1
|
Zhu W, Yang W, Sun G, Huang J. RNA-binding protein quaking: a multifunctional regulator in tumour progression. Ann Med 2025; 57:2443046. [PMID: 39711373 DOI: 10.1080/07853890.2024.2443046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 10/03/2024] [Accepted: 11/22/2024] [Indexed: 12/24/2024] Open
Abstract
BACKGROUND Quaking (QKI) is a member of the signal transduction and activators of RNA (STAR) family, performing a crucial multifunctional regulatory role in alternative splicing, mRNA precursor processing, mRNA transport and localization, mRNA stabilization, and translation during tumour progression. Abnormal QKI expression or fusion mutations lead to aberrant RNA and protein expression, thereby promoting tumour progression. However, in many types of tumour, QKI played a role as tumour suppressor, the regulatory role of QKI in tumour progression remains ambiguous. OBJECTIVES This review aims to analyze the isoform and function of QKI, the impact of QKI-regulated gene expression or signalling pathway alterations on tumour progression, and its potential clinical applications as a predictive marker or target for tumour therapy. METHODS We reviewed recent studies and summarized the function of QKI alteration in tumour progression. RESULTS QKI mediate post-transcriptional gene regulation including alternative splicing, polyadenylation, mRNA stabilization, mRNA subcellular location, and noncoding RNA by binding to the QRE elements of targeted nucleotide. The dysregulation of QKI is intricately correlated to tumour proliferation, metastasis, angiogenesis, tumor stem cells, the tumour microenvironment, and treatment sensitivity, and represents as a potential biological predictor in tumour diagnosis and prognosis. CONCLUSIONS QKI play a critical role as tumour suppressor or an oncogene in tumour progression due to the different splicing sites and transcripts with various tumour subtype or tumor micorenvironment. Ongoing research about QKI's functions and mechanisms persist is required to conduct for better understanding the role of QKI in tumour regulation.
Collapse
Affiliation(s)
- Wangyu Zhu
- Cell and Molecular Biology Laboratory, Zhoushan Hospital of Wenzhou Medical University, Zhoushan, Zhejiang, China
- Lung Cancer Research Centre, Zhoushan Hospital of Wenzhou Medical, Zhoushan, Zhejiang, China
| | - Weiwei Yang
- Cell and Molecular Biology Laboratory, Zhoushan Hospital of Wenzhou Medical University, Zhoushan, Zhejiang, China
- Lung Cancer Research Centre, Zhoushan Hospital of Wenzhou Medical, Zhoushan, Zhejiang, China
| | - Guoping Sun
- Department of Breast Surgery, Second Affiliated Hospital and Cancer Institute (Provincial Key Laboratory of Tumor Microenvironment and Immunotherapy, Key Laboratory of Cancer Prevention & Intervention, National Ministry of Education), Zhejiang University School of Medicine, Hangzhou, China
| | - Jian Huang
- Department of Breast Surgery, Second Affiliated Hospital and Cancer Institute (Provincial Key Laboratory of Tumor Microenvironment and Immunotherapy, Key Laboratory of Cancer Prevention & Intervention, National Ministry of Education), Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
2
|
Zhao M, Jin Y, Yan Z, He C, You W, Zhu Z, Wang R, Chen Y, Luo J, Zhang Y, Yao Y. The splicing factor QKI inhibits metastasis by modulating alternative splicing of E-Syt2 in papillary thyroid carcinoma. Cancer Lett 2024; 604:217270. [PMID: 39306227 DOI: 10.1016/j.canlet.2024.217270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 08/27/2024] [Accepted: 09/18/2024] [Indexed: 09/28/2024]
Abstract
Alternative splicing (AS) plays a crucial role in the hallmarks of cancer and can open new avenues for targeted therapies. However, the aberrant AS events and the metastatic cascade in papillary thyroid carcinoma (PTC) remain largely unclear. Here, we identify the splicing factor, quaking protein (QKI), which was significantly downregulated in PTC and correlated with poor survival outcomes in patients with PTC. Functional studies indicated that low expression of QKI promoted the PTC cell growth and metastasis in vitro and in vivo. Mechanistically, low QKI induced exon 14 retention of extended synaptotagmin 2 (E-Syt2) and produced a long isoform transcript (termed E-Syt2L) that acted as an important oncogenic factor of PTC metastasis. Notably, overexpression of long non-coding RNA eosinophil granule ontogeny transcript (EGOT) physically binds to QKI and suppressed its activity by inhibiting ubiquitin specific peptidase 25 (USP25) mediated deubiquitination and subsequent degradation of QKI. Collectively, these data demonstrate the novel mechanistic links between the splicing factor QKI and splicing event in PTC metastasis and support the potential utility of targeting splicing events as a therapeutic strategy for PTC.
Collapse
Affiliation(s)
- Mengya Zhao
- Department of Head and Neck Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University & The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center Nanjing, Nanjing Medical University, Nanjing, China; Wuxi People's Hospital, Wuxi Medical Center Nanjing & Department of Immunology, School of Basic Medical Science & Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, China; The Affiliated Huai'an No. 1 People's Hospital, Nanjing Medical University, Nanjing, China
| | - Yu Jin
- Nanjing Red Cross Blood Center, Nanjing, China
| | - Zhongyi Yan
- Department of Oral and Maxillofacial Surgery, Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang 222001, Jiangsu, China
| | - Chunyan He
- Department of Clinical Laboratory, Kunshan Hospital of Chinese Medicine, Affiliated Hospital of Yangzhou University, Kunshan, Jiangsu, China
| | - Wenhua You
- Wuxi People's Hospital, Wuxi Medical Center Nanjing & Department of Immunology, School of Basic Medical Science & Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, China; The Affiliated Huai'an No. 1 People's Hospital, Nanjing Medical University, Nanjing, China
| | - Zilong Zhu
- Wuxi People's Hospital, Wuxi Medical Center Nanjing & Department of Immunology, School of Basic Medical Science & Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, China; The Affiliated Huai'an No. 1 People's Hospital, Nanjing Medical University, Nanjing, China
| | - Ren Wang
- Wuxi People's Hospital, Wuxi Medical Center Nanjing & Department of Immunology, School of Basic Medical Science & Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, China; The Affiliated Huai'an No. 1 People's Hospital, Nanjing Medical University, Nanjing, China
| | - Yun Chen
- Wuxi People's Hospital, Wuxi Medical Center Nanjing & Department of Immunology, School of Basic Medical Science & Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, China; The Affiliated Huai'an No. 1 People's Hospital, Nanjing Medical University, Nanjing, China.
| | - Judong Luo
- Department of Radiotherapy, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China.
| | - Yuan Zhang
- Department of Head and Neck Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University & The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center Nanjing, Nanjing Medical University, Nanjing, China.
| | - Yao Yao
- Department of Head and Neck Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University & The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center Nanjing, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
3
|
Guo Z, Liu B, Wei Y, Wang H, Zhang Q, Hong X. The multifaceted role of quaking protein in neuropsychiatric disorders and tumor progression. Front Neurosci 2024; 18:1341114. [PMID: 39479357 PMCID: PMC11521838 DOI: 10.3389/fnins.2024.1341114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 06/11/2024] [Indexed: 11/02/2024] Open
Abstract
The Quaking protein (QKI) belongs to the STAR protein family and plays a significant role in the development of the nervous system. It serves as a crucial regulator in the processes of tumor progression and cardiovascular system development. Within the central nervous system, QKI has been associated with the onset and progression of numerous neuropsychiatric disorders, including schizophrenia, depression, ataxia, and Alzheimer's disease. In malignant tumors, the methylation of the QKI promoter inhibits its expression. QKI primarily involves in the generation, stability, and selective splicing of non-coding RNA, as well as in mRNA translation. The role of QKI in the tumor microenvironment should not be overlooked. Especially in Glioblastoma Multiforme (GBM), although QKI is not the primary mutation, it still plays a vital role in maintaining the stemness of GBM. However, the mechanisms and further studies on this topic demand extensive basic and clinical trials.
Collapse
Affiliation(s)
- Zeshang Guo
- Department of Neurosurgery, The First Bethune Hospital of Jilin University, Changchun, Jilin, China
| | - Bo Liu
- Department of Neurosurgery, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Ying Wei
- Department of Radiology, The First Bethune Hospital of Jilin University, Changchun, Jilin, China
| | - HeFei Wang
- Cancer Center, First Bethune Hospital of Jilin University, Changchun, Jilin, China
| | - Qingquan Zhang
- Department of Pharmacy, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, Fujian Province, China
| | - Xinyu Hong
- Department of Neurosurgery, The First Bethune Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
4
|
Pereira de Castro KL, Abril JM, Liao KC, Hao H, Donohue JP, Russell WK, Fagg WS. An ancient competition for the conserved branchpoint sequence influences physiological and evolutionary outcomes in splicing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.09.617384. [PMID: 39416098 PMCID: PMC11483029 DOI: 10.1101/2024.10.09.617384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Recognition of the intron branchpoint during spliceosome assembly is a multistep process that defines both mRNA structure and amount. A branchpoint sequence motif UACUAAC is variably conserved in eukaryotic genomes, but in some organisms more than one protein can recognize it. Here we show that SF1 and Quaking (QKI) compete for a subset of intron branchpoints with the sequence ACUAA. SF1 activates exon inclusion through this sequence, but QKI represses the inclusion of alternatively spliced exons with this intron branchpoint sequence. Using mutant reporters derived from a natural intron with two branchpoint-like sequences, we find that when either branchpoint sequence is mutated, the other is used as a branchpoint, but when both are present, neither is used due to high affinity binding and strong splicing repression by QKI. QKI occupancy at the dual branchpoint site directly prevents SF1 binding and subsequent recruitment of spliceosome-associated factors. Finally, the ectopic expression of QKI in budding yeast (which lacks QKI) is lethal, due at least in part to widespread splicing repression. In conclusion, QKI can function as a splicing repressor by directly competing with SF1/BBP for a subset of branchpoint sequences that closely mirror its high affinity binding site. This suggests that QKI and degenerate branchpoint sequences may have co-evolved as a means through which specific gene expression patterns could be maintained in QKI-expressing or non-expressing cells in metazoans, plants, and animals.
Collapse
Affiliation(s)
| | - Jose M. Abril
- Transplant Division, Department of Surgery, University of Texas Medical Branch, Galveston, TX, USA
| | - Kuo-Chieh Liao
- RNA Genomics and Structure, Genome Institute of Singapore, Agency for Science, Technology, and Research (A*STAR) Singapore
| | - Haiping Hao
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, USA
| | - John Paul Donohue
- Sinsheimer Labs, RNA Center for Molecular Biology, Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - William K. Russell
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, USA
| | - W. Samuel Fagg
- Transplant Division, Department of Surgery, University of Texas Medical Branch, Galveston, TX, USA
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
5
|
Hayakawa-Yano Y, Furukawa T, Matsuo T, Ogasawara T, Nogami M, Yokoyama K, Yugami M, Shinozaki M, Nakamoto C, Sakimura K, Koyama A, Ogi K, Onodera O, Takebayashi H, Okano H, Yano M. Qki5 safeguards spinal motor neuron function by defining the motor neuron-specific transcriptome via pre-mRNA processing. Proc Natl Acad Sci U S A 2024; 121:e2401531121. [PMID: 39226364 PMCID: PMC11406248 DOI: 10.1073/pnas.2401531121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 08/01/2024] [Indexed: 09/05/2024] Open
Abstract
Many RNA-binding proteins (RBPs) are linked to the dysregulation of RNA metabolism in motor neuron diseases (MNDs). However, the molecular mechanisms underlying MN vulnerability have yet to be elucidated. Here, we found that such an RBP, Quaking5 (Qki5), contributes to formation of the MN-specific transcriptome profile, termed "MN-ness," through the posttranscriptional network and maintenance of the mature MNs. Immunohistochemical analysis and single-cell RNA sequencing (scRNA-seq) revealed that Qki5 is predominantly expressed in MNs, but not in other neuronal populations of the spinal cord. Furthermore, comprehensive RNA sequencing (RNA-seq) analyses revealed that Qki5-dependent RNA regulation plays a pivotal role in generating the MN-specific transcriptome through pre-messenger ribonucleic acid (mRNA) splicing for the synapse-related molecules and c-Jun N-terminal kinase/stress-activated protein kinase (JNK/SAPK) signaling pathways. Indeed, MN-specific ablation of the Qki5 caused neurodegeneration in postnatal mice and loss of Qki5 function resulted in the aberrant activation of stress-responsive JNK/SAPK pathway both in vitro and in vivo. These data suggested that Qki5 plays a crucial biological role in RNA regulation and safeguarding of MNs and might be associated with pathogenesis of MNDs.
Collapse
Affiliation(s)
- Yoshika Hayakawa-Yano
- Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Chuo-ku, Niigata 951-8510, Japan
- Keio University Regenerative Medicine Research Center, Kawasaki, Kanagawa 210-0821, Japan
- Department of Physiology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Takako Furukawa
- Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Chuo-ku, Niigata 951-8510, Japan
| | - Tsuyoshi Matsuo
- The Shonan Incubation Laboratory, Shonan Research Center, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa 251-8555, Japan
| | - Takahisa Ogasawara
- The Shonan Incubation Laboratory, Shonan Research Center, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa 251-8555, Japan
| | - Masahiro Nogami
- The Shonan Incubation Laboratory, Shonan Research Center, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa 251-8555, Japan
| | - Kazumasa Yokoyama
- The Shonan Incubation Laboratory, Shonan Research Center, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa 251-8555, Japan
| | - Masato Yugami
- The Shonan Incubation Laboratory, Shonan Research Center, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa 251-8555, Japan
| | - Munehisa Shinozaki
- Keio University Regenerative Medicine Research Center, Kawasaki, Kanagawa 210-0821, Japan
- Department of Physiology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Chihiro Nakamoto
- Department of Animal Model Development, Brain Research Institute, Niigata University, Chuo-ku, Niigata 951-8585, Japan
| | - Kenji Sakimura
- Department of Animal Model Development, Brain Research Institute, Niigata University, Chuo-ku, Niigata 951-8585, Japan
| | - Akihide Koyama
- Division of Legal Medicine, Department of Community Preventive Medicine, Graduate School of Medical and Dental Sciences, Niigata University, Chuo-ku, Niigata 951-8510, Japan
| | - Kazuhiro Ogi
- The Shonan Incubation Laboratory, Shonan Research Center, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa 251-8555, Japan
| | - Osamu Onodera
- Department of Neurology, Brain Research Institute, Niigata University, Chuo-ku, Niigata 951-8585, Japan
| | - Hirohide Takebayashi
- Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Chuo-ku, Niigata 951-8510, Japan
| | - Hideyuki Okano
- Keio University Regenerative Medicine Research Center, Kawasaki, Kanagawa 210-0821, Japan
- Department of Physiology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Masato Yano
- Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Chuo-ku, Niigata 951-8510, Japan
- Keio University Regenerative Medicine Research Center, Kawasaki, Kanagawa 210-0821, Japan
- Department of Physiology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| |
Collapse
|
6
|
Giménez-Escamilla I, Pérez-Carrillo L, González-Torrent I, Delgado-Arija M, Benedicto C, Portolés M, Tarazón E, Roselló-Lletí E. Transcriptomic Alterations in Spliceosome Components in Advanced Heart Failure: Status of Cardiac-Specific Alternative Splicing Factors. Int J Mol Sci 2024; 25:9590. [PMID: 39273537 PMCID: PMC11395552 DOI: 10.3390/ijms25179590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/29/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024] Open
Abstract
Heart failure (HF) is associated with global changes in gene expression. Alternative mRNA splicing (AS) is a key regulatory mechanism underlying these changes. However, the whole status of molecules involved in the splicing process in human HF is unknown. Therefore, we analysed the spliceosome transcriptome in cardiac tissue (n = 36) from control subjects and HF patients (with ischaemic (ICM) and dilated (DCM) cardiomyopathies) using RNA-seq. We found greater deregulation of spliceosome machinery in ICM. Specifically, we showed widespread upregulation of the E and C complex components, highlighting an increase in SNRPD2 (FC = 1.35, p < 0.05) and DHX35 (FC = 1.34, p < 0.001) mRNA levels. In contrast, we observed generalised downregulation of the A complex and cardiac-specific AS factors, such as the multifunctional protein PCBP2 (FC = -1.29, p < 0.001) and the RNA binding proteins QKI (FC = -1.35, p < 0.01). In addition, we found a relationship between SNPRD2 (an E complex component) and the left ventricular mass index in ICM patients (r = 0.779; p < 0.01). On the other hand, we observed the specific underexpression of DDX46 (FC = -1.29), RBM17 (FC = -1.33), SDE2 (FC = -1.35) and RBFOX1 (FC = -1.33), p < 0.05, in DCM patients. Therefore, these aetiology-related alterations may indicate the differential involvement of the splicing process in the development of ICM and DCM.
