, Neuherberg, Germany (G.P., A.G., E.Z.)
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK (A.G., E.Z.)
- Technical University of Munich (TUM) and Klinikum Rechts der Isar, TUM School of Medicine, Germany (E.Z.)
| | - Jochen M. Schwenk
- Affinity Proteomics, Science for Life Laboratory, KTH Royal Institute of Technology, Solna, Sweden (J.M.S.)
| | - Adam S. Butterworth
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, UK (B.P., J.E.P., A.S.B.)
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge (B.P., J.E.P., A.S.B.)
- British Heart Foundation Centre of Research Excellence, University of Cambridge, UK (A.S.B.)
- National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Genomics, University of Cambridge, UK (A.S.B.)
| | - Karl Michaëlsson
- Department of Surgical Sciences, Uppsala University, Sweden (K.M.)
| | - Yudi Pawitan
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden (Z.N., T.H., Y.C., Y.P., A.M., X.S.)
| | - Peter K. Joshi
- Centre for Global Health Research, Usher Institute, University of Edinburgh, UK (E.M.-D., N.P., Y.H., P.K.J., J.F.W., X.S.)
| | - J. Kenneth Baillie
- Roslin Institute, University of Edinburgh, Easter Bush, UK (E.P.-C., S.C., K.R., J.K.B.)
- Intensive Care Unit, Royal Infirmary of Edinburgh, UK (J.K.B.)
| | - Anders Mälarstig
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden (Z.N., T.H., Y.C., Y.P., A.M., X.S.)
- Pfizer Worldwide Research, Development and Medical, Stockholm, Sweden (A.M.)
| | - Alexander P. Reiner
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA (J.H., C.K., A.P.R.)
| | - James F. Wilson
- Centre for Global Health Research, Usher Institute, University of Edinburgh, UK (E.M.-D., N.P., Y.H., P.K.J., J.F.W., X.S.)
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, UK (A. Richmond, L.K., T.B., E.P.-C., A.D.B., C.H., J.F.W.)
| | - Xia Shen
- Biostatistics Group, School of Life Sciences, Sun Yat-sen University, Guangzhou, China (Z.Y., J.C., R.Z., T.L., Z.N., C.Z., Y.W., X.S.)
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China (X.S.)
- Center for Intelligent Medicine Research, Greater Bay Area Institute of Precision Medicine (Guangzhou), Fudan University, China (Z.Y., J.C., R.Z., T.L., X.S.)
- Centre for Global Health Research, Usher Institute, University of Edinburgh, UK (E.M.-D., N.P., Y.H., P.K.J., J.F.W., X.S.)
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden (Z.N., T.H., Y.C., Y.P., A.M., X.S.)
| |
Collapse
|
23
|
Firdous P, Nissar K, Masoodi SR, Ganai BA. Biomarkers: Tools for Discriminating MODY from Other Diabetic Subtypes. Indian J Endocrinol Metab 2022; 26:223-231. [PMID: 36248040 PMCID: PMC9555386 DOI: 10.4103/ijem.ijem_266_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 02/24/2022] [Accepted: 05/29/2022] [Indexed: 11/29/2022] Open
Abstract
Maturity Onset Diabetes of Young (MODY), characterized by the pancreatic b-cell dysfunction, the autosomal dominant mode of inheritance and early age of onset (often ≤25 years). It differs from normal type 1 and type 2 diabetes in that it occurs at a low rate of 1-5%, three-generational autosomal dominant patterns of inheritance and lacks typical diabetic features such as obesity. MODY patients can be managed by diet alone for many years, and sulfonylureas are also recommended to be very effective for managing glucose levels for more than 30 years. Despite rapid advancements in molecular disease diagnosis methods, MODY cases are frequently misdiagnosed as type 1 or type 2 due to overlapping clinical features, genetic testing expenses, and a lack of disease understanding. A timely and accurate diagnosis method is critical for disease management and its complications. An early diagnosis and differentiation of MODY at the clinical level could reduce the risk of inappropriate insulin or sulfonylurea treatment therapy and its associated side effects. We present a broader review to highlight the role and efficacy of biomarkers in MODY differentiation and patient selection for genetic testing analysis.
Collapse
Affiliation(s)
- Parveena Firdous
- Centre of Research for Development (CORD), University of Kashmir, Srinagar, Jammu and Kashmir
| | - Kamran Nissar
- Centre of Research for Development (CORD), University of Kashmir, Srinagar, Jammu and Kashmir
- Department of Clinical Biochemistry, University of Kashmir, Srinagar, Jammu and Kashmir
| | | | - Bashir Ahmad Ganai
- Centre of Research for Development (CORD), University of Kashmir, Srinagar, Jammu and Kashmir
| |
Collapse
|
24
|
Cucchiara F, Petrini I, Passaro A, Attili I, Crucitta S, Pardini E, de Marinis F, Danesi R, Re MD. Gene-Networks analyses define a subgroup of Small Cell Lung Cancers with short survival. Clin Lung Cancer 2022; 23:510-521. [DOI: 10.1016/j.cllc.2022.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/06/2022] [Accepted: 05/13/2022] [Indexed: 11/03/2022]
|
25
|
Serie DJ, Myers AA, Haehn DA, Parker AS, Bajalia EM, Gonzalez GA, Li Q, Wong MY, Moser KC, Zhou B, Thiel DD. Novel plasma glycoprotein biomarkers predict progression-free survival in surgically resected clear cell renal cell carcinoma. Urol Oncol 2022; 40:168.e11-168.e19. [PMID: 35148948 DOI: 10.1016/j.urolonc.2021.12.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/30/2021] [Accepted: 12/09/2021] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Limited data exists on utilization of protein post-translational modifications as biomarkers for clear cell renal cell carcinoma (ccRCC). We employed high-throughput glycoproteomics to evaluate differential expression of glycoprotein-isoforms as novel markers for ccRCC progression-free survival (PFS). METHODS Plasma samples were obtained from 77 patients treated surgically for ccRCC. Glycoproteomic analyses were carried out after liquid chromatography tandem mass spectrometry. Age-adjusted Cox proportional hazard models were constructed to evaluate PFS. Optimized Harrell's C-index was employed to dichotomize the collective for the construction of Kaplan-Meier curves. RESULTS The average length of follow-up was 3.4 (range: 0.04-9.83) years. Glycoproteomic analysis identified 39 glycopeptides and 14 non-glycosylated peptides that showed statistically significant (false discovery rate P ≤ 0.05) differential expression associated with PFS. Five of the glycosylated peptides conferred continuous hazard ratio (HR) of > 6 (range 6.3-11.6). These included prothrombin A2G2S glycan motif (HR = 6.47, P = 9.53E-05), immunoglobulin J chain FA2G2S2 motif (HR = 10.69, P = 0.001), clusterin A2G2 motif (HR = 7.38, P = 0.002), complement component C8A A2G2S2 motif (HR = 11.59, P = 0.002), and apolipoprotein M glycopeptide with non-fucosylated and non-sialylated hybrid-type glycan (HR = 6.30, P = 0.003). Kaplan-Meier curves based on dichotomous expression of these five glycopeptides resulted in hazard ratios of 3.9 to 10.7, all with P-value < 0.03. Kaplan-Meyer plot using the multivariable model comprising 3 of the markers yielded HR of 11.96 (P < 0.0001). CONCLUSION Differential glyco-isoform abundance of plasma proteins may be a useful source of biomarkers for the clinical course and prognosis of ccRCC.
Collapse
Affiliation(s)
| | - Amanda A Myers
- Department of Urology, Mayo Clinic Florida, Jacksonville, FL
| | - Daniela A Haehn
- Department of Urology, Mayo Clinic Florida, Jacksonville, FL
| | - Alexander S Parker
- University of Florida College of Medicine - Jacksonville, Jacksonville, FL
| | - Essa M Bajalia
- Department of Urology, Mayo Clinic Florida, Jacksonville, FL
| | | | - Qiongyu Li
- InterVenn Biosciences, San Francisco, CA
| | | | | | - Bo Zhou
- InterVenn Biosciences, San Francisco, CA
| | - David D Thiel
- Department of Urology, Mayo Clinic Florida, Jacksonville, FL.
| |
Collapse
|
26
|
Landini A, Trbojević-Akmačić I, Navarro P, Tsepilov YA, Sharapov SZ, Vučković F, Polašek O, Hayward C, Petrović T, Vilaj M, Aulchenko YS, Lauc G, Wilson JF, Klarić L. Genetic regulation of post-translational modification of two distinct proteins. Nat Commun 2022; 13:1586. [PMID: 35332118 PMCID: PMC8948205 DOI: 10.1038/s41467-022-29189-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 03/02/2022] [Indexed: 11/13/2022] Open
Abstract
Post-translational modifications diversify protein functions and dynamically coordinate their signalling networks, influencing most aspects of cell physiology. Nevertheless, their genetic regulation or influence on complex traits is not fully understood. Here, we compare the genetic regulation of the same PTM of two proteins - glycosylation of transferrin and immunoglobulin G (IgG). By performing genome-wide association analysis of transferrin glycosylation, we identify 10 significantly associated loci, 9 of which were not reported previously. Comparing these with IgG glycosylation-associated genes, we note protein-specific associations with genes encoding glycosylation enzymes (transferrin - MGAT5, ST3GAL4, B3GAT1; IgG - MGAT3, ST6GAL1), as well as shared associations (FUT6, FUT8). Colocalisation analyses of the latter suggest that different causal variants in the FUT genes regulate fucosylation of the two proteins. Glycosylation of these proteins is thus genetically regulated by both shared and protein-specific mechanisms.
