1
|
Blumenstiel JP. From the cauldron of conflict: Endogenous gene regulation by piRNA and other modes of adaptation enabled by selfish transposable elements. Semin Cell Dev Biol 2025; 164:1-12. [PMID: 38823219 DOI: 10.1016/j.semcdb.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 04/28/2024] [Accepted: 05/06/2024] [Indexed: 06/03/2024]
Abstract
Transposable elements (TEs) provide a prime example of genetic conflict because they can proliferate in genomes and populations even if they harm the host. However, numerous studies have shown that TEs, though typically harmful, can also provide fuel for adaptation. This is because they code functional sequences that can be useful for the host in which they reside. In this review, I summarize the "how" and "why" of adaptation enabled by the genetic conflict between TEs and hosts. In addition, focusing on mechanisms of TE control by small piwi-interacting RNAs (piRNAs), I highlight an indirect form of adaptation enabled by conflict. In this case, mechanisms of host defense that regulate TEs have been redeployed for endogenous gene regulation. I propose that the genetic conflict released by meiosis in early eukaryotes may have been important because, among other reasons, it spurred evolutionary innovation on multiple interwoven trajectories - on the part of hosts and also embedded genetic parasites. This form of evolution may function as a complexity generating engine that was a critical player in eukaryotic evolution.
Collapse
Affiliation(s)
- Justin P Blumenstiel
- Department of Ecology and Evolutionary Biology, University of Kansas, 1200 Sunnyside Avenue, Lawrence, KS 66045, United States.
| |
Collapse
|
2
|
Hayashi K, Fernie AR. Genomic evidence of a transposon-conferred adaptive response. Cell Rep 2024; 43:115009. [PMID: 39643972 DOI: 10.1016/j.celrep.2024.115009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 11/07/2024] [Accepted: 11/07/2024] [Indexed: 12/09/2024] Open
Abstract
Raingeval et al.1 characterize the insertion of the ONSEN transposon in the intron of a flowering repressor, which allows the plant to accelerate its life cycle in response to stress. They show the insertion was positively selected in a herbicide-intense environment demonstrating its role in adaptation to the local environment.
Collapse
Affiliation(s)
- Koki Hayashi
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany.
| |
Collapse
|
3
|
Horvath J, Jedlicka P, Kratka M, Kubat Z, Kejnovsky E, Lexa M. Detection and classification of long terminal repeat sequences in plant LTR-retrotransposons and their analysis using explainable machine learning. BioData Min 2024; 17:57. [PMID: 39696434 DOI: 10.1186/s13040-024-00410-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 11/22/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Long terminal repeats (LTRs) represent important parts of LTR retrotransposons and retroviruses found in high copy numbers in a majority of eukaryotic genomes. LTRs contain regulatory sequences essential for the life cycle of the retrotransposon. Previous experimental and sequence studies have provided only limited information about LTR structure and composition, mostly from model systems. To enhance our understanding of these key sequence modules, we focused on the contrasts between LTRs of various retrotransposon families and other genomic regions. Furthermore, this approach can be utilized for the classification and prediction of LTRs. RESULTS We used machine learning methods suitable for DNA sequence classification and applied them to a large dataset of plant LTR retrotransposon sequences. We trained three machine learning models using (i) traditional model ensembles (Gradient Boosting), (ii) hybrid convolutional/long and short memory network models, and (iii) a DNA pre-trained transformer-based model using k-mer sequence representation. All three approaches were successful in classifying and isolating LTRs in this data, as well as providing valuable insights into LTR sequence composition. The best classification (expressed as F1 score) achieved for LTR detection was 0.85 using the hybrid network model. The most accurate classification task was superfamily classification (F1=0.89) while the least accurate was family classification (F1=0.74). The trained models were subjected to explainability analysis. Positional analysis identified a mixture of interesting features, many of which had a preferred absolute position within the LTR and/or were biologically relevant, such as a centrally positioned TATA-box regulatory sequence, and TG..CA nucleotide patterns around both LTR edges. CONCLUSIONS Our results show that the models used here recognized biologically relevant motifs, such as core promoter elements in the LTR detection task, and a development and stress-related subclass of transcription factor binding sites in the family classification task. Explainability analysis also highlighted the importance of 5'- and 3'- edges in LTR identity and revealed need to analyze more than just dinucleotides at these ends. Our work shows the applicability of machine learning models to regulatory sequence analysis and classification, and demonstrates the important role of the identified motifs in LTR detection.
Collapse
Affiliation(s)
- Jakub Horvath
- Faculty of Informatics, Masaryk University, Botanicka 68a, Brno, 60200, Czech Republic.
| | - Pavel Jedlicka
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, Brno, 61200, Czech Republic
| | - Marie Kratka
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, Brno, 61200, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, Brno, 62500, Czech Republic
| | - Zdenek Kubat
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, Brno, 61200, Czech Republic
| | - Eduard Kejnovsky
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, Brno, 61200, Czech Republic
| | - Matej Lexa
- Faculty of Informatics, Masaryk University, Botanicka 68a, Brno, 60200, Czech Republic.
| |
Collapse
|
4
|
Felgines L, Rymen B, Martins LM, Xu G, Matteoli C, Himber C, Zhou M, Eis J, Coruh C, Böhrer M, Kuhn L, Chicher J, Pandey V, Hammann P, Wohlschlegel J, Waltz F, Law JA, Blevins T. CLSY docking to Pol IV requires a conserved domain critical for small RNA biogenesis and transposon silencing. Nat Commun 2024; 15:10298. [PMID: 39604359 PMCID: PMC11603163 DOI: 10.1038/s41467-024-54268-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 11/01/2024] [Indexed: 11/29/2024] Open
Abstract
Eukaryotes must balance the need for gene transcription by RNA polymerase II (Pol II) against the danger of mutations caused by transposable element (TE) proliferation. In plants, these gene expression and TE silencing activities are divided between different RNA polymerases. Specifically, RNA polymerase IV (Pol IV), which evolved from Pol II, transcribes TEs to generate small interfering RNAs (siRNAs) that guide DNA methylation and block TE transcription by Pol II. While the Pol IV complex is recruited to TEs via SNF2-like CLASSY (CLSY) proteins, how Pol IV partners with the CLSYs remains unknown. Here, we identified a conserved CYC-YPMF motif that is specific to Pol IV and is positioned on the complex exterior. Furthermore, we found that this motif is essential for the co-purification of all four CLSYs with Pol IV, but that only one CLSY is present in any given Pol IV complex. These findings support a "one CLSY per Pol IV" model where the CYC-YPMF motif acts as a CLSY-docking site. Indeed, mutations in and around this motif phenocopy pol iv null and clsy quadruple mutants. Together, these findings provide structural and functional insights into a critical protein feature that distinguishes Pol IV from other RNA polymerases, allowing it to promote genome stability by targeting TEs for silencing.
Collapse
Affiliation(s)
- Luisa Felgines
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg, F-67084, France
| | - Bart Rymen
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg, F-67084, France
| | - Laura M Martins
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Guanghui Xu
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Calvin Matteoli
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg, F-67084, France
| | - Christophe Himber
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg, F-67084, France
| | - Ming Zhou
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Josh Eis
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Ceyda Coruh
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Marcel Böhrer
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg, F-67084, France
| | - Lauriane Kuhn
- Institut de Biologie Moléculaire et Cellulaire, CNRS, Plateforme Protéomique Strasbourg-Esplanade, Strasbourg, F-67084, France
| | - Johana Chicher
- Institut de Biologie Moléculaire et Cellulaire, CNRS, Plateforme Protéomique Strasbourg-Esplanade, Strasbourg, F-67084, France
| | - Vijaya Pandey
- Department of Biological Chemistry, University of California, Los Angeles, CA, 90095, USA
| | - Philippe Hammann
- Institut de Biologie Moléculaire et Cellulaire, CNRS, Plateforme Protéomique Strasbourg-Esplanade, Strasbourg, F-67084, France
| | - James Wohlschlegel
- Department of Biological Chemistry, University of California, Los Angeles, CA, 90095, USA
| | - Florent Waltz
- Biozentrum, University of Basel, CH-4056, Basel, Switzerland
| | - Julie A Law
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA.
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, 92093, USA.
| | - Todd Blevins
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg, F-67084, France.
| |
Collapse
|
5
|
Raingeval M, Leduque B, Baduel P, Edera A, Roux F, Colot V, Quadrana L. Retrotransposon-driven environmental regulation of FLC leads to adaptive response to herbicide. NATURE PLANTS 2024; 10:1672-1681. [PMID: 39333353 DOI: 10.1038/s41477-024-01807-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 09/05/2024] [Indexed: 09/29/2024]
Abstract
The mobilization of transposable elements is a potent source of mutations. In plants, several stransposable elements respond to external cues, fuelling the hypothesis that natural transposition can create environmentally sensitive alleles for adaptation. Here we report on the detailed characterization of a retrotransposon insertion within the first intron of the Arabidopsis floral-repressor gene FLOWERING LOCUS C (FLC) and the discovery of its role for adaptation. The insertion mutation augments the environmental sensitivity of FLC by affecting the balance between coding and non-coding transcripts in response to stress, thus expediting flowering. This balance is modulated by DNA methylation and orchestrated by IBM2, a factor involved in the processing of intronic heterochromatic sequences. The stress-sensitive allele of FLC has spread across populations subjected to recurrent chemical weeding, and we show that retrotransposon-driven acceleration of the life cycle represents a rapid response to herbicide application. Our work provides a compelling example of a transposable element-driven environmentally sensitive allele that confers an adaptive response in nature.
Collapse
Affiliation(s)
- Mathieu Raingeval
- Institute of Plant Sciences Paris-Saclay (IPS2), Centre National de la Recherche Scientifique, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Université Evry, Université Paris-Saclay, Gif sur Yvette, France
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland
| | - Basile Leduque
- Institute of Plant Sciences Paris-Saclay (IPS2), Centre National de la Recherche Scientifique, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Université Evry, Université Paris-Saclay, Gif sur Yvette, France
| | - Pierre Baduel
- Institut de Biologie de l'Ecole Normale Supérieure, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Ecole Normale Supérieure, PSL Research University, Paris, France
| | - Alejandro Edera
- Institute of Plant Sciences Paris-Saclay (IPS2), Centre National de la Recherche Scientifique, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Université Evry, Université Paris-Saclay, Gif sur Yvette, France
| | - Fabrice Roux
- Laboratoire des Interactions Plantes-Microbes-Environnement, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Centre National de la Recherche Scientifique, Université de Toulouse, Castanet-Tolosan, France
| | - Vincent Colot
- Institut de Biologie de l'Ecole Normale Supérieure, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Ecole Normale Supérieure, PSL Research University, Paris, France
| | - Leandro Quadrana
- Institute of Plant Sciences Paris-Saclay (IPS2), Centre National de la Recherche Scientifique, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Université Evry, Université Paris-Saclay, Gif sur Yvette, France.
| |
Collapse
|
6
|
Xu W, Thieme M, Roulin AC. Natural Diversity of Heat-Induced Transcription of Retrotransposons in Arabidopsis thaliana. Genome Biol Evol 2024; 16:evae242. [PMID: 39523776 PMCID: PMC11580521 DOI: 10.1093/gbe/evae242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 09/12/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
Transposable elements (TEs) are major components of plant genomes, profoundly impacting the fitness of their hosts. However, technical bottlenecks have long hindered our mechanistic understanding of TEs. Using RNA-Seq and long-read sequencing with Oxford Nanopore Technologies' (ONT) direct cDNA sequencing, we analyzed the heat-induced transcription of TEs in three natural accessions of Arabidopsis thaliana (Cvi-0, Col-0, and Ler-1). In addition to the well-studied ONSEN retrotransposon family, we confirmed Copia-35 as a second heat-responsive retrotransposon family with particularly high activity in the relict accession Cvi-0. Our analysis revealed distinct expression patterns of individual TE copies and suggest different mechanisms regulating the GAG protein production in the ONSEN versus Copia-35 families. In addition, analogously to ONSEN, Copia-35 activation led to the upregulation of flanking genes such as APUM9 and potentially to the quantitative modulation of flowering time. ONT data allowed us to test the extent to which read-through formation is important in the regulation of adjacent genes. Unexpectedly, our results indicate that for both families, the upregulation of flanking genes is not predominantly directly initiated by transcription from their 3' long terminal repeats. These findings highlight the intraspecific expressional diversity linked to retrotransposon activation under stress.
Collapse
Affiliation(s)
- Wenbo Xu
- Department of Plant and Microbial Biology, University of Zürich, 8008 Zürich, Switzerland
| | - Michael Thieme
- Department of Plant and Microbial Biology, University of Zürich, 8008 Zürich, Switzerland
| | - Anne C Roulin
- Department of Plant and Microbial Biology, University of Zürich, 8008 Zürich, Switzerland
- Agroscope, 8820 Wädenswil, Switzerland
| |
Collapse
|
7
|
Ma L, Xing L, Li Z, Jiang D. Epigenetic control of plant abiotic stress responses. J Genet Genomics 2024:S1673-8527(24)00246-7. [PMID: 39322116 DOI: 10.1016/j.jgg.2024.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/14/2024] [Accepted: 09/16/2024] [Indexed: 09/27/2024]
Abstract
On top of genetic information, organisms have evolved complex and sophisticated epigenetic regulation to adjust gene expression in response to developmental and environmental signals. Key epigenetic mechanisms include DNA methylation, histone modifications and variants, chromatin remodeling, and chemical modifications of RNAs. Epigenetic control of environmental responses is particularly important for plants, which are sessile and unable to move away from adverse environments. Besides enabling plants to rapidly respond to environmental stresses, some stress-induced epigenetic changes can be maintained, providing plants with a pre-adapted state to recurring stresses. Understanding these epigenetic mechanisms offers valuable insights for developing crop varieties with enhanced stress tolerance. Here, we focus on abiotic stresses and summarize recent progress in characterizing stress-induced epigenetic changes and their regulatory mechanisms and roles in plant abiotic stress resistance.