Collapse
Affiliation(s)
- Isaac Giménez-Escamilla
- Clinical and Translational Research in Cardiology Unit, Health Research Institute Hospital La Fe (IIS La Fe), Avd. Fernando Abril Martorell 106, 46026 Valencia, Spain
- Center for Biomedical Research Network on Cardiovascular Diseases (CIBERCV), Avd. Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Lorena Pérez-Carrillo
- Clinical and Translational Research in Cardiology Unit, Health Research Institute Hospital La Fe (IIS La Fe), Avd. Fernando Abril Martorell 106, 46026 Valencia, Spain
- Center for Biomedical Research Network on Cardiovascular Diseases (CIBERCV), Avd. Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Irene González-Torrent
- Clinical and Translational Research in Cardiology Unit, Health Research Institute Hospital La Fe (IIS La Fe), Avd. Fernando Abril Martorell 106, 46026 Valencia, Spain
| | - Marta Delgado-Arija
- Clinical and Translational Research in Cardiology Unit, Health Research Institute Hospital La Fe (IIS La Fe), Avd. Fernando Abril Martorell 106, 46026 Valencia, Spain
- Center for Biomedical Research Network on Cardiovascular Diseases (CIBERCV), Avd. Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Carlota Benedicto
- Clinical and Translational Research in Cardiology Unit, Health Research Institute Hospital La Fe (IIS La Fe), Avd. Fernando Abril Martorell 106, 46026 Valencia, Spain
| | - Manuel Portolés
- Clinical and Translational Research in Cardiology Unit, Health Research Institute Hospital La Fe (IIS La Fe), Avd. Fernando Abril Martorell 106, 46026 Valencia, Spain
- Center for Biomedical Research Network on Cardiovascular Diseases (CIBERCV), Avd. Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Estefanía Tarazón
- Clinical and Translational Research in Cardiology Unit, Health Research Institute Hospital La Fe (IIS La Fe), Avd. Fernando Abril Martorell 106, 46026 Valencia, Spain
- Center for Biomedical Research Network on Cardiovascular Diseases (CIBERCV), Avd. Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Esther Roselló-Lletí
- Clinical and Translational Research in Cardiology Unit, Health Research Institute Hospital La Fe (IIS La Fe), Avd. Fernando Abril Martorell 106, 46026 Valencia, Spain
- Center for Biomedical Research Network on Cardiovascular Diseases (CIBERCV), Avd. Monforte de Lemos 3-5, 28029 Madrid, Spain
| |
Collapse
|
7
|
Zhu Y, Li J, Li S, Yang Z, Qiao Z, Gu X, He Z, Wu D, Ma X, Yao S, Yang C, Yang M, Cao L, Zhang J, Wang W, Rong P. ZMAT2 condensates regulate the alternative splicing of TRIM28 to reduce cellular ROS accumulation, thereby promoting the proliferation of HCC cells. Cell Commun Signal 2024; 22:407. [PMID: 39164737 PMCID: PMC11337747 DOI: 10.1186/s12964-024-01790-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/12/2024] [Indexed: 08/22/2024] Open
Abstract
Dysregulation of splicing factor expression plays a crucial role in the progression of hepatocellular carcinoma (HCC). Our research found that the expression level of splicing factor ZMAT2 was increased in HCC, promoting the proliferation of HCC cells. RNAseq data indicated that the absence of ZMAT2 induced skipping exon of mRNA, while RIPseq data further revealed the mRNA binding motifs of ZMAT2. A comprehensive analysis of RNAseq and RIPseq data indicateed that ZMAT2 played a crucial role in the maturation process of TRIM28 mRNA. Knocking down of ZMAT2 led to the deletion of 25 bases in exon 11 of TRIM28, ultimately resulting in nonsense-mediated decay (NMD). Our data revealed that ZMAT2 could regulate TRIM28 to reduce the accumulation of ROS in HCC cells, thereby promoting their proliferation. Our research also discovered that ZMAT2 was capable of undergoing phase separation, resulting in the formation of liquid droplet condensates within HCC cells. Additionally, it was found that ZMAT2 was able to form protein-nucleic acid condensates with TRIM28 mRNA. In summary, this study is the first to reveal that ZMAT2 and TRIM28 mRNA form protein-nucleic acid condensates, thereby regulating the splicing of TRIM28 mRNA. The increased expression of ZMAT2 in HCC leads to upregulated TRIM28 expression and reduced ROS accumulation, ultimately accelerating the proliferation of HCC cells.
Collapse
Affiliation(s)
- Yaning Zhu
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jiong Li
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
- Postdoctoral Station of Medical Aspects of Specific Environments, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Sang Li
- Engineering and Technology Research Center for Xenotransplantation of Human Province, Changsha, China
| | - Zhe Yang
- College of Life Science, Liaoning University, Shenyang, China
- Shenyang Key Laboratory of Chronic Disease Occurrence and Nutrition Intervention, College of Life Sciences, Liaoning University, Shenyang, China
| | - Zhengkang Qiao
- College of Life Science, Liaoning University, Shenyang, China
| | - Xingshi Gu
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhenhu He
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Di Wu
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiaoqian Ma
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shanhu Yao
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Cejun Yang
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Min Yang
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lu Cao
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Juan Zhang
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wei Wang
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Pengfei Rong
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
8
|
Gimeno-Valiente F, López-Rodas G, Castillo J, Franco L. The Many Roads from Alternative Splicing to Cancer: Molecular Mechanisms Involving Driver Genes. Cancers (Basel) 2024; 16:2123. [PMID: 38893242 PMCID: PMC11171328 DOI: 10.3390/cancers16112123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
Cancer driver genes are either oncogenes or tumour suppressor genes that are classically activated or inactivated, respectively, by driver mutations. Alternative splicing-which produces various mature mRNAs and, eventually, protein variants from a single gene-may also result in driving neoplastic transformation because of the different and often opposed functions of the variants of driver genes. The present review analyses the different alternative splicing events that result in driving neoplastic transformation, with an emphasis on their molecular mechanisms. To do this, we collected a list of 568 gene drivers of cancer and revised the literature to select those involved in the alternative splicing of other genes as well as those in which its pre-mRNA is subject to alternative splicing, with the result, in both cases, of producing an oncogenic isoform. Thirty-one genes fall into the first category, which includes splicing factors and components of the spliceosome and splicing regulators. In the second category, namely that comprising driver genes in which alternative splicing produces the oncogenic isoform, 168 genes were found. Then, we grouped them according to the molecular mechanisms responsible for alternative splicing yielding oncogenic isoforms, namely, mutations in cis splicing-determining elements, other causes involving non-mutated cis elements, changes in splicing factors, and epigenetic and chromatin-related changes. The data given in the present review substantiate the idea that aberrant splicing may regulate the activation of proto-oncogenes or inactivation of tumour suppressor genes and details on the mechanisms involved are given for more than 40 driver genes.
Collapse
Affiliation(s)
- Francisco Gimeno-Valiente
- Cancer Evolution and Genome Instability Laboratory, University College London Cancer Institute, London WC1E 6DD, UK;
| | - Gerardo López-Rodas
- Department of Oncology, Institute of Health Research INCLIVA, 46010 Valencia, Spain; (G.L.-R.); (J.C.)
- Department of Biochemistry and Molecular Biology, Universitat de València, 46010 Valencia, Spain
| | - Josefa Castillo
- Department of Oncology, Institute of Health Research INCLIVA, 46010 Valencia, Spain; (G.L.-R.); (J.C.)
- Department of Biochemistry and Molecular Biology, Universitat de València, 46010 Valencia, Spain
- Centro de Investigación Biomédica en Red en Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Luis Franco
- Department of Oncology, Institute of Health Research INCLIVA, 46010 Valencia, Spain; (G.L.-R.); (J.C.)
- Department of Biochemistry and Molecular Biology, Universitat de València, 46010 Valencia, Spain
| |
Collapse
|
9
|
Duan Y, Zhou M, Ye B, Yue K, Qiao F, Wang Y, Lai Q, Wu Y, Cao J, Wu Y, Wang X, Jing C. Hypoxia-induced miR-5100 promotes exosome-mediated activation of cancer-associated fibroblasts and metastasis of head and neck squamous cell carcinoma. Cell Death Dis 2024; 15:215. [PMID: 38485986 PMCID: PMC10940661 DOI: 10.1038/s41419-024-06587-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 03/18/2024]
Abstract
The invasion-metastasis cascade in head and neck squamous cell carcinoma (HNSCC) is predominantly caused by the interaction between tumor cells and tumor microenvironment, including hypoxia as well as stromal cells. However, the mechanism of hypoxia-activated tumor-stroma crosstalk in HNSCC metastasis remains to be deciphered. Here, we demonstrated that HIF1α was upregulated in HNSCC specimens compared with adjacent normal tissues, whose overexpression was associated with lymph node metastasis and predicted unfavorable prognosis. HIF1α expression correlated positively with the levels of miR-5100 as well as α-SMA, the marker of CAFs. Hypoxia/HIF1α regulated transcriptionally miR-5100 to promote the degradation of its target gene QKI, which acts as a tumor suppressor in HNSCC. Hypoxic HNSCC-derived exosomal miR-5100 promoted the activation of CAFs by orchestrating QKI/AKT/STAT3 axis, which further facilitated HNSCC metastasis. Additionally, miR-5100 derived from plasma exosomes indicated HNSCC malignant progression. In conclusion, our findings illuminate a novel HIF1α/miR-5100/QKI pathway in HNSCC metastasis, and suggest that miR-5100 might be a potential biomarker and therapeutic target for HNSCC.
Collapse
Affiliation(s)
- Yuansheng Duan
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin, 300060, China
| | - Mengqian Zhou
- Department of Thyroid and Breast Surgery, The Second Hospital of Anhui Medical University, Anhui, 230601, China
| | - Beibei Ye
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin, 300060, China
| | - Kai Yue
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin, 300060, China
| | - Feng Qiao
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Tianjin Medical University, Tianjin, 300070, China
| | - Yuxuan Wang
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin, 300060, China
| | - Qingchuan Lai
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin, 300060, China
| | - Yue Wu
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin, 300060, China
| | - Jiayan Cao
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin, 300060, China
| | - Yansheng Wu
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin, 300060, China.
| | - Xudong Wang
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin, 300060, China.
| | - Chao Jing
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin, 300060, China.
| |
Collapse
|
10
|
Adesanya O, Das D, Kalsotra A. Emerging roles of RNA-binding proteins in fatty liver disease. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1840. [PMID: 38613185 PMCID: PMC11018357 DOI: 10.1002/wrna.1840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 02/08/2024] [Accepted: 03/05/2024] [Indexed: 04/14/2024]
Abstract
A rampant and urgent global health issue of the 21st century is the emergence and progression of fatty liver disease (FLD), including alcoholic fatty liver disease and the more heterogenous metabolism-associated (or non-alcoholic) fatty liver disease (MAFLD/NAFLD) phenotypes. These conditions manifest as disease spectra, progressing from benign hepatic steatosis to symptomatic steatohepatitis, cirrhosis, and, ultimately, hepatocellular carcinoma. With numerous intricately regulated molecular pathways implicated in its pathophysiology, recent data have emphasized the critical roles of RNA-binding proteins (RBPs) in the onset and development of FLD. They regulate gene transcription and post-transcriptional processes, including pre-mRNA splicing, capping, and polyadenylation, as well as mature mRNA transport, stability, and translation. RBP dysfunction at every point along the mRNA life cycle has been associated with altered lipid metabolism and cellular stress response, resulting in hepatic inflammation and fibrosis. Here, we discuss the current understanding of the role of RBPs in the post-transcriptional processes associated with FLD and highlight the possible and emerging therapeutic strategies leveraging RBP function for FLD treatment. This article is categorized under: RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
| | - Diptatanu Das
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Auinash Kalsotra
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Cancer Center @ Illinois, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Carl R. Woese Institute of Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
11
|
Ruta V, Naro C, Pieraccioli M, Leccese A, Archibugi L, Cesari E, Panzeri V, Allgöwer C, Arcidiacono PG, Falconi M, Carbone C, Tortora G, Borrelli F, Attili F, Spada C, Quero G, Alfieri S, Doglioni C, Kleger A, Capurso G, Sette C. An alternative splicing signature defines the basal-like phenotype and predicts worse clinical outcome in pancreatic cancer. Cell Rep Med 2024; 5:101411. [PMID: 38325381 PMCID: PMC10897606 DOI: 10.1016/j.xcrm.2024.101411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/19/2023] [Accepted: 01/12/2024] [Indexed: 02/09/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is characterized by extremely poor prognosis. PDAC presents with molecularly distinct subtypes, with the basal-like one being associated with enhanced chemoresistance. Splicing dysregulation contributes to PDAC; however, its involvement in subtype specification remains elusive. Herein, we uncover a subtype-specific splicing signature associated with prognosis in PDAC and the splicing factor Quaking (QKI) as a determinant of the basal-like signature. Single-cell sequencing analyses highlight QKI as a marker of the basal-like phenotype. QKI represses splicing events associated with the classical subtype while promoting basal-like events associated with shorter survival. QKI favors a plastic, quasi-mesenchymal phenotype that supports migration and chemoresistance in PDAC organoids and cell lines, and its expression is elevated in high-grade primary tumors and metastatic lesions. These studies identify a splicing signature that defines PDAC subtypes and indicate that QKI promotes an undifferentiated, plastic phenotype, which renders PDAC cells chemoresistant and adaptable to environmental changes.