Collapse
Affiliation(s)
- Arianna Landini
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, United Kingdom
| | | | - Pau Navarro
- MRC Human Genetics Unit, Institute for Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Yakov A Tsepilov
- Laboratory of Glycogenomics, Institute of Cytology and Genetics, Novosibirsk, Russia.,Laboratory of Theoretical and Applied Functional Genomics, Novosibirsk State University, Novosibirsk, Russia
| | - Sodbo Z Sharapov
- Laboratory of Glycogenomics, Institute of Cytology and Genetics, Novosibirsk, Russia
| | | | - Ozren Polašek
- Department of Public Health, School of Medicine, University of Split, Split, Croatia.,Algebra University College, Zagreb, Croatia
| | - Caroline Hayward
- MRC Human Genetics Unit, Institute for Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Tea Petrović
- Genos Glycoscience Research Laboratory, Zagreb, Croatia
| | - Marija Vilaj
- Genos Glycoscience Research Laboratory, Zagreb, Croatia
| | - Yurii S Aulchenko
- Laboratory of Glycogenomics, Institute of Cytology and Genetics, Novosibirsk, Russia
| | - Gordan Lauc
- Genos Glycoscience Research Laboratory, Zagreb, Croatia.,Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - James F Wilson
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, United Kingdom. .,MRC Human Genetics Unit, Institute for Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom.
| | - Lucija Klarić
- MRC Human Genetics Unit, Institute for Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom.
| |
Collapse
|
27
|
Chakraborty S, Gonzalez JC, Sievers BL, Mallajosyula V, Chakraborty S, Dubey M, Ashraf U, Cheng BYL, Kathale N, Tran KQT, Scallan C, Sinnott A, Cassidy A, Chen ST, Gelbart T, Gao F, Golan Y, Ji X, Kim-Schulze S, Prahl M, Gaw SL, Gnjatic S, Marron TU, Merad M, Arunachalam PS, Boyd SD, Davis MM, Holubar M, Khosla C, Maecker HT, Maldonado Y, Mellins ED, Nadeau KC, Pulendran B, Singh U, Subramanian A, Utz PJ, Sherwood R, Zhang S, Jagannathan P, Tan GS, Wang TT. Early non-neutralizing, afucosylated antibody responses are associated with COVID-19 severity. Sci Transl Med 2022; 14:eabm7853. [PMID: 35040666 PMCID: PMC8939764 DOI: 10.1126/scitranslmed.abm7853] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 01/07/2022] [Indexed: 12/20/2022]
Abstract
A damaging inflammatory response is implicated in the pathogenesis of severe coronavirus disease 2019 (COVID-19), but mechanisms contributing to this response are unclear. In two prospective cohorts, early non-neutralizing, afucosylated immunoglobulin G (IgG) antibodies specific to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) were associated with progression from mild to more severe COVID-19. To study the biology of afucosylated IgG immune complexes, we developed an in vivo model that revealed that human IgG-Fc-gamma receptor (FcγR) interactions could regulate inflammation in the lung. Afucosylated IgG immune complexes isolated from patients with COVID-19 induced inflammatory cytokine production and robust infiltration of the lung by immune cells. In contrast to the antibody structures that were associated with disease progression, antibodies that were elicited by messenger RNA SARS-CoV-2 vaccines were highly fucosylated and enriched in sialylation, both modifications that reduce the inflammatory potential of IgG. Vaccine-elicited IgG did not promote an inflammatory lung response. These results show that human IgG-FcγR interactions regulate inflammation in the lung and define distinct lung activities mediated by the IgG that are associated with protection against, or progression to, severe COVID-19.
Collapse
Affiliation(s)
- Saborni Chakraborty
- Department of Medicine, Division of Infectious Diseases, Stanford University, Stanford, CA, 94304, USA
| | - Joseph C. Gonzalez
- Department of Medicine, Division of Infectious Diseases, Stanford University, Stanford, CA, 94304, USA
- Program in Immunology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | | | - Vamsee Mallajosyula
- Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Srijoni Chakraborty
- Department of Computer and Software Engineering, San Jose State University, San Jose, CA, 95192, USA
| | - Megha Dubey
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Usama Ashraf
- Department of Medicine, Division of Infectious Diseases, Stanford University, Stanford, CA, 94304, USA
| | - Bowie Yik-Ling Cheng
- Department of Medicine, Division of Infectious Diseases, Stanford University, Stanford, CA, 94304, USA
| | - Nimish Kathale
- Department of Medicine, Division of Infectious Diseases, Stanford University, Stanford, CA, 94304, USA
| | - Kim Quyen Thi Tran
- Department of Medicine, Division of Infectious Diseases, Stanford University, Stanford, CA, 94304, USA
| | - Courtney Scallan
- Department of Medicine, Division of Infectious Diseases, Stanford University, Stanford, CA, 94304, USA
| | | | - Arianna Cassidy
- Division of Maternal-Fetal Medicine, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Steven T. Chen
- The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029-5674, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029-5674, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029-5674, USA
| | | | - Fei Gao
- Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Yarden Golan
- Department of Bioengineering and Therapeutic Sciences, and Institute for Human Genetics, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Xuhuai Ji
- Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Seunghee Kim-Schulze
- The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029-5674, USA
| | - Mary Prahl
- Division of Pediatric Infectious Diseases, Department of Pediatrics, University of California, San Francisco, CA, 94143, USA
| | - Stephanie L. Gaw
- Division of Maternal-Fetal Medicine, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Sacha Gnjatic
- The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029-5674, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029-5674, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029-5674, USA
- Human Immune Monitoring Center, Precision Immunology Institute, Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029-5674, USA
| | - Thomas U. Marron
- The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029-5674, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029-5674, USA
| | - Miriam Merad
- The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029-5674, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029-5674, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029-5674, USA
- Human Immune Monitoring Center, Precision Immunology Institute, Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029-5674, USA
| | - Prabhu S. Arunachalam
- Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Scott D. Boyd
- Departments of Pathology and of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Mark M. Davis
- Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Marisa Holubar
- Department of Medicine, Division of Infectious Diseases, Stanford University, Stanford, CA, 94304, USA
| | - Chaitan Khosla
- Departments of Chemistry and Chemical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Holden T. Maecker
- Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Yvonne Maldonado
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Elizabeth D. Mellins
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Kari C. Nadeau
- Sean N. Parker Center for Allergy and Asthma Research, Stanford, CA, 94304, USA
| | - Bali Pulendran
- Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Upinder Singh
- Department of Medicine, Division of Infectious Diseases, Stanford University, Stanford, CA, 94304, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Aruna Subramanian
- Department of Medicine, Division of Infectious Diseases, Stanford University, Stanford, CA, 94304, USA
| | - Paul J. Utz
- Department of Medicine, Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA, 94304, USA
| | - Robert Sherwood
- Proteomics and Metabolomics Facility, Institute of Biotechnology, Cornell University, Ithaca, NY, 14853, USA
| | - Sheng Zhang
- Proteomics and Metabolomics Facility, Institute of Biotechnology, Cornell University, Ithaca, NY, 14853, USA
| | - Prasanna Jagannathan
- Department of Medicine, Division of Infectious Diseases, Stanford University, Stanford, CA, 94304, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Gene S. Tan
- J. Craig Venter Institute, La Jolla, CA, 92037, USA
- Division of Infectious Diseases, Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Taia T. Wang
- Department of Medicine, Division of Infectious Diseases, Stanford University, Stanford, CA, 94304, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Chan Zuckerberg Biohub, San Francisco, CA, 94158, USA
| |
Collapse
|
28
|
Tijardović M, Štambuk T, Juszczak A, Keser T, Gasperikova D, Novokmet M, Tjora E, Pape Medvidović E, Stanik J, Rasmus Njølstad P, Lauc G, Owen KR, Gornik O. Fucosylated AGP glycopeptides as biomarkers of HNF1A-Maturity onset diabetes of the young. Diabetes Res Clin Pract 2022; 185:109226. [PMID: 35122907 DOI: 10.1016/j.diabres.2022.109226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/19/2022] [Accepted: 01/28/2022] [Indexed: 11/16/2022]
Abstract
AIMS We previously demonstrated that antennary fucosylated N-glycans on plasma proteins are regulated by HNF1A and can identify cases of Maturity-Onset Diabetes of the Young caused by HNF1A variants (HNF1A-MODY). Based on literature data, we further postulated that N-glycans with best diagnostic value mostly originate from alpha-1-acid glycoprotein (AGP). In this study we analyzed fucosylation of AGP in subjects with HNF1A-MODY and other types of diabetes aiming to evaluate its diagnostic potential. METHODS A recently developed LC-MS method for AGP N-glycopeptide analysis was utilized in two independent cohorts: a) 466 subjects with different diabetes subtypes to test the fucosylation differences, b) 98 selected individuals to test the discriminative potential for pathogenic HNF1A variants. RESULTS Our results showed significant reduction in AGP fucosylation associated to HNF1A-MODY when compared to other diabetes subtypes. Additionally, ROC curve analysis confirmed significant discriminatory potential of individual fucosylated AGP glycopeptides, where the best performing glycopeptide had an AUC of 0.94 (95% CI 0.90-0.99). CONCLUSIONS A glycopeptide based diagnostic tool would be beneficial for patient stratification by providing information about the functionality of HNF1A. It could assist the interpretation of DNA sequencing results and be a useful addition to the differential diagnostic process.
