1
|
Imran M, Altamimi ASA, Afzal M, Babu MA, Goyal K, Ballal S, Sharma P, Alanazi FJ, Alruwaili AN, Aldhafeeri NA, Ali H. Targeting senescence and GATA4 in age-related cardiovascular disease: a comprehensive approach. Biogerontology 2025; 26:45. [PMID: 39831933 DOI: 10.1007/s10522-025-10189-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 01/03/2025] [Indexed: 01/22/2025]
Abstract
The growing prevalence of age-related cardiovascular diseases (CVDs) poses significant health challenges, necessitating the formulation of novel treatment approaches. GATA4, a vital transcription factor identified for modulating cardiovascular biology and cellular senescence, is recognized for its critical involvement in CVD pathogenesis. This review collected relevant studies from PubMed, Google Scholar, and Science Direct using search terms like 'GATA4,' 'cellular senescence,' 'coronary artery diseases,' 'hypertension,' 'heart failure,' 'arrhythmias,' 'congenital heart diseases,' 'cardiomyopathy,' and 'cardiovascular disease.' Additionally, studies investigating the molecular mechanisms underlying GATA4-mediated regulation of GATA4 and senescence in CVDs were analyzed to provide comprehensive insights into this critical aspect of potential treatment targeting. Dysregulation of GATA4 is involved in a variety of CVDs, as demonstrated by both experimental and clinical research, comprising CAD, hypertension, congenital heart diseases, cardiomyopathy, arrhythmias, and cardiac insufficiency. Furthermore, cellular senescence enhances the advancement of age-related CVDs. These observations suggested that therapies targeting GATA4, senescence pathways, or both as necessary may be an effective intervention in CVD progression and prognosis. Addressing age-related CVDs by targeting GATA4 and senescence is a broad mechanism approach. It implies further investigation of the molecular nature of these processes and elaboration of an effective therapeutic strategy. This review highlights the importance of GATA4 and senescence in CVD pathogenesis, emphasizing their potential as therapeutic targets for age-related CVDs.
Collapse
Affiliation(s)
- Mohd Imran
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, Rafha, 91911, Saudi Arabia.
- Center for Health Research, Northern Border University, Arar, Saudi Arabia.
| | - Abdulmalik S A Altamimi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - M Arockia Babu
- Institute of Pharmaceutical Research, GLA University, Mathura, 281406, UP, India
| | - Kavita Goyal
- Department of Biotechnology, Graphic Era (Deemed to be University), Clement Town, Dehradun 248002, India
| | - Suhas Ballal
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to Be University), Bangalore, Karnataka, India
| | - Pawan Sharma
- Department of Sciences, Vivekananda Global University, Jaipur, Rajasthan 303012, India
| | - Fadiyah Jadid Alanazi
- Center for Health Research, Northern Border University, Arar, Saudi Arabia
- Public Health Nursing Department, College of Nursing, Northern Border University, Arar, Saudi Arabia
| | - Abeer Nuwayfi Alruwaili
- Department of Nursing Administration and Education, College of Nursing, Jouf University, Sakaka 72388, Saudi Arabia
| | - Nouf Afit Aldhafeeri
- College of Nursing, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Haider Ali
- Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- Kyrgyz State Medical College, Bishkek, Kyrgyzstan
| |
Collapse
|
2
|
Yang J, Wang Z, Zhou Y, Jiang S, Qin X, Xu Z, Wang Y, Zuo M, Meng Z, Chen S, Wang Q, Wang J, Sun K. Manic Fringe promotes endothelial-to-mesenchymal transition mediated by the Notch signalling pathway during heart valve development. J Mol Med (Berl) 2025; 103:51-71. [PMID: 39528804 PMCID: PMC11739230 DOI: 10.1007/s00109-024-02492-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 09/15/2024] [Accepted: 09/23/2024] [Indexed: 11/16/2024]
Abstract
A fundamental event in the formation of heart valves involves the transformation of endocardial cells within the outflow tract (OFT) and atrioventricular canal (AVC) cushions through a process known as endothelial-to-mesenchymal transition (EndMT). Aberrant EndMT is a primary cause of congenital valvular malformations. Manic Fringe (MFNG) has been previously associated with cardiovascular development, although its role in heart valve development remains underexplored. In this study, we seek to enhance our understanding of MFNG's involvement in valve formation and its association with EndMT. Staining results of histological section revealed the expression of MFNG in the AVC and OFT from embryonic day 9.5 to 10.5 (E9.5-E10.5), when EndMT takes place. Cellular data demonstrated that MFNG exerts a positive regulatory influence on the EndMT process, promoting endothelial cell (EC) migration by enhancing the activity of the Notch signalling pathway. MFNG knockdown mediated by antisense morpholino oligonucleotides (MO) injection caused abnormal development of the heart and valves in zebrafish. Furthermore, through whole-exome sequencing (WES), we identified a heterozygous MFNG mutation in patients diagnosed with tetralogy of Fallot-pulmonary valve stenosis (TOF-PS). Cellular and molecular assays confirmed that this deleterious mutation reduced MFNG expression and hindered the EndMT process. In summary, our study verifies that MFNG plays a role in promoting EndMT mediated by the Notch signalling pathway during the heart and valve development. The MFNG deleterious variant induces MFNG loss of function, potentially elucidating the underlying molecular mechanisms of MFNG's involvement in the pathogenesis of congenital heart valve defects. These observations contribute to our current genetic understanding of congenital heart valve disease and may provide a potential target for prenatal diagnosis and treatment. KEY MESSAGES: Our examination revealed, for the first time, that MFNG exhibited high expression levels during EndMT of heart valve development in mice. Our findings provide compelling evidence that MFNG plays a role in promoting EndMT mediated by the Notch signalling pathway. Our results identified, for the first time, a deleterious MFNG p. T77M variant that inhibited the EndMT process by downregulating the activity of the Notch signalling pathway, thereby preventing the normal valve formation. MFNG may serve as an early diagnostic marker and an effective therapeutic target for the clinical treatment of congenital heart valve defects.
Collapse
Affiliation(s)
- Junjie Yang
- Department of Pediatric Cardiology, The Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Pediatric Cardiology, School of Medicine, Xinhua Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Zhi Wang
- Department of Pediatric Cardiology, School of Medicine, Xinhua Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yue Zhou
- Department of Pediatric Cardiology, School of Medicine, Xinhua Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Shiwei Jiang
- Department of Pediatric Cardiology, School of Medicine, Xinhua Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xiji Qin
- Department of Pediatric Cardiology, School of Medicine, Xinhua Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Zhikang Xu
- Department of Pediatric Cardiology, School of Medicine, Xinhua Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yu Wang
- Department of Pediatric Cardiology, The Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Pediatric Cardiology, School of Medicine, Xinhua Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Mengying Zuo
- Department of Pediatric Cardiology, School of Medicine, Xinhua Hospital, Shanghai Jiao Tong University, Shanghai, China
- Department of Cardiology, Children's Hospital of Soochow University, Suzhou, China
| | - Zhuo Meng
- Department of Pediatric Cardiology, School of Medicine, Xinhua Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Sun Chen
- Department of Pediatric Cardiology, School of Medicine, Xinhua Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Qingjie Wang
- Department of Pediatric Cardiology, School of Medicine, Xinhua Hospital, Shanghai Jiao Tong University, Shanghai, China.
| | - Jian Wang
- Department of Pediatric Cardiology, School of Medicine, Xinhua Hospital, Shanghai Jiao Tong University, Shanghai, China.
| | - Kun Sun
- Department of Pediatric Cardiology, The Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.
- Department of Pediatric Cardiology, School of Medicine, Xinhua Hospital, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
3
|
Nawaz K, Alifah N, Hussain T, Hameed H, Ali H, Hamayun S, Mir A, Wahab A, Naeem M, Zakria M, Pakki E, Hasan N. From genes to therapy: A comprehensive exploration of congenital heart disease through the lens of genetics and emerging technologies. Curr Probl Cardiol 2024; 49:102726. [PMID: 38944223 DOI: 10.1016/j.cpcardiol.2024.102726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 06/26/2024] [Indexed: 07/01/2024]
Abstract
Congenital heart disease (CHD) affects approximately 1 % of live births worldwide, making it the most common congenital anomaly in newborns. Recent advancements in genetics and genomics have significantly deepened our understanding of the genetics of CHDs. While the majority of CHD etiology remains unclear, evidence consistently indicates that genetics play a significant role in its development. CHD etiology holds promise for enhancing diagnosis and developing novel therapies to improve patient outcomes. In this review, we explore the contributions of both monogenic and polygenic factors of CHDs and highlight the transformative impact of emerging technologies on these fields. We also summarized the state-of-the-art techniques, including targeted next-generation sequencing (NGS), whole genome and whole exome sequencing (WGS, WES), single-cell RNA sequencing (scRNA-seq), human induced pluripotent stem cells (hiPSCs) and others, that have revolutionized our understanding of cardiovascular disease genetics both from diagnosis perspective and from disease mechanism perspective in children and young adults. These molecular diagnostic techniques have identified new genes and chromosomal regions involved in syndromic and non-syndromic CHD, enabling a more defined explanation of the underlying pathogenetic mechanisms. As our knowledge and technologies continue to evolve, they promise to enhance clinical outcomes and reduce the CHD burden worldwide.
Collapse
Affiliation(s)
- Khalid Nawaz
- Department of Medical Laboratory Technology, Khyber Medical University, Peshawar, 25100, Khyber Pakhtunkhwa, Pakistan
| | - Nur Alifah
- Faculty of Pharmacy, Universitas Hasanuddin, Jl. Perintis Kemerdekaan Km 10, Makassar, 90245, Republic of Indonesia
| | - Talib Hussain
- Women Dental College, Khyber Medical University, Abbottabad, 22080, Khyber Pakhtunkhwa, Pakistan
| | - Hamza Hameed
- Department of Cardiology, Pakistan Institute of Medical Sciences (PIMS), Islamabad, 04485, Punjab, Pakistan
| | - Haider Ali
- Department of Pharmacy, Kohat University of Science and Technology, Kohat, 26000, Khyber Pakhtunkhwa, Pakistan
| | - Shah Hamayun
- Department of Cardiology, Pakistan Institute of Medical Sciences (PIMS), Islamabad, 04485, Punjab, Pakistan
| | - Awal Mir
- Department of Medical Laboratory Technology, Khyber Medical University, Peshawar, 25100, Khyber Pakhtunkhwa, Pakistan
| | - Abdul Wahab
- Department of Pharmacy, Kohat University of Science and Technology, Kohat, 26000, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Naeem
- Department of Biological Sciences, National University of Medical Sciences (NUMS), Rawalpindi, Punjab, Pakistan
| | - Mohammad Zakria
- Advanced Center for Genomic Technologies, Khyber Medical University, Peshawar, 25100, Khyber Pakhtunkhwa, Pakistan
| | - Ermina Pakki
- Faculty of Pharmacy, Universitas Hasanuddin, Jl. Perintis Kemerdekaan Km 10, Makassar, 90245, Republic of Indonesia
| | - Nurhasni Hasan
- Faculty of Pharmacy, Universitas Hasanuddin, Jl. Perintis Kemerdekaan Km 10, Makassar, 90245, Republic of Indonesia.
| |
Collapse
|
4
|
Katsumura KR, Liu P, Kim JA, Mehta C, Bresnick EH. Pathogenic GATA2 genetic variants utilize an obligate enhancer mechanism to distort a multilineage differentiation program. Proc Natl Acad Sci U S A 2024; 121:e2317147121. [PMID: 38422019 PMCID: PMC10927522 DOI: 10.1073/pnas.2317147121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 01/04/2024] [Indexed: 03/02/2024] Open
Abstract
Mutations in genes encoding transcription factors inactivate or generate ectopic activities to instigate pathogenesis. By disrupting hematopoietic stem/progenitor cells, GATA2 germline variants create a bone marrow failure and leukemia predisposition, GATA2 deficiency syndrome, yet mechanisms underlying the complex phenotypic constellation are unresolved. We used a GATA2-deficient progenitor rescue system to analyze how genetic variation influences GATA2 functions. Pathogenic variants impaired, without abrogating, GATA2-dependent transcriptional regulation. Variants promoted eosinophil and repressed monocytic differentiation without regulating mast cell and erythroid differentiation. While GATA2 and T354M required the DNA-binding C-terminal zinc finger, T354M disproportionately required the N-terminal finger and N terminus. GATA2 and T354M activated a CCAAT/Enhancer Binding Protein-ε (C/EBPε) enhancer, creating a feedforward loop operating with the T-cell Acute Lymphocyte Leukemia-1 (TAL1) transcription factor. Elevating C/EBPε partially normalized hematopoietic defects of GATA2-deficient progenitors. Thus, pathogenic germline variation discriminatively spares or compromises transcription factor attributes, and retaining an obligate enhancer mechanism distorts a multilineage differentiation program.
Collapse
Affiliation(s)
- Koichi R. Katsumura
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI53705
- Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, WI53705
| | - Peng Liu
- Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, WI53705
- Cancer Informatics Shared Resource, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI53705
| | - Jeong-ah Kim
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI53705
| | - Charu Mehta
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI53705
| | - Emery H. Bresnick
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI53705
| |
Collapse
|
5
|
Nappi F. In-Depth Genomic Analysis: The New Challenge in Congenital Heart Disease. Int J Mol Sci 2024; 25:1734. [PMID: 38339013 PMCID: PMC10855915 DOI: 10.3390/ijms25031734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/25/2024] [Accepted: 01/27/2024] [Indexed: 02/12/2024] Open
Abstract
The use of next-generation sequencing has provided new insights into the causes and mechanisms of congenital heart disease (CHD). Examinations of the whole exome sequence have detected detrimental gene variations modifying single or contiguous nucleotides, which are characterised as pathogenic based on statistical assessments of families and correlations with congenital heart disease, elevated expression during heart development, and reductions in harmful protein-coding mutations in the general population. Patients with CHD and extracardiac abnormalities are enriched for gene classes meeting these criteria, supporting a common set of pathways in the organogenesis of CHDs. Single-cell transcriptomics data have revealed the expression of genes associated with CHD in specific cell types, and emerging evidence suggests that genetic mutations disrupt multicellular genes essential for cardiogenesis. Metrics and units are being tracked in whole-genome sequencing studies.
Collapse
Affiliation(s)
- Francesco Nappi
- Department of Cardiac Surgery, Centre Cardiologique du Nord, 93200 Saint-Denis, France
| |
Collapse
|
6
|
Abhinav P, Li YJ, Huang RT, Liu XY, Gu JN, Yang CX, Xu YJ, Wang J, Yang YQ. Somatic GATA4 mutation contributes to tetralogy of Fallot. Exp Ther Med 2024; 27:91. [PMID: 38274337 PMCID: PMC10809308 DOI: 10.3892/etm.2024.12379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/07/2023] [Indexed: 01/27/2024] Open
Abstract
Tetralogy of Fallot (TOF) is the most prevalent cyanotic congenital heart pathology and causes infant morbidity and mortality worldwide. GATA-binding protein 4 (GATA4) serves as a pivotal transcriptional factor for embryonic cardiogenesis and germline GATA4 mutations are causally linked to TOF. However, the effects of somatic GATA4 mutations on the pathogenesis of TOF remain to be ascertained. In the present study, sequencing assay of GATA4 was performed utilizing genomic DNA derived from resected heart tissue specimens as well as matched peripheral blood specimens of 62 patients with non-familial TOF who underwent surgical treatment for TOF. Sequencing of GATA4 was also performed using the heart tissue specimens as well as matched peripheral venous blood samples of 68 sporadic cases who underwent heart valve displacement because of rheumatic heart disorder and the peripheral venous whole blood samples of 216 healthy subjects. The function of the mutant was explored by dual-luciferase activity analysis. Consequently, a new GATA4 mutation, NM_002052.5:c.708T>G;p.(Tyr236*), was found in the heart tissue of one patient with TOF. No mutation was detected in the heart tissue of the 68 cases suffering from rheumatic heart disorder or in the venous blood samples of all 346 individuals. GATA4 mutant failed to transactivate its target gene, myosin heavy chain 6. Additionally, this mutation nullified the synergistic transactivation between GATA4 and T-box transcription factor 5 or NK2 homeobox 5, two genes causative for TOF. Somatic GATA4 mutation predisposes TOF, highlighting the significant contribution of somatic variations to the molecular pathogenesis underpinning TOF.