Collapse
Affiliation(s)
- Veronica Ruta
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, 00168 Rome, Italy
| | - Chiara Naro
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, 00168 Rome, Italy; Fondazione Policlinico A. Gemelli IRCCS, 00168 Rome, Italy
| | - Marco Pieraccioli
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, 00168 Rome, Italy; Fondazione Policlinico A. Gemelli IRCCS, 00168 Rome, Italy
| | - Adriana Leccese
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, 00168 Rome, Italy
| | - Livia Archibugi
- Pancreato-Biliary Endoscopy and Endosonography Division, Pancreas Translational and Clinical Research Center, San Raffaele Scientific Institute IRCCS, 20132 Milan, Italy
| | | | - Valentina Panzeri
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, 00168 Rome, Italy
| | - Chantal Allgöwer
- Institute for Molecular Oncology and Stem Cell Biology, Ulm University Hospital, 89081 Ulm, Germany
| | - Paolo Giorgio Arcidiacono
- Pancreato-Biliary Endoscopy and Endosonography Division, Pancreas Translational and Clinical Research Center, San Raffaele Scientific Institute IRCCS, 20132 Milan, Italy; Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Massimo Falconi
- Vita-Salute San Raffaele University, 20132 Milan, Italy; Pancreas and Transplantation Surgical Division, Pancreas Translational and Clinical Research Center, San Raffaele Scientific Institute IRCCS, 20132 Milan, Italy
| | | | - Giampaolo Tortora
- Fondazione Policlinico A. Gemelli IRCCS, 00168 Rome, Italy; Medical Oncology, Catholic University of the Sacred Heart, 00168 Rome, Italy
| | | | - Fabia Attili
- Fondazione Policlinico A. Gemelli IRCCS, 00168 Rome, Italy
| | | | - Giuseppe Quero
- Fondazione Policlinico A. Gemelli IRCCS, 00168 Rome, Italy; Gemelli Pancreatic Advanced Research Center (CRMPG), Catholic University of the Sacred Heart, 00168 Rome, Italy
| | - Sergio Alfieri
- Fondazione Policlinico A. Gemelli IRCCS, 00168 Rome, Italy; Gemelli Pancreatic Advanced Research Center (CRMPG), Catholic University of the Sacred Heart, 00168 Rome, Italy
| | - Claudio Doglioni
- Vita-Salute San Raffaele University, 20132 Milan, Italy; Division of Pathology, Pancreas Translational and Clinical Research Center, San Raffaele Scientific Institute IRCCS, 20132 Milan, Italy
| | - Alexander Kleger
- Institute for Molecular Oncology and Stem Cell Biology, Ulm University Hospital, 89081 Ulm, Germany; Division of Interdisciplinary Pancreatology, Department of Internal Medicine I, Ulm University Hospital, 89081 Ulm, Germany
| | - Gabriele Capurso
- Pancreato-Biliary Endoscopy and Endosonography Division, Pancreas Translational and Clinical Research Center, San Raffaele Scientific Institute IRCCS, 20132 Milan, Italy; Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Claudio Sette
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, 00168 Rome, Italy; Fondazione Policlinico A. Gemelli IRCCS, 00168 Rome, Italy.
| |
Collapse
|
12
|
Nie D, Tang X, Deng H, Yang X, Tao J, Xu F, Liu Y, Wu K, Wang K, Mei Z, Huang A, Tang N. Metabolic Enzyme SLC27A5 Regulates PIP4K2A pre-mRNA Splicing as a Noncanonical Mechanism to Suppress Hepatocellular Carcinoma Metastasis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305374. [PMID: 38059827 PMCID: PMC10837360 DOI: 10.1002/advs.202305374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/24/2023] [Indexed: 12/08/2023]
Abstract
Solute carrier family 27 member 5, a key enzyme in fatty acid transport and bile acid metabolism in the liver, is frequently expressed in low quantities in patients with hepatocellular carcinoma, resulting in poor prognosis. However, it is unclear whether SLC27A5 plays non-canonical functions and regulates HCC progression. Here, an unexpected non-canonical role of SLC27A5 is reported: regulating the alternative splicing of mRNA to inhibit the metastasis of HCC independently of its metabolic enzyme activity. Mechanistically, SLC27A5 interacts with IGF2BP3 to prevent its translocation into the nucleus, thereby inhibiting its binding to target mRNA and modulating PIP4K2A pre-mRNA splicing. Loss of SLC27A5 results in elevated levels of the PIP4K2A-S isoform, thus positively regulating phosphoinositide 3-kinase signaling via enhanced p85 stability in HCC. SLC27A5 restoration by AAV-Slc27a5 or IGF2BP3 RNA decoy oligonucleotides exerts an inhibitory effect on HCC metastasis with reduced expression of the PIP4K2A-S isoform. Therefore, PIP4K2A-S may be a novel target for treating HCC with SLC27A5 deficiency.
Collapse
Affiliation(s)
- Dan Nie
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education)Institute for Viral HepatitisDepartment of Infectious DiseasesThe Second Affiliated HospitalChongqing Medical UniversityChongqing400010China
- Department of GastroenterologyThe Chongqing Hospital of Traditional Chinese MedicineChongqing Academy of Traditional Chinese MedicineChongqing400016China
| | - Xin Tang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education)Institute for Viral HepatitisDepartment of Infectious DiseasesThe Second Affiliated HospitalChongqing Medical UniversityChongqing400010China
| | - Haijun Deng
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education)Institute for Viral HepatitisDepartment of Infectious DiseasesThe Second Affiliated HospitalChongqing Medical UniversityChongqing400010China
| | - Xiaojun Yang
- Department of GastroenterologyThe Chongqing Hospital of Traditional Chinese MedicineChongqing Academy of Traditional Chinese MedicineChongqing400016China
| | - Junji Tao
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education)Institute for Viral HepatitisDepartment of Infectious DiseasesThe Second Affiliated HospitalChongqing Medical UniversityChongqing400010China
| | - Fengli Xu
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education)Institute for Viral HepatitisDepartment of Infectious DiseasesThe Second Affiliated HospitalChongqing Medical UniversityChongqing400010China
| | - Yi Liu
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education)Institute for Viral HepatitisDepartment of Infectious DiseasesThe Second Affiliated HospitalChongqing Medical UniversityChongqing400010China
| | - Kang Wu
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education)Institute for Viral HepatitisDepartment of Infectious DiseasesThe Second Affiliated HospitalChongqing Medical UniversityChongqing400010China
| | - Kai Wang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education)Institute for Viral HepatitisDepartment of Infectious DiseasesThe Second Affiliated HospitalChongqing Medical UniversityChongqing400010China
| | - Zhechuan Mei
- Department of GastroenterologyThe Second Affiliated HospitalChongqing Medical UniversityChongqing400016China
| | - Ailong Huang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education)Institute for Viral HepatitisDepartment of Infectious DiseasesThe Second Affiliated HospitalChongqing Medical UniversityChongqing400010China
| | - Ni Tang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education)Institute for Viral HepatitisDepartment of Infectious DiseasesThe Second Affiliated HospitalChongqing Medical UniversityChongqing400010China
| |
Collapse
|
13
|
Pan A, Xue Y, Ruan X, Dong W, Wang D, Liu Y, Liu L, Lin Y, E T, Lin H, Xu H, Liu X, Wang P. m5C modification of LINC00324 promotes angiogenesis in glioma through CBX3/VEGFR2 pathway. Int J Biol Macromol 2024; 257:128409. [PMID: 38016610 DOI: 10.1016/j.ijbiomac.2023.128409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/06/2023] [Accepted: 11/22/2023] [Indexed: 11/30/2023]
Abstract
Angiogenesis plays a major role in tumor initiation, progression, and metastasis. This is why finding antiangiogenic targets is essential in the treatment of gliomas. In this study, NSUN2 and LINC00324 were significantly upregulated in conditionally cultured glioblastoma endothelial cells (GECs). Knockdown of NSUN2 or LINC00324 inhibits GECs angiogenesis. NSUN2 increased the stability of LINC00324 by m5C modification and upregulated LINC00324 expression. LINC00324 competes with the 3'UTR of CBX3 mRNA to bind to AUH protein, reducing the degradation of CBX3 mRNA. In addition, CBX3 directly binds to the promoter region of VEGFR2, enhances VEGFR2 transcription, and promotes GECs angiogenesis. These findings demonstrated NSUN2/LINC00324/CBX3 axis plays a crucial role in regulating glioma angiogenesis, which provides new strategies for glioma therapy.
Collapse
Affiliation(s)
- Aini Pan
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang 110122, China; Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang 110004, China
| | - Yixue Xue
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang 110122, China; Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang 110004, China
| | - Xuelei Ruan
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang 110122, China; Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang 110004, China
| | - Weiwei Dong
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang 110004, China.; Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Di Wang
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang 110004, China.; Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Yunhui Liu
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang 110004, China.; Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Libo Liu
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang 110122, China; Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang 110004, China
| | - Yang Lin
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang 110122, China; Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang 110004, China
| | - Tiange E
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang 110004, China.; Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Hongda Lin
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang 110004, China.; Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Hailing Xu
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang 110004, China.; Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Xiaobai Liu
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang 110004, China.; Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| | - Ping Wang
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang 110122, China; Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang 110004, China..
| |
Collapse
|
14
|
Wang HF, Zhou XF, Zhang QM, Wu JQ, Hou JH, Xu XL, Li XM, Liu YL. Involvement of circRNA Regulators MBNL1 and QKI in the Progression of Esophageal Squamous Cell Carcinoma. Cancer Control 2024; 31:10732748241257142. [PMID: 38769028 PMCID: PMC11107321 DOI: 10.1177/10732748241257142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 04/25/2024] [Accepted: 05/03/2024] [Indexed: 05/22/2024] Open
Abstract
OBJECTIVES To investigate the role of circRNA regulators MBNL1 and QKI in the progression of esophageal squamous cell carcinoma. BACKGROUND MBNL1 and QKI are pivotal regulators of pre-mRNA alternative splicing, crucial for controlling circRNA production - an emerging biomarker and functional regulator of tumor progression. Despite their recognized roles, their involvement in ESCC progression remains unexplored. METHODS The expression levels of MBNL1 and QKI were examined in 28 tissue pairs from ESCC and adjacent normal tissues using data from the GEO database. Additionally, a total of 151 ESCC tissue samples, from stage T1 to T4, consisting of 13, 43, 87, and 8 cases per stage, respectively, were utilized for immunohistochemical (IHC) analysis. RNA sequencing was utilized to examine the expression profiles of circRNAs, lncRNAs, and mRNAs across 3 normal tissues, 3 ESCC tissues, and 3 pairs of KYSE150 cells in both wildtype (WT) and those with MBNL1 or QKI knockouts. Transwell, colony formation, and subcutaneous tumorigenesis assays assessed the impact of MBNL1 or QKI knockout on ESCC cell migration, invasion, and proliferation. RESULTS ESCC onset significantly altered MBNL1 and QKI expression levels, influencing diverse RNA species. Elevated MBNL1 or QKI expression correlated with patient age or tumor invasion depth, respectively. MBNL1 or QKI knockout markedly enhanced cancer cell migration, invasion, proliferation, and tumor growth. Moreover, the absence of either MBNL1 or QKI modulated the expression profiles of multiple circRNAs, causing extensive downstream alterations in the expression of numerous lncRNAs and mRNAs. While the functions of circRNA and lncRNA among the top 20 differentially expressed genes remain unclear, mRNAs like SLCO4C1, TMPRSS15, and MAGEB2 have reported associations with tumor progression. CONCLUSIONS This study underscores the tumor-suppressive roles of MBNL1 and QKI in ESCC, proposing them as potential biomarkers and therapeutic targets for ESCC diagnosis and treatment.
Collapse
Affiliation(s)
- Hai-Feng Wang
- Department of Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Department of Oncology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Xiao-Feng Zhou
- Henan Key Laboratory of Tumor Molecular Therapy Medicine, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Qun-Mei Zhang
- Department of Blood Transfusion, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Jie-Qing Wu
- Department of Oncology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Jing-Han Hou
- Henan Key Laboratory of Tumor Molecular Therapy Medicine, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Xue-Lian Xu
- Department of Oncology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Xiu-Min Li
- Henan Key Laboratory of Tumor Molecular Therapy Medicine, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Yu-Long Liu
- Department of Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, Jiangsu, China
- Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, Jiangsu, P.R. China
| |
Collapse
|
15
|
Hao L, Zhang J, Liu Z, Zhang Z, Mao T, Guo J. Role of the RNA-binding protein family in gynecologic cancers. Am J Cancer Res 2023; 13:3799-3821. [PMID: 37693158 PMCID: PMC10492115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 08/15/2023] [Indexed: 09/12/2023] Open
Abstract
Gynecological cancers pose a threat to women's health. Although early-stage gynecological cancers show good outcomes after standardized treatment, the prognosis of patients with advanced, met-astatic, and recurrent cancers is poor. RNA-binding proteins (RBPs) are important cellular proteins that interact with RNA through RNA-binding domains and participate extensively in post-transcriptional regulatory processes, such as mRNA alternative splicing, polyadenylation, intracellular localization and stability, and translation. Abnormal RBP expression affects the normal function of oncogenes and tumor suppressor genes in many malignancies, thus leading to the occurrence or progression of cancers. Similarly, RBPs play crucial roles in gynecological carcinogenesis. We summarize the role of RBPs in gynecological malignancies and explore their potential in the diagnosis and treatment of cancers. The findings summarized in this review may provide a guide for future research on the functions of RBPs.
Collapse
Affiliation(s)
- Linlin Hao
- Department of Tumor Radiotherapy, The Second Hospital of Jilin UniversityChangchun 130041, Jilin, China
| | - Jian Zhang
- School of Life Sciences, Department of Biology, Southern University of Science and TechnologyShenzhen 518055, Guangdong, China
| | - Zhongshan Liu
- Department of Tumor Radiotherapy, The Second Hospital of Jilin UniversityChangchun 130041, Jilin, China
| | - Zhiliang Zhang
- Department of Tumor Radiotherapy, The Second Hospital of Jilin UniversityChangchun 130041, Jilin, China
| | - Tiezhu Mao
- Department of Tumor Radiotherapy, The Second Hospital of Jilin UniversityChangchun 130041, Jilin, China
| | - Jie Guo
- Department of Tumor Radiotherapy, The Second Hospital of Jilin UniversityChangchun 130041, Jilin, China
| |
Collapse
|
16
|
Min J, Li Y, Li X, Wang M, Li H, Bi Y, Xu P, Liu W, Ye X, Li J. The circRNA circVAMP3 restricts influenza A virus replication by interfering with NP and NS1 proteins. PLoS Pathog 2023; 19:e1011577. [PMID: 37603540 PMCID: PMC10441791 DOI: 10.1371/journal.ppat.1011577] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 07/24/2023] [Indexed: 08/23/2023] Open
Abstract
Circular RNAs (circRNAs) are involved in various biological roles, including viral infection and antiviral immune responses. To identify influenza A virus (IAV) infection-related circRNAs, we compared the circRNA profiles of A549 cells upon IAV infection. We found that circVAMP3 is substantially upregulated after IAV infection or interferon (IFN) stimulation. Furthermore, IAV and IFN-β induced the expression of QKI-5, which promoted the biogenesis of circVAMP3. Overexpression of circVAMP3 inhibited IAV replication, while circVAMP3 knockdown promoted viral replication, suggesting that circVAMP3 restricts IAV replication. We verified the effect of circVAMP3 on viral infection in mice and found that circVAMP3 restricted IAV replication and pathogenesis in vivo. We also found that circVAMP3 functions as a decoy to the viral proteins nucleoprotein (NP) and nonstructural protein 1 (NS1). Mechanistically, circVAMP3 interfered with viral ribonucleoprotein complex activity by reducing the interaction of NP with polymerase basic 1, polymerase basic 2, or vRNA and restored the activation of IFN-β by alleviating the inhibitory effect of NS1 to RIG-I or TRIM25. Our study provides new insights into the roles of circRNAs, both in directly inhibiting virus replication and in restoring innate immunity against IAV infection.
Collapse
Affiliation(s)
- Jie Min
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Yucen Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Department of Microbiology and Parasitology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Xinda Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Mingge Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- School of Life Sciences, University of Science and Technology of China, Anhui, China
| | - Huizi Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Yuhai Bi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Ping Xu
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Wenjun Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
| | - Xin Ye
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Jing Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, Virginia, United States of America
| |
Collapse
|
17
|
Ning X, Fu Z, Zhang J, Gao S, Cui Z, Cong M, Guo Q, Sun X, Li J, Zhang M, Wang S. The role of alternative splicing in lung cancer. Cancer Chemother Pharmacol 2023; 92:83-95. [PMID: 37335335 DOI: 10.1007/s00280-023-04553-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 06/12/2023] [Indexed: 06/21/2023]
Abstract
Aberrant alternative splicing (AS) events are frequently observed in lung cancer, which can be attributed to aberrant gene AS, alterations in splicing regulatory factors, or changes in splicing regulatory mechanisms. Consequently, the dysregulation of alternative RNA splicing is the fundamental cause of lung cancer. In this review, we have summarized the pivotal role of AS in the development, progression, invasion, metastasis, angiogenesis, and drug resistance of lung cancer. Ultimately, this review emphasizes the potential of AS as biomarkers in lung cancer prognosis and diagnosis, and introduces some applications of AS isoform in the treatment of lung cancer. The comprehension of the AS may provide a glimmer of hope for the eradication of lung cancer.