Collapse
Affiliation(s)
- Marko Tijardović
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | | | - Agata Juszczak
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, University of Oxford, Oxford, UK; Oxford NIHR Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, UK
| | - Toma Keser
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Daniela Gasperikova
- Department of Metabolic Disorders, Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | | | - Erling Tjora
- Children and Youth Clinic, Haukeland University Hospital, Bergen, Norway
| | - Edita Pape Medvidović
- Vuk Vrhovac University Clinic for Diabetes, Endocrinology and Metabolic Diseases, Merkur University Hospital, Zagreb University School of Medicine, Zagreb, Croatia
| | - Juraj Stanik
- Department of Metabolic Disorders, Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia; Department of Pediatrics, Medical Faculty of Comenius University and National Institute for Children's Diseases, Bratislava, Slovakia
| | - Pål Rasmus Njølstad
- Children and Youth Clinic, Haukeland University Hospital, Bergen, Norway; Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Gordan Lauc
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia; Genos Glycoscience Research Laboratory, Zagreb, Croatia
| | - Katharine R Owen
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, University of Oxford, Oxford, UK; Oxford NIHR Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, UK
| | - Olga Gornik
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia.
| |
Collapse
|
29
|
Brazil JC, Parkos CA. Finding the sweet spot: glycosylation mediated regulation of intestinal inflammation. Mucosal Immunol 2022; 15:211-222. [PMID: 34782709 PMCID: PMC8591159 DOI: 10.1038/s41385-021-00466-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 10/11/2021] [Accepted: 10/14/2021] [Indexed: 02/04/2023]
Abstract
Glycans are essential cellular components that facilitate a range of critical functions important for tissue development and mucosal homeostasis. Furthermore, specific alterations in glycosylation represent important diagnostic hallmarks of cancer that contribute to tumor cell dissociation, invasion, and metastasis. However, much less is known about how glycosylation contributes to the pathobiology of inflammatory mucosal diseases. Here we will review how epithelial and immune cell glycosylation regulates gut homeostasis and how inflammation-driven changes in glycosylation contribute to intestinal pathobiology.
Collapse
Affiliation(s)
- Jennifer C. Brazil
- grid.214458.e0000000086837370Department of Pathology, University of Michigan, Ann Arbor, MI 48109 USA
| | - Charles A. Parkos
- grid.214458.e0000000086837370Department of Pathology, University of Michigan, Ann Arbor, MI 48109 USA
| |
Collapse
|
30
|
Chakraborty S, Gonzalez JC, Sievers BL, Mallajosyula V, Chakraborty S, Dubey M, Ashraf U, Cheng BYL, Kathale N, Tran KQT, Scallan C, Sinnott A, Cassidy A, Chen ST, Gelbart T, Gao F, Golan Y, Ji X, Kim-Schulze S, Prahl M, Gaw SL, Gnjatic S, Marron TU, Merad M, Arunachalam PS, Boyd SD, Davis MM, Holubar M, Khosla C, Maecker HT, Maldonado Y, Mellins ED, Nadeau KC, Pulendran B, Singh U, Subramanian A, Utz PJ, Sherwood R, Zhang S, Jagannathan P, Tan GS, Wang TT. Structurally and functionally distinct early antibody responses predict COVID-19 disease trajectory and mRNA vaccine response. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.05.25.445649. [PMID: 34075376 PMCID: PMC8168384 DOI: 10.1101/2021.05.25.445649] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A damaging inflammatory response is strongly implicated in the pathogenesis of severe COVID-19 but mechanisms contributing to this response are unclear. In two prospective cohorts, early non-neutralizing, afucosylated, anti-SARS-CoV-2 IgG predicted progression from mild, to more severe COVID-19. In contrast to the antibody structures that predicted disease progression, antibodies that were elicited by mRNA SARS-CoV-2 vaccines were low in Fc afucosylation and enriched in sialylation, both modifications that reduce the inflammatory potential of IgG. To study the biology afucosylated IgG immune complexes, we developed an in vivo model which revealed that human IgG-FcγR interactions can regulate inflammation in the lung. Afucosylated IgG immune complexes induced inflammatory cytokine production and robust infiltration of the lung by immune cells. By contrast, vaccine elicited IgG did not promote an inflammatory lung response. Here, we show that IgG-FcγR interactions can regulate inflammation in the lung and define distinct lung activities associated with the IgG that predict severe COVID-19 and protection against SARS-CoV-2. ONE SENTENCE SUMMARY Divergent early antibody responses predict COVID-19 disease trajectory and mRNA vaccine response and are functionally distinct in vivo .
Collapse
|
31
|
Kifer D, Louca P, Cvetko A, Deriš H, Cindrić A, Grallert H, Peters A, Polašek O, Gornik O, Mangino M, Spector TD, Valdes AM, Padmanabhan S, Gieger C, Lauc G, Menni C. N-glycosylation of immunoglobulin G predicts incident hypertension. J Hypertens 2021; 39:2527-2533. [PMID: 34285147 PMCID: PMC7611954 DOI: 10.1097/hjh.0000000000002963] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES Glycosylation of immunoglobulin G (IgG) is an important regulator of the immune system and has been implicated in prevalent hypertension. The aim of this study is to investigate whether the IgG glycome begins to change prior to hypertension diagnosis by analysing the IgG glycome composition in a large population-based female cohort with two independent replication samples. METHODS We included 989 unrelated cases with incident hypertension and 1628 controls from the TwinsUK cohort (mean follow-up time of 6.3 years) with IgG measured at baseline by ultra-performance liquid chromatography and longitudinal BP measurement available. We replicated our findings in 106 individuals from the 10 001 Dalmatians and 729 from KORA S4. Cox regression mixed models were applied to identify changes in glycan traits preincident hypertension, after adjusting for age, mean arterial pressure, BMI, family relatedness and multiple testing (FDR < 0.1). Significant IgG-incident hypertension associations were replicated in the two independent cohorts by leveraging Cox regression mixed models in the 10 001 Dalmatians and logistic regression models in the KORA cohort. RESULTS We identified and replicated four glycan traits, incidence of bisecting GlcNAc, GP4, GP9 and GP21, that are predictive of incident hypertension after adjusting for confoundes and multiple testing [hazard ratio (95% CI) ranging from 0.45 (0.24-0.84) for GP21 to 2.9 (1.5-5.68) for GP4]. We then linearly combined the four replicated glycans and found that the glycan score correlated with incident hypertension, SBP and DBP. CONCLUSION Our results suggest that the IgG glycome changes prior to the development of hypertension.
Collapse
Affiliation(s)
- Domagoj Kifer
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Panayiotis Louca
- Department of Twin Research, Kings College London, London, England, United Kingdom
| | - Ana Cvetko
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Helena Deriš
- Genos Glycoscience Research Laboratory, Zagreb, Croatia
| | - Ana Cindrić
- Genos Glycoscience Research Laboratory, Zagreb, Croatia
| | - Harald Grallert
- Research Unit of Molecular Epidemiology, Institute of Epidemiology, Helmholtz Zentrum München Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Annette Peters
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute of Epidemiology, Helmholtz Zentrum München Research Center for Environmental Health, Neuherberg, Germany
- LMU Munich, IBE-Chair of Epidemiology, 85764 Neuherberg, Germany
| | - Ozren Polašek
- Department of Public Health, University of Split, School of Medicine, Split, Croatia
| | - Olga Gornik
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Massimo Mangino
- Department of Twin Research, Kings College London, London, England, United Kingdom
- NIHR Biomedical Research Centre at Guy’s and St Thomas’ Foundation Trust, London SE1 9RT, UK
| | - Tim D Spector
- Department of Twin Research, Kings College London, London, England, United Kingdom
| | - Ana M Valdes
- Department of Twin Research, Kings College London, London, England, United Kingdom
- Academic Rheumatology Clinical Sciences Building, Nottingham City Hospital, University of Nottingham, United Kingdom
| | | | - Christian Gieger
- Research Unit of Molecular Epidemiology, Institute of Epidemiology, Helmholtz Zentrum München Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Gordan Lauc
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
- Genos Glycoscience Research Laboratory, Zagreb, Croatia
| | - Cristina Menni
- Department of Twin Research, Kings College London, London, England, United Kingdom
| |
Collapse
|
32
|
Klasić M, Zoldoš V. Epigenetics of Immunoglobulin G Glycosylation. EXPERIENTIA SUPPLEMENTUM (2012) 2021; 112:289-301. [PMID: 34687014 DOI: 10.1007/978-3-030-76912-3_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Alternative glycosylation of immunoglobulin G (IgG) affects its effector functions during the immune response. IgG glycosylation is altered in many diseases, but also during a healthy life of an individual. Currently, there is limited knowledge of factors that alter IgG glycosylation in the healthy state and factors involved in specific IgG glycosylation patterns associated with pathophysiology. Genetic background plays an important role, but epigenetic mechanisms also contribute to the alteration of IgG glycosylation patterns in healthy life and in disease. It is known that the expression of many glycosyltransferases is regulated by DNA methylation and by microRNA (miRNA) molecules, but the involvement of other epigenetic mechanisms, such as histone modifications, in the regulation of glycosylation-related genes (glycogenes) is still poorly understood. Recent studies have identified several differentially methylated loci associated with IgG glycosylation, but the mechanisms involved in the formation of specific IgG glycosylation patterns remain poorly understood.
Collapse
Affiliation(s)
- Marija Klasić
- Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Vlatka Zoldoš
- Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia.
| |
Collapse
|
33
|
Demus D, Urbanowicz PA, Gardner RA, Wu H, Juszczak A, Štambuk T, Medvidović EP, Owen KR, Gornik O, Juge N, Spencer DIR. Development of an exoglycosidase plate-based assay for detecting α1-3,4 fucosylation biomarker in individuals with HNF1A-MODY. Glycobiology 2021; 32:230-238. [PMID: 34939081 PMCID: PMC8966479 DOI: 10.1093/glycob/cwab107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/28/2021] [Accepted: 10/06/2021] [Indexed: 11/23/2022] Open
Abstract
Maturity-onset diabetes of the young due to hepatocyte nuclear factor-1 alpha variants (HNF1A-MODY) causes monogenic diabetes. Individuals carrying damaging variants in HNF1A show decreased levels of α1-3,4 fucosylation, as demonstrated on antennary fucosylation of blood plasma N-glycans. The excellent diagnostic performance of this glycan biomarker in blood plasma N-glycans of individuals with HNF1A-MODY has been demonstrated using liquid chromatography methods. Here, we have developed a high-throughput exoglycosidase plate-based assay to measure α1-3,4 fucosylation levels in blood plasma samples. The assay has been optimized and its validity tested using 1000 clinical samples from a cohort of individuals with young-adult onset diabetes including cases with HNF1A-MODY. The α1-3,4 fucosylation levels in blood plasma showed a good differentiating power in identifying cases with damaging HNF1A variants, as demonstrated by receiver operating characteristic curve analysis with the AUC values of 0.87 and 0.95. This study supports future development of a simple diagnostic test to measure this glycan biomarker for application in a clinical setting.
