1
|
Zhou X, Manna B, Lyu B, Lear G, Kingsbury JM, Singhal N. Resource recovery from wastewater by directing microbial metabolism toward production of value-added biochemicals. BIORESOURCE TECHNOLOGY 2025; 419:132061. [PMID: 39799987 DOI: 10.1016/j.biortech.2025.132061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/30/2024] [Accepted: 01/09/2025] [Indexed: 01/15/2025]
Abstract
Dynamic oxygen fluctuations in activated sludge were investigated to enhance valuable biochemical production during wastewater treatment. Batch experiments compared constant aeration with rapid cycling between oxygen-rich and oxygen-poor states. Fluctuating oxygen concentrations (0-2 mg/L) significantly increased production of valuable biochemicals compared to constant oxygen concentration (2 mg/L). Continuous oxygen perturbations increased free amino acids by 35.7 ± 7.6 % and free fatty acids by 76.4 ± 13.0 %, while intermittent perturbations with anoxic periods enhanced free amino acids by 42.4 ± 8.1 % and free fatty acids by 39.3 ± 7.7 %. Fourteen standard amino acids showed significant increases, and most fatty acids had carbon chain lengths between C12-C22. Mechanistically, oxygen perturbations activated FNR and ArcA regulons, resulting in lower relative abundances of TCA cycle enzymes and higher abundances of amino acid and fatty acid biosynthetic enzymes. These findings demonstrate that controlled oxygen fluctuations in wastewater treatment can enhance the biochemical value of activated sludge with minimal process modifications, facilitating resource recovery.
Collapse
Affiliation(s)
- Xueyang Zhou
- Water Research Centre and Department of Civil and Environmental Engineering, University of Auckland, Auckland 1142, New Zealand
| | - Bharat Manna
- Water Research Centre and Department of Civil and Environmental Engineering, University of Auckland, Auckland 1142, New Zealand
| | - Boyu Lyu
- Water Research Centre and Department of Civil and Environmental Engineering, University of Auckland, Auckland 1142, New Zealand
| | - Gavin Lear
- School of Biological Sciences, University of Auckland, Auckland 1142, New Zealand
| | - Joanne M Kingsbury
- Risk Assessment, Food and Social Systems Group, Institute of Environmental Science and Research Limited, Christchurch 8041, New Zealand
| | - Naresh Singhal
- Water Research Centre and Department of Civil and Environmental Engineering, University of Auckland, Auckland 1142, New Zealand.
| |
Collapse
|
2
|
Price MN, Arkin AP. Interactive tools for functional annotation of bacterial genomes. Database (Oxford) 2024; 2024:baae089. [PMID: 39241109 PMCID: PMC11378808 DOI: 10.1093/database/baae089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/29/2024] [Accepted: 08/09/2024] [Indexed: 09/08/2024]
Abstract
Automated annotations of protein functions are error-prone because of our lack of knowledge of protein functions. For example, it is often impossible to predict the correct substrate for an enzyme or a transporter. Furthermore, much of the knowledge that we do have about the functions of proteins is missing from the underlying databases. We discuss how to use interactive tools to quickly find different kinds of information relevant to a protein's function. Many of these tools are available via PaperBLAST (http://papers.genomics.lbl.gov). Combining these tools often allows us to infer a protein's function. Ideally, accurate annotations would allow us to predict a bacterium's capabilities from its genome sequence, but in practice, this remains challenging. We describe interactive tools that infer potential capabilities from a genome sequence or that search a genome to find proteins that might perform a specific function of interest. Database URL: http://papers.genomics.lbl.gov.
Collapse
Affiliation(s)
- Morgan N Price
- Environmental Genomics & Systems Biology, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720, United States
| | - Adam P Arkin
- Environmental Genomics & Systems Biology, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720, United States
| |
Collapse
|
3
|
Fricker AD, Yao T, Lindemann SR, Flores GE. Enrichment and characterization of human-associated mucin-degrading microbial consortia by sequential passage. FEMS Microbiol Ecol 2024; 100:fiae078. [PMID: 38794902 PMCID: PMC11180985 DOI: 10.1093/femsec/fiae078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 05/03/2024] [Accepted: 05/23/2024] [Indexed: 05/26/2024] Open
Abstract
Mucin is a glycoprotein secreted throughout the mammalian gastrointestinal tract that can support endogenous microorganisms in the absence of complex polysaccharides. While several mucin-degrading bacteria have been identified, the interindividual differences in microbial communities capable of metabolizing this complex polymer are not well described. To determine whether community assembly on mucin is deterministic across individuals or whether taxonomically distinct but functionally similar mucin-degrading communities are selected across fecal inocula, we used a 10-day in vitro sequential batch culture fermentation from three human donors with mucin as the sole carbon source. For each donor, 16S rRNA gene amplicon sequencing was used to characterize microbial community succession, and the short-chain fatty acid profile was determined from the final community. All three communities reached a steady-state by day 7 in which the community composition stabilized. Taxonomic comparisons amongst communities revealed that one of the final communities had Desulfovibrio, another had Akkermansia, and all three shared other members, such as Bacteroides. Metabolic output differences were most notable for one of the donor's communities, with significantly less production of acetate and propionate than the other two communities. These findings demonstrate the feasibility of developing stable mucin-degrading communities with shared and unique taxa. Furthermore, the mechanisms and efficiencies of mucin degradation across individuals are important for understanding how this community-level process impacts human health.
Collapse
Affiliation(s)
- Ashwana D Fricker
- Department of Biology, California State University, 18111 Nordhoff Street, Northridge, CA 91330, United States
| | - Tianming Yao
- Whistler Center for Carbohydrate Research, Department of Food Science, Purdue University, 745 Agriculture Mall Drive, West Lafayette, IN 47907, United States
| | - Stephen R Lindemann
- Whistler Center for Carbohydrate Research, Department of Food Science, Purdue University, 745 Agriculture Mall Drive, West Lafayette, IN 47907, United States
| | - Gilberto E Flores
- Department of Biology, California State University, 18111 Nordhoff Street, Northridge, CA 91330, United States
| |
Collapse
|
4
|
Ale Enriquez F, Ahring BK. Phenotypic and genomic characterization of Methanothermobacter wolfeii strain BSEL, a CO 2-capturing archaeon with minimal nutrient requirements. Appl Environ Microbiol 2024; 90:e0026824. [PMID: 38619268 PMCID: PMC11107166 DOI: 10.1128/aem.00268-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 03/17/2024] [Indexed: 04/16/2024] Open
Abstract
A new variant of Methanothermobacter wolfeii was isolated from an anaerobic digester using enrichment cultivation in anaerobic conditions. The new isolate was taxonomically identified via 16S rRNA gene sequencing and tagged as M. wolfeii BSEL. The whole genome of the new variant was sequenced and de novo assembled. Genomic variations between the BSEL strain and the type strain were discovered, suggesting evolutionary adaptations of the BSEL strain that conferred advantages while growing under a low concentration of nutrients. M. wolfeii BSEL displayed the highest specific growth rate ever reported for the wolfeii species (0.27 ± 0.03 h-1) using carbon dioxide (CO2) as unique carbon source and hydrogen (H2) as electron donor. M. wolfeii BSEL grew at this rate in an environment with ammonium (NH4+) as sole nitrogen source. The minerals content required to cultivate the BSEL strain was relatively low and resembled the ionic background of tap water without mineral supplements. Optimum growth rate for the new isolate was observed at 64°C and pH 8.3. In this work, it was shown that wastewater from a wastewater treatment facility can be used as a low-cost alternative medium to cultivate M. wolfeii BSEL. Continuous gas fermentation fed with a synthetic biogas mimic along with H2 in a bubble column bioreactor using M. wolfeii BSEL as biocatalyst resulted in a CO2 conversion efficiency of 97% and a final methane (CH4) titer of 98.5%v, demonstrating the ability of the new strain for upgrading biogas to renewable natural gas.IMPORTANCEAs a methanogenic archaeon, Methanothermobacter wolfeii uses CO2 as electron acceptor, producing CH4 as final product. The metabolism of M. wolfeii can be harnessed to capture CO2 from industrial emissions, besides producing a drop-in renewable biofuel to substitute fossil natural gas. If used as biocatalyst in new-generation CO2 sequestration processes, M. wolfeii has the potential to accelerate the decarbonization of the energy generation sector, which is the biggest contributor of CO2 emissions worldwide. Nonetheless, the development of CO2 sequestration archaeal-based biotechnology is still limited by an uncertainty in the requirements to cultivate methanogenic archaea and the unknown longevity of archaeal cultures. In this study, we report the adaptation, isolation, and phenotypic characterization of a novel variant of M. wolfeii, which is capable of maximum growth with minimal nutrients input. Our findings demonstrate the potential of this variant for the production of renewable natural gas, paving the way for the development of more efficient and sustainable CO2 sequestration processes.
