1
|
James NR, O'Neill JS. Circadian Control of Protein Synthesis. Bioessays 2025; 47:e202300158. [PMID: 39668398 PMCID: PMC11848126 DOI: 10.1002/bies.202300158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 12/14/2024]
Abstract
Daily rhythms in the rate and specificity of protein synthesis occur in most mammalian cells through an interaction between cell-autonomous circadian regulation and daily cycles of systemic cues. However, the overall protein content of a typical cell changes little over 24 h. For most proteins, translation appears to be coordinated with protein degradation, producing phases of proteomic renewal that maximize energy efficiency while broadly maintaining proteostasis across the solar cycle. We propose that a major function of this temporal compartmentalization-and of circadian rhythmicity in general-is to optimize the energy efficiency of protein synthesis and associated processes such as complex assembly. We further propose that much of this temporal compartmentalization is achieved at the level of translational initiation, such that the translational machinery alternates between distinct translational mechanisms, each using a distinct toolkit of phosphoproteins to preferentially recognize and translate different classes of mRNA.
Collapse
Affiliation(s)
- Nathan R. James
- Division of Cell BiologyMRC Laboratory of Molecular BiologyCambridgeUK
| | - John S. O'Neill
- Division of Cell BiologyMRC Laboratory of Molecular BiologyCambridgeUK
| |
Collapse
|
2
|
Romero-Losada AB, Arvanitidou C, García-Gómez ME, Morales-Pineda M, Castro-Pérez MJ, Chew YP, van Ooijen G, García-González M, Romero-Campero FJ. Multiomics integration unveils photoperiodic plasticity in the molecular rhythms of marine phytoplankton. THE PLANT CELL 2025; 37:koaf033. [PMID: 39932939 DOI: 10.1093/plcell/koaf033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 12/17/2024] [Accepted: 02/03/2025] [Indexed: 02/13/2025]
Abstract
Earth's tilted rotation and translation around the Sun produce pervasive rhythms on our planet, giving rise to photoperiodic changes in diel cycles. Although marine phytoplankton plays a key role in ecosystems, multiomics analysis of its responses to these periodic environmental signals remains largely unexplored. The marine picoalga Ostreococcus tauri was chosen as a model organism due to its cellular and genomic simplicity. Ostreococcus was subjected to different light regimes to investigate its responses to periodic environmental signals: long summer days, short winter days, constant light, and constant dark conditions. Although <5% of the transcriptome maintained oscillations under both constant conditions, 80% presented diel rhythmicity. A drastic reduction in diel rhythmicity was observed at the proteome level, with 39% of the detected proteins oscillating. Photoperiod-specific rhythms were identified for key physiological processes such as the cell cycle, photosynthesis, carotenoid biosynthesis, starch accumulation, and nitrate assimilation. In this study, a photoperiodic plastic global orchestration among transcriptome, proteome, and physiological dynamics was characterized to identify photoperiod-specific temporal offsets between the timing of transcripts, proteins, and physiological responses.
Collapse
Affiliation(s)
- Ana B Romero-Losada
- Institute for Plant Biochemistry and Photosynthesis, Universidad de Sevilla - Consejo Superior de Investigaciones Científicas, Av. Américo Vespucio 49, Seville 41092, Spain
- Department of Computer Science and Artificial Intelligence, Universidad de Sevilla, Av. Reina Mercedes s/n, Seville 41012, Spain
| | - Christina Arvanitidou
- Institute for Plant Biochemistry and Photosynthesis, Universidad de Sevilla - Consejo Superior de Investigaciones Científicas, Av. Américo Vespucio 49, Seville 41092, Spain
- Department of Computer Science and Artificial Intelligence, Universidad de Sevilla, Av. Reina Mercedes s/n, Seville 41012, Spain
| | - M Elena García-Gómez
- Institute for Plant Biochemistry and Photosynthesis, Universidad de Sevilla - Consejo Superior de Investigaciones Científicas, Av. Américo Vespucio 49, Seville 41092, Spain
| | - María Morales-Pineda
- Institute for Plant Biochemistry and Photosynthesis, Universidad de Sevilla - Consejo Superior de Investigaciones Científicas, Av. Américo Vespucio 49, Seville 41092, Spain
| | - M José Castro-Pérez
- Institute for Biomedicine in Seville, Universidad de Sevilla - Consejo Superior de Investigaciones Científicas, Av. Manuel Siurot s/n, Seville 41012, Spain
| | - Yen Peng Chew
- School of Biological Sciences, University of Edinburgh, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Gerben van Ooijen
- School of Biological Sciences, University of Edinburgh, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Mercedes García-González
- Institute for Plant Biochemistry and Photosynthesis, Universidad de Sevilla - Consejo Superior de Investigaciones Científicas, Av. Américo Vespucio 49, Seville 41092, Spain
| | - Francisco J Romero-Campero
- Institute for Plant Biochemistry and Photosynthesis, Universidad de Sevilla - Consejo Superior de Investigaciones Científicas, Av. Américo Vespucio 49, Seville 41092, Spain
- Department of Computer Science and Artificial Intelligence, Universidad de Sevilla, Av. Reina Mercedes s/n, Seville 41012, Spain
| |
Collapse
|
3
|
Preh EO, Ramirez MA, Mohan S, Guy CR, Bell-Pedersen D. Circadian clock control of interactions between eIF2α kinase CPC-3 and GCN1 with ribosomes regulates rhythmic translation initiation. Proc Natl Acad Sci U S A 2025; 122:e2411916122. [PMID: 39903114 PMCID: PMC11831163 DOI: 10.1073/pnas.2411916122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 12/31/2024] [Indexed: 02/06/2025] Open
Abstract
Misregulation of the activity of GCN2, the kinase that phosphorylates and inactivates translation initiation factor eIF2α, has been implicated in several health disorders, underscoring the need to determine the mechanisms controlling GCN2 activation. During nutrient starvation, increased uncharged tRNA levels trigger GCN1 and GCN20 proteins to mediate the binding of uncharged tRNA to GCN2 to activate the kinase to phosphorylate eIF2α. Under constant conditions, activation of the Neurospora crassa homolog of GCN2, CPC-3, is controlled by the circadian clock. However, how the circadian clock controls the rhythmic activity of CPC-3 was not known. We found that the clock regulates CPC-3 and GCN1 interaction with ribosomes and show that these interactions are necessary for clock regulation of CPC-3 activity. CPC-3 activity rhythms, and the rhythmic interaction of CPC-3 and GCN1 with ribosomes, are abolished in a temperature-sensitive valyl-tRNA synthetase mutant (un-3ts) that has high levels of uncharged tRNAVal at all times of the day. Disrupting the interaction between GCN1 and uncharged tRNA in the absence of GCN20 altered rhythmic CPC-3 activity, indicating that the clock controls the interaction between uncharged tRNA and GCN1. Together, these data support that circadian rhythms in mRNA translation through CPC-3 activity require rhythms in uncharged tRNA levels that drive the rhythmic interaction between CPC-3 and GCN1 with ribosomes. This regulation uncovers a fundamental mechanism to ensure temporal coordination between peak cellular energy levels and the energetically demanding process of mRNA translation.
Collapse
Affiliation(s)
- Ebimobowei O. Preh
- Department of Biology and Center for Biological Clocks Research, Texas A&M University, College Station, TX77843
| | - Manuel A. Ramirez
- Department of Biology and Center for Biological Clocks Research, Texas A&M University, College Station, TX77843
| | - Sidharth Mohan
- Department of Biology and Center for Biological Clocks Research, Texas A&M University, College Station, TX77843
| | - Chanté R. Guy
- Department of Biology and Center for Biological Clocks Research, Texas A&M University, College Station, TX77843
| | - Deborah Bell-Pedersen
- Department of Biology and Center for Biological Clocks Research, Texas A&M University, College Station, TX77843
| |
Collapse
|
4
|
Secio-Silva A, Evangelista-Silva PH, Emrich F, Selvatici-Tolentino L, Ferreira M, Silva ABDP, Gomes BH, Figueira-Costa TN, Oliveira AG, Peliciari-Garcia RA, Goulart-Silva F, Bargi-Souza P. Hypothyroidism impairs the circadian rhythmicity of clock genes and proteins involved in gut nutrient absorption in female mice. Front Physiol 2025; 16:1515437. [PMID: 39958687 PMCID: PMC11825765 DOI: 10.3389/fphys.2025.1515437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 01/13/2025] [Indexed: 02/18/2025] Open
Abstract
Hypothyroidism is a common thyroid dysfunction with a higher prevalence in women. Impairments in the regulation of basal metabolism, small intestine nutrient transporter, dyslipidemia, and disruption in circadian clocks have been associated with the thyroid disorder. This study aimed to evaluate whether hypothyroidism affects the small intestine circadian clock and the daily expression pattern of gut nutrient transporters in female mice. Adult female C57BL/6J mice were subjected to hypothyroidism by the administration of methimazole (0.1%) and sodium perchlorate (1%) in drinking water for 45 days. After, the animals were subdivided and euthanized every 4 h over the 24 h period under deep anesthesia. The proximal small intestine segment was collected and immediately frozen for gene expression analysis of circadian core clock components (Bmal1, Per2, Cry1, and Nr1d1) and nutrient transporters by RT-qPCR. The daily protein content of nutrient transporters involved in the absorption of the products of hydrolysis of lipids, proteins, and carbohydrates was evaluated over 24 h in isolated small intestinal epithelium by Western blotting. The expression of clock genes and protein content of nutrients transporters in the jejunum of control female mice exhibited a well-defined circadian rhythmicity, while no rhythmic oscillation over 24 h was observed for the transporter transcripts. Hypothyroidism abolished the circadian rhythmicity of circadian clock, punctually reduced the transcript content of Slc2a5 (GLUT5) at ZT12 and Slc2a2 (GLUT2) at ZT4, and disrupted the circadian oscillation of L-FABP, CD36, PEPT1, and GLUT2 protein contents in the small intestine of female mice. In conclusion, our findings indicate that thyroid hormones modulate the circadian clock of small intestine and the daily rhythmicity of components related to absorptive processes in female mice. Moreover, our data suggest that the mechanisms triggered by thyroid hormones involve posttranscriptional and/or translational modifications of proteins related to lipid, protein, and carbohydrate absorption. Together, these data contribute to the general comprehension of metabolic alterations often observed in hypothyroidism and have far-reaching implications at clinical levels considering the higher worldwide prevalence of hypothyroidism in women and its association with obesity and metabolic syndrome.
Collapse
Affiliation(s)
- Ayla Secio-Silva
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | | | - Felipe Emrich
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Letícia Selvatici-Tolentino
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Maíza Ferreira
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Ana Bárbara de Paula Silva
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Bruno Henrique Gomes
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | | | - André Gustavo Oliveira
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Rodrigo Antonio Peliciari-Garcia
- Department of Biological Sciences, Morphophysiology and Pathology Sector, Federal University of São Paulo (UNIFESP), Diadema, Brazil
| | - Francemilson Goulart-Silva
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Paula Bargi-Souza
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| |
Collapse
|
5
|
Major-Styles CT, Munns J, Zeng A, Vanden Oever M, O'Neill JS, Edgar RS. Chronic CRYPTOCHROME deficiency enhances cell-intrinsic antiviral defences. Philos Trans R Soc Lond B Biol Sci 2025; 380:20230344. [PMID: 39842480 PMCID: PMC11753882 DOI: 10.1098/rstb.2023.0344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 11/19/2024] [Accepted: 11/27/2024] [Indexed: 01/24/2025] Open
Abstract
The within-host environment changes over circadian time and influences the replication and severity of viruses. Genetic knockout of the circadian transcription factors CRYPTOCHROME 1 and CRYPTOCHROME 2 (CRY1-/-/CRY2-/-; CKO) leads to altered protein homeostasis and chronic activation of the integrated stress response (ISR). The adaptive ISR signalling pathways help restore cellular homeostasis by downregulating protein synthesis in response to endoplasmic reticulum overloading or viral infections. By quantitative mass spectrometry analysis, we reveal that many viral recognition proteins and type I interferon (IFN) effectors are significantly upregulated in lung fibroblast cells from CKO mice compared with wild-type (WT) mice. This basal 'antiviral state' restricts the growth of influenza A virus and is governed by the interaction between proteotoxic stress response pathways and constitutive type I IFN signalling. CKO proteome composition and type I IFN signature were partially phenocopied upon sustained depletion of CRYPTOCHROME (CRY) proteins using a small-molecule CRY degrader, with modest differential gene expression consistent with differences seen between CKO and WT cells. Our results highlight the crosstalk between circadian rhythms, cell-intrinsic antiviral defences and protein homeostasis, providing a tractable molecular model to investigate the interface of these key contributors to human health and disease.This article is part of the Theo Murphy meeting issue 'Circadian rhythms in infection and immunity'.
Collapse
Affiliation(s)
- Christine T. Major-Styles
- Department of Infectious Disease, Imperial College London, LondonSW7 2AZ, UK
- Francis Crick Institute, LondonNW1 1AT, UK
| | - Jack Munns
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, CambridgeCB2 0QH, UK
| | - Aiwei Zeng
- Department of Infectious Disease, Imperial College London, LondonSW7 2AZ, UK
- Francis Crick Institute, LondonNW1 1AT, UK
| | | | - John S. O'Neill
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, CambridgeCB2 0QH, UK
| | - Rachel S. Edgar
- Department of Infectious Disease, Imperial College London, LondonSW7 2AZ, UK
- Francis Crick Institute, LondonNW1 1AT, UK
| |
Collapse
|
6
|
Mihut A, O'Neill JS, Partch CL, Crosby P. PERspectives on circadian cell biology. Philos Trans R Soc Lond B Biol Sci 2025; 380:20230483. [PMID: 39842483 PMCID: PMC11753889 DOI: 10.1098/rstb.2023.0483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/18/2024] [Accepted: 05/24/2024] [Indexed: 01/24/2025] Open
Abstract
Daily rhythms in the activities of PERIOD proteins are critical to the temporal regulation of mammalian physiology. While the molecular partners and genetic circuits that allow PERIOD to effect auto-repression and regulate transcriptional programmes are increasingly well understood, comprehension of the time-resolved mechanisms that allow PERIOD to conduct this daily dance is incomplete. Here, we consider the character and controversies of this central mammalian clock protein with a focus on its intrinsically disordered nature.This article is part of the Theo Murphy meeting issue 'Circadian rhythms in infection and immunity'.