Collapse
Affiliation(s)
- Pradhan Abhinav
- Department of Cardiology, East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China
| | - Yan-Jie Li
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, P.R. China
| | - Ri-Tai Huang
- Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| | - Xing-Yuan Liu
- Department of Pediatrics, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, P.R. China
| | - Jia-Ning Gu
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, P.R. China
| | - Chen-Xi Yang
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, P.R. China
| | - Ying-Jia Xu
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, P.R. China
| | - Juan Wang
- Department of Cardiology, East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China
| | - Yi-Qing Yang
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, P.R. China
- Cardiovascular Research Laboratory, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, P.R. China
- Central Laboratory, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, P.R. China
| |
Collapse
|
7
|
Abstract
PURPOSE OF REVIEW Aortic valve disease is a leading global cause of morbidity and mortality, posing an increasing burden on society. Advances in next-generation technologies and disease models over the last decade have further delineated the genetic and molecular factors that might be exploited in development of therapeutics for affected patients. This review describes several advances in the molecular and genetic understanding of AVD, focusing on bicuspid aortic valve (BAV) and calcific aortic valve disease (CAVD). RECENT FINDINGS Genomic studies have identified a myriad of genes implicated in the development of BAV, including NOTCH1 , SMAD6 and ADAMTS19 , along with members of the GATA and ROBO gene families. Similarly, several genes associated with the initiation and progression of CAVD, including NOTCH1 , LPA , PALMD , IL6 and FADS1/2 , serve as the launching point for emerging clinical trials. SUMMARY These new insights into the genetic contributors of AVD have offered new avenues for translational disease investigation, bridging molecular discoveries to emergent pharmacotherapeutic options. Future studies aimed at uncovering new genetic associations and further defining implicated molecular pathways are fuelling the new wave of drug discovery.
Collapse
Affiliation(s)
- Ruth L. Ackah
- Center for Cardiovascular Research, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, Ohio, USA
- The Heart Center, Nationwide Children’s Hospital, Columbus, Ohio, USA
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Jun Yasuhara
- Center for Cardiovascular Research, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, Ohio, USA
- The Heart Center, Nationwide Children’s Hospital, Columbus, Ohio, USA
| | - Vidu Garg
- Center for Cardiovascular Research, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, Ohio, USA
- The Heart Center, Nationwide Children’s Hospital, Columbus, Ohio, USA
- Department of Pediatrics, The Ohio State University, Columbus, Ohio, USA
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
8
|
Zhao R, Cao L, Gu WJ, Li L, Chen ZZ, Xiang J, Zhou ZY, Xu B, Zang WD, Zhou XY, Cao J, Sun K, Zhao JY. Gestational palmitic acid suppresses embryonic GATA-binding protein 4 signaling and causes congenital heart disease. Cell Rep Med 2023; 4:100953. [PMID: 36809766 PMCID: PMC10040382 DOI: 10.1016/j.xcrm.2023.100953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 12/13/2022] [Accepted: 01/31/2023] [Indexed: 02/22/2023]
Abstract
Dysregulated maternal fatty acid metabolism increases the risk of congenital heart disease (CHD) in offspring with an unknown mechanism, and the effect of folic acid fortification in preventing CHD is controversial. Using gas chromatography coupled to either a flame ionization detector or mass spectrometer (GC-FID/MS) analysis, we find that the palmitic acid (PA) concentration increases significantly in serum samples of pregnant women bearing children with CHD. Feeding pregnant mice with PA increased CHD risk in offspring and cannot be rescued by folic acid supplementation. We further find that PA promotes methionyl-tRNA synthetase (MARS) expression and protein lysine homocysteinylation (K-Hcy) of GATA4 and results in GATA4 inhibition and abnormal heart development. Targeting K-Hcy modification by either genetic ablation of Mars or using N-acetyl-L-cysteine (NAC) decreases CHD onset in high-PA-diet-fed mice. In summary, our work links maternal malnutrition and MARS/K-Hcy with the onset of CHD and provides a potential strategy in preventing CHD by targeting K-Hcy other than folic acid supplementation.
Collapse
Affiliation(s)
- Rui Zhao
- Institute for Developmental and Regenerative Cardiovascular Medicine, MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Li Cao
- Obstetrics & Gynecology Hospital of Fudan University, State Key Lab of Genetic Engineering, School of Life Sciences, and Department of Materials Science, Fudan University, Shanghai 200438, China
| | - Wen-Jun Gu
- Obstetrics & Gynecology Hospital of Fudan University, State Key Lab of Genetic Engineering, School of Life Sciences, and Department of Materials Science, Fudan University, Shanghai 200438, China
| | - Lei Li
- Department of Anatomy and Neuroscience Research Institute, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Zhong-Zhong Chen
- Urogenital Development Research Center, Department of Urology, Shanghai Children's Hospital School of Medicine, Shanghai Jiao Tong University, Shanghai 200062, China
| | - Jie Xiang
- Obstetrics & Gynecology Hospital of Fudan University, State Key Lab of Genetic Engineering, School of Life Sciences, and Department of Materials Science, Fudan University, Shanghai 200438, China
| | - Ze-Yu Zhou
- Obstetrics & Gynecology Hospital of Fudan University, State Key Lab of Genetic Engineering, School of Life Sciences, and Department of Materials Science, Fudan University, Shanghai 200438, China
| | - Bo Xu
- Department of Anesthesiology, General Hospital of Southern Theatre Command of People's Liberation Army, Guangzhou 510030, China
| | - Wei-Dong Zang
- Department of Anatomy and Neuroscience Research Institute, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xiang-Yu Zhou
- Obstetrics & Gynecology Hospital of Fudan University, State Key Lab of Genetic Engineering, School of Life Sciences, and Department of Materials Science, Fudan University, Shanghai 200438, China.
| | - Jing Cao
- Department of Anatomy and Neuroscience Research Institute, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Kun Sun
- Institute for Developmental and Regenerative Cardiovascular Medicine, MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.
| | - Jian-Yuan Zhao
- Institute for Developmental and Regenerative Cardiovascular Medicine, MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; Department of Anatomy and Neuroscience Research Institute, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; International Human Phenome Institutes (Shanghai), Shanghai 200433, China.
| |
Collapse
|
9
|
High throughput mutation screening of cardiac transcription factor GATA4 among Tanzania children with congenital heart diseases. THE NUCLEUS 2023. [DOI: 10.1007/s13237-022-00414-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
10
|
Martinez ME, Pinz I, Preda M, Norton CR, Gridley T, Hernandez A. DIO3 protects against thyrotoxicosis-derived cranio-encephalic and cardiac congenital abnormalities. JCI Insight 2022; 7:e161214. [PMID: 36166296 PMCID: PMC9675556 DOI: 10.1172/jci.insight.161214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 09/21/2022] [Indexed: 12/15/2022] Open
Abstract
Maternal hyperthyroidism is associated with an increased incidence of congenital abnormalities at birth, but it is not clear which of these defects arise from a transient developmental excess of thyroid hormone and which depend on pregnancy stage, antithyroid drug choice, or unwanted subsequent fetal hypothyroidism. To address this issue, we studied a mouse model of comprehensive developmental thyrotoxicosis secondary to a lack of type 3 deiodinase (DIO3). Dio3-/- mice exhibited reduced neonatal viability on most genetic backgrounds and perinatal lethality on a C57BL/6 background. Dio3-/- mice exhibited severe growth retardation during the neonatal period and cartilage loss. Mice surviving after birth manifested brain and cranial dysmorphisms, severe hydrocephalus, choanal atresia, and cleft palate. These abnormalities were noticeable in C57BL/6J Dio3-/- mice at fetal stages, in addition to a thyrotoxic heart with septal defects and thin ventricular walls. Our findings stress the protecting role of DIO3 during development and support the hypothesis that human congenital abnormalities associated with hyperthyroidism during pregnancy are caused by transient thyrotoxicosis before clinical intervention. Our results also suggest thyroid hormone involvement in the etiology of idiopathic pathologies including cleft palate, choanal atresia, Chiari malformations, Kaschin-Beck disease, and Temple and other cranio-encephalic and heart syndromes.
Collapse
Affiliation(s)
- M. Elena Martinez
- Center for Molecular Medicine, MaineHealth Institute for Research, MaineHealth, Scarborough, Maine, USA
| | - Ilka Pinz
- Center for Molecular Medicine, MaineHealth Institute for Research, MaineHealth, Scarborough, Maine, USA
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, Maine, USA
- Department of Medicine, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Marilena Preda
- Center for Molecular Medicine, MaineHealth Institute for Research, MaineHealth, Scarborough, Maine, USA
| | - Christine R. Norton
- Center for Molecular Medicine, MaineHealth Institute for Research, MaineHealth, Scarborough, Maine, USA
| | - Thomas Gridley
- Center for Molecular Medicine, MaineHealth Institute for Research, MaineHealth, Scarborough, Maine, USA
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, Maine, USA
- Department of Medicine, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Arturo Hernandez
- Center for Molecular Medicine, MaineHealth Institute for Research, MaineHealth, Scarborough, Maine, USA
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, Maine, USA
- Department of Medicine, Tufts University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
11
|
Mansfield C, Zhao MT, Basu M. Translational potential of hiPSCs in predictive modeling of heart development and disease. Birth Defects Res 2022; 114:926-947. [PMID: 35261209 PMCID: PMC9458775 DOI: 10.1002/bdr2.1999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 02/21/2022] [Indexed: 11/11/2022]
Abstract
Congenital heart disease (CHD) represents a major class of birth defects worldwide and is associated with cardiac malformations that often require surgical intervention immediately after birth. Despite the intense efforts from multicentric genome/exome sequencing studies that have identified several genetic variants, the etiology of CHD remains diverse and often unknown. Genetically modified animal models with candidate gene deficiencies continue to provide novel molecular insights that are responsible for fetal cardiac development. However, the past decade has seen remarkable advances in the field of human induced pluripotent stem cell (hiPSC)-based disease modeling approaches to better understand the development of CHD and discover novel preventative therapies. The iPSCs are derived from reprogramming of differentiated somatic cells to an embryonic-like pluripotent state via overexpression of key transcription factors. In this review, we describe how differentiation of hiPSCs to specialized cardiac cellular identities facilitates our understanding of the development and pathogenesis of CHD subtypes. We summarize the molecular and functional characterization of hiPSC-derived differentiated cells in support of normal cardiogenesis, those that go awry in CHD and other heart diseases. We illustrate how stem cell-based disease modeling enables scientists to dissect the molecular mechanisms of cell-cell interactions underlying CHD. We highlight the current state of hiPSC-based studies that are in the verge of translating into clinical trials. We also address limitations including hiPSC-model reproducibility and scalability and differentiation methods leading to cellular heterogeneity. Last, we provide future perspective on exploiting the potential of hiPSC technology as a predictive model for patient-specific CHD, screening pharmaceuticals, and provide a source for cell-based personalized medicine. In combination with existing clinical and animal model studies, data obtained from hiPSCs will yield further understanding of oligogenic, gene-environment interaction, pathophysiology, and management for CHD and other genetic cardiac disorders.
Collapse
Affiliation(s)
- Corrin Mansfield
- Center for Cardiovascular Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- Heart Center, Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Ming-Tao Zhao
- Center for Cardiovascular Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- Heart Center, Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, United States of America
| | - Madhumita Basu
- Center for Cardiovascular Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- Heart Center, Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, United States of America
| |
Collapse
|
12
|
Afouda BA. Towards Understanding the Gene-Specific Roles of GATA Factors in Heart Development: Does GATA4 Lead the Way? Int J Mol Sci 2022; 23:5255. [PMID: 35563646 PMCID: PMC9099915 DOI: 10.3390/ijms23095255] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/29/2022] [Accepted: 05/03/2022] [Indexed: 02/04/2023] Open
Abstract
Transcription factors play crucial roles in the regulation of heart induction, formation, growth and morphogenesis. Zinc finger GATA transcription factors are among the critical regulators of these processes. GATA4, 5 and 6 genes are expressed in a partially overlapping manner in developing hearts, and GATA4 and 6 continue their expression in adult cardiac myocytes. Using different experimental models, GATA4, 5 and 6 were shown to work together not only to ensure specification of cardiac cells but also during subsequent heart development. The complex involvement of these related gene family members in those processes is demonstrated through the redundancy among them and crossregulation of each other. Our recent identification at the genome-wide level of genes specifically regulated by each of the three family members and our earlier discovery that gata4 and gata6 function upstream, while gata5 functions downstream of noncanonical Wnt signalling during cardiac differentiation, clearly demonstrate the functional differences among the cardiogenic GATA factors. Such suspected functional differences are worth exploring more widely. It appears that in the past few years, significant advances have indeed been made in providing a deeper understanding of the mechanisms by which each of these molecules function during heart development. In this review, I will therefore discuss current evidence of the role of individual cardiogenic GATA factors in the process of heart development and emphasize the emerging central role of GATA4.
Collapse
Affiliation(s)
- Boni A Afouda
- Institute of Medical Sciences, Foresterhill Health Campus, University of Aberdeen, Aberdeen AB25 2ZD, Scotland, UK
| |
Collapse
|
13
|
The nuclear receptor ERR cooperates with the cardiogenic factor GATA4 to orchestrate cardiomyocyte maturation. Nat Commun 2022; 13:1991. [PMID: 35418170 PMCID: PMC9008061 DOI: 10.1038/s41467-022-29733-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 03/30/2022] [Indexed: 12/19/2022] Open
Abstract
Estrogen-related receptors (ERR) α and γ were shown recently to serve as regulators of cardiac maturation, yet the underlying mechanisms have not been delineated. Herein, we find that ERR signaling is necessary for induction of genes involved in mitochondrial and cardiac-specific contractile processes during human induced pluripotent stem cell-derived cardiomyocyte (hiPSC-CM) differentiation. Genomic interrogation studies demonstrate that ERRγ occupies many cardiomyocyte enhancers/super-enhancers, often co-localizing with the cardiogenic factor GATA4. ERRγ interacts with GATA4 to cooperatively activate transcription of targets involved in cardiomyocyte-specific processes such as contractile function, whereas ERRγ-mediated control of metabolic genes occurs independent of GATA4. Both mechanisms require the transcriptional coregulator PGC-1α. A disease-causing GATA4 mutation is shown to diminish PGC-1α/ERR/GATA4 cooperativity and expression of ERR target genes are downregulated in human heart failure samples suggesting that dysregulation of this circuitry may contribute to congenital and acquired forms of heart failure. Mature cardiac muscle requires high mitochondrial ATP production and specialized contractile proteins. Here the authors demonstrate that cardiomyocyte-specific contractile maturation involves cooperation between the nuclear receptor ERRγ and cardiogenic transcription factor GATA4, but ERRγ controls metabolic genes independently.