Collapse
Affiliation(s)
- Lijun Ma
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Ministry of Education Key Laboratory of Plant Development and Environmental Adaption Biology, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Lihe Xing
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zicong Li
- Ministry of Education Key Laboratory of Plant Development and Environmental Adaption Biology, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Danhua Jiang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604, Republic of Singapore.
| |
Collapse
|
8
|
Marquez-Molins J, Cheng J, Corell-Sierra J, Juarez-Gonzalez VT, Villalba-Bermell P, Annacondia ML, Gomez G, Martinez G. Hop stunt viroid infection induces heterochromatin reorganization. THE NEW PHYTOLOGIST 2024; 243:2351-2367. [PMID: 39030826 DOI: 10.1111/nph.19986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 06/26/2024] [Indexed: 07/22/2024]
Abstract
Viroids are pathogenic noncoding RNAs that completely rely on their host molecular machinery to accomplish their life cycle. Several interactions between viroids and their host molecular machinery have been identified, including interference with epigenetic mechanisms such as DNA methylation. Despite this, whether viroids influence changes in other epigenetic marks such as histone modifications remained unknown. Epigenetic regulation is particularly important during pathogenesis processes because it might be a key regulator of the dynamism of the defense response. Here we have analyzed the changes taking place in Cucumis sativus (cucumber) facultative and constitutive heterochromatin during hop stunt viroid (HSVd) infection using chromatin immunoprecipitation (ChIP) of the two main heterochromatic marks: H3K9me2 and H3K27me3. We find that HSVd infection is associated with changes in both H3K27me3 and H3K9me2, with a tendency to decrease the levels of repressive epigenetic marks through infection progression. These epigenetic changes are connected to the transcriptional regulation of their expected targets, genes, and transposable elements. Indeed, several genes related to the defense response are targets of both epigenetic marks. Our results highlight another host regulatory mechanism affected by viroid infection, providing further information about the complexity of the multiple layers of interactions between pathogens/viroids and hosts/plants.
Collapse
Affiliation(s)
- Joan Marquez-Molins
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, 75007, Sweden
- Institute for Integrative Systems Biology (I2SysBio), Consejo Superior de Investigaciones Científicas (CSIC), University of Valencia (UV), Paterna, 46980, Spain
| | - Jinping Cheng
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, 75007, Sweden
| | - Julia Corell-Sierra
- Institute for Integrative Systems Biology (I2SysBio), Consejo Superior de Investigaciones Científicas (CSIC), University of Valencia (UV), Paterna, 46980, Spain
| | - Vasti Thamara Juarez-Gonzalez
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, 75007, Sweden
| | - Pascual Villalba-Bermell
- Institute for Integrative Systems Biology (I2SysBio), Consejo Superior de Investigaciones Científicas (CSIC), University of Valencia (UV), Paterna, 46980, Spain
| | - Maria Luz Annacondia
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, 75007, Sweden
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Centre, University of Copenhagen, Frederiksberg, 1871, Denmark
| | - Gustavo Gomez
- Institute for Integrative Systems Biology (I2SysBio), Consejo Superior de Investigaciones Científicas (CSIC), University of Valencia (UV), Paterna, 46980, Spain
| | - German Martinez
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, 75007, Sweden
| |
Collapse
|
9
|
Del Toro-De León G, van Boven J, Santos-González J, Jiao WB, Peng H, Schneeberger K, Köhler C. Epigenetic and transcriptional consequences in the endosperm of chemically induced transposon mobilization in Arabidopsis. Nucleic Acids Res 2024; 52:8833-8848. [PMID: 38967011 PMCID: PMC11347142 DOI: 10.1093/nar/gkae572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/13/2024] [Accepted: 06/26/2024] [Indexed: 07/06/2024] Open
Abstract
Genomic imprinting, an epigenetic phenomenon leading to parent-of-origin-specific gene expression, has independently evolved in the endosperm of flowering plants and the placenta of mammals-tissues crucial for nurturing embryos. While transposable elements (TEs) frequently colocalize with imprinted genes and are implicated in imprinting establishment, direct investigations of the impact of de novo TE transposition on genomic imprinting remain scarce. In this study, we explored the effects of chemically induced transposition of the Copia element ONSEN on genomic imprinting in Arabidopsis thaliana. Through the combination of chemical TE mobilization and doubled haploid induction, we generated a line with 40 new ONSEN copies. Our findings reveal a preferential targeting of maternally expressed genes (MEGs) for transposition, aligning with the colocalization of H2A.Z and H3K27me3 in MEGs-both previously identified as promoters of ONSEN insertions. Additionally, we demonstrate that chemically-induced DNA hypomethylation induces global transcriptional deregulation in the endosperm, leading to the breakdown of MEG imprinting. This study provides insights into the consequences of chemically induced TE remobilization in the endosperm, revealing that chemically-induced epigenome changes can have long-term consequences on imprinted gene expression.
Collapse
Affiliation(s)
- Gerardo Del Toro-De León
- Department of Plant Reproductive Biology and Epigenetics, Max Planck Institute of Molecular Plant Physiology, Potsdam 14476, Germany
| | - Joram van Boven
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Centre for Plant Biology, Uppsala 75007, Sweden
| | - Juan Santos-González
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Centre for Plant Biology, Uppsala 75007, Sweden
| | - Wen-Biao Jiao
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Haoran Peng
- Department of Plant Reproductive Biology and Epigenetics, Max Planck Institute of Molecular Plant Physiology, Potsdam 14476, Germany
| | - Korbinian Schneeberger
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne 50829, Germany
- Faculty for Biology, LMU Munich, Planegg-Martinsried 82152, Germany
- Cluster of Excellence on Plant Sciences, Heinrich-Heine University, Düsseldorf 40225, Germany
| | - Claudia Köhler
- Department of Plant Reproductive Biology and Epigenetics, Max Planck Institute of Molecular Plant Physiology, Potsdam 14476, Germany
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Centre for Plant Biology, Uppsala 75007, Sweden
| |
Collapse
|
10
|
Torres JR, Sanchez DH. Emerging roles of plant transcriptional gene silencing under heat. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024. [PMID: 38864847 DOI: 10.1111/tpj.16875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/13/2024]
Abstract
Plants continuously endure unpredictable environmental fluctuations that upset their physiology, with stressful conditions negatively impacting yield and survival. As a contemporary threat of rapid progression, global warming has become one of the most menacing ecological challenges. Thus, understanding how plants integrate and respond to elevated temperatures is crucial for ensuring future crop productivity and furthering our knowledge of historical environmental acclimation and adaptation. While the canonical heat-shock response and thermomorphogenesis have been extensively studied, evidence increasingly highlights the critical role of regulatory epigenetic mechanisms. Among these, the involvement under heat of heterochromatic suppression mediated by transcriptional gene silencing (TGS) remains the least understood. TGS refers to a multilayered metabolic machinery largely responsible for the epigenetic silencing of invasive parasitic nucleic acids and the maintenance of parental imprints. Its molecular effectors include DNA methylation, histone variants and their post-translational modifications, and chromatin packing and remodeling. This work focuses on both established and emerging insights into the contribution of TGS to the physiology of plants under stressful high temperatures. We summarized potential roles of constitutive and facultative heterochromatin as well as the most impactful regulatory genes, highlighting events where the loss of epigenetic suppression has not yet been associated with corresponding changes in epigenetic marks.
Collapse
Affiliation(s)
- José Roberto Torres
- Facultad de Agronomía, IFEVA (CONICET-UBA), Universidad de Buenos Aires, Av. San Martín 4453, C1417DSE, Buenos Aires, Argentina
| | - Diego H Sanchez
- Facultad de Agronomía, IFEVA (CONICET-UBA), Universidad de Buenos Aires, Av. San Martín 4453, C1417DSE, Buenos Aires, Argentina
| |
Collapse
|
11
|
Navaratna TA, Alansari N, Eisenberg AR, O'Malley MA. Anaerobic fungi contain abundant, diverse, and transcriptionally active Long Terminal Repeat retrotransposons. Fungal Genet Biol 2024; 172:103897. [PMID: 38750926 DOI: 10.1016/j.fgb.2024.103897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/14/2024] [Accepted: 05/10/2024] [Indexed: 05/20/2024]
Abstract
Long Terminal Repeat (LTR) retrotransposons are a class of repetitive elements that are widespread in the genomes of plants and many fungi. LTR retrotransposons have been associated with rapidly evolving gene clusters in plants and virulence factor transfer in fungal-plant parasite-host interactions. We report here the abundance and transcriptional activity of LTR retrotransposons across several species of the early-branching Neocallimastigomycota, otherwise known as the anaerobic gut fungi (AGF). The ubiquity of LTR retrotransposons in these genomes suggests key evolutionary roles in these rumen-dwelling biomass degraders, whose genomes also contain many enzymes that are horizontally transferred from other rumen-dwelling prokaryotes. Up to 10% of anaerobic fungal genomes consist of LTR retrotransposons, and the mapping of sequences from LTR retrotransposons to transcriptomes shows that the majority of clusters are transcribed, with some exhibiting expression greater than 104 reads per kilobase million mapped reads (rpkm). Many LTR retrotransposons are strongly differentially expressed upon heat stress during fungal cultivation, with several exhibiting a nearly three-log10 fold increase in expression, whereas growth substrate variation modulated transcription to a lesser extent. We show that some LTR retrotransposons contain carbohydrate-active enzymes (CAZymes), and the expansion of CAZymes within genomes and among anaerobic fungal species may be linked to retrotransposon activity. We further discuss how these widespread sequences may be a source of promoters and other parts towards the bioengineering of anaerobic fungi.
Collapse
Affiliation(s)
- Tejas A Navaratna
- Department of Chemical Engineering, UC Santa Barbara, United States; California NanoSystems Institute, United States
| | - Nabil Alansari
- Department of Chemical Engineering, UC Santa Barbara, United States
| | - Amy R Eisenberg
- Department of Chemical Engineering, UC Santa Barbara, United States; California NanoSystems Institute, United States
| | - Michelle A O'Malley
- Department of Chemical Engineering, UC Santa Barbara, United States; California NanoSystems Institute, United States; Department of Bioengineering, UC Santa Barbara, United States.
| |
Collapse
|
12
|
Ruan M, Zhao H, Wen Y, Chen H, He F, Hou X, Song X, Jiang H, Ruan YL, Wu L. The complex transcriptional regulation of heat stress response in maize. STRESS BIOLOGY 2024; 4:24. [PMID: 38668992 PMCID: PMC11052759 DOI: 10.1007/s44154-024-00165-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/01/2024] [Indexed: 04/29/2024]
Abstract
As one of the most important food and feed crops worldwide, maize suffers much more tremendous damages under heat stress compared to other plants, which seriously inhibits plant growth and reduces productivity. To mitigate the heat-induced damages and adapt to high temperature environment, plants have evolved a series of molecular mechanisms to sense, respond and adapt high temperatures and heat stress. In this review, we summarized recent advances in molecular regulations underlying high temperature sensing, heat stress response and memory in maize, especially focusing on several important pathways and signals in high temperature sensing, and the complex transcriptional regulation of ZmHSFs (Heat Shock Factors) in heat stress response. In addition, we highlighted interactions between ZmHSFs and several epigenetic regulation factors in coordinately regulating heat stress response and memory. Finally, we laid out strategies to systematically elucidate the regulatory network of maize heat stress response, and discussed approaches for breeding future heat-tolerance maize.
Collapse
Affiliation(s)
- Mingxiu Ruan
- The National Engineering Laboratory of Crop Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Heng Zhao
- The National Engineering Laboratory of Crop Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Yujing Wen
- The National Engineering Laboratory of Crop Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Hao Chen
- The National Engineering Laboratory of Crop Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Feng He
- The National Engineering Laboratory of Crop Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Xingbo Hou
- The National Engineering Laboratory of Crop Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Xiaoqin Song
- The National Engineering Laboratory of Crop Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Haiyang Jiang
- The National Engineering Laboratory of Crop Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Yong-Ling Ruan
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Horticulture, Northwest A&F University, Yangling, 712100, China.
- School of Agronomy, Anhui Agricultural University, Hefei, 230036, China.
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia.
| | - Leiming Wu
- The National Engineering Laboratory of Crop Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
13
|
McEvoy SL, Grady PGS, Pauloski N, O'Neill RJ, Wegrzyn JL. Profiling genome-wide methylation in two maples: Fine-scale approaches to detection with nanopore technology. Evol Appl 2024; 17:e13669. [PMID: 38633133 PMCID: PMC11022628 DOI: 10.1111/eva.13669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 02/04/2024] [Accepted: 02/12/2024] [Indexed: 04/19/2024] Open
Abstract
DNA methylation is critical to the regulation of transposable elements and gene expression and can play an important role in the adaptation of stress response mechanisms in plants. Traditional methods of methylation quantification rely on bisulfite conversion that can compromise accuracy. Recent advances in long-read sequencing technologies allow for methylation detection in real time. The associated algorithms that interpret these modifications have evolved from strictly statistical approaches to Hidden Markov Models and, recently, deep learning approaches. Much of the existing software focuses on methylation in the CG context, but methylation in other contexts is important to quantify, as it is extensively leveraged in plants. Here, we present methylation profiles for two maple species across the full range of 5mC sequence contexts using Oxford Nanopore Technologies (ONT) long-reads. Hybrid and reference-guided assemblies were generated for two new Acer accessions: Acer negundo (box elder; 65x ONT and 111X Illumina) and Acer saccharum (sugar maple; 93x ONT and 148X Illumina). The ONT reads generated for these assemblies were re-basecalled, and methylation detection was conducted in a custom pipeline with the published Acer references (PacBio assemblies) and hybrid assemblies reported herein to generate four epigenomes. Examination of the transposable element landscape revealed the dominance of LTR Copia elements and patterns of methylation associated with different classes of TEs. Methylation distributions were examined at high resolution across gene and repeat density and described within the broader angiosperm context, and more narrowly in the context of gene family dynamics and candidate nutrient stress genes.
