1
|
He C, Washburn JD, Schleif N, Hao Y, Kaeppler H, Kaeppler SM, Zhang Z, Yang J, Liu S. Trait association and prediction through integrative k-mer analysis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:833-850. [PMID: 39259496 DOI: 10.1111/tpj.17012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 08/14/2024] [Accepted: 08/22/2024] [Indexed: 09/13/2024]
Abstract
Genome-wide association study (GWAS) with single nucleotide polymorphisms (SNPs) has been widely used to explore genetic controls of phenotypic traits. Alternatively, GWAS can use counts of substrings of length k from longer sequencing reads, k-mers, as genotyping data. Using maize cob and kernel color traits, we demonstrated that k-mer GWAS can effectively identify associated k-mers. Co-expression analysis of kernel color k-mers and genes directly found k-mers from known causal genes. Analyzing complex traits of kernel oil and leaf angle resulted in k-mers from both known and candidate genes. A gene encoding a MADS transcription factor was functionally validated by showing that ectopic expression of the gene led to less upright leaves. Evolution analysis revealed most k-mers positively correlated with kernel oil were strongly selected against in maize populations, while most k-mers for upright leaf angle were positively selected. In addition, genomic prediction of kernel oil, leaf angle, and flowering time using k-mer data resulted in a similarly high prediction accuracy to the standard SNP-based method. Collectively, we showed k-mer GWAS is a powerful approach for identifying trait-associated genetic elements. Further, our results demonstrated the bridging role of k-mers for data integration and functional gene discovery.
Collapse
Affiliation(s)
- Cheng He
- Department of Plant Pathology, Kansas State University, Manhattan, Kansas, 66506, USA
| | - Jacob D Washburn
- Plant Genetics Research Unit, USDA-ARS, Columbia, Missouri, 65211, USA
| | - Nathaniel Schleif
- Department of Agronomy, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
| | - Yangfan Hao
- Department of Plant Pathology, Kansas State University, Manhattan, Kansas, 66506, USA
| | - Heidi Kaeppler
- Department of Agronomy, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
| | - Shawn M Kaeppler
- Department of Agronomy, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
| | - Zhiwu Zhang
- Department of Crop and Soil Sciences, Washington State University, Pullman, Washington, 99164, USA
| | - Jinliang Yang
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, Nebraska, 68583-0915, USA
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, Nebraska, 68583, USA
| | - Sanzhen Liu
- Department of Plant Pathology, Kansas State University, Manhattan, Kansas, 66506, USA
| |
Collapse
|
2
|
Ogura N, Sasagawa Y, Ito T, Tameshige T, Kawai S, Sano M, Doll Y, Iwase A, Kawamura A, Suzuki T, Nikaido I, Sugimoto K, Ikeuchi M. WUSCHEL-RELATED HOMEOBOX 13 suppresses de novo shoot regeneration via cell fate control of pluripotent callus. SCIENCE ADVANCES 2023; 9:eadg6983. [PMID: 37418524 PMCID: PMC10328406 DOI: 10.1126/sciadv.adg6983] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 06/05/2023] [Indexed: 07/09/2023]
Abstract
Plants can regenerate their bodies via de novo establishment of shoot apical meristems (SAMs) from pluripotent callus. Only a small fraction of callus cells is eventually specified into SAMs but the molecular mechanisms underlying fate specification remain obscure. The expression of WUSCHEL (WUS) is an early hallmark of SAM fate acquisition. Here, we show that a WUS paralog, WUSCHEL-RELATED HOMEOBOX 13 (WOX13), negatively regulates SAM formation from callus in Arabidopsis thaliana. WOX13 promotes non-meristematic cell fate via transcriptional repression of WUS and other SAM regulators and activation of cell wall modifiers. Our Quartz-Seq2-based single cell transcriptome revealed that WOX13 plays key roles in determining cellular identity of callus cell population. We propose that reciprocal inhibition between WUS and WOX13 mediates critical cell fate determination in pluripotent cell population, which has a major impact on regeneration efficiency.
Collapse
Affiliation(s)
- Nao Ogura
- Division of Biological Sciences, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama-cho, Ikoma, Nara 630-0192, Japan
- Department of Biology, Faculty of Science, Niigata University, Niigata, Niigata 950-2181, Japan
| | - Yohei Sasagawa
- Department of Functional Genome Informatics, Division of Medical Genomics, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo, Tokyo, Japan
- RIKEN Center for Biosystems Dynamics Research, Wako, Saitama 351-0198, Japan
| | - Tasuku Ito
- Department of Biology, Faculty of Science, Niigata University, Niigata, Niigata 950-2181, Japan
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Toshiaki Tameshige
- Division of Biological Sciences, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama-cho, Ikoma, Nara 630-0192, Japan
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka, Yokohama 244-0813, Japan
| | - Satomi Kawai
- Department of Biology, Faculty of Science, Niigata University, Niigata, Niigata 950-2181, Japan
| | - Masaki Sano
- Department of Biology, Faculty of Science, Niigata University, Niigata, Niigata 950-2181, Japan
| | - Yuki Doll
- Division of Biological Sciences, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama-cho, Ikoma, Nara 630-0192, Japan
| | - Akira Iwase
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan
| | - Ayako Kawamura
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan
| | - Takamasa Suzuki
- Department of Biological Chemistry, College of Biosciences and Biotechnology, Chubu University, Kasugai, Aichi 487-8501, Japan
| | - Itoshi Nikaido
- Department of Functional Genome Informatics, Division of Medical Genomics, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo, Tokyo, Japan
- RIKEN Center for Biosystems Dynamics Research, Wako, Saitama 351-0198, Japan
| | - Keiko Sugimoto
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan
- Department of Biological Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 119-0033, Japan
| | - Momoko Ikeuchi
- Division of Biological Sciences, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama-cho, Ikoma, Nara 630-0192, Japan
- Department of Biology, Faculty of Science, Niigata University, Niigata, Niigata 950-2181, Japan
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan
| |
Collapse
|
3
|
Tomoi T, Tameshige T, Betsuyaku E, Hamada S, Sakamoto J, Uchida N, Torii K, Shimizu KK, Tamada Y, Urawa H, Okada K, Fukuda H, Tatematsu K, Kamei Y, Betsuyaku S. Targeted single-cell gene induction by optimizing the dually regulated CRE/ loxP system by a newly defined heat-shock promoter and the steroid hormone in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2023; 14:1171531. [PMID: 37351202 PMCID: PMC10283073 DOI: 10.3389/fpls.2023.1171531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/28/2023] [Indexed: 06/24/2023]
Abstract
Multicellular organisms rely on intercellular communication systems to organize their cellular functions. In studies focusing on intercellular communication, the key experimental techniques include the generation of chimeric tissue using transgenic DNA recombination systems represented by the CRE/loxP system. If an experimental system enables the induction of chimeras at highly targeted cell(s), it will facilitate the reproducibility and precision of experiments. However, multiple technical limitations have made this challenging. The stochastic nature of DNA recombination events, especially, hampers reproducible generation of intended chimeric patterns. Infrared laser-evoked gene operator (IR-LEGO), a microscopic system that irradiates targeted cells using an IR laser, can induce heat shock-mediated expression of transgenes, for example, CRE recombinase gene, in the cells. In this study, we developed a method that induces CRE/loxP recombination in the target cell(s) of plant roots and leaves in a highly specific manner. We combined IR-LEGO, an improved heat-shock-specific promoter, and dexamethasone-dependent regulation of CRE. The optimal IR-laser power and irradiation duration were estimated via exhaustive irradiation trials and subsequent statistical modeling. Under optimized conditions, CRE/loxP recombination was efficiently induced without cellular damage. We also found that the induction efficiency varied among tissue types and cellular sizes. The developed method offers an experimental system to generate a precisely designed chimeric tissue, and thus, will be useful for analyzing intercellular communication at high resolution in roots and leaves.