Collapse
Affiliation(s)
- Daniel Demus
- Ludger Ltd., Culham Science Centre, Abingdon, OX14 3EB, United Kingdom.,Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | | | - Richard A Gardner
- Ludger Ltd., Culham Science Centre, Abingdon, OX14 3EB, United Kingdom
| | - Haiyang Wu
- The Gut Microbes and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, United Kingdom
| | - Agata Juszczak
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, OX3 7LE, United Kingdom
| | - Tamara Štambuk
- Genos Glycoscience Research Laboratory, Borongajska cesta 83h, 10000, Zagreb, Croatia.,Faculty of Pharmacy and Biochemistry, University of Zagreb, Ante Kovačića 1, 10000 Zagreb, Croatia
| | - Edita Pape Medvidović
- Vuk Vrhovac University Clinic for Diabetes, Endocrinology and Metabolic Diseases, Merkur University Hospital, Zagreb University School of Medicine, Dugi dol 4A, 10000, Zagreb, Croatia
| | - Katharine R Owen
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, OX3 7LE, United Kingdom.,NIHR Oxford Biomedical Research Centre, Oxford Hospitals NHS Foundation Trust, Oxford, OX3 9DU, United Kingdom
| | - Olga Gornik
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Ante Kovačića 1, 10000 Zagreb, Croatia
| | - Nathalie Juge
- The Gut Microbes and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, United Kingdom
| | | |
Collapse
|
34
|
Heffner KM, Wang Q, Hizal DB, Can Ö, Betenbaugh MJ. Glycoengineering of Mammalian Expression Systems on a Cellular Level. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2021. [PMID: 29532110 DOI: 10.1007/10_2017_57] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mammalian expression systems such as Chinese hamster ovary (CHO), mouse myeloma (NS0), and human embryonic kidney (HEK) cells serve a critical role in the biotechnology industry as the production host of choice for recombinant protein therapeutics. Most of the recombinant biologics are glycoproteins that contain complex oligosaccharide or glycan attachments representing a principal component of product quality. Both N-glycans and O-glycans are present in these mammalian cells, but the engineering of N-linked glycosylation is of critical interest in industry and many efforts have been directed to improve this pathway. This is because altering the N-glycan composition can change the product quality of recombinant biotherapeutics in mammalian hosts. In addition, sialylation and fucosylation represent components of the glycosylation pathway that affect circulatory half-life and antibody-dependent cellular cytotoxicity, respectively. In this chapter, we first offer an overview of the glycosylation, sialylation, and fucosylation networks in mammalian cells, specifically CHO cells, which are extensively used in antibody production. Next, genetic engineering technologies used in CHO cells to modulate glycosylation pathways are described. We provide examples of their use in CHO cell engineering approaches to highlight these technologies further. Specifically, we describe efforts to overexpress glycosyltransferases and sialyltransfereases, and efforts to decrease sialidase cleavage and fucosylation. Finally, this chapter covers new strategies and future directions of CHO cell glycoengineering, such as the application of glycoproteomics, glycomics, and the integration of 'omics' approaches to identify, quantify, and characterize the glycosylated proteins in CHO cells. Graphical Abstract.
Collapse
Affiliation(s)
- Kelley M Heffner
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Qiong Wang
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Deniz Baycin Hizal
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Özge Can
- Department of Medical Engineering, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Michael J Betenbaugh
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
35
|
Garreta L, Cerón‐Souza I, Palacio MR, Reyes‐Herrera PH. MultiGWAS: An integrative tool for Genome Wide Association Studies in tetraploid organisms. Ecol Evol 2021; 11:7411-7426. [PMID: 34188823 PMCID: PMC8216910 DOI: 10.1002/ece3.7572] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 12/27/2022] Open
Abstract
The genome-wide association studies (GWASs) are essential to determine the genetic bases of either ecological or economic phenotypic variation across individuals within populations of the model and nonmodel organisms. For this research question, the GWAS replication testing different parameters and models to validate the results' reproducibility is common. However, straightforward methodologies that manage both replication and tetraploid data are still missing. To solve this problem, we designed the MultiGWAS, a tool that does GWAS for diploid and tetraploid organisms by executing in parallel four software packages, two designed for polyploid data (GWASpoly and SHEsis) and two designed for diploid data (GAPIT and TASSEL). MultiGWAS has several advantages. It runs either in the command line or in a graphical interface; it manages different genotype formats, including VCF. Moreover, it allows control for population structure, relatedness, and several quality control checks on genotype data. Besides, MultiGWAS can test for additive and dominant gene action models, and, through a proprietary scoring function, select the best model to report its associations. Finally, it generates several reports that facilitate identifying false associations from both the significant and the best-ranked association Single Nucleotide Polymorphisms (SNPs) among the four software packages. We tested MultiGWAS with public tetraploid potato data for tuber shape and several simulated data under both additive and dominant models. These tests demonstrated that MultiGWAS is better at detecting reliable associations than using each of the four software packages individually. Moreover, the parallel analysis of polyploid and diploid software that only offers MultiGWAS demonstrates its utility in understanding the best genetic model behind the SNP association in tetraploid organisms. Therefore, MultiGWAS probed to be an excellent alternative for wrapping GWAS replication in diploid and tetraploid organisms in a single analysis environment.
Collapse
Affiliation(s)
- Luis Garreta
- Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA)CI TibaitatáBogotaColombia
| | - Ivania Cerón‐Souza
- Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA)CI TibaitatáBogotaColombia
| | | | - Paula H. Reyes‐Herrera
- Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA)CI TibaitatáBogotaColombia
| |
Collapse
|
36
|
Demus D, Jansen BC, Gardner RA, Urbanowicz PA, Wu H, Štambuk T, Juszczak A, Medvidović EP, Juge N, Gornik O, Owen KR, Spencer DIR. Interlaboratory evaluation of plasma N-glycan antennary fucosylation as a clinical biomarker for HNF1A-MODY using liquid chromatography methods. Glycoconj J 2021; 38:375-386. [PMID: 33765222 PMCID: PMC8116301 DOI: 10.1007/s10719-021-09992-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/05/2021] [Accepted: 03/11/2021] [Indexed: 11/27/2022]
Abstract
Antennary fucosylation alterations in plasma glycoproteins have been previously proposed and tested as a biomarker for differentiation of maturity onset diabetes of the young (MODY) patients carrying a functional mutation in the HNF1A gene. Here, we developed a novel LC-based workflow to analyze blood plasma N-glycan fucosylation in 320 diabetes cases with clinical features matching those at risk of HNF1A-MODY. Fucosylation levels measured in two independent research centers by using similar LC-based methods were correlated to evaluate the interlaboratory performance of the biomarker. The interlaboratory study showed good correlation between fucosylation levels measured for the 320 cases in the two centers with the correlation coefficient (r) of up to 0.88 for a single trait A3FG3S2. The improved chromatographic separation allowed the identification of six single glycan traits and a derived antennary fucosylation trait that were able to differentiate individuals carrying pathogenic mutations from benign or no HNF1A mutation cases, as determined by the area under the curve (AUC) of up to 0.94. The excellent (r = 0.88) interlaboratory performance of the glycan biomarker for HNF1A-MODY further supports the development of a clinically relevant diagnostic test measuring antennary fucosylation levels.
Collapse
Affiliation(s)
- Daniel Demus
- Ludger Ltd, Culham Science Centre, Oxfordshire, Abingdon, UK.
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands.
| | - Bas C Jansen
- Ludger Ltd, Culham Science Centre, Oxfordshire, Abingdon, UK
| | | | | | - Haiyang Wu
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Tamara Štambuk
- Genos Glycoscience Research Laboratory, Zagreb, Croatia
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Agata Juszczak
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, Oxfordshire, UK
| | - Edita Pape Medvidović
- Vuk Vrhovac University Clinic for Diabetes, Endocrinology and Metabolic Diseases, Merkur University Hospital, Zagreb University School of Medicine, Croatia School of Medicine, Zagreb, Croatia
| | - Nathalie Juge
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Olga Gornik
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Katharine R Owen
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, Oxfordshire, UK
- Oxford NIHR Biomedical Research Centre, Oxford Hospitals NHS Foundation Trust, Oxford, Oxfordshire, UK
| | | |
Collapse
|
37
|
Wang L, Balmat TJ, Antonia AL, Constantine FJ, Henao R, Burke TW, Ingham A, McClain MT, Tsalik EL, Ko ER, Ginsburg GS, DeLong MR, Shen X, Woods CW, Hauser ER, Ko DC. An atlas connecting shared genetic architecture of human diseases and molecular phenotypes provides insight into COVID-19 susceptibility. Genome Med 2021; 13:83. [PMID: 34001247 PMCID: PMC8127495 DOI: 10.1186/s13073-021-00904-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 05/05/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND While genome-wide associations studies (GWAS) have successfully elucidated the genetic architecture of complex human traits and diseases, understanding mechanisms that lead from genetic variation to pathophysiology remains an important challenge. Methods are needed to systematically bridge this crucial gap to facilitate experimental testing of hypotheses and translation to clinical utility. RESULTS Here, we leveraged cross-phenotype associations to identify traits with shared genetic architecture, using linkage disequilibrium (LD) information to accurately capture shared SNPs by proxy, and calculate significance of enrichment. This shared genetic architecture was examined across differing biological scales through incorporating data from catalogs of clinical, cellular, and molecular GWAS. We have created an interactive web database (interactive Cross-Phenotype Analysis of GWAS database (iCPAGdb)) to facilitate exploration and allow rapid analysis of user-uploaded GWAS summary statistics. This database revealed well-known relationships among phenotypes, as well as the generation of novel hypotheses to explain the pathophysiology of common diseases. Application of iCPAGdb to a recent GWAS of severe COVID-19 demonstrated unexpected overlap of GWAS signals between COVID-19 and human diseases, including with idiopathic pulmonary fibrosis driven by the DPP9 locus. Transcriptomics from peripheral blood of COVID-19 patients demonstrated that DPP9 was induced in SARS-CoV-2 compared to healthy controls or those with bacterial infection. Further investigation of cross-phenotype SNPs associated with both severe COVID-19 and other human traits demonstrated colocalization of the GWAS signal at the ABO locus with plasma protein levels of a reported receptor of SARS-CoV-2, CD209 (DC-SIGN). This finding points to a possible mechanism whereby glycosylation of CD209 by ABO may regulate COVID-19 disease severity. CONCLUSIONS Thus, connecting genetically related traits across phenotypic scales links human diseases to molecular and cellular measurements that can reveal mechanisms and lead to novel biomarkers and therapeutic approaches. The iCPAGdb web portal is accessible at http://cpag.oit.duke.edu and the software code at https://github.com/tbalmat/iCPAGdb .