Collapse
Affiliation(s)
- Fuad Ale Enriquez
- Bioproducts, Sciences, and Engineering Laboratory, Washington State University, Tri-Cities, Richland, Washington, USA
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington, USA
| | - Birgitte K. Ahring
- Bioproducts, Sciences, and Engineering Laboratory, Washington State University, Tri-Cities, Richland, Washington, USA
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington, USA
- Biological Systems Engineering Department, Washington State University, Pullman, Washington, USA
| |
Collapse
|
5
|
Silverman SN, Wijker RS, Sessions AL. Biosynthetic and catabolic pathways control amino acid δ 2H values in aerobic heterotrophs. Front Microbiol 2024; 15:1338486. [PMID: 38646628 PMCID: PMC11026604 DOI: 10.3389/fmicb.2024.1338486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/20/2024] [Indexed: 04/23/2024] Open
Abstract
The hydrogen isotope ratios (δ2HAA values) of amino acids in all organisms are substantially fractionated relative to growth water. In addition, they exhibit large variations within microbial biomass, animals, and human tissues, hinting at rich biochemical information encoded in such signals. In lipids, such δ2H variations are thought to primarily reflect NADPH metabolism. Analogous biochemical controls for amino acids remain largely unknown, but must be elucidated to inform the interpretation of these measurements. Here, we measured the δ2H values of amino acids from five aerobic, heterotrophic microbes grown on different carbon substrates, as well as five Escherichia coli mutant organisms with perturbed NADPH metabolisms. We observed similar δ2HAA patterns across all organisms and growth conditions, which-consistent with previous hypotheses-suggests a first-order control by biosynthetic pathways. Moreover, δ2HAA values varied systematically with the catabolic pathways activated for substrate degradation, with variations explainable by the isotopic compositions of important cellular metabolites, including pyruvate and NADPH, during growth on each substrate. As such, amino acid δ2H values may be useful for interrogating organismal physiology and metabolism in the environment, provided we can further elucidate the mechanisms underpinning these signals.
Collapse
Affiliation(s)
- Shaelyn N. Silverman
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, United States
| | | | | |
Collapse
|
6
|
Giordano N, Gaudin M, Trottier C, Delage E, Nef C, Bowler C, Chaffron S. Genome-scale community modelling reveals conserved metabolic cross-feedings in epipelagic bacterioplankton communities. Nat Commun 2024; 15:2721. [PMID: 38548725 PMCID: PMC10978986 DOI: 10.1038/s41467-024-46374-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 02/26/2024] [Indexed: 04/01/2024] Open
Abstract
Marine microorganisms form complex communities of interacting organisms that influence central ecosystem functions in the ocean such as primary production and nutrient cycling. Identifying the mechanisms controlling their assembly and activities is a major challenge in microbial ecology. Here, we integrated Tara Oceans meta-omics data to predict genome-scale community interactions within prokaryotic assemblages in the euphotic ocean. A global genome-resolved co-activity network revealed a significant number of inter-lineage associations across diverse phylogenetic distances. Identified co-active communities include species displaying smaller genomes but encoding a higher potential for quorum sensing, biofilm formation, and secondary metabolism. Community metabolic modelling reveals a higher potential for interaction within co-active communities and points towards conserved metabolic cross-feedings, in particular of specific amino acids and group B vitamins. Our integrated ecological and metabolic modelling approach suggests that genome streamlining and metabolic auxotrophies may act as joint mechanisms shaping bacterioplankton community assembly in the global ocean surface.
Collapse
Affiliation(s)
- Nils Giordano
- Nantes Université, École Centrale Nantes, CNRS, LS2N, UMR 6004, F-44000, Nantes, France
| | - Marinna Gaudin
- Nantes Université, École Centrale Nantes, CNRS, LS2N, UMR 6004, F-44000, Nantes, France
| | - Camille Trottier
- Nantes Université, École Centrale Nantes, CNRS, LS2N, UMR 6004, F-44000, Nantes, France
| | - Erwan Delage
- Nantes Université, École Centrale Nantes, CNRS, LS2N, UMR 6004, F-44000, Nantes, France
| | - Charlotte Nef
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, PSL Université Paris, F-75016, Paris, France
| | - Chris Bowler
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, PSL Université Paris, F-75016, Paris, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, F-75016, Paris, France
| | - Samuel Chaffron
- Nantes Université, École Centrale Nantes, CNRS, LS2N, UMR 6004, F-44000, Nantes, France.
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, F-75016, Paris, France.
| |
Collapse
|
7
|
Fukuyama Y, Shimamura S, Sakai S, Michimori Y, Sumida T, Chikaraishi Y, Atomi H, Nunoura T. Development of a rapid and highly accurate method for 13C tracer-based metabolomics and its application on a hydrogenotrophic methanogen. ISME COMMUNICATIONS 2024; 4:ycad006. [PMID: 38282645 PMCID: PMC10809761 DOI: 10.1093/ismeco/ycad006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 11/24/2023] [Accepted: 12/01/2023] [Indexed: 01/30/2024]
Abstract
Microfluidic capillary electrophoresis-mass spectrometry (CE-MS) is a rapid and highly accurate method to determine isotopomer patterns in isotopically labeled compounds. Here, we developed a novel method for tracer-based metabolomics using CE-MS for underivatized proteinogenic amino acids. The method consisting of a ZipChip CE system and a high-resolution Orbitrap Fusion Tribrid mass spectrometer allows us to obtain highly accurate data from 1 μl of 100 nmol/l amino acids comparable to a mere 1 [Formula: see text] 104-105 prokaryotic cells. To validate the capability of the CE-MS method, we analyzed 16 protein-derived amino acids from a methanogenic archaeon Methanothermobacter thermautotrophicus as a model organism, and the mass spectra showed sharp peaks with low mass errors and background noise. Tracer-based metabolome analysis was then performed to identify the central carbon metabolism in M. thermautotrophicus using 13C-labeled substrates. The mass isotopomer distributions of serine, aspartate, and glutamate revealed the occurrence of both the Wood-Ljungdahl pathway and an incomplete reductive tricarboxylic acid cycle for carbon fixation. In addition, biosynthesis pathways of 15 amino acids were constructed based on the mass isotopomer distributions of the detected protein-derived amino acids, genomic information, and public databases. Among them, the presence of alternative enzymes of alanine dehydrogenase, ornithine cyclodeaminase, and homoserine kinase was suggested in the biosynthesis pathways of alanine, proline, and threonine, respectively. To our knowledge, the novel 13C tracer-based metabolomics using CE-MS can be considered the most efficient method to identify central carbon metabolism and amino acid biosynthesis pathways and is applicable to any kind of isolated microbe.
Collapse
Affiliation(s)
- Yuto Fukuyama
- Research Center for Bioscience and Nanoscience (CeBN), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2–15 Natsushima-cho, Yokosuka, Kanagawa 237–0061, Japan
| | - Shigeru Shimamura
- Institute for Extra-Cutting-Edge Science and Technology Avant-Garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2–15 Natsushima-cho, Yokosuka, Kanagawa 237–0061, Japan
| | - Sanae Sakai
- Institute for Extra-Cutting-Edge Science and Technology Avant-Garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2–15 Natsushima-cho, Yokosuka, Kanagawa 237–0061, Japan
| | - Yuta Michimori
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Tomomi Sumida
- Research Center for Bioscience and Nanoscience (CeBN), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2–15 Natsushima-cho, Yokosuka, Kanagawa 237–0061, Japan
| | - Yoshito Chikaraishi
- Institute of Low Temperature Science, Hokkaido University, Kita-19, Nishi-8, Kita-ku, Sapporo 060-0819, Japan
| | - Haruyuki Atomi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Takuro Nunoura
- Research Center for Bioscience and Nanoscience (CeBN), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2–15 Natsushima-cho, Yokosuka, Kanagawa 237–0061, Japan
| |
Collapse
|
8
|
Ramoneda J, Jensen TBN, Price MN, Casamayor EO, Fierer N. Taxonomic and environmental distribution of bacterial amino acid auxotrophies. Nat Commun 2023; 14:7608. [PMID: 37993466 PMCID: PMC10665431 DOI: 10.1038/s41467-023-43435-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 11/08/2023] [Indexed: 11/24/2023] Open
Abstract
Many microorganisms are auxotrophic-unable to synthesize the compounds they require for growth. With this work, we quantify the prevalence of amino acid auxotrophies across a broad diversity of bacteria and habitats. We predicted the amino acid biosynthetic capabilities of 26,277 unique bacterial genomes spanning 12 phyla using a metabolic pathway model validated with empirical data. Amino acid auxotrophy is widespread across bacterial phyla, but we conservatively estimate that the majority of taxa (78.4%) are able to synthesize all amino acids. Our estimates indicate that amino acid auxotrophies are more prevalent among obligate intracellular parasites and in free-living taxa with genomic attributes characteristic of 'streamlined' life history strategies. We predicted the amino acid biosynthetic capabilities of bacterial communities found in 12 unique habitats to investigate environmental associations with auxotrophy, using data compiled from 3813 samples spanning major aquatic, terrestrial, and engineered environments. Auxotrophic taxa were more abundant in host-associated environments (including the human oral cavity and gut) and in fermented food products, with auxotrophic taxa being relatively rare in soil and aquatic systems. Overall, this work contributes to a more complete understanding of amino acid auxotrophy across the bacterial tree of life and the ecological contexts in which auxotrophy can be a successful strategy.