Collapse
Affiliation(s)
- Andrei Mihut
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, CambridgeCB2 0QH, UK
| | - John S. O'Neill
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, CambridgeCB2 0QH, UK
| | - Carrie L. Partch
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, CA95064, USA
| | - Priya Crosby
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, EdinburghEH9 3BF, UK
| |
Collapse
|
7
|
Burns JN, Jenkins AK, Xue X, Petersen KA, Ketchesin KD, Perez MS, Vadnie CA, Scott MR, Seney ML, Tseng GC, McClung CA. Comparative transcriptomic rhythms in the mouse and human prefrontal cortex. Front Neurosci 2025; 18:1524615. [PMID: 39872996 PMCID: PMC11769989 DOI: 10.3389/fnins.2024.1524615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 12/23/2024] [Indexed: 01/30/2025] Open
Abstract
Introduction Alterations in multiple subregions of the human prefrontal cortex (PFC) have been heavily implicated in psychiatric diseases. Moreover, emerging evidence suggests that circadian rhythms in gene expression are present across the brain, including in the PFC, and that these rhythms are altered in disease. However, investigation into the potential circadian mechanisms underlying these diseases in animal models must contend with the fact that the human PFC is highly evolved and specialized relative to that of rodents. Methods Here, we use RNA sequencing to lay the groundwork for translational studies of molecular rhythms through a sex-specific, cross species comparison of transcriptomic rhythms between the mouse medial PFC (mPFC) and two subregions of the human PFC, the anterior cingulate cortex (ACC) and the dorsolateral PFC (DLPFC). Results We find that while circadian rhythm signaling is conserved across species and subregions, there is a phase shift in the expression of core clock genes between the mouse mPFC and human PFC subregions that differs by sex. Furthermore, we find that the identity of rhythmic transcripts is largely unique between the mouse mPFC and human PFC subregions, with the most overlap (20%, 236 transcripts) between the mouse mPFC and the human ACC in females. Nevertheless, we find that basic biological processes are enriched for rhythmic transcripts across species, with key differences between regions and sexes. Discussion Together, this work highlights both the evolutionary conservation of transcriptomic rhythms and the advancement of the human PFC, underscoring the importance of considering cross-species differences when using animal models.
Collapse
Affiliation(s)
- Jennifer N. Burns
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States
| | - Aaron K. Jenkins
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Xiangning Xue
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, United States
| | - Kaitlyn A. Petersen
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States
| | - Kyle D. Ketchesin
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States
| | - Megan S. Perez
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Department of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
| | - Chelsea A. Vadnie
- David O. Robbins Neuroscience Program, Department of Psychology, Ohio Wesleyan University, Delaware, OH, United States
| | - Madeline R. Scott
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States
| | - Marianne L. Seney
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States
| | - George C. Tseng
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, United States
| | - Colleen A. McClung
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
8
|
Jadhav DB, Roy S. Circadian Proteomics Reassesses the Temporal Regulation of Metabolic Rhythms by Chlamydomonas Clock. PLANT, CELL & ENVIRONMENT 2025. [PMID: 39777639 DOI: 10.1111/pce.15354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 12/17/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025]
Abstract
Circadian clocks execute temporal regulation of metabolism by modulating the timely expression of genes. Clock regulation of mRNA synthesis was envisioned as the primary driver of these daily rhythms. mRNA oscillations often do not concur with the downstream protein oscillations, revealing the importance to study protein oscillations. Chlamydomonas reinhardtii is a well-studied miniature plant model. We quantitatively probed the Chlamydomonas proteome for two subsequent circadian cycles using high throughput SWATH-DIA mass spectrometry. We quantified > 1000 proteins, half of which demonstrate circadian rhythms. Among these rhythmic proteins, > 90% peak around subjective midday or midnight. We uncovered key enzymes involved in Box C/D pathway, amino acid biosynthesis, fatty acid (FA) biosynthesis and peroxisomal β-oxidation of FAs are driven by the clock, which were undocumented from earlier transcriptomic studies. Proteins associated with key biological processes such as photosynthesis, redox, carbon fixation, glycolysis and TCA cycle show extreme temporal regulation. We conclude that circadian proteomics is required to complement transcriptomic studies to understand the complex clock regulation of organismal biology. We believe our study will not only refine and enrich the evaluation of temporal metabolic processes in C. reinhardtii but also provide a novel understanding of clock regulation across species.
Collapse
Affiliation(s)
| | - Sougata Roy
- Department of Biology, Trivedi School of Biosciences, Ashoka University, Sonipat, India
| |
Collapse
|
9
|
Bhatnagar A, Raj G, Das S, Kannihali A, Rajakumara E, Murray G, Ray S. Integrated bioinformatics and interaction analysis to advance chronotherapies for mental disorders. Front Pharmacol 2024; 15:1444342. [PMID: 39703389 PMCID: PMC11655208 DOI: 10.3389/fphar.2024.1444342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 11/12/2024] [Indexed: 12/21/2024] Open
Abstract
Introduction Robust connections have been identified between the pathophysiology of mental disorders and the functioning of the circadian system. The overarching objective of this study was to investigate the potential for circadian rhythms to be leveraged for therapeutics in mental disorders. Methods We considered two approaches to chronotherapy-optimal timing of existing medications ("clocking the drugs") and redressing circadian abnormalities with small molecules ("drugging the clock"). We assessed whether circadian rhythm-modulating compounds can interact with the prominent drug targets of mental disorders utilizing computational tools like molecular docking and molecular dynamics simulation analysis. Results Firstly, an analysis of transcript-level rhythmic patterns in recognized drug targets for mental disorders found that 24-hour rhythmic patterns were measurable in 54.4% of targets in mice and 35.2% in humans. We also identified several drug receptors exhibiting 24-hour rhythmicity involved in critical physiological pathways for neural signaling and communication, such as neuroactive ligand-receptor interaction, calcium signaling pathway, cAMP signaling pathway, and dopaminergic and cholinergic synapses. These findings advocate that further research into the timing of drug administration in mental disorders is urgently required. We observed that many pharmacological modulators of mammalian circadian rhythms, including KL001, SR8278, SR9009, Nobiletin, and MLN4924, exhibit stable binding with psychotropic drug targets. Discussion These findings suggest that circadian clock-modulating pharmacologically active small molecules could be investigated further for repurposing in the treatment of mood disorders. In summary, the present analyses indicate the potential of chronotherapeutic approaches to mental disorder pharmacotherapy and specify the need for future circadian rhythm-oriented clinical research.
Collapse
Affiliation(s)
- Apoorva Bhatnagar
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Sangareddy, Telangana, India
- Centre for Mental Health, Swinburne University of Technology, Melbourne, VIC, Australia
| | - Gupta Raj
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Sangareddy, Telangana, India
| | - Sandip Das
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Sangareddy, Telangana, India
| | - Arpita Kannihali
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Sangareddy, Telangana, India
| | - Eerappa Rajakumara
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Sangareddy, Telangana, India
| | - Greg Murray
- Centre for Mental Health, Swinburne University of Technology, Melbourne, VIC, Australia
| | - Sandipan Ray
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Sangareddy, Telangana, India
| |
Collapse
|
10
|
Kim SJ, Mugundu GM, Singh AP. Translational PK-PD model for in vivo CAR-T-cell therapy delivered using CAR mRNA-loaded polymeric nanoparticle vector. Clin Transl Sci 2024; 17:e70101. [PMID: 39696762 DOI: 10.1111/cts.70101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/23/2024] [Accepted: 11/13/2024] [Indexed: 12/20/2024] Open
Abstract
Autologous chimeric antigen receptor (CAR) T-cell therapy has demonstrated remarkable response rates, yet its widespread implementation is hindered by logistical, financial, and physical constraints. Additionally, challenges such as poor persistence and allorejection are associated with allogeneic cell therapies. An innovative approach involves in vivo transduction of endogenous T-cells through the administration of CAR mRNA encapsulated in polymeric nanoparticles (NPs), resulting in transient CAR surface expression on circulating T-cells. This method presents a promising alternative, although the dose-exposure-response relationship of in vivo CAR-Ts remains poorly elucidated. The transient nature of CAR expression may necessitate repeated dosing, potentially introducing additional hurdles like cost and patient compliance. To address this issue, we have devised a translational pharmacokinetic-pharmacodynamic (PK-PD) model that characterizes the transient surface CAR expression following mRNA-encapsulated NP administration, leveraging in vitro and in vivo data alongside critical binding kinetic parameters sourced from literature. Our model adequately captures the transient surface CAR expression in both settings, while incorporating known physiological parameter values and exhibiting precise estimation of unknown parameters (coefficient of variation < 30%). Global sensitivity analyses underscore the significance of intracellular mRNA stability, highlighting the sensitivity of parameters linked to free intracellular mRNA concentration. Model-based simulations indicate that optimizing dose and dosing frequency can achieve sustained CAR expression, despite the transient protein expression characteristic of mRNA-based therapies. This mechanistic PK-PD model holds potential for integration into physiologically-based pharmacokinetic models, facilitating the translation of in vivo CAR-T-cell therapies from preclinical studies to human applications.
Collapse
Affiliation(s)
- Se Jin Kim
- Oncology Cell Therapy and Therapeutic Area Unit, Cell Therapy Clinical Pharmacology and Modeling, Precision and Translational Medicine, Takeda Pharmaceuticals, Cambridge, Massachusetts, USA
- Department of Pharmaceutical Sciences, University at Buffalo, SUNY, Buffalo, New York, USA
| | - Ganesh M Mugundu
- Oncology Cell Therapy and Therapeutic Area Unit, Cell Therapy Clinical Pharmacology and Modeling, Precision and Translational Medicine, Takeda Pharmaceuticals, Cambridge, Massachusetts, USA
| | - Aman P Singh
- Oncology Cell Therapy and Therapeutic Area Unit, Cell Therapy Clinical Pharmacology and Modeling, Precision and Translational Medicine, Takeda Pharmaceuticals, Cambridge, Massachusetts, USA
| |
Collapse
|
11
|
Chen YL, Wang R, Pang R, Sun ZP, He XL, Tang WH, Ou JY, Yi HM, Cheng X, Chen JH, Yu Y, Ren CH, Wang QJ, Zhang ZJ. Transcriptome-Based Revelation of the Effects of Sleep Deprivation on Hepatic Metabolic Rhythms in Tibetan Sheep ( Ovis aries). Animals (Basel) 2024; 14:3165. [PMID: 39595218 PMCID: PMC11591132 DOI: 10.3390/ani14223165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/26/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024] Open
Abstract
Sleep deprivation (SD) disrupts circadian rhythms; however, its effects on SD and the mechanisms involved require further investigation. Previous studies on SD were mainly conducted on rodents, such as mice, with few studies on its effects on the liver of large diurnal animals, such as sheep. In this study, we used a Tibetan sheep model for the first time to investigate the effects of SD on the liver by exposing Tibetan sheep (Ovis aries) to 7 days of SD (6 h/day) and performed transcriptome sequencing analysis on liver samples taken at 4 h intervals over 24 h. The results revealed that SD significantly altered the circadian expression of genes and their expression patterns in the liver of Tibetan sheep. Enrichment analysis of the circadian rhythm-altered genes revealed changes in the pathways related to lipid metabolism in the liver. Further evidence from serum markers and gene expression analyses using qualitative real-time polymerase chain reaction and Oil Red O and apoptosis staining indicated that SD leads to abnormal lipid metabolism in the liver, potentially causing liver damage. Therefore, our results suggest that SD disrupts the circadian rhythms of metabolism-related genes in the Tibetan sheep liver, thereby affecting metabolic homeostasis.
Collapse
Affiliation(s)
- Ya-Le Chen
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Y.-L.C.); (R.W.); (R.P.); (X.-L.H.); (W.-H.T.); (J.-Y.O.); (H.-M.Y.); (X.C.); (C.-H.R.)
| | - Ru Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Y.-L.C.); (R.W.); (R.P.); (X.-L.H.); (W.-H.T.); (J.-Y.O.); (H.-M.Y.); (X.C.); (C.-H.R.)
| | - Rui Pang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Y.-L.C.); (R.W.); (R.P.); (X.-L.H.); (W.-H.T.); (J.-Y.O.); (H.-M.Y.); (X.C.); (C.-H.R.)
| | - Zhi-Peng Sun
- Chongqing Key Laboratory of Herbivore Science, College of Animal Science and Technology, Southwest University, Chongqing 400715, China;
| | - Xiao-Long He
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Y.-L.C.); (R.W.); (R.P.); (X.-L.H.); (W.-H.T.); (J.-Y.O.); (H.-M.Y.); (X.C.); (C.-H.R.)
| | - Wen-Hui Tang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Y.-L.C.); (R.W.); (R.P.); (X.-L.H.); (W.-H.T.); (J.-Y.O.); (H.-M.Y.); (X.C.); (C.-H.R.)
| | - Jing-Yu Ou
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Y.-L.C.); (R.W.); (R.P.); (X.-L.H.); (W.-H.T.); (J.-Y.O.); (H.-M.Y.); (X.C.); (C.-H.R.)
| | - Huan-Ming Yi
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Y.-L.C.); (R.W.); (R.P.); (X.-L.H.); (W.-H.T.); (J.-Y.O.); (H.-M.Y.); (X.C.); (C.-H.R.)
| | - Xiao Cheng
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Y.-L.C.); (R.W.); (R.P.); (X.-L.H.); (W.-H.T.); (J.-Y.O.); (H.-M.Y.); (X.C.); (C.-H.R.)
| | - Jia-Hong Chen
- Center of Agriculture Technology Cooperation and Promotion of Dingyuan County, Chuzhou 233200, China;
| | - Yang Yu
- Qinghai Provincial Key Laboratory of Adaptive Management on Alpine Grassland, Qinghai Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining 810016, China;
| | - Chun-Huan Ren
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Y.-L.C.); (R.W.); (R.P.); (X.-L.H.); (W.-H.T.); (J.-Y.O.); (H.-M.Y.); (X.C.); (C.-H.R.)
- Chongqing Key Laboratory of Herbivore Science, College of Animal Science and Technology, Southwest University, Chongqing 400715, China;
| | - Qiang-Jun Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Y.-L.C.); (R.W.); (R.P.); (X.-L.H.); (W.-H.T.); (J.-Y.O.); (H.-M.Y.); (X.C.); (C.-H.R.)
| | - Zi-Jun Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Y.-L.C.); (R.W.); (R.P.); (X.-L.H.); (W.-H.T.); (J.-Y.O.); (H.-M.Y.); (X.C.); (C.-H.R.)
- Center of Agriculture Technology Cooperation and Promotion of Dingyuan County, Chuzhou 233200, China;
| |
Collapse
|
12
|
Wang J, Li H, Li R, Chen L, Tian X, Qiao Z. Metabolomic and transcriptomic basis of photoperiodic response regulation in broomcorn millet (Panicum miliaceum L.). Sci Rep 2024; 14:21720. [PMID: 39289492 PMCID: PMC11408615 DOI: 10.1038/s41598-024-72568-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 09/09/2024] [Indexed: 09/19/2024] Open
Abstract
To elucidate the mechanisms underlying photoperiodic responses, we investigated the genomic and metabolomic responses of two broomcorn millet (Panicum miliaceum L.) genotypes. For this purpose, light-insensitive (D32) and light-sensitive (M51) genotypes were exposed to a 16 h photoperiod (long-day (LD) conditions) and an 8 h photoperiod (short-day (SD) conditions), and various transcriptomic and metabolomic changes were investigated. A total of 1664, 2564, 13,017, and 15548 DEGs were identified in the SD-D, LD-D, LD-M, and SD-M groups, respectively. Furthermore, 112 common DEGs were identified as well. Interestingly, most DEGs in the different groups were associated with photosynthesis and phenylpropanoid and carotenoid biosynthesis. In addition, 822 metabolites were identified under different treatments. The main metabolites, including L-malic and fumaric acids, were identified in the negative mode, whereas brucine and loperamide were identified in the positive mode. KEGG analysis revealed that the metabolites in the different groups were enriched in the same metabolic pathway of the TCA cycle. Furthermore, in negative mode, the metabolites of M51 were mainly D-glucose, whereas those of D32 were mainly L-malic and fumaric acids. One photoperiod candidate gene (C2845_PM11G01290), annotated as ATP6B, significantly increased the levels of L-malic and fumaric acids. In conclusion, our study provides a theoretical basis for understanding the molecular mechanisms of photoperiodic response regulation and can be used as a reference for marker development and resource identification in Panicum miliaceum L..