Collapse
|
14
|
Ye L, Yu Y, Zhao ZA, Zhao D, Ni X, Wang Y, Fang X, Yu M, Wang Y, Tang JM, Chen Y, Shen Z, Lei W, Hu S. Patient-specific iPSC-derived cardiomyocytes reveal abnormal regulation of FGF16 in a familial atrial septal defect. Cardiovasc Res 2022; 118:859-871. [PMID: 33956078 DOI: 10.1093/cvr/cvab154] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 05/04/2021] [Indexed: 12/15/2022] Open
Abstract
AIMS Congenital heart disease (CHD) frequently occurs in newborns due to abnormal formation of the heart or major blood vessels. Mutations in the GATA4 gene, which encodes GATA binding protein 4, are responsible for atrial septal defect (ASD), a common CHD. This study aims to gain insights into the molecular mechanisms of CHD using human-induced pluripotent stem cells (iPSCs) from a family cohort with ASD. METHODS AND RESULTS Patient-specific iPSCs possess the same genetic information as the donor and can differentiate into various cell types from all three germ layers in vitro, thus presenting a promising approach for disease modelling and molecular mechanism research. Here, we generated a patient-specific iPSC line (iPSC-G4T280M) from a family cohort carrying a hereditary ASD mutation in GATA4 gene (T280M), as well as a human embryonic stem cell line (ESC-G4T280M) carrying the isogenic T280M mutation using the CRISPR/Cas9 genome editing method. The GATA4-mutant iPSCs and ESCs were then differentiated into cardiomyocytes (CMs) to model GATA4 mutation-associated ASD. We observed an obvious defect in cell proliferation in cardiomyocytes derived from both GATA4T280M-mutant iPSCs (iPSC-G4T280M-CMs) and ESCs (ESC-G4T280M-CMs), while the impaired proliferation ability of iPSC-G4T280M-CMs could be restored by gene correction. Integrated analysis of RNA-Seq and ChIP-Seq data indicated that FGF16 is a direct target of wild-type GATA4. However, the T280M mutation obstructed GATA4 occupancy at the FGF16 promoter region, leading to impaired activation of FGF16 transcription. Overexpression of FGF16 in GATA4-mutant cardiomyocytes rescued the cell proliferation defect. The direct relationship between GATA4T280M and ASD was demonstrated in a human iPSC model for the first time. CONCLUSIONS In summary, our study revealed the molecular mechanism of the GATA4T280M mutation in ASD. Understanding the roles of the GATA4-FGF16 axis in iPSC-CMs will shed light on heart development and provide novel insights for the treatment of ASD and other CHD disorders.
Collapse
Affiliation(s)
- Lingqun Ye
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Medical College, Soochow University, Suzhou 215000, China
| | - You Yu
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Medical College, Soochow University, Suzhou 215000, China
| | - Zhen-Ao Zhao
- Institute of Microcirculation & Department of Pathophysiology of Basic Medical College, Hebei North University, Zhangjiakou 075000, China
- Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Zhangjiakou 075000, China
| | - Dandan Zhao
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Medical College, Soochow University, Suzhou 215000, China
| | - Xuan Ni
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Medical College, Soochow University, Suzhou 215000, China
| | - Yong Wang
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Medical College, Soochow University, Suzhou 215000, China
| | - Xing Fang
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Medical College, Soochow University, Suzhou 215000, China
| | - Miao Yu
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Medical College, Soochow University, Suzhou 215000, China
| | - Yongming Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200432, China
| | - Jun-Ming Tang
- Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medicine Science, Hubei University of Medicine, Shiyan 442000, China
| | - Ying Chen
- Central Lab, the Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi 214002, China
| | - Zhenya Shen
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Medical College, Soochow University, Suzhou 215000, China
| | - Wei Lei
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Medical College, Soochow University, Suzhou 215000, China
| | - Shijun Hu
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Medical College, Soochow University, Suzhou 215000, China
| |
Collapse
|
15
|
Abbasi S, Mohsen-Pour N, Naderi N, Rahimi S, Maleki M, Kalayinia S. In silico analysis of GATA4 variants demonstrates main contribution to congenital heart disease. J Cardiovasc Thorac Res 2021; 13:336-354. [PMID: 35047139 PMCID: PMC8749364 DOI: 10.34172/jcvtr.2021.45] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 09/05/2021] [Accepted: 09/24/2021] [Indexed: 12/05/2022] Open
Abstract
Introduction: Congenital heart disease (CHD) is the most common congenital abnormality and the main cause of infant mortality worldwide. Some of the mutations that occur in the GATA4 gene region may result in different types of CHD. Here, we report our in silico analysis of gene variants to determine the effects of the GATA4 gene on the development of CHD.
Methods: Online 1000 Genomes Project, ExAC, gnomAD, GO-ESP, TOPMed, Iranome, GME, ClinVar, and HGMD databases were drawn upon to collect information on all the reported GATA4 variations.The functional importance of the genetic variants was assessed by using SIFT, MutationTaster, CADD,PolyPhen-2, PROVEAN, and GERP prediction tools. Thereafter, network analysis of the GATA4protein via STRING, normal/mutant protein structure prediction via HOPE and I-TASSER, and phylogenetic assessment of the GATA4 sequence alignment via ClustalW were performed.
Results: The most frequent variant was c.874T>C (45.58%), which was reported in Germany.Ventricular septal defect was the most frequent type of CHD. Out of all the reported variants of GATA4,38 variants were pathogenic. A high level of pathogenicity was shown for p.Gly221Arg (CADD score=31), which was further analyzed.
Conclusion: The GATA4 gene plays a significant role in CHD; we, therefore, suggest that it be accorded priority in CHD genetic screening.
Collapse
Affiliation(s)
- Shiva Abbasi
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Neda Mohsen-Pour
- Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Niloofar Naderi
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Shahin Rahimi
- Department of Cardiology, Rajaie Cardiovascular Medical and Research Centre, Iran University of Medical Sciences, Tehran, Iran
| | - Majid Maleki
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Samira Kalayinia
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
16
|
Khatami M, Ghorbani S, Adriani MR, Bahaloo S, Naeini MA, Heidari MM, Hadadzadeh M. Novel Point Mutations in 3'-Untranslated Region of GATA4 Gene Are Associated with Sporadic Non-syndromic Atrial and Ventricular Septal Defects. Curr Med Sci 2021; 42:129-143. [PMID: 34652630 DOI: 10.1007/s11596-021-2428-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 01/14/2021] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Transcription factor GATA4 has significant roles in embryonic heart development. Mutations of GATA4 appear to be responsible for a wide variety of congenital heart defects (CHD). Despite the high prevalence of GATA4 mutations in CHD phenotypes, extensive studies have not been performed. The 3'-untranslated region (3'-UTR) of the GATA4 gene comprises regulatory motifs and microRNA binding sites that are critical for the appropriate gene expression, nuclear transportation, and regulation of translation, and stability of mRNA. This study aimed to evaluate the association between mutations in the 3'-UTR of the GATA4 gene and CHD risk among Iranian patients. METHODS We analyzed the coding region of exon 6 and the whole 3'-UTR of GATA4 in DNA isolated from 175 blood samples of CHD patients and 115 unrelated healthy individuals. The functional importance of the observed GATA4 mutations was evaluated using a variety of bioinformatics algorithms for assessment of nonsynonymous mutations and those observed in miRNA binding sites of 3'-UTR. RESULTS Twenty-one point mutations including one missense mutation (c.511A>G: p.Ser377Gly) in exon 6 and 20 nucleotide variations in 3'-UTR of GATA4 gene were identified in 65 of the 175 CHD patients. In our patients, we identified 12 novel sequence alterations and 8 single nucleotide polymorphisms in the 3'-UTR of GATA4. Most of them had statistically significant differences between CHD patients and controls. CONCLUSION Our results suggest that 3'-UTR variations of the GATA4 gene probably change microRNA binding sites and present an additional molecular risk factor for the susceptibility of CHD.
Collapse
Affiliation(s)
- Mehri Khatami
- Department of Biology, Faculty of Science, Yazd University, Yazd, 8915818411, Iran.
| | - Sajedeh Ghorbani
- Department of Biology, Faculty of Science, Yazd University, Yazd, 8915818411, Iran
| | | | - Sahar Bahaloo
- Department of Biology, Faculty of Science, Yazd University, Yazd, 8915818411, Iran
| | - Mehri Azami Naeini
- Department of Biology, Faculty of Science, Yazd University, Yazd, 8915818411, Iran
| | | | - Mehdi Hadadzadeh
- Department of Cardiac Surgery, Afshar Hospital, Shahid Sadoughi University of Medical Sciences, Yazd, 8915887856, Iran
| |
Collapse
|
17
|
Oluwayiose OA, Marcho C, Wu H, Houle E, Krawetz SA, Suvorov A, Mager J, Pilsner JR. Paternal preconception phthalate exposure alters sperm methylome and embryonic programming. ENVIRONMENT INTERNATIONAL 2021; 155:106693. [PMID: 34120004 PMCID: PMC8292217 DOI: 10.1016/j.envint.2021.106693] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 05/21/2023]
Abstract
Preconception environmental conditions have been demonstrated to shape sperm epigenetics and subsequently offspring health and development. Our previous findings in humans showed that urinary anti-androgenic phthalate metabolites in males were associated with altered sperm methylation and blastocyst-stage embryo development. To corroborate this, we examined the effect of preconception exposure to di(2-ethylhexyl) phthalate (DEHP) on genome-wide DNA methylation and gene expression profiles in mice. Eight-week old C57BL/6J male mice were exposed to either a vehicle control, low, or high dose of DEHP (2.5 and 25 mg/kg/weight, respectively) for 67 days (~2 spermatogenic cycles) and were subsequently mated with unexposed females. Reduced representation bisulfite sequencing (RRBS) of epididymal sperm was performed and gastrulation stage embryos were collected for RRBS and transcriptome analyses in both embryonic and extra-embryonic lineages. Male preconception DEHP exposure resulted in 704 differentially methylated regions (DMRs; q-value < 0.05; ≥10% methylation change) in sperm, 1,716 DMRs in embryonic, and 3,181 DMRs in extra-embryonic tissue. Of these, 29 DMRs overlapped between sperm and F1 tissues, half of which showed concordant methylation changes between F0 and F1 generations. F1 transcriptomes at E7.5 were also altered by male preconception DEHP exposure including developmental gene families such as Hox, Gata, and Sox. Additionally, gene ontology analyses of DMRs and differentially expressed genes showed enrichment of multiple developmental processes including embryonic development, pattern specification and morphogenesis. These data indicate that spermatogenesis in adult may represent a sensitive window in which exposure to DEHP alters the sperm methylome as well as DNA methylation and gene expression in the developing embryo.
Collapse
Affiliation(s)
- Oladele A Oluwayiose
- Department of Environmental Health Sciences, University of Massachusetts Amherst, Amherst, MA, USA
| | - Chelsea Marcho
- Department of Environmental Health Sciences, University of Massachusetts Amherst, Amherst, MA, USA; Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA, USA
| | - Haotian Wu
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, NY, USA
| | - Emily Houle
- Department of Environmental Health Sciences, University of Massachusetts Amherst, Amherst, MA, USA
| | - Stephen A Krawetz
- Department of Obstetrics and Gynecology & Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA
| | - Alexander Suvorov
- Department of Environmental Health Sciences, University of Massachusetts Amherst, Amherst, MA, USA
| | - Jesse Mager
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA, USA
| | - J Richard Pilsner
- Department of Environmental Health Sciences, University of Massachusetts Amherst, Amherst, MA, USA; Department of Obstetrics and Gynecology & Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA.
| |
Collapse
|
18
|
Yasuhara J, Garg V. Genetics of congenital heart disease: a narrative review of recent advances and clinical implications. Transl Pediatr 2021; 10:2366-2386. [PMID: 34733677 PMCID: PMC8506053 DOI: 10.21037/tp-21-297] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/20/2021] [Indexed: 12/23/2022] Open
Abstract
Congenital heart disease (CHD) is the most common human birth defect and remains a leading cause of mortality in childhood. Although advances in clinical management have improved the survival of children with CHD, adult survivors commonly experience cardiac and non-cardiac comorbidities, which affect quality of life and prognosis. Therefore, the elucidation of genetic etiologies of CHD not only has important clinical implications for genetic counseling of patients and families but may also impact clinical outcomes by identifying at-risk patients. Recent advancements in genetic technologies, including massively parallel sequencing, have allowed for the discovery of new genetic etiologies for CHD. Although variant prioritization and interpretation of pathogenicity remain challenges in the field of CHD genomics, advances in single-cell genomics and functional genomics using cellular and animal models of CHD have the potential to provide novel insights into the underlying mechanisms of CHD and its associated morbidities. In this review, we provide an updated summary of the established genetic contributors to CHD and discuss recent advances in our understanding of the genetic architecture of CHD along with current challenges with the interpretation of genetic variation. Furthermore, we highlight the clinical implications of genetic findings to predict and potentially improve clinical outcomes in patients with CHD.
Collapse
Affiliation(s)
- Jun Yasuhara
- Center for Cardiovascular Research, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, Ohio, USA.,Heart Center, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Vidu Garg
- Center for Cardiovascular Research, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, Ohio, USA.,Heart Center, Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Pediatrics, The Ohio State University, Columbus, Ohio, USA.,Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
19
|
Matos-Nieves A, Manivannan S, Majumdar U, McBride KL, White P, Garg V. A Multi-Omics Approach Using a Mouse Model of Cardiac Malformations for Prioritization of Human Congenital Heart Disease Contributing Genes. Front Cardiovasc Med 2021; 8:683074. [PMID: 34504875 PMCID: PMC8421733 DOI: 10.3389/fcvm.2021.683074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 07/22/2021] [Indexed: 01/22/2023] Open
Abstract
Congenital heart disease (CHD) is the most common type of birth defect, affecting ~1% of all live births. Malformations of the cardiac outflow tract (OFT) account for ~30% of all CHD and include a range of CHDs from bicuspid aortic valve (BAV) to tetralogy of Fallot (TOF). We hypothesized that transcriptomic profiling of a mouse model of CHD would highlight disease-contributing genes implicated in congenital cardiac malformations in humans. To test this hypothesis, we utilized global transcriptional profiling differences from a mouse model of OFT malformations to prioritize damaging, de novo variants identified from exome sequencing datasets from published cohorts of CHD patients. Notch1 +/- ; Nos3 -/- mice display a spectrum of cardiac OFT malformations ranging from BAV, semilunar valve (SLV) stenosis to TOF. Global transcriptional profiling of the E13.5 Notch1 +/- ; Nos3 -/- mutant mouse OFTs and wildtype controls was performed by RNA sequencing (RNA-Seq). Analysis of the RNA-Seq dataset demonstrated genes belonging to the Hif1α, Tgf-β, Hippo, and Wnt signaling pathways were differentially expressed in the mutant OFT. Mouse to human comparative analysis was then performed to determine if patients with TOF and SLV stenosis display an increased burden of damaging, genetic variants in gene homologs that were dysregulated in Notch1 +/- ; Nos3 -/- OFT. We found an enrichment of de novo variants in the TOF population among the 1,352 significantly differentially expressed genes in Notch1 +/- ; Nos3 -/- mouse OFT but not the SLV population. This association was not significant when comparing only highly expressed genes in the murine OFT to de novo variants in the TOF population. These results suggest that transcriptomic datasets generated from the appropriate temporal, anatomic and cellular tissues from murine models of CHD may provide a novel approach for the prioritization of disease-contributing genes in patients with CHD.