Collapse
Affiliation(s)
- Josep Ramoneda
- Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado, Boulder, CO, USA.
| | - Thomas B N Jensen
- Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado, Boulder, CO, USA
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Morgan N Price
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Emilio O Casamayor
- Spanish Research Council (CSIC), Center for Advanced Studies of Blanes (CEAB), Blanes, Spain
| | - Noah Fierer
- Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado, Boulder, CO, USA.
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA.
| |
Collapse
|
9
|
Leng H, Wang Y, Zhao W, Sievert SM, Xiao X. Identification of a deep-branching thermophilic clade sheds light on early bacterial evolution. Nat Commun 2023; 14:4354. [PMID: 37468486 DOI: 10.1038/s41467-023-39960-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 07/06/2023] [Indexed: 07/21/2023] Open
Abstract
It has been proposed that early bacteria, or even the last universal common ancestor of all cells, were thermophilic. However, research on the origin and evolution of thermophily is hampered by the difficulties associated with the isolation of deep-branching thermophilic microorganisms in pure culture. Here, we isolate a deep-branching thermophilic bacterium from a deep-sea hydrothermal vent, using a two-step cultivation strategy ("Subtraction-Suboptimal", StS) designed to isolate rare organisms. The bacterium, which we name Zhurongbacter thermophilus 3DAC, is a sulfur-reducing heterotroph that is phylogenetically related to Coprothermobacterota and other thermophilic bacterial groups, forming a clade that seems to represent a major, early-diverging bacterial lineage. The ancestor of this clade might be a thermophilic, strictly anaerobic, motile, hydrogen-dependent, and mixotrophic bacterium. Thus, our study provides insights into the early evolution of thermophilic bacteria.
Collapse
Affiliation(s)
- Hao Leng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- International Center for Deep Life Investigation (IC-DLI), Shanghai Jiao Tong University, Shanghai, China
| | - Yinzhao Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- International Center for Deep Life Investigation (IC-DLI), Shanghai Jiao Tong University, Shanghai, China
| | - Weishu Zhao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- International Center for Deep Life Investigation (IC-DLI), Shanghai Jiao Tong University, Shanghai, China
| | - Stefan M Sievert
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Xiang Xiao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
- International Center for Deep Life Investigation (IC-DLI), Shanghai Jiao Tong University, Shanghai, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, Guangdong, China.
| |
Collapse
|
10
|
Amarnath K, Narla AV, Pontrelli S, Dong J, Reddan J, Taylor BR, Caglar T, Schwartzman J, Sauer U, Cordero OX, Hwa T. Stress-induced metabolic exchanges between complementary bacterial types underly a dynamic mechanism of inter-species stress resistance. Nat Commun 2023; 14:3165. [PMID: 37258505 PMCID: PMC10232422 DOI: 10.1038/s41467-023-38913-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 05/19/2023] [Indexed: 06/02/2023] Open
Abstract
Metabolic cross-feeding plays vital roles in promoting ecological diversity. While some microbes depend on exchanges of essential nutrients for growth, the forces driving the extensive cross-feeding needed to support the coexistence of free-living microbes are poorly understood. Here we characterize bacterial physiology under self-acidification and establish that extensive excretion of key metabolites following growth arrest provides a collaborative, inter-species mechanism of stress resistance. This collaboration occurs not only between species isolated from the same community, but also between unrelated species with complementary (glycolytic vs. gluconeogenic) modes of metabolism. Cultures of such communities progress through distinct phases of growth-dilution cycles, comprising of exponential growth, acidification-triggered growth arrest, collaborative deacidification, and growth recovery, with each phase involving different combinations of physiological states of individual species. Our findings challenge the steady-state view of ecosystems commonly portrayed in ecological models, offering an alternative dynamical view based on growth advantages of complementary species in different phases.
Collapse
Affiliation(s)
- Kapil Amarnath
- Department of Physics, U.C. San Diego, La Jolla, CA, 92093-0319, USA
| | - Avaneesh V Narla
- Department of Physics, U.C. San Diego, La Jolla, CA, 92093-0319, USA
| | - Sammy Pontrelli
- Institute of Molecular and Systems Biology, ETH Zürich, Zürich, Switzerland
| | - Jiajia Dong
- Department of Physics, U.C. San Diego, La Jolla, CA, 92093-0319, USA
- Department of Physics and Astronomy, Bucknell University, Lewisburg, PA, 17837, USA
| | - Jack Reddan
- Division of Biological Sciences, U.C. San Diego, La Jolla, CA, 92093, USA
| | - Brian R Taylor
- Department of Physics, U.C. San Diego, La Jolla, CA, 92093-0319, USA
| | - Tolga Caglar
- Department of Physics, U.C. San Diego, La Jolla, CA, 92093-0319, USA
| | - Julia Schwartzman
- Department of Civil and Environmental Engineering, MIT, Cambridge, MA, 02139, USA
| | - Uwe Sauer
- Institute of Molecular and Systems Biology, ETH Zürich, Zürich, Switzerland
| | - Otto X Cordero
- Department of Civil and Environmental Engineering, MIT, Cambridge, MA, 02139, USA
| | - Terence Hwa
- Department of Physics, U.C. San Diego, La Jolla, CA, 92093-0319, USA.
- Division of Biological Sciences, U.C. San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
11
|
Sparviero S, Dicke MD, Rosch TM, Castillo T, Salgado-Lugo H, Galindo E, Peña C, Büchs J. Yeast extracts from different manufacturers and supplementation of amino acids and micro elements reveal a remarkable impact on alginate production by A. vinelandii ATCC9046. Microb Cell Fact 2023; 22:99. [PMID: 37170263 PMCID: PMC10176783 DOI: 10.1186/s12934-023-02112-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/03/2023] [Indexed: 05/13/2023] Open
Abstract
BACKGROUND In research and production, reproducibility is a key factor, to meet high quality and safety standards and maintain productivity. For microbial fermentations, complex substrates and media components are often used. The complex media components can vary in composition, depending on the lot and manufacturing process. These variations can have an immense impact on the results of biological cultivations. The aim of this work was to investigate and characterize the influence of the complex media component yeast extract on cultivations of Azotobacter vinelandii under microaerobic conditions. Under these conditions, the organism produces the biopolymer alginate. The focus of the investigation was on the respiration activity, cell growth and alginate production. RESULTS Yeast extracts from 6 different manufacturers and 2 different lots from one manufacturer were evaluated. Significant differences on respiratory activity, growth and production were observed. Concentration variations of three different yeast extracts showed that the performance of poorly performing yeast extracts can be improved by simply increasing their concentration. On the other hand, the results with well-performing yeast extracts seem to reach a saturation, when their concentration is increased. Cultivations with poorly performing yeast extract were supplemented with grouped amino acids, single amino acids and micro elements. Beneficial results were obtained with the supplementation of copper sulphate, cysteine or a combination of both. Furthermore, a correlation between the accumulated oxygen transfer and the final viscosity (as a key performance indicator), was established. CONCLUSION The choice of yeast extract is crucial for A. vinelandii cultivations, to maintain reproducibility and comparability between cultivations. The proper use of specific yeast extracts allows the cultivation results to be specifically optimised. In addition, supplements can be applied to modify and improve the properties of the alginate. The results only scratch the surface of the underlying mechanisms, as they are not providing explanations on a molecular level. However, the findings show the potential of optimising media containing yeast extract for alginate production with A. vinelandii, as well as the potential of targeted supplementation of the media.