Collapse
Affiliation(s)
- Junjie Wang
- Center for Agricultural Genetic Resources Research, Shanxi Agricultural University/Key Laboratory of Crop Gene Resources and Germplasm Enhancement On Loess Plateau, Ministry of Agriculture, No.81 Longcheng Street, Xiaodian, Taiyuan, 030031, Shanxi, China
| | - Hangyu Li
- College of Agriculture of Shanxi, Agricultural University, Taigu, China
| | - Rui Li
- College of Agriculture of Shanxi, Agricultural University, Taigu, China
| | - Ling Chen
- Center for Agricultural Genetic Resources Research, Shanxi Agricultural University/Key Laboratory of Crop Gene Resources and Germplasm Enhancement On Loess Plateau, Ministry of Agriculture, No.81 Longcheng Street, Xiaodian, Taiyuan, 030031, Shanxi, China
| | - Xiang Tian
- Center for Agricultural Genetic Resources Research, Shanxi Agricultural University/Key Laboratory of Crop Gene Resources and Germplasm Enhancement On Loess Plateau, Ministry of Agriculture, No.81 Longcheng Street, Xiaodian, Taiyuan, 030031, Shanxi, China
| | - Zhijun Qiao
- Center for Agricultural Genetic Resources Research, Shanxi Agricultural University/Key Laboratory of Crop Gene Resources and Germplasm Enhancement On Loess Plateau, Ministry of Agriculture, No.81 Longcheng Street, Xiaodian, Taiyuan, 030031, Shanxi, China.
| |
Collapse
|
13
|
Rajan PK, Udoh UAS, Finley R, Pierre SV, Sanabria J. The Biological Clock of Liver Metabolism in Metabolic Dysfunction-Associated Steatohepatitis Progression to Hepatocellular Carcinoma. Biomedicines 2024; 12:1961. [PMID: 39335475 PMCID: PMC11428469 DOI: 10.3390/biomedicines12091961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/12/2024] [Accepted: 08/19/2024] [Indexed: 09/30/2024] Open
Abstract
Circadian rhythms are endogenous behavioral or physiological cycles that are driven by a daily biological clock that persists in the absence of geophysical or environmental temporal cues. Circadian rhythm-related genes code for clock proteins that rise and fall in rhythmic patterns driving biochemical signals of biological processes from metabolism to physiology and behavior. Clock proteins have a pivotal role in liver metabolism and homeostasis, and their disturbances are implicated in various liver disease processes. Encoded genes play critical roles in the initiation and progression of metabolic dysfunction-associated steatohepatitis (MASH) to hepatocellular carcinoma (HCC) and their proteins may become diagnostic markers as well as therapeutic targets. Understanding molecular and metabolic mechanisms underlying circadian rhythms will aid in therapeutic interventions and may have broader clinical applications. The present review provides an overview of the role of the liver's circadian rhythm in metabolic processes in health and disease, emphasizing MASH progression and the oncogenic associations that lead to HCC.
Collapse
Affiliation(s)
- Pradeep Kumar Rajan
- Marshall Institute for Interdisciplinary Research, Huntington, WV 25703, USA
- Department of Surgery, School of Medicine, Marshall University, Huntington, WV 25701, USA
| | - Utibe-Abasi S Udoh
- Marshall Institute for Interdisciplinary Research, Huntington, WV 25703, USA
- Department of Surgery, School of Medicine, Marshall University, Huntington, WV 25701, USA
| | - Robert Finley
- Department of Surgery, School of Medicine, Marshall University, Huntington, WV 25701, USA
| | - Sandrine V Pierre
- Marshall Institute for Interdisciplinary Research, Huntington, WV 25703, USA
| | - Juan Sanabria
- Marshall Institute for Interdisciplinary Research, Huntington, WV 25703, USA
- Department of Surgery, School of Medicine, Marshall University, Huntington, WV 25701, USA
- Department of Nutrition and Metabolomic Core Facility, School of Medicine, Case Western Reserve University, Cleveland, OH 44100, USA
| |
Collapse
|
14
|
Seinkmane E, Edmondson A, Peak-Chew SY, Zeng A, Rzechorzek NM, James NR, West J, Munns J, Wong DC, Beale AD, O'Neill JS. Circadian regulation of macromolecular complex turnover and proteome renewal. EMBO J 2024; 43:2813-2833. [PMID: 38778155 PMCID: PMC11217436 DOI: 10.1038/s44318-024-00121-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 04/04/2024] [Accepted: 04/15/2024] [Indexed: 05/25/2024] Open
Abstract
Although costly to maintain, protein homeostasis is indispensable for normal cellular function and long-term health. In mammalian cells and tissues, daily variation in global protein synthesis has been observed, but its utility and consequences for proteome integrity are not fully understood. Using several different pulse-labelling strategies, here we gain direct insight into the relationship between protein synthesis and abundance proteome-wide. We show that protein degradation varies in-phase with protein synthesis, facilitating rhythms in turnover rather than abundance. This results in daily consolidation of proteome renewal whilst minimising changes in composition. Coupled rhythms in synthesis and turnover are especially salient to the assembly of macromolecular protein complexes, particularly the ribosome, the most abundant species of complex in the cell. Daily turnover and proteasomal degradation rhythms render cells and mice more sensitive to proteotoxic stress at specific times of day, potentially contributing to daily rhythms in the efficacy of proteasomal inhibitors against cancer. Our findings suggest that circadian rhythms function to minimise the bioenergetic cost of protein homeostasis through temporal consolidation of protein turnover.
Collapse
Affiliation(s)
- Estere Seinkmane
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Anna Edmondson
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Sew Y Peak-Chew
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Aiwei Zeng
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Nina M Rzechorzek
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Nathan R James
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - James West
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Jack Munns
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - David Cs Wong
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Andrew D Beale
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK.
| | - John S O'Neill
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK.
| |
Collapse
|
15
|
Duong HA, Baba K, DeBruyne JP, Davidson AJ, Ehlen C, Powell M, Tosini G. Environmental circadian disruption re-writes liver circadian proteomes. Nat Commun 2024; 15:5537. [PMID: 38956413 PMCID: PMC11220080 DOI: 10.1038/s41467-024-49852-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 06/21/2024] [Indexed: 07/04/2024] Open
Abstract
Circadian gene expression is fundamental to the establishment and functions of the circadian clock, a cell-autonomous and evolutionary-conserved timing system. Yet, how it is affected by environmental-circadian disruption (ECD) such as shiftwork and jetlag are ill-defined. Here, we provided a comprehensive and comparative description of male liver circadian gene expression, encompassing transcriptomes, whole-cell proteomes and nuclear proteomes, under normal and after ECD conditions. Under both conditions, post-translation, rather than transcription, is the dominant contributor to circadian functional outputs. After ECD, post-transcriptional and post-translational processes are the major contributors to whole-cell or nuclear circadian proteome, respectively. Furthermore, ECD re-writes the rhythmicity of 64% transcriptome, 98% whole-cell proteome and 95% nuclear proteome. The re-writing, which is associated with changes of circadian regulatory cis-elements, RNA-processing and protein localization, diminishes circadian regulation of fat and carbohydrate metabolism and persists after one week of ECD-recovery.
Collapse
Affiliation(s)
- Hao A Duong
- Department of Pharmacology and Toxicology, Morehouse School of Medicine, Atlanta, GA, 30310, USA.
- Department of Neurobiology, Morehouse School of Medicine, Atlanta, GA, 30310, USA.
| | - Kenkichi Baba
- Department of Pharmacology and Toxicology, Morehouse School of Medicine, Atlanta, GA, 30310, USA
- Department of Neurobiology, Morehouse School of Medicine, Atlanta, GA, 30310, USA
| | - Jason P DeBruyne
- Department of Pharmacology and Toxicology, Morehouse School of Medicine, Atlanta, GA, 30310, USA
- Department of Neurobiology, Morehouse School of Medicine, Atlanta, GA, 30310, USA
| | - Alec J Davidson
- Department of Neurobiology, Morehouse School of Medicine, Atlanta, GA, 30310, USA
| | - Christopher Ehlen
- Department of Neurobiology, Morehouse School of Medicine, Atlanta, GA, 30310, USA
| | - Michael Powell
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, 30310, USA
| | - Gianluca Tosini
- Department of Pharmacology and Toxicology, Morehouse School of Medicine, Atlanta, GA, 30310, USA
- Department of Neurobiology, Morehouse School of Medicine, Atlanta, GA, 30310, USA
| |
Collapse
|
16
|
Carvalho Cabral P, Richard VR, Borchers CH, Olivier M, Cermakian N. Circadian Control of the Response of Macrophages to Plasmodium Spp.-Infected Red Blood Cells. Immunohorizons 2024; 8:442-456. [PMID: 38916585 PMCID: PMC11220744 DOI: 10.4049/immunohorizons.2400021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 05/23/2024] [Indexed: 06/26/2024] Open
Abstract
Malaria is a serious vector-borne disease characterized by periodic episodes of high fever and strong immune responses that are coordinated with the daily synchronized parasite replication cycle inside RBCs. As immune cells harbor an autonomous circadian clock that controls various aspects of the immune response, we sought to determine whether the intensity of the immune response to Plasmodium spp., the parasite causing malaria, depends on time of infection. To do this, we developed a culture model in which mouse bone marrow-derived macrophages are stimulated with RBCs infected with Plasmodium berghei ANKA (iRBCs). Lysed iRBCs, but not intact iRBCs or uninfected RBCs, triggered an inflammatory immune response in bone marrow-derived macrophages. By stimulating at four different circadian time points (16, 22, 28, or 34 h postsynchronization of the cells' clock), 24-h rhythms in reactive oxygen species and cytokines/chemokines were found. Furthermore, the analysis of the macrophage proteome and phosphoproteome revealed global changes in response to iRBCs that varied according to circadian time. This included many proteins and signaling pathways known to be involved in the response to Plasmodium infection. In summary, our findings show that the circadian clock within macrophages determines the magnitude of the inflammatory response upon stimulation with ruptured iRBCs, along with changes of the cell proteome and phosphoproteome.
Collapse
Affiliation(s)
| | - Vincent R. Richard
- Lady Davis Institute for Medical Research, McGill University, Montreal, Quebec, Canada
| | - Christoph H. Borchers
- Lady Davis Institute for Medical Research, McGill University, Montreal, Quebec, Canada
| | - Martin Olivier
- Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec, Canada
| | - Nicolas Cermakian
- Douglas Research Centre, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
17
|
Touitou Y, Cermakian N, Touitou C. The environment and the internal clocks: The study of their relationships from prehistoric to modern times. Chronobiol Int 2024; 41:859-887. [PMID: 38757600 DOI: 10.1080/07420528.2024.2353857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/17/2024] [Accepted: 05/03/2024] [Indexed: 05/18/2024]
Abstract
The origin of biological rhythms goes back to the very beginning of life. They are observed in the animal and plant world at all levels of organization, from cells to ecosystems. As early as the 18th century, plant scientists were the first to explain the relationship between flowering cycles and environmental cycles, emphasizing the importance of daily light-dark cycles and the seasons. Our temporal structure is controlled by external and internal rhythmic signals. Light is the main synchronizer of the circadian system, as daily exposure to light entrains our clock over 24 hours, the endogenous period of the circadian system being close to, but not exactly, 24 hours. In 1960, a seminal scientific meeting, the Cold Spring Harbor Symposium on Biological Rhythms, brought together all the biological rhythms scientists of the time, a number of whom are considered the founders of modern chronobiology. All aspects of biological rhythms were addressed, from the properties of circadian rhythms to their practical and ecological aspects. Birth of chronobiology dates from this period, with the definition of its vocabulary and specificities in metabolism, photoperiodism, animal physiology, etc. At around the same time, and right up to the present day, research has focused on melatonin, the circadian neurohormone of the pineal gland, with data on its pattern, metabolism, control by light and clinical applications. However, light has a double face, as it has positive effects as a circadian clock entraining agent, but also deleterious effects, as it can lead to chronodisruption when exposed chronically at night, which can increase the risk of cancer and other diseases. Finally, research over the past few decades has unraveled the anatomical location of circadian clocks and their cellular and molecular mechanisms. This recent research has in turn allowed us to explain how circadian rhythms control physiology and health.
Collapse
Affiliation(s)
- Yvan Touitou
- Unité de Chronobiologie, Fondation A. de Rothschild, Paris, France
| | - Nicolas Cermakian
- Douglas Mental Health University Institute, McGill University, Montreal, Quebec, Canada
| | | |
Collapse
|
18
|
McDermott JE, Jacobs JM, Merrill NJ, Mitchell HD, Arshad OA, McClure R, Teeguarden J, Gajula RP, Porter KI, Satterfield BC, Lundholm KR, Skene DJ, Gaddameedhi S, Van Dongen HPA. Molecular-Level Dysregulation of Insulin Pathways and Inflammatory Processes in Peripheral Blood Mononuclear Cells by Circadian Misalignment. J Proteome Res 2024; 23:1547-1558. [PMID: 38619923 DOI: 10.1021/acs.jproteome.3c00418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Circadian misalignment due to night work has been associated with an elevated risk for chronic diseases. We investigated the effects of circadian misalignment using shotgun protein profiling of peripheral blood mononuclear cells taken from healthy humans during a constant routine protocol, which was conducted immediately after participants had been subjected to a 3-day simulated night shift schedule or a 3-day simulated day shift schedule. By comparing proteomic profiles between the simulated shift conditions, we identified proteins and pathways that are associated with the effects of circadian misalignment and observed that insulin regulation pathways and inflammation-related proteins displayed markedly different temporal patterns after simulated night shift. Further, by integrating the proteomic profiles with previously assessed metabolomic profiles in a network-based approach, we found key associations between circadian dysregulation of protein-level pathways and metabolites of interest in the context of chronic metabolic diseases. Endogenous circadian rhythms in circulating glucose and insulin differed between the simulated shift conditions. Overall, our results suggest that circadian misalignment is associated with a tug of war between central clock mechanisms controlling insulin secretion and peripheral clock mechanisms regulating insulin sensitivity, which may lead to adverse long-term outcomes such as diabetes and obesity. Our study provides a molecular-level mechanism linking circadian misalignment and adverse long-term health consequences of night work.