Collapse
Affiliation(s)
- Adrianna Matos-Nieves
- Center for Cardiovascular Research and Heart Center, Nationwide Children's Hospital, Columbus, OH, United States
| | - Sathiyanarayanan Manivannan
- Center for Cardiovascular Research and Heart Center, Nationwide Children's Hospital, Columbus, OH, United States
| | - Uddalak Majumdar
- Center for Cardiovascular Research and Heart Center, Nationwide Children's Hospital, Columbus, OH, United States
| | - Kim L. McBride
- Center for Cardiovascular Research and Heart Center, Nationwide Children's Hospital, Columbus, OH, United States
- Department of Pediatrics, Ohio State University, Columbus, OH, United States
| | - Peter White
- Department of Pediatrics, Ohio State University, Columbus, OH, United States
- The Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, United States
| | - Vidu Garg
- Center for Cardiovascular Research and Heart Center, Nationwide Children's Hospital, Columbus, OH, United States
- Department of Pediatrics, Ohio State University, Columbus, OH, United States
- Department of Molecular Genetics, Ohio State University, Columbus, OH, United States
| |
Collapse
|
20
|
Majumdar U, Yasuhara J, Garg V. In Vivo and In Vitro Genetic Models of Congenital Heart Disease. Cold Spring Harb Perspect Biol 2021; 13:cshperspect.a036764. [PMID: 31818859 DOI: 10.1101/cshperspect.a036764] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Congenital cardiovascular malformations represent the most common type of birth defect and encompass a spectrum of anomalies that range from mild to severe. The etiology of congenital heart disease (CHD) is becoming increasingly defined based on prior epidemiologic studies that supported the importance of genetic contributors and technological advances in human genome analysis. These have led to the discovery of a growing number of disease-contributing genetic abnormalities in individuals affected by CHD. The ever-growing population of adult CHD survivors, which are the result of reductions in mortality from CHD during childhood, and this newfound genetic knowledge have led to important questions regarding recurrence risks, the mechanisms by which these defects occur, the potential for novel approaches for prevention, and the prediction of long-term cardiovascular morbidity in adult CHD survivors. Here, we will review the current status of genetic models that accurately model human CHD as they provide an important tool to answer these questions and test novel therapeutic strategies.
Collapse
Affiliation(s)
- Uddalak Majumdar
- Center for Cardiovascular Research, Nationwide Children's Hospital, Columbus, Ohio 43205, USA.,The Heart Center, Nationwide Children's Hospital, Columbus, Ohio 43205, USA
| | - Jun Yasuhara
- Center for Cardiovascular Research, Nationwide Children's Hospital, Columbus, Ohio 43205, USA.,The Heart Center, Nationwide Children's Hospital, Columbus, Ohio 43205, USA
| | - Vidu Garg
- Center for Cardiovascular Research, Nationwide Children's Hospital, Columbus, Ohio 43205, USA.,The Heart Center, Nationwide Children's Hospital, Columbus, Ohio 43205, USA.,Department of Pediatrics, The Ohio State University, Columbus, Ohio 43205, USA.,Department of Molecular Genetics, The Ohio State University, Columbus, Ohio 43205, USA
| |
Collapse
|
21
|
Rufaihah AJ, Chen CK, Yap CH, Mattar CNZ. Mending a broken heart: In vitro, in vivo and in silico models of congenital heart disease. Dis Model Mech 2021; 14:dmm047522. [PMID: 33787508 PMCID: PMC8033415 DOI: 10.1242/dmm.047522] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Birth defects contribute to ∼0.3% of global infant mortality in the first month of life, and congenital heart disease (CHD) is the most common birth defect among newborns worldwide. Despite the significant impact on human health, most treatments available for this heterogenous group of disorders are palliative at best. For this reason, the complex process of cardiogenesis, governed by multiple interlinked and dose-dependent pathways, is well investigated. Tissue, animal and, more recently, computerized models of the developing heart have facilitated important discoveries that are helping us to understand the genetic, epigenetic and mechanobiological contributors to CHD aetiology. In this Review, we discuss the strengths and limitations of different models of normal and abnormal cardiogenesis, ranging from single-cell systems and 3D cardiac organoids, to small and large animals and organ-level computational models. These investigative tools have revealed a diversity of pathogenic mechanisms that contribute to CHD, including genetic pathways, epigenetic regulators and shear wall stresses, paving the way for new strategies for screening and non-surgical treatment of CHD. As we discuss in this Review, one of the most-valuable advances in recent years has been the creation of highly personalized platforms with which to study individual diseases in clinically relevant settings.
Collapse
Affiliation(s)
- Abdul Jalil Rufaihah
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228
| | - Ching Kit Chen
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228
| | - Choon Hwai Yap
- Division of Cardiology, Department of Paediatrics, Khoo Teck Puat -National University Children's Medical Institute, National University Health System, Singapore 119228
- Department of Bioengineering, Imperial College London, London, UK
| | - Citra N Z Mattar
- Experimental Fetal Medicine Group, Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228
- Department of Obstetrics and Gynaecology, National University Health System, Singapore 119228
| |
Collapse
|
22
|
Lin H, McBride KL, Garg V, Zhao MT. Decoding Genetics of Congenital Heart Disease Using Patient-Derived Induced Pluripotent Stem Cells (iPSCs). Front Cell Dev Biol 2021; 9:630069. [PMID: 33585486 PMCID: PMC7873857 DOI: 10.3389/fcell.2021.630069] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/04/2021] [Indexed: 12/20/2022] Open
Abstract
Congenital heart disease (CHD) is the most common cause of infant death associated with birth defects. Recent next-generation genome sequencing has uncovered novel genetic etiologies of CHD, from inherited and de novo variants to non-coding genetic variants. The next phase of understanding the genetic contributors of CHD will be the functional illustration and validation of this genome sequencing data in cellular and animal model systems. Human induced pluripotent stem cells (iPSCs) have opened up new horizons to investigate genetic mechanisms of CHD using clinically relevant and patient-specific cardiac cells such as cardiomyocytes, endothelial/endocardial cells, cardiac fibroblasts and vascular smooth muscle cells. Using cutting-edge CRISPR/Cas9 genome editing tools, a given genetic variant can be corrected in diseased iPSCs and introduced to healthy iPSCs to define the pathogenicity of the variant and molecular basis of CHD. In this review, we discuss the recent progress in genetics of CHD deciphered by large-scale genome sequencing and explore how genome-edited patient iPSCs are poised to decode the genetic etiologies of CHD by coupling with single-cell genomics and organoid technologies.
Collapse
Affiliation(s)
- Hui Lin
- Center for Cardiovascular Research, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, United States.,The Heart Center, Nationwide Children's Hospital, Columbus, OH, United States.,Division of Genetic and Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, United States
| | - Kim L McBride
- Center for Cardiovascular Research, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, United States.,The Heart Center, Nationwide Children's Hospital, Columbus, OH, United States.,Division of Genetic and Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, United States.,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, United States
| | - Vidu Garg
- Center for Cardiovascular Research, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, United States.,The Heart Center, Nationwide Children's Hospital, Columbus, OH, United States.,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, United States.,Department of Molecular Genetics, The Ohio State University, Columbus, OH, United States
| | - Ming-Tao Zhao
- Center for Cardiovascular Research, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, United States.,The Heart Center, Nationwide Children's Hospital, Columbus, OH, United States.,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, United States
| |
Collapse
|
23
|
Firulli BA, George RM, Harkin J, Toolan KP, Gao H, Liu Y, Zhang W, Field LJ, Liu Y, Shou W, Payne RM, Rubart-von der Lohe M, Firulli AB. HAND1 loss-of-function within the embryonic myocardium reveals survivable congenital cardiac defects and adult heart failure. Cardiovasc Res 2020; 116:605-618. [PMID: 31286141 DOI: 10.1093/cvr/cvz182] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 05/14/2019] [Accepted: 07/05/2019] [Indexed: 11/12/2022] Open
Abstract
AIMS To examine the role of the basic Helix-loop-Helix (bHLH) transcription factor HAND1 in embryonic and adult myocardium. METHODS AND RESULTS Hand1 is expressed within the cardiomyocytes of the left ventricle (LV) and myocardial cuff between embryonic days (E) 9.5-13.5. Hand gene dosage plays an important role in ventricular morphology and the contribution of Hand1 to congenital heart defects requires further interrogation. Conditional ablation of Hand1 was carried out using either Nkx2.5 knockin Cre (Nkx2.5Cre) or α-myosin heavy chain Cre (αMhc-Cre) driver. Interrogation of transcriptome data via ingenuity pathway analysis reveals several gene regulatory pathways disrupted including translation and cardiac hypertrophy-related pathways. Embryo and adult hearts were subjected to histological, functional, and molecular analyses. Myocardial deletion of Hand1 results in morphological defects that include cardiac conduction system defects, survivable interventricular septal defects, and abnormal LV papillary muscles (PMs). Resulting Hand1 conditional mutants are born at Mendelian frequencies; but the morphological alterations acquired during cardiac development result in, the mice developing diastolic heart failure. CONCLUSION Collectively, these data reveal that HAND1 contributes to the morphogenic patterning and maturation of cardiomyocytes during embryogenesis and although survivable, indicates a role for Hand1 within the developing conduction system and PM development.
Collapse
Affiliation(s)
- Beth A Firulli
- Department of Pediatrics, Anatomy, Biochemistry, and Medical and Molecular Genetics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, 1044 W. Walnut St, Indianapolis, IN 46202-5225, USA
| | - Rajani M George
- Department of Pediatrics, Anatomy, Biochemistry, and Medical and Molecular Genetics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, 1044 W. Walnut St, Indianapolis, IN 46202-5225, USA
| | - Jade Harkin
- Department of Pediatrics, Anatomy, Biochemistry, and Medical and Molecular Genetics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, 1044 W. Walnut St, Indianapolis, IN 46202-5225, USA
| | - Kevin P Toolan
- Department of Pediatrics, Anatomy, Biochemistry, and Medical and Molecular Genetics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, 1044 W. Walnut St, Indianapolis, IN 46202-5225, USA
| | - Hongyu Gao
- Department of and Medical and Molecular Genetics, Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, 975 West Walnut Street, Indianapolis, IN 46202-5225, USA
| | - Yunlong Liu
- Department of and Medical and Molecular Genetics, Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, 975 West Walnut Street, Indianapolis, IN 46202-5225, USA
| | - Wenjun Zhang
- Department of Pediatrics, Anatomy, Biochemistry, and Medical and Molecular Genetics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, 1044 W. Walnut St, Indianapolis, IN 46202-5225, USA
| | - Loren J Field
- Department of Pediatrics, Anatomy, Biochemistry, and Medical and Molecular Genetics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, 1044 W. Walnut St, Indianapolis, IN 46202-5225, USA
| | - Ying Liu
- Department of Pediatrics, Anatomy, Biochemistry, and Medical and Molecular Genetics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, 1044 W. Walnut St, Indianapolis, IN 46202-5225, USA
| | - Weinian Shou
- Department of Pediatrics, Anatomy, Biochemistry, and Medical and Molecular Genetics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, 1044 W. Walnut St, Indianapolis, IN 46202-5225, USA
| | - Ronald Mark Payne
- Department of Pediatrics, Anatomy, Biochemistry, and Medical and Molecular Genetics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, 1044 W. Walnut St, Indianapolis, IN 46202-5225, USA
| | - Michael Rubart-von der Lohe
- Department of Pediatrics, Anatomy, Biochemistry, and Medical and Molecular Genetics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, 1044 W. Walnut St, Indianapolis, IN 46202-5225, USA
| | - Anthony B Firulli
- Department of Pediatrics, Anatomy, Biochemistry, and Medical and Molecular Genetics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, 1044 W. Walnut St, Indianapolis, IN 46202-5225, USA
| |
Collapse
|
24
|
Akerberg BN, Pu WT. Genetic and Epigenetic Control of Heart Development. Cold Spring Harb Perspect Biol 2020; 12:cshperspect.a036756. [PMID: 31818853 DOI: 10.1101/cshperspect.a036756] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
A transcriptional program implemented by transcription factors and epigenetic regulators governs cardiac development and disease. Mutations in these factors are important causes of congenital heart disease. Here, we review selected recent advances in our understanding of the transcriptional and epigenetic control of heart development, including determinants of cardiac transcription factor chromatin occupancy, the gene regulatory network that regulates atrial septation, the chromatin landscape and cardiac gene regulation, and the role of Brg/Brahma-associated factor (BAF), nucleosome remodeling and histone deacetylation (NuRD), and Polycomb epigenetic regulatory complexes in heart development.
Collapse
Affiliation(s)
- Brynn N Akerberg
- Department of Cardiology, Boston Children's Hospital, Boston, Massachusetts 02115, USA
| | - William T Pu
- Department of Cardiology, Boston Children's Hospital, Boston, Massachusetts 02115, USA.,Harvard Stem Cell Institute, Cambridge, Massachusetts 02138, USA
| |
Collapse
|
25
|
Congenital heart diseases: genetics, non-inherited risk factors, and signaling pathways. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2020. [DOI: 10.1186/s43042-020-0050-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Abstract
Background
Congenital heart diseases (CHDs) are the most common congenital anomalies with an estimated prevalence of 8 in 1000 live births. CHDs occur as a result of abnormal embryogenesis of the heart. Congenital heart diseases are associated with significant mortality and morbidity. The damage of the heart is irreversible due to a lack of regeneration potential, and usually, the patients may require surgical intervention. Studying the developmental biology of the heart is essential not only in understanding the mechanisms and pathogenesis of congenital heart diseases but also in providing us with insight towards developing new preventive and treatment methods.
Main body
The etiology of congenital heart diseases is still elusive. Both genetic and environmental factors have been implicated to play a role in the pathogenesis of the diseases. Recently, cardiac transcription factors, cardiac-specific genes, and signaling pathways, which are responsible for early cardiac morphogenesis have been extensively studied in both human and animal experiments but leave much to be desired. The discovery of novel genetic methods such as next generation sequencing and chromosomal microarrays have led to further study the genes, non-coding RNAs and subtle chromosomal changes, elucidating their implications to the etiology of congenital heart diseases. Studies have also implicated non-hereditary risk factors such as rubella infection, teratogens, maternal age, diabetes mellitus, and abnormal hemodynamics in causing CHDs.
These etiological factors raise questions on multifactorial etiology of CHDs. It is therefore important to endeavor in research based on finding the causes of CHDs. Finding causative factors will enable us to plan intervention strategies and mitigate the consequences associated with CHDs. This review, therefore, puts forward the genetic and non-genetic causes of congenital heart diseases. Besides, it discusses crucial signaling pathways which are involved in early cardiac morphogenesis. Consequently, we aim to consolidate our knowledge on multifactorial causes of CHDs so as to pave a way for further research regarding CHDs.
Conclusion
The multifactorial etiology of congenital heart diseases gives us a challenge to explicitly establishing specific causative factors and therefore plan intervention strategies. More well-designed studies and the use of novel genetic technologies could be the way through the discovery of etiological factors implicated in the pathogenesis of congenital heart diseases.
Collapse
|
26
|
Zhao Z, Zhan Y, Chen W, Ma X, Sheng W, Huang G. Functional analysis of rare variants of GATA4 identified in Chinese patients with congenital heart defect. Genesis 2019; 57:e23333. [PMID: 31513339 DOI: 10.1002/dvg.23333] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 08/12/2019] [Accepted: 08/27/2019] [Indexed: 12/16/2022]
Abstract
Congenital heart defect (CHD) is one of the most common cardiovascular diseases, affecting approximately 0.8% of live births. The transcription factor GATA4 has been known to play a key role in cardiac development. In this study, we performed whole exome sequencing in nine unrelated CHD patients and found two rare deleterious missense variants in the GATA4 gene (c.C487T,p.P163S and c.C1223A,p.P408Q) (ExAC <0.001 and CADD >15) in three cases that were confirmed by Sanger sequencing. Subsequently, these two variants were screened for in an additional 226 patients with CHD and 206 healthy controls by Sanger sequencing, and no variants were observed. These two variants were predicted to be damaging to protein function using a functional prediction program. Co-IP indicated that both of the GATA4 variants (P163S and P408Q) blocked heterodimer formation between GATA4 and ZFPM2 protein. Immunofluorescence showed that the two GATA4 variants diminished the colocalization formation between GATA4 and ZFPM2 protein compared to that of WT protein. These findings indicate that the two rare variants of GATA4 might disturb its interaction with ZFPM2 and influence corresponding downstream gene activity, suggesting that the GATA4 variants may be associated with the pathogenesis of CHD.