Collapse
Affiliation(s)
- Takumi Tomoi
- Center for Innovation Support, Institute for Social Innovation and Cooperation, Utsunomiya University, Utsunomiya, Japan
- School of Engineering, Utsunomiya University, Utsunomiya, Japan
- Laboratory for Biothermology, National Institute for Basic Biology, Okazaki, Japan
| | - Toshiaki Tameshige
- Kihara Institute for Biological Research (KIBR), Yokohama City University, Yokohama, Japan
- Division of Biological Sciences, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
| | - Eriko Betsuyaku
- Department of Life Science, Faculty of Agriculture, Ryukoku University, Otsu, Japan
| | - Saki Hamada
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Joe Sakamoto
- Laboratory for Biothermology, National Institute for Basic Biology, Okazaki, Japan
- Biophotonics Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), Okazaki, Japan
| | - Naoyuki Uchida
- Center for Gene Research, Nagoya University, Nagoya, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Japan
| | - Keiko U. Torii
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Japan
- Department of Molecular Biosciences and Howard Hughes Medical Institute, The University of Texas at Austin, Austin, TX, United States
| | - Kentaro K. Shimizu
- Kihara Institute for Biological Research (KIBR), Yokohama City University, Yokohama, Japan
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zürich, Switzerland
| | - Yosuke Tamada
- School of Engineering, Utsunomiya University, Utsunomiya, Japan
- Center for Optical Research and Education (CORE), Utsunomiya University, Utsunomiya, Japan
- Robotics, Engineering and Agriculture-Technology Laboratory (REAL), Utsunomiya University, Utsunomiya, Japan
| | - Hiroko Urawa
- Faculty of Education, Gifu Shotoku Gakuen University, Gifu, Japan
- Laboratory of Plant Organ Development, National Institute for Basic Biology, Okazaki, Japan
| | - Kiyotaka Okada
- Laboratory of Plant Organ Development, National Institute for Basic Biology, Okazaki, Japan
- Ryukoku Extention Center Shiga, Ryukoku University, Otsu, Japan
| | - Hiroo Fukuda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
- Department of Bioscience and Biotechnology, Faculty of Bioenvironmental Sciences, Kyoto University of Advanced Science, Kyoto, Japan
| | - Kiyoshi Tatematsu
- Laboratory of Plant Organ Development, National Institute for Basic Biology, Okazaki, Japan
- The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Japan
| | - Yasuhiro Kamei
- Laboratory for Biothermology, National Institute for Basic Biology, Okazaki, Japan
- Robotics, Engineering and Agriculture-Technology Laboratory (REAL), Utsunomiya University, Utsunomiya, Japan
- The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Japan
- Optics and Imaging Facility, Trans-Scale Biology Center, National Institute for Basic Biology, Okazaki, Japan
| | - Shigeyuki Betsuyaku
- Department of Life Science, Faculty of Agriculture, Ryukoku University, Otsu, Japan
| |
Collapse
|
4
|
Skliros D, Papazoglou P, Gkizi D, Paraskevopoulou E, Katharios P, Goumas DE, Tjamos S, Flemetakis E. In planta interactions of a novel bacteriophage against Pseudomonas syringae pv. tomato. Appl Microbiol Biotechnol 2023; 107:3801-3815. [PMID: 37074382 PMCID: PMC10175458 DOI: 10.1007/s00253-023-12493-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 03/14/2023] [Accepted: 03/16/2023] [Indexed: 04/20/2023]
Abstract
The biology and biotechnology of bacteriophages have been extensively studied in recent years to explore new and environmentally friendly methods of controlling phytopathogenic bacteria. Pseudomonas syringae pv. tomato (Pst) is responsible for bacterial speck disease in tomato plants, leading to decreased yield. Disease management strategies rely on the use of copper-based pesticides. The biological control of Pst with the use of bacteriophages could be an alternative environmentally friendly approach to diminish the detrimental effects of Pst in tomato cultivations. The lytic efficacy of bacteriophages can be used in biocontrol-based disease management strategies. Here, we report the isolation and complete characterization of a bacteriophage, named Medea1, which was also tested in planta against Pst, under greenhouse conditions. The application of Medea1 as a root drenching inoculum or foliar spraying reduced 2.5- and fourfold on average, respectively, Pst symptoms in tomato plants, compared to a control group. In addition, it was observed that defense-related genes PR1b and Pin2 were upregulated in the phage-treated plants. Our research explores a new genus of Pseudomonas phages and explores its biocontrol potential against Pst, by utilizing its lytic nature and ability to trigger the immune response of plants. KEY POINTS: • Medea1 is a newly reported bacteriophage against Pseudomonas syringae pv. tomato having genomic similarities with the phiPSA1 bacteriophage • Two application strategies were reported, one by root drenching the plants with a phage-based solution and one by foliar spraying, showing up to 60- and 6-fold reduction of Pst population and disease severity in some cases, respectively, compared to control • Bacteriophage Medea1 induced the expression of the plant defense-related genes Pin2 and PR1b.
Collapse
Affiliation(s)
- Dimitrios Skliros
- Laboratory of Molecular Biology, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855, Athens, Greece
| | - Polyxeni Papazoglou
- Laboratory of Molecular Biology, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855, Athens, Greece
| | - Danai Gkizi
- Department of Wine, Vine and Beverage Sciences, School of Food Sciences, University of West Attica, 12243, Athens, Greece
| | - Eleni Paraskevopoulou
- Laboratory of Molecular Biology, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855, Athens, Greece
| | - Pantelis Katharios
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, 71500, Heraklion, Greece
| | - Dimitrios E Goumas
- Laboratory of Plant Pathology-Bacteriology, Department of Agriculture, School of Agricultural Sciences, Hellenic Mediterranean University, 71004, Heraklio, Estavromenos, Greece
| | - Sotirios Tjamos
- Laboratory of Plant Pathology, Department of Crop Science, School of Plant Sciences, Agricultural University of Athens, 1855, Athens, Greece.
| | - Emmanouil Flemetakis
- Laboratory of Molecular Biology, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855, Athens, Greece.
| |
Collapse
|
5
|
Sierra J, Escobar-Tovar L, Leon P. Plastids: diving into their diversity, their functions, and their role in plant development. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:2508-2526. [PMID: 36738278 DOI: 10.1093/jxb/erad044] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/31/2023] [Indexed: 06/06/2023]
Abstract
Plastids are a group of essential, heterogenous semi-autonomous organelles characteristic of plants that perform photosynthesis and a diversity of metabolic pathways that impact growth and development. Plastids are remarkably dynamic and can interconvert in response to specific developmental and environmental cues, functioning as a central metabolic hub in plant cells. By far the best studied plastid is the chloroplast, but in recent years the combination of modern techniques and genetic analyses has expanded our current understanding of plastid morphological and functional diversity in both model and non-model plants. These studies have provided evidence of an unexpected diversity of plastid subtypes with specific characteristics. In this review, we describe recent findings that provide insights into the characteristics of these specialized plastids and their functions. We concentrate on the emerging evidence that supports the model that signals derived from particular plastid types play pivotal roles in plant development, environmental, and defense responses. Furthermore, we provide examples of how new technologies are illuminating the functions of these specialized plastids and the overall complexity of their differentiation processes. Finally, we discuss future research directions such as the use of ectopic plastid differentiation as a valuable tool to characterize factors involved in plastid differentiation. Collectively, we highlight important advances in the field that can also impact future agricultural and biotechnological improvement in plants.
Collapse
Affiliation(s)
- Julio Sierra
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, México
| | - Lina Escobar-Tovar
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, México
| | - Patricia Leon
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, México
| |
Collapse
|
6
|
Peng Z, Alique D, Xiong Y, Hu J, Cao X, Lü S, Long M, Wang Y, Wabnik K, Jiao Y. Differential growth dynamics control aerial organ geometry. Curr Biol 2022; 32:4854-4868.e5. [PMID: 36272403 DOI: 10.1016/j.cub.2022.09.055] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 07/05/2022] [Accepted: 09/27/2022] [Indexed: 11/22/2022]
Abstract
How gene activities and biomechanics together direct organ shapes is poorly understood. Plant leaf and floral organs develop from highly similar initial structures and share similar gene expression patterns, yet they gain drastically different shapes later-flat and bilateral leaf primordia and radially symmetric floral primordia, respectively. We analyzed cellular growth patterns and gene expression in young leaves and flowers of Arabidopsis thaliana and found significant differences in cell growth rates, which correlate with convergence sites of phytohormone auxin that require polar auxin transport. In leaf primordia, the PRESSED-FLOWER-expressing middle domain grows faster than adjacent adaxial domain and coincides with auxin convergence. In contrast, in floral primordia, the LEAFY-expressing domain shows accelerated growth rates and pronounced auxin convergence. This distinct cell growth dynamics between leaf and flower requires changes in levels of cell-wall pectin de-methyl-esterification and mechanical properties of the cell wall. Data-driven computer model simulations at organ and cellular levels demonstrate that growth differences are central to obtaining distinct organ shape, corroborating in planta observations. Together, our study provides a mechanistic basis for the establishment of early aerial organ symmetries through local modulation of differential growth patterns with auxin and biomechanics.
Collapse
Affiliation(s)
- Ziyuan Peng
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Daniel Alique
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM), Centro Nacional Instituto de Investigación y Tecnología Agraria y Alimentaria (INIA, CSIC), Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain
| | - Yuanyuan Xiong
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Jinrong Hu
- Key Laboratory of Microgravity (National Microgravity Laboratory), Center of Biomechanics and Bioengineering, and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China; School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiuwei Cao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Shouqin Lü
- Key Laboratory of Microgravity (National Microgravity Laboratory), Center of Biomechanics and Bioengineering, and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China; School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mian Long
- Key Laboratory of Microgravity (National Microgravity Laboratory), Center of Biomechanics and Bioengineering, and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China; School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Wang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Krzysztof Wabnik
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM), Centro Nacional Instituto de Investigación y Tecnología Agraria y Alimentaria (INIA, CSIC), Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain.
| | - Yuling Jiao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China; State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Center for Quantitative Biology, Peking University, Beijing 100871, China; Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, Shandong 261000, China.
| |
Collapse
|
7
|
Sierra J, McQuinn RP, Leon P. The role of carotenoids as a source of retrograde signals: impact on plant development and stress responses. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:7139-7154. [PMID: 35776102 DOI: 10.1093/jxb/erac292] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
Communication from plastids to the nucleus via retrograde signal cascades is essential to modulate nuclear gene expression, impacting plant development and environmental responses. Recently, a new class of plastid retrograde signals has emerged, consisting of acyclic and cyclic carotenoids and/or their degradation products, apocarotenoids. Although the biochemical identity of many of the apocarotenoid signals is still under current investigation, the examples described herein demonstrate the central roles that these carotenoid-derived signals play in ensuring plant development and survival. We present recent advances in the discovery of apocarotenoid signals and their role in various plant developmental transitions and environmental stress responses. Moreover, we highlight the emerging data exposing the highly complex signal transduction pathways underlying plastid to nucleus apocarotenoid retrograde signaling cascades. Altogether, this review summarizes the central role of the carotenoid pathway as a major source of retrograde signals in plants.