Collapse
Affiliation(s)
- Sarah Sparviero
- Aachener Verfahrenstechnik - Chair of Biochemical Engineering, RWTH Aachen University, Bldg. NGP², Forckenbeckstr. 51, 52074, Aachen, Germany
| | - Max Daniel Dicke
- Aachener Verfahrenstechnik - Chair of Biochemical Engineering, RWTH Aachen University, Bldg. NGP², Forckenbeckstr. 51, 52074, Aachen, Germany
| | - Tobias M Rosch
- Aachener Verfahrenstechnik - Chair of Biochemical Engineering, RWTH Aachen University, Bldg. NGP², Forckenbeckstr. 51, 52074, Aachen, Germany
| | - Tania Castillo
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, UNAM, Universidad Nacional Autónoma de México, Ave. Universidad 2001, Col. Chamilpa, 62210, Cuernavaca, Morelos, México
| | - Holjes Salgado-Lugo
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, UNAM, Universidad Nacional Autónoma de México, Ave. Universidad 2001, Col. Chamilpa, 62210, Cuernavaca, Morelos, México
- Programa Investigadoras e Investigadores por México del CONACyT, Consejo Nacional de Ciencia y Tecnología, 03940, Mexico City, México
| | - Enrique Galindo
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, UNAM, Universidad Nacional Autónoma de México, Ave. Universidad 2001, Col. Chamilpa, 62210, Cuernavaca, Morelos, México
| | - Carlos Peña
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, UNAM, Universidad Nacional Autónoma de México, Ave. Universidad 2001, Col. Chamilpa, 62210, Cuernavaca, Morelos, México
| | - Jochen Büchs
- Aachener Verfahrenstechnik - Chair of Biochemical Engineering, RWTH Aachen University, Bldg. NGP², Forckenbeckstr. 51, 52074, Aachen, Germany.
| |
Collapse
|
12
|
Han M, Schierstaedt J, Duan Y, Trotereau J, Virlogeux-Payant I, Schikora A. Novel method to recover Salmonella enterica cells for Tn-Seq approaches from lettuce leaves and agricultural environments using combination of sonication, filtration, and dialysis membrane. J Microbiol Methods 2023; 208:106724. [PMID: 37054820 DOI: 10.1016/j.mimet.2023.106724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 04/05/2023] [Accepted: 04/08/2023] [Indexed: 04/15/2023]
Abstract
Salmonella enterica in agricultural environments has become an important concern, due to its potential transmission to humans and the associated public health risks. To identify genes contributing to Salmonella adaptation to such environments, transposon sequencing has been used in recent years. However, isolating Salmonella from atypical hosts, such as plant leaves, can pose technical challenges due to low bacterial content and the difficulty to separate an adequate number of bacteria from host tissues. In this study, we describe a modified methodology using a combination of sonication and filtration to recover S. enterica cells from lettuce leaves. We successfully recovered over a total of 3.5 × 106Salmonella cells in each biological replicate from two six-week old lettuce leaves, 7 days after infiltration with a Salmonella suspension of 5 × 107 colony forming units (CFU)/mL. Moreover, we have developed a dialysis membrane system as an alternative method for recovering bacteria from culture medium, mimicking a natural environment. Inoculating 107 CFU/mL of Salmonella into the media based on plant (lettuce and tomato) leaf and diluvial sand soil, a final concentration of 109.5 and 108.5 CFU/mL was obtained, respectively. One millilitre of the bacterial suspension after 24 h incubation at 28 °C using 60 rpm agitation was pelleted, corresponding to 109.5 and 108.5 cells from leaf- or soil-based media. The recovered bacterial population, from both lettuce leaves and environment-mimicking media, can adequately cover a presumptive library density of 106 mutants. In conclusion, this protocol provides an effective method to recover a Salmonella transposon sequencing library from in planta and in vitro systems. We expect this novel technique to foster the study of Salmonella in atypical hosts and environments, as well as other comparable scenarios.
Collapse
Affiliation(s)
- Min Han
- Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Messeweg 11/12, Braunschweig 38104, Germany
| | - Jasper Schierstaedt
- Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Messeweg 11/12, Braunschweig 38104, Germany; Leibniz Institute of Vegetable and Ornamental Crops (IGZ), Department Plant-Microbe Systems, Theodor-Echtermeyer Weg 1, Großbeeren 14979, Germany
| | - Yongming Duan
- Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Messeweg 11/12, Braunschweig 38104, Germany
| | - Jérôme Trotereau
- INRAE Val de Loire, Université de Tours, UMR ISP, Nouzilly 37380, France
| | | | - Adam Schikora
- Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Messeweg 11/12, Braunschweig 38104, Germany.
| |
Collapse
|
13
|
Farlow AJ, Rupasinghe DB, Naji KM, Capon RJ, Spiteller D. Rosenbergiella meliponini D21B Isolated from Pollen Pots of the Australian Stingless Bee Tetragonula carbonaria. Microorganisms 2023; 11:microorganisms11041005. [PMID: 37110428 PMCID: PMC10142583 DOI: 10.3390/microorganisms11041005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/05/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Rosenbergiella bacteria have been previously isolated predominantly from floral nectar and identified in metagenomic screenings as associated with bees. Here, we isolated three Rosenbergiella strains from the robust Australian stingless bee Tetragonula carbonaria sharing over 99.4% sequence similarity with Rosenbergiella strains isolated from floral nectar. The three Rosenbergiella strains (D21B, D08K, D15G) from T. carbonaria exhibited near-identical 16S rDNA. The genome of strain D21B was sequenced; its draft genome contains 3,294,717 bp, with a GC content of 47.38%. Genome annotation revealed 3236 protein-coding genes. The genome of D21B differs sufficiently from the closest related strain, Rosenbergiella epipactidis 2.1A, to constitute a new species. In contrast to R. epipactidis 2.1A, strain D21B produces the volatile 2-phenylethanol. The D21B genome contains a polyketide/non-ribosomal peptide gene cluster not present in any other Rosenbergiella draft genomes. Moreover, the Rosenbergiella strains isolated from T. carbonaria grew in a minimal medium without thiamine, but R. epipactidis 2.1A was thiamine-dependent. Strain D21B was named R. meliponini D21B, reflecting its origin from stingless bees. Rosenbergiella strains may contribute to the fitness of T. carbonaria.
Collapse
Affiliation(s)
- Anthony J Farlow
- Chemical Ecology/Biological Chemistry, Department of Biology, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| | - Darshani B Rupasinghe
- Chemical Ecology/Biological Chemistry, Department of Biology, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| | - Khalid M Naji
- Chemical Ecology/Biological Chemistry, Department of Biology, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| | - Robert J Capon
- Centre for Drug Discovery, Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Road, Brisbane, QLD 4072, Australia
| | - Dieter Spiteller
- Chemical Ecology/Biological Chemistry, Department of Biology, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| |
Collapse
|
14
|
Abstract
Microbial communities are shaped by positive and negative interactions ranging from competition to mutualism. In the context of the mammalian gut and its microbial inhabitants, the integrated output of the community has important impacts on host health. Cross-feeding, the sharing of metabolites between different microbes, has emergent roles in establishing communities of gut commensals that are stable, resistant to invasion, and resilient to external perturbation. In this review, we first explore the ecological and evolutionary implications of cross-feeding as a cooperative interaction. We then survey mechanisms of cross-feeding across trophic levels, from primary fermenters to H2 consumers that scavenge the final metabolic outputs of the trophic network. We extend this analysis to also include amino acid, vitamin, and cofactor cross-feeding. Throughout, we highlight evidence for the impact of these interactions on each species' fitness as well as host health. Understanding cross-feeding illuminates an important aspect of microbe-microbe and host-microbe interactions that establishes and shapes our gut communities.
Collapse
Affiliation(s)
- Elizabeth J Culp
- Department of Microbial Pathogenesis and Microbial Sciences Institute, Yale University School of Medicine, New Haven, CT, USA
| | - Andrew L Goodman
- Department of Microbial Pathogenesis and Microbial Sciences Institute, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
15
|
Borer B, Magnúsdóttir S. The media composition as a crucial element in high-throughput metabolic network reconstruction. Interface Focus 2023; 13:20220070. [PMID: 36789238 PMCID: PMC9912011 DOI: 10.1098/rsfs.2022.0070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/11/2023] [Indexed: 02/12/2023] Open
Abstract
In recent years, metagenome-assembled genomes (MAGs) have provided glimpses into the intra- and interspecies genetic diversity and interactions that form the bases of complex microbial communities. High-throughput reconstruction of genome-scale metabolic networks (GEMs) from MAGs is a promising avenue to disentangle the myriad trophic interactions stabilizing these communities. However, high-throughput reconstruction of GEMs relies on accurate gap filling of metabolic pathways using automated algorithms. Here, we systematically explore how the composition of the media (specification of the available nutrients and metabolites) during gap filling influences the resulting GEMs concerning predicted auxotrophies for fully sequenced model organisms and environmental isolates. We expand this analysis by using 106 MAGs from the same species with differing quality. We find that although the completeness of MAGs influences the fraction of gap-filled reactions, the composition of the media plays the dominant role in the accurate prediction of auxotrophies that form the basis of myriad community interactions. We propose that constraining the media composition for gap filling through both experimental approaches and computational approaches will increase the reliability of high-throughput reconstruction of genome-scale metabolic models from MAGs and paves the way for culture independent prediction of trophic interactions in complex microbial communities.