Collapse
Affiliation(s)
- Zhengshan Zhao
- Cardiovascular Center, Children's Hospital of Fudan University, Shanghai, China
| | - Yongkun Zhan
- Cardiovascular Center, Children's Hospital of Fudan University, Shanghai, China
| | - Weicheng Chen
- Cardiovascular Center, Children's Hospital of Fudan University, Shanghai, China
| | - Xiaojing Ma
- Cardiovascular Center, Children's Hospital of Fudan University, Shanghai, China.,Shanghai Key Laboratory of Birth Defects, Shanghai, China
| | - Wei Sheng
- Cardiovascular Center, Children's Hospital of Fudan University, Shanghai, China.,Shanghai Key Laboratory of Birth Defects, Shanghai, China
| | - Guoying Huang
- Cardiovascular Center, Children's Hospital of Fudan University, Shanghai, China.,Shanghai Key Laboratory of Birth Defects, Shanghai, China
| |
Collapse
|
27
|
Assenza MR, Barbagallo F, Barrios F, Cornacchione M, Campolo F, Vivarelli E, Gianfrilli D, Auletta L, Soricelli A, Isidori AM, Lenzi A, Pellegrini M, Naro F. Critical role of phosphodiesterase 2A in mouse congenital heart defects. Cardiovasc Res 2019; 114:830-845. [PMID: 29409032 DOI: 10.1093/cvr/cvy030] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 02/01/2018] [Indexed: 12/16/2022] Open
Abstract
Aims Phosphodiesterase 2 A (Pde2A), a cAMP-hydrolysing enzyme, is essential for mouse development; however, the cause of Pde2A knockout embryonic lethality is unknown. To understand whether Pde2A plays a role in cardiac development, hearts of Pde2A deficient embryos were analysed at different stage of development. Methods and results At the stage of four chambers, Pde2A deficient hearts were enlarged compared to the hearts of Pde2A heterozygous and wild-type. Pde2A knockout embryos revealed cardiac defects such as absence of atrial trabeculation, interventricular septum (IVS) defects, hypertrabeculation and thinning of the myocardial wall and in rare cases they had overriding aorta and valves defects. E14.5 Pde2A knockouts showed reduced cardiomyocyte proliferation and increased apoptosis in the IVS and increased proliferation in the ventricular trabeculae. Analyses of E9.5 Pde2A knockout embryos revealed defects in cardiac progenitor and neural crest markers, increase of Islet1 positive and AP2 positive apoptotic cells. The expression of early cTnI and late Mef2c cardiomyocyte differentiation markers was strongly reduced in Pde2A knockout hearts. The master transcription factors of cardiac development, Tbx, were down-regulated in E14.5 Pde2A knockout hearts. Absence of Pde2A caused an increase of intracellular cAMP level, followed by an up-regulation of the inducible cAMP early repressor, Icer in fetal hearts. In vitro experiments on wild-type fetal cardiomyocytes showed that Tbx gene expression is down-regulated by cAMP inducers. Furthermore, Pde2A inhibition in vivo recapitulated the heart defects observed in Pde2A knockout embryos, affecting cardiac progenitor cells. Interestingly, the expression of Pde2A itself was dramatically affected by Pde2A inhibition, suggesting a potential autoregulatory loop. Conclusions We demonstrated for the first time a direct relationship between Pde2A impairment and the onset of mouse congenital heart defects, highlighting a novel role for cAMP in cardiac development regulation.
Collapse
Affiliation(s)
- Maria Rita Assenza
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, 00161 Rome, Italy
| | - Federica Barbagallo
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Florencia Barrios
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, 00161 Rome, Italy
| | | | - Federica Campolo
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Elisabetta Vivarelli
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, 00161 Rome, Italy
| | - Daniele Gianfrilli
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | | | - Andrea Soricelli
- IRCCS SDN, 80143 Naples, Italy.,Department of Motor Science and Wellness, Parthenope University, 80133 Naples, Italy
| | - Andrea M Isidori
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Andrea Lenzi
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Manuela Pellegrini
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy.,Institute of Cell Biology and Neurobiology, IBCN-CNR, 00015 Monterotondo, Rome, Italy
| | - Fabio Naro
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, 00161 Rome, Italy
| |
Collapse
|
28
|
Fang T, Zhu Y, Xu A, Zhang Y, Wu Q, Huang G, Sheng W, Chen M. Functional analysis of the congenital heart disease‑associated GATA4 H436Y mutation in vitro. Mol Med Rep 2019; 20:2325-2331. [PMID: 31322241 PMCID: PMC6691264 DOI: 10.3892/mmr.2019.10481] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 06/17/2019] [Indexed: 12/18/2022] Open
Abstract
Congenital heart disease (CHD) is the most common type of developmental defect, with high rates of morbidity in infants. The transcription factor GATA‑binding factor 4 (GATA4) has been reported to serve a critical role in embryogenesis and cardiac development. Our previous study reported a heterozygous GATA4 c.1306C>T (p.H436Y) mutation in four Chinese infants with congenital heart defects. In the present study, functional analysis of the GATA4 H436Y mutation was performed in vitro. The functional effect of GATA4 mutation was compared with GATA4 wild‑type using a dual‑luciferase reporter assay system and immunofluorescence. Electrophoretic mobility‑shift assays were performed to explore the binding affinity of the mutated GATA4 to the heart and neural crest derivatives expressed 2 (HAND2) gene. The results revealed that the mutation had no effect on normal nuclear localization, but resulted in diminished GATA‑binding affinity to HAND2 and significantly decreased gene transcriptional activation. These results indicated that this GATA4 mutation may not influence cellular localization in transfected cells, but may affect the affinity of the GATA‑binding site on HAND2 and decrease transcriptional activity, thus suggesting that the GATA4 mutation may be associated with the pathogenesis of CHD.
Collapse
Affiliation(s)
- Tao Fang
- Division of Life Sciences and Medicine, The First Affiliated Hospital of University of Science and Technology of China, Hefei, Anhui 230036, P.R. China
| | - Yanjie Zhu
- Cardiovascular Center, Children's Hospital of Fudan University, Shanghai 201102, P.R. China
| | - Anlan Xu
- Division of Life Sciences and Medicine, The First Affiliated Hospital of University of Science and Technology of China, Hefei, Anhui 230036, P.R. China
| | - Yanli Zhang
- Department of Neonatology, Anhui Women and Child Health Care Hospital, Hefei, Anhui 230027, P.R. China
| | - Qingfa Wu
- Department of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, P.R. China
| | - Guoying Huang
- Cardiovascular Center, Children's Hospital of Fudan University, Shanghai 201102, P.R. China
| | - Wei Sheng
- Cardiovascular Center, Children's Hospital of Fudan University, Shanghai 201102, P.R. China
| | - Mingwu Chen
- Division of Life Sciences and Medicine, The First Affiliated Hospital of University of Science and Technology of China, Hefei, Anhui 230036, P.R. China
| |
Collapse
|
29
|
LaHaye S, Majumdar U, Yasuhara J, Koenig SN, Matos-Nieves A, Kumar R, Garg V. Developmental origins for semilunar valve stenosis identified in mice harboring congenital heart disease-associated GATA4 mutation. Dis Model Mech 2019; 12:dmm.036764. [PMID: 31138536 PMCID: PMC6602309 DOI: 10.1242/dmm.036764] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Accepted: 05/16/2019] [Indexed: 12/31/2022] Open
Abstract
Congenital heart defects affect ∼2% of live births and often involve malformations of the semilunar (aortic and pulmonic) valves. We previously reported a highly penetrant GATA4 p.Gly296Ser mutation in familial, congenital atrial septal defects and pulmonic valve stenosis and showed that mice harboring the orthologous G295S disease-causing mutation display not only atrial septal defects, but also semilunar valve stenosis. Here, we aimed to characterize the role of Gata4 in semilunar valve development and stenosis using the Gata4G295Ski/wt mouse model. GATA4 is highly expressed in developing valve endothelial and interstitial cells. Echocardiographic examination of Gata4G295Ski/wt mice at 2 months and 1 year of age identified functional semilunar valve stenosis predominantly affecting the aortic valve with distal leaflet thickening and severe extracellular matrix (ECM) disorganization. Examination of the aortic valve at earlier postnatal timepoints demonstrated similar ECM abnormalities consistent with congenital disease. Analysis at embryonic timepoints showed a reduction in aortic valve cushion volume at embryonic day (E)13.5, predominantly affecting the non-coronary cusp (NCC). Although total cusp volume recovered by E15.5, the NCC cusp remained statistically smaller. As endothelial to mesenchymal transition (EMT)-derived cells contribute significantly to the NCC, we performed proximal outflow tract cushion explant assays and found EMT deficits in Gata4G295Ski/wt embryos along with deficits in cell proliferation. RNA-seq analysis of E15.5 outflow tracts of mutant embryos suggested a disease state and identified changes in genes involved in ECM and cell migration as well as dysregulation of Wnt signaling. By utilizing a mouse model harboring a human disease-causing mutation, we demonstrate a novel role for GATA4 in congenital semilunar valve stenosis. This article has an associated First Person interview with the joint first authors of the paper. Summary: Cellular and molecular characterization of a mutant mouse, harboring a human disease-causing GATA4 variant, identifies cellular deficits in endothelial-to-mesenchymal transition and proliferation that cause abnormal valve remodeling and resultant stenosis.
Collapse
Affiliation(s)
- Stephanie LaHaye
- Center for Cardiovascular Research, Nationwide Children's Hospital, Columbus, OH 43205, USA.,The Heart Center, Nationwide Children's Hospital, Columbus, OH 43205, USA.,Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - Uddalak Majumdar
- Center for Cardiovascular Research, Nationwide Children's Hospital, Columbus, OH 43205, USA.,The Heart Center, Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Jun Yasuhara
- Center for Cardiovascular Research, Nationwide Children's Hospital, Columbus, OH 43205, USA.,The Heart Center, Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Sara N Koenig
- Center for Cardiovascular Research, Nationwide Children's Hospital, Columbus, OH 43205, USA.,The Heart Center, Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Adrianna Matos-Nieves
- Center for Cardiovascular Research, Nationwide Children's Hospital, Columbus, OH 43205, USA.,The Heart Center, Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Rahul Kumar
- Center for Cardiovascular Research, Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Vidu Garg
- Center for Cardiovascular Research, Nationwide Children's Hospital, Columbus, OH 43205, USA .,The Heart Center, Nationwide Children's Hospital, Columbus, OH 43205, USA.,Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA.,Department of Pediatrics, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
30
|
Liu J, Cheng H, Xiang M, Zhou L, Wu B, Moskowitz IP, Zhang K, Xie L. Gata4 regulates hedgehog signaling and Gata6 expression for outflow tract development. PLoS Genet 2019; 15:e1007711. [PMID: 31120883 PMCID: PMC6550424 DOI: 10.1371/journal.pgen.1007711] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 06/05/2019] [Accepted: 05/07/2019] [Indexed: 01/09/2023] Open
Abstract
Dominant mutations of Gata4, an essential cardiogenic transcription factor (TF), were known to cause outflow tract (OFT) defects in both human and mouse, but the underlying molecular mechanism was not clear. In this study, Gata4 haploinsufficiency in mice was found to result in OFT defects including double outlet right ventricle (DORV) and ventricular septum defects (VSDs). Gata4 was shown to be required for Hedgehog (Hh)-receiving progenitors within the second heart field (SHF) for normal OFT alignment. Restored cell proliferation in the SHF by knocking-down Pten failed to rescue OFT defects, suggesting that additional cell events under Gata4 regulation is important. SHF Hh-receiving cells failed to migrate properly into the proximal OFT cushion, which is associated with abnormal EMT and cell proliferation in Gata4 haploinsufficiency. The genetic interaction of Hh signaling and Gata4 is further demonstrated to be important for OFT development. Gata4 and Smo double heterozygotes displayed more severe OFT abnormalities including persistent truncus arteriosus (PTA). Restoration of Hedgehog signaling renormalized SHF cell proliferation and migration, and rescued OFT defects in Gata4 haploinsufficiency. In addition, there was enhanced Gata6 expression in the SHF of the Gata4 heterozygotes. The Gata4-responsive repressive sites were identified within 1kbp upstream of the transcription start site of Gata6 by both ChIP-qPCR and luciferase reporter assay. These results suggested a SHF regulatory network comprising of Gata4, Gata6 and Hh-signaling for OFT development. Gata4 is an important transcription factor that regulates the development of the heart. Human possessing a single copy of Gata4 mutation display congenital heart defects (CHD), including double outlet right ventricle (DORV). DORV is an alignment problem in which both the Aorta and Pulmonary Artery originate from the right ventricle, instead of originating from the left and the right ventricles, respectively. In this study, a Gata4 mutant mouse model was used to study how Gata4 mutations cause DORV. We showed that Gata4 is required in the cardiac precursor cells for the normal alignment of the great arteries. Although Gata4 mutations inhibit the rapid increase in the cardiac precursor cell numbers, resolving this problem does not recover the normal alignment of the great arteries. It indicates that there is a migratory issue of the cardiac precursor cells as they navigate to the great arteries during development. The study further showed that a specific molecular signaling, Hh-signaling and Gata6 are responsible to the Gata4 action in the cardiac precursor cells. Importantly, over-activation of the Hh-signaling pathways rescues the DORV in the Gata4 mutant embryos. This study provides a molecular model to explain the ontogeny of a subtype of CHD.