Collapse
Affiliation(s)
- Xuelian Ning
- Department of Pathology, Harbin Medical University, No.157 Baojian Road, Nangang District, Harbin, 150081, China
| | - Zitong Fu
- Department of Pathology, Harbin Medical University, No.157 Baojian Road, Nangang District, Harbin, 150081, China
| | - Jing Zhang
- Department of Oncology, Chifeng Municipal Hospital, No.1 Zhaowuda Road, Chifeng, 024000, China
| | - Shuangshu Gao
- Department of Pathology, Harbin Medical University, No.157 Baojian Road, Nangang District, Harbin, 150081, China
| | - Zihan Cui
- Department of Pathology, Harbin Medical University, No.157 Baojian Road, Nangang District, Harbin, 150081, China
| | - Mingqi Cong
- Department of Pathology, Harbin Medical University, No.157 Baojian Road, Nangang District, Harbin, 150081, China
| | - Qingyu Guo
- Department of Pathology, Harbin Medical University, No.157 Baojian Road, Nangang District, Harbin, 150081, China
| | - Xixi Sun
- Department of Pathology, Harbin Medical University, No.157 Baojian Road, Nangang District, Harbin, 150081, China
| | - Jing Li
- Department of Pathology, Harbin Medical University, No.157 Baojian Road, Nangang District, Harbin, 150081, China
| | - Minghui Zhang
- Department of Oncology, Chifeng Municipal Hospital, No.1 Zhaowuda Road, Chifeng, 024000, China.
| | - Shuoshuo Wang
- Department of Pathology, Harbin Medical University, No.157 Baojian Road, Nangang District, Harbin, 150081, China.
| |
Collapse
|
18
|
Chang J, Yan S, Geng Z, Wang Z. Inhibition of splicing factors SF3A3 and SRSF5 contributes to As 3+/Se 4+ combination-mediated proliferation suppression and apoptosis induction in acute promyelocytic leukemia cells. Arch Biochem Biophys 2023; 743:109677. [PMID: 37356608 DOI: 10.1016/j.abb.2023.109677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/28/2023] [Accepted: 06/22/2023] [Indexed: 06/27/2023]
Abstract
The low-dose combination of Arsenite (As3+) and selenite (Se4+) has the advantages of lower biological toxicity and better curative effects for acute promyelocytic leukemia (APL) therapy. However, the underlying mechanisms remain unclear. Here, based on the fact that the combination of 2 μM A3+ plus 4 μM Se4+ possessed a stronger anti-leukemic effect on APL cell line NB4 as compared with each individual, we employed iTRAQ-based quantitative proteomics to identify a total of 58 proteins that were differentially expressed after treatment with As3+/Se4+ combination rather than As3+ or Se4+ alone, the majority of which were involved in spliceosome pathway. Among them, eight proteins stood out by virtue of their splicing function and significant changes. They were validated as being decreased in mRNA and protein levels under As3+/Se4+ combination treatment. Further functional studies showed that only knockdown of two splicing factors, SF3A3 and SRSF5, suppressed the growth of NB4 cells. The reduction of SF3A3 was found to cause G1/S cell cycle arrest, which resulted in proliferation inhibition. Moreover, SRSF5 downregulation induced cell apoptosis through the activation of caspase-3. Taken together, these findings indicate that SF3A3 and SRSF5 function as pro-leukemic factors and can be potential novel therapeutic targets for APL.
Collapse
Affiliation(s)
- Jiayin Chang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, PR China
| | - Shihai Yan
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, PR China
| | - Zhirong Geng
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210046, PR China.
| | - Zhilin Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, PR China.
| |
Collapse
|
19
|
Okada N, Ueki C, Shimazaki M, Tsujimoto G, Kohno S, Muranaka H, Yoshikawa K, Takahashi C. NFYA promotes malignant behavior of triple-negative breast cancer in mice through the regulation of lipid metabolism. Commun Biol 2023; 6:596. [PMID: 37268670 DOI: 10.1038/s42003-023-04987-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 05/26/2023] [Indexed: 06/04/2023] Open
Abstract
Two splicing variants exist in NFYA that exhibit high expression in many human tumour types. The balance in their expression correlates with prognosis in breast cancer, but functional differences remain unclear. Here, we demonstrate that NFYAv1, a long-form variant, upregulates the transcription of essential lipogenic enzymes ACACA and FASN to enhance the malignant behavior of triple-negative breast cancer (TNBC). Loss of the NFYAv1-lipogenesis axis strongly suppresses malignant behavior in vitro and in vivo, indicating that the NFYAv1-lipogenesis axis is essential for TNBC malignant behavior and that the axis might be a potential therapeutic target for TNBC. Furthermore, mice deficient in lipogenic enzymes, such as Acly, Acaca, and Fasn, exhibit embryonic lethality; however, Nfyav1-deficient mice exhibited no apparent developmental abnormalities. Our results indicate that the NFYAv1-lipogenesis axis has tumour-promoting effects and that NFYAv1 may be a safe therapeutic target for TNBC.
Collapse
Affiliation(s)
- Nobuhiro Okada
- Graduate School of Interdisciplinary Science & Engineering in Health Systems, Okayama University, Okayama, 700-8530, Japan.
- Department of Pharmacology, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan.
| | - Chihiro Ueki
- Graduate School of Interdisciplinary Science & Engineering in Health Systems, Okayama University, Okayama, 700-8530, Japan
| | - Masahiro Shimazaki
- Laboratory for Malignancy Control Research, Medical Innovation Center, Kyoto University, Kyoto, 606-8501, Japan
| | - Goki Tsujimoto
- Graduate School of Interdisciplinary Science & Engineering in Health Systems, Okayama University, Okayama, 700-8530, Japan
| | - Susumu Kohno
- Division of Oncology and Molecular Biology, Cancer Research Institute, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Hayato Muranaka
- Division of Oncology and Molecular Biology, Cancer Research Institute, Kanazawa University, Kanazawa, 920-1192, Japan
- Samuel Oschin Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Kiyotsugu Yoshikawa
- Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts, Kyoto, 610-0395, Japan
| | - Chiaki Takahashi
- Division of Oncology and Molecular Biology, Cancer Research Institute, Kanazawa University, Kanazawa, 920-1192, Japan
| |
Collapse
|
20
|
Choi S, Cho N, Kim KK. The implications of alternative pre-mRNA splicing in cell signal transduction. Exp Mol Med 2023; 55:755-766. [PMID: 37009804 PMCID: PMC10167241 DOI: 10.1038/s12276-023-00981-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 01/05/2023] [Accepted: 01/27/2023] [Indexed: 04/04/2023] Open
Abstract
Cells produce multiple mRNAs through alternative splicing, which ensures proteome diversity. Because most human genes undergo alternative splicing, key components of signal transduction pathways are no exception. Cells regulate various signal transduction pathways, including those associated with cell proliferation, development, differentiation, migration, and apoptosis. Since proteins produced through alternative splicing can exhibit diverse biological functions, splicing regulatory mechanisms affect all signal transduction pathways. Studies have demonstrated that proteins generated by the selective combination of exons encoding important domains can enhance or attenuate signal transduction and can stably and precisely regulate various signal transduction pathways. However, aberrant splicing regulation via genetic mutation or abnormal expression of splicing factors negatively affects signal transduction pathways and is associated with the onset and progression of various diseases, including cancer. In this review, we describe the effects of alternative splicing regulation on major signal transduction pathways and highlight the significance of alternative splicing.
Collapse
Affiliation(s)
- Sunkyung Choi
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Namjoon Cho
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Kee K Kim
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon, 34134, Republic of Korea.
| |
Collapse
|
21
|
Abstract
Dysregulated RNA splicing is a molecular feature that characterizes almost all tumour types. Cancer-associated splicing alterations arise from both recurrent mutations and altered expression of trans-acting factors governing splicing catalysis and regulation. Cancer-associated splicing dysregulation can promote tumorigenesis via diverse mechanisms, contributing to increased cell proliferation, decreased apoptosis, enhanced migration and metastatic potential, resistance to chemotherapy and evasion of immune surveillance. Recent studies have identified specific cancer-associated isoforms that play critical roles in cancer cell transformation and growth and demonstrated the therapeutic benefits of correcting or otherwise antagonizing such cancer-associated mRNA isoforms. Clinical-grade small molecules that modulate or inhibit RNA splicing have similarly been developed as promising anticancer therapeutics. Here, we review splicing alterations characteristic of cancer cell transcriptomes, dysregulated splicing's contributions to tumour initiation and progression, and existing and emerging approaches for targeting splicing for cancer therapy. Finally, we discuss the outstanding questions and challenges that must be addressed to translate these findings into the clinic.
Collapse
Affiliation(s)
- Robert K Bradley
- Computational Biology Program, Public Health Sciences Division and Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA.
| | - Olga Anczuków
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA.
- Department of Genetics and Genome Sciences, UConn Health, Farmington, CT, USA.
| |
Collapse
|
22
|
Chen S, Niu S, Wang W, Zhao X, Pan Y, Qiao L, Yang K, Liu J, Liu W. Overexpression of the QKI Gene Promotes Differentiation of Goat Myoblasts into Myotubes. Animals (Basel) 2023; 13:ani13040725. [PMID: 36830512 PMCID: PMC9952742 DOI: 10.3390/ani13040725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/01/2023] [Accepted: 02/12/2023] [Indexed: 02/22/2023] Open
Abstract
The QKI genes encode RNA-binding proteins regulating cell proliferation, differentiation, and apoptosis. The Goat QKI has six isoforms, but their roles in myogenesis are unclear. In this study, the six isoforms of the QKI gene were overexpressed in goat myoblast. Immunofluorescence, qPCR and Western blot were used to evaluate the effect of QKI on the differentiation of goat myoblast. An RNA-Seq was performed on the cells with the gain of the function from the major isoforms to screen differentially expressed genes (DEGs). The results show that six isoforms had different degrees of deletion in exons 6 and 7, and caused the appearance of different types of encoded amino acids. The expression levels of the QKI-1 and QKI-5 groups were upregulated in the biceps femoris and latissimus dorsi muscle tissues compared with those of the QKI-4, QKI-7, QKI-3 and QKI-6 groups. After 6 d of myoblast differentiation, QKI-5 and the myogenic differentiators MyoG, MyoD, and MyHC were upregulated. Compared to the negative control group, QKI promoted myotube differentiation and the myoblasts overexpressing QKI-5 formed large, abundant myotubes. In summary, we identified that the overexpression of the QKI gene promotes goat-myoblast differentiation and that QKI-5 is the major isoform, with a key role. The RNA-Seq screened 76 upregulated and 123 downregulated DEGs between the negative control and the QKI-5-overexpressing goat myoblasts after d 6 of differentiation. The GO and KEGG analyses associated the downregulated DEGs with muscle-related biological functions. Only the pathways related to muscle growth and development were enriched. This study provides a theoretical basis for further exploring the regulatory mechanism of QKI in skeletal-muscle development in goats.
Collapse
|
23
|
Zhu W, Yu Y, Fang K, Xiao S, Ni L, Yin C, Huang X, Wang X, Zhang Y, Le HB, Cui R. miR-31/QKI-5 axis facilitates cell cycle progression of non-small-cell lung cancer cells by interacting and regulating p21 and CDK4/6 expressions. Cancer Med 2023; 12:4590-4604. [PMID: 36172919 PMCID: PMC9972157 DOI: 10.1002/cam4.5309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 09/14/2022] [Accepted: 09/20/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND RNA-binding protein Quaking-5 (QKI-5), a major isoform of QKIs, inhibits tumor progression in non-small cell lung cancer (NSCLC). However, the underlying molecular mechanisms of QKI-5 in the cell cycle of NSCLC are still largely unknown. METHODS MTT, flow cytometry, and colony formation assays were used to investigate cellular phenotypic changes. Mice xenograft model was used to evaluate the antitumor activities of QKI-5. Co-immunoprecipitation, RNA immunoprecipitation (RIP), and RIP sequencing were used to investigate protein-protein interaction and protein-mRNA interaction. RESULTS The QKI-5 expression was downregulated in NSCLC tissues compared with that in paired normal adjacent lung tissues. Overexpression of QKI-5 inhibited NSCLC cell proliferative and colony forming ability. In addition, QKI-5 induced cell cycle arrest at G0/G1 phase through upregulating p21Waf1/Cip1 (p21) expression and downregulating cyclin D1, cyclin-dependent kinase 4 (CDK4), and CDK6 expressions. Further analyses showed that QKI-5 interacts with p21 protein and CDK4, CDK6 mRNAs, suggesting a critical function of QKI-5 in cell cycle regulation. In agreement with in vitro study, the mouse xenograft models validated tumor suppressive functions of QKI-5 in vivo through altering cell cycle G1-phase-associated proteins. Moreover, we demonstrated that QKI-5 is a direct target of miR-31. The QKI-5 expression was anticorrelated with the miR-31 expression in NSCLC patient samples. CONCLUSION Our results suggest that the miR-31/QKI-5/p21-CDK4-CDK6 axis might have critical functions in the progression of NSCLC, and targeting this axis could serve as a potential therapeutic strategy for NSCLC.
Collapse
Affiliation(s)
- Wangyu Zhu
- Cellular and Molecular Biology Laboratory, Affiliated Zhoushan Hospital of Wenzhou Medical University, Zhoushan, Zhejiang, China.,Lung Cancer Research Center, Zhoushan Hospital, Zhoushan, Zhejiang, China
| | - Yun Yu
- Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Kexin Fang
- Cellular and Molecular Biology Laboratory, Affiliated Zhoushan Hospital of Wenzhou Medical University, Zhoushan, Zhejiang, China.,Lung Cancer Research Center, Zhoushan Hospital, Zhoushan, Zhejiang, China
| | - Sisi Xiao
- Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lianli Ni
- Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Changtian Yin
- Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiangjie Huang
- Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xinchen Wang
- Cellular and Molecular Biology Laboratory, Affiliated Zhoushan Hospital of Wenzhou Medical University, Zhoushan, Zhejiang, China
| | - Yongkui Zhang
- Lung Cancer Research Center, Zhoushan Hospital, Zhoushan, Zhejiang, China.,Department of Cardio-Thoracic Surgery, Zhoushan Hospital, Zhoushan, Zhejiang, China
| | - Han-Bo Le
- Lung Cancer Research Center, Zhoushan Hospital, Zhoushan, Zhejiang, China.,Department of Cardio-Thoracic Surgery, Zhoushan Hospital, Zhoushan, Zhejiang, China
| | - Ri Cui
- Cellular and Molecular Biology Laboratory, Affiliated Zhoushan Hospital of Wenzhou Medical University, Zhoushan, Zhejiang, China.,Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
24
|
Xiao Y, Li M, Ma T, Ning H, Liu L. AMG232 inhibits angiogenesis in glioma through the p53-RBM4-VEGFR2 pathway. J Cell Sci 2023; 136:jcs260270. [PMID: 36601864 DOI: 10.1242/jcs.260270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 12/21/2022] [Indexed: 01/06/2023] Open
Abstract
AMG232 effectively inhibits cancers with wild-type p53 (also known as TP53) by reactivating p53, but whether it inhibits glioma angiogenesis remains unclear. This study confirms that AMG232 inhibits the proliferation of glioma endothelial cells (GECs) in a dose-dependent manner and inhibits the angiogenesis of GECs. p53 and RNA-binding motif protein 4 (RBM4) were expressed at low levels in GECs, while MDM2 and vascular endothelial growth factor receptor 2 (VEGFR2, also known as KDR) were highly expressed. In vitro and in vivo experiments confirmed that AMG232 upregulated p53 and RBM4, and downregulated MDM2 and VEGFR2 by blocking the MDM2-p53 interaction. Both p53 silencing and RBM4 silencing significantly upregulated the expression of VEGFR2, promoted the proliferation, migration and tube formation of GECs, and reversed the effects of AMG232 on downregulating VEGFR2 and inhibiting the angiogenesis of GECs. AMG232 increased RBM4 expression by upregulating p53, and p53 bound to RBM4 and promoted its transcription. RBM4 bound to and shortened the half-life of VEGFR2, promoting its degradation. Finally, AMG232 produced a significant decrease in new vessels and hemoglobin content in vivo. This study proves that AMG232 inhibits glioma angiogenesis by blocking the MDM2-p53 interaction, in which the p53-RBM4-VEGFR2 pathway plays an important role.