Collapse
Affiliation(s)
- Jason E McDermott
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, Oregon 97239, United States
| | - Jon M Jacobs
- Environmental and Molecular Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Nathaniel J Merrill
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Hugh D Mitchell
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Osama A Arshad
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Ryan McClure
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Justin Teeguarden
- Environmental and Molecular Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Rajendra P Gajula
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington 99202, United States
| | - Kenneth I Porter
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington 99202, United States
| | - Brieann C Satterfield
- Sleep and Performance Research Center, Washington State University, Spokane, Washington 99202, United States
- Department of Translational Medicine and Physiology, Washington State University, Spokane, Washington 99202, United States
| | - Kirsie R Lundholm
- Sleep and Performance Research Center, Washington State University, Spokane, Washington 99202, United States
- Department of Translational Medicine and Physiology, Washington State University, Spokane, Washington 99202, United States
| | - Debra J Skene
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, United Kingdom
| | - Shobhan Gaddameedhi
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27695, United States
- Center for Human Health and the Environment, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Hans P A Van Dongen
- Sleep and Performance Research Center, Washington State University, Spokane, Washington 99202, United States
- Department of Translational Medicine and Physiology, Washington State University, Spokane, Washington 99202, United States
| |
Collapse
|
19
|
Yuan Y, Chen Q, Brovkina M, Clowney EJ, Yadlapalli S. Clock-dependent chromatin accessibility rhythms regulate circadian transcription. PLoS Genet 2024; 20:e1011278. [PMID: 38805552 PMCID: PMC11161047 DOI: 10.1371/journal.pgen.1011278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 06/07/2024] [Accepted: 04/29/2024] [Indexed: 05/30/2024] Open
Abstract
Chromatin organization plays a crucial role in gene regulation by controlling the accessibility of DNA to transcription machinery. While significant progress has been made in understanding the regulatory role of clock proteins in circadian rhythms, how chromatin organization affects circadian rhythms remains poorly understood. Here, we employed ATAC-seq (Assay for Transposase-Accessible Chromatin with Sequencing) on FAC-sorted Drosophila clock neurons to assess genome-wide chromatin accessibility at dawn and dusk over the circadian cycle. We observed significant oscillations in chromatin accessibility at promoter and enhancer regions of hundreds of genes, with enhanced accessibility either at dusk or dawn, which correlated with their peak transcriptional activity. Notably, genes with enhanced accessibility at dusk were enriched with E-box motifs, while those more accessible at dawn were enriched with VRI/PDP1-box motifs, indicating that they are regulated by the core circadian feedback loops, PER/CLK and VRI/PDP1, respectively. Further, we observed a complete loss of chromatin accessibility rhythms in per01 null mutants, with chromatin consistently accessible at both dawn and dusk, underscoring the critical role of Period protein in driving chromatin compaction during the repression phase at dawn. Together, this study demonstrates the significant role of chromatin organization in circadian regulation, revealing how the interplay between clock proteins and chromatin structure orchestrates the precise timing of biological processes throughout the day. This work further implies that variations in chromatin accessibility might play a central role in the generation of diverse circadian gene expression patterns in clock neurons.
Collapse
Affiliation(s)
- Ye Yuan
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Qianqian Chen
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Margarita Brovkina
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, Michigan, United States of America
| | - E Josephine Clowney
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Swathi Yadlapalli
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
20
|
Bass J. Interorgan rhythmicity as a feature of healthful metabolism. Cell Metab 2024; 36:655-669. [PMID: 38335957 PMCID: PMC10990795 DOI: 10.1016/j.cmet.2024.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/10/2024] [Accepted: 01/17/2024] [Indexed: 02/12/2024]
Abstract
The finding that animals with circadian gene mutations exhibit diet-induced obesity and metabolic syndrome with hypoinsulinemia revealed a distinct role for the clock in the brain and peripheral tissues. Obesogenic diets disrupt rhythmic sleep/wake patterns, feeding behavior, and transcriptional networks, showing that metabolic signals reciprocally control the clock. Providing access to high-fat diet only during the sleep phase (light period) in mice accelerates weight gain, whereas isocaloric time-restricted feeding during the active period enhances energy expenditure due to circadian induction of adipose thermogenesis. This perspective focuses on advances and unanswered questions in understanding the interorgan circadian control of healthful metabolism.
Collapse
Affiliation(s)
- Joseph Bass
- Department of Medicine, Division of Endocrinology, Metabolism, and Molecular Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
21
|
Lyu J, Zhuang Y, Lin Y. Circadian regulation of translation. RNA Biol 2024; 21:14-24. [PMID: 39324589 PMCID: PMC11441039 DOI: 10.1080/15476286.2024.2408524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 09/09/2024] [Accepted: 09/16/2024] [Indexed: 09/27/2024] Open
Abstract
Most, if not all organisms exhibit robust rhythmicity of their biological functions, allowing a perpetual adaptation to external clues within the daily 24 hours-cycle. Studies on circadian rhythm regulation primarily focused on transcriptional level, considering mRNA levels to represent the primary determinant of oscillations of intracellular protein levels. However, a plethora of emerging evidence suggests that post-transcriptional regulation, particularly rhythmic mRNA translation, is not solely reliant on the oscillation of transcription. Instead, the circadian regulation of mRNA translation plays a critical role as well. A comprehensive understanding of these mechanisms underlying rhythmic translation and its regulation should bridge the gap in rhythm regulation beyond RNA fluctuations in research, and greatly enhance our comprehension of rhythm generation and maintenance. In this review, we summarize the major mechanisms of circadian regulation of translation, including regulation of translation initiation, elongation, and the alteration in rhythmic translation to external stresses, such as endoplasmic reticulum (ER) stress and ageing. We also illuminate the complex interplay between phase separation and mRNA translation. Together, we have summarized various facets of mRNA translation in circadian regulation, to set on forthcoming studies into the intricate regulatory mechanisms underpinning circadian rhythms and their implications for associated disorders.
Collapse
Affiliation(s)
- Jiali Lyu
- State Key Laboratory of Membrane Biology, IDG/McGovern Institute for Brain Research, Tsinghua-Peking Joint Centre for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yanrong Zhuang
- State Key Laboratory of Membrane Biology, IDG/McGovern Institute for Brain Research, Tsinghua-Peking Joint Centre for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yi Lin
- State Key Laboratory of Membrane Biology, IDG/McGovern Institute for Brain Research, Tsinghua-Peking Joint Centre for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
22
|
Zhu B, Liu S, David NL, Dion W, Doshi NK, Siegel LB, Amorim T, Andrews RE, Naveen Kumar GV, Li H, Irfan S, Pesaresi T, Sharma AX, Sun M, Fazeli PK, Steinhauser ML. Evidence for conservation of primordial ~12-hour ultradian gene programs in humans under free-living conditions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.02.539021. [PMID: 37205600 PMCID: PMC10187241 DOI: 10.1101/2023.05.02.539021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
While circadian rhythms are entrained to the once daily light-dark cycle of the sun, many marine organisms exhibit ~12h ultradian rhythms corresponding to the twice daily movement of the tides. Although human ancestors emerged from circatidal environment millions of years ago, direct evidence of ~12h ultradian rhythms in humans is lacking. Here, we performed prospective, temporal transcriptome profiling of peripheral white blood cells and identified robust ~12h transcriptional rhythms from three healthy participants. Pathway analysis implicated ~12h rhythms in RNA and protein metabolism, with strong homology to the circatidal gene programs previously identified in Cnidarian marine species. We further observed ~12h rhythms of intron retention events of genes involved in MHC class I antigen presentation, synchronized to expression of mRNA splicing genes in all three participants. Gene regulatory network inference revealed XBP1, and GABP and KLF transcription factor family members as potential transcriptional regulators of human ~12h rhythms. These results suggest that human ~12h biological rhythms have a primordial evolutionary origin with important implications for human health and disease.
Collapse
Affiliation(s)
- Bokai Zhu
- Aging Institute of UPMC, University of Pittsburgh School of Medicine; Pittsburgh, Pennsylvania, USA
- Pittsburgh Liver Research Center, University of Pittsburgh; Pittsburgh, Pennsylvania, USA
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh School of Medicine; Pittsburgh, Pennsylvania, USA
| | - Silvia Liu
- Pittsburgh Liver Research Center, University of Pittsburgh; Pittsburgh, Pennsylvania, USA
- Department of Pathology, University of Pittsburgh School of Medicine; Pittsburgh, Pennsylvania, USA
| | - Natalie L. David
- Aging Institute of UPMC, University of Pittsburgh School of Medicine; Pittsburgh, Pennsylvania, USA
- Neuroendocrinology Unit, Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh School of Medicine; Pittsburgh, Pennsylvania, USA
- Center for Human Integrative Physiology, University of Pittsburgh School of Medicine; Pittsburgh, Pennsylvania, USA
| | - William Dion
- Aging Institute of UPMC, University of Pittsburgh School of Medicine; Pittsburgh, Pennsylvania, USA
| | - Nandini K Doshi
- Aging Institute of UPMC, University of Pittsburgh School of Medicine; Pittsburgh, Pennsylvania, USA
- Center for Human Integrative Physiology, University of Pittsburgh School of Medicine; Pittsburgh, Pennsylvania, USA
| | - Lauren B. Siegel
- Neuroendocrinology Unit, Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh School of Medicine; Pittsburgh, Pennsylvania, USA
| | - Tânia Amorim
- Aging Institute of UPMC, University of Pittsburgh School of Medicine; Pittsburgh, Pennsylvania, USA
- Neuroendocrinology Unit, Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh School of Medicine; Pittsburgh, Pennsylvania, USA
- Center for Human Integrative Physiology, University of Pittsburgh School of Medicine; Pittsburgh, Pennsylvania, USA
| | - Rosemary E. Andrews
- Aging Institute of UPMC, University of Pittsburgh School of Medicine; Pittsburgh, Pennsylvania, USA
- Center for Human Integrative Physiology, University of Pittsburgh School of Medicine; Pittsburgh, Pennsylvania, USA
| | - GV Naveen Kumar
- Aging Institute of UPMC, University of Pittsburgh School of Medicine; Pittsburgh, Pennsylvania, USA
| | - Hanwen Li
- Department of Statistics, Kenneth P. Dietrich School of Arts and Sciences, University of Pittsburgh; Pittsburgh, Pennsylvania, USA
| | - Saad Irfan
- Aging Institute of UPMC, University of Pittsburgh School of Medicine; Pittsburgh, Pennsylvania, USA
| | - Tristan Pesaresi
- Aging Institute of UPMC, University of Pittsburgh School of Medicine; Pittsburgh, Pennsylvania, USA
- Center for Human Integrative Physiology, University of Pittsburgh School of Medicine; Pittsburgh, Pennsylvania, USA
| | - Ankit X. Sharma
- Aging Institute of UPMC, University of Pittsburgh School of Medicine; Pittsburgh, Pennsylvania, USA
| | - Michelle Sun
- Aging Institute of UPMC, University of Pittsburgh School of Medicine; Pittsburgh, Pennsylvania, USA
| | - Pouneh K. Fazeli
- Neuroendocrinology Unit, Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh School of Medicine; Pittsburgh, Pennsylvania, USA
- Center for Human Integrative Physiology, University of Pittsburgh School of Medicine; Pittsburgh, Pennsylvania, USA
| | - Matthew L. Steinhauser
- Aging Institute of UPMC, University of Pittsburgh School of Medicine; Pittsburgh, Pennsylvania, USA
- Center for Human Integrative Physiology, University of Pittsburgh School of Medicine; Pittsburgh, Pennsylvania, USA
- Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine; Pittsburgh, Pennsylvania, USA
| |
Collapse
|
23
|
Deans JR, Deol P, Titova N, Radi SH, Vuong LM, Evans JR, Pan S, Fahrmann J, Yang J, Hammock BD, Fiehn O, Fekry B, Eckel-Mahan K, Sladek FM. HNF4α isoforms regulate the circadian balance between carbohydrate and lipid metabolism in the liver. Front Endocrinol (Lausanne) 2023; 14:1266527. [PMID: 38111711 PMCID: PMC10726135 DOI: 10.3389/fendo.2023.1266527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/06/2023] [Indexed: 12/20/2023] Open
Abstract
Hepatocyte Nuclear Factor 4α (HNF4α), a master regulator of hepatocyte differentiation, is regulated by two promoters (P1 and P2) which drive the expression of different isoforms. P1-HNF4α is the major isoform in the adult liver while P2-HNF4α is thought to be expressed only in fetal liver and liver cancer. Here, we show that P2-HNF4α is indeed expressed in the normal adult liver at Zeitgeber time (ZT)9 and ZT21. Using exon swap mice that express only P2-HNF4α we show that this isoform orchestrates a distinct transcriptome and metabolome via unique chromatin and protein-protein interactions, including with different clock proteins at different times of the day leading to subtle differences in circadian gene regulation. Furthermore, deletion of the Clock gene alters the circadian oscillation of P2- (but not P1-)HNF4α RNA, revealing a complex feedback loop between the HNF4α isoforms and the hepatic clock. Finally, we demonstrate that while P1-HNF4α drives gluconeogenesis, P2-HNF4α drives ketogenesis and is required for elevated levels of ketone bodies in female mice. Taken together, we propose that the highly conserved two-promoter structure of the Hnf4a gene is an evolutionarily conserved mechanism to maintain the balance between gluconeogenesis and ketogenesis in the liver in a circadian fashion.
Collapse
Affiliation(s)
- Jonathan R. Deans
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, Riverside, CA, United States
- Genetics, Genomics and Bioinformatics Graduate Program, University of California, Riverside, Riverside, CA, United States
| | - Poonamjot Deol
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, Riverside, CA, United States
| | - Nina Titova
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, Riverside, CA, United States
| | - Sarah H. Radi
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, Riverside, CA, United States
- Biochemistry and Molecular Biology Graduate Program, University of California, Riverside, Riverside, CA, United States
| | - Linh M. Vuong
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, Riverside, CA, United States
| | - Jane R. Evans
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, Riverside, CA, United States
| | - Songqin Pan
- Proteomics Core, Institute for Integrative Genome Biology, University of California, Riverside, Riverside, CA, United States
| | - Johannes Fahrmann
- National Institutes of Health West Coast Metabolomics Center, University of California, Davis, Davis, CA, United States
| | - Jun Yang
- Department of Entomology and Nematology & UCD Comprehensive Cancer Center, University of California, Davis, Davis, CA, United States
| | - Bruce D. Hammock
- Department of Entomology and Nematology & UCD Comprehensive Cancer Center, University of California, Davis, Davis, CA, United States
| | - Oliver Fiehn
- National Institutes of Health West Coast Metabolomics Center, University of California, Davis, Davis, CA, United States
| | - Baharan Fekry
- Department of Biochemistry and Molecular Biology, McGovern Medical School at the University of Texas Health Science Center (UT Health), Houston, TX, United States
| | - Kristin Eckel-Mahan
- Department of Biochemistry and Molecular Biology, McGovern Medical School at the University of Texas Health Science Center (UT Health), Houston, TX, United States
- Institute of Molecular Medicine, McGovern Medical School at the University of Texas Health Science Center (UT Health), Houston, TX, United States
| | - Frances M. Sladek
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|
24
|
Qian L, Gu Y, Zhai Q, Xue Z, Liu Y, Li S, Zeng Y, Sun R, Zhang Q, Cai X, Ge W, Dong Z, Gao H, Zhou Y, Zhu Y, Xu Y, Guo T. Multitissue Circadian Proteome Atlas of WT and Per1 -/-/Per2 -/- Mice. Mol Cell Proteomics 2023; 22:100675. [PMID: 37940002 PMCID: PMC10750102 DOI: 10.1016/j.mcpro.2023.100675] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 10/22/2023] [Accepted: 11/03/2023] [Indexed: 11/10/2023] Open
Abstract
The molecular basis of circadian rhythm, driven by core clock genes such as Per1/2, has been investigated on the transcriptome level, but not comprehensively on the proteome level. Here we quantified over 11,000 proteins expressed in eight types of tissues over 46 h with an interval of 2 h, using WT and Per1/Per2 double knockout mouse models. The multitissue circadian proteome landscape of WT mice shows tissue-specific patterns and reflects circadian anticipatory phenomena, which are less obvious on the transcript level. In most peripheral tissues of double knockout mice, reduced protein cyclers are identified when compared with those in WT mice. In addition, PER1/2 contributes to controlling the anticipation of the circadian rhythm, modulating tissue-specific cyclers as well as key pathways including nucleotide excision repair. Severe intertissue temporal dissonance of circadian proteome has been observed in the absence of Per1 and Per2. The γ-aminobutyric acid might modulate some of these temporally correlated cyclers in WT mice. Our study deepens our understanding of rhythmic proteins across multiple tissues and provides valuable insights into chronochemotherapy. The data are accessible at https://prot-rhythm.prottalks.com/.