Collapse
Affiliation(s)
- Benedict Borer
- Earth, Atmospheric and Planetary Sciences Department, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Stefanía Magnúsdóttir
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research-UFZ, Leipzig 04318, Germany
| |
Collapse
|
16
|
Abstract
As rapidly growing bacteria begin to exhaust essential nutrients, they enter a state of reduced growth, ultimately leading to stasis or quiescence. Investigation of the response to nutrient limitation has focused largely on the consequences of amino acid starvation, known as the "stringent response." Here, an uncharged tRNA in the A-site of the ribosome stimulates the ribosome-associated protein RelA to synthesize the hyperphosphorylated guanosine nucleotides (p)ppGpp that mediate a global slowdown of growth and biosynthesis. Investigations of the stringent response typically employ experimental methodologies that rapidly stimulate (p)ppGpp synthesis by abruptly increasing the fraction of uncharged tRNAs, either by explicit amino starvation or by inhibition of tRNA charging. Consequently, these methodologies inhibit protein translation, thereby interfering with the cellular pathways that respond to nutrient limitation. Thus, complete and/or rapid starvation is a problematic experimental paradigm for investigating bacterial responses to physiologically relevant nutrient-limited states.
Collapse
Affiliation(s)
- Jonathan Dworkin
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, New York, USA
| |
Collapse
|
17
|
Price M. Erroneous predictions of auxotrophies by CarveMe. Nat Ecol Evol 2023; 7:194-195. [PMID: 36471119 DOI: 10.1038/s41559-022-01936-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 10/14/2022] [Indexed: 12/12/2022]
Affiliation(s)
- Morgan Price
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Lab, Berkeley, CA, USA.
| |
Collapse
|
18
|
Carfrae LA, Brown ED. Nutrient stress is a target for new antibiotics. Trends Microbiol 2023; 31:571-585. [PMID: 36709096 DOI: 10.1016/j.tim.2023.01.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 01/28/2023]
Abstract
Novel approaches are required to address the looming threat of pan-resistant Gram-negative pathogens and forestall the rise of untreatable infections. Unconventional targets that are uniquely important during infection and tractable to high-throughput drug discovery methods hold high potential for innovation in antibiotic discovery programs. In this context, inhibitors of bacterial nutrient stress are particularly exciting candidates for future antibiotic development. Amino acid, nucleotide, and vitamin biosynthesis pathways are critical for bacterial growth in nutrient-limiting conditions in the laboratory and the host. Although historically dismissed as dispensable for pathogens, a wealth of transposon mutagenesis and single-mutant studies have emerged which demonstrate that several such pathways are critical for infection. Indeed, high-throughput screens of diverse synthetic compounds and natural products have uncovered inhibitors of nutrient biosynthesis. Herein, we review bacterial nutrient biosynthesis and its role during host infection. Further, we explore screening platforms developed to search for inhibitors of these targets and highlight successes among these. Finally, we feature important and sometimes surprising connections between bacterial nutrient biosynthesis, antibiotic activity, and antibiotic resistance.
Collapse
Affiliation(s)
- Lindsey A Carfrae
- Institute of Infectious Disease Research, McMaster University, Hamilton, Ontario, L8S 4L8, Canada; Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, L8S 4L8, Canada
| | - Eric D Brown
- Institute of Infectious Disease Research, McMaster University, Hamilton, Ontario, L8S 4L8, Canada; Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, L8S 4L8, Canada; Present address: Institute of Infectious Disease Research, McMaster University, Hamilton, Ontario, L8S 4L8, Canada.
| |
Collapse
|
19
|
Holland SI, Vázquez-Campos X, Ertan H, Edwards RJ, Manefield MJ, Lee M. Metaproteomics reveals methyltransferases implicated in dichloromethane and glycine betaine fermentation by ' Candidatus Formimonas warabiya' strain DCMF. Front Microbiol 2022; 13:1035247. [PMID: 36569084 PMCID: PMC9768040 DOI: 10.3389/fmicb.2022.1035247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/15/2022] [Indexed: 12/12/2022] Open
Abstract
Dichloromethane (DCM; CH2Cl2) is a widespread pollutant with anthropogenic and natural sources. Anaerobic DCM-dechlorinating bacteria use the Wood-Ljungdahl pathway, yet dechlorination reaction mechanisms remain unclear and the enzyme(s) responsible for carbon-chlorine bond cleavage have not been definitively identified. Of the three bacterial taxa known to carry out anaerobic dechlorination of DCM, 'Candidatus Formimonas warabiya' strain DCMF is the only organism that can also ferment non-chlorinated substrates, including quaternary amines (i.e., choline and glycine betaine) and methanol. Strain DCMF is present within enrichment culture DFE, which was derived from an organochlorine-contaminated aquifer. We utilized the metabolic versatility of strain DCMF to carry out comparative metaproteomics of cultures grown with DCM or glycine betaine. This revealed differential abundance of numerous proteins, including a methyltransferase gene cluster (the mec cassette) that was significantly more abundant during DCM degradation, as well as highly conserved amongst anaerobic DCM-degrading bacteria. This lends strong support to its involvement in DCM dechlorination. A putative glycine betaine methyltransferase was also discovered, adding to the limited knowledge about the fate of this widespread osmolyte in anoxic subsurface environments. Furthermore, the metagenome of enrichment culture DFE was assembled, resulting in five high quality and two low quality draft metagenome-assembled genomes. Metaproteogenomic analysis did not reveal any genes or proteins for utilization of DCM or glycine betaine in the cohabiting bacteria, supporting the previously held idea that they persist via necromass utilization.
Collapse
Affiliation(s)
- Sophie I. Holland
- Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW, Australia
| | - Xabier Vázquez-Campos
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Haluk Ertan
- School of Chemical Engineering, University of New South Wales, Sydney, NSW, Australia
- Department of Molecular Biology and Genetics, Istanbul University, Istanbul, Turkey
| | - Richard J. Edwards
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Michael J. Manefield
- Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW, Australia
- School of Chemical Engineering, University of New South Wales, Sydney, NSW, Australia
| | - Matthew Lee
- Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
20
|
Ryback B, Bortfeld-Miller M, Vorholt JA. Metabolic adaptation to vitamin auxotrophy by leaf-associated bacteria. THE ISME JOURNAL 2022; 16:2712-2724. [PMID: 35987782 PMCID: PMC9666465 DOI: 10.1038/s41396-022-01303-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 07/13/2022] [Accepted: 07/25/2022] [Indexed: 12/15/2022]
Abstract
Auxotrophs are unable to synthesize all the metabolites essential for their metabolism and rely on others to provide them. They have been intensively studied in laboratory-generated and -evolved mutants, but emergent adaptation mechanisms to auxotrophy have not been systematically addressed. Here, we investigated auxotrophies in bacteria isolated from Arabidopsis thaliana leaves and found that up to half of the strains have auxotrophic requirements for biotin, niacin, pantothenate and/or thiamine. We then explored the genetic basis of auxotrophy as well as traits that co-occurred with vitamin auxotrophy. We found that auxotrophic strains generally stored coenzymes with the capacity to grow exponentially for 1-3 doublings without vitamin supplementation; however, the highest observed storage was for biotin, which allowed for 9 doublings in one strain. In co-culture experiments, we demonstrated vitamin supply to auxotrophs, and found that auxotrophic strains maintained higher species richness than prototrophs upon external supplementation with vitamins. Extension of a consumer-resource model predicted that auxotrophs can utilize carbon compounds provided by other organisms, suggesting that auxotrophic strains benefit from metabolic by-products beyond vitamins.