Collapse
Affiliation(s)
- Liuyang Wang
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, 0049 CARL Building Box 3053, 213 Research Drive, Durham, NC, 27710, USA
| | - Thomas J Balmat
- Duke Research Computing, Duke University, Durham, NC, 27710, USA
| | - Alejandro L Antonia
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, 0049 CARL Building Box 3053, 213 Research Drive, Durham, NC, 27710, USA
| | - Florica J Constantine
- Center for Applied Genomics and Precision Medicine, Department of Medicine, Duke University, Durham, NC, 27710, USA
| | - Ricardo Henao
- Center for Applied Genomics and Precision Medicine, Department of Medicine, Duke University, Durham, NC, 27710, USA
| | - Thomas W Burke
- Center for Applied Genomics and Precision Medicine, Department of Medicine, Duke University, Durham, NC, 27710, USA
| | - Andy Ingham
- Duke Research Computing, Duke University, Durham, NC, 27710, USA
| | - Micah T McClain
- Center for Applied Genomics and Precision Medicine, Department of Medicine, Duke University, Durham, NC, 27710, USA
- Durham Veterans Affairs Health Care System, Durham, NC, 27705, USA
- Division of Infectious Diseases, Department of Medicine, Duke University Medical Center, Durham, NC, 27710, USA
| | - Ephraim L Tsalik
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, 0049 CARL Building Box 3053, 213 Research Drive, Durham, NC, 27710, USA
- Center for Applied Genomics and Precision Medicine, Department of Medicine, Duke University, Durham, NC, 27710, USA
- Durham Veterans Affairs Health Care System, Durham, NC, 27705, USA
- Division of Infectious Diseases, Department of Medicine, Duke University Medical Center, Durham, NC, 27710, USA
| | - Emily R Ko
- Center for Applied Genomics and Precision Medicine, Department of Medicine, Duke University, Durham, NC, 27710, USA
- Department of Hospital Medicine, Duke Regional Hospital, Durham, NC, 27705, USA
| | - Geoffrey S Ginsburg
- Center for Applied Genomics and Precision Medicine, Department of Medicine, Duke University, Durham, NC, 27710, USA
| | - Mark R DeLong
- Duke Research Computing, Duke University, Durham, NC, 27710, USA
| | - Xiling Shen
- Department of Biomedical Engineering, Woo Center for Big Data and Precision Health, Duke University, Durham, NC, 27710, USA
| | - Christopher W Woods
- Center for Applied Genomics and Precision Medicine, Department of Medicine, Duke University, Durham, NC, 27710, USA
- Durham Veterans Affairs Health Care System, Durham, NC, 27705, USA
- Division of Infectious Diseases, Department of Medicine, Duke University Medical Center, Durham, NC, 27710, USA
| | - Elizabeth R Hauser
- Duke Molecular Physiology Institute and Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, NC, 27710, USA
- Cooperative Studies Program Epidemiology Center-Durham, Durham VA Health Care System, Durham, NC, 27705, USA
| | - Dennis C Ko
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, 0049 CARL Building Box 3053, 213 Research Drive, Durham, NC, 27710, USA.
- Division of Infectious Diseases, Department of Medicine, Duke University Medical Center, Durham, NC, 27710, USA.
| |
Collapse
|
38
|
Chen S, Qin R, Mahal LK. Sweet systems: technologies for glycomic analysis and their integration into systems biology. Crit Rev Biochem Mol Biol 2021; 56:301-320. [PMID: 33820453 DOI: 10.1080/10409238.2021.1908953] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Found in virtually every organism, glycans are essential molecules that play important roles in almost every aspect of biology. The composition of glycome, the repertoire of glycans in an organism or a biological sample, is often found altered in many diseases, including cancer, infectious diseases, metabolic and developmental disorders. Understanding how glycosylation and glycomic changes enriches our knowledge of the mechanisms of disease progression and sheds light on the development of novel therapeutics. However, the inherent diversity of glycan structures imposes challenges on the experimental characterization of glycomes. Advances in high-throughput glycomic technologies enable glycomic analysis in a rapid and comprehensive manner. In this review, we discuss the analytical methods currently used in high-throughput glycomics, including mass spectrometry, liquid chromatography and lectin microarray. Concomitant with the technical advances is the integration of glycomics into systems biology in the recent years. Herein we elaborate on some representative works from this recent trend to underline the important role of glycomics in such integrated approaches to disease.
Collapse
Affiliation(s)
- Shuhui Chen
- Department of Chemistry, New York University, New York City, NY, USA
| | - Rui Qin
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada
| | - Lara K Mahal
- Department of Chemistry, New York University, New York City, NY, USA.,Department of Chemistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
39
|
Aberrant sialylation in a patient with a HNF1α variant and liver adenomatosis. iScience 2021; 24:102323. [PMID: 33889819 PMCID: PMC8050382 DOI: 10.1016/j.isci.2021.102323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 02/18/2021] [Accepted: 03/15/2021] [Indexed: 11/30/2022] Open
Abstract
Glycosylation is a fundamental post-translational modification of proteins that boosts their structural diversity providing subtle and specialized biological properties and functions. All those genetic diseases due to a defective glycan biosynthesis and attachment to the nascent glycoproteins fall within the wide area of congenital disorders of glycosylation (CDG), mostly causing multisystem involvement. In the present paper, we detailed the unique serum N-glycosylation of a CDG-candidate patient with an unexplained neurological phenotype and liver adenomatosis harboring a recurrent pathogenic HNF1α variant. Serum transferrin isoelectric focusing showed a surprising N-glycosylation pattern consisting on hyposialylation, as well as remarkable hypersialylation. Mass spectrometry-based glycomic analyses of individual serum glycoproteins enabled to unveil hypersialylated complex N-glycans comprising up to two sialic acids per antenna. Further advanced MS analysis showed the additional sialic acid is bonded through an α2-6 linkage to the peripheral N-acetylglucosamine residue. Serum N-glycome is altered in a boy with neurological syndrome and HNF1α mutated HCA Glycomics reveals unique hypersialylated N-glycans with two NeuAc per antenna In-depth MS studies show the additional NeuAc is α2-6 linked to an outer arm GlcNAc
Collapse
|
40
|
Indellicato R, Trinchera M. Epigenetic Regulation of Glycosylation in Cancer and Other Diseases. Int J Mol Sci 2021; 22:ijms22062980. [PMID: 33804149 PMCID: PMC7999748 DOI: 10.3390/ijms22062980] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/10/2021] [Accepted: 03/12/2021] [Indexed: 12/12/2022] Open
Abstract
In the last few decades, the newly emerging field of epigenetic regulation of glycosylation acquired more importance because it is unraveling physiological and pathological mechanisms related to glycan functions. Glycosylation is a complex process in which proteins and lipids are modified by the attachment of monosaccharides. The main actors in this kind of modification are the glycoenzymes, which are translated from glycosylation-related genes (or glycogenes). The expression of glycogenes is regulated by transcription factors and epigenetic mechanisms (mainly DNA methylation, histone acetylation and noncoding RNAs). This review focuses only on these last ones, in relation to cancer and other diseases, such as inflammatory bowel disease and IgA1 nephropathy. In fact, it is clear that a deeper knowledge in the fine-tuning of glycogenes is essential for acquiring new insights in the glycan field, especially if this could be useful for finding novel and personalized therapeutics.