Collapse
Affiliation(s)
- Liujia Qian
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang Province, China; Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China
| | - Yue Gu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Cambridge-Suda Genomic Resource Center, Soochow University, Suzhou, Jiangsu Province, China
| | - Qiaocheng Zhai
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Cambridge-Suda Genomic Resource Center, Soochow University, Suzhou, Jiangsu Province, China
| | - Zhangzhi Xue
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang Province, China; Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China
| | - Youqi Liu
- Westlake Omics (Hangzhou) Biotechnology Co, Ltd, Hangzhou, Zhejiang Province, China
| | - Sainan Li
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang Province, China; Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China
| | - Yizhun Zeng
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Cambridge-Suda Genomic Resource Center, Soochow University, Suzhou, Jiangsu Province, China
| | - Rui Sun
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang Province, China; Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China
| | - Qiushi Zhang
- Westlake Omics (Hangzhou) Biotechnology Co, Ltd, Hangzhou, Zhejiang Province, China
| | - Xue Cai
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang Province, China; Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China
| | - Weigang Ge
- Westlake Omics (Hangzhou) Biotechnology Co, Ltd, Hangzhou, Zhejiang Province, China
| | - Zhen Dong
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang Province, China; Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China
| | - Huanhuan Gao
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang Province, China; Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China
| | - Yan Zhou
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang Province, China; Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China
| | - Yi Zhu
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang Province, China; Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China.
| | - Ying Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Cambridge-Suda Genomic Resource Center, Soochow University, Suzhou, Jiangsu Province, China.
| | - Tiannan Guo
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang Province, China; Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China.
| |
Collapse
|
25
|
Brooks TG, Manjrekar A, Mrcˇela A, Grant GR. Meta-analysis of Diurnal Transcriptomics in Mouse Liver Reveals Low Repeatability of Rhythm Analyses. J Biol Rhythms 2023; 38:556-570. [PMID: 37382061 PMCID: PMC10615793 DOI: 10.1177/07487304231179600] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
To assess the consistency of biological rhythms across studies, 57 public mouse liver tissue timeseries totaling 1096 RNA-seq samples were obtained and analyzed. Only the control groups of each study were included, to create comparable data. Technical factors in RNA-seq library preparation were the largest contributors to transcriptome-level differences, beyond biological or experiment-specific factors such as lighting conditions. Core clock genes were remarkably consistent in phase across all studies. Overlap of genes identified as rhythmic across studies was generally low, with no pair of studies having over 60% overlap. Distributions of phases of significant genes were remarkably inconsistent across studies, but the genes that consistently identified as rhythmic had acrophase clustering near ZT0 and ZT12. Despite the discrepancies between single-study analyses, cross-study analyses found substantial consistency. Running compareRhythms on each pair of studies identified a median of only 11% of the identified rhythmic genes as rhythmic in only 1 of the 2 studies. Data were integrated across studies in a joint and individual variance estimate (JIVE) analysis, which showed that the top 2 components of joint within-study variation are determined by time of day. A shape-invariant model with random effects was fit to the genes to identify the underlying shape of the rhythms, consistent across all studies, including identifying 72 genes with consistently multiple peaks.
Collapse
Affiliation(s)
- Thomas G. Brooks
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Aditi Manjrekar
- Department of Neuroscience, The University of Texas at Dallas, Richardson, Texas
| | - Antonijo Mrcˇela
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Gregory R. Grant
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Genetics, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
26
|
Bolshette N, Ibrahim H, Reinke H, Asher G. Circadian regulation of liver function: from molecular mechanisms to disease pathophysiology. Nat Rev Gastroenterol Hepatol 2023; 20:695-707. [PMID: 37291279 DOI: 10.1038/s41575-023-00792-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/27/2023] [Indexed: 06/10/2023]
Abstract
A wide variety of liver functions are regulated daily by the liver circadian clock and via systemic circadian control by other organs and cells within the gastrointestinal tract as well as the microbiome and immune cells. Disruption of the circadian system, as occurs during jetlag, shift work or an unhealthy lifestyle, is implicated in several liver-related pathologies, ranging from metabolic diseases such as obesity, type 2 diabetes mellitus and nonalcoholic fatty liver disease to liver malignancies such as hepatocellular carcinoma. In this Review, we cover the molecular, cellular and organismal aspects of various liver pathologies from a circadian viewpoint, and in particular how circadian dysregulation has a role in the development and progression of these diseases. Finally, we discuss therapeutic and lifestyle interventions that carry health benefits through support of a functional circadian clock that acts in synchrony with the environment.
Collapse
Affiliation(s)
- Nityanand Bolshette
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Hussam Ibrahim
- University of Düsseldorf, Medical Faculty, Institute of Clinical Chemistry and Laboratory Diagnostics, Düsseldorf, Germany
| | - Hans Reinke
- University of Düsseldorf, Medical Faculty, Institute of Clinical Chemistry and Laboratory Diagnostics, Düsseldorf, Germany.
| | - Gad Asher
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
27
|
Millius A, Yamada RG, Fujishima H, Maeda K, Standley DM, Sumiyama K, Perrin D, Ueda HR. Circadian ribosome profiling reveals a role for the Period2 upstream open reading frame in sleep. Proc Natl Acad Sci U S A 2023; 120:e2214636120. [PMID: 37769257 PMCID: PMC10556633 DOI: 10.1073/pnas.2214636120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 08/29/2023] [Indexed: 09/30/2023] Open
Abstract
Many mammalian proteins have circadian cycles of production and degradation, and many of these rhythms are altered posttranscriptionally. We used ribosome profiling to examine posttranscriptional control of circadian rhythms by quantifying RNA translation in the liver over a 24-h period from circadian-entrained mice transferred to constant darkness conditions and by comparing ribosome binding levels to protein levels for 16 circadian proteins. We observed large differences in ribosome binding levels compared to protein levels, and we observed delays between peak ribosome binding and peak protein abundance. We found extensive binding of ribosomes to upstream open reading frames (uORFs) in circadian mRNAs, including the core clock gene Period2 (Per2). An increase in the number of uORFs in the 5'UTR was associated with a decrease in ribosome binding in the main coding sequence and a reduction in expression of synthetic reporter constructs. Mutation of the Per2 uORF increased luciferase and fluorescence reporter expression in 3T3 cells and increased luciferase expression in PER2:LUC MEF cells. Mutation of the Per2 uORF in mice increased Per2 mRNA expression, enhanced ribosome binding on Per2, and reduced total sleep time compared to that in wild-type mice. These results suggest that uORFs affect mRNA posttranscriptionally, which can impact physiological rhythms and sleep.
Collapse
Affiliation(s)
- Arthur Millius
- Laboratory for Synthetic Biology, RIKEN Quantitative Biology Center, Suita, Osaka565-0871, Japan
- Laboratory for Host Defense, Immunology Frontier Research Center, Suita, Osaka565-0871, Japan
- Laboratory for Systems Immunology, Immunology Frontier Research Center, Suita, Osaka565-0871, Japan
| | - Rikuhiro G. Yamada
- Laboratory for Synthetic Biology, RIKEN Quantitative Biology Center, Suita, Osaka565-0871, Japan
| | - Hiroshi Fujishima
- Laboratory for Synthetic Biology, RIKEN Quantitative Biology Center, Suita, Osaka565-0871, Japan
| | - Kazuhiko Maeda
- Laboratory for Host Defense, Immunology Frontier Research Center, Suita, Osaka565-0871, Japan
| | - Daron M. Standley
- Laboratory for Systems Immunology, Immunology Frontier Research Center, Suita, Osaka565-0871, Japan
| | - Kenta Sumiyama
- Laboratory of Animal Genetics and Breeding, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya464-8601, Japan
| | - Dimitri Perrin
- School of Computer Science, Queensland University of Technology, BrisbaneQLD 4000, Australia
- Centre for Data Science, Queensland University of Technology, BrisbaneQLD 4000, Australia
| | - Hiroki R. Ueda
- Laboratory for Synthetic Biology, RIKEN Quantitative Biology Center, Suita, Osaka565-0871, Japan
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Tokyo113-0033, Japan
| |
Collapse
|
28
|
Huang R, Chen J, Zhou M, Xin H, Lam SM, Jiang X, Li J, Deng F, Shui G, Zhang Z, Li MD. Multi-omics profiling reveals rhythmic liver function shaped by meal timing. Nat Commun 2023; 14:6086. [PMID: 37773240 PMCID: PMC10541894 DOI: 10.1038/s41467-023-41759-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 09/06/2023] [Indexed: 10/01/2023] Open
Abstract
Post-translational modifications (PTMs) couple feed-fast cycles to diurnal rhythms. However, it remains largely uncharacterized whether and how meal timing organizes diurnal rhythms beyond the transcriptome. Here, we systematically profile the daily rhythms of the proteome, four PTMs (phosphorylation, ubiquitylation, succinylation and N-glycosylation) and the lipidome in the liver from young female mice subjected to either day/sleep time-restricted feeding (DRF) or night/wake time-restricted feeding (NRF). We detect robust daily rhythms among different layers of omics with phosphorylation the most nutrient-responsive and succinylation the least. Integrative analyses reveal that clock regulation of fatty acid metabolism represents a key diurnal feature that is reset by meal timing, as indicated by the rhythmic phosphorylation of the circadian repressor PERIOD2 at Ser971 (PER2-pSer971). We confirm that PER2-pSer971 is activated by nutrient availability in vivo. Together, this dataset represents a comprehensive resource detailing the proteomic and lipidomic responses by the liver to alterations in meal timing.
Collapse
Affiliation(s)
- Rongfeng Huang
- Department of Cardiovascular Medicine, Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Army Medical University, Chongqing, China
| | - Jianghui Chen
- Department of Cardiovascular Medicine, Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Army Medical University, Chongqing, China
| | - Meiyu Zhou
- Department of Cardiovascular Medicine, Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Army Medical University, Chongqing, China
| | - Haoran Xin
- Department of Cardiovascular Medicine, Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Army Medical University, Chongqing, China
| | - Sin Man Lam
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- LipidALL Technologies Company Limited, Changzhou, Jiangsu Province, China
| | - Xiaoqing Jiang
- Department of Cardiovascular Medicine, Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Army Medical University, Chongqing, China
| | - Jie Li
- Department of Cardiovascular Medicine, Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Army Medical University, Chongqing, China
| | - Fang Deng
- Department of Pathophysiology, College of High Altitude Military Medicine, Army Medical University, Chongqing, 400038, China
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Zhihui Zhang
- Department of Cardiovascular Medicine, Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Army Medical University, Chongqing, China.
| | - Min-Dian Li
- Department of Cardiovascular Medicine, Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Army Medical University, Chongqing, China.
| |
Collapse
|
29
|
Dudek M, Morris H, Rogers N, Pathiranage DR, Raj SS, Chan D, Kadler KE, Hoyland J, Meng QJ. The clock transcription factor BMAL1 is a key regulator of extracellular matrix homeostasis and cell fate in the intervertebral disc. Matrix Biol 2023; 122:1-9. [PMID: 37495193 DOI: 10.1016/j.matbio.2023.07.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/28/2023] [Accepted: 07/21/2023] [Indexed: 07/28/2023]
Abstract
The circadian clock in mammals temporally coordinates physiological and behavioural processes to anticipate daily rhythmic changes in their environment. Chronic disruption to circadian rhythms (e.g., through ageing or shift work) is thought to contribute to a multitude of diseases, including degeneration of the musculoskeletal system. The intervertebral disc (IVD) in the spine contains circadian clocks which control ∼6% of the transcriptome in a rhythmic manner, including key genes involved in extracellular matrix (ECM) homeostasis. However, it remains largely unknown to what extent the local IVD molecular clock is required to drive rhythmic gene transcription and IVD physiology. In this work, we identified profound age-related changes of ECM microarchitecture and an endochondral ossification-like phenotype in the annulus fibrosus (AF) region of the IVD in the Col2a1-Bmal1 knockout mice. Circadian time series RNA-Seq of the whole IVD in Bmal1 knockout revealed loss of circadian patterns in gene expression, with an unexpected emergence of 12 h ultradian rhythms, including FOXO transcription factors. Further RNA sequencing of the AF tissue identified region-specific changes in gene expression, evidencing a loss of AF phenotype markers and a dysregulation of ECM and FOXO pathways in Bmal1 knockout mice. Consistent with an up-regulation of FOXO1 mRNA and protein levels in Bmal1 knockout IVDs, inhibition of FOXO1 in AF cells suppressed their osteogenic differentiation. Collectively, these data highlight the importance of the local molecular clock mechanism in the maintenance of the cell fate and ECM homeostasis of the IVD. Further studies may identify potential new molecular targets for alleviating IVD degeneration.
Collapse
Affiliation(s)
- Michal Dudek
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Wellcome Centre for Cell Matrix Research, University of Manchester, Oxford Road, Manchester, UK; Centre for Biological Timing, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, UK
| | - Honor Morris
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Wellcome Centre for Cell Matrix Research, University of Manchester, Oxford Road, Manchester, UK; Centre for Biological Timing, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, UK
| | - Natalie Rogers
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Wellcome Centre for Cell Matrix Research, University of Manchester, Oxford Road, Manchester, UK; Centre for Biological Timing, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, UK
| | - Dharshika Rj Pathiranage
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Wellcome Centre for Cell Matrix Research, University of Manchester, Oxford Road, Manchester, UK; Centre for Biological Timing, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, UK
| | - Sujitha Saba Raj
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Wellcome Centre for Cell Matrix Research, University of Manchester, Oxford Road, Manchester, UK; Centre for Biological Timing, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, UK
| | - Danny Chan
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Karl E Kadler
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Wellcome Centre for Cell Matrix Research, University of Manchester, Oxford Road, Manchester, UK
| | - Judith Hoyland
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Wellcome Centre for Cell Matrix Research, University of Manchester, Oxford Road, Manchester, UK; Central Manchester Foundation Trust, Manchester Academic Health Science Centre, NIHR Manchester Biomedical Research Centre, Oxford Road, Manchester, UK.
| | - Qing-Jun Meng
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Wellcome Centre for Cell Matrix Research, University of Manchester, Oxford Road, Manchester, UK; Centre for Biological Timing, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, UK.
| |
Collapse
|
30
|
Jiang H, Wang X, Ma J, Xu G. The fine-tuned crosstalk between lysine acetylation and the circadian rhythm. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194958. [PMID: 37453648 DOI: 10.1016/j.bbagrm.2023.194958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 07/03/2023] [Indexed: 07/18/2023]
Abstract
Circadian rhythm is a roughly 24-h wake and sleep cycle that almost all of the organisms on the earth follow when they execute their biological functions and physiological activities. The circadian clock is mainly regulated by the transcription-translation feedback loop (TTFL), consisting of the core clock proteins, including BMAL1, CLOCK, PERs, CRYs, and a series of accessory factors. The circadian clock and the downstream gene expression are not only controlled at the transcriptional and translational levels but also precisely regulated at the post-translational modification level. Recently, it has been discovered that CLOCK exhibits lysine acetyltransferase activities and could acetylate protein substrates. Core clock proteins are also acetylated, thereby altering their biological functions in the regulation of the expression of downstream genes. Studies have revealed that many protein acetylation events exhibit oscillation behavior. However, the biological function of acetylation on circadian rhythm has only begun to explore. This review will briefly introduce the acetylation and deacetylation of the core clock proteins and summarize the proteins whose acetylation is regulated by CLOCK and circadian rhythm. Then, we will also discuss the crosstalk between lysine acetylation and the circadian clock or other post-translational modifications. Finally, we will briefly describe the possible future perspectives in the field.