Collapse
Affiliation(s)
- Julio Sierra
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad, Ciudada de México, México
| | - Ryan P McQuinn
- School of Science, Western Sydney University, Penrith, NSW, Australia
| | - Patricia Leon
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad, Ciudada de México, México
| |
Collapse
|
8
|
Nowak K, Morończyk J, Grzyb M, Szczygieł-Sommer A, Gaj MD. miR172 Regulates WUS during Somatic Embryogenesis in Arabidopsis via AP2. Cells 2022; 11:718. [PMID: 35203367 PMCID: PMC8869827 DOI: 10.3390/cells11040718] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/11/2022] [Accepted: 02/15/2022] [Indexed: 02/04/2023] Open
Abstract
In plants, the embryogenic transition of somatic cells requires the reprogramming of the cell transcriptome, which is under the control of genetic and epigenetic factors. Correspondingly, the extensive modulation of genes encoding transcription factors and miRNAs has been indicated as controlling the induction of somatic embryogenesis in Arabidopsis and other plants. Among the MIRNAs that have a differential expression during somatic embryogenesis, members of the MIRNA172 gene family have been identified, which implies a role of miR172 in controlling the embryogenic transition in Arabidopsis. In the present study, we found a disturbed expression of both MIRNA172 and candidate miR172-target genes, including AP2, TOE1, TOE2, TOE3, SMZ and SNZ, that negatively affected the embryogenic response of transgenic explants. Next, we examined the role of AP2 in the miR172-mediated mechanism that controls the embryogenic response. We found some evidence that by controlling AP2, miR172 might repress the WUS that has an important function in embryogenic induction. We showed that the mechanism of the miR172-AP2-controlled repression of WUS involves histone acetylation. We observed the upregulation of the WUS transcripts in an embryogenic culture that was overexpressing AP2 and treated with trichostatin A (TSA), which is an inhibitor of HDAC histone deacetylases. The increased expression of the WUS gene in the embryogenic culture of the hdac mutants further confirmed the role of histone acetylation in WUS control during somatic embryogenesis. A chromatin-immunoprecipitation analysis provided evidence about the contribution of HDA6/19-mediated histone deacetylation to AP2-controlled WUS repression during embryogenic induction. The upstream regulatory elements of the miR172-AP2-WUS pathway might involve the miR156-controlled SPL9/SPL10, which control the level of mature miR172 in an embryogenic culture.
Collapse
Affiliation(s)
- Katarzyna Nowak
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, 40-007 Katowice, Poland; (J.M.); (A.S.-S.); (M.D.G.)
| | - Joanna Morończyk
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, 40-007 Katowice, Poland; (J.M.); (A.S.-S.); (M.D.G.)
| | - Małgorzata Grzyb
- Polish Academy of Sciences Botanical Garden—Center for Biological Diversity Conservation in Powsin, Prawdziwka 2, 02-973 Warsaw, Poland;
| | - Aleksandra Szczygieł-Sommer
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, 40-007 Katowice, Poland; (J.M.); (A.S.-S.); (M.D.G.)
| | - Małgorzata D. Gaj
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, 40-007 Katowice, Poland; (J.M.); (A.S.-S.); (M.D.G.)
| |
Collapse
|
9
|
Tenorio Berrío R, Verstaen K, Vandamme N, Pevernagie J, Achon I, Van Duyse J, Van Isterdael G, Saeys Y, De Veylder L, Inzé D, Dubois M. Single-cell transcriptomics sheds light on the identity and metabolism of developing leaf cells. PLANT PHYSIOLOGY 2022; 188:898-918. [PMID: 34687312 PMCID: PMC8825278 DOI: 10.1093/plphys/kiab489] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 10/05/2021] [Indexed: 05/08/2023]
Abstract
As the main photosynthetic instruments of vascular plants, leaves are crucial and complex plant organs. A strict organization of leaf mesophyll and epidermal cell layers orchestrates photosynthesis and gas exchange. In addition, water and nutrients for leaf growth are transported through the vascular tissue. To establish the single-cell transcriptomic landscape of these different leaf tissues, we performed high-throughput transcriptome sequencing of individual cells isolated from young leaves of Arabidopsis (Arabidopsis thaliana) seedlings grown in two different environmental conditions. The detection of approximately 19,000 different transcripts in over 1,800 high-quality leaf cells revealed 14 cell populations composing the young, differentiating leaf. Besides the cell populations comprising the core leaf tissues, we identified subpopulations with a distinct identity or metabolic activity. In addition, we proposed cell-type-specific markers for each of these populations. Finally, an intuitive web tool allows for browsing the presented dataset. Our data present insights on how the different cell populations constituting a developing leaf are connected via developmental, metabolic, or stress-related trajectories.
Collapse
Affiliation(s)
- Rubén Tenorio Berrío
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Kevin Verstaen
- Department of Applied Mathematics, Ghent University, Computer Science and Statistics, Ghent, Belgium
- VIB Center for Inflammation Research, Ghent, Belgium
| | - Niels Vandamme
- Department of Applied Mathematics, Ghent University, Computer Science and Statistics, Ghent, Belgium
- VIB Center for Inflammation Research, Ghent, Belgium
| | - Julie Pevernagie
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Ignacio Achon
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Julie Van Duyse
- VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Gert Van Isterdael
- VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Yvan Saeys
- Department of Applied Mathematics, Ghent University, Computer Science and Statistics, Ghent, Belgium
- VIB Center for Inflammation Research, Ghent, Belgium
| | - Lieven De Veylder
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Dirk Inzé
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
- Author for communication:
| | - Marieke Dubois
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| |
Collapse
|
10
|
Riddled with holes: Understanding air space formation in plant leaves. PLoS Biol 2021; 19:e3001475. [PMID: 34871299 PMCID: PMC8675916 DOI: 10.1371/journal.pbio.3001475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 12/16/2021] [Indexed: 11/19/2022] Open
Abstract
Plants use energy from sunlight to transform carbon dioxide from the air into complex organic molecules, ultimately producing much of the food we eat. To make this complex chemistry more efficient, plant leaves are intricately constructed in 3 dimensions: They are flat to maximise light capture and contain extensive internal air spaces to increase gas exchange for photosynthesis. Many years of work has built up an understanding of how leaves form flat blades, but the molecular mechanisms that control air space formation are poorly understood. Here, I review our current understanding of air space formation and outline how recent advances can be harnessed to answer key questions and take the field forward. Increasing our understanding of plant air spaces will not only allow us to understand a fundamental aspect of plant development, but also unlock the potential to engineer the internal structure of crops to make them more efficient at photosynthesis with lower water requirements and more resilient in the face of a changing environment. Leaves are interwoven with large air spaces to increase the efficiency of photosynthesis; however, how these air spaces form and how different patterns have evolved is almost unknown. This Unsolved Mystery article discusses the existing evidence and poses new avenues of research to answer this question.
Collapse
|
11
|
Legris M, Szarzynska-Erden BM, Trevisan M, Allenbach Petrolati L, Fankhauser C. Phototropin-mediated perception of light direction in leaves regulates blade flattening. PLANT PHYSIOLOGY 2021; 187:1235-1249. [PMID: 34618121 PMCID: PMC8567070 DOI: 10.1093/plphys/kiab410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
One conserved feature among angiosperms is the development of flat thin leaves. This developmental pattern optimizes light capture and gas exchange. The blue light (BL) receptors phototropins are required for leaf flattening, with the null phot1phot2 mutant showing curled leaves in Arabidopsis (Arabidopsis thaliana). However, key aspects of their function in leaf development remain unknown. Here, we performed a detailed spatiotemporal characterization of phototropin function in Arabidopsis leaves. We found that phototropins perceive light direction in the blade, and, similar to their role in hypocotyls, they control the spatial pattern of auxin signaling, possibly modulating auxin transport, to ultimately regulate cell expansion. Phototropin signaling components in the leaf partially differ from hypocotyls. Moreover, the light response on the upper and lower sides of the leaf blade suggests a partially distinct requirement of phototropin signaling components on each side. In particular, NON PHOTOTROPIC HYPOCOTYL 3 showed an adaxial-specific function. In addition, we show a prominent role of PHYTOCHROME KINASE SUBSTRATE 3 in leaf flattening. Among auxin transporters, PIN-FORMED 3,4,7 and AUXIN RESISTANT 1 (AUX1)/LIKE AUXIN RESISTANT 1 (LAX1) are required for the response while ABCB19 has a regulatory role. Overall, our results show that directional BL perception by phototropins is a key aspect of leaf development, integrating endogenous and exogenous signals.
Collapse
Affiliation(s)
- Martina Legris
- Centre for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Bogna Maria Szarzynska-Erden
- Centre for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Martine Trevisan
- Centre for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Laure Allenbach Petrolati
- Centre for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Christian Fankhauser
- Centre for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland
| |
Collapse
|
12
|
Zhao F, Traas J. Stable establishment of organ polarity occurs several plastochrons before primordium outgrowth in Arabidopsis. Development 2021; 148:269138. [PMID: 34132346 PMCID: PMC8255034 DOI: 10.1242/dev.198820] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 05/06/2021] [Indexed: 11/21/2022]
Abstract
In many species, leaves are initiated at the flanks of shoot meristems. Subsequent growth usually occurs mainly in the plane of the leaf blade, which leads to the formation of a bifacial leaf with dorsoventral identities. In a classical set of surgical experiments in potato meristems, Sussex provided evidence that dorsoventrality depends on a signal emanating from the meristem center. Although these results could be reproduced in tomato, this concept has been debated. We revisited these experiments in Arabidopsis, in which a range of markers are available to target the precise site of ablation. Using specific markers for organ founder cells and dorsoventral identity, we were unable to perturb the polarity of leaves and sepals long before organ outgrowth. Although results in Solanaceae suggested that dorsoventral patterning was unstable during early development, we found that, in Arabidopsis, the local information contained within and around the primordium is able to withstand major invasive perturbations, long before polarity is fully established. Summary: We revisited classical surgical experiments in Solanaceae, using precise laser ablations to show that dorsoventral patterning in vegetative and floral meristems in Arabidopsis is robustly programmed in primordia some time before polarity is completely established.
Collapse
Affiliation(s)
- Feng Zhao
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon 1, ENS-Lyon, INRAE, CNRS, UCBL, 46 Allée d'Italie, 69364 Lyon, France
| | - Jan Traas
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon 1, ENS-Lyon, INRAE, CNRS, UCBL, 46 Allée d'Italie, 69364 Lyon, France
| |
Collapse
|
13
|
Escobar-Tovar L, Sierra J, Hernández-Muñoz A, McQuinn RP, Mathioni S, Cordoba E, Colas des Francs-Small C, Meyers BC, Pogson B, León P. Deconvoluting apocarotenoid-mediated retrograde signaling networks regulating plastid translation and leaf development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:1582-1599. [PMID: 33340183 DOI: 10.1111/tpj.15134] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 11/30/2020] [Indexed: 06/12/2023]
Abstract
Signals originating within plastids modulate organelle differentiation by transcriptionally regulating nuclear-encoded genes. These retrograde signals are also integral regulators of plant development, including leaf morphology. The clb5 mutant displays severe leaf morphology defects due to Apocarotenoid Signal 1 (ACS1) accumulation in the developmentally arrested plastid. Transcriptomic analysis of clb5 validates that ACS1 accumulation deregulates hundreds of nuclear genes, including the suppression of most genes encoding plastid ribosomal proteins. Herein, we order the molecular events causing the leaf phenotype associated with the accumulation of ACS1, which includes two consecutive retrograde signaling cascades. Firstly, ACS1 originating in the plastid drives inhibition of plastid translation (IPT) via nuclear transcriptome remodeling of chlororibosomal proteins, requiring light as an essential component. Subsequently, IPT results in leaf morphological defects via a GUN1-dependent pathway shared with seedlings undergoing chemical IPT treatments and is restricted to an early window of the leaf development. Collectively, this work advances our understanding of the complexity within plastid retrograde signaling exemplified by sequential signal exchange and consequences that in a particular temporal and spatial context contribute to the modulation of leaf development.