Collapse
Affiliation(s)
- Susan L. McEvoy
- Department of Ecology and Evolutionary BiologyUniversity of ConnecticutStorrsConnecticutUSA
- Department of Forest SciencesUniversity of HelsinkiHelsinkiFinland
| | - Patrick G. S. Grady
- Department of Molecular and Cell BiologyUniversity of ConnecticutStorrsConnecticutUSA
| | - Nicole Pauloski
- Department of Molecular and Cell BiologyUniversity of ConnecticutStorrsConnecticutUSA
- Institute for Systems GenomicsUniversity of ConnecticutStorrsConnecticutUSA
| | - Rachel J. O'Neill
- Department of Molecular and Cell BiologyUniversity of ConnecticutStorrsConnecticutUSA
- Institute for Systems GenomicsUniversity of ConnecticutStorrsConnecticutUSA
| | - Jill L. Wegrzyn
- Department of Ecology and Evolutionary BiologyUniversity of ConnecticutStorrsConnecticutUSA
- Institute for Systems GenomicsUniversity of ConnecticutStorrsConnecticutUSA
| |
Collapse
|
14
|
Bradamante G, Nguyen VH, Incarbone M, Meir Z, Bente H, Donà M, Lettner N, Scheid OM, Gutzat R. Two ARGONAUTE proteins loaded with transposon-derived small RNAs are associated with the reproductive cell lineage in Arabidopsis. THE PLANT CELL 2024; 36:863-880. [PMID: 38060984 PMCID: PMC10980394 DOI: 10.1093/plcell/koad295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 11/23/2023] [Indexed: 04/01/2024]
Abstract
In sexually propagating organisms, genetic, and epigenetic mutations are evolutionarily relevant only if they occur in the germline and are hence transmitted to the next generation. In contrast to most animals, plants are considered to lack an early segregating germline, implying that somatic cells can contribute genetic information to progeny. Here we demonstrate that 2 ARGONAUTE proteins, AGO5 and AGO9, mark cells associated with sexual reproduction in Arabidopsis (Arabidopsis thaliana) throughout development. Both AGOs are loaded with dynamically changing small RNA populations derived from highly methylated, pericentromeric, long transposons. Sequencing of single stem cell nuclei revealed that many of these transposons are co-expressed within an AGO5/9 expression domain in the shoot apical meristem (SAM). Co-occurrence of transposon expression and specific ARGONAUTE (AGO) expression in the SAM is reminiscent of germline features in animals and supports the existence of an early segregating germline in plants. Our results open the path to investigating transposon biology and epigenome dynamics at cellular resolution in the SAM stem cell niche.
Collapse
Affiliation(s)
- Gabriele Bradamante
- Austrian Academy of Sciences, Vienna Biocenter (VBC), Gregor Mendel Institute of Molecular Plant Biology, 1030 Vienna, Austria
| | - Vu Hoang Nguyen
- Austrian Academy of Sciences, Vienna Biocenter (VBC), Gregor Mendel Institute of Molecular Plant Biology, 1030 Vienna, Austria
| | - Marco Incarbone
- Austrian Academy of Sciences, Vienna Biocenter (VBC), Gregor Mendel Institute of Molecular Plant Biology, 1030 Vienna, Austria
| | - Zohar Meir
- Faculty of Mathematics and Computer Science & Department of Plant and Environmental Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Heinrich Bente
- Austrian Academy of Sciences, Vienna Biocenter (VBC), Gregor Mendel Institute of Molecular Plant Biology, 1030 Vienna, Austria
| | - Mattia Donà
- Austrian Academy of Sciences, Vienna Biocenter (VBC), Gregor Mendel Institute of Molecular Plant Biology, 1030 Vienna, Austria
| | - Nicole Lettner
- Austrian Academy of Sciences, Vienna Biocenter (VBC), Gregor Mendel Institute of Molecular Plant Biology, 1030 Vienna, Austria
| | - Ortrun Mittelsten Scheid
- Austrian Academy of Sciences, Vienna Biocenter (VBC), Gregor Mendel Institute of Molecular Plant Biology, 1030 Vienna, Austria
| | - Ruben Gutzat
- Austrian Academy of Sciences, Vienna Biocenter (VBC), Gregor Mendel Institute of Molecular Plant Biology, 1030 Vienna, Austria
| |
Collapse
|
15
|
Miloro F, Kis A, Havelda Z, Dalmadi Á. Barley AGO4 proteins show overlapping functionality with distinct small RNA-binding properties in heterologous complementation. PLANT CELL REPORTS 2024; 43:96. [PMID: 38480545 PMCID: PMC10937801 DOI: 10.1007/s00299-024-03177-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 02/15/2024] [Indexed: 03/17/2024]
Abstract
KEY MESSAGE Barley AGO4 proteins complement expressional changes of epigenetically regulated genes in Arabidopsis ago4-3 mutant and show a distinct affinity for the 5' terminal nucleotide of small RNAs, demonstrating functional conservation and divergence. The function of Argonaute 4 (AGO4) in Arabidopsis thaliana has been extensively characterized; however, its role in monocots, which have large genomes abundantly supplemented with transposable elements (TEs), remains elusive. The study of barley AGO4 proteins can provide insights into the conserved aspects of RNA-directed DNA methylation (RdDM) and could also have further applications in the field of epigenetics or crop improvement. Bioinformatic analysis of RNA sequencing data identified two active AGO4 genes in barley, HvAGO4a and HvAGO4b. These genes function similar to AtAGO4 in an Arabidopsis heterologous complementation system, primarily binding to 24-nucleotide long small RNAs (sRNAs) and triggering methylation at specific target loci. Like AtAGO4, HvAGO4B exhibits a preference for binding sRNAs with 5' adenine residue, while also accepting 5' guanine, uracil, and cytosine residues. In contrast, HvAGO4A selectively binds only sRNAs with a 5' adenine residue. The diverse binding capacity of barley AGO4 proteins is reflected in TE-derived sRNAs and in their varying abundance. Both barley AGO4 proteins effectively restore the levels of extrachromosomal DNA and transcript abundancy of the heat-activated ONSEN retrotransposon to those observed in wild-type Arabidopsis plants. Our study provides insight into the distinct binding specificities and involvement in TE regulation of barley AGO4 proteins in Arabidopsis by heterologous complementation.
Collapse
Affiliation(s)
- Fabio Miloro
- Hungarian University of Agriculture and Life Sciences (MATE), Institute of Genetics and Biotechnology, Gödöllő, Hungary
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Plant Biotechnology Section, Gödöllő, Hungary
| | - András Kis
- Hungarian University of Agriculture and Life Sciences (MATE), Institute of Genetics and Biotechnology, Gödöllő, Hungary
| | - Zoltán Havelda
- Hungarian University of Agriculture and Life Sciences (MATE), Institute of Genetics and Biotechnology, Gödöllő, Hungary
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Plant Biotechnology Section, Gödöllő, Hungary
| | - Ágnes Dalmadi
- Hungarian University of Agriculture and Life Sciences (MATE), Institute of Genetics and Biotechnology, Gödöllő, Hungary.
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Plant Biotechnology Section, Gödöllő, Hungary.
| |
Collapse
|
16
|
Thieme M, Minadakis N, Himber C, Keller B, Xu W, Rutowicz K, Matteoli C, Böhrer M, Rymen B, Laudencia-Chingcuanco D, Vogel JP, Sibout R, Stritt C, Blevins T, Roulin AC. Transposition of HOPPLA in siRNA-deficient plants suggests a limited effect of the environment on retrotransposon mobility in Brachypodium distachyon. PLoS Genet 2024; 20:e1011200. [PMID: 38470914 PMCID: PMC10959353 DOI: 10.1371/journal.pgen.1011200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/22/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Long terminal repeat retrotransposons (LTR-RTs) are powerful mutagens regarded as a major source of genetic novelty and important drivers of evolution. Yet, the uncontrolled and potentially selfish proliferation of LTR-RTs can lead to deleterious mutations and genome instability, with large fitness costs for their host. While population genomics data suggest that an ongoing LTR-RT mobility is common in many species, the understanding of their dual role in evolution is limited. Here, we harness the genetic diversity of 320 sequenced natural accessions of the Mediterranean grass Brachypodium distachyon to characterize how genetic and environmental factors influence plant LTR-RT dynamics in the wild. When combining a coverage-based approach to estimate global LTR-RT copy number variations with mobilome-sequencing of nine accessions exposed to eight different stresses, we find little evidence for a major role of environmental factors in LTR-RT accumulations in B. distachyon natural accessions. Instead, we show that loss of RNA polymerase IV (Pol IV), which mediates RNA-directed DNA methylation in plants, results in high transcriptional and transpositional activities of RLC_BdisC024 (HOPPLA) LTR-RT family elements, and that these effects are not stress-specific. This work supports findings indicating an ongoing mobility in B. distachyon and reveals that host RNA-directed DNA methylation rather than environmental factors controls their mobility in this wild grass model.
Collapse
Affiliation(s)
- Michael Thieme
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Nikolaos Minadakis
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Christophe Himber
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, Université de Strasbourg, Strasbourg, France
| | - Bettina Keller
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Wenbo Xu
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Kinga Rutowicz
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Calvin Matteoli
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, Université de Strasbourg, Strasbourg, France
| | - Marcel Böhrer
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, Université de Strasbourg, Strasbourg, France
| | - Bart Rymen
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, Université de Strasbourg, Strasbourg, France
| | - Debbie Laudencia-Chingcuanco
- United States Department of Agriculture Agricultural Research Service Western Regional Research Center, Albany, California, United States of America
| | - John P. Vogel
- United States Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Richard Sibout
- Institut National de la Recherche Agronomique Unité BIA- 1268 Biopolymères Interactions Assemblages Equipe Paroi Végétale et Polymères Pariétaux (PVPP), Nantes, France
| | - Christoph Stritt
- Swiss Tropical and Public Health Institute (Swiss TPH), Allschwil, Switzerland
| | - Todd Blevins
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, Université de Strasbourg, Strasbourg, France
| | - Anne C. Roulin
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
17
|
Contreras-Garrido A, Galanti D, Movilli A, Becker C, Bossdorf O, Drost HG, Weigel D. Transposon dynamics in the emerging oilseed crop Thlaspi arvense. PLoS Genet 2024; 20:e1011141. [PMID: 38295109 PMCID: PMC10881000 DOI: 10.1371/journal.pgen.1011141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 02/21/2024] [Accepted: 01/17/2024] [Indexed: 02/02/2024] Open
Abstract
Genome evolution is partly driven by the mobility of transposable elements (TEs) which often leads to deleterious effects, but their activity can also facilitate genetic novelty and catalyze local adaptation. We explored how the intraspecific diversity of TE polymorphisms might contribute to the broad geographic success and adaptive capacity of the emerging oil crop Thlaspi arvense (field pennycress). We classified the TE inventory based on a high-quality genome assembly, estimated the age of retrotransposon TE families and comprehensively assessed their mobilization potential. A survey of 280 accessions from 12 regions across the Northern hemisphere allowed us to quantify over 90,000 TE insertion polymorphisms (TIPs). Their distribution mirrored the genetic differentiation as measured by single nucleotide polymorphisms (SNPs). The number and types of mobile TE families vary substantially across populations, but there are also shared patterns common to all accessions. Ty3/Athila elements are the main drivers of TE diversity in T. arvense populations, while a single Ty1/Alesia lineage might be particularly important for transcriptome divergence. The number of retrotransposon TIPs is associated with variation at genes related to epigenetic regulation, including an apparent knockout mutation in BROMODOMAIN AND ATPase DOMAIN-CONTAINING PROTEIN 1 (BRAT1), while DNA transposons are associated with variation at the HSP19 heat shock protein gene. We propose that the high rate of mobilization activity can be harnessed for targeted gene expression diversification, which may ultimately present a toolbox for the potential use of transposition in breeding and domestication of T. arvense.
Collapse
Affiliation(s)
| | - Dario Galanti
- Plant Evolutionary Ecology, University of Tübingen, Tübingen, Germany
| | - Andrea Movilli
- Department of Molecular Biology, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Claude Becker
- LMU Biocenter, Faculty of Biology, Ludwig Maximilians University Munich, Martinsried, Germany
| | - Oliver Bossdorf
- Plant Evolutionary Ecology, University of Tübingen, Tübingen, Germany
| | - Hajk-Georg Drost
- Computational Biology Group, Max Planck Institute for Biology Tübingen,Tübingen, Germany
| | - Detlef Weigel
- Department of Molecular Biology, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| |
Collapse
|
18
|
Felgines L, Rymen B, Martins LM, Xu G, Matteoli C, Himber C, Zhou M, Eis J, Coruh C, Böhrer M, Kuhn L, Chicher J, Pandey V, Hammann P, Wohlschlegel J, Waltz F, Law JA, Blevins T. CLSY docking to Pol IV requires a conserved domain critical for small RNA biogenesis and transposon silencing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.26.573199. [PMID: 38234754 PMCID: PMC10793415 DOI: 10.1101/2023.12.26.573199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Eukaryotes must balance the need for gene transcription by RNA polymerase II (Pol II) against the danger of mutations caused by transposable element (TE) proliferation. In plants, these gene expression and TE silencing activities are divided between different RNA polymerases. Specifically, RNA polymerase IV (Pol IV), which evolved from Pol II, transcribes TEs to generate small interfering RNAs (siRNAs) that guide DNA methylation and block TE transcription by Pol II. While the Pol IV complex is recruited to TEs via SNF2-like CLASSY (CLSY) proteins, how Pol IV partners with the CLSYs remains unknown. Here we identified a conserved CYC-YPMF motif that is specific to Pol IV and is positioned on the complex exterior. Furthermore, we found that this motif is essential for the co-purification of all four CLSYs with Pol IV, but that only one CLSY is present in any given Pol IV complex. These findings support a "one CLSY per Pol IV" model where the CYC-YPMF motif acts as a CLSY-docking site. Indeed, mutations in and around this motif phenocopy pol iv null mutants. Together, these findings provide structural and functional insights into a critical protein feature that distinguishes Pol IV from other RNA polymerases, allowing it to promote genome stability by targeting TEs for silencing.
Collapse
|
19
|
Jha UC, Nayyar H, Roychowdhury R, Prasad PVV, Parida SK, Siddique KHM. Non-coding RNAs (ncRNAs) in plant: Master regulators for adapting to extreme temperature conditions. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 205:108164. [PMID: 38008006 DOI: 10.1016/j.plaphy.2023.108164] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/30/2023] [Accepted: 11/02/2023] [Indexed: 11/28/2023]
Abstract
Unusual daily temperature fluctuations caused by climate change and climate variability adversely impact agricultural crop production. Since plants are immobile and constantly receive external environmental signals, such as extreme high (heat) and low (cold) temperatures, they have developed complex molecular regulatory mechanisms to cope with stressful situations to sustain their natural growth and development. Among these mechanisms, non-coding RNAs (ncRNAs), particularly microRNAs (miRNAs), small-interfering RNAs (siRNAs), and long-non-coding RNAs (lncRNAs), play a significant role in enhancing heat and cold stress tolerance. This review explores the pivotal findings related to miRNAs, siRNAs, and lncRNAs, elucidating how they functionally regulate plant adaptation to extreme temperatures. In addition, this review addresses the challenges associated with uncovering these non-coding RNAs and understanding their roles in orchestrating heat and cold tolerance in plants.