Collapse
Affiliation(s)
- Honglv Jiang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou, Jiangsu 215123, China
| | - Xiaohui Wang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou, Jiangsu 215123, China
| | - Jingjing Ma
- Department of Pharmacy, Medical Center of Soochow University, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, Jiangsu 215123, China.
| | - Guoqiang Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou, Jiangsu 215123, China.
| |
Collapse
|
31
|
Duong HA, Baba K, DeBruyne JP, Davidson AJ, Ehlen C, Powell M, Tosini G. Environmental circadian disruption re-programs liver circadian gene expression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.28.555175. [PMID: 37693605 PMCID: PMC10491124 DOI: 10.1101/2023.08.28.555175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Circadian gene expression is fundamental to the establishment and functions of the circadian clock, a cell-autonomous and evolutionary-conserved timing system. Yet, how it is affected by environmental-circadian disruption (ECD) such as shiftwork and jetlag, which impact millions of people worldwide, are ill-defined. Here, we provided the first comprehensive description of liver circadian gene expression under normal and after ECD conditions. We found that post-transcription and post-translation processes are dominant contributors to whole-cell or nuclear circadian proteome, respectively. Furthermore, rhythmicity of 64% transcriptome, 98% whole-cell proteome and 95% nuclear proteome is re-written by ECD. The re-writing, which is associated with changes of circadian cis-regulatory elements, RNA-processing and protein trafficking, diminishes circadian regulation of fat and carbohydrate metabolism and persists after one week of ECD-recovery.
Collapse
Affiliation(s)
- Hao A. Duong
- Department of Pharmacology and Toxicology, Morehouse School of Medicine, Atlanta GA 30310
- Neuroscience Institute, Morehouse School of Medicine, Atlanta GA 30310
| | - Kenkichi Baba
- Department of Pharmacology and Toxicology, Morehouse School of Medicine, Atlanta GA 30310
- Neuroscience Institute, Morehouse School of Medicine, Atlanta GA 30310
| | - Jason P. DeBruyne
- Department of Pharmacology and Toxicology, Morehouse School of Medicine, Atlanta GA 30310
- Neuroscience Institute, Morehouse School of Medicine, Atlanta GA 30310
| | - Alec J. Davidson
- Neuroscience Institute, Morehouse School of Medicine, Atlanta GA 30310
| | - Christopher Ehlen
- Neuroscience Institute, Morehouse School of Medicine, Atlanta GA 30310
| | - Michael Powell
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta GA 30310
| | - Gianluca Tosini
- Department of Pharmacology and Toxicology, Morehouse School of Medicine, Atlanta GA 30310
- Neuroscience Institute, Morehouse School of Medicine, Atlanta GA 30310
| |
Collapse
|
32
|
Castillo KD, Chapa ED, Lamb TM, Gangopadhyay M, Bell-Pedersen D. Circadian clock control of tRNA synthetases in Neurospora crassa. F1000Res 2023; 11:1556. [PMID: 37841830 PMCID: PMC10576190 DOI: 10.12688/f1000research.125351.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/31/2023] [Indexed: 10/17/2023] Open
Abstract
Background: In Neurospora crassa, the circadian clock controls rhythmic mRNA translation initiation through regulation of the eIF2α kinase CPC-3 (the homolog of yeast and mammalian GCN2). Active CPC-3 phosphorylates and inactivates eIF2α, leading to higher phosphorylated eIF2α (P-eIF2α) levels and reduced translation initiation during the subjective day. This daytime activation of CPC-3 is driven by its binding to uncharged tRNA, and uncharged tRNA levels peak during the day under control of the circadian clock. The daily rhythm in uncharged tRNA levels could arise from rhythmic amino acid levels or aminoacyl-tRNA synthetase (aaRSs) levels. Methods: To determine if and how the clock potentially controls rhythms in aspartyl-tRNA synthetase (AspRS) and glutaminyl-tRNA synthetase (GlnRS), both observed to be rhythmic in circadian genomic datasets, transcriptional and translational fusions to luciferase were generated. These luciferase reporter fusions were examined in wild type (WT), clock mutant Δ frq, and clock-controlled transcription factor deletion strains. Results: Translational and transcriptional fusions of AspRS and GlnRS to luciferase confirmed that their protein levels are clock-controlled with peak levels at night. Moreover, clock-controlled transcription factors NCU00275 and ADV-1 drive robust rhythmic protein expression of AspRS and GlnRS, respectively. Conclusions: These data support a model whereby coordinate clock control of select aaRSs drives rhythms in uncharged tRNAs, leading to rhythmic CPC-3 activation, and rhythms in translation of specific mRNAs.
Collapse
Affiliation(s)
- Kathrina D. Castillo
- Biology, Texas A&M University, College Station, TX, 77843, USA
- Center for Biological Clocks Research, Texas A&M University, College Station, TX, 77843, USA
| | - Emily D. Chapa
- Biology, Texas A&M University, College Station, TX, 77843, USA
| | - Teresa M. Lamb
- Biology, Texas A&M University, College Station, TX, 77843, USA
- Center for Biological Clocks Research, Texas A&M University, College Station, TX, 77843, USA
| | - Madhusree Gangopadhyay
- Biology, Texas A&M University, College Station, TX, 77843, USA
- Center for Biological Clocks Research, Texas A&M University, College Station, TX, 77843, USA
| | - Deborah Bell-Pedersen
- Biology, Texas A&M University, College Station, TX, 77843, USA
- Center for Biological Clocks Research, Texas A&M University, College Station, TX, 77843, USA
| |
Collapse
|
33
|
Yuan Y, Chen Q, Brovkina M, Clowney EJ, Yadlapalli S. Clock-dependent chromatin accessibility rhythms regulate circadian transcription. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.15.553315. [PMID: 37645872 PMCID: PMC10462003 DOI: 10.1101/2023.08.15.553315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Chromatin organization plays a crucial role in gene regulation by controlling the accessibility of DNA to transcription machinery. While significant progress has been made in understanding the regulatory role of clock proteins in circadian rhythms, how chromatin organization affects circadian rhythms remains poorly understood. Here, we employed ATAC-seq (Assay for Transposase-Accessible Chromatin with Sequencing) on FAC-sorted Drosophila clock neurons to assess genome-wide chromatin accessibility over the circadian cycle. We observed significant circadian oscillations in chromatin accessibility at promoter and enhancer regions of hundreds of genes, with enhanced accessibility either at dusk or dawn, which correlated with their peak transcriptional activity. Notably, genes with enhanced accessibility at dusk were enriched with E-box motifs, while those more accessible at dawn were enriched with VRI/PDP1-box motifs, indicating that they are regulated by the core circadian feedback loops, PER/CLK and VRI/PDP1, respectively. Further, we observed a complete loss of chromatin accessibility rhythms in per01 null mutants, with chromatin consistently accessible throughout the circadian cycle, underscoring the critical role of Period protein in driving chromatin compaction during the repression phase. Together, this study demonstrates the significant role of chromatin organization in circadian regulation, revealing how the interplay between clock proteins and chromatin structure orchestrates the precise timing of biological processes throughout the day. This work further implies that variations in chromatin accessibility might play a central role in the generation of diverse circadian gene expression patterns in clock neurons.
Collapse
Affiliation(s)
- Ye Yuan
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Qianqian Chen
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Margarita Brovkina
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - E Josephine Clowney
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
- Michigan Neuroscience Institute Affiliate, University of Michigan, Ann Arbor, MI 48109, USA
| | - Swathi Yadlapalli
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
- Michigan Neuroscience Institute Affiliate, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
34
|
Makris KC, Heibati B, Narui SZ. Chrono-modulated effects of external stressors on oxidative stress and damage in humans: A scoping review on night shift work. ENVIRONMENT INTERNATIONAL 2023; 178:108048. [PMID: 37463540 DOI: 10.1016/j.envint.2023.108048] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 07/20/2023]
Abstract
BACKGROUND Oxidative stress and tissue damage (OSD) play a pivotal role as an early-stage process in chronic disease pathogenesis. However, there has been little research to better understand the temporal (χρόνος[chronos]) dimensions of OSD process associated with environmental (non-genetic, including behaviors/lifestyle) and/or occupational stressors, like night shift work. OSD processes have recently attracted attention in relation to time-resolved external stressor trajectories in personalized medicine (prevention) initiatives, as they seem to interact with circadian clock systems towards the improved delineation of the early stages of (chronic) disease process. OBJECTIVES This work critically reviewed human studies targeting the temporal dynamics of OSD and circadian clock system's activity in response to environmental/occupational stressors; the case of night shift work was examined. METHODS Being a key stressor influencing OSD processes and circadian rhythm, night shift work was evaluated as part of a scoping review of research in OSD, including inflammatory and metabolic processes to determine the extent of OSD research undertaken in human populations, methodologies, tools and biomarkers used and the extent that the temporal dimensions of exposure and biological effect(s) were accounted for. Online databases were searched for papers published from 2000 onwards, resulting in the selection of 53 original publications. RESULTS AND DISCUSSION The majority of studies (n = 41) took place in occupational settings, while the rest were conducted in the general population or patient groups. Most occupational studies targeted outcomes of oxidative stress/damage (n = 19), followed by the combination of OSD with inflammatory response (n = 10), and studies focused on metabolic outcomes (n = 12). Only a minor fraction of the studies measured biomarkers related to circadian rhythm, such as, melatonin, its metabolite, or cortisol. Night shift work was associated with select biomarkers of OSD and inflammation, albeit with mixed results. Although much progress in delineating the biological mechanisms of OSD process has been made, an equally thorough investigation on the temporal trajectory of OSD processes as triggered by environmental/occupational stressors in human studies has yet to fully evolve.
Collapse
Affiliation(s)
- Konstantinos C Makris
- Cyprus International Institute for Environmental and Public Health, Cyprus University of Technology, Limassol, Cyprus.
| | - Behzad Heibati
- Cyprus International Institute for Environmental and Public Health, Cyprus University of Technology, Limassol, Cyprus; Department of Research, Cancer Registry Norway, Oslo, Norway
| | | |
Collapse
|
35
|
Zhuang Y, Li Z, Xiong S, Sun C, Li B, Wu SA, Lyu J, Shi X, Yang L, Chen Y, Bao Z, Li X, Sun C, Chen Y, Deng H, Li T, Wu Q, Qi L, Huang Y, Yang X, Lin Y. Circadian clocks are modulated by compartmentalized oscillating translation. Cell 2023; 186:3245-3260.e23. [PMID: 37369203 DOI: 10.1016/j.cell.2023.05.045] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 04/12/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023]
Abstract
Terrestrial organisms developed circadian rhythms for adaptation to Earth's quasi-24-h rotation. Achieving precise rhythms requires diurnal oscillation of fundamental biological processes, such as rhythmic shifts in the cellular translational landscape; however, regulatory mechanisms underlying rhythmic translation remain elusive. Here, we identified mammalian ATXN2 and ATXN2L as cooperating master regulators of rhythmic translation, through oscillating phase separation in the suprachiasmatic nucleus along circadian cycles. The spatiotemporal oscillating condensates facilitate sequential initiation of multiple cycling processes, from mRNA processing to protein translation, for selective genes including core clock genes. Depleting ATXN2 or 2L induces opposite alterations to the circadian period, whereas the absence of both disrupts translational activation cycles and weakens circadian rhythmicity in mice. Such cellular defect can be rescued by wild type, but not phase-separation-defective ATXN2. Together, we revealed that oscillating translation is regulated by spatiotemporal condensation of two master regulators to achieve precise circadian rhythm in mammals.
Collapse
Affiliation(s)
- Yanrong Zhuang
- State Key Laboratory of Membrane Biology, IDG/McGovern Institute for Brain Research, Tsinghua-Peking Joint Centre for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Zhiyuan Li
- School of Life Sciences, MOE Key Laboratory of Bioinformatics, Center for Synthetic & Systems Biology, Tsinghua University, Beijing 100084, China
| | - Shiyue Xiong
- State Key Laboratory of Membrane Biology, IDG/McGovern Institute for Brain Research, Tsinghua-Peking Joint Centre for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Chujie Sun
- School of Life Sciences, MOE Key Laboratory of Bioinformatics, Center for Synthetic & Systems Biology, Tsinghua University, Beijing 100084, China
| | - Boya Li
- State Key Laboratory of Membrane Biology, IDG/McGovern Institute for Brain Research, Tsinghua-Peking Joint Centre for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Shuangcheng Alivia Wu
- Department of Molecular & Integrative Physiology, Division of Metabolism, Endocrinology & Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48105, USA
| | - Jiali Lyu
- State Key Laboratory of Membrane Biology, IDG/McGovern Institute for Brain Research, Tsinghua-Peking Joint Centre for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xiang Shi
- State Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Liang Yang
- Department of Medical Bioinformatics, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education, National Health Commission of China, Peking University, Beijing 100191, China
| | - Yutong Chen
- State Key Laboratory of Membrane Biology, IDG/McGovern Institute for Brain Research, Tsinghua-Peking Joint Centre for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Zhangbin Bao
- State Key Laboratory of Membrane Biology, IDG/McGovern Institute for Brain Research, Tsinghua-Peking Joint Centre for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xi Li
- State Key Laboratory of Membrane Biology, IDG/McGovern Institute for Brain Research, Tsinghua-Peking Joint Centre for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Chuhanwen Sun
- State Key Laboratory of Membrane Biology, IDG/McGovern Institute for Brain Research, Tsinghua-Peking Joint Centre for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yuling Chen
- School of Life Sciences, MOE Key Laboratory of Bioinformatics, Center for Synthetic & Systems Biology, Tsinghua University, Beijing 100084, China
| | - Haiteng Deng
- School of Life Sciences, MOE Key Laboratory of Bioinformatics, Center for Synthetic & Systems Biology, Tsinghua University, Beijing 100084, China
| | - Tingting Li
- Department of Medical Bioinformatics, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education, National Health Commission of China, Peking University, Beijing 100191, China
| | - Qingfeng Wu
- State Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ling Qi
- Department of Molecular & Integrative Physiology, Division of Metabolism, Endocrinology & Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48105, USA
| | - Yue Huang
- China National Clinical Research Center for Neurological Diseases and Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China; Phamalology Department, School of Biomedical Sciences, Faculty of Medicine, UNSW Sydney, Sydney, Australia
| | - Xuerui Yang
- School of Life Sciences, MOE Key Laboratory of Bioinformatics, Center for Synthetic & Systems Biology, Tsinghua University, Beijing 100084, China.
| | - Yi Lin
- State Key Laboratory of Membrane Biology, IDG/McGovern Institute for Brain Research, Tsinghua-Peking Joint Centre for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
36
|
de Assis LVM, Demir M, Oster H. Nonalcoholic Steatohepatitis Disrupts Diurnal Liver Transcriptome Rhythms in Mice. Cell Mol Gastroenterol Hepatol 2023; 16:341-354. [PMID: 37270062 PMCID: PMC10444956 DOI: 10.1016/j.jcmgh.2023.05.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/05/2023]
Abstract
BACKGROUND & AIMS The liver ensures organismal homeostasis through modulation of physiological functions over the course of the day. How liver diseases such as nonalcoholic steatohepatitis (NASH) affect daily transcriptome rhythms in the liver remains elusive. METHODS To start closing this gap, we evaluated the impact of NASH on the diurnal regulation of the liver transcriptome in mice. In addition, we investigated how stringent consideration of circadian rhythmicity affects the outcomes of NASH transcriptome analyses. RESULTS Comparative rhythm analysis of the liver transcriptome from diet-induced NASH and control mice showed an almost 3-hour phase advance in global gene expression rhythms. Rhythmically expressed genes associated with DNA repair and cell-cycle regulation showed increased overall expression and circadian amplitude. In contrast, lipid and glucose metabolism-associated genes showed loss of circadian amplitude, reduced overall expression, and phase advances in NASH livers. Comparison of NASH-induced liver transcriptome responses between published studies showed little overlap (12%) in differentially expressed genes (DEGs). However, by controlling for sampling time and using circadian analytical tools, a 7-fold increase in DEG detection was achieved compared with methods without time control. CONCLUSIONS NASH had a strong effect on circadian liver transcriptome rhythms with phase- and amplitude-specific effects for key metabolic and cell repair pathways, respectively. Accounting for circadian rhythms in NASH transcriptome studies markedly improves DEG detection and enhances reproducibility.