Collapse
Affiliation(s)
- Lina Escobar-Tovar
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos, 62210, Mexico
| | - Julio Sierra
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos, 62210, Mexico
| | - Arihel Hernández-Muñoz
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos, 62210, Mexico
| | - Ryan P McQuinn
- Donald Danforth Plant Science Center, St. Louis, MO, 63132, USA
| | - Sandra Mathioni
- Division of Plant Sciences, University of Missouri-Columbia, Columbia, MO, 65211, USA
- Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, Australian National University, Canberra, Australian Capital Territory, 0200, Australia
| | - Elizabeth Cordoba
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos, 62210, Mexico
| | - Catherine Colas des Francs-Small
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Blake C Meyers
- Division of Plant Sciences, University of Missouri-Columbia, Columbia, MO, 65211, USA
- Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, Australian National University, Canberra, Australian Capital Territory, 0200, Australia
| | - Barry Pogson
- Donald Danforth Plant Science Center, St. Louis, MO, 63132, USA
| | - Patricia León
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos, 62210, Mexico
| |
Collapse
|
14
|
GUN1 and Plastid RNA Metabolism: Learning from Genetics. Cells 2020; 9:cells9102307. [PMID: 33081381 PMCID: PMC7602965 DOI: 10.3390/cells9102307] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/12/2020] [Accepted: 10/14/2020] [Indexed: 11/16/2022] Open
Abstract
GUN1 (genomes uncoupled 1), a chloroplast-localized pentatricopeptide repeat (PPR) protein with a C-terminal small mutS-related (SMR) domain, plays a central role in the retrograde communication of chloroplasts with the nucleus. This flow of information is required for the coordinated expression of plastid and nuclear genes, and it is essential for the correct development and functioning of chloroplasts. Multiple genetic and biochemical findings indicate that GUN1 is important for protein homeostasis in the chloroplast; however, a clear and unified view of GUN1′s role in the chloroplast is still missing. Recently, GUN1 has been reported to modulate the activity of the nucleus-encoded plastid RNA polymerase (NEP) and modulate editing of plastid RNAs upon activation of retrograde communication, revealing a major role of GUN1 in plastid RNA metabolism. In this opinion article, we discuss the recently identified links between plastid RNA metabolism and retrograde signaling by providing a new and extended concept of GUN1 activity, which integrates the multitude of functional genetic interactions reported over the last decade with its primary role in plastid transcription and transcript editing.
Collapse
|
15
|
Nagashima Y, Ohshiro K, Iwase A, Nakata MT, Maekawa S, Horiguchi G. The bRPS6-Family Protein RFC3 Prevents Interference by the Splicing Factor CFM3b during Plastid rRNA Biogenesis in Arabidopsis thaliana. PLANTS 2020; 9:plants9030328. [PMID: 32143506 PMCID: PMC7154815 DOI: 10.3390/plants9030328] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 02/24/2020] [Accepted: 03/03/2020] [Indexed: 01/03/2023]
Abstract
Plastid ribosome biogenesis is important for plant growth and development. REGULATOR OF FATTY ACID COMPOSITION3 (RFC3) is a member of the bacterial ribosomal protein S6 family and is important for lateral root development. rfc3-2 dramatically reduces the plastid rRNA level and produces lateral roots that lack stem cells. In this study, we isolated a suppressor of rfc three2 (sprt2) mutant that enabled recovery of most rfc3 mutant phenotypes, including abnormal primary and lateral root development and reduced plastid rRNA level. Northern blotting showed that immature and mature plastid rRNA levels were reduced, with the exception of an early 23S rRNA intermediate, in rfc3-2 mutants. These changes were recovered in rfc3-2 sprt2-1 mutants, but a second defect in the processing of 16S rRNA appeared in this line. The results suggest that rfc3 mutants may be defective in at least two steps of plastid rRNA processing, one of which is specifically affected by the sprt2-1 mutation. sprt2-1 mutants had a mutation in CRM FAMILY MEMBER 3b (CFM3b), which encodes a plastid-localized splicing factor. A bimolecular fluorescence complementation (BiFC) assay suggested that RFC3 and SPRT2/CFM3b interact with each other in plastids. These results suggest that RFC3 suppresses the nonspecific action of SPRT2/CFM3b and improves the accuracy of plastid rRNA processing.
Collapse
Affiliation(s)
- Yumi Nagashima
- Department of Life Science, College of Science, Rikkyo University, Toshima, Tokyo 171-8501, Japan
| | - Katsutomo Ohshiro
- Department of Life Science, College of Science, Rikkyo University, Toshima, Tokyo 171-8501, Japan
| | - Akiyasu Iwase
- Department of Life Science, College of Science, Rikkyo University, Toshima, Tokyo 171-8501, Japan
| | - Miyuki T Nakata
- Research Center for Life Science, College of Science, Rikkyo University, Toshima, Tokyo 171-8501, Japan
- Current address: Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Shugo Maekawa
- Department of Life Science, College of Science, Rikkyo University, Toshima, Tokyo 171-8501, Japan
- Research Center for Life Science, College of Science, Rikkyo University, Toshima, Tokyo 171-8501, Japan
| | - Gorou Horiguchi
- Department of Life Science, College of Science, Rikkyo University, Toshima, Tokyo 171-8501, Japan
- Research Center for Life Science, College of Science, Rikkyo University, Toshima, Tokyo 171-8501, Japan
| |
Collapse
|
16
|
Uemoto K, Araki T, Endo M. Isolation of Arabidopsis Palisade and Spongy Mesophyll Cells. Methods Mol Biol 2019; 1830:141-148. [PMID: 30043369 DOI: 10.1007/978-1-4939-8657-6_9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Cell-type-specific transcription factors are key to deducing the distinct functions of specialized cells from gene expression profiles. Mesophyll is a major tissue for photosynthesis, and contributes about 80% of total RNA from leaves. Palisade and spongy mesophyll cells are sub-tissues that have different morphologies and physiologies. Thus, determining the palisade and spongy mesophyll-specific transcription factors from the respective sub-tissue-specific transcriptomes is vital to understanding or verifying functions of major plant tissues. One way in which gene expression profiles can be addressed is through direct isolation. Here, we present rapid and simple methods to isolate palisade and spongy mesophyll cells mechanically and enzymatically. This method provides a good yield of each isolated cell type, and the isolated cells can be used for various downstream applications.
Collapse
Affiliation(s)
- Kyohei Uemoto
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Takashi Araki
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Motomu Endo
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, Japan.
| |
Collapse
|
17
|
Nakata MT, Tameshige T, Takahara M, Mitsuda N, Okada K. The functional balance between the WUSCHEL-RELATED HOMEOBOX1 gene and the phytohormone auxin is a key factor for cell proliferation in Arabidopsis seedlings. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2018; 35:141-154. [PMID: 31819716 PMCID: PMC6879388 DOI: 10.5511/plantbiotechnology.18.0427a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 04/27/2018] [Indexed: 05/18/2023]
Abstract
The WUSCHEL-RELATED HOMEOBOX1 (WOX1) transcription factor and its homolog PRESSED FLOWER (PRS) are multifunctional regulators of leaf development that act as transcriptional repressors. These genes promote cell proliferation under certain conditions, but the related molecular mechanisms are not well understood. Here, we present a new function for WOX1 in cell proliferation. To identify the WOX1 downstream genes, we performed a microarray analysis of shoot apices of transgenic Arabidopsis thaliana lines harboring [35Sp::WOX1-glucocorticoid receptor (GR)] in which the WOX1 function was temporarily enhanced by dexamethasone. The downregulated genes were significantly enriched for the Gene Ontology term "response to auxin stimulus", whereas the significantly upregulated genes contained auxin transport-associated PIN1 and AUX1 and the auxin response factor MP, which are involved in formation of auxin response maxima. Simultaneous treatments of synthetic auxin and dexamethasone induced the formation of green compact calli and the unorganized proliferation of cells in the hypocotyl. A microarray analysis of 35Sp::WOX1-GR plants treated with indole-3-acetic acid and dexamethasone revealed that WOX1 and auxin additively influenced their common downstream genes. Furthermore, in the presence of an auxin-transport inhibitor, cell proliferation during leaf initiation was suppressed in the prs mutant but induced in a broad region of the peripheral zone of the shoot apical meristem in the ectopic WOX1-expressing line FILp::WOX1. Thus, our results clarify the additive effect of WOX1/PRS and auxin on their common downstream genes and highlight the importance of the balance between their functions in controlling cell proliferation.