Collapse
Affiliation(s)
- Birgitta Ryback
- grid.5801.c0000 0001 2156 2780Institute of Microbiology, ETH Zurich, 8093 Zurich, Switzerland
| | - Miriam Bortfeld-Miller
- grid.5801.c0000 0001 2156 2780Institute of Microbiology, ETH Zurich, 8093 Zurich, Switzerland
| | - Julia A. Vorholt
- grid.5801.c0000 0001 2156 2780Institute of Microbiology, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
21
|
Coevolution of Metabolic Pathways in Blattodea and Their Blattabacterium Endosymbionts, and Comparisons with Other Insect-Bacteria Symbioses. Microbiol Spectr 2022; 10:e0277922. [PMID: 36094208 PMCID: PMC9603385 DOI: 10.1128/spectrum.02779-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Many insects harbor bacterial endosymbionts that supply essential nutrients and enable their hosts to thrive on a nutritionally unbalanced diet. Comparisons of the genomes of endosymbionts and their insect hosts have revealed multiple cases of mutually-dependent metabolic pathways that require enzymes encoded in 2 genomes. Complementation of metabolic reactions at the pathway level has been described for hosts feeding on unbalanced diets, such as plant sap. However, the level of collaboration between symbionts and hosts that feed on more variable diets is largely unknown. In this study, we investigated amino acid and vitamin/cofactor biosynthetic pathways in Blattodea, which comprises cockroaches and termites, and their obligate endosymbiont Blattabacterium cuenoti (hereafter Blattabacterium). In contrast to other obligate symbiotic systems, we found no clear evidence of "collaborative pathways" for amino acid biosynthesis in the genomes of these taxa, with the exception of collaborative arginine biosynthesis in 2 taxa, Cryptocercus punctulatus and Mastotermes darwiniensis. Nevertheless, we found that several gaps specific to Blattabacterium in the folate biosynthetic pathway are likely to be complemented by their host. Comparisons with other insects revealed that, with the exception of the arginine biosynthetic pathway, collaborative pathways for essential amino acids are only observed in phloem-sap feeders. These results suggest that the host diet is an important driving factor of metabolic pathway evolution in obligate symbiotic systems. IMPORTANCE The long-term coevolution between insects and their obligate endosymbionts is accompanied by increasing levels of genome integration, sometimes to the point that metabolic pathways require enzymes encoded in two genomes, which we refer to as "collaborative pathways". To date, collaborative pathways have only been reported from sap-feeding insects. Here, we examined metabolic interactions between cockroaches, a group of detritivorous insects, and their obligate endosymbiont, Blattabacterium, and only found evidence of collaborative pathways for arginine biosynthesis. The rarity of collaborative pathways in cockroaches and Blattabacterium contrasts with their prevalence in insect hosts feeding on phloem-sap. Our results suggest that host diet is a factor affecting metabolic integration in obligate symbiotic systems.
Collapse
|
22
|
Noh S, Capodanno BJ, Xu S, Hamilton MC, Strassmann JE, Queller DC. Reduced and Nonreduced Genomes in Paraburkholderia Symbionts of Social Amoebas. mSystems 2022; 7:e0056222. [PMID: 36098425 PMCID: PMC9601139 DOI: 10.1128/msystems.00562-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 08/25/2022] [Indexed: 02/08/2023] Open
Abstract
The social amoeba Dictyostelium discoideum is a predatory soil protist frequently used for studying host-pathogen interactions. A subset of D. discoideum strains isolated from soil persistently carry symbiotic Paraburkholderia, recently formally described as P. agricolaris, P. bonniea, and P. hayleyella. The three facultative symbiont species of D. discoideum present a unique opportunity to study a naturally occurring symbiosis in a laboratory model protist. There is a large difference in genome size between P. agricolaris (8.7 million base pairs [Mbp]) versus P. hayleyella and P. bonniea (4.1 Mbp). We took a comparative genomics approach and compared the three genomes of D. discoideum symbionts to 12 additional Paraburkholderia genomes to test for genome evolution patterns that frequently accompany host adaptation. Overall, P. agricolaris is difficult to distinguish from other Paraburkholderia based on its genome size and content, but the reduced genomes of P. bonniea and P. hayleyella display characteristics indicative of genome streamlining rather than deterioration during adaptation to their protist hosts. In addition, D. discoideum-symbiont genomes have increased secretion system and motility genes that may mediate interactions with their host. Specifically, adjacent BurBor-like type 3 and T6SS-5-like type 6 secretion system operons shared among all three D. discoideum-symbiont genomes may be important for host interaction. Horizontal transfer of these secretion system operons within the amoeba host environment may have contributed to the unique ability of these symbionts to establish and maintain a symbiotic relationship with D. discoideum. IMPORTANCE Protists are a diverse group of typically single cell eukaryotes. Bacteria and archaea that form long-term symbiotic relationships with protists may evolve in additional ways than those in relationships with multicellular eukaryotes such as plants, animals, or fungi. Social amoebas are a predatory soil protist sometimes found with symbiotic bacteria living inside their cells. They present a unique opportunity to explore a naturally occurring symbiosis in a protist frequently used for studying host-pathogen interactions. We show that one amoeba-symbiont species is similar to other related bacteria in genome size and content, while the two reduced-genome-symbiont species show characteristics of genome streamlining rather than deterioration during adaptation to their host. We also identify sets of genes present in all three amoeba-symbiont genomes that are potentially used for host-symbiont interactions. Because the amoeba symbionts are distantly related, the amoeba host environment may be where these genes were shared among symbionts.
Collapse
Affiliation(s)
- Suegene Noh
- Department of Biology, Colby College, Waterville, Maine, USA
| | - Benjamin J. Capodanno
- Department of Biology, Colby College, Waterville, Maine, USA
- Brotman Baty Institute for Precision Medicine, Seattle, Washington, USA
| | - Songtao Xu
- Department of Biology, Colby College, Waterville, Maine, USA
| | - Marisa C. Hamilton
- Department of Biology, Colby College, Waterville, Maine, USA
- University Program in Genetics and Genomics, Duke University, Durham, North Carolina, USA
| | - Joan E. Strassmann
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - David C. Queller
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
23
|
Abstract
Since Jacques Monod's foundational work in the 1940s, investigators studying bacterial physiology have largely (but not exclusively) focused on the exponential phase of bacterial cultures, which is characterized by rapid growth and high biosynthesis activity in the presence of excess nutrients. However, this is not the predominant state of bacterial life. In nature, most bacteria experience nutrient limitation most of the time. In fact, investigators even prior to Monod had identified other aspects of bacterial growth, including what is now known as the stationary phase, when nutrients become limiting. This review will discuss how bacteria transition to growth arrest in response to nutrient limitation through changes in transcription, translation, and metabolism. We will then examine how these changes facilitate survival during potentially extended periods of nutrient limitation, with particular attention to the metabolic strategies that underpin bacterial longevity in this state.
Collapse
Affiliation(s)
- Jonathan Dworkin
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, NY, USA;
| | - Caroline S Harwood
- Department of Microbiology, University of Washington, Seattle, Washington, USA;
| |
Collapse
|
24
|
Du J, Yin Q, Zhou X, Guo Q, Wu G. Distribution of extracellular amino acids and their potential functions in microbial cross-feeding in anaerobic digestion systems. BIORESOURCE TECHNOLOGY 2022; 360:127535. [PMID: 35779747 DOI: 10.1016/j.biortech.2022.127535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 06/15/2023]
Abstract
Anaerobic digestion is a prevalent bioenergy production process relying on a complex network of symbiotic interactions, where the nutrient based cross-feeding is an essential microbial mechanism. Here, the cross-feeding function was assessed by analyzing extracellular polymeric substances-associated amino acids in microbial aggregates collected from 14 lab-scale anaerobic digesters, as well as deciphering their genetically biosynthetic potential by syntrophic bacteria and methanogens. The total concentration of essential amino acids ranged from 1.2 mg/g VSS to 174.0 mg/g VSS. The percentages of glutamic acid (8.5 ∼ 37.6%), lysine (2.7 ∼ 22.6%), alanine (5.6 ∼ 13.2%), and valine (3.0 ∼ 10.4%) to the total amount of detected amino acids were the highest in most samples. Through metagenomics analysis, several investigated syntrophs (i.e., Smithella, Syntrophobacter, Syntrophomonas, and Mesotoga) and methanogens (i.e., Methanothrix and Methanosarcina) were auxotrophies, but the genetic ability of syntrophs and methanogens to synthesize some essential amino acids could be complementary, implying potential cross-feeding partnership.
Collapse
Affiliation(s)
- Jin Du
- Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China
| | - Qidong Yin
- Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China
| | - Xingzhao Zhou
- Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China
| | - Qiannan Guo
- Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China
| | - Guangxue Wu
- Civil Engineering, School of Engineering, College of Science and Engineering, National University of Ireland, Galway, Galway H91 TK33, Ireland.
| |
Collapse
|
25
|
Dall’Asta M, Barbato M, Rocchetti G, Rossi F, Lucini L, Marsan PA, Colli L. Nutrigenomics: an underestimated contribution to the functional role of polyphenols. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
26
|
Murdoch RW, Chen G, Kara Murdoch F, Mack EE, Villalobos Solis MI, Hettich RL, Löffler FE. Identification and widespread environmental distribution of a gene cassette implicated in anaerobic dichloromethane degradation. GLOBAL CHANGE BIOLOGY 2022; 28:2396-2412. [PMID: 34967079 DOI: 10.1111/gcb.16068] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/25/2021] [Accepted: 12/09/2021] [Indexed: 06/14/2023]
Abstract
Anthropogenic activities and natural processes release dichloromethane (DCM, methylene chloride), a toxic chemical with substantial ozone-depleting capacity. Specialized anaerobic bacteria metabolize DCM; however, the genetic basis for this process has remained elusive. Comparative genomics of the three known anaerobic DCM-degrading bacterial species revealed a homologous gene cluster, designated the methylene chloride catabolism (mec) gene cassette, comprising 8-10 genes encoding proteins with 79.6%-99.7% amino acid identities. Functional annotation identified genes encoding a corrinoid-dependent methyltransferase system, and shotgun proteomics applied to two DCM-catabolizing cultures revealed high expression of proteins encoded on the mec gene cluster during anaerobic growth with DCM. In a DCM-contaminated groundwater plume, the abundance of mec genes strongly correlated with DCM concentrations (R2 = 0.71-0.85) indicating their potential value as process-specific bioremediation biomarkers. mec gene clusters were identified in metagenomes representing peat bogs, the deep subsurface, and marine ecosystems including oxygen minimum zones (OMZs), suggesting a capacity for DCM degradation in diverse habitats. The broad distribution of anaerobic DCM catabolic potential infers a role for DCM as an energy source in various environmental systems, and implies that the global DCM flux (i.e., the rate of formation minus the rate of consumption) might be greater than emission measurements suggest.