Collapse
Affiliation(s)
- Rossella Indellicato
- Department of Health Sciences, University of Milan, 20142 Milan, Italy
- Correspondence:
| | - Marco Trinchera
- Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy;
| |
Collapse
|
41
|
Sharapov SZ, Shadrina AS, Tsepilov YA, Elgaeva EE, Tiys ES, Feoktistova SG, Zaytseva OO, Vuckovic F, Cuadrat R, Jäger S, Wittenbecher C, Karssen LC, Timofeeva M, Tillin T, Trbojević-Akmačić I, Štambuk T, Rudman N, Krištić J, Šimunović J, Momčilović A, Vilaj M, Jurić J, Slana A, Gudelj I, Klarić T, Puljak L, Skelin A, Kadić AJ, Van Zundert J, Chaturvedi N, Campbell H, Dunlop M, Farrington SM, Doherty M, Dagostino C, Gieger C, Allegri M, Williams F, Schulze MB, Lauc G, Aulchenko YS. Replication of 15 loci involved in human plasma protein N-glycosylation in 4802 samples from four cohorts. Glycobiology 2021; 31:82-88. [PMID: 32521004 PMCID: PMC7874387 DOI: 10.1093/glycob/cwaa053] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/27/2020] [Accepted: 06/08/2020] [Indexed: 12/17/2022] Open
Abstract
Human protein glycosylation is a complex process, and its in vivo regulation is poorly understood. Changes in glycosylation patterns are associated with many human diseases and conditions. Understanding the biological determinants of protein glycome provides a basis for future diagnostic and therapeutic applications. Genome-wide association studies (GWAS) allow to study biology via a hypothesis-free search of loci and genetic variants associated with a trait of interest. Sixteen loci were identified by three previous GWAS of human plasma proteome N-glycosylation. However, the possibility that some of these loci are false positives needs to be eliminated by replication studies, which have been limited so far. Here, we use the largest set of samples so far (4802 individuals) to replicate the previously identified loci. For all but one locus, the expected replication power exceeded 95%. Of the 16 loci reported previously, 15 were replicated in our study. For the remaining locus (near the KREMEN1 gene), the replication power was low, and hence, replication results were inconclusive. The very high replication rate highlights the general robustness of the GWAS findings as well as the high standards adopted by the community that studies genetic regulation of protein glycosylation. The 15 replicated loci present a good target for further functional studies. Among these, eight loci contain genes encoding glycosyltransferases: MGAT5, B3GAT1, FUT8, FUT6, ST6GAL1, B4GALT1, ST3GAL4 and MGAT3. The remaining seven loci offer starting points for further functional follow-up investigation into molecules and mechanisms that regulate human protein N-glycosylation in vivo.
Collapse
Affiliation(s)
- Sodbo Zh Sharapov
- Laboratory of Glycogenomics, Institute of Cytology and Genetics, Prospekt Akademika Lavrent'yeva, 10, Novosibirsk, 630090, Russia
| | - Alexandra S Shadrina
- Laboratory of Glycogenomics, Institute of Cytology and Genetics, Prospekt Akademika Lavrent'yeva, 10, Novosibirsk, 630090, Russia
| | - Yakov A Tsepilov
- Laboratory of Theoretical and Applied Functional Genomics, Novosibirsk State University, Pirogova 1, Novosibirsk, 630090, Russia
- Laboratory of Recombination and Segregation Analysis, Institute of Cytology and Genetics, Prospekt Akademika Lavrent'yeva, 10, Novosibirsk, 630090, Russia
| | - Elizaveta E Elgaeva
- Laboratory of Glycogenomics, Institute of Cytology and Genetics, Prospekt Akademika Lavrent'yeva, 10, Novosibirsk, 630090, Russia
| | - Evgeny S Tiys
- Laboratory of Glycogenomics, Institute of Cytology and Genetics, Prospekt Akademika Lavrent'yeva, 10, Novosibirsk, 630090, Russia
| | - Sofya G Feoktistova
- Laboratory of Glycogenomics, Institute of Cytology and Genetics, Prospekt Akademika Lavrent'yeva, 10, Novosibirsk, 630090, Russia
| | - Olga O Zaytseva
- Genos Glycoscience Research Laboratory, Borongajska cesta 83h, 10000 Zagreb, Croatia
| | - Frano Vuckovic
- Genos Glycoscience Research Laboratory, Borongajska cesta 83h, 10000 Zagreb, Croatia
| | - Rafael Cuadrat
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam- Rehbruecke, 14558 Nuthetal, Germany
| | - Susanne Jäger
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam- Rehbruecke, 14558 Nuthetal, Germany
- German Center for Diabetes Research (DZD), ngolstädter Landstraβe 1, Neuherberg, 85764, Germany
| | - Clemens Wittenbecher
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam- Rehbruecke, 14558 Nuthetal, Germany
- German Center for Diabetes Research (DZD), ngolstädter Landstraβe 1, Neuherberg, 85764, Germany
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | | | - Maria Timofeeva
- Colon Cancer Genetics Group, Cancer Research UK Edinburgh Centre, Medical Research Council Institute of Genetics & Molecular Medicine, Western General Hospital, The University of Edinburgh, Edinburgh EH4 2XU, UK
- D-IAS, Danish Institute for Advanced Study, Department of Public Health, University of Southern Denmark, , J.B. Winsløws Vej 9, DK-5000 Odense C, Denmark
| | - Therese Tillin
- MRC Unit for Lifelong Health & Ageing University College London, Gower Street, London, WC1E 6BT, UK
| | | | - Tamara Štambuk
- Genos Glycoscience Research Laboratory, Borongajska cesta 83h, 10000 Zagreb, Croatia
| | - Najda Rudman
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, 10000, Croatia
| | - Jasminka Krištić
- Genos Glycoscience Research Laboratory, Borongajska cesta 83h, 10000 Zagreb, Croatia
| | - Jelena Šimunović
- Genos Glycoscience Research Laboratory, Borongajska cesta 83h, 10000 Zagreb, Croatia
| | - Ana Momčilović
- Genos Glycoscience Research Laboratory, Borongajska cesta 83h, 10000 Zagreb, Croatia
| | - Marija Vilaj
- Genos Glycoscience Research Laboratory, Borongajska cesta 83h, 10000 Zagreb, Croatia
| | - Julija Jurić
- Genos Glycoscience Research Laboratory, Borongajska cesta 83h, 10000 Zagreb, Croatia
| | - Anita Slana
- Genos Glycoscience Research Laboratory, Borongajska cesta 83h, 10000 Zagreb, Croatia
| | - Ivan Gudelj
- Genos Glycoscience Research Laboratory, Borongajska cesta 83h, 10000 Zagreb, Croatia
| | - Thomas Klarić
- Genos Glycoscience Research Laboratory, Borongajska cesta 83h, 10000 Zagreb, Croatia
| | - Livia Puljak
- Catholic University of Croatia, Ilica, 242 Zagreb, 10000, Croatia
| | - Andrea Skelin
- Genos Glycoscience Research Laboratory, Borongajska cesta 83h, 10000 Zagreb, Croatia
- St. Catherine Specialty Hospital, 10000 Zagreb & 49210, Zabok, Croatia
| | - Antonia Jeličić Kadić
- University Hospital Center Split, Department of Pediatrics, Spinčićeva ul. 1, Split, 21000, Croatia
| | - Jan Van Zundert
- Department of Anesthesiology and Multidisciplinary Paincentre, ZOL, Genk/Lanaken, Belgium
- Department of Anesthesiology and Pain Medicine, Maastricht University Medical Centre, P. Debyelaan 25, Maastricht, 6229 HX, The Netherlands
| | - Nishi Chaturvedi
- MRC Unit for Lifelong Health & Ageing University College London, Gower Street, London, WC1E 6BT, UK
| | - Harry Campbell
- Colon Cancer Genetics Group, Cancer Research UK Edinburgh Centre, Medical Research Council Institute of Genetics & Molecular Medicine, Western General Hospital, The University of Edinburgh, Edinburgh EH4 2XU, UK
- Centre for Global Health Research, Usher Institute of Population Health Sciences and Informatics, The University of Edinburgh, Edinburgh EH8 9AG, UK
| | - Malcolm Dunlop
- Colon Cancer Genetics Group, Cancer Research UK Edinburgh Centre, Medical Research Council Institute of Genetics & Molecular Medicine, Western General Hospital, The University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Susan M Farrington
- Colon Cancer Genetics Group, Cancer Research UK Edinburgh Centre, Medical Research Council Institute of Genetics & Molecular Medicine, Western General Hospital, The University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Margaret Doherty
- Institute of Technology Sligo, Department of Life Sciences, Ash Ln, Bellanode, Sligo, F91 YW50, Ireland
- National Institute for Bioprocessing Research & Training, 24 Foster’s Ave, Belfield, Blackrock, Co.,Dublin, A94 X099, Ireland
| | - Concetta Dagostino
- Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126 Parma, Italy
| | - Christian Gieger
- Institute of Epidemiology II, Research Unit of Molecular Epidemiology, Helmholtz Centre Munich, German Research Center for Environmental Health, Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
| | - Massimo Allegri
- Pain Therapy Department Policlinico Monza Hospital, 20090 Monza, Italy
| | - Frances Williams
- Department of Twin Research and Genetic Epidemiology, School of Life Course Sciences, King’s College London, St Thomas’ Campus, Lambeth Palace Road, London SE1 7EH, UK
| | - Matthias B Schulze
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam- Rehbruecke, 14558 Nuthetal, Germany
- German Center for Diabetes Research (DZD), ngolstädter Landstraβe 1, Neuherberg, 85764, Germany
- Institute of Nutrition Science, University of Potsdam, 14558 Nuthetal, Germany
| | - Gordan Lauc
- Genos Glycoscience Research Laboratory, Borongajska cesta 83h, 10000 Zagreb, Croatia
| | - Yurii S Aulchenko
- Laboratory of Glycogenomics, Institute of Cytology and Genetics, Prospekt Akademika Lavrent'yeva, 10, Novosibirsk, 630090, Russia
| |
Collapse
|
42
|
Čaval T, Lin YH, Varkila M, Reiding KR, Bonten MJM, Cremer OL, Franc V, Heck AJR. Glycoproteoform Profiles of Individual Patients' Plasma Alpha-1-Antichymotrypsin are Unique and Extensively Remodeled Following a Septic Episode. Front Immunol 2021; 11:608466. [PMID: 33519818 PMCID: PMC7840657 DOI: 10.3389/fimmu.2020.608466] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 11/24/2020] [Indexed: 01/08/2023] Open
Abstract
Sepsis and septic shock remain the leading causes of death in intensive care units (ICUs), yet the pathogenesis originating from the inflammatory response during sepsis remains ambiguous. Acute-phase proteins are typically highly glycosylated, and the nature of the glycans have been linked to the incidence and severity of such inflammatory responses. To further build upon these findings we here monitored, the longitudinal changes in the plasma proteome and, in molecular detail, glycoproteoform profiles of alpha-1-antichymotrypsin (AACT) extracted from plasma of ten individual septic patients. For each patient we included four different time-points, including post-operative (before sepsis) and following discharge from the ICU. We isolated AACT from plasma depleted for albumin, IgG and serotransferrin and used high-resolution native mass spectrometry to qualitatively and quantitatively monitor the multifaceted glycan microheterogeneity of desialylated AACT, which allowed us to monitor how changes in the glycoproteoform profiles reflected the patient's physiological state. Although we observed a general trend in the remodeling of the AACT glycoproteoform profiles, e.g. increased fucosylation and branching/LacNAc elongation, each patient exhibited unique features and responses, providing a resilient proof-of-concept for the importance of personalized longitudinal glycoproteoform profiling. Importantly, we observed that the AACT glycoproteoform changes induced by sepsis did not readily subside after discharge from ICU.