Collapse
Affiliation(s)
- Jielin Liu
- Department of Nutrition and Food Sciences, Texas A&M University, College Station, Texas, United States of America
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, North Dakota, United States of America
| | - Henghui Cheng
- Department of Nutrition and Food Sciences, Texas A&M University, College Station, Texas, United States of America
- Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Menglan Xiang
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, North Dakota, United States of America
| | - Lun Zhou
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, North Dakota, United States of America
- Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Bingruo Wu
- Departments of Genetics, Pediatrics, and Medicine (Cardiology), Albert Einstein College of Medicine of Yeshiva University, Bronx, NY, United States of America
| | - Ivan P. Moskowitz
- Departments of Pathology and Pediatrics, The University of Chicago, Chicago, Illinois, United States of America
| | - Ke Zhang
- Department of Nutrition and Food Sciences, Texas A&M University, College Station, Texas, United States of America
- Center for Epigenetics & Disease Prevention, Institute of Biosciences & Technology, College of Medicine, Texas A&M University, Houston, Texas, United States of America
| | - Linglin Xie
- Department of Nutrition and Food Sciences, Texas A&M University, College Station, Texas, United States of America
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, North Dakota, United States of America
- * E-mail:
| |
Collapse
|
31
|
Bhakta M, Padanad MS, Harris JP, Lubczyk C, Amatruda JF, Munshi NV. pouC Regulates Expression of bmp4 During Atrioventricular Canal Formation in Zebrafish. Dev Dyn 2018; 248:173-188. [PMID: 30444277 DOI: 10.1002/dvdy.2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 10/04/2018] [Accepted: 10/24/2018] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Many human gene mutations have been linked to congenital heart disease (CHD), yet CHD remains a major health issue worldwide due in part to an incomplete understanding of the molecular basis for cardiac malformation. RESULTS Here we identify the orthologous mouse Pou6f1 and zebrafish pouC as POU homeodomain transcription factors enriched in the developing heart. We find that pouC is a multi-functional transcriptional regulator containing separable activation, repression, protein-protein interaction, and DNA binding domains. Using zebrafish heart development as a model system, we demonstrate that pouC knockdown impairs cardiac morphogenesis and affects cardiovascular function. We also find that levels of pouC expression must be fine-tuned to enable proper heart formation. At the cellular level, we demonstrate that pouC knockdown disrupts atrioventricular canal (AVC) cardiomyocyte maintenance, although chamber myocyte specification remains intact. Mechanistically, we show that pouC binds a bmp4 intronic regulatory element to mediate transcriptional activation. CONCLUSIONS Taken together, our study establishes pouC as a novel transcriptional input into the regulatory hierarchy that drives AVC morphogenesis in zebrafish. We anticipate that these findings will inform future efforts to explore functional conservation in mammals and potential association with atrioventricular septal defects in humans. Developmental Dynamics 248:173-188, 2019. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Minoti Bhakta
- Department of Internal Medicine - Cardiology, UT Southwestern Medical Center, Dallas, Texas
| | - Mahesh S Padanad
- Department of Internal Medicine - Cardiology, UT Southwestern Medical Center, Dallas, Texas
| | - John P Harris
- Department of Internal Medicine - Cardiology, UT Southwestern Medical Center, Dallas, Texas
| | - Christina Lubczyk
- Department of Internal Medicine - Cardiology, UT Southwestern Medical Center, Dallas, Texas
| | - James F Amatruda
- Department of Pediatrics, UT Southwestern Medical Center, Dallas, Texas.,Department of Molecular Biology, UT Southwestern Medical Center, Dallas, Texas
| | - Nikhil V Munshi
- Department of Internal Medicine - Cardiology, UT Southwestern Medical Center, Dallas, Texas.,Department of Molecular Biology, UT Southwestern Medical Center, Dallas, Texas.,McDermott Center for Human Growth and Development, UT Southwestern Medical Center, Dallas, Texas.,Center for Regenerative Science and Medicine, UT Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
32
|
Pierpont ME, Brueckner M, Chung WK, Garg V, Lacro RV, McGuire AL, Mital S, Priest JR, Pu WT, Roberts A, Ware SM, Gelb BD, Russell MW. Genetic Basis for Congenital Heart Disease: Revisited: A Scientific Statement From the American Heart Association. Circulation 2018; 138:e653-e711. [PMID: 30571578 PMCID: PMC6555769 DOI: 10.1161/cir.0000000000000606] [Citation(s) in RCA: 368] [Impact Index Per Article: 52.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This review provides an updated summary of the state of our knowledge of the genetic contributions to the pathogenesis of congenital heart disease. Since 2007, when the initial American Heart Association scientific statement on the genetic basis of congenital heart disease was published, new genomic techniques have become widely available that have dramatically changed our understanding of the causes of congenital heart disease and, clinically, have allowed more accurate definition of the pathogeneses of congenital heart disease in patients of all ages and even prenatally. Information is presented on new molecular testing techniques and their application to congenital heart disease, both isolated and associated with other congenital anomalies or syndromes. Recent advances in the understanding of copy number variants, syndromes, RASopathies, and heterotaxy/ciliopathies are provided. Insights into new research with congenital heart disease models, including genetically manipulated animals such as mice, chicks, and zebrafish, as well as human induced pluripotent stem cell-based approaches are provided to allow an understanding of how future research breakthroughs for congenital heart disease are likely to happen. It is anticipated that this review will provide a large range of health care-related personnel, including pediatric cardiologists, pediatricians, adult cardiologists, thoracic surgeons, obstetricians, geneticists, genetic counselors, and other related clinicians, timely information on the genetic aspects of congenital heart disease. The objective is to provide a comprehensive basis for interdisciplinary care for those with congenital heart disease.
Collapse
|
33
|
Farr GH, Imani K, Pouv D, Maves L. Functional testing of a human PBX3 variant in zebrafish reveals a potential modifier role in congenital heart defects. Dis Model Mech 2018; 11:dmm035972. [PMID: 30355621 PMCID: PMC6215422 DOI: 10.1242/dmm.035972] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 09/03/2018] [Indexed: 12/21/2022] Open
Abstract
Whole-genome and exome sequencing efforts are increasingly identifying candidate genetic variants associated with human disease. However, predicting and testing the pathogenicity of a genetic variant remains challenging. Genome editing allows for the rigorous functional testing of human genetic variants in animal models. Congenital heart defects (CHDs) are a prominent example of a human disorder with complex genetics. An inherited sequence variant in the human PBX3 gene (PBX3 p.A136V) has previously been shown to be enriched in a CHD patient cohort, indicating that the PBX3 p.A136V variant could be a modifier allele for CHDs. Pbx genes encode three-amino-acid loop extension (TALE)-class homeodomain-containing DNA-binding proteins with diverse roles in development and disease, and are required for heart development in mouse and zebrafish. Here, we used CRISPR-Cas9 genome editing to directly test whether this Pbx gene variant acts as a genetic modifier in zebrafish heart development. We used a single-stranded oligodeoxynucleotide to precisely introduce the human PBX3 p.A136V variant in the homologous zebrafish pbx4 gene (pbx4 p.A131V). We observed that zebrafish that are homozygous for pbx4 p.A131V are viable as adults. However, the pbx4 p.A131V variant enhances the embryonic cardiac morphogenesis phenotype caused by loss of the known cardiac specification factor, Hand2. Our study is the first example of using precision genome editing in zebrafish to demonstrate a function for a human disease-associated single nucleotide variant of unknown significance. Our work underscores the importance of testing the roles of inherited variants, not just de novo variants, as genetic modifiers of CHDs. Our study provides a novel approach toward advancing our understanding of the complex genetics of CHDs.
Collapse
Affiliation(s)
- Gist H Farr
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Kimia Imani
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA 98101, USA
- University of Washington, Seattle, WA 98195, USA
| | - Darren Pouv
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA 98101, USA
- University of Washington, Seattle, WA 98195, USA
| | - Lisa Maves
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA 98101, USA
- Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
34
|
Zhou W, Jiang D, Tian J, Liu L, Lu T, Huang X, Sun H. Acetylation of H3K4, H3K9, and H3K27 mediated by p300 regulates the expression of GATA4 in cardiocytes. Genes Dis 2018; 6:318-325. [PMID: 32042871 PMCID: PMC6997570 DOI: 10.1016/j.gendis.2018.10.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 10/08/2018] [Indexed: 12/23/2022] Open
Abstract
GATA4 is a particularly important cardiogenic transcription factor and serves as a potent driver of cardiogenesis. Recent progress in the field has made it clear that histone acetylation can influence gene expression through changing the structure of chromatin. Our previous research had revealed that hypo-acetylation could repress gata4 expression in cardiocytes, however the underlying mechanism by which this occurred was still unclear. To reveal the mechanism of histone acetylation involved in the regulation of gata4 transcription, we concentrated on P300, one of the important histone acetyltransferase associated with cardiogenesis. We found that P300 participated in gata4 expression through regulating histone acetylation in embryonic mouse hearts. RNAi-mediated downregulation of P300 modulated the global acetylation of H3 and the acetylation of H3K4, H3K9, and H3K27 in gata4 and Tbx5 promoters. Interestingly, there was an obvious inhibition of gata4 transcription, whereas Tbx5 was not influenced. Furthermore, SGC-CBP30, the selective inhibitor of the bromodomain in CBP/P300, downregulated gata4 transcription by repressing the acetylation of H3K4, H3K9, and H3K27 in the gata4 promoters. Taken together, our results identified that acetylation of H3K4, H3K9, and H3K27 mediated by P300 plays an important role in regulation of gata4 expression in cardiogenesis.
Collapse
Affiliation(s)
- Wei Zhou
- Heart Centre, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, China.,China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, 400014, China.,Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, China
| | - Dagui Jiang
- Heart Centre, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, China.,China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, 400014, China.,Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, China
| | - Jie Tian
- Heart Centre, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, China.,China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, 400014, China.,Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, China
| | - Lingjuan Liu
- Heart Centre, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, China.,China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, 400014, China.,Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, China
| | - Tiewei Lu
- Heart Centre, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, China.,China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, 400014, China.,Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, China
| | - Xupei Huang
- Department of Biomedical Science, Charlie E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, USA
| | - Huichao Sun
- Heart Centre, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, China.,China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, 400014, China.,Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, China.,Heart Centre, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| |
Collapse
|
35
|
Dixit R, Narasimhan C, Balekundri VI, Agrawal D, Kumar A, Mohapatra B. Functionally significant, novel GATA4
variants are frequently associated with Tetralogy of Fallot. Hum Mutat 2018; 39:1957-1972. [DOI: 10.1002/humu.23620] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 08/13/2018] [Accepted: 08/20/2018] [Indexed: 01/02/2023]
Affiliation(s)
- Ritu Dixit
- Cytogenetics Laboratory; Department of Zoology; Banaras Hindu University; Varanasi Uttar Pradesh India
| | - Chitra Narasimhan
- Department of Pediatric Cardiology; Sri Jayadeva Institute of Cardiovascular Sciences and Research; Bengaluru Karnataka India
| | - Vijyalakshmi I. Balekundri
- Super Speciality Hospital; Prime Minister Swasth Suraksha Yojana (PMSSY); Bengaluru Medical College and Research Institute; Bengaluru Karnataka India
| | - Damyanti Agrawal
- Department of Cardio-vascular and Thoracic Surgery; Institute of Medical Science; Banaras Hindu University; Varanasi Uttar Pradesh India
| | - Ashok Kumar
- Department of Pediatrics; Institute of Medical Sciences; Banaras Hindu University; Varanasi Uttar Pradesh India
| | - Bhagyalaxmi Mohapatra
- Cytogenetics Laboratory; Department of Zoology; Banaras Hindu University; Varanasi Uttar Pradesh India
| |
Collapse
|
36
|
Abstract
This review by Jain and Epstein discusses the developmental processes that influence cardiac lineage decisions and cellular competence and advances our understanding of cardiac cell specification, gene regulation, and chromatin organization and how they impact cardiac development. The mature heart is composed primarily of four different cell types: cardiac myocytes, endothelium, smooth muscle, and fibroblasts. These cell types derive from pluripotent progenitors that become progressively restricted with regard to lineage potential, giving rise to multipotent cardiac progenitor cells and, ultimately, the differentiated cell types of the heart. Recent studies have begun to shed light on the defining characteristics of the intermediary cell types that exist transiently during this developmental process and the extrinsic and cell-autonomous factors that influence cardiac lineage decisions and cellular competence. This information will shape our understanding of congenital and adult cardiac disease and guide regenerative therapeutic approaches. In addition, cardiac progenitor specification can serve as a model for understanding basic mechanisms regulating the acquisition of cellular identity. In this review, we present the concept of “chromatin competence” that describes the potential for three-dimensional chromatin organization to function as the molecular underpinning of the ability of a progenitor cell to respond to inductive lineage cues and summarize recent studies advancing our understanding of cardiac cell specification, gene regulation, and chromatin organization and how they impact cardiac development.
Collapse
Affiliation(s)
- Rajan Jain
- Department of Medicine, Department of Cell and Developmental Biology, Institute for Regenerative Medicine, Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Jonathan A Epstein
- Department of Medicine, Department of Cell and Developmental Biology, Institute for Regenerative Medicine, Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
37
|
Soheili F, Jalili Z, Rahbar M, Khatooni Z, Mashayekhi A, Jafari H. Novel mutation of GATA4 gene in Kurdish population of Iran with nonsyndromic congenital heart septals defects. CONGENIT HEART DIS 2018; 13:295-304. [PMID: 29377543 DOI: 10.1111/chd.12571] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 12/07/2017] [Accepted: 12/10/2017] [Indexed: 12/23/2022]
Abstract
BACKGROUND The mutations in GATA4 gene induce inherited atrial and ventricular septation defects, which is the most frequent forms of congenital heart defects (CHDs) constituting about half of all cases. METHOD We have performed High resolution melting (HRM) mutation scanning of GATA4 coding exons of nonsyndrome 100 patients as a case group including 39 atrial septal defects (ASD), 57 ventricular septal defects (VSD) and four patients with both above defects and 50 healthy individuals as a control group. Our samples are categorized according to their HRM graph. The genome sequencing has been done for 15 control samples and 25 samples of patients whose HRM analysis were similar to healthy subjects for each exon. The PolyPhen-2 and MUpro have been used to determine the causative possibility and structural stability prediction of GATA4 sequence variation. RESULTS The HRM curve analysis exhibit that 21 patients and 3 normal samples have deviated curves for GATA4 coding exons. Sequencing analysis has revealed 12 nonsynonymous mutations while all of them resulted in stability structure of protein 10 of them are pathogenic and 2 of them are benign. Also we found two nucleotide deletions which one of them was novel and one new indel mutation resulting in frame shift mutation, and 4 synonymous variations or polymorphism in 6 of patients and 3 of normal individuals. Six or about 50% of these nonsynonymous mutations have not been previously reported. CONCLUSION Our results show that there is a spectrum of GATA4 mutations resulting in septal defects.
Collapse
Affiliation(s)
- Fariborz Soheili
- Cellular and Molecular Research Center, Kurdistan University of Medical Sciences, Sanandaj, IR, Iran.,Department of Marine Biology, Faculty of Marine Sciences, Chabahar Maritime University, Chabahar, IR, Iran
| | - Zahra Jalili
- Department of Cardiology, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, IR, Iran
| | - Mahtab Rahbar
- Department of Pathology, Faculty of Medicine, Iran Medical University of Medical Science, Tehran, IR, Iran
| | - Zahed Khatooni
- Cellular and Molecular Research Center, Kurdistan University of Medical Sciences, Sanandaj, IR, Iran
| | - Amir Mashayekhi
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University Tehran, IR, Iran
| | - Hossein Jafari
- Department of Statistic and Basic Science, Chabahar Maritime University, Chabahar, IR, Iran
| |
Collapse
|
38
|
Tang VT, Arscott P, Helms AS, Day SM. Whole-Exome Sequencing Reveals
GATA4
and
PTEN
Mutations as a Potential Digenic Cause of Left Ventricular Noncompaction. CIRCULATION-GENOMIC AND PRECISION MEDICINE 2018; 11:e001966. [DOI: 10.1161/circgen.117.001966] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Vi T. Tang
- From the Departments of Molecular and Integrative Physiology (V.T.T., S.M.D.) and Internal Medicine (P.A., A.S.H., S.M.D.), University of Michigan, Ann Arbor
| | - Patricia Arscott
- From the Departments of Molecular and Integrative Physiology (V.T.T., S.M.D.) and Internal Medicine (P.A., A.S.H., S.M.D.), University of Michigan, Ann Arbor
| | - Adam S. Helms
- From the Departments of Molecular and Integrative Physiology (V.T.T., S.M.D.) and Internal Medicine (P.A., A.S.H., S.M.D.), University of Michigan, Ann Arbor
| | - Sharlene M. Day
- From the Departments of Molecular and Integrative Physiology (V.T.T., S.M.D.) and Internal Medicine (P.A., A.S.H., S.M.D.), University of Michigan, Ann Arbor
| |
Collapse
|
39
|
Caballero-Pérez J, Espinal-Centeno A, Falcon F, García-Ortega LF, Curiel-Quesada E, Cruz-Hernández A, Bako L, Chen X, Martínez O, Alberto Arteaga-Vázquez M, Herrera-Estrella L, Cruz-Ramírez A. Transcriptional landscapes of Axolotl (Ambystoma mexicanum). Dev Biol 2018; 433:227-239. [DOI: 10.1016/j.ydbio.2017.08.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 08/12/2017] [Accepted: 08/17/2017] [Indexed: 12/22/2022]
|
40
|
Yu Y, Lei W, Yang J, Wei YC, Zhao ZL, Zhao ZA, Hu S. Functional mutant GATA4 identification and potential application in preimplantation diagnosis of congenital heart diseases. Gene 2017; 641:349-354. [PMID: 29111206 DOI: 10.1016/j.gene.2017.10.078] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 08/08/2017] [Accepted: 10/27/2017] [Indexed: 12/31/2022]
Abstract
Congenital heart diseases (CHDs) affect nearly 1% of all neonates and show an increasing tendency. The complex inheritance patterns and multifactorial etiologies make these defects difficult to be identified before complete manifestation. Genetic screening has identified hundreds of specific mutant sites for CHDs based on cardiac transcriptional factors. GATA4 is a master regulator required for ventral morphogenesis and heart tube formation. Its mutation is most widely studied in CHDs. In the past decades, over 100 GATA4 mutant sites have been reported, but only a few functional sites have been identified. Thus, it is important to distinguish deleterious sites from neutral sites. In silico prediction of functional sites using bioinformatics tools can provide the valuable information, but it is not solid enough. Here, the roles of GATA4 in heart development is discussed in detail and its mutation sites in protein coding region are summarized systematically, providing an integrated resource for GATA4 mutations. Furthermore, we discussed the advantage and disadvantage of different methods for functional mutation identification. Especially, the disease model of induced pluripotent stem cell is emerging as a powerful tool to assess GATA4 mutations in human. In the recent years, single-cell based high-throughput sequencing is being applied in preimplantation diagnosis and assisted reproduction progressively, providing a new strategy for the prevention of congenital diseases as we discussed. Based on functional mutant sites identification, preimplantation diagnosis will contribute to CHDs prevention eventually.