Collapse
Affiliation(s)
- Uday Chand Jha
- Sustainable Intensification Innovation Lab, Kansas State University, Department of Agronomy, Manhattan, KS 66506, USA; ICAR-Indian Institute of Pulses Research, Kanpur, Uttar Pradesh 208024, India.
| | - Harsh Nayyar
- Department of Botany, Panjab University, Chandigarh, 160014, India.
| | - Rajib Roychowdhury
- Department of Plant Pathology and Weed Research, Institute of Plant Protection, Agricultural Research Organization (ARO) - The Volcani Institute, Rishon Lezion 7505101, Israel
| | - P V Vara Prasad
- Sustainable Intensification Innovation Lab, Kansas State University, Department of Agronomy, Manhattan, KS 66506, USA
| | - Swarup K Parida
- National Institute of Plant Genomic Research, New Delhi, 110067, India
| | - Kadambot H M Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia
| |
Collapse
|
20
|
Mata-Sucre Y, Matzenauer W, Castro N, Huettel B, Pedrosa-Harand A, Marques A, Souza G. Repeat-based phylogenomics shed light on unclear relationships in the monocentric genus Juncus L. (Juncaceae). Mol Phylogenet Evol 2023; 189:107930. [PMID: 37717642 DOI: 10.1016/j.ympev.2023.107930] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 09/19/2023]
Abstract
The repetitive fraction (repeatome) of eukaryotic genomes is diverse and usually fast evolving, being an important tool for clarify plant systematics. The genus Juncus L. comprises 332 species, karyotypically recognized by having holocentric chromosomes. However, four species were recently described as monocentric, yet our understanding of their genome evolution is largely masked by unclear phylogenetic relationships. Here, we reassess the current Juncus systematics using low-coverage genome skimming data of 33 taxa to construct repeats, nuclear rDNA and plastome-based phylogenetic hypothesis. Furthermore, we characterize the repeatome and chromosomal distribution of Juncus-specific centromeric repeats/CENH3 protein to test the monocentricity reach in the genus. Repeat-base phylogenies revealed topologies congruent with the rDNA tree, but not with the plastome tree. The incongruence between nuclear and plastome chloroplast dataset suggest an ancient hybridization in the divergence of Juncotypus and Tenageia sections 40 Myr ago. The phylogenetic resolution at section level was better fitted with the rDNA/repeat-based approaches, with the recognition of two monophyletic sections (Stygiopsis and Tenageia). We found specific repeatome trends for the main lineages, such as the higher abundances of TEs in the Caespitosi and Iridifolii + Ozophyllum clades. CENH3 immunostaining confirmed the monocentricity of Juncus, which can be a generic synapomorphy for the genus. The heterogeneity of the repeatomes, with high phylogenetic informativeness, identified here may be correlated with their ancient origin (56 Mya) and reveals the potential of comparative genomic analyses for understanding plant systematics and evolution.
Collapse
Affiliation(s)
- Yennifer Mata-Sucre
- Laboratório de Citogenética e Evolução Vegetal, Departamento de Botânica, Centro de Biociências, Universidade Federal de Pernambuco. Recife PE 50670-901, Brasil
| | - William Matzenauer
- Laboratório de Morfo-Taxonomia Vegetal, Departamento de Botânica, Centro de Biociências, Universidade Federal de Pernambuco, Recife PE 50670-901, Brasil
| | - Natália Castro
- Laboratório de Citogenética e Evolução Vegetal, Departamento de Botânica, Centro de Biociências, Universidade Federal de Pernambuco. Recife PE 50670-901, Brasil
| | - Bruno Huettel
- Max Planck Genome-Centre Cologne, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Andrea Pedrosa-Harand
- Laboratório de Citogenética e Evolução Vegetal, Departamento de Botânica, Centro de Biociências, Universidade Federal de Pernambuco. Recife PE 50670-901, Brasil
| | - André Marques
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Gustavo Souza
- Laboratório de Citogenética e Evolução Vegetal, Departamento de Botânica, Centro de Biociências, Universidade Federal de Pernambuco. Recife PE 50670-901, Brasil.
| |
Collapse
|
21
|
Fan W, Wang L, Lei Z, Li H, Chu J, Yan M, Wang Y, Wang H, Yang J, Cho J. m 6A RNA demethylase AtALKBH9B promotes mobilization of a heat-activated long terminal repeat retrotransposon in Arabidopsis. SCIENCE ADVANCES 2023; 9:eadf3292. [PMID: 38019921 PMCID: PMC10686560 DOI: 10.1126/sciadv.adf3292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 10/30/2023] [Indexed: 12/01/2023]
Abstract
Transposons are mobile and ubiquitous DNA molecules that can cause vast genomic alterations. In plants, it is well documented that transposon mobilization is strongly repressed by DNA methylation; however, its regulation at the posttranscriptional level remains relatively uninvestigated. Here, we suggest that transposon RNA is marked by m6A RNA methylation and can be localized in stress granules (SGs). Intriguingly, SG-localized AtALKBH9B selectively demethylates a heat-activated retroelement, Onsen, and thereby releases it from spatial confinement, allowing for its mobilization. In addition, we show evidence that m6A RNA methylation contributes to transpositional suppression by inhibiting virus-like particle assembly and extrachromosomal DNA production. In summary, this study unveils a previously unknown role for m6A in the suppression of transposon mobility and provides insight into how transposons counteract the m6A-mediated repression mechanism by hitchhiking the RNA demethylase of the host.
Collapse
Affiliation(s)
- Wenwen Fan
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ling Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhen Lei
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hui Li
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Chu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengxiao Yan
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
| | - Yuqin Wang
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
| | - Hongxia Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
| | - Jun Yang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
| | - Jungnam Cho
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- CAS-JIC Centre for Excellence in Plant and Microbial Science, Shanghai 200032, China
- Department of Biosciences, Durham University, Durham DH1 3LE, UK
| |
Collapse
|
22
|
Pulido M, Casacuberta JM. Transposable element evolution in plant genome ecosystems. CURRENT OPINION IN PLANT BIOLOGY 2023; 75:102418. [PMID: 37459733 DOI: 10.1016/j.pbi.2023.102418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/22/2023] [Accepted: 06/20/2023] [Indexed: 09/18/2023]
Abstract
The relationship of transposable elements (TEs) with their host genomes has usually been seen as an arms race between TEs and their host genomes. Consequently, TEs are supposed to amplify by bursts of transposition, when the TE escapes host surveillance, followed by long periods of TE quiescence and efficient host control. Recent data obtained from an increasing number of assembled plant genomes and resequencing population datasets show that TE dynamics is more complex and varies among TE families and their host genomes. This variation ranges from large genomes that accommodate large TE populations to genomes that are very active in TE elimination, and from inconspicuous elements with very low activity to elements with high transposition and elimination rates. The dynamics of each TE family results from a long history of interaction with the host in a genome populated by many other TE families, very much like an evolving ecosystem.
Collapse
Affiliation(s)
- Marc Pulido
- Center for Research in Agricultural Genomics, CRAG (CSIC-IRTA-UAB-UB), Campus UAB, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Josep M Casacuberta
- Center for Research in Agricultural Genomics, CRAG (CSIC-IRTA-UAB-UB), Campus UAB, Cerdanyola del Vallès, 08193 Barcelona, Spain.
| |
Collapse
|
23
|
Rehman S, Ahmad Z, Ramakrishnan M, Kalendar R, Zhuge Q. Regulation of plant epigenetic memory in response to cold and heat stress: towards climate resilient agriculture. Funct Integr Genomics 2023; 23:298. [PMID: 37700098 DOI: 10.1007/s10142-023-01219-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 08/18/2023] [Accepted: 08/23/2023] [Indexed: 09/14/2023]
Abstract
Plants have evolved to adapt and grow in hot and cold climatic conditions. Some also adapt to daily and seasonal temperature changes. Epigenetic modifications play an important role in regulating plant tolerance under such conditions. DNA methylation and post-translational modifications of histone proteins influence gene expression during plant developmental stages and under stress conditions, including cold and heat stress. While short-term modifications are common, some modifications may persist and result in stress memory that can be inherited by subsequent generations. Understanding the mechanisms of epigenomes responding to stress and the factors that trigger stress memory is crucial for developing climate-resilient agriculture, but such an integrated view is currently limited. This review focuses on the plant epigenetic stress memory during cold and heat stress. It also discusses the potential of machine learning to modify stress memory through epigenetics to develop climate-resilient crops.
Collapse
Affiliation(s)
- Shamsur Rehman
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics and Biotechnology, College of Biology and the Environment, Nanjing Forestry University, Ministry of Education, Nanjing, China
| | - Zishan Ahmad
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
- Bamboo Research Institute, Nanjing Forestry University, Nanjing, 210037, China
| | - Muthusamy Ramakrishnan
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
- Bamboo Research Institute, Nanjing Forestry University, Nanjing, 210037, China
| | - Ruslan Kalendar
- Helsinki Institute of Life Science HiLIFE, Biocenter 3, Viikinkaari 1, FI-00014 University of Helsinki, Helsinki, Finland.
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan.
| | - Qiang Zhuge
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics and Biotechnology, College of Biology and the Environment, Nanjing Forestry University, Ministry of Education, Nanjing, China.
| |
Collapse
|
24
|
Bock DG, Cai Z, Elphinstone C, González-Segovia E, Hirabayashi K, Huang K, Keais GL, Kim A, Owens GL, Rieseberg LH. Genomics of plant speciation. PLANT COMMUNICATIONS 2023; 4:100599. [PMID: 37050879 PMCID: PMC10504567 DOI: 10.1016/j.xplc.2023.100599] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/21/2023] [Accepted: 04/06/2023] [Indexed: 06/19/2023]
Abstract
Studies of plants have been instrumental for revealing how new species originate. For several decades, botanical research has complemented and, in some cases, challenged concepts on speciation developed via the study of other organisms while also revealing additional ways in which species can form. Now, the ability to sequence genomes at an unprecedented pace and scale has allowed biologists to settle decades-long debates and tackle other emerging challenges in speciation research. Here, we review these recent genome-enabled developments in plant speciation. We discuss complications related to identification of reproductive isolation (RI) loci using analyses of the landscape of genomic divergence and highlight the important role that structural variants have in speciation, as increasingly revealed by new sequencing technologies. Further, we review how genomics has advanced what we know of some routes to new species formation, like hybridization or whole-genome duplication, while casting doubt on others, like population bottlenecks and genetic drift. While genomics can fast-track identification of genes and mutations that confer RI, we emphasize that follow-up molecular and field experiments remain critical. Nonetheless, genomics has clarified the outsized role of ancient variants rather than new mutations, particularly early during speciation. We conclude by highlighting promising avenues of future study. These include expanding what we know so far about the role of epigenetic and structural changes during speciation, broadening the scope and taxonomic breadth of plant speciation genomics studies, and synthesizing information from extensive genomic data that have already been generated by the plant speciation community.
Collapse
Affiliation(s)
- Dan G Bock
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Zhe Cai
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Cassandra Elphinstone
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Eric González-Segovia
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| | | | - Kaichi Huang
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Graeme L Keais
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Amy Kim
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Gregory L Owens
- Department of Biology, University of Victoria, Victoria, BC, Canada
| | - Loren H Rieseberg
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
25
|
Dickinson L, Yuan W, LeBlanc C, Thomson G, Wang S, Jacob Y. Regulation of gene editing using T-DNA concatenation. NATURE PLANTS 2023; 9:1398-1408. [PMID: 37653336 PMCID: PMC11193869 DOI: 10.1038/s41477-023-01495-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 07/18/2023] [Indexed: 09/02/2023]
Abstract
Transformation via Agrobacterium tumefaciens is the predominant method used to introduce exogenous DNA into plant genomes1,2. Transfer DNA (T-DNA) originating from Agrobacterium can be integrated as a single copy or in complex concatenated forms3,4, but the mechanisms affecting final T-DNA structure remain unknown. Here we demonstrate that inclusion of retrotransposon (RT)-derived sequences in T-DNA can increase T-DNA copy number by more than 50-fold in Arabidopsis thaliana. These additional T-DNA copies are organized into large concatemers, an effect primarily induced by the long terminal repeats (LTRs) of RTs that can be replicated using non-LTR DNA repeats. We found that T-DNA concatenation is dependent on the activity of the DNA repair proteins MRE11, RAD17 and ATR. Finally, we show that T-DNA concatenation can be used to increase the frequency of targeted mutagenesis and gene targeting. Overall, this work uncovers molecular determinants that modulate T-DNA copy number in Arabidopsis and demonstrates the utility of inducing T-DNA concatenation for plant gene editing.
Collapse
Affiliation(s)
- Lauren Dickinson
- Department of Molecular, Cellular and Developmental Biology, Faculty of Arts and Sciences, Yale University, New Haven, CT, USA
| | - Wenxin Yuan
- Department of Molecular, Cellular and Developmental Biology, Faculty of Arts and Sciences, Yale University, New Haven, CT, USA
| | - Chantal LeBlanc
- Department of Molecular, Cellular and Developmental Biology, Faculty of Arts and Sciences, Yale University, New Haven, CT, USA
| | - Geoffrey Thomson
- Department of Molecular, Cellular and Developmental Biology, Faculty of Arts and Sciences, Yale University, New Haven, CT, USA
| | - Siyuan Wang
- Department of Genetics, Yale School of Medicine, Yale University, New Haven, CT, USA
- Department of Cell Biology, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Yannick Jacob
- Department of Molecular, Cellular and Developmental Biology, Faculty of Arts and Sciences, Yale University, New Haven, CT, USA.