Collapse
Affiliation(s)
- Yao Xiao
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang 110122, People's Republic of China
| | - Mingliang Li
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang 110122, People's Republic of China
| | - Teng Ma
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang 110122, People's Republic of China
| | - Hao Ning
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang 110122, People's Republic of China
| | - Libo Liu
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang 110122, People's Republic of China
| |
Collapse
|
25
|
Xu J, Huang L, Bao T, Duan K, Cheng Y, Zhang H, Zhang Y, Li J, Li Q, Li F. CircCDR1as mediates PM 2.5-induced lung cancer progression by binding to SRSF1. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114367. [PMID: 36508830 DOI: 10.1016/j.ecoenv.2022.114367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 09/05/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Research indicates that particulate matter with an aerodynamic equivalent diameter of less than or equal to 2.5 µm in ambient air may induce lung cancer progression. Circular RNAs are a special kind of endogenous noncoding RNA, and their functions are reflected in various diseases and physiological processes, but there are still few studies related to PM2.5-induced lung cancer. Here, we identified that circCDR1as was upregulated in lung cancer cells stimulated with PM2.5 and positively correlated with the malignant features of lung cancer. The lower expression of CircCDR1as reduced the adverse progression of lung cancer cells after PM2.5 treatment; the lower expression of circCDR1as impaired the growth size and metastatic ability of lung cancer cells in mouse tumour models. Mechanistically, circCDR1as specifically bound to serine/arginine-rich splicing Factor 1 (SRSF1) and affected the splicing of vascular endothelial growth factor-A (VEGFA) by SRSF1. Furthermore, circCDR1as affected SRSF1 function by regulating PARK2-mediated SRSF1 ubiquitination, protein production and degradation. CircCDR1as also affected C-myc and cyclin D1 expression by regulating SRSF1 and affecting the wnt/β-catenin signalling pathway, ultimately promoting malignant behavior and inhibiting the apoptosis of lung cancer cells, thereby causing PM2.5-induced lung cancer development.
Collapse
Affiliation(s)
- Jingbin Xu
- College of Medical Laboratory, Dalian Medical University, Dalian 116044, China
| | - Lanyi Huang
- College of Medical Laboratory, Dalian Medical University, Dalian 116044, China
| | - Tuya Bao
- College of Medical Laboratory, Dalian Medical University, Dalian 116044, China
| | - Kaiqian Duan
- College of Medical Laboratory, Dalian Medical University, Dalian 116044, China
| | - Yu Cheng
- College of Medical Laboratory, Dalian Medical University, Dalian 116044, China
| | - Haimin Zhang
- College of Medical Laboratory, Dalian Medical University, Dalian 116044, China
| | - Yong Zhang
- College of Medical Laboratory, Dalian Medical University, Dalian 116044, China
| | - Jing Li
- Department of Pathology and Forensic Medicine, Dalian Medical University, Dalian 116044, Liaoning Province, China
| | - Qiujuan Li
- Department of Preventive medicine laboratory, Dalian Medical University, Dalian 116044, Liaoning Province, China
| | - Fasheng Li
- College of Medical Laboratory, Dalian Medical University, Dalian 116044, China.
| |
Collapse
|
26
|
Miao Y, Yuan Q, Wang C, Feng X, Ren J, Wang C. Comprehensive Characterization of RNA-Binding Proteins in Colon Adenocarcinoma Identifies a Novel Prognostic Signature for Predicting Clinical Outcomes and Immunotherapy Responses Based on Machine Learning. Comb Chem High Throughput Screen 2023; 26:163-182. [PMID: 35379120 DOI: 10.2174/1386207325666220404125228] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND RNA-binding proteins (RBPs) are crucial factors that function in the posttranscriptional modification process and are significant in cancer. OBJECTIVE This research aimed for a multigene signature to predict the prognosis and immunotherapy response of patients with colon adenocarcinoma (COAD) based on the expression profile of RNA-binding proteins (RBPs). METHODS COAD samples retrieved from the TCGA and GEO datasets were utilized for a training dataset and a validation dataset. Totally, 14 shared RBP genes with prognostic significance were identified. Non-negative matrix factorization clusters defined by these RBPs could stratify COAD patients into two molecular subtypes. Cox regression analysis and identification of 8-gene signature categorized COAD patients into high- and low-risk populations with significantly different prognosis and immunotherapy responses. RESULTS Our prediction signature was superior to another five well-established prediction models. A nomogram was generated to quantificationally predict the overall survival (OS) rate, validated by calibration curves. Our findings also indicated that high-risk populations possessed an enhanced immune evasion capacity and low-risk populations might benefit immunotherapy, especially for the joint combination of PD-1 and CTLA4 immunosuppressants. DHX15 and LARS2 were detected with significantly different expressions in both datasets, which were further confirmed by qRTPCR and immunohistochemical staining. CONCLUSION Our observations supported an eight-RBP-related signature that could be applied for survival prediction and immunotherapy response of patients with COAD.
Collapse
Affiliation(s)
- Ye Miao
- Department of Surgery, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
- Department of Neurosurgery, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
- Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Qihang Yuan
- Department of Surgery, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
- Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Chao Wang
- Department of Surgery, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
- Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Xiaoshi Feng
- Department of Endocrinology, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Jie Ren
- Department of Oncology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Changmiao Wang
- Department of Surgery, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
- Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|
27
|
The Role of Alternative Splicing Factors hnRNP G and Fox-2 in the Progression and Prognosis of Esophageal Cancer. DISEASE MARKERS 2022; 2022:3043737. [DOI: 10.1155/2022/3043737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 08/10/2022] [Accepted: 10/08/2022] [Indexed: 11/24/2022]
Abstract
Aim. Alternative splicing (AS) has been widely demonstrated in the occurrence and progression of many cancers. Nevertheless, the involvement of cancer-associated splicing factors in the development of esophageal carcinoma (ESCA) remains to be explored. Method. RNA-Seq data and the corresponding clinical information of the ESCA cohort were downloaded from The Cancer Genome Atlas database. Bioinformatics methods were used to further analyzed the differently expressed AS (DEAS) events and their splicing network. Kaplan–Meier, Cox regression, and unsupervised cluster analyses were used to assess the association between AS events and clinical characteristics of ESCA patients. The splicing factors screened out were verified in vitro at the cellular level. Results. A total of 50,342 AS events were identified, of which 3,988 were DEAS events and 46 of these were associated with overall survival (OS) of ESCA patients, with a 5-year OS rate of 0.941. By constructing a network of AS events with survival-related splicing factors, the AS factors related to prognosis can be further identified. In vitro experiments and database analysis confirmed that the high expression of hnRNP G in ESCA is related to the high invasion ability of ESCA cells and the poor prognosis of ESCA patients. In contrast, the low expression of fox-2 in esophageal cancer is related to a better prognosis. Conclusion. ESCA-associated AS factors hnRNP G and Fox-2 are of great value in deciphering the underlying mechanisms of AS in ESCA and providing clues for therapeutic goals for further validation.
Collapse
|
28
|
Fisher E, Feng J. RNA splicing regulators play critical roles in neurogenesis. WILEY INTERDISCIPLINARY REVIEWS. RNA 2022; 13:e1728. [PMID: 35388651 DOI: 10.1002/wrna.1728] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/07/2022] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
Alternative RNA splicing increases transcript diversity in different cell types and under varying conditions. It is executed with the help of RNA splicing regulators (RSRs), which are operationally defined as RNA-binding proteins (RBPs) that regulate alternative splicing, but not directly catalyzing the chemical reactions of splicing. By systematically searching for RBPs and manually identifying those that regulate splicing, we curated 305 RSRs in the human genome. Surprisingly, most of the RSRs are involved in neurogenesis. Among these RSRs, we focus on nine families (PTBP, NOVA, RBFOX, ELAVL, CELF, DBHS, MSI, PCBP, and MBNL) that play essential roles in the neurogenic pathway. A better understanding of their functions will provide novel insights into the role of splicing in brain development, health, and disease. This comprehensive review serves as a stepping-stone to explore the diverse and complex set of RSRs as fundamental regulators of neural development. This article is categorized under: RNA-Based Catalysis > RNA Catalysis in Splicing and Translation RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications RNA Processing > Splicing Regulation/Alternative Splicing.
Collapse
Affiliation(s)
- Emily Fisher
- Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, New York, USA
- Veterans Affairs Western New York Healthcare System, Buffalo, New York, USA
| | - Jian Feng
- Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, New York, USA
- Veterans Affairs Western New York Healthcare System, Buffalo, New York, USA
| |
Collapse
|
29
|
Ghatak S, Hascall VC, Karamanos N, Markwald RR, Misra S. Chemotherapy induces feedback up-regulation of CD44v6 in colorectal cancer initiating cells through β-catenin/MDR1 signaling to sustain chemoresistance. Front Oncol 2022; 12:906260. [PMID: 36330477 PMCID: PMC9623568 DOI: 10.3389/fonc.2022.906260] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 08/15/2022] [Indexed: 08/05/2023] Open
Abstract
Chemoresistance in colorectal cancer initiating cells (CICs) involves the sustained activation of multiple drug resistance (MDR) and WNT/β-catenin signaling pathways, as well as of alternatively spliced-isoforms of CD44 containing variable exon-6 (CD44v6). In spite of its importance, mechanisms underlying the sustained activity of WNT/β-catenin signaling have remained elusive. The presence of binding elements of the β-catenin-interacting transcription factor TCF4 in the MDR1 and CD44 promoters suggests that crosstalk between WNT/β-catenin/TCF4-activation and the expression of the CD44v6 isoform mediated by FOLFOX, a first-line chemotherapeutic agent for colorectal cancer, could be a fundamental mechanism of FOLFOX resistance. Our results identify that FOLFOX treatment induced WNT3A secretion, which stimulated a positive feedback loop coupling β-catenin signaling and CD44v6 splicing. In conjunction with FOLFOX induced WNT3A signal, specific CD44v6 variants produced by alternative splicing subsequently enhance the late wave of WNT/β-catenin activation to facilitate cell cycle progression. Moreover, we revealed that FOLFOX-mediated sustained WNT signal requires the formation of a CD44v6-LRP6-signalosome in caveolin microdomains, which leads to increased FOLFOX efflux. FOLFOX-resistance in colorectal CICs occurs in the absence of tumor-suppressor disabled-2 (DAB2), an inhibitor of WNT/β-catenin signaling. Conversely, in sensitive cells, DAB2 inhibition of WNT-signaling requires interaction with a clathrin containing CD44v6-LRP6-signalosome. Furthermore, full-length CD44v6, once internalized through the caveolin-signalosome, is translocated to the nucleus where in complex with TCF4, it binds to β-catenin/TCF4-regulated MDR1, or to CD44 promoters, which leads to FOLFOX-resistance and CD44v6 transcription through transcriptional-reprogramming. These findings provide evidence that targeting CD44v6-mediated LRP6/β-catenin-signaling and drug efflux may represent a novel approach to overcome FOLFOX resistance and inhibit tumor progression in colorectal CICs. Thus, sustained drug resistance in colorectal CICs is mediated by overexpression of CD44v6, which is both a functional biomarker and a therapeutic target in colorectal cancer.
Collapse
Affiliation(s)
- Shibnath Ghatak
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, United States
- Department Natural Sciences, Trident Technical College, North Charleston, SC, United States
| | - Vincent C. Hascall
- Department of Biomedical Engineering/ND20, Cleveland Clinic, Cleveland, OH, United States
| | - Nikos Karamanos
- University of Patras, Matrix Pathobiology Res. Group, Department of Chemistry, Patras, Greece
| | - Roger R. Markwald
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, United States
| | - Suniti Misra
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, United States
- Department Natural Sciences, Trident Technical College, North Charleston, SC, United States
| |
Collapse
|
30
|
Shen Z, Shao YL, Liu W, Zhang Q, Yuan L. Prediction of Back-splicing sites for CircRNA formation based on convolutional neural networks. BMC Genomics 2022; 23:581. [PMID: 35962324 PMCID: PMC9373444 DOI: 10.1186/s12864-022-08820-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/03/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Circular RNAs (CircRNAs) play critical roles in gene expression regulation and disease development. Understanding the regulation mechanism of CircRNAs formation can help reveal the role of CircRNAs in various biological processes mentioned above. Back-splicing is important for CircRNAs formation. Back-splicing sites prediction helps uncover the mysteries of CircRNAs formation. Several methods were proposed for back-splicing sites prediction or circRNA-realted prediction tasks. Model performance was constrained by poor feature learning and using ability. RESULTS In this study, CircCNN was proposed to predict pre-mRNA back-splicing sites. Convolution neural network and batch normalization are the main parts of CircCNN. Experimental results on three datasets show that CircCNN outperforms other baseline models. Moreover, PPM (Position Probability Matrix) features extract by CircCNN were converted as motifs. Further analysis reveals that some of motifs found by CircCNN match known motifs involved in gene expression regulation, the distribution of motif and special short sequence is important for pre-mRNA back-splicing. CONCLUSIONS In general, the findings in this study provide a new direction for exploring CircRNA-related gene expression regulatory mechanism and identifying potential targets for complex malignant diseases. The datasets and source code of this study are freely available at: https://github.com/szhh521/CircCNN .
Collapse
Affiliation(s)
- Zhen Shen
- School of Computer and Software, Nanyang Institute of Technology, Changjiang Road 80, Nanyang, 473004, Henan, China
| | - Yan Ling Shao
- School of Computer and Software, Nanyang Institute of Technology, Changjiang Road 80, Nanyang, 473004, Henan, China
| | - Wei Liu
- School of Computer and Software, Nanyang Institute of Technology, Changjiang Road 80, Nanyang, 473004, Henan, China
| | - Qinhu Zhang
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Siping Road 1239, Shanghai, 200092, China
- Institute of Machine Learning and Systems Biology, School of Electronics and Information Engineering, Tongji University, Caoan Road 4800, Shanghai, 201804, China
| | - Lin Yuan
- School of Computer Science and Technology, Qilu University of Technology (Shandong Academy of Sciences), Daxue Road 3501, Jinan, 250353, Shandong, China.
| |
Collapse
|
31
|
Tumor Cells-derived exosomal CircRNAs: Novel cancer drivers, molecular mechanisms, and clinical opportunities. Biochem Pharmacol 2022; 200:115038. [DOI: 10.1016/j.bcp.2022.115038] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/01/2022] [Accepted: 04/06/2022] [Indexed: 12/12/2022]
|
32
|
Zhao Y, Sun H, Zhao Y, Liu Q, Liu Y, Hou Y, Jin W. NSrp70 suppresses metastasis in triple-negative breast cancer by modulating Numb/TβR1/EMT axis. Oncogene 2022; 41:3409-3422. [PMID: 35568738 DOI: 10.1038/s41388-022-02349-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 04/12/2022] [Accepted: 05/06/2022] [Indexed: 11/09/2022]
Abstract
Alternative splicing of mRNA precursors allows cancer cells to create different protein isoforms that promote growth and survival. Compared to normal cells, cancer cells frequently exhibit a higher diversity of their transcriptomes. A comprehensive understanding of splicing regulation is required to correct the splicing alterations for the future precision oncology. A quantitative proteomic screen was performed to identify the regulators associated the metastasis in triple-negative breast cancer. Multiple in vitro and in vivo functional analyses were used to study the effects of NSrp70 on breast cancer metastasis. Next, transcriptomic sequencing (RNA-seq) and alternative splicing bioinformatics analysis was applied to screen the potential targets of NSrp70. Moreover, in vitro splicing assays, RNA pull-down, and RNA immunoprecipitation assay were used to confirm the specific binding between NSrp70 and downstream target genes. Furthermore, the prognostic value of NSrp70 was analyzed in a cohort of patients by performing IHC. We uncovered NSrp70 as a novel suppressor of breast cancer metastasis. We discovered that NSrp70 inhibited the skipped exon alternative splicing of NUMB, promoted the degradation of transforming growth factor receptor 1 through lysosome pathway, and regulated TGFβ/SMAD-mediated epithelial-mesenchymal transition phenotype in breast cancer cells. Furthermore, high NSrp70 expression correlated with a better prognosis in breast cancer patients. Our findings revealed that splicing regulator NSrp70 serves as a metastasis suppressor.