Collapse
Affiliation(s)
- Robert W Murdoch
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, Tennessee, USA
| | - Gao Chen
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, Tennessee, USA
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, Tennessee, USA
| | - Fadime Kara Murdoch
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, Tennessee, USA
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - E Erin Mack
- Corteva Environmental Remediation, Corteva Agriscience, Wilmington, Delaware, USA
| | | | - Robert L Hettich
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Frank E Löffler
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, Tennessee, USA
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, Tennessee, USA
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
- Department of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, Tennessee, USA
| |
Collapse
|
27
|
Ashniev GA, Petrov SN, Iablokov SN, Rodionov DA. Genomics-Based Reconstruction and Predictive Profiling of Amino Acid Biosynthesis in the Human Gut Microbiome. Microorganisms 2022; 10:740. [PMID: 35456791 PMCID: PMC9026213 DOI: 10.3390/microorganisms10040740] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/21/2022] [Accepted: 03/26/2022] [Indexed: 12/13/2022] Open
Abstract
The human gut microbiota (HGM) have an impact on host health and disease. Amino acids are building blocks of proteins and peptides, also serving as precursors of many essential metabolites including nucleotides, cofactors, etc. Many HGM community members are unable to synthesize some amino acids (auxotrophs), while other members possess complete biosynthetic pathways for these nutrients (prototrophs). Metabolite exchange between auxotrophs and prototrophs affects microbial community structure. Previous studies of amino acid biosynthetic phenotypes were limited to model species or narrow taxonomic groups of bacteria. We analyzed over 2800 genomes representing 823 cultured HGM species with the aim to reconstruct biosynthetic pathways for proteinogenic amino acids. The genome context analysis of incomplete pathway variants allowed us to identify new potential enzyme variants in amino acid biosynthetic pathways. We further classified the studied organisms with respect to their pathway variants and inferred their prototrophic vs. auxotrophic phenotypes. A cross-species comparison was applied to assess the extent of conservation of the assigned phenotypes at distinct taxonomic levels. The obtained reference collection of binary metabolic phenotypes was used for predictive metabolic profiling of HGM samples from several large metagenomic datasets. The established approach for metabolic phenotype profiling will be useful for prediction of overall metabolic properties, interactions, and responses of HGM microbiomes as a function of dietary variations, dysbiosis and other perturbations.
Collapse
Affiliation(s)
- German A. Ashniev
- A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, 127994 Moscow, Russia; (G.A.A.); (S.N.I.)
| | - Sergey N. Petrov
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia;
| | - Stanislav N. Iablokov
- A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, 127994 Moscow, Russia; (G.A.A.); (S.N.I.)
| | - Dmitry A. Rodionov
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| |
Collapse
|
28
|
Biofilm modulatory response of arginine-fluoride varnish on multi-species biofilm. J Dent 2022; 122:104096. [DOI: 10.1016/j.jdent.2022.104096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/09/2022] [Accepted: 03/15/2022] [Indexed: 11/20/2022] Open
|
29
|
Noto Guillen M, Rosener B, Sayin S, Mitchell A. Assembling stable syntrophic Escherichia coli communities by comprehensively identifying beneficiaries of secreted goods. Cell Syst 2021; 12:1064-1078.e7. [PMID: 34469744 PMCID: PMC8602757 DOI: 10.1016/j.cels.2021.08.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 05/18/2021] [Accepted: 08/03/2021] [Indexed: 11/16/2022]
Abstract
Metabolic cross-feeding frequently underlies mutualistic relationships in natural microbial communities and is often exploited to assemble synthetic microbial consortia. We systematically identified all single-gene knockouts suitable for imposing cross-feeding in Escherichia coli and used this information to assemble syntrophic communities. Most strains benefiting from shared goods were dysfunctional in biosynthesis of amino acids, nucleotides, and vitamins or mutants in central carbon metabolism. We tested cross-feeding potency in 1,444 strain pairs and mapped the interaction network between all functional groups of mutants. This network revealed that auxotrophs for vitamins are optimal cooperators. Lastly, we monitored how assemblies composed of dozens of auxotrophs change over time and observed that they rapidly and repeatedly coalesced to seven strain consortia composed primarily from vitamin auxotrophs. The composition of emerging consortia suggests that they were stabilized by multiple cross-feeding interactions. We conclude that vitamins are ideal shared goods since they optimize consortium growth while still imposing member co-dependence.
Collapse
Affiliation(s)
- Mariana Noto Guillen
- Program in Systems Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Brittany Rosener
- Program in Systems Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Serkan Sayin
- Program in Systems Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Amir Mitchell
- Program in Systems Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA; Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01655, USA; Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA.
| |
Collapse
|
30
|
Matsumoto K, Sakami T, Watanabe T, Taniuchi Y, Kuwata A, Kakehi S, Engkong T, Igarashi Y, Kinoshita S, Asakawa S, Hattori M, Watabe S, Ishino Y, Kobayashi T, Gojobori T, Ikeo K. Metagenomic analysis provides functional insights into seasonal change of a non-cyanobacterial prokaryotic community in temperate coastal waters. PLoS One 2021; 16:e0257862. [PMID: 34637433 PMCID: PMC8509957 DOI: 10.1371/journal.pone.0257862] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 09/14/2021] [Indexed: 12/05/2022] Open
Abstract
The taxonomic compositions of marine prokaryotic communities are known to follow seasonal cycles, but functional metagenomic insights into this seasonality is still limited. We analyzed a total of 22 metagenomes collected at 11 time points over a 14-month period from two sites in Sendai Bay, Japan to obtain seasonal snapshots of predicted functional profiles of the non-cyanobacterial prokaryotic community. Along with taxonomic composition, functional gene composition varied seasonally and was related to chlorophyll a concentration, water temperature, and salinity. Spring phytoplankton bloom stimulated increased abundances of putative genes that encode enzymes in amino acid metabolism pathways. Several groups of functional genes, including those related to signal transduction and cellular communication, increased in abundance during the mid- to post-bloom period, which seemed to be associated with a particle-attached lifestyle. Alternatively, genes in carbon metabolism pathways were generally more abundant in the low chlorophyll a period than the bloom period. These results indicate that changes in trophic condition associated with seasonal phytoplankton succession altered the community function of prokaryotes. Our findings on seasonal changes of predicted function provide fundamental information for future research on the mechanisms that shape marine microbial communities.