Collapse
Affiliation(s)
| | - Münevver Demir
- Department of Hepatology and Gastroenterology, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany; Department of Hepatology and Gastroenterology, Charité-Universitätsmedizin Berlin, Campus Charité Mitte, Berlin, Germany
| | - Henrik Oster
- Institute of Neurobiology, Center of Brain Behavior and Metabolism, University of Lübeck, Lübeck, Germany.
| |
Collapse
|
37
|
Zhu B, Liu S. Preservation of ∼12-h ultradian rhythms of gene expression of mRNA and protein metabolism in the absence of canonical circadian clock. Front Physiol 2023; 14:1195001. [PMID: 37324401 PMCID: PMC10267751 DOI: 10.3389/fphys.2023.1195001] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/19/2023] [Indexed: 06/17/2023] Open
Abstract
Introduction: Besides the ∼24-h circadian rhythms, ∼12-h ultradian rhythms of gene expression, metabolism and behaviors exist in animals ranging from crustaceans to mammals. Three major hypotheses were proposed on the origin and mechanisms of regulation of ∼12-h rhythms, namely, that they are not cell-autonomous and controlled by a combination of the circadian clock and environmental cues, that they are regulated by two anti-phase circadian transcription factors in a cell autonomous manner, or that they are established by a cell-autonomous ∼12-h oscillator. Methods: To distinguish among these possibilities, we performed a post hoc analysis of two high temporal resolution transcriptome dataset in animals and cells lacking the canonical circadian clock. Results: In both the liver of BMAL1 knockout mice and Drosophila S2 cells, we observed robust and prevalent ∼12-h rhythms of gene expression enriched in fundamental processes of mRNA and protein metabolism that show large convergence with those identified in wild-type mice liver. Bioinformatics analysis further predicted ELF1 and ATF6B as putative transcription factors regulating the ∼12-h rhythms of gene expression independently of the circadian clock in both fly and mice. Discussion: These findings provide additional evidence to support the existence of an evolutionarily conserved 12-h oscillator that controls ∼12-h rhythms of gene expression of protein and mRNA metabolism in multiple species.
Collapse
Affiliation(s)
- Bokai Zhu
- Aging Institute of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, United States
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Silvia Liu
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
38
|
Anderson ST, Meng H, Brooks TG, Tang SY, Lordan R, Sengupta A, Nayak S, Mřela A, Sarantopoulou D, Lahens NF, Weljie A, Grant GR, Bushman FD, FitzGerald GA. Sexual dimorphism in the response to chronic circadian misalignment on a high-fat diet. Sci Transl Med 2023; 15:eabo2022. [PMID: 37196066 DOI: 10.1126/scitranslmed.abo2022] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 04/14/2023] [Indexed: 05/19/2023]
Abstract
Longitudinal studies associate shiftwork with cardiometabolic disorders but do not establish causation or elucidate mechanisms of disease. We developed a mouse model based on shiftwork schedules to study circadian misalignment in both sexes. Behavioral and transcriptional rhythmicity were preserved in female mice despite exposure to misalignment. Females were protected from the cardiometabolic impact of circadian misalignment on a high-fat diet seen in males. The liver transcriptome and proteome revealed discordant pathway perturbations between the sexes. Tissue-level changes were accompanied by gut microbiome dysbiosis only in male mice, biasing toward increased potential for diabetogenic branched chain amino acid production. Antibiotic ablation of the gut microbiota diminished the impact of misalignment. In the United Kingdom Biobank, females showed stronger circadian rhythmicity in activity and a lower incidence of metabolic syndrome than males among job-matched shiftworkers. Thus, we show that female mice are more resilient than males to chronic circadian misalignment and that these differences are conserved in humans.
Collapse
Affiliation(s)
- Seán T Anderson
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hu Meng
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Thomas G Brooks
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Soon Yew Tang
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ronan Lordan
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Arjun Sengupta
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Soumyashant Nayak
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Antonijo Mřela
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Dimitra Sarantopoulou
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nicholas F Lahens
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Aalim Weljie
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Gregory R Grant
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Frederic D Bushman
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Garret A FitzGerald
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
39
|
Zhu B, Liu S. Preservation of ∼12-hour ultradian rhythms of gene expression of mRNA and protein metabolism in the absence of canonical circadian clock. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.01.538977. [PMID: 37205336 PMCID: PMC10187213 DOI: 10.1101/2023.05.01.538977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Besides the ∼24-hour circadian rhythms, ∼12-hour ultradian rhythms of gene expression, metabolism and behaviors exist in animals ranging from crustaceans to mammals. Three major hypotheses were proposed on the origin and mechanisms of regulation of ∼12-hour rhythms, namely that they are not cell-autonomous and controlled by a combination of the circadian clock and environmental cues, that they are regulated by two anti-phase circadian transcriptional factors in a cell-autonomous manner, or that they are established by a cell-autonomous ∼12-hour oscillator. To distinguish among these possibilities, we performed a post-hoc analysis of two high temporal resolution transcriptome dataset in animals and cells lacking the canonical circadian clock. In both the liver of BMAL1 knockout mice and Drosophila S2 cells, we observed robust and prevalent ∼12-hour rhythms of gene expression enriched in fundamental processes of mRNA and protein metabolism that show large convergence with those identified in wild-type mice liver. Bioinformatics analysis further predicted ELF1 and ATF6B as putative transcription factors regulating the ∼12-hour rhythms of gene expression independently of the circadian clock in both fly and mice. These findings provide additional evidence to support the existence of an evolutionarily conserved 12-hour oscillator that controls ∼12-hour rhythms of gene expression of protein and mRNA metabolism in multiple species.
Collapse
|
40
|
Pelham JF, Mosier AE, Altshuler SC, Rhodes ML, Kirchhoff CL, Fall WB, Mann C, Baik LS, Chiu JC, Hurley JM. Conformational changes in the negative arm of the circadian clock correlate with dynamic interactomes involved in post-transcriptional regulation. Cell Rep 2023; 42:112376. [PMID: 37043358 PMCID: PMC10562519 DOI: 10.1016/j.celrep.2023.112376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 09/16/2022] [Accepted: 03/24/2023] [Indexed: 04/13/2023] Open
Abstract
Biology is tuned to the Earth's diurnal cycle by the circadian clock, a transcriptional/translational negative feedback loop that regulates physiology via transcriptional activation and other post-transcriptional mechanisms. We hypothesize that circadian post-transcriptional regulation might stem from conformational shifts in the intrinsically disordered proteins that comprise the negative arm of the feedback loop to coordinate variation in negative-arm-centered macromolecular complexes. This work demonstrates temporal conformational fluidity in the negative arm that correlates with 24-h variation in physiologically diverse macromolecular complex components in eukaryotic clock proteins. Short linear motifs on the negative-arm proteins that correspond with the interactors localized to disordered regions and known temporal phosphorylation sites suggesting changes in these macromolecular complexes could be due to conformational changes imparted by the temporal phospho-state. Interactors that oscillate in the macromolecular complexes over circadian time correlate with post-transcriptionally regulated proteins, highlighting how time-of-day variation in the negative-arm protein complexes may tune cellular physiology.
Collapse
Affiliation(s)
- Jacqueline F Pelham
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Alexander E Mosier
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Samuel C Altshuler
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Morgan L Rhodes
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | | | - William B Fall
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Catherine Mann
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Lisa S Baik
- Department of Entomology and Nematology, University of California, Davis, Davis, CA 95616, USA
| | - Joanna C Chiu
- Department of Entomology and Nematology, University of California, Davis, Davis, CA 95616, USA
| | - Jennifer M Hurley
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA; Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.
| |
Collapse
|
41
|
Stangherlin A. Ion dynamics and the regulation of circadian cellular physiology. Am J Physiol Cell Physiol 2023; 324:C632-C643. [PMID: 36689675 DOI: 10.1152/ajpcell.00378.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Circadian rhythms in physiology and behavior allow organisms to anticipate the daily environmental changes imposed by the rotation of our planet around its axis. Although these rhythms eventually manifest at the organismal level, a cellular basis for circadian rhythms has been demonstrated. Significant contributors to these cell-autonomous rhythms are daily cycles in gene expression and protein translation. However, recent data revealed cellular rhythms in other biological processes, including ionic currents, ion transport, and cytosolic ion abundance. Circadian rhythms in ion currents sustain circadian variation in action potential firing rate, which coordinates neuronal behavior and activity. Circadian regulation of metal ions abundance and dynamics is implicated in distinct cellular processes, from protein translation to membrane activity and osmotic homeostasis. In turn, studies showed that manipulating ion abundance affects the expression of core clock genes and proteins, suggestive of a close interplay. However, the relationship between gene expression cycles, ion dynamics, and cellular function is still poorly characterized. In this review, I will discuss the mechanisms that generate ion rhythms, the cellular functions they govern, and how they feed back to regulate the core clock machinery.
Collapse
Affiliation(s)
- Alessandra Stangherlin
- Faculty of Medicine and University Hospital Cologne, Cluster of Excellence Cellular Stress Responses in Aging-associated Diseases (CECAD), Institute for Mitochondrial Diseases and Ageing, University of Cologne, Cologne, Germany
| |
Collapse
|
42
|
Wang D, Liu J, Chen X, Chen J, Zhao T, Du J, Wang C, Meng Q, Sun H, Wang F, Liu K, Wu J. Renal transporter OAT1 and PPAR-α pathway co-contribute to icaritin-induced nephrotoxicity. Phytother Res 2023; 37:549-562. [PMID: 36331006 DOI: 10.1002/ptr.7633] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 08/24/2022] [Accepted: 09/09/2022] [Indexed: 11/06/2022]
Abstract
This study aimed to investigate the potential nephrotoxicity of icaritin and the underlying mechanism by in vitro-in vivo experiment technology combined with proteomics technology. First, icaritin showed a significant cytotoxic effect on HK-2 cells, which was accompanied by increased LDH and TNF-α in the supernatant, decreased protein expressions of Bcl-2 and increased Bax and enhanced apoptosis of HK-2 cells as measured by TUNEL staining. Moreover, icaritin induced obvious tubular damage and up-regulation of BUN and CRE levels in plasma in mice. Second, intracellular uptake of icaritin was considerably higher in hOAT1-HEK293 cells than in mock-HEK293 cells, suggesting that icaritin might accumulate in renal cells via OAT1 uptake. Importantly, icaritin caused significant changes in the PPAR signaling pathway in HK2 cells through proteomic analysis. Then, in vitro and in vivo results verified that icaritin significantly downregulated the protein expression of PPAR-α as well as downregulated APOB, ACSL3, ACSL4, and upregulated 5/12/15-HETE, implying that a lipid metabolism disorder was involved in the icaritin-induced nephrotoxicity. Finally, icaritin was found to increase the accumulation of iron and LPO levels while reducing the activity of GPX4, suggesting that ferroptosis was involved in the nephrotoxicity induced by icaritin.
Collapse
Affiliation(s)
- Dalong Wang
- College of Pharmacy, Dalian Medical University, Dalian, China.,Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning Dalian Medical University, Dalian, China
| | - Jing Liu
- College of Pharmacy, Dalian Medical University, Dalian, China
| | - Xiaodong Chen
- College of Pharmacy, Dalian Medical University, Dalian, China.,Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning Dalian Medical University, Dalian, China
| | - Jing Chen
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, China
| | - Tingting Zhao
- College of Pharmacy, Dalian Medical University, Dalian, China.,Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning Dalian Medical University, Dalian, China
| | - Jie Du
- College of Pharmacy, Dalian Medical University, Dalian, China.,Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning Dalian Medical University, Dalian, China
| | - Changyuan Wang
- College of Pharmacy, Dalian Medical University, Dalian, China.,Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning Dalian Medical University, Dalian, China
| | - Qiang Meng
- College of Pharmacy, Dalian Medical University, Dalian, China.,Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning Dalian Medical University, Dalian, China
| | - Huijun Sun
- College of Pharmacy, Dalian Medical University, Dalian, China.,Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning Dalian Medical University, Dalian, China
| | - Fangjun Wang
- Key Laboratory of Separation Sciences for Analytical Chemistry, Chinese Academy of Sciences, Dalian, China
| | - Kexin Liu
- College of Pharmacy, Dalian Medical University, Dalian, China.,Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning Dalian Medical University, Dalian, China
| | - Jingjing Wu
- College of Pharmacy, Dalian Medical University, Dalian, China.,Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning Dalian Medical University, Dalian, China
| |
Collapse
|
43
|
Gabriel CH, Kramer A. Time of day shapes the success of a cancer treatment. Nature 2023; 614:41-42. [PMID: 36650387 DOI: 10.1038/d41586-023-00068-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
44
|
Juliana N, Azmi L, Effendy NM, Mohd Fahmi Teng NI, Abu IF, Abu Bakar NN, Azmani S, Yazit NAA, Kadiman S, Das S. Effect of Circadian Rhythm Disturbance on the Human Musculoskeletal System and the Importance of Nutritional Strategies. Nutrients 2023; 15:nu15030734. [PMID: 36771440 PMCID: PMC9920183 DOI: 10.3390/nu15030734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/26/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023] Open
Abstract
The circadian system in the human body responds to daily environmental changes to optimise behaviour according to the biological clock and also influences various physiological processes. The suprachiasmatic nuclei are located in the anterior hypothalamus of the brain, and they synchronise to the 24 h light/dark cycle. Human physiological functions are highly dependent on the regulation of the internal circadian clock. Skeletal muscles comprise the largest collection of peripheral clocks in the human body. Both central and peripheral clocks regulate the interaction between the musculoskeletal system and energy metabolism. The skeletal muscle circadian clock plays a vital role in lipid and glucose metabolism. The pathogenesis of osteoporosis is related to an alteration in the circadian rhythm. In the present review, we discuss the disturbance of the circadian rhythm and its resultant effect on the musculoskeletal system. We also discuss the nutritional strategies that are potentially effective in maintaining the system's homeostasis. Active collaborations between nutritionists and physiologists in the field of chronobiological and chrononutrition will further clarify these interactions. This review may be necessary for successful interventions in reducing morbidity and mortality resulting from musculoskeletal disturbances.