Collapse
Affiliation(s)
- You Yu
- Department of Cardiovascular Surgery of the First Affiliated Hospital, Institute for Cardiovascular Science, Soochow University, Suzhou 215000, China; Key Laboratory of Stem Cells and Biomedical Materials of Jiangsu Province and Chinese Ministry of Science and Technology, China
| | - Wei Lei
- Department of Cardiovascular Surgery of the First Affiliated Hospital, Institute for Cardiovascular Science, Soochow University, Suzhou 215000, China; Key Laboratory of Stem Cells and Biomedical Materials of Jiangsu Province and Chinese Ministry of Science and Technology, China
| | - Junjie Yang
- Department of Cardiovascular Surgery of the First Affiliated Hospital, Institute for Cardiovascular Science, Soochow University, Suzhou 215000, China; Key Laboratory of Stem Cells and Biomedical Materials of Jiangsu Province and Chinese Ministry of Science and Technology, China
| | - Yan-Chang Wei
- Center for Reproductive Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, China
| | - Zhen-Ling Zhao
- The People's Hospital of Bozhou Anhui, Bozhou 236800, China
| | - Zhen-Ao Zhao
- Department of Cardiovascular Surgery of the First Affiliated Hospital, Institute for Cardiovascular Science, Soochow University, Suzhou 215000, China; Key Laboratory of Stem Cells and Biomedical Materials of Jiangsu Province and Chinese Ministry of Science and Technology, China.
| | - Shijun Hu
- Department of Cardiovascular Surgery of the First Affiliated Hospital, Institute for Cardiovascular Science, Soochow University, Suzhou 215000, China; Key Laboratory of Stem Cells and Biomedical Materials of Jiangsu Province and Chinese Ministry of Science and Technology, China.
| |
Collapse
|
41
|
Ang YS, Rivas RN, Ribeiro AJS, Srivas R, Rivera J, Stone NR, Pratt K, Mohamed TMA, Fu JD, Spencer CI, Tippens ND, Li M, Narasimha A, Radzinsky E, Moon-Grady AJ, Yu H, Pruitt BL, Snyder MP, Srivastava D. Disease Model of GATA4 Mutation Reveals Transcription Factor Cooperativity in Human Cardiogenesis. Cell 2017; 167:1734-1749.e22. [PMID: 27984724 DOI: 10.1016/j.cell.2016.11.033] [Citation(s) in RCA: 169] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 08/09/2016] [Accepted: 11/17/2016] [Indexed: 12/12/2022]
Abstract
Mutation of highly conserved residues in transcription factors may affect protein-protein or protein-DNA interactions, leading to gene network dysregulation and human disease. Human mutations in GATA4, a cardiogenic transcription factor, cause cardiac septal defects and cardiomyopathy. Here, iPS-derived cardiomyocytes from subjects with a heterozygous GATA4-G296S missense mutation showed impaired contractility, calcium handling, and metabolic activity. In human cardiomyocytes, GATA4 broadly co-occupied cardiac enhancers with TBX5, another transcription factor that causes septal defects when mutated. The GATA4-G296S mutation disrupted TBX5 recruitment, particularly to cardiac super-enhancers, concomitant with dysregulation of genes related to the phenotypic abnormalities, including cardiac septation. Conversely, the GATA4-G296S mutation led to failure of GATA4 and TBX5-mediated repression at non-cardiac genes and enhanced open chromatin states at endothelial/endocardial promoters. These results reveal how disease-causing missense mutations can disrupt transcriptional cooperativity, leading to aberrant chromatin states and cellular dysfunction, including those related to morphogenetic defects.
Collapse
Affiliation(s)
- Yen-Sin Ang
- Gladstone Institute of Cardiovascular Disease and Roddenberry Center for Stem Cell Biology and Medicine, San Francisco, CA 94158, USA; Department of Pediatrics, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Renee N Rivas
- Gladstone Institute of Cardiovascular Disease and Roddenberry Center for Stem Cell Biology and Medicine, San Francisco, CA 94158, USA; Department of Pediatrics, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94143, USA
| | | | - Rohith Srivas
- Department of Genetics and Center for Genomics and Personalized Medicine, Stanford University, Stanford, CA 94305, USA
| | - Janell Rivera
- Gladstone Institute of Cardiovascular Disease and Roddenberry Center for Stem Cell Biology and Medicine, San Francisco, CA 94158, USA
| | - Nicole R Stone
- Gladstone Institute of Cardiovascular Disease and Roddenberry Center for Stem Cell Biology and Medicine, San Francisco, CA 94158, USA; Department of Pediatrics, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Karishma Pratt
- Gladstone Institute of Cardiovascular Disease and Roddenberry Center for Stem Cell Biology and Medicine, San Francisco, CA 94158, USA
| | - Tamer M A Mohamed
- Gladstone Institute of Cardiovascular Disease and Roddenberry Center for Stem Cell Biology and Medicine, San Francisco, CA 94158, USA; Department of Pediatrics, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Ji-Dong Fu
- Gladstone Institute of Cardiovascular Disease and Roddenberry Center for Stem Cell Biology and Medicine, San Francisco, CA 94158, USA
| | - C Ian Spencer
- Gladstone Institute of Cardiovascular Disease and Roddenberry Center for Stem Cell Biology and Medicine, San Francisco, CA 94158, USA
| | - Nathaniel D Tippens
- Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, NY 14850, USA
| | - Molong Li
- Gladstone Institute of Cardiovascular Disease and Roddenberry Center for Stem Cell Biology and Medicine, San Francisco, CA 94158, USA
| | - Anil Narasimha
- Department of Genetics and Center for Genomics and Personalized Medicine, Stanford University, Stanford, CA 94305, USA
| | - Ethan Radzinsky
- Gladstone Institute of Cardiovascular Disease and Roddenberry Center for Stem Cell Biology and Medicine, San Francisco, CA 94158, USA
| | - Anita J Moon-Grady
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Haiyuan Yu
- Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, NY 14850, USA
| | - Beth L Pruitt
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Michael P Snyder
- Department of Genetics and Center for Genomics and Personalized Medicine, Stanford University, Stanford, CA 94305, USA
| | - Deepak Srivastava
- Gladstone Institute of Cardiovascular Disease and Roddenberry Center for Stem Cell Biology and Medicine, San Francisco, CA 94158, USA; Department of Pediatrics, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
42
|
Midgett M, López CS, David L, Maloyan A, Rugonyi S. Increased Hemodynamic Load in Early Embryonic Stages Alters Endocardial to Mesenchymal Transition. Front Physiol 2017; 8:56. [PMID: 28228731 PMCID: PMC5296359 DOI: 10.3389/fphys.2017.00056] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 01/23/2017] [Indexed: 12/30/2022] Open
Abstract
Normal blood flow is essential for proper heart formation during embryonic development, as abnormal hemodynamic load (blood pressure and shear stress) results in cardiac defects seen in congenital heart disease. However, the progressive detrimental remodeling processes that relate altered blood flow to cardiac defects remain unclear. Endothelial-mesenchymal cell transition is one of the many complex developmental events involved in transforming the early embryonic outflow tract into the aorta, pulmonary trunk, interventricular septum, and semilunar valves. This study elucidated the effects of increased hemodynamic load on endothelial-mesenchymal transition remodeling of the outflow tract cushions in vivo. Outflow tract banding was used to increase hemodynamic load in the chicken embryo heart between Hamburger and Hamilton stages 18 and 24. Increased hemodynamic load induced increased cell density in outflow tract cushions, fewer cells along the endocardial lining, endocardium junction disruption, and altered periostin expression as measured by confocal microscopy analysis. In addition, 3D focused ion beam scanning electron microscopy analysis determined that a portion of endocardial cells adopted a migratory shape after outflow tract banding that is more irregular, elongated, and with extensive cellular projections compared to normal cells. Proteomic mass-spectrometry analysis quantified altered protein composition after banding that is consistent with a more active stage of endothelial-mesenchymal transition. Outflow tract banding enhances the endothelial-mesenchymal transition phenotype during formation of the outflow tract cushions, suggesting that endothelial-mesenchymal transition is a critical developmental process that when disturbed by altered blood flow gives rise to cardiac malformation and defects.
Collapse
Affiliation(s)
- Madeline Midgett
- Biomedical Engineering, Oregon Health and Science University Portland, OR, USA
| | - Claudia S López
- Biomedical Engineering, Oregon Health and Science UniversityPortland, OR, USA; Multiscale Microscopy Core, OHSU Center for Spatial Systems Biomedicine, Oregon Health and Science UniversityPortland, OR, USA
| | - Larry David
- Proteomics Core, Oregon Health and Science University Portland, OR, USA
| | - Alina Maloyan
- Knight Cardiovascular Institute, Oregon Health and Science University Portland, OR, USA
| | - Sandra Rugonyi
- Biomedical Engineering, Oregon Health and Science University Portland, OR, USA
| |
Collapse
|
43
|
Gata4 potentiates second heart field proliferation and Hedgehog signaling for cardiac septation. Proc Natl Acad Sci U S A 2017; 114:E1422-E1431. [PMID: 28167794 DOI: 10.1073/pnas.1605137114] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
GATA4, an essential cardiogenic transcription factor, provides a model for dominant transcription factor mutations in human disease. Dominant GATA4 mutations cause congenital heart disease (CHD), specifically atrial and atrioventricular septal defects (ASDs and AVSDs). We found that second heart field (SHF)-specific Gata4 heterozygote embryos recapitulated the AVSDs observed in germline Gata4 heterozygote embryos. A proliferation defect of SHF atrial septum progenitors and hypoplasia of the dorsal mesenchymal protrusion, rather than anlage of the atrioventricular septum, were observed in this model. Knockdown of the cell-cycle repressor phosphatase and tensin homolog (Pten) restored cell-cycle progression and rescued the AVSDs. Gata4 mutants also demonstrated Hedgehog (Hh) signaling defects. Gata4 acts directly upstream of Hh components: Gata4 activated a cis-regulatory element at Gli1 in vitro and occupied the element in vivo. Remarkably, SHF-specific constitutive Hh signaling activation rescued AVSDs in Gata4 SHF-specific heterozygous knockout embryos. Pten expression was unchanged in Smoothened mutants, and Hh pathway genes were unchanged in Pten mutants, suggesting pathway independence. Thus, both the cell-cycle and Hh-signaling defects caused by dominant Gata4 mutations were required for CHD pathogenesis, suggesting a combinatorial model of disease causation by transcription factor haploinsufficiency.
Collapse
|
44
|
Inhibition of Gata4 and Tbx5 by Nicotine-Mediated DNA Methylation in Myocardial Differentiation. Stem Cell Reports 2017; 8:290-304. [PMID: 28111280 PMCID: PMC5312513 DOI: 10.1016/j.stemcr.2016.12.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 12/15/2016] [Accepted: 12/16/2016] [Indexed: 11/23/2022] Open
Abstract
Maternal nicotine exposure causes alteration of gene expression and cardiovascular programming. The discovery of nicotine-medicated regulation in cardiogenesis is of major importance for the study of cardiac defects. The present study investigated the effect of nicotine on cardiac gene expression and epigenetic regulation during myocardial differentiation. Persistent nicotine exposure selectively inhibited expression of two cardiac genes, Tbx5 and Gata4, by promoter DNA hypermethylation. The nicotine-induced suppression on cardiac differentiation was restored by general nicotinic acetylcholine receptor inhibition. Consistent results of Tbx5 and Gata4 gene suppression and cardiac function impairment with decreased left ventricular ejection fraction were obtained from in vivo studies in offspring. Our results present a direct repressive effect of nicotine on myocardial differentiation by regulating cardiac gene suppression via promoter DNA hypermethylation, contributing to the etiology of smoking-associated cardiac defects. Nicotine downregulates Tbx5 and Gata4 during in vitro and in vivo cardiogenesis Nicotine causes diminished cardiac differentiation and impaired cardiac function Nicotine causes Tbx5 and Gata4 gene suppression via promoter DNA hypermethylation nAChR antagonist restores nicotine-induced gene suppression and DNA methylation
Collapse
|
45
|
Bolar N, Verstraeten A, Van Laer L, Loeys B. Molecular Insights into Bicuspid Aortic Valve Development and the associated aortopathy. AIMS MOLECULAR SCIENCE 2017. [DOI: 10.3934/molsci.2017.4.478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
46
|
Tarradas A, Pinsach-Abuin ML, Mackintosh C, Llorà-Batlle O, Pérez-Serra A, Batlle M, Pérez-Villa F, Zimmer T, Garcia-Bassets I, Brugada R, Beltran-Alvarez P, Pagans S. Transcriptional regulation of the sodium channel gene (SCN5A) by GATA4 in human heart. J Mol Cell Cardiol 2016; 102:74-82. [PMID: 27894866 DOI: 10.1016/j.yjmcc.2016.10.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 10/07/2016] [Accepted: 10/24/2016] [Indexed: 01/12/2023]
Abstract
Aberrant expression of the sodium channel gene (SCN5A) has been proposed to disrupt cardiac action potential and cause human cardiac arrhythmias, but the mechanisms of SCN5A gene regulation and dysregulation still remain largely unexplored. To gain insight into the transcriptional regulatory networks of SCN5A, we surveyed the promoter and first intronic regions of the SCN5A gene, predicting the presence of several binding sites for GATA transcription factors (TFs). Consistent with this prediction, chromatin immunoprecipitation (ChIP) and sequential ChIP (Re-ChIP) assays show co-occupancy of cardiac GATA TFs GATA4 and GATA5 on promoter and intron 1 SCN5A regions in fresh-frozen human left ventricle samples. Gene reporter experiments show GATA4 and GATA5 synergism in the activation of the SCN5A promoter, and its dependence on predicted GATA binding sites. GATA4 and GATA6 mRNAs are robustly expressed in fresh-frozen human left ventricle samples as measured by highly sensitive droplet digital PCR (ddPCR). GATA5 mRNA is marginally but still clearly detected in the same samples. Importantly, GATA4 mRNA levels are strongly and positively correlated with SCN5A transcript levels in the human heart. Together, our findings uncover a novel mechanism of GATA TFs in the regulation of the SCN5A gene in human heart tissue. Our studies suggest that GATA5 but especially GATA4 are main contributors to SCN5A gene expression, thus providing a new paradigm of SCN5A expression regulation that may shed new light into the understanding of cardiac disease.