- Yale Cancer Center, Yale School of Medicine, Yale University, New Haven, CT, USA.
| |
Collapse
|
26
|
Chaudhary J, Gautam T, Gahlaut V, Singh K, Kumar S, Batra R, Gupta PK. Identification and characterization of RuvBL DNA helicase genes for tolerance against abiotic stresses in bread wheat (Triticum aestivum L.) and related species. Funct Integr Genomics 2023; 23:255. [PMID: 37498392 DOI: 10.1007/s10142-023-01177-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 07/13/2023] [Accepted: 07/13/2023] [Indexed: 07/28/2023]
Abstract
Recombination UVB (sensitivity) like (RuvBL) helicase genes represent a conserved family of genes, which are known to be involved in providing tolerance against abiotic stresses like heat and drought. We identified nine wheat RuvBL genes, one each on nine different chromosomes, belonging to homoeologous groups 2, 3, and 4. The lengths of genes ranged from 1647 to 2197 bp and exhibited synteny with corresponding genes in related species including Ae. tauschii, Z. mays, O. sativa, H. vulgare, and B. distachyon. The gene sequences were associated with regulatory cis-elements and transposable elements. Two genes, namely TaRuvBL1a-4A and TaRuvBL1a-4B, also carried targets for a widely known miRNA, tae-miR164. Gene ontology revealed that these genes were closely associated with ATP-dependent formation of histone acetyltransferase complex. Analysis of the structure and function of RuvBL proteins revealed that the proteins were localized mainly in the cytoplasm. A representative gene, namely TaRuvBL1a-4A, was also shown to be involved in protein-protein interactions with ten other proteins. On the basis of phylogeny, RuvBL proteins were placed in two sub-divisions, namely RuvBL1 and RuvBL2, which were further classified into clusters and sub-clusters. In silico studies suggested that these genes were differentially expressed under heat/drought. The qRT-PCR analysis confirmed that expression of TaRuvBL genes differed among wheat cultivars, which differed in the level of thermotolerance. The present study advances our understanding of the biological role of wheat RuvBL genes and should help in planning future studies on RuvBL genes in wheat including use of RuvBL genes in breeding thermotolerant wheat cultivars.
Collapse
Affiliation(s)
- Jyoti Chaudhary
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, 250004, Meerut, India
| | - Tinku Gautam
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, 250004, Meerut, India
- Swift Current Research and Development Centre, Agriculture and Agri-Food Canada, Swift Current, SK, Canada
| | - Vijay Gahlaut
- Council of Scientific & Industrial Research-Institute of Himalayan Bioresource Technology, Palampur, India
- Department of Biotechnology, University Center for Research and Development, Chandigarh University, Gharuan, Mohali, Punjab, 140413, India
| | - Kalpana Singh
- Department of Bioinformatics, College of animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, India
| | - Sourabh Kumar
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, 250004, Meerut, India
| | - Ritu Batra
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, 250004, Meerut, India
- IIMT University, 'O' Pocket, Ganga Nagar, Meerut, India
| | - Pushpendra Kumar Gupta
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, 250004, Meerut, India.
| |
Collapse
|
27
|
Upton RN, Correr FH, Lile J, Reynolds GL, Falaschi K, Cook JP, Lachowiec J. Design, execution, and interpretation of plant RNA-seq analyses. FRONTIERS IN PLANT SCIENCE 2023; 14:1135455. [PMID: 37457354 PMCID: PMC10348879 DOI: 10.3389/fpls.2023.1135455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 06/12/2023] [Indexed: 07/18/2023]
Abstract
Genomics has transformed our understanding of the genetic architecture of traits and the genetic variation present in plants. Here, we present a review of how RNA-seq can be performed to tackle research challenges addressed by plant sciences. We discuss the importance of experimental design in RNA-seq, including considerations for sampling and replication, to avoid pitfalls and wasted resources. Approaches for processing RNA-seq data include quality control and counting features, and we describe common approaches and variations. Though differential gene expression analysis is the most common analysis of RNA-seq data, we review multiple methods for assessing gene expression, including detecting allele-specific gene expression and building co-expression networks. With the production of more RNA-seq data, strategies for integrating these data into genetic mapping pipelines is of increased interest. Finally, special considerations for RNA-seq analysis and interpretation in plants are needed, due to the high genome complexity common across plants. By incorporating informed decisions throughout an RNA-seq experiment, we can increase the knowledge gained.
Collapse
|
28
|
Kumar M, Rani K. Epigenomics in stress tolerance of plants under the climate change. Mol Biol Rep 2023:10.1007/s11033-023-08539-6. [PMID: 37294468 DOI: 10.1007/s11033-023-08539-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 05/19/2023] [Indexed: 06/10/2023]
Abstract
BACKGROUND Climate change has had a tremendous impact on the environment in general as well as agricultural crops grown in these situations as time passed. Agricultural production of crops is less suited and of lower quality due to disturbances in plant metabolism brought on by sensitivity to environmental stresses, which are brought on by climate change. Abiotic stressors that are specific to climate change, including as drought, extremes in temperature, increasing CO2, waterlogging from heavy rain, metal toxicity, and pH changes, are known to negatively affect an array of species. Plants adapt to these challenges by undergoing genome-wide epigenetic changes, which are frequently accompanied by differences in transcriptional gene expression. The sum of a cell's biochemical modifications to its nuclear DNA, post-translational modifications to histones, and variations in the synthesis of non-coding RNAs is called an epigenome. These modifications frequently lead to variations in gene expression that occur without any alteration in the underlying base sequence. EPIGENETIC MECHANISMS AND MARKS The methylation of homologous loci by three different modifications-genomic (DNA methylation), chromatin (histone modifications), and RNA-directed DNA methylation (RdDM)-could be regarded as epigenetic mechanisms that control the regulation of differential gene expression. Stresses from the environment cause chromatin remodelling, which enables plant cells to adjust their expression patterns temporarily or permanently. EPIGENOMICS' CONSEQUENCES FOR GENOME STABILITY AND GENE EXPRESSION: DNA methylation affects gene expression in response to abiotic stressors by blocking or suppressing transcription. Environmental stimuli cause changes in DNA methylation levels, either upward in the case of hypermethylation or downward in the case of hypomethylation. The type of stress response that occurs as a result also affects the degree of DNA methylation alterations. Stress is also influenced by DRM2 and CMT3 methylating CNN, CNG, and CG. Both plant development and stress reactions depend on histone changes. Gene up-regulation is associated with histone tail phosphorylation, ubiquitination, and acetylation, while gene down-regulation is associated with de-acetylation and biotinylation. Plants undergo a variety of dynamic changes to histone tails in response to abiotic stressors. The relevance of these transcripts against stress is highlighted by the accumulation of numerous additional antisense transcripts, a source of siRNAs, caused by abiotic stresses. The study highlights the finding that plants can be protected from a range of abiotic stresses by epigenetic mechanisms such DNA methylation, histone modification, and RNA-directed DNA methylation. TRANSGENERATIONAL INHERITANCE AND SOURCES OF EPIGENETIC VARIATION: Stress results in the formation of epialleles, which are either transient or enduring epigenetic stress memory in plants. After the stress is gone, the stable memory is kept for the duration of the plant's remaining developmental cycles or passed on to the next generations, leading to plant evolution and adaptability. The bulk of epigenetic changes brought on by stress are temporary and return to normal after the stress has passed. Some of the modifications, however, might be long-lasting and transmitted across mitotic or even meiotic cell divisions. Epialleles often have genetic or non-genetic causes. Epialleles can arise spontaneously due to improper methylation state maintenance, short RNA off-target effects, or other non-genetic causes. Developmental or environmental variables that influence the stability of epigenetic states or direct chromatin modifications may also be non-genetic drivers of epigenetic variation. Transposon insertions that change local chromatin and structural rearrangements, such copy number changes that are genetically related or unrelated, are two genetic sources of epialleles. EPIGENOMICS IN CROP IMPROVEMENT To include epigenetics into crop breeding, it is necessary to create epigenetic variation as well as to identify and evaluate epialleles. Epigenome editing or epi-genomic selection may be required for epiallele creation and identification. In order to combat the challenges given by changing environments, these epigenetic mechanisms have generated novel epialleles that can be exploited to develop new crop types that are more climate-resilient. Numerous techniques can be used to alter the epigenome generally or at specific target loci in order to induce the epigenetic alterations necessary for crop development. Technologies like CRISPR/Cas9 and dCas, which have recently advanced, have opened up new avenues for the study of epigenetics. Epialleles could be employed in epigenomics-assisted breeding in addition to sequence-based markers for crop breeding. CONCLUSIONS AND FUTURE PROSPECTUS A few of the exciting questions that still need to be resolved in the area of heritable epigenetic variation include a better understanding of the epigenetic foundation of characteristics, the stability and heritability of epialleles, and the sources of epigenetic variation in crops. Investigating long intergenic non-coding RNAs (lincRNAs) as an epigenetic process might open up a new path to understanding crop plant's ability to withstand abiotic stress. For many of these technologies and approaches to be more applicable and deployable at a lower cost, technological breakthroughs will also be necessary. Breeders will probably need to pay closer attention to crop epialleles and how they can affect future responses to climate changes. The development of epialleles suitable for particular environmental circumstances may be made possible by creating targeted epigenetic changes in pertinent genes and by comprehending the molecular underpinnings of trans generational epigenetic inheritance. More research on a wider variety of plant species is required in order to fully comprehend the mechanisms that produce and stabilise epigenetic variation in crops. In addition to a collaborative and multidisciplinary effort by researchers in many fields of plant science, this will require a greater integration of the epigenomic data gathered in many crops. Before it may be applied generally, more study is required.
Collapse
Affiliation(s)
- Mithlesh Kumar
- AICRN On Potential Crops, ARS Mandor, Agriculture University, Jodhpur, 342 304, Rajasthan, India.
| | - Kirti Rani
- ICAR-National Bureau of Plant Genetic Resources (NBPGR), Regional Station, Jodhpur, 342 003, Rajasthan, India
| |
Collapse
|
29
|
Berthelier J, Furci L, Asai S, Sadykova M, Shimazaki T, Shirasu K, Saze H. Long-read direct RNA sequencing reveals epigenetic regulation of chimeric gene-transposon transcripts in Arabidopsis thaliana. Nat Commun 2023; 14:3248. [PMID: 37277361 DOI: 10.1038/s41467-023-38954-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 05/21/2023] [Indexed: 06/07/2023] Open
Abstract
Transposable elements (TEs) are accumulated in both intergenic and intragenic regions in plant genomes. Intragenic TEs often act as regulatory elements of associated genes and are also co-transcribed with genes, generating chimeric TE-gene transcripts. Despite the potential impact on mRNA regulation and gene function, the prevalence and transcriptional regulation of TE-gene transcripts are poorly understood. By long-read direct RNA sequencing and a dedicated bioinformatics pipeline, ParasiTE, we investigated the transcription and RNA processing of TE-gene transcripts in Arabidopsis thaliana. We identified a global production of TE-gene transcripts in thousands of A. thaliana gene loci, with TE sequences often being associated with alternative transcription start sites or transcription termination sites. The epigenetic state of intragenic TEs affects RNAPII elongation and usage of alternative poly(A) signals within TE sequences, regulating alternative TE-gene isoform production. Co-transcription and inclusion of TE-derived sequences into gene transcripts impact regulation of RNA stability and environmental responses of some loci. Our study provides insights into TE-gene interactions that contributes to mRNA regulation, transcriptome diversity, and environmental responses in plants.
Collapse
Grants
- JP20H02995 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- JP22H00364 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- JP20H05909 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- JP20H05913 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
Collapse
Affiliation(s)
- Jérémy Berthelier
- Plant Epigenetics Unit, Okinawa Institute of Science and Technology Graduate University (OIST), 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa, 904-0495, Japan.
| | - Leonardo Furci
- Plant Epigenetics Unit, Okinawa Institute of Science and Technology Graduate University (OIST), 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa, 904-0495, Japan
| | - Shuta Asai
- Center for Sustainable Resource Science, RIKEN, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
| | - Munissa Sadykova
- Plant Epigenetics Unit, Okinawa Institute of Science and Technology Graduate University (OIST), 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa, 904-0495, Japan
| | - Tomoe Shimazaki
- Plant Epigenetics Unit, Okinawa Institute of Science and Technology Graduate University (OIST), 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa, 904-0495, Japan
| | - Ken Shirasu
- Center for Sustainable Resource Science, RIKEN, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
| | - Hidetoshi Saze
- Plant Epigenetics Unit, Okinawa Institute of Science and Technology Graduate University (OIST), 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa, 904-0495, Japan.
| |
Collapse
|
30
|
Merkulov P, Egorova E, Kirov I. Composition and Structure of Arabidopsis thaliana Extrachromosomal Circular DNAs Revealed by Nanopore Sequencing. PLANTS (BASEL, SWITZERLAND) 2023; 12:2178. [PMID: 37299157 PMCID: PMC10255303 DOI: 10.3390/plants12112178] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/19/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023]
Abstract
Extrachromosomal circular DNAs (eccDNAs) are enigmatic DNA molecules that have been detected in a range of organisms. In plants, eccDNAs have various genomic origins and may be derived from transposable elements. The structures of individual eccDNA molecules and their dynamics in response to stress are poorly understood. In this study, we showed that nanopore sequencing is a useful tool for the detection and structural analysis of eccDNA molecules. Applying nanopore sequencing to the eccDNA molecules of epigenetically stressed Arabidopsis plants grown under various stress treatments (heat, abscisic acid, and flagellin), we showed that TE-derived eccDNA quantity and structure vary dramatically between individual TEs. Epigenetic stress alone did not cause eccDNA up-regulation, whereas its combination with heat stress triggered the generation of full-length and various truncated eccDNAs of the ONSEN element. We showed that the ratio between full-length and truncated eccDNAs is TE- and condition-dependent. Our work paves the way for further elucidation of the structural features of eccDNAs and their connections with various biological processes, such as eccDNA transcription and eccDNA-mediated TE silencing.
Collapse
Affiliation(s)
- Pavel Merkulov
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia;
- All-Russia Research Institute of Agricultural Biotechnology, 127550 Moscow, Russia;
| | - Ekaterina Egorova
- All-Russia Research Institute of Agricultural Biotechnology, 127550 Moscow, Russia;
| | - Ilya Kirov
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia;
- All-Russia Research Institute of Agricultural Biotechnology, 127550 Moscow, Russia;
| |
Collapse
|
31
|
Brestovitsky A, Iwasaki M, Cho J, Adulyanukosol N, Paszkowski J, Catoni M. Specific suppression of long terminal repeat retrotransposon mobilization in plants. PLANT PHYSIOLOGY 2023; 191:2245-2255. [PMID: 36583226 PMCID: PMC10069891 DOI: 10.1093/plphys/kiac605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 05/19/2023]
Abstract
The tissue culture passage necessary for the generation of transgenic plants induces genome instability. This instability predominantly involves the uncontrolled mobilization of LTR retrotransposons (LTR-TEs), which are the most abundant class of mobile genetic elements in plant genomes. Here, we demonstrate that in conditions inductive for high LTR-TE mobilization, like abiotic stress in Arabidopsis (Arabidopsis thaliana) and callus culture in rice (Oryza sativa), application of the reverse transcriptase (RT) inhibitor known as Tenofovir substantially affects LTR-TE RT activity without interfering with plant development. We observed that Tenofovir reduces extrachromosomal DNA accumulation and prevents new genomic integrations of the active LTR-TE ONSEN in heat-stressed Arabidopsis seedlings, and transposons of O. sativa 17 and 19 (Tos17 and Tos19) in rice calli. In addition, Tenofovir allows the recovery of plants free from new LTR-TE insertions. We propose the use of Tenofovir as a tool for studies of LTR-TE transposition and for limiting genetic instabilities of plants derived from tissue culture.