Collapse
Affiliation(s)
- Yang Zhao
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Hefen Sun
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Yuanyuan Zhao
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Qiqi Liu
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yang Liu
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Yifeng Hou
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Wei Jin
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
33
|
Fu Y, Sun S, Bi J, Kong C, Shi D. An RNA-binding protein-related risk signature can predict the prognosis and tumor immunity of patients with testicular germ cell tumors. Am J Transl Res 2022; 14:2825-2843. [PMID: 35702133 PMCID: PMC9185064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 03/31/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The functions of RNA-binding proteins (RBPs) in the occurrence and development of tumors remain largely unexplored. We established a risk signature based on RBPs to predict the prognosis, tumor-related immunity, and treatment benefits of patients with testicular germ cell tumors (TGCTs). METHODS A risk signature was built based on RBPs closely related to survival obtained from TGCT data in The Cancer Genome Atlas (TCGA) database. The ability of the signature to predict prognosis was analyzed by survival curves and Cox regression. The risk signature was validated using the Gene Expression Omnibus (GEO) database. The connection between tumor immunity and the risk score was evaluated. Risk score-related drug sensitivity and biofunctions were also explored. RESULTS A risk signature including four selected RBP genes (PARP12, USB1, POLR2E and EED) was established. The prognosis of high-risk TGCT patients was worse than that of low-risk TGCT patients. The risk score was considered a critical factor closely related to prognosis, as determined via Cox regression, and was also closely associated with multiple characteristics of tumor immunity, chemotherapy drugs and biofunctions. CONCLUSION The established risk signature including four selected RBPs in TGCTs could predict the prognosis, tumor-related immunity and treatment benefits of patients with TGCTs. Utilization of this signature could help clinicians make personalized treatment decisions.
Collapse
Affiliation(s)
- Yang Fu
- Department of Urology, The First Hospital of China Medical UniversityShenyang 110001, Liaoning, China
| | - Shanshan Sun
- Department of Pharmacy, People’s Hospital Affiliated of China Medical UniversityShenyang 110015, Liaoning, China
| | - Jianbin Bi
- Department of Urology, The First Hospital of China Medical UniversityShenyang 110001, Liaoning, China
| | - Chuize Kong
- Department of Urology, The First Hospital of China Medical UniversityShenyang 110001, Liaoning, China
| | - Du Shi
- Department of Urology, The First Hospital of China Medical UniversityShenyang 110001, Liaoning, China
| |
Collapse
|
34
|
Huang R, Yang Z, Liu Q, Liu B, Ding X, Wang Z. CircRNA DDX21 acts as a prognostic factor and sponge of miR-1264/QKI axis to weaken the progression of triple-negative breast cancer. Clin Transl Med 2022; 12:e768. [PMID: 35522944 PMCID: PMC9076009 DOI: 10.1002/ctm2.768] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 02/24/2022] [Accepted: 03/02/2022] [Indexed: 01/09/2023] Open
Affiliation(s)
- Renhong Huang
- Department of General SurgeryComprehensive Breast Health CenterRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Zhou Yang
- Department of General SurgeryShanghai Pudong HospitalFudan University Pudong Medical CenterShanghaiChina
| | - Qian Liu
- Department of Pathologythe Affiliated Suzhou Hospital of Nanjing Medical UniversitySuzhouChina
| | - Biao Liu
- Department of Pathologythe Affiliated Suzhou Hospital of Nanjing Medical UniversitySuzhouChina
| | - Xinyuan Ding
- Department of Pharmacythe Affiliated Suzhou Hospital of Nanjing Medical UniversitySuzhouChina
| | - Zheng Wang
- Department of General SurgeryComprehensive Breast Health CenterRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
35
|
Zhou HZ, Li F, Cheng ST, Xu Y, Deng HJ, Gu DY, Wang J, Chen WX, Zhou YJ, Yang ML, Ren JH, Zheng L, Huang AL, Chen J. DDX17-regulated alternative splicing that produced an oncogenic isoform of PXN-AS1 to promote HCC metastasis. Hepatology 2022; 75:847-865. [PMID: 34626132 PMCID: PMC9304246 DOI: 10.1002/hep.32195] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 09/09/2021] [Accepted: 10/01/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND AIMS The mechanism underlying HCC metastasis remains unclear, many oncogenes are known to regulate this process. However, the role of alternative splicing (AS) in pro-metastatic HCC is poorly understood. APPROACH AND RESULTS By performing RNA sequencing on nine pairs of primary HCC tissues with extrahepatic metastasis (EHMH) and nine pairs of metastasis-free HCC (MFH) tissues, we depicted the AS landscape in HCC and found a higher frequency of AS events in EHMH compared with MFH. Moreover, 28 differentially expressed splicing regulators were identified in EHMH compared with MFH. Among these, DEAD-box RNA helicase 17 (DDX17) was significantly up-regulated in EHMH and was strongly associated with patient outcome. Functional studies indicated that DDX17 knockout inhibited the degradation of the extracellular matrix, and diminished the invasive ability of HCC cells. A significant reduction in lung metastasis induced by DDX17 deficiency was also demonstrated in a diethylnitrosamine-induced DDX17HKO mouse model. Mechanistically, high DDX17 induced intron 3 retention of PXN-AS1 and produced a transcript (termed PXN-AS1-IR3). The transcript PXN-AS1-IR3 acted as an important promoter of HCC metastasis by inducing MYC transcription activation via recruiting the complex of testis expressed 10 and p300 to the MYC enhancer region, which led to transcriptional activation of several metastasis-associated downstream genes. Finally, the PXN-AS1-IR3 level was significantly higher in serum and HCC tissues with extrahepatic metastasis. CONCLUSIONS DDX17 and PXN-AS1-IR3 act as important metastatic promoters by modulating MYC signaling, suggesting that DDX17 and PXN-AS1-IR3 may be potential prognostic markers for metastatic HCC.
Collapse
Affiliation(s)
- Hong-Zhong Zhou
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of EducationChongqing Medical UniversityChongqingChina.,Department of Clinical LaboratoryInstitute of Translational MedicineThe First Affiliated Hospital of Shenzhen University, Shenzhen Second People's HospitalShenzhenChina
| | - Fan Li
- Department of Endocrine and Breast SurgeryThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Sheng-Tao Cheng
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of EducationChongqing Medical UniversityChongqingChina
| | - Yong Xu
- Department of Clinical LaboratoryInstitute of Translational MedicineThe First Affiliated Hospital of Shenzhen University, Shenzhen Second People's HospitalShenzhenChina
| | - Hai-Jun Deng
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of EducationChongqing Medical UniversityChongqingChina
| | - Da-Yong Gu
- Department of Clinical LaboratoryInstitute of Translational MedicineThe First Affiliated Hospital of Shenzhen University, Shenzhen Second People's HospitalShenzhenChina
| | - Jin Wang
- Department of Clinical LaboratoryInstitute of Translational MedicineThe First Affiliated Hospital of Shenzhen University, Shenzhen Second People's HospitalShenzhenChina
| | - Wei-Xian Chen
- Department of Clinical LaboratoryThe Second Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Yu-Jiao Zhou
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of EducationChongqing Medical UniversityChongqingChina
| | - Min-Li Yang
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of EducationChongqing Medical UniversityChongqingChina
| | - Ji-Hua Ren
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of EducationChongqing Medical UniversityChongqingChina
| | - Lu Zheng
- Department of Hepatobiliary Surgerythe Second Affiliated Hospital of Army Medical UniversityChongqingChina
| | - Ai-Long Huang
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of EducationChongqing Medical UniversityChongqingChina
| | - Juan Chen
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of EducationChongqing Medical UniversityChongqingChina
| |
Collapse
|
36
|
Zhang Y, Dho SE, Othman K, Simpson CD, Lapierre J, Bondoc A, McGlade CJ. Numb exon 9 inclusion regulates Integrinβ5 surface expression and promotes breast cancer metastasis. Oncogene 2022; 41:2079-2094. [PMID: 35181737 DOI: 10.1038/s41388-022-02225-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 01/14/2022] [Accepted: 02/01/2022] [Indexed: 01/07/2023]
Abstract
The endocytic adaptor protein Numb acts as a tumor suppressor through downregulation of oncogenic pathways in multiple cancer types. The identification of splicing alterations giving rise to changes in Numb protein isoform expression indicate that Numb also has tumor promoting activity, though the underlying mechanisms are unknown. Here we report that NUMB exon 9 inclusion, which results in production of a protein isoform with an additional 49 amino acids, is a feature of multiple cancer types including all subtypes of breast cancer and correlates with worse progression-free survival. Specific deletion of exon 9-included Numb isoforms (Exon9in) from breast cancer cells reduced cell growth and prevents spontaneous lung metastasis in a mouse model. Quantitative proteome profiling showed that loss of Exon9in causes downregulation of membrane receptors and adhesion molecules, as well as proteins involved in extracellular matrix organization and the epithelial-mesenchymal transition (EMT) state. In addition, exon 9 deletion caused remodeling of the endocytic network, decreased ITGβ5 surface localization, cell spreading on vitronectin and downstream signaling to ERK and SRC. Together these observations suggest that Exon9in isoform expression disrupts the endocytic trafficking functions of Numb, resulting in increased surface expression of ITGβ5 as well as other plasma membrane proteins to promote cell adhesion, EMT, and tumor metastasis.
Collapse
Affiliation(s)
- Yangjing Zhang
- Department of Medical Biophysics, University of Toronto, 610 University Avenue, Toronto, ON, M5G 2M9, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, 555 University Avenue, Toronto, ON, M5G 1X8, Canada
| | - Sascha E Dho
- The Arthur and Sonia Labatt Brain Tumour Research Centre, 555 University Avenue, Toronto, ON, M5G 1X8, Canada
- Program in Cell Biology, 555 University Avenue, Toronto, ON, M5G 1X8, Canada
| | - Kamal Othman
- Department of Medical Biophysics, University of Toronto, 610 University Avenue, Toronto, ON, M5G 2M9, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, 555 University Avenue, Toronto, ON, M5G 1X8, Canada
| | - Craig D Simpson
- SPARC BioCentre, The Hospital for Sick Children, 555 University Avenue, Toronto, ON, M5G 1X8, Canada
| | - Jessica Lapierre
- The Arthur and Sonia Labatt Brain Tumour Research Centre, 555 University Avenue, Toronto, ON, M5G 1X8, Canada
- Program in Cell Biology, 555 University Avenue, Toronto, ON, M5G 1X8, Canada
| | - Andrew Bondoc
- The Arthur and Sonia Labatt Brain Tumour Research Centre, 555 University Avenue, Toronto, ON, M5G 1X8, Canada
- Program in Cell Biology, 555 University Avenue, Toronto, ON, M5G 1X8, Canada
| | - C Jane McGlade
- Department of Medical Biophysics, University of Toronto, 610 University Avenue, Toronto, ON, M5G 2M9, Canada.
- The Arthur and Sonia Labatt Brain Tumour Research Centre, 555 University Avenue, Toronto, ON, M5G 1X8, Canada.
- Program in Cell Biology, 555 University Avenue, Toronto, ON, M5G 1X8, Canada.
| |
Collapse
|
37
|
Chen L, Tang J, Sheng W, Sun J, Ma Y, Dong M. ATP11A promotes EMT by regulating Numb PRR L in pancreatic cancer cells. PeerJ 2022; 10:e13172. [PMID: 35345586 PMCID: PMC8957272 DOI: 10.7717/peerj.13172] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 03/06/2022] [Indexed: 01/12/2023] Open
Abstract
Purpose The Numb protein plays a vital role in tumor development. The main aim of this study was to identify ATP11A, which is associated with the biological behavior of pancreatic cancer, and elucidate its relationship with Numb and the underlying mechanism behind this relationship. Methods First, data retrieved from The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEX) databases was used to investigate the expression of ATP11A mRNA and its relationship with Numb mRNA in pancreatic cancer. Western blot assays on 31 pairs of pancreatic cancer tissues and paracancerous tissues, and immunohistochemical assays on 81 pancreatic cancer specimens were performed in order to verify the expression of ATP11A in pancreatic cancer at the protein level. Next, ATP11A was overexpressed or knocked down to observe its effects on the invasion and migration ability of pancreatic cancer cells and the changes of downstream proteins. Rescue assays were conducted to determine the mechanism through which ATP11A affects Numb, ZEB1, Snail2 and other proteins. Furthermore, immunoprecipitation assays were performed to explore the interaction between ATP11A and Numb. Finally, pancreatic cancer cells were stimulated with TGFB1 and ATP11A expression was examined to explore whether the effect of ATP11A on EMT was TGFB dependent. Results At the mRNA level, the expression of ATP11A in pancreatic cancer tissues was significantly higher than in normal pancreatic tissues (P < 0.001). ATP11A expression was also highly correlated with Numb expression (R = 0.676). At the protein level, ATP11A expression in pancreatic cancer tissues was significantly higher than that in paracancerous tissues (P = 0.0009), and high ATP11A expression was also correlated with a worse prognosis. Moreover, our results showed that ATP11A can promote the invasion and migration of pancreatic cancer cells. Additionally, ATP11A could positively regulate the expression of Numb PRRL, Snail2 and ZEB1 proteins. The rescue experiment results showed that the enhancement effect of ATP11A on ZEB1/Snail2 was suppressed by the specific knockdown of Numb PRRL. In addition, the immunoprecipitation results showed that ATP11A could specifically bind to Numb PRRL. The expression of ATP11A was also upregulated after TGFB stimulation, suggesting that the effect of ATP11A on EMT is TGFB dependent. Conclusion ATP11A is significantly upregulated in pancreatic cancer tissues, where it promotes the invasion and migration ability of pancreatic cancer cells. It is also associated with adverse prognosis in pancreatic cancer. Furthermore, ATP11A affects the epithelial-to-mesenchymal transition (EMT) of pancreatic cancer by regulating the TGFB dependent Numb PRRL-ZEB1/Snail2 pathway.
Collapse
Affiliation(s)
- Lin Chen
- Department of Gastrointestinal Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Jingtong Tang
- Department of Gastrointestinal Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Weiwei Sheng
- Department of Gastrointestinal Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Jian Sun
- Department of Gastrointestinal Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Yuteng Ma
- Department of Gastrointestinal Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Ming Dong
- Department of Gastrointestinal Surgery, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
38
|
Khaleel A, Alkhawaja B, Al-Qaisi TS, Alshalabi L, Tarkhan AH. Pathway analysis of smoking-induced changes in buccal mucosal gene expression. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2022; 23:69. [PMID: 37521848 PMCID: PMC8929449 DOI: 10.1186/s43042-022-00268-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 02/16/2022] [Indexed: 11/10/2022] Open
Abstract
Background Cigarette smoking is the leading preventable cause of death worldwide, and it is the most common cause of oral cancers. This study aims to provide a deeper understanding of the molecular pathways in the oral cavity that are altered by exposure to cigarette smoke. Methods The gene expression dataset (accession number GSE8987, GPL96) of buccal mucosa samples from smokers (n = 5) and never smokers (n = 5) was downloaded from The National Center for Biotechnology Information's (NCBI) Gene Expression Omnibus (GEO) repository. Differential expression was ascertained via NCBI's GEO2R software, and Ingenuity Pathway Analysis (IPA) software was used to perform a pathway analysis. Results A total of 459 genes were found to be significantly differentially expressed in smoker buccal mucosa (p < 0.05). A total of 261 genes were over-expressed while 198 genes were under-expressed. The top canonical pathways predicted by IPA were nitric oxide and reactive oxygen production at macrophages, macrophages/fibroblasts and endothelial cells in rheumatoid arthritis, and thyroid cancer pathways. The IPA upstream analysis predicted that the TP53, APP, SMAD3, and TNF proteins as well as dexamethasone drug would be top transcriptional regulators. Conclusions IPA highlighted critical pathways of carcinogenesis, mainly nitric oxide and reactive oxygen production at macrophages, and confirmed widespread injury in the buccal mucosa due to exposure to cigarette smoke. Our findings suggest that cigarette smoking significantly impacts gene pathways in the buccal mucosa and may highlight potential targets for treating the effects of cigarette smoking. Supplementary Information The online version contains supplementary material available at 10.1186/s43042-022-00268-y.