Collapse
Affiliation(s)
- Tomislav Čaval
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, Netherlands
- Netherlands Proteomics Center, Utrecht, Netherlands
| | - Yu-Hsien Lin
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, Netherlands
- Netherlands Proteomics Center, Utrecht, Netherlands
| | - Meri Varkila
- Department of Intensive Care Medicine, University Medical Center Utrecht, Utrecht, Netherlands
| | - Karli R. Reiding
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, Netherlands
- Netherlands Proteomics Center, Utrecht, Netherlands
| | - Marc J. M. Bonten
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, Netherlands
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Olaf L. Cremer
- Department of Intensive Care Medicine, University Medical Center Utrecht, Utrecht, Netherlands
| | - Vojtech Franc
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, Netherlands
- Netherlands Proteomics Center, Utrecht, Netherlands
| | - Albert J. R. Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, Netherlands
- Netherlands Proteomics Center, Utrecht, Netherlands
| |
Collapse
|
43
|
Pecori F, Yokota I, Hanamatsu H, Miura T, Ogura C, Ota H, Furukawa JI, Oki S, Yamamoto K, Yoshie O, Nishihara S. A defined glycosylation regulatory network modulates total glycome dynamics during pluripotency state transition. Sci Rep 2021; 11:1276. [PMID: 33446700 PMCID: PMC7809059 DOI: 10.1038/s41598-020-79666-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 12/10/2020] [Indexed: 12/14/2022] Open
Abstract
Embryonic stem cells (ESCs) and epiblast-like cells (EpiLCs) recapitulate in vitro the epiblast first cell lineage decision, allowing characterization of the molecular mechanisms underlying pluripotent state transition. Here, we performed a comprehensive and comparative analysis of total glycomes of mouse ESCs and EpiLCs, revealing that overall glycosylation undergoes dramatic changes from early stages of development. Remarkably, we showed for the first time the presence of a developmentally regulated network orchestrating glycosylation changes and identified polycomb repressive complex 2 (PRC2) as a key component involved in this process. Collectively, our findings provide novel insights into the naïve-to-primed pluripotent state transition and advance the understanding of glycosylation complex regulation during early mouse embryonic development.
Collapse
Affiliation(s)
- Federico Pecori
- Laboratory of Cell Biology, Department of Bioinformatics, Graduate School of Engineering, Soka University, 1-236 Tangi-machi, Hachioji, Tokyo, 192-8577, Japan
| | - Ikuko Yokota
- Department of Advanced Clinical Glycobiology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Hisatoshi Hanamatsu
- Department of Advanced Clinical Glycobiology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Taichi Miura
- Laboratory of Cell Biology, Department of Bioinformatics, Graduate School of Engineering, Soka University, 1-236 Tangi-machi, Hachioji, Tokyo, 192-8577, Japan
- National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan
| | - Chika Ogura
- Laboratory of Cell Biology, Department of Bioinformatics, Graduate School of Engineering, Soka University, 1-236 Tangi-machi, Hachioji, Tokyo, 192-8577, Japan
| | - Hayato Ota
- Laboratory of Cell Biology, Department of Bioinformatics, Graduate School of Engineering, Soka University, 1-236 Tangi-machi, Hachioji, Tokyo, 192-8577, Japan
| | - Jun-Ichi Furukawa
- Department of Advanced Clinical Glycobiology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Shinya Oki
- Department of Drug Discovery Medicine, Graduate School of Medicine, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Kazuo Yamamoto
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8562, Japan
| | - Osamu Yoshie
- Health and Kampo Institute, 1-11-10 Murasakiyama, Izumi, Sendai, Miyagi, 981-3205, Japan
| | - Shoko Nishihara
- Laboratory of Cell Biology, Department of Bioinformatics, Graduate School of Engineering, Soka University, 1-236 Tangi-machi, Hachioji, Tokyo, 192-8577, Japan.
- Glycan and Life System Integration Center (GaLSIC), Faculty of Science and Engineering, Soka University, 1-236 Tangi-machi, Hachioji, Tokyo, 192-8577, Japan.
| |
Collapse
|
44
|
Štambuk T, Gornik O. Protein Glycosylation in Diabetes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1325:285-305. [PMID: 34495541 DOI: 10.1007/978-3-030-70115-4_14] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Diabetes mellitus is a group of metabolic disorders characterized by the presence of hyperglycaemia. Due to its high prevalence and substantial heterogeneity, many studies have been investigating markers that could identify predisposition for the disease development, differentiate between the various subtypes, establish early diagnosis, predict complications or represent novel therapeutic targets. N-glycans, complex oligosaccharide molecules covalently linked to proteins, emerged as potential markers and functional effectors of various diabetes subtypes, appearing to have the capacity to meet these requirements. For instance, it has been shown that N-glycome changes in patients with type 2 diabetes and that N-glycans can even identify individuals with an increased risk for its development. Moreover, genome-wide association studies identified glycosyltransferase genes as candidate causal genes for both type 1 and type 2 diabetes. N-glycans have also been suggested to have a major role in preventing the impairment of glucose-stimulated insulin secretion by modulating cell surface expression of glucose transporters. In this chapter we aimed to describe four major diabetes subtypes: type 1, type 2, gestational and monogenic diabetes, giving an overview of suggested role for N-glycosylation in their development, diagnosis and management.
Collapse
Affiliation(s)
- Tamara Štambuk
- Genos, Glycoscience Research Laboratory, Zagreb, Croatia.
| | - Olga Gornik
- University of Zagreb Faculty of Pharmacy and Biochemistry, Zagreb, Croatia
| |
Collapse
|
45
|
Frkatovic A, Zaytseva OO, Klaric L. Genetic Regulation of Immunoglobulin G Glycosylation. EXPERIENTIA SUPPLEMENTUM (2012) 2021; 112:259-287. [PMID: 34687013 DOI: 10.1007/978-3-030-76912-3_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Defining the genetic components that control glycosylation of the human immunoglobulin G (IgG) is an ongoing effort, which has so far been addressed by means of heritability, linkage and genome-wide association studies (GWAS). Unlike the synthesis of proteins, N-glycosylation biosynthesis is not a template-driven process, but rather a complex process regulated by both genetic and environmental factors. Current heritability studies have shown that while up to 75% of the variation in levels of some IgG glycan traits can be explained by genetics, some glycan traits are completely defined by environmental influences. Advances in both high-throughput genotyping and glycan quantification methods have enabled genome-wide association studies that are increasingly used to estimate associations of millions of single-nucleotide polymorphisms and glycosylation traits. Using this method, 18 genomic regions have so far been robustly associated with IgG N-glycosylation, discovering associations with genes encoding glycosyltransferases, but also transcription factors, co-factors, membrane transporters and other genes with no apparent role in IgG glycosylation. Further computational analyses have shown that IgG glycosylation is likely to be regulated through the expression of glycosyltransferases, but have also for the first time suggested which transcription factors are involved in the process. Moreover, it was also shown that IgG glycosylation and inflammatory diseases share common underlying causal genetic variants, suggesting that studying genetic regulation of IgG glycosylation helps not only to better understand this complex process but can also contribute to understanding why glycans are changed in disease. However, further studies are needed to unravel whether changes in IgG glycosylation are causing these diseases or the changes in the glycome are caused by the disease.
Collapse
Affiliation(s)
- Azra Frkatovic
- Glycoscience Research Laboratory, Genos Ltd., Zagreb, Croatia
| | - Olga O Zaytseva
- Glycoscience Research Laboratory, Genos Ltd., Zagreb, Croatia
| | - Lucija Klaric
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
46
|
Dall'Olio F, Malagolini N. Immunoglobulin G Glycosylation Changes in Aging and Other Inflammatory Conditions. EXPERIENTIA SUPPLEMENTUM (2012) 2021; 112:303-340. [PMID: 34687015 DOI: 10.1007/978-3-030-76912-3_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Among the multiple roles played by protein glycosylation, the fine regulation of biological interactions is one of the most important. The asparagine 297 (Asn297) of IgG heavy chains is decorated by a diantennary glycan bearing a number of galactose and sialic acid residues on the branches ranging from 0 to 2. In addition, the structure can present core-linked fucose and/or a bisecting GlcNAc. In many inflammatory and autoimmune conditions, as well as in metabolic, cardiovascular, infectious, and neoplastic diseases, the IgG Asn297-linked glycan becomes less sialylated and less galactosylated, leading to increased expression of glycans terminating with GlcNAc. These conditions alter also the presence of core-fucose and bisecting GlcNAc. Importantly, similar glycomic alterations are observed in aging. The common condition, shared by the above-mentioned pathological conditions and aging, is a low-grade, chronic, asymptomatic inflammatory state which, in the case of aging, is known as inflammaging. Glycomic alterations associated with inflammatory diseases often precede disease onset and follow remission. The aberrantly glycosylated IgG glycans associated with inflammation and aging can sustain inflammation through different mechanisms, fueling a vicious loop. These include complement activation, Fcγ receptor binding, binding to lectin receptors on antigen-presenting cells, and autoantibody reactivity. The complex molecular bases of the glycomic changes associated with inflammation and aging are still poorly understood.