Collapse
Affiliation(s)
- Anna Brestovitsky
- The Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, UK
| | - Mayumi Iwasaki
- The Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, UK
- Department of Plant Biology, University of Geneva, Geneva CH-1211, Switzerland
| | - Jungnam Cho
- The Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, UK
- CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | | | - Jerzy Paszkowski
- The Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, UK
| | | |
Collapse
|
32
|
Dickinson L, Yuan W, LeBlanc C, Thomson G, Wang S, Jacob Y. Induction of T-DNA amplification by retrotransposon-derived sequences. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.05.531200. [PMID: 36945545 PMCID: PMC10028825 DOI: 10.1101/2023.03.05.531200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Transformation via Agrobacterium tumefaciens (Agrobacterium) is the predominant method used to introduce exogenous DNA into plants. Transfer DNA (T-DNA) originating from Agrobacterium can be integrated as a single copy or in concatenated forms in plant genomes, but the mechanisms affecting final T-DNA structure remain unknown. In this study, we demonstrate that the inclusion of retrotransposon (RT)-derived sequences in T-DNA can increase transgene copy number by more than 50-fold in Arabidopsis thaliana (Arabidopsis). RT-mediated amplification of T-DNA results in large concatemers in the Arabidopsis genome, which are primarily induced by the long terminal repeats (LTRs) of RTs. T-DNA amplification is dependent on the activity of DNA repair proteins associated with theta-mediated end joining (TMEJ). Finally, we show that T-DNA amplification can increase the frequency of targeted mutagenesis and gene targeting. Overall, this work uncovers molecular determinants that modulate T-DNA copy number in Arabidopsis and demonstrates the utility of inducing T-DNA amplification for plant gene editing.
Collapse
Affiliation(s)
- Lauren Dickinson
- Yale University, Department of Molecular, Cellular and Developmental Biology, Faculty of Arts and Sciences; New Haven, Connecticut 06511, USA
| | - Wenxin Yuan
- Yale University, Department of Molecular, Cellular and Developmental Biology, Faculty of Arts and Sciences; New Haven, Connecticut 06511, USA
| | - Chantal LeBlanc
- Yale University, Department of Molecular, Cellular and Developmental Biology, Faculty of Arts and Sciences; New Haven, Connecticut 06511, USA
| | - Geoffrey Thomson
- Yale University, Department of Molecular, Cellular and Developmental Biology, Faculty of Arts and Sciences; New Haven, Connecticut 06511, USA
| | - Siyuan Wang
- Yale University, Department of Genetics, Yale School of Medicine; New Haven, Connecticut 06510, USA
- Yale University, Department of Cell Biology, Yale School of Medicine; New Haven, Connecticut 06510, USA
| | - Yannick Jacob
- Yale University, Department of Molecular, Cellular and Developmental Biology, Faculty of Arts and Sciences; New Haven, Connecticut 06511, USA
| |
Collapse
|
33
|
Gebremeskel H, Umer MJ, Hongju Z, Li B, Shengjie Z, Yuan P, Xuqiang L, Nan H, Wenge L. Genetic mapping and molecular characterization of the delayed green gene dg in watermelon ( Citrullus lanatus). FRONTIERS IN PLANT SCIENCE 2023; 14:1152644. [PMID: 37152178 PMCID: PMC10158938 DOI: 10.3389/fpls.2023.1152644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 04/03/2023] [Indexed: 05/09/2023]
Abstract
Leaf color mutants are common in higher plants that can be used as markers in crop breeding and are important tools in understanding regulatory mechanisms of chlorophyll biosynthesis and chloroplast development. Genetic analysis was performed by evaluating F1, F2 and BC1 populations derived from two parental lines (Charleston gray with green leaf color and Houlv with delayed green leaf color), suggesting that a single recessive gene controls the delayed green leaf color. In this study, the delayed green mutant showed a conditional pale green leaf color at the early leaf development but turned to green as the leaf development progressed. Delayed green leaf plants showed reduced pigment content, photosynthetic, chlorophyll fluorescence parameters, and impaired chloroplast development compared with green leaf plants. The delayed green (dg) locus was mapped to 7.48 Mb on chromosome 3 through bulk segregant analysis approach, and the gene controlling delayed green leaf color was narrowed to 53.54 kb between SNP130 and SNP135 markers containing three candidate genes. Sequence alignment of the three genes indicated that there was a single SNP mutation (G/A) in the coding region of ClCG03G010030 in the Houlv parent, which causes an amino acid change from Arginine to Lysine. The ClCG03G010030 gene encoded FtsH extracellular protease protein family is involved in early delayed green leaf development. The expression level of ClCG03G010030 was significantly reduced in delayed green leaf plants than in green leaf plants. These results indicated that the ClCG03G010030 might control watermelon green leaf color and the single SNP variation in ClCG03G010030 may result in early delayed green leaf color development during evolutionary process.
Collapse
Affiliation(s)
- Haileslassie Gebremeskel
- Henan Joint International Research Laboratory of South Asian Fruits and Cucurbits, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
- Department of Horticulture, Ethiopian Institute of Agricultural Research, Addis Ababa, Ethiopia
| | - Muhammad Jawad Umer
- Henan Joint International Research Laboratory of South Asian Fruits and Cucurbits, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
- State Key Laboratory of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Zhu Hongju
- Henan Joint International Research Laboratory of South Asian Fruits and Cucurbits, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Bingbing Li
- Henan Joint International Research Laboratory of South Asian Fruits and Cucurbits, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Zhao Shengjie
- Henan Joint International Research Laboratory of South Asian Fruits and Cucurbits, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Pingli Yuan
- Henan Joint International Research Laboratory of South Asian Fruits and Cucurbits, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Lu Xuqiang
- Henan Joint International Research Laboratory of South Asian Fruits and Cucurbits, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - He Nan
- Henan Joint International Research Laboratory of South Asian Fruits and Cucurbits, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Liu Wenge
- Henan Joint International Research Laboratory of South Asian Fruits and Cucurbits, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
- *Correspondence: Liu Wenge,
| |
Collapse
|
34
|
Ramakrishnan M, Papolu PK, Mullasseri S, Zhou M, Sharma A, Ahmad Z, Satheesh V, Kalendar R, Wei Q. The role of LTR retrotransposons in plant genetic engineering: how to control their transposition in the genome. PLANT CELL REPORTS 2023; 42:3-15. [PMID: 36401648 DOI: 10.1007/s00299-022-02945-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 10/23/2022] [Indexed: 06/16/2023]
Abstract
We briefly discuss that the similarity of LTR retrotransposons to retroviruses is a great opportunity for the development of a genetic engineering tool that exploits intragenic elements in the plant genome for plant genetic improvement. Long terminal repeat (LTR) retrotransposons are very similar to retroviruses but do not have the property of being infectious. While spreading between its host cells, a retrovirus inserts a DNA copy of its genome into the cells. The ability of retroviruses to cause infection with genome integration allows genes to be delivered to cells and tissues. Retrovirus vectors are, however, only specific to animals and insects, and, thus, are not relevant to plant genetic engineering. However, the similarity of LTR retrotransposons to retroviruses is an opportunity to explore the former as a tool for genetic engineering. Although recent long-read sequencing technologies have advanced the knowledge about transposable elements (TEs), the integration of TEs is still unable either to control them or to direct them to specific genomic locations. The use of existing intragenic elements to achieve the desired genome composition is better than using artificial constructs like vectors, but it is not yet clear how to control the process. Moreover, most LTR retrotransposons are inactive and unable to produce complete proteins. They are also highly mutable. In addition, it is impossible to find a full active copy of a LTR retrotransposon out of thousands of its own copies. Theoretically, if these elements were directly controlled and turned on or off using certain epigenetic mechanisms (inducing by stress or infection), LTR retrotransposons could be a great opportunity to develop a genetic engineering tool using intragenic elements in the plant genome. In this review, the recent developments in uncovering the nature of LTR retrotransposons and the possibility of using these intragenic elements as a tool for plant genetic engineering are briefly discussed.
Collapse
Affiliation(s)
- Muthusamy Ramakrishnan
- Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Pradeep K Papolu
- State Key Laboratory of Subtropical Silviculture, Institute of Bamboo Research, Zhejiang A&F University, Lin'an, Hangzhou, 311300, Zhejiang, China
| | - Sileesh Mullasseri
- Department of Zoology, St. Albert's College (Autonomous), Kochi, 682018, Kerala, India
| | - Mingbing Zhou
- State Key Laboratory of Subtropical Silviculture, Institute of Bamboo Research, Zhejiang A&F University, Lin'an, Hangzhou, 311300, Zhejiang, China
- Zhejiang Provincial Collaborative Innovation Center for Bamboo Resources and High-Efficiency Utilization, Zhejiang A&F University, Lin'an, Hangzhou, 311300, Zhejiang, China
| | - Anket Sharma
- State Key Laboratory of Subtropical Silviculture, Institute of Bamboo Research, Zhejiang A&F University, Lin'an, Hangzhou, 311300, Zhejiang, China
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, USA
| | - Zishan Ahmad
- Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Viswanathan Satheesh
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Ruslan Kalendar
- Helsinki Institute of Life Science HiLIFE, University of Helsinki, Biocenter 3, Viikinkaari 1, F1-00014, Helsinki, Finland.
- Institute of Plant Biology and Biotechnology (IPBB), Timiryazev Street 45, 050040, Almaty, Kazakhstan.
| | - Qiang Wei
- Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China.
| |
Collapse
|
35
|
Niu X, Chen L, Kato A, Ito H. Regulatory mechanism of a heat-activated retrotransposon by DDR complex in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2022; 13:1048957. [PMID: 36618621 PMCID: PMC9811314 DOI: 10.3389/fpls.2022.1048957] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
The RNA-directed DNA methylation (RdDM) pathway plays an essential role in the transposon silencing mechanism; the DDR complex, consisting of DRD1, DMS3, and RDM1, is an essential component of the RdDM pathway. ONSEN, identified in Arabidopsis, is a retrotransposon activated by heat stress at 37°C; however, studies on the regulation of ONSEN are limited. In this study, we analyzed the regulation of ONSEN activity by the DDR complex in Arabidopsis. We elucidated that loss of any component of the DDR complex increased ONSEN transcript levels. Transgenerational transposition of ONSEN was observed in the DDR-complex mutants treated with heat stress for 48 h. Furthermore, the DDR complex components DRD1, DMS3, and RDM1 played independent roles in suppressing ONSEN transcription and transposition. Moreover, we found that the duration of heat stress affects ONSEN activity. Therefore, the results of this study provide new insights into the retrotransposon regulatory mechanisms of the DDR complex in the RdDM pathway.
Collapse
Affiliation(s)
- Xiaoying Niu
- Graduate School of Life Science, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Lu Chen
- Graduate School of Life Science, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Atsushi Kato
- Faculty of Science, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Hidetaka Ito
- Faculty of Science, Hokkaido University, Sapporo, Hokkaido, Japan
| |
Collapse
|
36
|
Carotti E, Carducci F, Canapa A, Barucca M, Biscotti MA. Transposable Element Tissue-Specific Response to Temperature Stress in the Stenothermal Fish Puntius tetrazona. Animals (Basel) 2022; 13:ani13010001. [PMID: 36611611 PMCID: PMC9817673 DOI: 10.3390/ani13010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
Ray-finned fish represent a very interesting group of vertebrates comprising a variety of organisms living in different aquatic environments worldwide. In the case of stenothermal fish, thermal fluctuations are poorly tolerated, thus ambient temperature represents a critical factor. In this paper, we considered the tiger barb Puntius tetrazona, a freshwater fish belonging to the family Cyprinidae, living at 21-28 °C. We analyzed the available RNA-Seq data obtained from specimens exposed at 27 °C and 13 °C to investigate the transcriptional activity of transposable elements (TEs) and genes encoding for proteins involved in their silencing in the brain, gill, and liver. TEs are one of the tools generating genetic variability that underlies biological evolution, useful for organisms to adapt to environmental changes. Our findings highlighted a different response of TEs in the three analyzed tissues. While in the brain and gill, no variation in TE transcriptional activity was observed, a remarkable increase at 13 °C was recorded in the liver. Moreover, the transcriptional analysis of genes encoding proteins involved in TE silencing such as heterochromatin formation, the NuRD complex, and the RISC complex (e.g., AGO and GW182 proteins) highlighted their activity in the hepatic tissue. Overall, our findings suggested that this tissue is a target organ for this kind of stress, since TE activation might regulate the expression of stress-induced genes, leading to a better response of the organism to temperature changes. Therefore, this view corroborates once again the idea of a potential role of TEs in organism rapid adaptation, hence representing a promising molecular tool for species resilience.
Collapse
|
37
|
Papolu PK, Ramakrishnan M, Mullasseri S, Kalendar R, Wei Q, Zou L, Ahmad Z, Vinod KK, Yang P, Zhou M. Retrotransposons: How the continuous evolutionary front shapes plant genomes for response to heat stress. FRONTIERS IN PLANT SCIENCE 2022; 13:1064847. [PMID: 36570931 PMCID: PMC9780303 DOI: 10.3389/fpls.2022.1064847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 11/21/2022] [Indexed: 05/28/2023]
Abstract
Long terminal repeat retrotransposons (LTR retrotransposons) are the most abundant group of mobile genetic elements in eukaryotic genomes and are essential in organizing genomic architecture and phenotypic variations. The diverse families of retrotransposons are related to retroviruses. As retrotransposable elements are dispersed and ubiquitous, their "copy-out and paste-in" life cycle of replicative transposition leads to new genome insertions without the excision of the original element. The overall structure of retrotransposons and the domains responsible for the various phases of their replication is highly conserved in all eukaryotes. The two major superfamilies of LTR retrotransposons, Ty1/Copia and Ty3/Gypsy, are distinguished and dispersed across the chromosomes of higher plants. Members of these superfamilies can increase in copy number and are often activated by various biotic and abiotic stresses due to retrotransposition bursts. LTR retrotransposons are important drivers of species diversity and exhibit great variety in structure, size, and mechanisms of transposition, making them important putative actors in genome evolution. Additionally, LTR retrotransposons influence the gene expression patterns of adjacent genes by modulating potential small interfering RNA (siRNA) and RNA-directed DNA methylation (RdDM) pathways. Furthermore, comparative and evolutionary analysis of the most important crop genome sequences and advanced technologies have elucidated the epigenetics and structural and functional modifications driven by LTR retrotransposon during speciation. However, mechanistic insights into LTR retrotransposons remain obscure in plant development due to a lack of advancement in high throughput technologies. In this review, we focus on the key role of LTR retrotransposons response in plants during heat stress, the role of centromeric LTR retrotransposons, and the role of LTR retrotransposon markers in genome expression and evolution.