Collapse
Affiliation(s)
- Anas Khaleel
- Department of Pharmacology and Biomedical Sciences, Faculty of Pharmacy and Medical Sciences, University of Petra, Amman, Jordan
| | - Bayan Alkhawaja
- Department of Pharmaceutical Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy and Medical Sciences, University of Petra, Amman, Jordan
| | - Talal Salem Al-Qaisi
- Department of Medical Laboratory Sciences, Pharmacological and Diagnostic Research Centre, Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, Amman, Jordan
| | - Lubna Alshalabi
- Department of Pharmaceutical Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy and Medical Sciences, University of Petra, Amman, Jordan
| | | |
Collapse
|
39
|
Comprehensive characterization of the alternative splicing landscape in ovarian cancer reveals novel events associated with tumor-immune microenvironment. Biosci Rep 2022; 42:230626. [PMID: 35137909 PMCID: PMC8829021 DOI: 10.1042/bsr20212090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 12/09/2021] [Accepted: 01/07/2022] [Indexed: 11/17/2022] Open
Abstract
Background: Ovarian cancer (OV) is a serious threat to women’s health. Immunotherapy is a new approach. Alternative splicing (AS) of messenger RNA (mRNA) and its regulation are highly relevant for understanding every cancer hallmark and may offer a broadened target space. Methods: We downloaded the clinical information and mRNA expression profiles of 587 tumor tissues from The Cancer Genome Atlas (TCGA) database. We constructed a risk score model to predict the prognosis of OV patients. The association between AS-based clusters and tumor-immune microenvironment features was further explored. The ESTIMATE algorithm was also carried out on each OV sample depending on the risk score groups. A total of three immune checkpoint genes that have a significant correlation with risk scores were screened. Results: The AS-events were a reliable and stable independent risk predictor in the OV cohort. Patients in the high-risk score group had a poor prognosis (P<0.001). Mast cells activated, NK cells resting, and Neutrophils positively correlated with the risk score. The number of Macrophages M1 was also more numerous in the low-risk score group (P<0.05). Checkpoint genes CD274, CTLA-4, and PDCD1LG2, showed a negative correlation with the risk score of AS in OV. Conclusions: The proposed AS signature is a promising biomarker for estimating overall survival (OS) in OV. The AS-events signature combined with tumor-immune microenvironment enabled a deeper understanding of the immune status of OV patients, and also provided new insights for exploring novel prognostic predictors and precise therapy methods.
Collapse
|
40
|
Gallego-Paez LM, Mauer J. DJExpress: An Integrated Application for Differential Splicing Analysis and Visualization. FRONTIERS IN BIOINFORMATICS 2022; 2:786898. [PMID: 36304260 PMCID: PMC9580925 DOI: 10.3389/fbinf.2022.786898] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 02/08/2022] [Indexed: 12/22/2022] Open
Abstract
RNA-seq analysis of alternative pre-mRNA splicing has facilitated an unprecedented understanding of transcriptome complexity in health and disease. However, despite the availability of countless bioinformatic pipelines for transcriptome-wide splicing analysis, the use of these tools is often limited to expert bioinformaticians. The need for high computational power, combined with computational outputs that are complicated to visualize and interpret present obstacles to the broader research community. Here we introduce DJExpress, an R package for differential expression analysis of transcriptomic features and expression-trait associations. To determine gene-level differential junction usage as well as associations between junction expression and molecular/clinical features, DJExpress uses raw splice junction counts as input data. Importantly, DJExpress runs on an average laptop computer and provides a set of interactive and intuitive visualization formats. In contrast to most existing pipelines, DJExpress can handle both annotated and de novo identified splice junctions, thereby allowing the quantification of novel splice events. Moreover, DJExpress offers a web-compatible graphical interface allowing the analysis of user-provided data as well as the visualization of splice events within our custom database of differential junction expression in cancer (DJEC DB). DJEC DB includes not only healthy and tumor tissue junction expression data from TCGA and GTEx repositories but also cancer cell line data from the DepMap project. The integration of DepMap functional genomics data sets allows association of junction expression with molecular features such as gene dependencies and drug response profiles. This facilitates identification of cancer cell models for specific splicing alterations that can then be used for functional characterization in the lab. Thus, DJExpress represents a powerful and user-friendly tool for exploration of alternative splicing alterations in RNA-seq data, including multi-level data integration of alternative splicing signatures in healthy tissue, tumors and cancer cell lines.
Collapse
Affiliation(s)
| | - Jan Mauer
- *Correspondence: Lina Marcela Gallego-Paez, ; Jan Mauer,
| |
Collapse
|
41
|
Sheng W, Tang J, Cao R, Shi X, Ma Y, Dong M. Numb-PRRL promotes TGF-β1- and EGF-induced epithelial-to-mesenchymal transition in pancreatic cancer. Cell Death Dis 2022; 13:173. [PMID: 35197444 PMCID: PMC8866481 DOI: 10.1038/s41419-022-04609-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 01/18/2022] [Accepted: 02/01/2022] [Indexed: 01/10/2023]
Abstract
Isoform-specific functions of Numb in the development of cancers, especially in the initiation of epithelial-to-mesenchymal transition (EMT) remains controversial. We study the specific function of Numb-PRRL isoform in activated EMT of pancreatic ductal adenocarcinoma (PC), which is distinguished from our previous studies that only focused on the total Numb protein. Numb-PRRL isoform was specifically overexpressed and silenced in PC cells combining with TGF-β1 and EGF stimulus. We systematically explored the potential effect of Numb-PRRL in the activated EMT of PC in vitro and in vivo. The total Numb protein was overexpressed in the normal pancreatic duct and well-differentiated PC by IHC. However, Numb-PRRS isoform but not Numb-PRRL showed dominant expression in PC tissues. Numb-PRRL overexpression promoted TGF-β1-induced EMT in PANC-1 and Miapaca-2 cells. TGF-β1-induced EMT-like cell morphology, cell invasion, and migration were enhanced in Numb-PRRL overexpressing groups following the increase of N-cadherin, Vimentin, Smad2/3, Snail1, Snail2, and cleaved-Notch1 and the decrease of E-cadherin. Numb-PRRL overexpression activated TGFβ1-Smad2/3-Snail1 signaling was significantly reversed by the Notch1 inhibitor RO4929097. Conversely, Numb-PRRL silencing inhibited EGF-induced EMT in AsPC-1 and BxPC-3 cells following the activation of EGFR-ERK/MAPK signaling via phosphorylating EGFR at tyrosine 1045. In vivo, Numb-PRRL overexpression or silencing promoted or inhibited subcutaneous tumor size and distant liver metastases via regulating EMT and Snail signaling, respectively. Numb-PRRL promotes TGF-β1- and EGF-induced EMT in PC by regulating TGF-β1-Smad2/3-Snail and EGF-induced EGFR-ERK/MAPK signaling.
Collapse
Affiliation(s)
- Weiwei Sheng
- Department of Gastrointestinal Surgery, The First Hospital, China Medical University, 110001, Shenyang, Liaoning, China
| | - Jingtong Tang
- Department of Gastrointestinal Surgery, The First Hospital, China Medical University, 110001, Shenyang, Liaoning, China
| | - Rongxian Cao
- Department of Gastrointestinal Surgery, The First Hospital, China Medical University, 110001, Shenyang, Liaoning, China
| | - Xiaoyang Shi
- Department of Hernia and Abdominal Wall Surgery, Chaoyang Hospital, 100043, Beijing, China
| | - Yuteng Ma
- Department of Gastrointestinal Surgery, The First Hospital, China Medical University, 110001, Shenyang, Liaoning, China
| | - Ming Dong
- Department of Gastrointestinal Surgery, The First Hospital, China Medical University, 110001, Shenyang, Liaoning, China.
| |
Collapse
|
42
|
Dominici C, Richard S. Muscle stem cell polarity requires QKI-mediated alternative splicing of Integrin Alpha-7 (Itga7). Life Sci Alliance 2022; 5:5/5/e202101192. [PMID: 35165120 PMCID: PMC8860092 DOI: 10.26508/lsa.202101192] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 12/30/2022] Open
Abstract
The RNA-binding protein Quaking (QKI) is a post-transcriptional regulator of genes encoding polarity proteins in muscle stem cells. Loss of QKI in MuSCs results in reduced myogenic progenitors and a striking muscle regeneration defect. Muscle stem cells (MuSCs) have the ability to carry out the specialized function of cell polarization, which is required for the production of one repopulating cell and one myogenic progenitor cell with muscle regeneration capabilities. The mechanisms which regulate proteins involved in establishing MuSC polarity such as Dmd and Itga7 are currently not well understood. Herein, we define the RNA-binding protein Quaking (QKI) as a major regulator alternative splicing of key MuSC polarity factors including Dmd, Itga7, Mark2, and Numb. We generate a conditional QKI knockout mouse, and for the first time it is shown in vivo that deficiency of QKI in MuSCs results in reduced asymmetric cell divisions, leading to a loss of the myogenic progenitor cell population and striking muscle regeneration defects. Transcriptomic analysis of QKI-deficient MuSCs identifies QKI as a regulator of the splicing events which give rise to the mutually exclusive Itga7-X1 and -X2 isoforms. We observe increased X1 expression in QKI-deficient MuSCs and recapitulate this splicing event using antisense oligonucleotide directed against a quaking binding site within the Itga7 mRNA. Interestingly, recreating this single splicing event is detrimental to the polarization of Itga7 and Dmd proteins, and leads to a drastic reduction of the myogenic progenitor population, highlighting the significance of QKI-mediated alternative splicing of Itga7 in maintaining MuSC polarity. Altogether, these findings define a novel role for QKI as a post-transcriptional regulator of MuSC polarity.
Collapse
Affiliation(s)
- Claudia Dominici
- Segal Cancer Center, Lady Davis Institute for Medical Research and Gerald Bronfman Department of Oncology and Departments of Medicine, Human Genetics and Biochemistry, McGill University, Montréal, Québec, Canada
| | - Stéphane Richard
- Segal Cancer Center, Lady Davis Institute for Medical Research and Gerald Bronfman Department of Oncology and Departments of Medicine, Human Genetics and Biochemistry, McGill University, Montréal, Québec, Canada
| |
Collapse
|
43
|
Martinez NM, Su A, Burns MC, Nussbacher JK, Schaening C, Sathe S, Yeo GW, Gilbert WV. Pseudouridine synthases modify human pre-mRNA co-transcriptionally and affect pre-mRNA processing. Mol Cell 2022; 82:645-659.e9. [PMID: 35051350 PMCID: PMC8859966 DOI: 10.1016/j.molcel.2021.12.023] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/04/2021] [Accepted: 12/17/2021] [Indexed: 02/05/2023]
Abstract
Pseudouridine is a modified nucleotide that is prevalent in human mRNAs and is dynamically regulated. Here, we investigate when in their life cycle mRNAs become pseudouridylated to illuminate the potential regulatory functions of endogenous mRNA pseudouridylation. Using single-nucleotide resolution pseudouridine profiling on chromatin-associated RNA from human cells, we identified pseudouridines in nascent pre-mRNA at locations associated with alternatively spliced regions, enriched near splice sites, and overlapping hundreds of binding sites for RNA-binding proteins. In vitro splicing assays establish a direct effect of individual endogenous pre-mRNA pseudouridines on splicing efficiency. We validate hundreds of pre-mRNA sites as direct targets of distinct pseudouridine synthases and show that PUS1, PUS7, and RPUSD4-three pre-mRNA-modifying pseudouridine synthases with tissue-specific expression-control widespread changes in alternative pre-mRNA splicing and 3' end processing. Our results establish a vast potential for cotranscriptional pre-mRNA pseudouridylation to regulate human gene expression via alternative pre-mRNA processing.
Collapse
Affiliation(s)
- Nicole M Martinez
- Yale School of Medicine, Department of Molecular Biophysics & Biochemistry, New Haven, CT 06520, USA
| | - Amanda Su
- Yale School of Medicine, Department of Molecular Biophysics & Biochemistry, New Haven, CT 06520, USA
| | - Margaret C Burns
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92037, USA; Stem Cell Program, University of California, San Diego, La Jolla, CA 92037, USA; Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA 92037, USA
| | - Julia K Nussbacher
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92037, USA; Stem Cell Program, University of California, San Diego, La Jolla, CA 92037, USA; Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA 92037, USA
| | - Cassandra Schaening
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Shashank Sathe
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92037, USA; Stem Cell Program, University of California, San Diego, La Jolla, CA 92037, USA; Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA 92037, USA
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92037, USA; Stem Cell Program, University of California, San Diego, La Jolla, CA 92037, USA; Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA 92037, USA.
| | - Wendy V Gilbert
- Yale School of Medicine, Department of Molecular Biophysics & Biochemistry, New Haven, CT 06520, USA.
| |
Collapse
|
44
|
Neumann DP, Goodall GJ, Gregory PA. The Quaking RNA-binding proteins as regulators of cell differentiation. WILEY INTERDISCIPLINARY REVIEWS. RNA 2022; 13:e1724. [PMID: 35298877 PMCID: PMC9786888 DOI: 10.1002/wrna.1724] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/18/2022] [Accepted: 02/21/2022] [Indexed: 12/30/2022]
Abstract
The RNA-binding protein Quaking (QKI) has emerged as a potent regulator of cellular differentiation in developmental and pathological processes. The QKI gene is itself alternatively spliced to produce three major isoforms, QKI-5, QKI-6, and QKI-7, that possess very distinct functions. Here, we highlight roles of the different QKI isoforms in neuronal, vascular, muscle, and monocyte cell differentiation, and during epithelial-mesenchymal transition in cancer progression. QKI isoforms control cell differentiation through regulating alternative splicing, mRNA stability and translation, with activities in gene transcription now also becoming evident. These diverse functions of the QKI isoforms contribute to their broad influences on RNA metabolism and cellular differentiation. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications RNA Processing > Splicing Regulation/Alternative Splicing RNA in Disease and Development > RNA in Development.