Collapse
Affiliation(s)
- Miyuki T. Nakata
- National Institute for Basic Biology (NIBB), Okazaki, Aichi 444-8585, Japan
- Plant Gene Regulation Research Group, Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8566, Japan
- E-mail: Tel: +81-29-861-2641 Fax: +81-29-861-3026
| | - Toshiaki Tameshige
- National Institute for Basic Biology (NIBB), Okazaki, Aichi 444-8585, Japan
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Kanagawa 244-0813, Japan
| | | | - Nobutaka Mitsuda
- Plant Gene Regulation Research Group, Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8566, Japan
| | - Kiyotaka Okada
- National Institute for Basic Biology (NIBB), Okazaki, Aichi 444-8585, Japan
- National Institutes of Natural Sciences, Minato, Tokyo 105-0001, Japan
- Department of Agriculture, Ryukoku University, 1-5 Yokotani, Otsu, Shiga 520-2194, Japan
| |
Collapse
|
18
|
Huang W, Zhu Y, Wu W, Li X, Zhang D, Yin P, Huang J. The Pentatricopeptide Repeat Protein SOT5/EMB2279 Is Required for Plastid rpl2 and trnK Intron Splicing. PLANT PHYSIOLOGY 2018; 177:684-697. [PMID: 29686056 PMCID: PMC6001330 DOI: 10.1104/pp.18.00406] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 04/08/2018] [Indexed: 05/06/2023]
Abstract
Chloroplast biogenesis and development are highly complex processes requiring interaction between plastid and nuclear genomic products. Using a high-throughput screen for chloroplast biogenesis suppressors in Arabidopsis (Arabidopsis thaliana), we identified a suppressor of thf1 (sot5) that displays virescent and serrated leaves. Further characterization revealed that sot5 mutants are defective in leaf adaxial and abaxial polarity and act as enhancers of asymmetric leaves2 Map-based cloning identified SOT5 as a gene previously named EMB2279 that encodes a plastid-targeted pentatricopeptide repeat (PPR) protein with 11 PPR motifs. A G-to-A mutation in sot5 leads to a significant decrease in splicing efficiency, generating two additional mRNA variants. As reported previously, the sot5 null mutation is embryo lethal. SOT5 is predicted to bind to specific RNA sequences found in plastid rpl2 and trnK genes, and we found decreased splicing efficiency of the rpl2 and trnK genes in sot5 mutants. Together, our results reveal that the PPR protein SOT5/EMB2279 is required for intron splicing of plastid rpl2 and trnK, providing insights into the role of plastid translation in the coupled development between chloroplasts and leaves.
Collapse
Affiliation(s)
- Weihua Huang
- Department of Biology, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Yajuan Zhu
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Wenjuan Wu
- Department of Biology, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Xuan Li
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Delin Zhang
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China
| | - Ping Yin
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China
| | - Jirong Huang
- Department of Biology, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai 200234, China
| |
Collapse
|
19
|
Nakata MT, Sato M, Wakazaki M, Sato N, Kojima K, Sekine A, Nakamura S, Shikanai T, Toyooka K, Tsukaya H, Horiguchi G. Plastid translation is essential for lateral root stem cell patterning in Arabidopsis thaliana. Biol Open 2018; 7:bio028175. [PMID: 29367414 PMCID: PMC5861355 DOI: 10.1242/bio.028175] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 01/08/2018] [Indexed: 12/29/2022] Open
Abstract
The plastid evolved from a symbiotic cyanobacterial ancestor and is an essential organelle for plant life, but its developmental roles in roots have been largely overlooked. Here, we show that plastid translation is connected to the stem cell patterning in lateral root primordia. The RFC3 gene encodes a plastid-localized protein that is a conserved bacterial ribosomal protein S6 of β/γ proteobacterial origin. The rfc3 mutant developed lateral roots with disrupted stem cell patterning and associated with decreased leaf photosynthetic activity, reduced accumulation of plastid rRNAs in roots, altered root plastid gene expression, and changes in expression of several root stem cell regulators. These results suggest that deficiencies in plastid function affect lateral root stem cells. Treatment with the plastid translation inhibitor spectinomycin phenocopied the defective stem cell patterning in lateral roots and altered plastid gene expression observed in the rfc3 mutant. Additionally, when prps17 defective in a plastid ribosomal protein was treated with low concentrations of spectinomycin, it also phenocopied the lateral root phenotypes of rfc3 The spectinomycin treatment and rfc3 mutation also negatively affected symplasmic connectivity between primary root and lateral root primordia. This study highlights previously unrecognized functions of plastid translation in the stem cell patterning in lateral roots.
Collapse
Affiliation(s)
- Miyuki T Nakata
- Research Center for Life Science, College of Science, Rikkyo University, Toshima, Tokyo 171-8501, Japan
| | - Mayuko Sato
- Center for Sustainable Resource Science, RIKEN, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Mayumi Wakazaki
- Center for Sustainable Resource Science, RIKEN, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Nozomi Sato
- Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Koji Kojima
- Department of Life Science, College of Science, Rikkyo University, Toshima, Tokyo 171-8501, Japan
| | - Akihiko Sekine
- Department of Life Science, College of Science, Rikkyo University, Toshima, Tokyo 171-8501, Japan
| | - Shiori Nakamura
- Department of Life Science, College of Science, Rikkyo University, Toshima, Tokyo 171-8501, Japan
| | - Toshiharu Shikanai
- Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Kiminori Toyooka
- Center for Sustainable Resource Science, RIKEN, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Hirokazu Tsukaya
- Graduate school of Science, The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan
- Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
| | - Gorou Horiguchi
- Research Center for Life Science, College of Science, Rikkyo University, Toshima, Tokyo 171-8501, Japan
- Department of Life Science, College of Science, Rikkyo University, Toshima, Tokyo 171-8501, Japan
| |
Collapse
|
20
|
Hernández-Verdeja T, Strand Å. Retrograde Signals Navigate the Path to Chloroplast Development. PLANT PHYSIOLOGY 2018; 176:967-976. [PMID: 29254985 PMCID: PMC5813530 DOI: 10.1104/pp.17.01299] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 12/12/2017] [Indexed: 05/18/2023]
Abstract
Complex signaling networks between the chloroplast and the nucleus mediate the emergence of the seedling into the light and the establishment of photosynthesis.
Collapse
Affiliation(s)
- Tamara Hernández-Verdeja
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE-901 87 Umeå, Sweden
| | - Åsa Strand
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE-901 87 Umeå, Sweden
| |
Collapse
|
21
|
Caggiano MP, Yu X, Bhatia N, Larsson A, Ram H, Ohno CK, Sappl P, Meyerowitz EM, Jönsson H, Heisler MG. Cell type boundaries organize plant development. eLife 2017; 6:27421. [PMID: 28895530 PMCID: PMC5617630 DOI: 10.7554/elife.27421] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 09/11/2017] [Indexed: 12/15/2022] Open
Abstract
In plants the dorsoventral boundary of leaves defines an axis of symmetry through the centre of the organ separating the top (dorsal) and bottom (ventral) tissues. Although the positioning of this boundary is critical for leaf morphogenesis, how the boundary is established and how it influences development remains unclear. Using live-imaging and perturbation experiments we show that leaf orientation, morphology and position are pre-patterned by HD-ZIPIII and KAN gene expression in the shoot, leading to a model in which dorsoventral genes coordinate to regulate plant development by localizing auxin response between their expression domains. However we also find that auxin levels feedback on dorsoventral patterning by spatially organizing HD-ZIPIII and KAN expression in the shoot periphery. By demonstrating that the regulation of these genes by auxin also governs their response to wounds, our results also provide a parsimonious explanation for the influence of wounds on leaf dorsoventrality.
Collapse
Affiliation(s)
| | - Xiulian Yu
- European Molecular Biology Laboratory, Heidelberg, Germany
| | - Neha Bhatia
- European Molecular Biology Laboratory, Heidelberg, Germany.,School of Life and Environmental Sciences, University of Sydney, Sydney, Australia
| | - André Larsson
- Computational Biology and Biological Physics, Department of Astronomy and Theoretical Physics, Lund University, Lund, Sweden
| | - Hasthi Ram
- European Molecular Biology Laboratory, Heidelberg, Germany
| | - Carolyn K Ohno
- European Molecular Biology Laboratory, Heidelberg, Germany.,School of Life and Environmental Sciences, University of Sydney, Sydney, Australia
| | - Pia Sappl
- European Molecular Biology Laboratory, Heidelberg, Germany
| | - Elliot M Meyerowitz
- Division of Biology and Biological Engineering, California Institute of Technology, Howard Hughes Medical Institute, Pasadena, United States
| | - Henrik Jönsson
- Computational Biology and Biological Physics, Department of Astronomy and Theoretical Physics, Lund University, Lund, Sweden.,Sainsbury Laboratory, University of Cambridge, Cambridge, United Kingdom.,Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, United Kingdom
| | - Marcus G Heisler
- European Molecular Biology Laboratory, Heidelberg, Germany.,School of Life and Environmental Sciences, University of Sydney, Sydney, Australia
| |
Collapse
|
22
|
Hong JH, Savina M, Du J, Devendran A, Kannivadi Ramakanth K, Tian X, Sim WS, Mironova VV, Xu J. A Sacrifice-for-Survival Mechanism Protects Root Stem Cell Niche from Chilling Stress. Cell 2017. [PMID: 28648662 DOI: 10.1016/j.cell.2017.06.002] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Temperature has a profound influence on plant and animal development, but its effects on stem cell behavior and activity remain poorly understood. Here, we characterize the responses of the Arabidopsis root to chilling (low but above-freezing) temperature. Chilling stress at 4°C leads to DNA damage predominantly in root stem cells and their early descendants. However, only newly generated/differentiating columella stem cell daughters (CSCDs) preferentially die in a programmed manner. Inhibition of the DNA damage response in these CSCDs prevents their death but makes the stem cell niche more vulnerable to chilling stress. Mathematical modeling and experimental validation indicate that CSCD death results in the re-establishment of the auxin maximum in the quiescent center (QC) and the maintenance of functional stem cell niche activity under chilling stress. This mechanism improves the root's ability to withstand the accompanying environmental stresses and to resume growth when optimal temperatures are restored.