Collapse
Affiliation(s)
- Anna Tarradas
- Medical Sciences Department, School of Medicine, University of Girona, 17071 Girona, Spain; Institut d'Investigació Biomèdica de Girona, 17190 Salt, Spain
| | - Mel Lina Pinsach-Abuin
- Medical Sciences Department, School of Medicine, University of Girona, 17071 Girona, Spain; Institut d'Investigació Biomèdica de Girona, 17190 Salt, Spain; School of Medicine, University of California San Diego, La Jolla, CA 92093-0648, USA
| | - Carlos Mackintosh
- School of Medicine, University of California San Diego, La Jolla, CA 92093-0648, USA
| | - Oriol Llorà-Batlle
- Medical Sciences Department, School of Medicine, University of Girona, 17071 Girona, Spain; Institut d'Investigació Biomèdica de Girona, 17190 Salt, Spain
| | - Alexandra Pérez-Serra
- Medical Sciences Department, School of Medicine, University of Girona, 17071 Girona, Spain; Institut d'Investigació Biomèdica de Girona, 17190 Salt, Spain
| | - Montserrat Batlle
- Thorax Institute, Cardiology Department, Hospital Clínic, University of Barcelona, Institute of Biomedical Research August Pi i Sunyer, 08036 Barcelona, Spain
| | - Félix Pérez-Villa
- Thorax Institute, Cardiology Department, Hospital Clínic, University of Barcelona, Institute of Biomedical Research August Pi i Sunyer, 08036 Barcelona, Spain
| | - Thomas Zimmer
- Institute for Physiology II, University Hospital, 07743 Jena, Germany
| | - Ivan Garcia-Bassets
- School of Medicine, University of California San Diego, La Jolla, CA 92093-0648, USA
| | - Ramon Brugada
- Medical Sciences Department, School of Medicine, University of Girona, 17071 Girona, Spain; Institut d'Investigació Biomèdica de Girona, 17190 Salt, Spain; Hospital Universitari Dr. Josep Trueta, 17001 Girona, Spain
| | - Pedro Beltran-Alvarez
- Medical Sciences Department, School of Medicine, University of Girona, 17071 Girona, Spain; Institut d'Investigació Biomèdica de Girona, 17190 Salt, Spain; School of Biological, Biomedical, and Environmental Sciences, University of Hull, HU6 7RX, Hull, UK.
| | - Sara Pagans
- Medical Sciences Department, School of Medicine, University of Girona, 17071 Girona, Spain; Institut d'Investigació Biomèdica de Girona, 17190 Salt, Spain.
| |
Collapse
|
47
|
Repair Injured Heart by Regulating Cardiac Regenerative Signals. Stem Cells Int 2016; 2016:6193419. [PMID: 27799944 PMCID: PMC5075315 DOI: 10.1155/2016/6193419] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 06/27/2016] [Accepted: 06/29/2016] [Indexed: 01/10/2023] Open
Abstract
Cardiac regeneration is a homeostatic cardiogenic process by which the sections of malfunctioning adult cardiovascular tissues are repaired and renewed employing a combination of both cardiomyogenesis and angiogenesis. Unfortunately, while high-quality regeneration can be performed in amphibians and zebrafish hearts, mammalian hearts do not respond in kind. Indeed, a long-term loss of proliferative capacity in mammalian adult cardiomyocytes in combination with dysregulated induction of tissue fibrosis impairs mammalian endogenous heart regenerative capacity, leading to deleterious cardiac remodeling at the end stage of heart failure. Interestingly, several studies have demonstrated that cardiomyocyte proliferation capacity is retained in mammals very soon after birth, and cardiac regeneration potential is correspondingly preserved in some preadolescent vertebrates after myocardial infarction. There is therefore great interest in uncovering the molecular mechanisms that may allow heart regeneration during adult stages. This review will summarize recent findings on cardiac regenerative regulatory mechanisms, especially with respect to extracellular signals and intracellular pathways that may provide novel therapeutics for heart diseases. Particularly, both in vitro and in vivo experimental evidences will be presented to highlight the functional role of these signaling cascades in regulating cardiomyocyte proliferation, cardiomyocyte growth, and maturation, with special emphasis on their responses to heart tissue injury.
Collapse
|
48
|
LaHaye S, Corsmeier D, Basu M, Bowman JL, Fitzgerald-Butt S, Zender G, Bosse K, McBride KL, White P, Garg V. Utilization of Whole Exome Sequencing to Identify Causative Mutations in Familial Congenital Heart Disease. ACTA ACUST UNITED AC 2016; 9:320-9. [PMID: 27418595 DOI: 10.1161/circgenetics.115.001324] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 06/27/2016] [Indexed: 12/19/2022]
Abstract
BACKGROUND Congenital heart disease (CHD) is the most common type of birth defect with family- and population-based studies supporting a strong genetic cause for CHD. The goal of this study was to determine whether a whole exome sequencing (WES) approach could identify pathogenic-segregating variants in multiplex CHD families. METHODS AND RESULTS WES was performed on 9 kindreds with familial CHD, 4 with atrial septal defects, 2 with patent ductus arteriosus, 2 with tetralogy of Fallot, and 1 with pulmonary valve dysplasia. Rare variants (<1% minor allele frequency) that segregated with disease were identified by WES, and variants in 69 CHD candidate genes were further analyzed. These selected variants were subjected to in silico analysis to predict pathogenicity and resulted in the discovery of likely pathogenic mutations in 3 of 9 (33%) families. A GATA4 mutation in the transactivation domain, p.G115W, was identified in familial atrial septal defects and demonstrated decreased transactivation ability in vitro. A p.I263V mutation in TLL1 was identified in an atrial septal defects kindred and is predicted to affect the enzymatic functionality of TLL1. A disease-segregating splice donor site mutation in MYH11 (c.4599+1delG) was identified in familial patent ductus arteriosus and found to disrupt normal splicing of MYH11 mRNA in the affected individual. CONCLUSIONS Our findings demonstrate the clinical utility of WES to identify causative mutations in familial CHD and demonstrate the successful use of a CHD candidate gene list to allow for a more streamlined approach enabling rapid prioritization and identification of likely pathogenic variants from large WES data sets. CLINICAL TRIAL REGISTRATION URL: https://clinicaltrials.gov; Unique Identifier: NCT0112048.
Collapse
Affiliation(s)
- Stephanie LaHaye
- From the Center for Cardiovascular Research, The Research Institute (S.L., M.B., S.F.-B., G.Z., K.B., K.L.M., V.G.), The Heart Center (S.L., M.B., J.L.B., S.F.-B., K.L.M., V.G.), and Biomedical Genomics Core and the Center for Microbial Pathogenesis, The Research Institute (D.C., P.W.), Nationwide Children's Hospital, Columbus, OH; and Department of Molecular Genetics (S.L., V.G.) and Department of Pediatrics (J.L.B., S.F.-B., K.L.M., P.W., V.G.), The Ohio State University, Columbus
| | - Don Corsmeier
- From the Center for Cardiovascular Research, The Research Institute (S.L., M.B., S.F.-B., G.Z., K.B., K.L.M., V.G.), The Heart Center (S.L., M.B., J.L.B., S.F.-B., K.L.M., V.G.), and Biomedical Genomics Core and the Center for Microbial Pathogenesis, The Research Institute (D.C., P.W.), Nationwide Children's Hospital, Columbus, OH; and Department of Molecular Genetics (S.L., V.G.) and Department of Pediatrics (J.L.B., S.F.-B., K.L.M., P.W., V.G.), The Ohio State University, Columbus
| | - Madhumita Basu
- From the Center for Cardiovascular Research, The Research Institute (S.L., M.B., S.F.-B., G.Z., K.B., K.L.M., V.G.), The Heart Center (S.L., M.B., J.L.B., S.F.-B., K.L.M., V.G.), and Biomedical Genomics Core and the Center for Microbial Pathogenesis, The Research Institute (D.C., P.W.), Nationwide Children's Hospital, Columbus, OH; and Department of Molecular Genetics (S.L., V.G.) and Department of Pediatrics (J.L.B., S.F.-B., K.L.M., P.W., V.G.), The Ohio State University, Columbus
| | - Jessica L Bowman
- From the Center for Cardiovascular Research, The Research Institute (S.L., M.B., S.F.-B., G.Z., K.B., K.L.M., V.G.), The Heart Center (S.L., M.B., J.L.B., S.F.-B., K.L.M., V.G.), and Biomedical Genomics Core and the Center for Microbial Pathogenesis, The Research Institute (D.C., P.W.), Nationwide Children's Hospital, Columbus, OH; and Department of Molecular Genetics (S.L., V.G.) and Department of Pediatrics (J.L.B., S.F.-B., K.L.M., P.W., V.G.), The Ohio State University, Columbus
| | - Sara Fitzgerald-Butt
- From the Center for Cardiovascular Research, The Research Institute (S.L., M.B., S.F.-B., G.Z., K.B., K.L.M., V.G.), The Heart Center (S.L., M.B., J.L.B., S.F.-B., K.L.M., V.G.), and Biomedical Genomics Core and the Center for Microbial Pathogenesis, The Research Institute (D.C., P.W.), Nationwide Children's Hospital, Columbus, OH; and Department of Molecular Genetics (S.L., V.G.) and Department of Pediatrics (J.L.B., S.F.-B., K.L.M., P.W., V.G.), The Ohio State University, Columbus
| | - Gloria Zender
- From the Center for Cardiovascular Research, The Research Institute (S.L., M.B., S.F.-B., G.Z., K.B., K.L.M., V.G.), The Heart Center (S.L., M.B., J.L.B., S.F.-B., K.L.M., V.G.), and Biomedical Genomics Core and the Center for Microbial Pathogenesis, The Research Institute (D.C., P.W.), Nationwide Children's Hospital, Columbus, OH; and Department of Molecular Genetics (S.L., V.G.) and Department of Pediatrics (J.L.B., S.F.-B., K.L.M., P.W., V.G.), The Ohio State University, Columbus
| | - Kevin Bosse
- From the Center for Cardiovascular Research, The Research Institute (S.L., M.B., S.F.-B., G.Z., K.B., K.L.M., V.G.), The Heart Center (S.L., M.B., J.L.B., S.F.-B., K.L.M., V.G.), and Biomedical Genomics Core and the Center for Microbial Pathogenesis, The Research Institute (D.C., P.W.), Nationwide Children's Hospital, Columbus, OH; and Department of Molecular Genetics (S.L., V.G.) and Department of Pediatrics (J.L.B., S.F.-B., K.L.M., P.W., V.G.), The Ohio State University, Columbus
| | - Kim L McBride
- From the Center for Cardiovascular Research, The Research Institute (S.L., M.B., S.F.-B., G.Z., K.B., K.L.M., V.G.), The Heart Center (S.L., M.B., J.L.B., S.F.-B., K.L.M., V.G.), and Biomedical Genomics Core and the Center for Microbial Pathogenesis, The Research Institute (D.C., P.W.), Nationwide Children's Hospital, Columbus, OH; and Department of Molecular Genetics (S.L., V.G.) and Department of Pediatrics (J.L.B., S.F.-B., K.L.M., P.W., V.G.), The Ohio State University, Columbus
| | - Peter White
- From the Center for Cardiovascular Research, The Research Institute (S.L., M.B., S.F.-B., G.Z., K.B., K.L.M., V.G.), The Heart Center (S.L., M.B., J.L.B., S.F.-B., K.L.M., V.G.), and Biomedical Genomics Core and the Center for Microbial Pathogenesis, The Research Institute (D.C., P.W.), Nationwide Children's Hospital, Columbus, OH; and Department of Molecular Genetics (S.L., V.G.) and Department of Pediatrics (J.L.B., S.F.-B., K.L.M., P.W., V.G.), The Ohio State University, Columbus.
| | - Vidu Garg
- From the Center for Cardiovascular Research, The Research Institute (S.L., M.B., S.F.-B., G.Z., K.B., K.L.M., V.G.), The Heart Center (S.L., M.B., J.L.B., S.F.-B., K.L.M., V.G.), and Biomedical Genomics Core and the Center for Microbial Pathogenesis, The Research Institute (D.C., P.W.), Nationwide Children's Hospital, Columbus, OH; and Department of Molecular Genetics (S.L., V.G.) and Department of Pediatrics (J.L.B., S.F.-B., K.L.M., P.W., V.G.), The Ohio State University, Columbus.
| |
Collapse
|
49
|
Furtado MB, Costa MW, Rosenthal NA. The cardiac fibroblast: Origin, identity and role in homeostasis and disease. Differentiation 2016; 92:93-101. [PMID: 27421610 DOI: 10.1016/j.diff.2016.06.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 06/24/2016] [Indexed: 12/22/2022]
Abstract
The mammalian heart is responsible for supplying blood to two separate circulation circuits in a parallel manner. This design provides efficient oxygenation and nutrients to the whole body through the left-sided pump, while the right-sided pump delivers blood to the pulmonary circulation for re-oxygenation. In order to achieve this demanding job, the mammalian heart evolved into a highly specialised organ comprised of working contractile cells or cardiomyocytes, a directional and insulated conduction system, capable of independently generating and conducting electric impulses that synchronises chamber contraction, valves that allow the generation of high pressure and directional blood flow into the circulation, coronary circulation, that supplies oxygenated blood for the heart muscle high metabolically active pumping role and inlet/outlet routes, as the venae cavae and pulmonary veins, aorta and pulmonary trunk. This organization highlights the complexity and compartmentalization of the heart. This review will focus on the cardiac fibroblast, a cell type until recently ignored, but that profoundly influences heart function in its various compartments. We will discuss current advances on definitions, molecular markers and function of cardiac fibroblasts in heart homeostasis and disease.
Collapse
Affiliation(s)
- Milena B Furtado
- The Jackson Laboratory, Bar Harbor, ME, USA; Australian Regenerative Medicine Institute, Monash University, Melbourne, Victoria, Australia.
| | - Mauro W Costa
- The Jackson Laboratory, Bar Harbor, ME, USA; Australian Regenerative Medicine Institute, Monash University, Melbourne, Victoria, Australia
| | - Nadia A Rosenthal
- The Jackson Laboratory, Bar Harbor, ME, USA; Australian Regenerative Medicine Institute, Monash University, Melbourne, Victoria, Australia; National Heart and Lung Institute, Imperial College London, UK
| |
Collapse
|
50
|
Furtado MB, Nim HT, Boyd SE, Rosenthal NA. View from the heart: cardiac fibroblasts in development, scarring and regeneration. Development 2016; 143:387-97. [PMID: 26839342 DOI: 10.1242/dev.120576] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In the adult, tissue repair after injury is generally compromised by fibrosis, which maintains tissue integrity with scar formation but does not restore normal architecture and function. The process of regeneration is necessary to replace the scar and rebuild normal functioning tissue. Here, we address this problem in the context of heart disease, and discuss the origins and characteristics of cardiac fibroblasts, as well as the crucial role that they play in cardiac development and disease. We discuss the dual nature of cardiac fibroblasts, which can lead to scarring, pathological remodelling and functional deficit, but can also promote heart function in some contexts. Finally, we review current and proposed approaches whereby regeneration could be fostered by interventions that limit scar formation.
Collapse
Affiliation(s)
- Milena B Furtado
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria 3800, Australia The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | - Hieu T Nim
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria 3800, Australia Systems Biology Institute (SBI) Australia, Monash University, Clayton, Victoria 3800, Australia
| | - Sarah E Boyd
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria 3800, Australia Systems Biology Institute (SBI) Australia, Monash University, Clayton, Victoria 3800, Australia
| | - Nadia A Rosenthal
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria 3800, Australia Systems Biology Institute (SBI) Australia, Monash University, Clayton, Victoria 3800, Australia National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK The Jackson Laboratory, Bar Harbor, ME 04609, USA
| |
Collapse
|