Collapse
Affiliation(s)
- Norsham Juliana
- Faculty Medicine and Health Sciences, Universiti Sains Islam Malaysia, Nilai 71800, Malaysia
- Correspondence: ; Tel.: +60-13-331-1706
| | - Liyana Azmi
- Faculty Medicine and Health Sciences, Universiti Sains Islam Malaysia, Nilai 71800, Malaysia
| | - Nadia Mohd Effendy
- Faculty Medicine and Health Sciences, Universiti Sains Islam Malaysia, Nilai 71800, Malaysia
| | | | - Izuddin Fahmy Abu
- Institute of Medical Science Technology, Universiti Kuala Lumpur, Kajang 43000, Malaysia
| | - Nur Nabilah Abu Bakar
- Faculty Medicine and Health Sciences, Universiti Sains Islam Malaysia, Nilai 71800, Malaysia
| | - Sahar Azmani
- Faculty Medicine and Health Sciences, Universiti Sains Islam Malaysia, Nilai 71800, Malaysia
| | - Noor Anisah Abu Yazit
- Faculty Medicine and Health Sciences, Universiti Sains Islam Malaysia, Nilai 71800, Malaysia
| | - Suhaini Kadiman
- Anaesthesia and Intensive Care Unit, National Heart Institute, Kuala Lumpur 50400, Malaysia
| | - Srijit Das
- Department of Human & Clinical Anatomy, College of Medicine & Health Sciences, Sultan Qaboos University, Al-Khoud, Muscat 123, Oman
| |
Collapse
|
45
|
Banerjee S, Ray S. Circadian medicine for aging attenuation and sleep disorders: Prospects and challenges. Prog Neurobiol 2023; 220:102387. [PMID: 36526042 DOI: 10.1016/j.pneurobio.2022.102387] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 11/17/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022]
Abstract
Aging causes progressive deterioration of daily rhythms in behavioral and metabolic processes and disruption in the regular sleep-wake cycle. Circadian disruption is directly related to diverse age-induced health abnormalities. Rising evidence from various organisms shows that core clock gene mutations cause premature aging, reduced lifespan, and sleeping irregularities. Improving the clock functions and correcting its disruption by pharmacological interventions or time-regulated feeding patterns could be a novel avenue for effective clinical management of aging and sleep disorders. To this end, many drugs for sleep disorders and anti-aging compounds interact with the core clock machinery and alter the circadian output. Evaluation of dosing time-dependency and circadian regulation of drug metabolism for therapeutic improvement of the existing drugs is another fundamental facet of chronomedicine. Multiple studies have demonstrated dose-dependent manipulation of the circadian period and phase-shifting by pharmacologically active compounds. The chronobiology research field is gradually moving towards the development of novel therapeutic strategies based on targeting the molecular clock or dosing time-oriented medications. However, such translational research ventures would require more experimental evidence from studies on humans. This review discusses the impact of circadian rhythms on aging and sleep, emphasizing the potentiality of circadian medicine in aging attenuation and sleep disorders.
Collapse
Affiliation(s)
- Srishti Banerjee
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502284, Telangana, India
| | - Sandipan Ray
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502284, Telangana, India; Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
46
|
Castillo KD, Wu C, Ding Z, Lopez-Garcia OK, Rowlinson E, Sachs MS, Bell-Pedersen D. A circadian clock translational control mechanism targets specific mRNAs to cytoplasmic messenger ribonucleoprotein granules. Cell Rep 2022; 41:111879. [PMID: 36577368 PMCID: PMC10241597 DOI: 10.1016/j.celrep.2022.111879] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 09/13/2022] [Accepted: 12/04/2022] [Indexed: 12/29/2022] Open
Abstract
Phosphorylation of Neurospora crassa eukaryotic initiation factor 2 α (eIF2α), a conserved translation initiation factor, is clock controlled. To determine the impact of rhythmic eIF2α phosphorylation on translation, we performed temporal ribosome profiling and RNA sequencing (RNA-seq) in wild-type (WT), clock mutant Δfrq, eIF2α kinase mutant Δcpc-3, and constitutively active cpc-3c cells. About 14% of mRNAs are rhythmically translated in WT cells, and translation rhythms for ∼30% of these mRNAs, which we named circadian translation-initiation-controlled genes (cTICs), are dependent on the clock and CPC-3. Most cTICs are expressed from arrhythmic mRNAs and contain a P-body (PB) localization motif in their 5' leader sequence. Deletion of SNR-1, a component of cytoplasmic messenger ribonucleoprotein granules (cmRNPgs) that include PBs and stress granules (SGs), and the PB motif on one of the cTIC mRNAs, zip-1, significantly alters zip-1 rhythmic translation. These results reveal that the clock regulates rhythmic translation of specific mRNAs through rhythmic eIF2α activity and cmRNPg metabolism.
Collapse
Affiliation(s)
- Kathrina D Castillo
- Center for Biological Clocks Research, Texas A&M University, College Station, TX 77843, USA; Department of Biology, Texas A&M University, College Station, TX 77843, USA
| | - Cheng Wu
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
| | - Zhaolan Ding
- Center for Biological Clocks Research, Texas A&M University, College Station, TX 77843, USA; Department of Biology, Texas A&M University, College Station, TX 77843, USA
| | | | - Emma Rowlinson
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
| | - Matthew S Sachs
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
| | - Deborah Bell-Pedersen
- Center for Biological Clocks Research, Texas A&M University, College Station, TX 77843, USA; Department of Biology, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
47
|
Ioannou E, Oikonomou S, Efthymiou N, Constantinou A, Delplancke T, Charisiadis P, Makris KC. A time differentiated dietary intervention effect on the biomarkers of exposure to pyrethroids and neonicotinoids pesticides. iScience 2022; 26:105847. [PMID: 36711241 PMCID: PMC9874006 DOI: 10.1016/j.isci.2022.105847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/08/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Tailoring medical models to the right person or risk subgroups delivered at the right time is important in personalized medicine/prevention initiatives. The CIRCA-CHEM randomized 2x2 crossover pilot trial investigated whether the consumption of fruits/vegetables within a time-restricted daily window would affect urinary biomarkers of exposure to neonicotinoids (6-chloronicotinic acid, 6-CN) and pyrethroids (3-phenoxybenzoic acid, 3-PBA) pesticides, a biomarker of oxidative damage (4-hydroxynonenal, 4-HNE) and the associated urinary NMR metabolome. A statistically significant difference (p < 0.001) in both creatinine-adjusted 6-CN and 3-PBA levels was observed between the two-time dietary intervention windows (morning vs. evening). In the evening intervention period, pesticides biomarker levels were higher compared to the baseline, whereas in the morning period, pesticide levels remained unchanged. Positive associations were observed between pesticides and 4-HNE suggesting a diurnal chrono-window of pesticide toxicity. The discovery of a chronotoxicity window associated with chrono-disrupted metabolism of food contaminants may find use in personalized medicine initiatives.
Collapse
Affiliation(s)
- Elina Ioannou
- Cyprus International Institute of Environmental and Public Health, Cyprus University of Technology, Limassol, Cyprus,Nutrition & Dietetics Department, Limassol General Hospital, State Health Services Organization, Limassol, Cyprus
| | - Stavros Oikonomou
- Cyprus International Institute of Environmental and Public Health, Cyprus University of Technology, Limassol, Cyprus
| | - Nikolaos Efthymiou
- Cyprus International Institute of Environmental and Public Health, Cyprus University of Technology, Limassol, Cyprus
| | - Andria Constantinou
- Cyprus International Institute of Environmental and Public Health, Cyprus University of Technology, Limassol, Cyprus
| | - Thibaut Delplancke
- Cyprus International Institute of Environmental and Public Health, Cyprus University of Technology, Limassol, Cyprus
| | - Pantelis Charisiadis
- Cyprus International Institute of Environmental and Public Health, Cyprus University of Technology, Limassol, Cyprus
| | - Konstantinos C. Makris
- Cyprus International Institute of Environmental and Public Health, Cyprus University of Technology, Limassol, Cyprus,Corresponding author
| |
Collapse
|
48
|
Lim JY, Kim E, Douglas CM, Wirianto M, Han C, Ono K, Kim SY, Ji JH, Tran CK, Chen Z, Esser KA, Yoo SH. The circadian E3 ligase FBXL21 regulates myoblast differentiation and sarcomere architecture via MYOZ1 ubiquitination and NFAT signaling. PLoS Genet 2022; 18:e1010574. [PMID: 36574402 PMCID: PMC9829178 DOI: 10.1371/journal.pgen.1010574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 01/09/2023] [Accepted: 12/14/2022] [Indexed: 12/28/2022] Open
Abstract
Numerous molecular and physiological processes in the skeletal muscle undergo circadian time-dependent oscillations in accordance with daily activity/rest cycles. The circadian regulatory mechanisms underlying these cyclic processes, especially at the post-transcriptional level, are not well defined. Previously, we reported that the circadian E3 ligase FBXL21 mediates rhythmic degradation of the sarcomere protein TCAP in conjunction with GSK-3β, and Psttm mice harboring an Fbxl21 hypomorph allele show reduced muscle fiber diameter and impaired muscle function. To further elucidate the regulatory function of FBXL21 in skeletal muscle, we investigated another sarcomere protein, Myozenin1 (MYOZ1), that we identified as an FBXL21-binding protein from yeast 2-hybrid screening. We show that FBXL21 binding to MYOZ1 led to ubiquitination-mediated proteasomal degradation. GSK-3β co-expression and inhibition were found to accelerate and decelerate FBXL21-mediated MYOZ1 degradation, respectively. Previously, MYOZ1 has been shown to inhibit calcineurin/NFAT signaling important for muscle differentiation. In accordance, Fbxl21 KO and MyoZ1 KO in C2C12 cells impaired and enhanced myogenic differentiation respectively compared with control C2C12 cells, concomitant with distinct effects on NFAT nuclear localization and NFAT target gene expression. Importantly, in Psttm mice, both the levels and diurnal rhythm of NFAT2 nuclear localization were significantly diminished relative to wild-type mice, and circadian expression of NFAT target genes associated with muscle differentiation was also markedly dampened. Furthermore, Psttm mice exhibited significant disruption of sarcomere structure with a considerable excess of MYOZ1 accumulation in the Z-line. Taken together, our study illustrates a pivotal role of FBXL21 in sarcomere structure and muscle differentiation by regulating MYOZ1 degradation and NFAT2 signaling.
Collapse
Affiliation(s)
- Ji Ye Lim
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Eunju Kim
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Collin M. Douglas
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida, United States of America
| | - Marvin Wirianto
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Chorong Han
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Kaori Ono
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Sun Young Kim
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Justin H. Ji
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Celia K. Tran
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Zheng Chen
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Karyn A. Esser
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida, United States of America
| | - Seung-Hee Yoo
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| |
Collapse
|
49
|
The past, present, and future of chemotherapy with a focus on individualization of drug dosing. J Control Release 2022; 352:840-860. [PMID: 36334860 DOI: 10.1016/j.jconrel.2022.10.043] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 10/14/2022] [Accepted: 10/24/2022] [Indexed: 11/16/2022]
Abstract
While there have been rapid advances in developing new and more targeted drugs to treat cancer, much less progress has been made in individualizing dosing. Even though the introduction of immunotherapies such as CAR T-cells and checkpoint inhibitors, as well as personalized therapies that target specific mutations, have transformed clinical treatment of cancers, chemotherapy remains a mainstay in oncology. Chemotherapies are typically dosed on either a body surface area (BSA) or weight basis, which fails to account for pharmacokinetic differences between patients. Drug absorption, distribution, metabolism, and excretion rates can vary between patients, resulting in considerable differences in exposure to the active drugs. These differences result in suboptimal dosing, which can reduce efficacy and increase side-effects. Therapeutic drug monitoring (TDM), genotype guided dosing, and chronomodulation have been developed to address this challenge; however, despite improving clinical outcomes, they are rarely implemented in clinical practice for chemotherapies. Thus, there is a need to develop interventions that allow for individualized drug dosing of chemotherapies, which can help maximize the number of patients that reach the most efficacious level of drug in the blood while mitigating the risks of underdosing or overdosing. In this review, we discuss the history of the development of chemotherapies, their mechanisms of action and how they are dosed. We discuss substantial intraindividual and interindividual variability in chemotherapy pharmacokinetics. We then propose potential engineering solutions that could enable individualized dosing of chemotherapies, such as closed-loop drug delivery systems and bioresponsive biomaterials.
Collapse
|
50
|
Perez-Diaz-del-Campo N, Castelnuovo G, Caviglia GP, Armandi A, Rosso C, Bugianesi E. Role of Circadian Clock on the Pathogenesis and Lifestyle Management in Non-Alcoholic Fatty Liver Disease. Nutrients 2022; 14:nu14235053. [PMID: 36501083 PMCID: PMC9736115 DOI: 10.3390/nu14235053] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/18/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022] Open
Abstract
Several features of the modern lifestyle, such as weekly schedules or irregular daily eating patterns, have become major drivers of global health problems, including non-alcoholic fatty liver disease (NAFLD). Sleep is an essential component of human well-being, and it has been observed that when circadian rhythms are disrupted, or when sleep quality decreases, an individual's overall health may worsen. In addition, the discrepancy between the circadian and social clock, due to weekly work/study schedules, is called social jetlag and has also been associated with adverse metabolic profiles. Current management of NAFLD is based on dietary intake and physical activity, with circadian preferences and other environmental factors also needing to be taken into account. In this regard, dietary approaches based on chrononutrition, such as intermittent fasting or time-restricted feeding, have proven to be useful in realigning lifestyle behaviors with circadian biological rhythms. However, more studies are needed to apply these dietary strategies in the treatment of these patients. In this review, we focus on the impact of circadian rhythms and the role of sleep patterns on the pathogenesis and development of NAFLD, as well as the consideration of chrononutrition for the precision nutrition management of patients with NAFLD.
Collapse
Affiliation(s)
| | | | | | - Angelo Armandi
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy
- Metabolic Liver Disease Research Program, I. Department of Medicine, University Medical Center of the Johannes Gutenberg-University, 55131 Mainz, Germany
| | - Chiara Rosso
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy
- Correspondence:
| | - Elisabetta Bugianesi
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy
- Gastroenterology Unit, Città della Salute e della Scienza—Molinette Hospital, 10126 Turin, Italy
| |
Collapse
|