Collapse
Affiliation(s)
- Jing Han Hong
- Department of Biological Sciences and Centre for BioImaging Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Maria Savina
- Institute of Cytology and Genetics, Novosibirsk 630090, Russia; Novosibirsk State University, LCT&EB, Novosibirsk 630090, Russia
| | - Jing Du
- Department of Biological Sciences and Centre for BioImaging Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Ajay Devendran
- Department of Biological Sciences and Centre for BioImaging Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Karthikbabu Kannivadi Ramakanth
- Department of Biological Sciences and Centre for BioImaging Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Xin Tian
- Department of Biological Sciences and Centre for BioImaging Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Wei Shi Sim
- Department of Biological Sciences and Centre for BioImaging Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Victoria V Mironova
- Institute of Cytology and Genetics, Novosibirsk 630090, Russia; Novosibirsk State University, LCT&EB, Novosibirsk 630090, Russia
| | - Jian Xu
- Department of Biological Sciences and Centre for BioImaging Sciences, National University of Singapore, Singapore 117543, Singapore.
| |
Collapse
|
23
|
Hayakawa Y, Tachikawa M, Mochizuki A. Flat leaf formation realized by cell-division control and mutual recessive gene regulation. J Theor Biol 2016; 404:206-214. [DOI: 10.1016/j.jtbi.2016.06.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 06/02/2016] [Accepted: 06/03/2016] [Indexed: 12/30/2022]
|
24
|
Wilson ME, Mixdorf M, Berg RH, Haswell ES. Plastid osmotic stress influences cell differentiation at the plant shoot apex. Development 2016; 143:3382-93. [PMID: 27510974 DOI: 10.1242/dev.136234] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Accepted: 08/02/2016] [Indexed: 01/05/2023]
Abstract
The balance between proliferation and differentiation in the plant shoot apical meristem is controlled by regulatory loops involving the phytohormone cytokinin and stem cell identity genes. Concurrently, cellular differentiation in the developing shoot is coordinated with the environmental and developmental status of plastids within those cells. Here, we employ an Arabidopsis thaliana mutant exhibiting constitutive plastid osmotic stress to investigate the molecular and genetic pathways connecting plastid osmotic stress with cell differentiation at the shoot apex. msl2 msl3 mutants exhibit dramatically enlarged and deformed plastids in the shoot apical meristem, and develop a mass of callus tissue at the shoot apex. Callus production in this mutant requires the cytokinin receptor AHK2 and is characterized by increased cytokinin levels, downregulation of cytokinin signaling inhibitors ARR7 and ARR15, and induction of the stem cell identity gene WUSCHEL Furthermore, plastid stress-induced apical callus production requires elevated plastidic reactive oxygen species, ABA biosynthesis, the retrograde signaling protein GUN1, and ABI4. These results are consistent with a model wherein the cytokinin/WUS pathway and retrograde signaling control cell differentiation at the shoot apex.
Collapse
Affiliation(s)
- Margaret E Wilson
- Department of Biology, Mailbox 1137, One Brookings Drive, Washington University in Saint Louis, Saint Louis, MO 63130 USA
| | - Matthew Mixdorf
- Department of Biology, Mailbox 1137, One Brookings Drive, Washington University in Saint Louis, Saint Louis, MO 63130 USA
| | - R Howard Berg
- Integrated Microscopy Facility, Donald Danforth Plant Science Center, 975 North Warson Rd., Saint Louis, MO 63132 USA
| | - Elizabeth S Haswell
- Department of Biology, Mailbox 1137, One Brookings Drive, Washington University in Saint Louis, Saint Louis, MO 63130 USA
| |
Collapse
|
25
|
Chan KX, Phua SY, Crisp P, McQuinn R, Pogson BJ. Learning the Languages of the Chloroplast: Retrograde Signaling and Beyond. ANNUAL REVIEW OF PLANT BIOLOGY 2016; 67:25-53. [PMID: 26735063 DOI: 10.1146/annurev-arplant-043015-111854] [Citation(s) in RCA: 351] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The chloroplast can act as an environmental sensor, communicating with the cell during biogenesis and operation to change the expression of thousands of proteins. This process, termed retrograde signaling, regulates expression in response to developmental cues and stresses that affect photosynthesis and yield. Recent advances have identified many signals and pathways-including carotenoid derivatives, isoprenes, phosphoadenosines, tetrapyrroles, and heme, together with reactive oxygen species and proteins-that build a communication network to regulate gene expression, RNA turnover, and splicing. However, retrograde signaling pathways have been viewed largely as a means of bilateral communication between organelles and nuclei, ignoring their potential to interact with hormone signaling and the cell as a whole to regulate plant form and function. Here, we discuss new findings on the processes by which organelle communication is initiated, transmitted, and perceived, not only to regulate chloroplastic processes but also to intersect with cellular signaling and alter physiological responses.
Collapse
Affiliation(s)
- Kai Xun Chan
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Acton, Australian Capital Territory 2601, Australia; , , , ,
| | - Su Yin Phua
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Acton, Australian Capital Territory 2601, Australia; , , , ,
| | - Peter Crisp
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Acton, Australian Capital Territory 2601, Australia; , , , ,
| | - Ryan McQuinn
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Acton, Australian Capital Territory 2601, Australia; , , , ,
| | - Barry J Pogson
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Acton, Australian Capital Territory 2601, Australia; , , , ,
| |
Collapse
|
26
|
Baute J, Herman D, Coppens F, De Block J, Slabbinck B, Dell'Acqua M, Pè ME, Maere S, Nelissen H, Inzé D. Combined Large-Scale Phenotyping and Transcriptomics in Maize Reveals a Robust Growth Regulatory Network. PLANT PHYSIOLOGY 2016; 170:1848-67. [PMID: 26754667 PMCID: PMC4775144 DOI: 10.1104/pp.15.01883] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 01/07/2016] [Indexed: 05/20/2023]
Abstract
Leaves are vital organs for biomass and seed production because of their role in the generation of metabolic energy and organic compounds. A better understanding of the molecular networks underlying leaf development is crucial to sustain global requirements for food and renewable energy. Here, we combined transcriptome profiling of proliferative leaf tissue with in-depth phenotyping of the fourth leaf at later stages of development in 197 recombinant inbred lines of two different maize (Zea mays) populations. Previously, correlation analysis in a classical biparental mapping population identified 1,740 genes correlated with at least one of 14 traits. Here, we extended these results with data from a multiparent advanced generation intercross population. As expected, the phenotypic variability was found to be larger in the latter population than in the biparental population, although general conclusions on the correlations among the traits are comparable. Data integration from the two diverse populations allowed us to identify a set of 226 genes that are robustly associated with diverse leaf traits. This set of genes is enriched for transcriptional regulators and genes involved in protein synthesis and cell wall metabolism. In order to investigate the molecular network context of the candidate gene set, we integrated our data with publicly available functional genomics data and identified a growth regulatory network of 185 genes. Our results illustrate the power of combining in-depth phenotyping with transcriptomics in mapping populations to dissect the genetic control of complex traits and present a set of candidate genes for use in biomass improvement.
Collapse
Affiliation(s)
- Joke Baute
- Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, 9052 Ghent, Belgium (J.B., D.H., F.C., J.D.B., B.S., S.M., H.N., D.I.);Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium (J.B., D.H., F.C., J.D.B., B.S., S.M., H.N., D.I.); andInstitute of Life Sciences, Scuola Superiore Sant'Anna, 56127 Pisa, Italy (M.D., M.E.P.)
| | - Dorota Herman
- Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, 9052 Ghent, Belgium (J.B., D.H., F.C., J.D.B., B.S., S.M., H.N., D.I.);Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium (J.B., D.H., F.C., J.D.B., B.S., S.M., H.N., D.I.); andInstitute of Life Sciences, Scuola Superiore Sant'Anna, 56127 Pisa, Italy (M.D., M.E.P.)
| | - Frederik Coppens
- Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, 9052 Ghent, Belgium (J.B., D.H., F.C., J.D.B., B.S., S.M., H.N., D.I.);Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium (J.B., D.H., F.C., J.D.B., B.S., S.M., H.N., D.I.); andInstitute of Life Sciences, Scuola Superiore Sant'Anna, 56127 Pisa, Italy (M.D., M.E.P.)
| | - Jolien De Block
- Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, 9052 Ghent, Belgium (J.B., D.H., F.C., J.D.B., B.S., S.M., H.N., D.I.);Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium (J.B., D.H., F.C., J.D.B., B.S., S.M., H.N., D.I.); andInstitute of Life Sciences, Scuola Superiore Sant'Anna, 56127 Pisa, Italy (M.D., M.E.P.)
| | - Bram Slabbinck
- Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, 9052 Ghent, Belgium (J.B., D.H., F.C., J.D.B., B.S., S.M., H.N., D.I.);Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium (J.B., D.H., F.C., J.D.B., B.S., S.M., H.N., D.I.); andInstitute of Life Sciences, Scuola Superiore Sant'Anna, 56127 Pisa, Italy (M.D., M.E.P.)
| | - Matteo Dell'Acqua
- Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, 9052 Ghent, Belgium (J.B., D.H., F.C., J.D.B., B.S., S.M., H.N., D.I.);Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium (J.B., D.H., F.C., J.D.B., B.S., S.M., H.N., D.I.); andInstitute of Life Sciences, Scuola Superiore Sant'Anna, 56127 Pisa, Italy (M.D., M.E.P.)
| | - Mario Enrico Pè
- Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, 9052 Ghent, Belgium (J.B., D.H., F.C., J.D.B., B.S., S.M., H.N., D.I.);Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium (J.B., D.H., F.C., J.D.B., B.S., S.M., H.N., D.I.); andInstitute of Life Sciences, Scuola Superiore Sant'Anna, 56127 Pisa, Italy (M.D., M.E.P.)
| | - Steven Maere
- Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, 9052 Ghent, Belgium (J.B., D.H., F.C., J.D.B., B.S., S.M., H.N., D.I.);Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium (J.B., D.H., F.C., J.D.B., B.S., S.M., H.N., D.I.); andInstitute of Life Sciences, Scuola Superiore Sant'Anna, 56127 Pisa, Italy (M.D., M.E.P.)
| | - Hilde Nelissen
- Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, 9052 Ghent, Belgium (J.B., D.H., F.C., J.D.B., B.S., S.M., H.N., D.I.);Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium (J.B., D.H., F.C., J.D.B., B.S., S.M., H.N., D.I.); andInstitute of Life Sciences, Scuola Superiore Sant'Anna, 56127 Pisa, Italy (M.D., M.E.P.)