Collapse
Affiliation(s)
- Fabio Dall'Olio
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy.
| | - Nadia Malagolini
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| |
Collapse
|
47
|
Abstract
Human lifespan has increased significantly in the last 200 years, emphasizing our need to age healthily. Insights into molecular mechanisms of aging might allow us to slow down its rate or even revert it. Similar to aging, glycosylation is regulated by an intricate interplay of genetic and environmental factors. The dynamics of glycopattern variation during aging has been mostly explored for plasma/serum and immunoglobulin G (IgG) N-glycome, as we describe thoroughly in this chapter. In addition, we discuss the potential functional role of agalactosylated IgG glycans in aging, through modulation of inflammation level, as proposed by the concept of inflammaging. We also comment on the potential to use the plasma/serum and IgG N-glycome as a biomarker of healthy aging and on the interventions that modulate the IgG glycopattern. Finally, we discuss the current knowledge about animal models for human plasma/serum and IgG glycosylation and mention other, less explored, instances of glycopattern changes during organismal aging and cellular senescence.
Collapse
|
48
|
Wang L, Balmat TJ, Antonia AL, Constantine FJ, Henao R, Burke TW, Ingham A, McClain MT, Tsalik EL, Ko ER, Ginsburg GS, DeLong MR, Shen X, Woods CW, Hauser ER, Ko DC. An atlas connecting shared genetic architecture of human diseases and molecular phenotypes provides insight into COVID-19 susceptibility. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2020:2020.12.20.20248572. [PMID: 33398303 PMCID: PMC7781346 DOI: 10.1101/2020.12.20.20248572] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
While genome-wide associations studies (GWAS) have successfully elucidated the genetic architecture of complex human traits and diseases, understanding mechanisms that lead from genetic variation to pathophysiology remains an important challenge. Methods are needed to systematically bridge this crucial gap to facilitate experimental testing of hypotheses and translation to clinical utility. Here, we leveraged cross-phenotype associations to identify traits with shared genetic architecture, using linkage disequilibrium (LD) information to accurately capture shared SNPs by proxy, and calculate significance of enrichment. This shared genetic architecture was examined across differing biological scales through incorporating data from catalogs of clinical, cellular, and molecular GWAS. We have created an interactive web database (interactive Cross-Phenotype Analysis of GWAS database (iCPAGdb); http://cpag.oit.duke.edu) to facilitate exploration and allow rapid analysis of user-uploaded GWAS summary statistics. This database revealed well-known relationships among phenotypes, as well as the generation of novel hypotheses to explain the pathophysiology of common diseases. Application of iCPAGdb to a recent GWAS of severe COVID-19 demonstrated unexpected overlap of GWAS signals between COVID-19 and human diseases, including with idiopathic pulmonary fibrosis driven by the DPP9 locus. Transcriptomics from peripheral blood of COVID-19 patients demonstrated that DPP9 was induced in SARS-CoV-2 compared to healthy controls or those with bacterial infection. Further investigation of cross-phenotype SNPs with severe COVID-19 demonstrated colocalization of the GWAS signal of the ABO locus with plasma protein levels of a reported receptor of SARS-CoV-2, CD209 (DC-SIGN), pointing to a possible mechanism whereby glycosylation of CD209 by ABO may regulate COVID-19 disease severity. Thus, connecting genetically related traits across phenotypic scales links human diseases to molecular and cellular measurements that can reveal mechanisms and lead to novel biomarkers and therapeutic approaches.
Collapse
Affiliation(s)
- Liuyang Wang
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, NC 27710, USA
| | | | - Alejandro L. Antonia
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, NC 27710, USA
| | - Florica J. Constantine
- Center for Applied Genomics and Precision Medicine, Department of Medicine, Duke University, Durham, NC 27710, USA
| | - Ricardo Henao
- Center for Applied Genomics and Precision Medicine, Department of Medicine, Duke University, Durham, NC 27710, USA
| | - Thomas W. Burke
- Center for Applied Genomics and Precision Medicine, Department of Medicine, Duke University, Durham, NC 27710, USA
| | - Andy Ingham
- Duke Research Computing, Duke University, Durham, NC 27710, USA
| | - Micah T. McClain
- Center for Applied Genomics and Precision Medicine, Department of Medicine, Duke University, Durham, NC 27710, USA
- Durham Veterans Affairs Health Care System, Durham, NC 27705, USA
- Division of Infectious Diseases, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Ephraim L. Tsalik
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, NC 27710, USA
- Center for Applied Genomics and Precision Medicine, Department of Medicine, Duke University, Durham, NC 27710, USA
- Durham Veterans Affairs Health Care System, Durham, NC 27705, USA
- Division of Infectious Diseases, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Emily R. Ko
- Center for Applied Genomics and Precision Medicine, Department of Medicine, Duke University, Durham, NC 27710, USA
- Department of Hospital Medicine, Duke Regional Hospital, Durham, NC, 27705, USA
| | - Geoffrey S. Ginsburg
- Center for Applied Genomics and Precision Medicine, Department of Medicine, Duke University, Durham, NC 27710, USA
| | - Mark R. DeLong
- Duke Research Computing, Duke University, Durham, NC 27710, USA
| | - Xiling Shen
- Department of Biomedical Engineering, Woo Center for Big Data and Precision Health, Duke University, Durham, NC 27710, USA
| | - Christopher W. Woods
- Center for Applied Genomics and Precision Medicine, Department of Medicine, Duke University, Durham, NC 27710, USA
- Durham Veterans Affairs Health Care System, Durham, NC 27705, USA
- Division of Infectious Diseases, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Elizabeth R. Hauser
- Duke Molecular Physiology Institute and Department of Biostatistics and Bioinformatics, Duke University Medical Center Durham, NC 27710, USA
- Cooperative Studies Program Epidemiology Center-Durham, Durham VA Health Care System, Durham, NC 27705, USA
| | - Dennis C. Ko
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, NC 27710, USA
- Division of Infectious Diseases, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
- Lead contact
| |
Collapse
|
49
|
Čaval T, Heck AJR, Reiding KR. Meta-heterogeneity: Evaluating and Describing the Diversity in Glycosylation Between Sites on the Same Glycoprotein. Mol Cell Proteomics 2020; 20:100010. [PMID: 33561609 PMCID: PMC8724623 DOI: 10.1074/mcp.r120.002093] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/14/2020] [Accepted: 07/31/2020] [Indexed: 12/26/2022] Open
Abstract
Mass spectrometry-based glycoproteomics has gone through some incredible developments over the last few years. Technological advances in glycopeptide enrichment, fragmentation methods, and data analysis workflows have enabled the transition of glycoproteomics from a niche application, mainly focused on the characterization of isolated glycoproteins, to a mature technology capable of profiling thousands of intact glycopeptides at once. In addition to numerous biological discoveries catalyzed by the technology, we are also observing an increase in studies focusing on global protein glycosylation and the relationship between multiple glycosylation sites on the same protein. It has become apparent that just describing protein glycosylation in terms of micro- and macro-heterogeneity, respectively, the variation and occupancy of glycans at a given site, is not sufficient to describe the observed interactions between sites. In this perspective we propose a new term, meta-heterogeneity, to describe a higher level of glycan regulation: the variation in glycosylation across multiple sites of a given protein. We provide literature examples of extensive meta-heterogeneity on relevant proteins such as antibodies, erythropoietin, myeloperoxidase, and a number of serum and plasma proteins. Furthermore, we postulate on the possible biological reasons and causes behind the intriguing meta-heterogeneity observed in glycoproteins.
Collapse
Affiliation(s)
- Tomislav Čaval
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, the Netherlands; Netherlands Proteomics Center, Utrecht, the Netherlands
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, the Netherlands; Netherlands Proteomics Center, Utrecht, the Netherlands.
| | - Karli R Reiding
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, the Netherlands; Netherlands Proteomics Center, Utrecht, the Netherlands.
| |
Collapse
|
50
|
de Haan N, Falck D, Wuhrer M. Monitoring of immunoglobulin N- and O-glycosylation in health and disease. Glycobiology 2020; 30:226-240. [PMID: 31281930 PMCID: PMC7225405 DOI: 10.1093/glycob/cwz048] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 07/02/2019] [Accepted: 07/03/2019] [Indexed: 12/11/2022] Open
Abstract
Protein N- and O-glycosylation are well known co- and post-translational modifications of immunoglobulins. Antibody glycosylation on the Fab and Fc portion is known to influence antigen binding and effector functions, respectively. To study associations between antibody glycosylation profiles and (patho) physiological states as well as antibody functionality, advanced technologies and methods are required. In-depth structural characterization of antibody glycosylation usually relies on the separation and tandem mass spectrometric (MS) analysis of released glycans. Protein- and site-specific information, on the other hand, may be obtained by the MS analysis of glycopeptides. With the development of high-resolution mass spectrometers, antibody glycosylation analysis at the intact or middle-up level has gained more interest, providing an integrated view of different post-translational modifications (including glycosylation). Alongside the in-depth methods, there is also great interest in robust, high-throughput techniques for routine glycosylation profiling in biopharma and clinical laboratories. With an emphasis on IgG Fc glycosylation, several highly robust separation-based techniques are employed for this purpose. In this review, we describe recent advances in MS methods, separation techniques and orthogonal approaches for the characterization of immunoglobulin glycosylation in different settings. We put emphasis on the current status and expected developments of antibody glycosylation analysis in biomedical, biopharmaceutical and clinical research.
Collapse
Affiliation(s)
- Noortje de Haan
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, 2333ZA Leiden, The Netherlands
| | - David Falck
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, 2333ZA Leiden, The Netherlands
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, 2333ZA Leiden, The Netherlands
| |
Collapse
|