Collapse
Affiliation(s)
- Pradeep K. Papolu
- State Key Laboratory of Subtropical Silviculture, Bamboo Industry Institute, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Muthusamy Ramakrishnan
- State Key Laboratory of Subtropical Silviculture, Bamboo Industry Institute, Zhejiang A&F University, Hangzhou, Zhejiang, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Biology and the Environment, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Sileesh Mullasseri
- Department of Zoology, St. Albert’s College (Autonomous), Kochi, Kerala, India
| | - Ruslan Kalendar
- Helsinki Institute of Life Science HiLIFE, Biocenter 3, University of Helsinki, Helsinki, Finland
- National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
| | - Qiang Wei
- Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Biology and the Environment, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Long−Hai Zou
- State Key Laboratory of Subtropical Silviculture, Bamboo Industry Institute, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Zishan Ahmad
- Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Biology and the Environment, Nanjing Forestry University, Nanjing, Jiangsu, China
| | | | - Ping Yang
- State Key Laboratory of Subtropical Silviculture, Bamboo Industry Institute, Zhejiang A&F University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Collaborative Innovation Center for Bamboo Resources and High-Efficiency Utilization, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Mingbing Zhou
- State Key Laboratory of Subtropical Silviculture, Bamboo Industry Institute, Zhejiang A&F University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Collaborative Innovation Center for Bamboo Resources and High-Efficiency Utilization, Zhejiang A&F University, Hangzhou, Zhejiang, China
| |
Collapse
|
38
|
Ramakrishnan M, Zhang Z, Mullasseri S, Kalendar R, Ahmad Z, Sharma A, Liu G, Zhou M, Wei Q. Epigenetic stress memory: A new approach to study cold and heat stress responses in plants. FRONTIERS IN PLANT SCIENCE 2022; 13:1075279. [PMID: 36570899 PMCID: PMC9772030 DOI: 10.3389/fpls.2022.1075279] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 11/23/2022] [Indexed: 05/28/2023]
Abstract
Understanding plant stress memory under extreme temperatures such as cold and heat could contribute to plant development. Plants employ different types of stress memories, such as somatic, intergenerational and transgenerational, regulated by epigenetic changes such as DNA and histone modifications and microRNAs (miRNA), playing a key role in gene regulation from early development to maturity. In most cases, cold and heat stresses result in short-term epigenetic modifications that can return to baseline modification levels after stress cessation. Nevertheless, some of the modifications may be stable and passed on as stress memory, potentially allowing them to be inherited across generations, whereas some of the modifications are reactivated during sexual reproduction or embryogenesis. Several stress-related genes are involved in stress memory inheritance by turning on and off transcription profiles and epigenetic changes. Vernalization is the best example of somatic stress memory. Changes in the chromatin structure of the Flowering Locus C (FLC) gene, a MADS-box transcription factor (TF), maintain cold stress memory during mitosis. FLC expression suppresses flowering at high levels during winter; and during vernalization, B3 TFs, cold memory cis-acting element and polycomb repressive complex 1 and 2 (PRC1 and 2) silence FLC activation. In contrast, the repression of SQUAMOSA promoter-binding protein-like (SPL) TF and the activation of Heat Shock TF (HSFA2) are required for heat stress memory. However, it is still unclear how stress memory is inherited by offspring, and the integrated view of the regulatory mechanisms of stress memory and mitotic and meiotic heritable changes in plants is still scarce. Thus, in this review, we focus on the epigenetic regulation of stress memory and discuss the application of new technologies in developing epigenetic modifications to improve stress memory.
Collapse
Affiliation(s)
- Muthusamy Ramakrishnan
- Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Biology and the Environment, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Zhijun Zhang
- Bamboo Industry Institute, Zhejiang A&F University, Hangzhou, Zhejiang, China
- School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Sileesh Mullasseri
- Department of Zoology, St. Albert’s College (Autonomous), Kochi, Kerala, India
| | - Ruslan Kalendar
- Helsinki Institute of Life Science HiLIFE, Biocenter 3, University of Helsinki, Helsinki, Finland
- National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
| | - Zishan Ahmad
- Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Biology and the Environment, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Anket Sharma
- State Key Laboratory of Subtropical Silviculture, Bamboo Industry Institute, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Guohua Liu
- Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Biology and the Environment, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Mingbing Zhou
- State Key Laboratory of Subtropical Silviculture, Bamboo Industry Institute, Zhejiang A&F University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Collaborative Innovation Center for Bamboo Resources and High-Efficiency Utilization, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Qiang Wei
- Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Biology and the Environment, Nanjing Forestry University, Nanjing, Jiangsu, China
| |
Collapse
|
39
|
Wang Y, Liu Y, Qu S, Liang W, Sun L, Ci D, Ren Z, Fan LM, Qian W. Nitrogen starvation induces genome-wide activation of transposable elements in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:2374-2384. [PMID: 36178606 DOI: 10.1111/jipb.13376] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Nitrogen (N) availability is a major limiting factor for plant growth and agricultural productivity. Although the gene regulation network in response to N starvation has been extensively studied, it remains unknown whether N starvation has an impact on the activity of transposable elements (TEs). Here, we report that TEs can be transcriptionally activated in Arabidopsis under N starvation conditions. Through genetic screening of idm1-14 suppressors, we cloned GLU1, which encodes a glutamate synthase that catalyzes the synthesis of glutamate in the primary N assimilation pathway. We found that glutamate synthase 1 (GLU1) and its functional homologs GLU2 and glutamate transport 1 (GLT1) are redundantly required for TE silencing, suggesting that N metabolism can regulate TE activity. Transcriptome and methylome analyses revealed that N starvation results in genome-wide TE activation without inducing obvious alteration of DNA methylation. Genetic analysis indicated that N starvation-induced TE activation is also independent of other well-established epigenetic mechanisms, including histone methylation and heterochromatin decondensation. Our results provide new insights into the regulation of TE activity under stressful environments in planta.
Collapse
Affiliation(s)
- Yue Wang
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking University, Beijing, 100871, China
- School of Life Sciences, Peking University, Beijing, 100871, China
| | - Yi Liu
- School of Life Sciences, Peking University, Beijing, 100871, China
| | - Shaofeng Qu
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking University, Beijing, 100871, China
| | - Wenjie Liang
- School of Life Sciences, Peking University, Beijing, 100871, China
| | - Linhua Sun
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking University, Beijing, 100871, China
| | - Dong Ci
- Peking University Institute of Advanced Agricultural Sciences, Weifang, 261000, China
| | - Zhitong Ren
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking University, Beijing, 100871, China
| | - Liu-Min Fan
- School of Life Sciences, Peking University, Beijing, 100871, China
| | - Weiqiang Qian
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking University, Beijing, 100871, China
- Peking University Institute of Advanced Agricultural Sciences, Weifang, 261000, China
| |
Collapse
|
40
|
Thieme M, Brêchet A, Bourgeois Y, Keller B, Bucher E, Roulin AC. Experimentally heat-induced transposition increases drought tolerance in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2022; 236:182-194. [PMID: 35715973 PMCID: PMC9544478 DOI: 10.1111/nph.18322] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 06/10/2022] [Indexed: 05/14/2023]
Abstract
Eukaryotic genomes contain a vast diversity of transposable elements (TEs). Formerly often described as selfish and parasitic DNA sequences, TEs are now recognised as a source of genetic diversity and powerful drivers of evolution. However, because their mobility is tightly controlled by the host, studies experimentally assessing how fast TEs may mediate the emergence of adaptive traits are scarce. We exposed Arabidopsis thaliana high-copy TE lines (hcLines) with up to c. eight-fold increased copy numbers of the heat-responsive ONSEN TE to drought as a straightforward and ecologically highly relevant selection pressure. We provide evidence for increased drought tolerance in five out of the 23 tested hcLines and further pinpoint one of the causative mutations to an exonic insertion of ONSEN in the ribose-5-phosphate-isomerase 2 gene. The resulting loss-of-function mutation caused a decreased rate of photosynthesis, plant size and water consumption. Overall, we show that the heat-induced transposition of a low-copy TE increases phenotypic diversity and leads to the emergence of drought-tolerant individuals in A. thaliana. This is one of the rare empirical examples substantiating the adaptive potential of mobilised stress-responsive TEs in eukaryotes. Our work demonstrates the potential of TE-mediated loss-of-function mutations in stress adaptation.
Collapse
Affiliation(s)
- Michael Thieme
- Department of Plant and Microbial BiologyUniversity of Zurich8008ZürichSwitzerland
| | - Arthur Brêchet
- Department of Environmental Sciences – BotanyUniversity of Basel4056BaselSwitzerland
| | - Yann Bourgeois
- School of Biological SciencesUniversity of PortsmouthPO1 2DTPortsmouthUK
| | - Bettina Keller
- Department of Plant and Microbial BiologyUniversity of Zurich8008ZürichSwitzerland
| | | | - Anne C. Roulin
- Department of Plant and Microbial BiologyUniversity of Zurich8008ZürichSwitzerland
| |
Collapse
|
41
|
Schley RJ, Pellicer J, Ge X, Barrett C, Bellot S, Guignard MS, Novák P, Suda J, Fraser D, Baker WJ, Dodsworth S, Macas J, Leitch AR, Leitch IJ. The ecology of palm genomes: repeat-associated genome size expansion is constrained by aridity. THE NEW PHYTOLOGIST 2022; 236:433-446. [PMID: 35717562 PMCID: PMC9796251 DOI: 10.1111/nph.18323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
Genome size varies 2400-fold across plants, influencing their evolution through changes in cell size and cell division rates which impact plants' environmental stress tolerance. Repetitive element expansion explains much genome size diversity, and the processes structuring repeat 'communities' are analogous to those structuring ecological communities. However, which environmental stressors influence repeat community dynamics has not yet been examined from an ecological perspective. We measured genome size and leveraged climatic data for 91% of genera within the ecologically diverse palm family (Arecaceae). We then generated genomic repeat profiles for 141 palm species, and analysed repeats using phylogenetically informed linear models to explore relationships between repeat dynamics and environmental factors. We show that palm genome size and repeat 'community' composition are best explained by aridity. Specifically, Ty3-gypsy and TIR elements were more abundant in palm species from wetter environments, which generally had larger genomes, suggesting amplification. By contrast, Ty1-copia and LINE elements were more abundant in drier environments. Our results suggest that water stress inhibits repeat expansion through selection on upper genome size limits. However, elements that may associate with stress-response genes (e.g. Ty1-copia) have amplified in arid-adapted palm species. Overall, we provide novel evidence of climate influencing the assembly of repeat 'communities'.
Collapse
Affiliation(s)
- Rowan J. Schley
- University of ExeterLaver Building, North Park RoadExeterDevonEX4 4QEUK
- Royal Botanic GardensKewSurreyTW9 3ABUK
| | - Jaume Pellicer
- Royal Botanic GardensKewSurreyTW9 3ABUK
- Institut Botànic de Barcelona (IBB, CSIC‐Ajuntament de Barcelona)Passeig del Migdia sn08038BarcelonaSpain
| | - Xue‐Jun Ge
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical GardenChinese Academy of SciencesGuangzhou510650China
| | - Craig Barrett
- Department of BiologyWest Virginia UniversityMorgantownWV26506USA
| | | | | | - Petr Novák
- Biology Centre, Institute of Plant Molecular BiologyCzech Academy of Sciences370 05České BudějoviceCzech Republic
| | | | | | | | - Steven Dodsworth
- School of Biological SciencesUniversity of PortsmouthPortsmouthHampshirePO1 2DYUK
| | - Jiří Macas
- Biology Centre, Institute of Plant Molecular BiologyCzech Academy of Sciences370 05České BudějoviceCzech Republic
| | | | | |
Collapse
|
42
|
Transposable Elements in the Revealing of Polymorphism-Based Differences in the Seeds of Flax Varieties Grown in Remediated Chernobyl Area. PLANTS 2022; 11:plants11192567. [PMID: 36235434 PMCID: PMC9571286 DOI: 10.3390/plants11192567] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022]
Abstract
The nuclear reactor accident in Chernobyl, Ukraine, resulted in effects both locally and farther away. Most of the contaminated areas were the agricultural fields and forests. Experimental fields were established near Chernobyl—radioactively contaminated fields localized 5 km from Chernobyl Nuclear Power Plant as well as the remediated soil that is localized directly in the Chernobyl town. Two flax varieties growing under chronic exposition to ionizing radiation were used for this study—the local Ukrainian variety Kyivskyi and a commercial variety Bethune. The screening of the length polymorphism generated by transposable elements insertions were performed. All known types of common flax transposon, retrotransposons and iPBS approach were used. In the iPBS multiplex analyze, for the Kyivskyi variety, a unique addition was found in the seeds from the radioactive contaminated field and for the Bethune variety, a total of five amplicon additions were obtained and one deletion. For the TRIM Cassandra fingerprints, two amplicon additions were generated in the seeds from radioactive contaminated fields for the Bethune variety. In summary, the obtained data represent the genetic diversity between control and irradiated subgroups of flax seeds from Chernobyl area and the presence of activated transposable elements due to the irradiation stress.
Collapse
|
43
|
Abstract
Transposons were once thought to be junk repetitive DNA in the genome. However, their importance gradually became apparent as it became clear that they regulate gene expression, which is essential for organisms to survive, and that they are important factors in the driving force of evolution. Since there are multiple transposons in the genomes of all organisms, transposons have likely been activated and increased in copy number throughout their long history. This review focuses on environmental stress as a factor in transposon activation, paying particular attention to transposons in plants that are activated by environmental stresses. It is now known that plants respond to environmental stress in various ways, and correspondingly, many transposons respond to stress. The relationship between environmental stress and transposons is reviewed, including the mechanisms of their activation and the effects of transposon activation on host plants.