| | - Dirk Inzé
- Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, 9052 Ghent, Belgium (J.B., D.H., F.C., J.D.B., B.S., S.M., H.N., D.I.);Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium (J.B., D.H., F.C., J.D.B., B.S., S.M., H.N., D.I.); andInstitute of Life Sciences, Scuola Superiore Sant'Anna, 56127 Pisa, Italy (M.D., M.E.P.)
| |
Collapse
|
27
|
Larkin RM. Tetrapyrrole Signaling in Plants. FRONTIERS IN PLANT SCIENCE 2016; 7:1586. [PMID: 27807442 PMCID: PMC5069423 DOI: 10.3389/fpls.2016.01586] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Accepted: 10/07/2016] [Indexed: 05/03/2023]
Abstract
Tetrapyrroles make critical contributions to a number of important processes in diverse organisms. In plants, tetrapyrroles are essential for light signaling, the detoxification of reactive oxygen species, the assimilation of nitrate and sulfate, respiration, photosynthesis, and programed cell death. The misregulation of tetrapyrrole metabolism can produce toxic reactive oxygen species. Thus, it is not surprising that tetrapyrrole metabolism is strictly regulated and that tetrapyrrole metabolism affects signaling mechanisms that regulate gene expression. In plants and algae, tetrapyrroles are synthesized in plastids and were some of the first plastid signals demonstrated to regulate nuclear gene expression. In plants, the mechanism of tetrapyrrole-dependent plastid-to-nucleus signaling remains poorly understood. Additionally, some of experiments that tested ideas for possible signaling mechanisms appeared to produce conflicting data. In some instances, these conflicts are potentially explained by different experimental conditions. Although the biological function of tetrapyrrole signaling is poorly understood, there is compelling evidence that this signaling is significant. Specifically, this signaling appears to affect the accumulation of starch and may promote abiotic stress tolerance. Tetrapyrrole-dependent plastid-to-nucleus signaling interacts with a distinct plastid-to-nucleus signaling mechanism that depends on GENOMES UNCUOPLED1 (GUN1). GUN1 contributes to a variety of processes, such as chloroplast biogenesis, the circadian rhythm, abiotic stress tolerance, and development. Thus, the contribution of tetrapyrrole signaling to plant function is potentially broader than we currently appreciate. In this review, I discuss these aspects of tetrapyrrole signaling.
Collapse
|
28
|
Ichihashi Y, Tsukaya H. Behavior of Leaf Meristems and Their Modification. FRONTIERS IN PLANT SCIENCE 2015; 6:1060. [PMID: 26648955 PMCID: PMC4664833 DOI: 10.3389/fpls.2015.01060] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 11/13/2015] [Indexed: 05/06/2023]
Abstract
A major source of diversity in flowering plant form is the extensive variability of leaf shape and size. Leaf formation is initiated by recruitment of a handful of cells flanking the shoot apical meristem (SAM) to develop into a complex three-dimensional structure. Leaf organogenesis depends on activities of several distinct meristems that are established and spatiotemporally differentiated after the initiation of leaf primordia. Here, we review recent findings in the gene regulatory networks that orchestrate leaf meristem activities in a model plant Arabidopsis thaliana. We then discuss recent key studies investigating the natural variation in leaf morphology to understand how the gene regulatory networks modulate leaf meristems to yield a substantial diversity of leaf forms during the course of evolution.
Collapse
Affiliation(s)
| | - Hirokazu Tsukaya
- Department of Biological Sciences, Graduate School of Science, The University of TokyoTokyo, Japan
- Bio-Next Project, Okazaki Institute for Integrative Bioscience, National Institutes of Natural SciencesOkazaki, Japan
| |
Collapse
|
29
|
Mateo-Bonmatí E, Casanova-Sáez R, Quesada V, Hricová A, Candela H, Micol JL. Plastid control of abaxial-adaxial patterning. Sci Rep 2015; 5:15975. [PMID: 26522839 PMCID: PMC4629159 DOI: 10.1038/srep15975] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 10/07/2015] [Indexed: 01/31/2023] Open
Abstract
Translational regulation, exerted by the cytosolic ribosome, has been shown to participate in the establishment of abaxial-adaxial polarity in Arabidopsis thaliana: many hypomorphic and null alleles of genes encoding proteins of the cytosolic ribosome enhance the leaf polarity defects of asymmetric leaves1 (as1) and as2 mutants. Here, we report the identification of the SCABRA1 (SCA1) nuclear gene, whose loss-of-function mutations also enhance the polarity defects of the as2 mutants. In striking contrast to other previously known enhancers of the phenotypes caused by the as1 and as2 mutations, we found that SCA1 encodes a plastid-type ribosomal protein that functions as a structural component of the 70S plastid ribosome and, therefore, its role in abaxial-adaxial patterning was not expected.
Collapse
Affiliation(s)
- Eduardo Mateo-Bonmatí
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Spain
| | - Rubén Casanova-Sáez
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Spain
| | - Víctor Quesada
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Spain
| | - Andrea Hricová
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Spain
| | - Héctor Candela
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Spain
| | - José Luis Micol
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Spain
| |
Collapse
|
30
|
Tatematsu K, Toyokura K, Miyashima S, Nakajima K, Okada K. A molecular mechanism that confines the activity pattern of miR165 in Arabidopsis leaf primordia. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 82:596-608. [PMID: 25788175 DOI: 10.1111/tpj.12834] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 03/12/2015] [Accepted: 03/16/2015] [Indexed: 05/22/2023]
Abstract
In Arabidopsis leaf primordia, the expression of HD-Zip III, which promotes tissue differentiation on the adaxial side of the leaf primordia, is repressed by miRNA165/166 (miR165/166). Small RNAs, including miRNAs, can move from cell to cell. In this study, HD-Zip III expression was strikingly repressed by miR165/166 in the epidermis and parenchyma cells on the abaxial side of the leaf primordia compared with those on the adaxial side. We also found that the MIR165A locus, which was expressed in the abaxial epidermis, was sufficient to establish the rigid repression pattern of HD-Zip III expression in the leaf primordia. Ectopic expression analyses of MIR165A showed that the abaxial-biased miR165 activity in the leaf primordia was formed neither by a polarized distribution of factors affecting miR165 activity nor by a physical boundary inhibiting the cell-to-cell movement of miRNA between the adaxial and abaxial sides. We revealed that cis-acting factors, including the promoter, backbone, and mature miRNA sequence of MIR165A, are necessary for the abaxial-biased activity of miR165 in the leaf primordia. We also found that the abaxial-determining genes YABBYs are trans-acting factors that are necessary for the miR165 activity pattern, resulting in the rigid determination of the adaxial-abaxial boundary in leaf primordia. Thus, we proposed a molecular mechanism in which the abaxial-biased patterning of miR165 activity is confined.
Collapse
Affiliation(s)
- Kiyoshi Tatematsu
- National Institute for Basic Biology, Okazaki, Aichi, 444-8585, Japan
| | - Koichi Toyokura
- National Institute for Basic Biology, Okazaki, Aichi, 444-8585, Japan
- Graduate School of Science, Kyoto University, Kyoto, 606-8502, Japan
| | - Shunsuke Miyashima
- Graduate School of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
- Department of Bio and Environmental Sciences, Institute of Biotechnology, University of Helsinki, Helsinki, FIN-00014, Finland
| | - Keiji Nakajima
- Graduate School of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
| | - Kiyotaka Okada
- National Institute for Basic Biology, Okazaki, Aichi, 444-8585, Japan
- National Institute of Natural Science, Tokyo, 105-0001, Japan
- Department of Agriculture, Ryukoku University, Otsu, Shiga, 520-2194, Japan
| |
Collapse
|
31
|
Fukushima K, Fujita H, Yamaguchi T, Kawaguchi M, Tsukaya H, Hasebe M. Oriented cell division shapes carnivorous pitcher leaves of Sarracenia purpurea. Nat Commun 2015; 6:6450. [PMID: 25774486 PMCID: PMC4382701 DOI: 10.1038/ncomms7450] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 01/30/2015] [Indexed: 11/22/2022] Open
Abstract
Complex morphology is an evolutionary outcome of phenotypic diversification. In some carnivorous plants, the ancestral planar leaf has been modified to form a pitcher shape. However, how leaf development was altered during evolution remains unknown. Here we show that the pitcher leaves of Sarracenia purpurea develop through cell division patterns of adaxial tissues that are distinct from those in bifacial and peltate leaves, subsequent to standard expression of adaxial and abaxial marker genes. Differences in the orientation of cell divisions in the adaxial domain cause bifacial growth in the distal region and adaxial ridge protrusion in the middle region. These different growth patterns establish pitcher morphology. A computer simulation suggests that the cell division plane is critical for the pitcher morphogenesis. Our results imply that tissue-specific changes in the orientation of cell division underlie the development of a morphologically complex leaf. The pitcher-shaped leaf of the carnivorous plant Sarracenia purpurea acts as a pitfall trap to capture small animals. Here, Fukushima et al. analyse pitcher leaf development and propose that this unusual shape evolved from ancestral planar leaves through changes in the orientation of cell division.