Collapse
Affiliation(s)
- Daniel P. Neumann
- Centre for Cancer BiologyUniversity of South Australia and SA PathologyAdelaideSouth Australia
| | - Gregory J. Goodall
- Centre for Cancer BiologyUniversity of South Australia and SA PathologyAdelaideSouth Australia,Faculty of Health and Medical SciencesThe University of AdelaideAdelaideSouth Australia
| | - Philip A. Gregory
- Centre for Cancer BiologyUniversity of South Australia and SA PathologyAdelaideSouth Australia,Faculty of Health and Medical SciencesThe University of AdelaideAdelaideSouth Australia
| |
Collapse
|
45
|
Raguraman R, Shanmugarama S, Mehta M, Elle Peterson J, Zhao YD, Munshi A, Ramesh R. Drug delivery approaches for HuR-targeted therapy for lung cancer. Adv Drug Deliv Rev 2022; 180:114068. [PMID: 34822926 PMCID: PMC8724414 DOI: 10.1016/j.addr.2021.114068] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 11/18/2021] [Indexed: 01/03/2023]
Abstract
Lung cancer (LC) is often diagnosed at an advanced stage and conventional treatments for disease management have limitations associated with them. Novel therapeutic targets are thus avidly sought for the effective management of LC. RNA binding proteins (RBPs) have been convincingly established as key players in tumorigenesis, and their dysregulation is linked to multiple cancers, including LC. In this context, we review the role of Human antigen R (HuR), an RBP that is overexpressed in LC, and further associated with various aspects of LC tumor growth and response to therapy. Herein, we describe the role of HuR in LC progression and outline the evidences supporting various pharmacologic and biologic approaches for inhibiting HuR expression and function. These approaches, including use of small molecule inhibitors, siRNAs and shRNAs, have demonstrated favorable results in reducing tumor cell growth, invasion and migration, angiogenesis and metastasis. Hence, HuR has significant potential as a key therapeutic target in LC. Use of siRNA-based approaches, however, have certain limitations that prevent their maximal exploitation as cancer therapies. To address this, in the conclusion of this review, we provide a list of nanomedicine-based HuR targeting approaches currently being employed for siRNA and shRNA delivery, and provide a rationale for the immense potential therapeutic benefits offered by nanocarrier-based HuR targeting and its promise for treating patients with LC.
Collapse
Affiliation(s)
- Rajeswari Raguraman
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Santny Shanmugarama
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Graduate Program in Biomedical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Meghna Mehta
- Radiation Oncology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Jo Elle Peterson
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Yan D Zhao
- Biostatistics and Epidemiology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Anupama Munshi
- Radiation Oncology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Rajagopal Ramesh
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Graduate Program in Biomedical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| |
Collapse
|
46
|
Johnson C, Mullen DJ, Selamat SA, Campan M, Offringa IA, Marconett CN. The Sulfotransferase SULT1C2 Is Epigenetically Activated and Transcriptionally Induced by Tobacco Exposure and Is Associated with Patient Outcome in Lung Adenocarcinoma. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 19:416. [PMID: 35010676 PMCID: PMC8744592 DOI: 10.3390/ijerph19010416] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/24/2021] [Accepted: 12/27/2021] [Indexed: 01/03/2023]
Abstract
Lung cancer is the leading cause of cancer-related death. Tobacco exposure is associated with 80-90% of lung cancer cases. The SULT1C2 sulfotransferase modifies xenobiotic compounds to enhance secretion but can also render these compounds carcinogenic. To determine if SULT1C2 contributes to tobacco-related carcinogenesis in the lung, we analyzed the expression and epigenetic state of SULT1C2 in human lung adenocarcinoma (LUAD) samples and in LUAD cell lines exposed to cigarette smoke condensate (CSC). SULT1C2 expression was significantly positively correlated to overall LUAD patient survival in smokers, was elevated in LUAD tumors compared to adjacent non-tumor lung, and was significantly correlated with levels of patient exposure to tobacco smoke. SULT1C2 promoter DNA methylation was inversely correlated with expression in LUAD, and hypomethylation of the SULT1C2 promoter was observed in Asian patients, as compared to Caucasians. In vitro analysis of LUAD cell lines indicates that CSC stimulates expression of SULT1C2 in a dose-dependent and cell-line-specific manner. In vitro methylation of the SULT1C2 promoter significantly decreased transcriptional activity of a reporter plasmid, and SULT1C2 expression was activated by the DNA demethylating agent 5-Aza-2'-deoxycytidine in a cell line in which the SULT1C2 promoter was hypermethylated. An aryl hydrocarbon receptor (AHR) binding site was detected spanning critical methylation sites upstream of SULT1C2. CSC exposure significantly increased AHR binding to this predicted binding site in the SULT1C2 promoter in multiple lung cell lines. Our data suggest that CSC exposure leads to activation of the AHR transcription factor, increased binding to the SULT1C2 promoter, and upregulation of SULT1C2 expression and that this process is inhibited by DNA methylation at the SULT1C2 locus. Additionally, our results suggest that the level of SULT1C2 promoter methylation and gene expression in normal lung varies depending on the race of the patient, which could in part reflect the molecular mechanisms of racial disparities seen in lung cellular responses to cigarette smoke exposure.
Collapse
Affiliation(s)
- Candace Johnson
- Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089-9520, USA; (C.J.); (D.J.M.); (S.A.S.); (M.C.); (I.A.O.)
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089-9520, USA
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089-9520, USA
| | - Daniel J. Mullen
- Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089-9520, USA; (C.J.); (D.J.M.); (S.A.S.); (M.C.); (I.A.O.)
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089-9520, USA
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089-9520, USA
| | - Suhaida A. Selamat
- Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089-9520, USA; (C.J.); (D.J.M.); (S.A.S.); (M.C.); (I.A.O.)
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089-9520, USA
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089-9520, USA
| | - Mihaela Campan
- Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089-9520, USA; (C.J.); (D.J.M.); (S.A.S.); (M.C.); (I.A.O.)
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089-9520, USA
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089-9520, USA
| | - Ite A. Offringa
- Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089-9520, USA; (C.J.); (D.J.M.); (S.A.S.); (M.C.); (I.A.O.)
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089-9520, USA
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089-9520, USA
| | - Crystal N. Marconett
- Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089-9520, USA; (C.J.); (D.J.M.); (S.A.S.); (M.C.); (I.A.O.)
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089-9520, USA
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089-9520, USA
| |
Collapse
|
47
|
Huang Z, Li F, Li Q. Expression profile of RNA binding protein in cervical cancer using bioinformatics approach. Cancer Cell Int 2021; 21:647. [PMID: 34863153 PMCID: PMC8642772 DOI: 10.1186/s12935-021-02319-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 11/05/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND It has been demonstrated by studies globally that RNA binding proteins (RBPs) took part in the development of cervical cancer (CC). Few studies concentrated on the correlation between RBPs and overall survival of CC patients. We retrieved significant DEGs (differently expressed genes, RNA binding proteins) correlated to the process of cervical cancer development. METHODS Expressions level of genes in cervical cancer and normal tissue samples were obtained from GTEx and TCGA database. Differently expressed RNA binding proteins (DEGs) were retrieved by Wilcoxon sum-rank test. ClusterProfiler package worked in R software was used to perform GO and KEGG enrichment analyses. Univariate proportional hazard cox regression and multivariate proportional hazard cox regressions were applied to identify DEGs equipped with prognostic value and other clinical independent risk factors. ROC curve was drawn for comparing the survival predict feasibility of risk score with other risk factors in CC patients. Nomogram was drawn to exhibit the prediction model and validated by C-index and calibration curve. Correlations between differentially expressed RNA binding proteins (DEGs) and other clinical features were investigated by t test or Cruskal Wallis analysis. Correlation between Immune and DEGs in cervical cancer was investigated by ssGSEA. RESULTS 347 differentially expressed RBPs (DEGs) were retrieved from cervical cancer tissue and normal tissue samples. GO enrichment analysis showed that these DEGs involved in RNA splicing, catabolic process and metabolism. Cox regression model showed that there were ten DEGs significantly associated with overall survival of cervical cancer patients. WDR43 (HR = 0.423, P = 0.008), RBM38 (HR = 0.533, P < 0.001), RNASEH2A (HR = 0.474, P = 0.002) and HENMT1 (HR = 0.720, P = 0.071) played protective roles in survival among these ten genes. Stage (Stage IV vs Stage I HR = 3.434, P < 0.001) and risk score (HR = 1.214, P < 0.001) were sorted as independent prognostic risk factors based on multivariate cox regression. ROC curve validated that risk score was preferable to predict survival of CC patients than other risk factors. Additionally, we found some of these ten predictor DEGs were correlated significantly in statistic with tumor grade or stage, clinical T stage, clinical N stage, pathology or risk score (all P < 0.05). Part of immune cells and immune functions showed a lower activity in high risk group than low risk group which is stratified by median risk score. CONCLUSION Our discovery showed that many RNA binding proteins involved in the progress of cervical cancer, which could probably serve as prognostic biomarkers and accelerate the discovery of treatment targets for CC patients.
Collapse
Affiliation(s)
- Zhiyuan Huang
- Research Center for Translational Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Department of Cardiothoracic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Fang Li
- Department of Gynecology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China.
| | - Qinchuan Li
- Research Center for Translational Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China.
- Department of Cardiothoracic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China.
| |
Collapse
|
48
|
Liu T, Yang Y, Xie Z, Luo Q, Yang D, Liu X, Zhao H, Wei Q, Liu Y, Li L, Wang Y, Wang F, Yu J, Xu J, Yu J, Yi P. The RNA binding protein QKI5 suppresses ovarian cancer via downregulating transcriptional coactivator TAZ. MOLECULAR THERAPY-NUCLEIC ACIDS 2021; 26:388-400. [PMID: 34552820 PMCID: PMC8426461 DOI: 10.1016/j.omtn.2021.07.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/17/2021] [Indexed: 01/14/2023]
Abstract
RNA-binding proteins (RBPs) are a set of proteins involved in many steps of post-transcriptional regulation to maintain cellular homeostasis. Ovarian cancer (OC) is the most deadly gynecological cancer, but the roles of RBPs in OC are not fully understood. Here, we reported that the RBP QKI5 was significantly negatively correlated with aggressive tumor stage and worse prognosis in serous OC patients. QKI5 could suppress the growth and metastasis of OC cells both in vitro and in vivo. Transcriptome analysis showed that QKI5 negatively regulated the expression of the transcriptional coactivator TAZ and its downstream targets (e.g., CTGF and CYR61). Mechanistically, QKI5 bound to TAZ mRNA and recruited EDC4, thus decreasing the stability of TAZ mRNA. Functionally, TAZ was involved in the QKI5-mediated tumor suppression of OC cells, and QKI5 expression was inversely correlated with TAZ, CTGF, and CYR61 expression in OC patients. Together, our study indicates that QKI5 plays a tumor-suppressive role and negatively regulates TAZ expression in OC.
Collapse
Affiliation(s)
- Tao Liu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Yu Yang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Zhe Xie
- Department of Obstetrics and Gynecology, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Qingya Luo
- Department of Pathology, The First Affiliated Hospital of Army Medical University, Chongqing 400038, China
| | - Dan Yang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Xiaoyi Liu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Hongyan Zhao
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China.,School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, China
| | - Qinglv Wei
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Yi Liu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Lanfang Li
- Department of Obstetrics and Gynecology, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Yuya Wang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Fang Wang
- Department of Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College (PUMC), Beijing 100005, China
| | - Jianhua Yu
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Jing Xu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Jia Yu
- Department of Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College (PUMC), Beijing 100005, China
| | - Ping Yi
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| |
Collapse
|
49
|
Ding Y, Fang L, Yang XP, Zou Q. Identification of Prognosis-Related RNA-Binding Proteins to Reveal the Role of RNA-Binding Proteins in the Progression and Prognosis of Colon Cancer. Int J Gen Med 2021; 14:6795-6805. [PMID: 34703285 PMCID: PMC8523907 DOI: 10.2147/ijgm.s330863] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/20/2021] [Indexed: 12/31/2022] Open
Abstract
Background RNA binding proteins (RBPs) are now under discussion as novel promising bio-markers for patients with colon cancer. The purpose of our study is to identify several RBPs related to the progression and prognosis of colon cancer and to further investigate the mechanism of their influence on tumor progression. Methods The transcriptome data of colon cancer and clinical characteristics were downloaded from The Cancer Genome Atlas (TCGA) database. Gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, and Gene Set Enrichment Analysis (GSEA) were performed to elucidate the gene functions and relative pathways. Cox and Lasso regression analyses were used to analyze the effect of immune genes on the prognosis of colon cancer. An immune risk scoring model was constructed based on the statistical correlation between hub immune genes and survival. Meanwhile, multivariate Cox regression analysis was utilized to investigate whether the immune gene risk score model was an independent factor for predicting the prognosis of colon cancer. A nomogram was constructed to comprehensively predict the survival rate of colon cancer. P < 0.05 was considered statistically significant. Results The results showed that 473 RBPs exhibited differential expression between normal and colon cancer tissues (P < 0.05). Univariate Cox regression analysis revealed 25 RBPs statistically correlated with colon cancer-related survival risk (P < 0.05). In addition, a 10-RBPs based risk scoring model was constructed through multivariate Cox regression analysis. A K–M curve indicated that high-risk patients were associated with poor outcomes (P < 0.001). A ROC curve indicated that the immune risk score model was reliable in predicting survival risk (5-year overall survival (OS), area under curve (AUC) = 0.782). Our model showed satisfying AUC and survival correlation in the validation dataset (5-year OS, AUC = 0.744). Furthermore, multivariate Cox regression analysis confirmed that the immune risk score model was an independent factor for predicting the prognosis of colon cancer. Finally, we found that 10-RBPs and risk scores were significantly associated with clinical factors and prognosis and were involved in multiple oncogenic pathways. Conclusion Collectively, RBPs play an essential role in the progression and prognosis of colon cancer by regulating multiple biological pathways. Furthermore, the RBP risk score was an independent predictive factor of colon cancer, indicating poor survival.
Collapse
Affiliation(s)
- Yue Ding
- Department of General Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, People's Republic of China
| | - Lei Fang
- Department of Radiology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, People's Republic of China
| | - Xiao-Ping Yang
- Department of Hepatobiliary Pancreatic Surgery, First Hospital of Ningbo City, Ningbo, 315010, People's Republic of China
| | - Qi Zou
- Department of General Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, People's Republic of China
| |
Collapse
|
50
|
Zhang T, Chen S, Peng Y, Wang C, Cheng X, Zhao R, Liu K. NOVA1-Mediated SORBS2 Isoform Promotes Colorectal Cancer Migration by Activating the Notch Pathway. Front Cell Dev Biol 2021; 9:673873. [PMID: 34692669 PMCID: PMC8531477 DOI: 10.3389/fcell.2021.673873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 09/08/2021] [Indexed: 01/16/2023] Open
Abstract
Background: Gene expression and alternative splicing (AS) can promote cancer development via complex mechanisms. We aimed to identify and verify the hub AS events and splicing factors associated with the progression of colorectal cancer (CRC). Methods: RNA-Seq data, clinical data, and AS events of 590 CRC samples were obtained from the TCGA and TCGASpliceSeq databases. Cox univariable and multivariable analyses, KEGG, and GO pathway analyses were performed to identify hub AS events and splicing factor/spliceosome genes, which were further validated in five CRCs. Results: In this study, we first compared differentially expressed genes and gene AS events between normal and tumor tissues. Differentially expressed genes were different from genes with differentially expressed AS events. Prognostic analysis and co-expression network analysis of gene expression and gene AS events were conducted to screen five hub gene AS events involved in CRC progression: EPB41L2, CELF2, TMEM130, VCL, and SORBS2. Using qRT-PCR, we also verified that the gene AS events SORBS2 were downregulated in tumor tissue, and gene AS events EPB41L2, CELF2, TMEM130, and VCL were upregulated in tumor tissue. The genes whose mRNA levels were significantly related to the five hub gene AS events were significantly enriched in the GO term of cell division and Notch signaling pathway. Further coexpression of gene AS events and alternative splicing factor genes revealed NOVA1 as a crucial factor regulating the hub gene AS event expression in CRC. Through in vitro experiments, we found that NOVA1 inhibited gene AS event SORBS2, which induced the migration of CRC cells via the Notch pathway. Conclusion: Integrated analysis of gene expression and gene AS events and further experiments revealed that NOVA1-mediated SORBS2 promoted the migration of CRC, indicating its potential as a therapeutic target.
Collapse
Affiliation(s)
- Tao Zhang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sixia Chen
- Tongji Hospital, Tongji University School of Medicine, Tongji University, Shanghai, China
| | - Yi Peng
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Changgang Wang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xi Cheng
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ren Zhao
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kun Liu
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|