Collapse
|
44
|
Shekhawat K, Almeida-Trapp M, García-Ramírez GX, Hirt H. Beat the heat: plant- and microbe-mediated strategies for crop thermotolerance. TRENDS IN PLANT SCIENCE 2022; 27:802-813. [PMID: 35331665 DOI: 10.1016/j.tplants.2022.02.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 01/30/2022] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
Heat stress (HS) affects plant growth and development, and reduces crop yield. To combat HS, plants have evolved several sophisticated strategies. The primary HS response in plants involves the activation of heat-shock transcription factors and heat-shock proteins (HSPs). Plants also deploy more advanced epigenetic mechanisms in response to recurring HS conditions. In addition, beneficial microbes can reprogram the plant epitranscriptome to induce thermotolerance, and have the potential to improve crop yield productivity by mitigating HS-induced inhibition of growth and development. We summarize the latest advances in plant epigenetic regulation and highlight microbe-mediated thermotolerance in plants.
Collapse
Affiliation(s)
- Kirti Shekhawat
- DARWIN21, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), 23955-6900 Thuwal, Saudi Arabia
| | - Marilia Almeida-Trapp
- DARWIN21, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), 23955-6900 Thuwal, Saudi Arabia
| | - Gabriel X García-Ramírez
- DARWIN21, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), 23955-6900 Thuwal, Saudi Arabia
| | - Heribert Hirt
- DARWIN21, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), 23955-6900 Thuwal, Saudi Arabia; Max Perutz Laboratories, University of Vienna, Dr. Bohrgasse 9, 1030 Vienna, Austria.
| |
Collapse
|
45
|
Ali S, Khan N, Tang Y. Epigenetic marks for mitigating abiotic stresses in plants. JOURNAL OF PLANT PHYSIOLOGY 2022; 275:153740. [PMID: 35716656 DOI: 10.1016/j.jplph.2022.153740] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 03/02/2022] [Accepted: 05/29/2022] [Indexed: 06/15/2023]
Abstract
Abiotic stressors are one of the major factors affecting agricultural output. Plants have evolved adaptive systems to respond appropriately to various environmental cues. These responses can be accomplished by modulating or fine-tuning genetic and epigenetic regulatory mechanisms. Understanding the response of plants' molecular features to abiotic stress is a priority in the current period of continued environmental changes. Epigenetic modifications are necessary that control gene expression by changing chromatin status and recruiting various transcription regulators. The present study summarized the current knowledge on epigenetic modifications concerning plant responses to various environmental stressors. The functional relevance of epigenetic marks in regulating stress tolerance has been revealed, and epigenetic changes impact the effector genes. This study looks at the epigenetic mechanisms that govern plant abiotic stress responses, especially DNA methylation, histone methylation/acetylation, chromatin remodeling, and various metabolites. Plant breeders will benefit from a thorough understanding of these processes to create alternative crop improvement approaches. Genome editing with clustered regularly interspaced short palindromic repeat/CRISPR-associated proteins (CRISPR/Cas) provides genetic tools to make agricultural genetic engineering more sustainable and publicly acceptable.
Collapse
Affiliation(s)
- Shahid Ali
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Science, Longhua Institute of Innovative Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, Guangdong Province, China; Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China.
| | - Naeem Khan
- Department of Agronomy, Institute of Food and Agricultural Sciences, University of Florida, FL, 32611, USA
| | - Yulin Tang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Science, Longhua Institute of Innovative Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, Guangdong Province, China; Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
46
|
Nozawa K, Masuda S, Saze H, Ikeda Y, Suzuki T, Takagi H, Tanaka K, Ohama N, Niu X, Kato A, Ito H. Epigenetic regulation of ecotype-specific expression of the heat-activated transposon ONSEN. FRONTIERS IN PLANT SCIENCE 2022; 13:899105. [PMID: 35923888 PMCID: PMC9340270 DOI: 10.3389/fpls.2022.899105] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/29/2022] [Indexed: 06/07/2023]
Abstract
Transposable elements are present in a wide variety of organisms; however, our understanding of the diversity of mechanisms involved in their activation is incomplete. In this study, we analyzed the transcriptional activation of the ONSEN retrotransposon, which is activated by high-temperature stress in Arabidopsis thaliana. We found that its transcription is significantly higher in the Japanese ecotype Kyoto. Considering that transposons are epigenetically regulated, DNA methylation levels were analyzed, revealing that CHH methylation was reduced in Kyoto compared to the standard ecotype, Col-0. A mutation was also detected in the Kyoto CMT2 gene, encoding a CHH methyltransferase, suggesting that it may be responsible for increased expression of ONSEN. CHH methylation is controlled by histone modifications through a self-reinforcing loop between DNA methyltransferase and histone methyltransferase. Analysis of these modifications revealed that the level of H3K9me2, a repressive histone marker for gene expression, was lower in Kyoto than in Col-0. The level of another repressive histone marker, H3K27me1, was decreased in Kyoto; however, it was not impacted in a Col-0 cmt2 mutant. Therefore, in addition to the CMT2 mutation, other factors may reduce repressive histone modifications in Kyoto.
Collapse
Affiliation(s)
- Kosuke Nozawa
- Graduate School of Life Sciences, Hokkaido University, Sapporo, Japan
| | - Seiji Masuda
- Graduate School of Life Sciences, Hokkaido University, Sapporo, Japan
| | - Hidetoshi Saze
- Plant Epigenetics Unit, Okinawa Institute of Science and Technology, Onna-son, Japan
| | - Yoko Ikeda
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| | - Takamasa Suzuki
- College of Bioscience and Biotechnology, Chubu University, Kasugai, Japan
| | - Hiroki Takagi
- Faculty of Bioresources and Environmental Sciences, Ishikawa Prefectural University, Nonoichi, Japan
| | - Keisuke Tanaka
- NODAI Genome Research Center, Tokyo University of Agriculture, Setagaya-ku, Japan
| | - Naohiko Ohama
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Japan
| | - Xiaoying Niu
- Graduate School of Life Sciences, Hokkaido University, Sapporo, Japan
| | - Atsushi Kato
- Faculty of Science, Hokkaido University, Sapporo, Japan
| | - Hidetaka Ito
- Faculty of Science, Hokkaido University, Sapporo, Japan
| |
Collapse
|
47
|
Yang JS, Qian ZH, Shi T, Li ZZ, Chen JM. Chromosome-level genome assembly of the aquatic plant Nymphoides indica reveals transposable element bursts and NBS-LRR gene family expansion shedding light on its invasiveness. DNA Res 2022; 29:dsac022. [PMID: 35751614 PMCID: PMC9267246 DOI: 10.1093/dnares/dsac022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 06/24/2022] [Indexed: 11/19/2022] Open
Abstract
Nymphoides indica, an aquatic plant, is an invasive species that causes both ecological and economic damage in North America and elsewhere. However, the lack of genomic data of N. indica limits the in-depth analysis of this invasive species. Here, we report a chromosome-level genome assembly of nine pseudochromosomes of N. indica with a total size of ∼ 520 Mb. More than half of the N. indica genome consists of transposable elements (TEs), and a higher density of TEs around genes may play a significant role in response to an ever-changing environment by regulating the nearby gene. Additionally, our analysis revealed that N. indica only experienced a gamma (γ) whole-genome triplication event. Functional enrichment of the N. indica-specific and expanded gene families highlighted genes involved in the responses to hypoxia and plant-pathogen interactions, which may strengthen the ability to adapt to external challenges and improve ecological fitness. Furthermore, we identified 160 members of the nucleotide-binding site and leucine-rich repeat gene family, which may be linked to the defence response. Collectively, the high-quality N. indica genome reported here opens a novel avenue to understand the evolution and rapid invasion of Nymphoides spp.
Collapse
Affiliation(s)
- Jing-Shan Yang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi-Hao Qian
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tao Shi
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China
| | - Zhi-Zhong Li
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China
| | - Jin-Ming Chen
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China
| |
Collapse
|
48
|
Sun M, Yang Z, Liu L, Duan L. DNA Methylation in Plant Responses and Adaption to Abiotic Stresses. Int J Mol Sci 2022; 23:ijms23136910. [PMID: 35805917 PMCID: PMC9266845 DOI: 10.3390/ijms23136910] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/11/2022] [Accepted: 06/15/2022] [Indexed: 02/07/2023] Open
Abstract
Due to their sessile state, plants are inevitably affected by and respond to the external environment. So far, plants have developed multiple adaptation and regulation strategies to abiotic stresses. One such system is epigenetic regulation, among which DNA methylation is one of the earliest and most studied regulatory mechanisms, which can regulate genome functioning and induce plant resistance and adaption to abiotic stresses. In this review, we outline the most recent findings on plant DNA methylation responses to drought, high temperature, cold, salt, and heavy metal stresses. In addition, we discuss stress memory regulated by DNA methylation, both in a transient way and the long-term memory that could pass to next generations. To sum up, the present review furnishes an updated account of DNA methylation in plant responses and adaptations to abiotic stresses.
Collapse
Affiliation(s)
| | | | - Li Liu
- Correspondence: (L.L.); (L.D.)
| | | |
Collapse
|
49
|
Koo H, Kim S, Park HS, Lee SJ, Paek NC, Cho J, Yang TJ. Amplification of LTRs of extrachromosomal linear DNAs (ALE-seq) identifies two active Oryco LTR retrotransposons in the rice cultivar Dongjin. Mob DNA 2022; 13:18. [PMID: 35698176 PMCID: PMC9190103 DOI: 10.1186/s13100-022-00274-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 05/27/2022] [Indexed: 11/26/2022] Open
Abstract
Long terminal repeat retrotransposons (LTR-RTs) make up a considerable portion of plant genomes. New insertions of these active LTR-RTs modify gene structures and functions and play an important role in genome evolution. Therefore, identifying active forms of LTR-RTs could uncover the effects of these elements in plants. Extrachromosomal linear DNA (eclDNA) forms during LTR-RT replication; therefore, amplification LTRs of eclDNAs followed by sequencing (ALE-seq) uncover the current transpositional potential of the LTR-RTs. The ALE-seq protocol was validated by identification of Tos17 in callus of Nipponbare cultivar. Here, we identified two active LTR-RTs belonging to the Oryco family on chromosomes 6 and 9 in rice cultivar Dongjin callus based on the ALE-seq technology. Each Oryco family member has paired LTRs with identical sequences and internal domain regions. Comparison of the two LTR-RTs revealed 97% sequence identity in their internal domains and 65% sequence identity in their LTRs. These two putatively active Oryco LTR-RT family members could be used to expand our knowledge of retrotransposition mechanisms and the effects of LTR-RTs on the rice genome.
Collapse
Affiliation(s)
- Hyunjin Koo
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, 08826, Seoul, Republic of Korea
| | - Soomin Kim
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, 08826, Seoul, Republic of Korea
| | - Hyun-Seung Park
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, 08826, Seoul, Republic of Korea
| | - Sang-Ji Lee
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, 08826, Seoul, Republic of Korea
| | - Nam-Chon Paek
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, 08826, Seoul, Republic of Korea
| | - Jungnam Cho
- CAS-JIC Centre of Excellence for Plant and Microbial Science, 200032, Shanghai, China
| | - Tae-Jin Yang
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, 08826, Seoul, Republic of Korea.
| |
Collapse
|
50
|
Kwolek K, Kędzierska P, Hankiewicz M, Mirouze M, Panaud O, Grzebelus D, Macko‐Podgórni A. Diverse and mobile: eccDNA-based identification of carrot low-copy-number LTR retrotransposons active in callus cultures. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:1811-1828. [PMID: 35426957 PMCID: PMC9324142 DOI: 10.1111/tpj.15773] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/15/2022] [Accepted: 03/29/2022] [Indexed: 05/28/2023]
Abstract
Long terminal repeat retrotransposons (LTR-RTs) are mobilized via an RNA intermediate using a 'copy and paste' mechanism, and account for the majority of repetitive DNA in plant genomes. As a side effect of mobilization, the formation of LTR-RT-derived extrachromosomal circular DNAs (eccDNAs) occurs. Thus, high-throughput sequencing of eccDNA can be used to identify active LTR-RTs in plant genomes. Despite the release of a reference genome assembly, carrot LTR-RTs have not yet been thoroughly characterized. LTR-RTs are abundant and diverse in the carrot genome. We identified 5976 carrot LTR-RTs, 2053 and 1660 of which were attributed to Copia and Gypsy superfamilies, respectively. They were further classified into lineages, families and subfamilies. More diverse LTR-RT lineages, i.e. lineages comprising many low-copy-number subfamilies, were more frequently associated with genic regions. Certain LTR-RT lineages have been recently active in Daucus carota. In particular, low-copy-number LTR-RT subfamilies, e.g. those belonging to the DcAle lineage, have significantly contributed to carrot genome diversity as a result of continuing activity. We utilized eccDNA sequencing to identify and characterize two DcAle subfamilies, Alex1 and Alex3, active in carrot callus. We documented 14 and 32 de novo insertions of Alex1 and Alex3, respectively, which were positioned in non-repetitive regions.
Collapse
Affiliation(s)
- Kornelia Kwolek
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and HorticultureUniversity of Agriculture in Krakow31 120KrakowPoland
| | - Patrycja Kędzierska
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and HorticultureUniversity of Agriculture in Krakow31 120KrakowPoland
| | - Magdalena Hankiewicz
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and HorticultureUniversity of Agriculture in Krakow31 120KrakowPoland
| | - Marie Mirouze
- Laboratoire Génome et Développement des Plantes, UMR 5096 CNRS/UPVDUniversité de PerpignanVia Domitia, 52 Avenue Paul Alduy66 860Perpignan CedexFrance
- IRD, EMR IRD‐CNRS‐UPVD ‘MANGO’Université de PerpignanPerpignanFrance
| | - Olivier Panaud
- Laboratoire Génome et Développement des Plantes, UMR 5096 CNRS/UPVDUniversité de PerpignanVia Domitia, 52 Avenue Paul Alduy66 860Perpignan CedexFrance
| | - Dariusz Grzebelus
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and HorticultureUniversity of Agriculture in Krakow31 120KrakowPoland
| | - Alicja Macko‐Podgórni
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and HorticultureUniversity of Agriculture in Krakow31 120KrakowPoland
| |
Collapse
|