Collapse
Affiliation(s)
- Kenji Fukushima
- 1] 1Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki 444-8585, Japan [2] National Institute for Basic Biology, Myodaiji-cho, Nishigonaka 38, Okazaki, Aichi 444-8585, Japan
| | - Hironori Fujita
- National Institute for Basic Biology, Myodaiji-cho, Nishigonaka 38, Okazaki, Aichi 444-8585, Japan
| | - Takahiro Yamaguchi
- Graduate School of Science, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Masayoshi Kawaguchi
- 1] 1Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki 444-8585, Japan [2] National Institute for Basic Biology, Myodaiji-cho, Nishigonaka 38, Okazaki, Aichi 444-8585, Japan
| | - Hirokazu Tsukaya
- Graduate School of Science, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Mitsuyasu Hasebe
- 1] 1Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki 444-8585, Japan [2] National Institute for Basic Biology, Myodaiji-cho, Nishigonaka 38, Okazaki, Aichi 444-8585, Japan
| |
Collapse
|
32
|
Tatematsu K, Toyokura K, Okada K. Requirement of MIR165A primary transcript sequence for its activity pattern in Arabidopsis leaf primordia. PLANT SIGNALING & BEHAVIOR 2015; 10:e1055432. [PMID: 26177565 PMCID: PMC4623492 DOI: 10.1080/15592324.2015.1055432] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 05/22/2015] [Indexed: 05/27/2023]
Abstract
miRNAs might move cell to cell and act as mobile signals in plant development, while the regulatory mechanisms of miRNA cell-to-cell movement are still unclear. Recently, in Arabidopsis leaf primordia, we revealed that miR165 from the MIR165A gene, which is expressed in the abaxial epidermal cells of leaf primordia, acts non-cell-autonomously in inner cells on the abaxial side. We proposed that not only mature miR165 sequence but also the MIR165A primary transcript sequence are required for the confinement of miR165 activity to the abaxial side of leaf primordia. The deletion analysis of the MIR165A genomic fragment showed that with a lack of the 3' region of MIR165A its activity is not confined in leaf primordia, suggesting that the full-length primary transcript of MIR165A is important for the regulatory mechanism of miRNA activity confinement in leaf primordia. It has been reported that the MIR165A transcript is predicted to be translated into the short poly peptide, proposing that the MIR165A transcript may be exported to the cytoplasm. Considering these matters, we propose a hypothesis for the confinement of miR165 activity to the abaxial side in leaf primordia dependent on the MIR165A primary transcript.
Collapse
Affiliation(s)
| | | | - Kiyotaka Okada
- Department of Agriculture; Ryukoku University; Otsu, Japan
- National Institute of Natural Science; Tokyo, Japan
| |
Collapse
|
33
|
Abstract
Stem cells are responsible for organogenesis, but it is largely unknown whether and how information from stem cells acts to direct organ patterning after organ primordia are formed. It has long been proposed that the stem cells at the plant shoot apex produce a signal, which promotes leaf adaxial-abaxial (dorsoventral) patterning. Here we show the existence of a transient low auxin zone in the adaxial domain of early leaf primordia. We also demonstrate that this adaxial low auxin domain contributes to leaf adaxial-abaxial patterning. The auxin signal is mediated by the auxin-responsive transcription factor MONOPTEROS (MP), whose constitutive activation in the adaxial domain promotes abaxial cell fate. Furthermore, we show that auxin flow from emerging leaf primordia to the shoot apical meristem establishes the low auxin zone, and that this auxin flow contributes to leaf polarity. Our results provide an explanation for the hypothetical meristem-derived leaf polarity signal. Opposite to the original proposal, instead of a signal derived from the meristem, we show that a signaling molecule is departing from the primordium to the meristem to promote robustness in leaf patterning.
Collapse
|
34
|
Tiller N, Bock R. The translational apparatus of plastids and its role in plant development. MOLECULAR PLANT 2014; 7:1105-20. [PMID: 24589494 PMCID: PMC4086613 DOI: 10.1093/mp/ssu022] [Citation(s) in RCA: 161] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 02/26/2014] [Indexed: 05/18/2023]
Abstract
Chloroplasts (plastids) possess a genome and their own machinery to express it. Translation in plastids occurs on bacterial-type 70S ribosomes utilizing a set of tRNAs that is entirely encoded in the plastid genome. In recent years, the components of the chloroplast translational apparatus have been intensely studied by proteomic approaches and by reverse genetics in the model systems tobacco (plastid-encoded components) and Arabidopsis (nucleus-encoded components). This work has provided important new insights into the structure, function, and biogenesis of chloroplast ribosomes, and also has shed fresh light on the molecular mechanisms of the translation process in plastids. In addition, mutants affected in plastid translation have yielded strong genetic evidence for chloroplast genes and gene products influencing plant development at various levels, presumably via retrograde signaling pathway(s). In this review, we describe recent progress with the functional analysis of components of the chloroplast translational machinery and discuss the currently available evidence that supports a significant impact of plastid translational activity on plant anatomy and morphology.
Collapse
Affiliation(s)
- Nadine Tiller
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Ralph Bock
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| |
Collapse
|
35
|
Avendaño-Vázquez AO, Cordoba E, Llamas E, San Román C, Nisar N, De la Torre S, Ramos-Vega M, Gutiérrez-Nava MDLL, Cazzonelli CI, Pogson BJ, León P. An Uncharacterized Apocarotenoid-Derived Signal Generated in ζ-Carotene Desaturase Mutants Regulates Leaf Development and the Expression of Chloroplast and Nuclear Genes in Arabidopsis. THE PLANT CELL 2014; 26:2524-2537. [PMID: 24907342 PMCID: PMC4114949 DOI: 10.1105/tpc.114.123349] [Citation(s) in RCA: 133] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 05/06/2014] [Accepted: 05/16/2014] [Indexed: 05/18/2023]
Abstract
In addition to acting as photoprotective compounds, carotenoids also serve as precursors in the biosynthesis of several phytohormones and proposed regulatory signals. Here, we report a signaling process derived from carotenoids that regulates early chloroplast and leaf development. Biosynthesis of the signal depends on ζ-carotene desaturase activity encoded by the ζ-CAROTENE DESATURASE (ZDS)/CHLOROPLAST BIOGENESIS5 (CLB5) gene in Arabidopsis thaliana. Unlike other carotenoid-deficient plants, zds/clb5 mutant alleles display profound alterations in leaf morphology and cellular differentiation as well as altered expression of many plastid- and nucleus-encoded genes. The leaf developmental phenotypes and gene expression alterations of zds/clb5/spc1/pde181 plants are rescued by inhibitors or mutations of phytoene desaturase, demonstrating that phytofluene and/or ζ-carotene are substrates for an unidentified signaling molecule. Our work further demonstrates that this signal is an apocarotenoid whose synthesis requires the activity of the carotenoid cleavage dioxygenase CCD4.
Collapse
Affiliation(s)
- Aida-Odette Avendaño-Vázquez
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, Mexico
| | - Elizabeth Cordoba
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, Mexico
| | - Ernesto Llamas
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, Mexico
| | - Carolina San Román
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, Mexico
| | - Nazia Nisar
- Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, Australian National University, Canberra, Australian Capital Territory 0200, Australia
| | - Susana De la Torre
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, Mexico
| | - Maricela Ramos-Vega
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, Mexico
| | - María de la Luz Gutiérrez-Nava
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, Mexico
| | - Christopher Ian Cazzonelli
- Hawkesbury Institute for the Environment, University of Western Sydney, Richmond, New South Wales 2753, Australia
| | - Barry James Pogson
- Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, Australian National University, Canberra, Australian Capital Territory 0200, Australia
| | - Patricia León
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, Mexico
| |
Collapse
|
36
|
Abstract
In addition to their contribution to metabolism, chloroplasts emit signals that influence the expression of nuclear genes that contribute to numerous plastidic and extraplastidic processes. Plastid-to-nucleus signalling optimizes chloroplast function, regulates growth and development, and affects responses to environmental cues. An incomplete list of plastid signals is available and particular plastid-to-nucleus signalling mechanisms are partially understood. The plastid-to-nucleus signalling that depends on the GENOMES UNCOUPLED (GUN) genes couples the expression of nuclear genes to the functional state of the chloroplast. Analyses of gun mutants provided insight into the mechanisms and biological functions of plastid-to-nucleus signalling. GUN genes contribute to chloroplast biogenesis, the circadian rhythm, stress tolerance, light signalling and development. Some have criticized the gun mutant screen for employing inhibitors of chloroplast biogenesis and suggested that gun alleles do not disrupt significant plastid-to-nucleus signalling mechanisms. Here, I briefly review GUN-dependent plastid-to-nucleus signalling, explain the flaws in the major criticisms of the gun mutant screen and review the influence of plastids on light signalling and development.
Collapse
Affiliation(s)
- Robert M. Larkin
- Michigan State University-Department of Energy Plant Research Laboratory, Michigan State University, Room 106 Plant Biology Building, East Lansing, MI 48824, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, Room 106 Plant Biology Building, East Lansing, MI 48824, USA
| |
Collapse
|
37
|
Abstract
Pentatricopeptide repeat (PPR) proteins constitute one of the largest protein families in land plants, with more than 400 members in most species. Over the past decade, much has been learned about the molecular functions of these proteins, where they act in the cell, and what physiological roles they play during plant growth and development. A typical PPR protein is targeted to mitochondria or chloroplasts, binds one or several organellar transcripts, and influences their expression by altering RNA sequence, turnover, processing, or translation. Their combined action has profound effects on organelle biogenesis and function and, consequently, on photosynthesis, respiration, plant development, and environmental responses. Recent breakthroughs in understanding how PPR proteins recognize RNA sequences through modular base-specific contacts will help match proteins to potential binding sites and provide a pathway toward designing synthetic RNA-binding proteins aimed at desired targets.
Collapse
Affiliation(s)
- Alice Barkan
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97405;
| | | |
Collapse
|
38
|
|
39
|
Fukushima K, Hasebe M. Adaxial-abaxial polarity: the developmental basis of leaf shape diversity. Genesis 2013; 52:1-18. [PMID: 24281766 DOI: 10.1002/dvg.22728] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 11/15/2013] [Accepted: 11/22/2013] [Indexed: 02/05/2023]
Abstract
Leaves of flowering plants are diverse in shape. Part of this morphological diversity can be attributed to differences in spatiotemporal regulation of polarity in the upper (adaxial) and lower (abaxial) sides of developing leaves. In a leaf primordium, antagonistic interactions between polarity determinants specify the adaxial and abaxial domains in a mutually exclusive manner. The patterning of those domains is critical for leaf morphogenesis. In this review, we first summarize the gene networks regulating adaxial-abaxial polarity in conventional bifacial leaves and then discuss how patterning is modified in different leaf type categories.
Collapse
Affiliation(s)
- Kenji Fukushima
- Department of Basic Biology, School of Life Science, Graduate University for Advance Studies (SOKENDAI), Okazaki, 444-8585, Japan; National Institute for Basic Biology, Okazaki, 444-8585, Japan
| | | |
Collapse
|