Collapse
Affiliation(s)
- Kaoru Matsumoto
- Department of Genomics and Evolutionary Biology, National Institute of Genetics, Mishima, Shizuoka, Japan
- * E-mail: (KM); (KI)
| | - Tomoko Sakami
- Tohoku National Fisheries Research Institute, Japan Fisheries Research and Education Agency, Shiogama, Miyagi, Japan
| | - Tsuyoshi Watanabe
- Tohoku National Fisheries Research Institute, Japan Fisheries Research and Education Agency, Shiogama, Miyagi, Japan
| | - Yukiko Taniuchi
- Hokkaido National Fisheries Research Institute, Japan Fisheries Research and Education Agency, Kushiro, Hokkaido, Japan
| | - Akira Kuwata
- Tohoku National Fisheries Research Institute, Japan Fisheries Research and Education Agency, Shiogama, Miyagi, Japan
| | - Shigeho Kakehi
- Tohoku National Fisheries Research Institute, Japan Fisheries Research and Education Agency, Shiogama, Miyagi, Japan
| | - Tan Engkong
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Yoji Igarashi
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Shigeharu Kinoshita
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Shuichi Asakawa
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Masahira Hattori
- Graduate School of Advanced Science and Engineering, Waseda University, Shinjuku, Tokyo, Japan
| | - Shugo Watabe
- School of Marine Biosciences, Kitasato University, Sagamihara, Kanagawa, Japan
| | - Yoshizumi Ishino
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Fukuoka, Japan
| | - Takanori Kobayashi
- National Research Institute of Fisheries Science, Japan Fisheries Research and Education Agency, Yokohama, Kanagawa, Japan
| | - Takashi Gojobori
- Department of Genomics and Evolutionary Biology, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Kazuho Ikeo
- Department of Genomics and Evolutionary Biology, National Institute of Genetics, Mishima, Shizuoka, Japan
- * E-mail: (KM); (KI)
| |
Collapse
|
31
|
Yao J, Zeng Y, Wang M, Tang YQ. Energy Availability Determines Strategy of Microbial Amino Acid Synthesis in Volatile Fatty Acid-Fed Anaerobic Methanogenic Chemostats. Front Microbiol 2021; 12:744834. [PMID: 34671332 PMCID: PMC8521154 DOI: 10.3389/fmicb.2021.744834] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 08/30/2021] [Indexed: 12/03/2022] Open
Abstract
In natural communities, microbes exchange a variety of metabolites (public goods) with each other, which drives the evolution of auxotroph and shapes interdependent patterns at community-level. However, factors that determine the strategy of public goods synthesis for a given community member still remains to be elucidated. In anaerobic methanogenic communities, energy availability of different community members is largely varied. We hypothesized that this uneven energy availability contributed to the heterogeneity of public goods synthesis ability among the members in these communities. We tested this hypothesis by analyzing the synthetic strategy of amino acids of the bacterial and archaeal members involved in four previously enriched anaerobic methanogenic communities residing in thermophilic chemostats. Our analyses indicate that most of the members in the communities did not possess ability to synthesize all the essential amino acids, suggesting they exchanged these essential public goods to establish interdependent patterns for survival. Importantly, we found that the amino acid synthesis ability of a functional group was largely determined by how much energy it could obtain from its metabolism in the given environmental condition. Moreover, members within a functional group also possessed different amino acid synthesis abilities, which are related to their features of energy metabolism. Our study reveals that energy availability is a key driver of microbial evolution in presence of metabolic specialization at community level and suggests the feasibility of managing anaerobic methanogenic communities for better performance through controlling the metabolic interactions involved.
Collapse
Affiliation(s)
| | | | - Miaoxiao Wang
- College of Architecture and Environment, Sichuan University, Chengdu, China
| | - Yue-Qin Tang
- College of Architecture and Environment, Sichuan University, Chengdu, China
| |
Collapse
|
32
|
Méndez-Salazar EO, Martínez-Nava GA. Uric acid extrarenal excretion: the gut microbiome as an evident yet understated factor in gout development. Rheumatol Int 2021; 42:403-412. [PMID: 34586473 DOI: 10.1007/s00296-021-05007-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 09/19/2021] [Indexed: 12/19/2022]
Abstract
Humans do not produce uricase, an enzyme responsible for degrading uric acid. However, some bacteria residing in the gut can degrade one-third of the dietary and endogenous uric acid generated daily. New insights based on metagenomic and metabolomic approaches provide a new interest in exploring the involvement of gut microbiota in gout. Nevertheless, the exact mechanisms underlying this association are complex and have not been widely discussed. In this study, we aimed to review the evidence that suggests uric acid extrarenal excretion and gut microbiome are potential risk factors for developing gout. A literature search was performed in PubMed, Web of Science, and Google Scholar using several keywords, including "gut microbiome AND gout". A remarkable intestinal dysbiosis and shifts in abundance of certain bacterial taxa in gout patients have been consistently reported among different studies. Under this condition, bacteria might have developed adaptive mechanisms for de novo biosynthesis and salvage of purines, and thus, a concomitant alteration in uric acid metabolism. Moreover, gut microbiota can produce substrates that might cross the portal vein so the liver can generate de novo purinogenic amino acids, as well as uric acid. Therefore, the extrarenal excretion of uric acid needs to be considered as a factor in gout development. Nevertheless, further studies are needed to fully understand the role of gut microbiome in uric acid production and its extrarenal excretion, and to point out possible bacteria or bacterial enzymes that could be used as probiotic coadjutant treatment in gout patients.
Collapse
Affiliation(s)
| | - Gabriela Angélica Martínez-Nava
- Laboratorio de Líquido Sinovial, Instituto Nacional de Rehabilitación "Luis Guillermo Ibarra Ibarra", Calzada México-Xochimilco 289, Arenal de Guadalupe, 14389, Mexico City, Mexico.
| |
Collapse
|
33
|
Basher ARMA, Mclaughlin RJ, Hallam SJ. Metabolic Pathway Prediction Using Non-Negative Matrix Factorization with Improved Precision. J Comput Biol 2021; 28:1075-1103. [PMID: 34520674 DOI: 10.1089/cmb.2021.0258] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Machine learning provides a probabilistic framework for metabolic pathway inference from genomic sequence information at different levels of complexity and completion. However, several challenges, including pathway features engineering, multiple mapping of enzymatic reactions, and emergent or distributed metabolism within populations or communities of cells, can limit prediction performance. In this article, we present triUMPF (triple non-negative matrix factorization [NMF] with community detection for metabolic pathway inference), which combines three stages of NMF to capture myriad relationships between enzymes and pathways within a graph network. This is followed by community detection to extract a higher-order structure based on the clustering of vertices that share similar statistical properties. We evaluated triUMPF performance by using experimental datasets manifesting diverse multi-label properties, including Tier 1 genomes from the BioCyc collection of organismal Pathway/Genome Databases and low complexity microbial communities. Resulting performance metrics equaled or exceeded other prediction methods on organismal genomes with improved precision on multi-organismal datasets.
Collapse
Affiliation(s)
- Abdur Rahman M A Basher
- Graduate Program in Bioinformatics, University of British Columbia, Genome Sciences Centre, Vancouver, British Columbia, Canada
| | - Ryan J Mclaughlin
- Graduate Program in Bioinformatics, University of British Columbia, Genome Sciences Centre, Vancouver, British Columbia, Canada
| | - Steven J Hallam
- Graduate Program in Bioinformatics, University of British Columbia, Genome Sciences Centre, Vancouver, British Columbia, Canada.,Department of Microbiology & Immunology, University of British Columbia, Vancouver, British Columbia, Canada.,Genome Science and Technology Program, University of British Columbia, Vancouver, British Columbia, Canada.,Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada.,ECOSCOPE Training Program, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
34
|
Bernstein DB, Sulheim S, Almaas E, Segrè D. Addressing uncertainty in genome-scale metabolic model reconstruction and analysis. Genome Biol 2021; 22:64. [PMID: 33602294 PMCID: PMC7890832 DOI: 10.1186/s13059-021-02289-z] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 02/04/2021] [Indexed: 02/07/2023] Open
Abstract
The reconstruction and analysis of genome-scale metabolic models constitutes a powerful systems biology approach, with applications ranging from basic understanding of genotype-phenotype mapping to solving biomedical and environmental problems. However, the biological insight obtained from these models is limited by multiple heterogeneous sources of uncertainty, which are often difficult to quantify. Here we review the major sources of uncertainty and survey existing approaches developed for representing and addressing them. A unified formal characterization of these uncertainties through probabilistic approaches and ensemble modeling will facilitate convergence towards consistent reconstruction pipelines, improved data integration algorithms, and more accurate assessment of predictive capacity.
Collapse
Affiliation(s)
- David B Bernstein
- Department of Biomedical Engineering and Biological Design Center, Boston University, Boston, MA, USA
| | - Snorre Sulheim
- Bioinformatics Program, Boston University, Boston, MA, USA
- Department of Biotechnology and Food Science, NTNU - Norwegian University of Science and Technology, Trondheim, Norway
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Trondheim, Norway
| | - Eivind Almaas
- Department of Biotechnology and Food Science, NTNU - Norwegian University of Science and Technology, Trondheim, Norway
- K.G. Jebsen Center for Genetic Epidemiology, NTNU - Norwegian University of Science and Technology, Trondheim, Norway
| | - Daniel Segrè
- Department of Biomedical Engineering and Biological Design Center, Boston University, Boston, MA, USA.
- Bioinformatics Program, Boston University, Boston, MA, USA.
- Department of Biology and Department of Physics, Boston University, Boston, MA, USA.
| |
Collapse
|
35
|
Wang Y, Liao S, Gai Y, Liu G, Jin T, Liu H, Gram L, Strube ML, Fan G, Sahu SK, Liu S, Gan S, Xie Z, Kong L, Zhang P, Liu X, Wang DZ. Metagenomic Analysis Reveals Microbial Community Structure and Metabolic Potential for Nitrogen Acquisition in the Oligotrophic Surface Water of the Indian Ocean. Front Microbiol 2021; 12:518865. [PMID: 33679623 PMCID: PMC7935530 DOI: 10.3389/fmicb.2021.518865] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 01/25/2021] [Indexed: 11/19/2022] Open
Abstract
Despite being the world’s third largest ocean, the Indian Ocean is one of the least studied and understood with respect to microbial diversity as well as biogeochemical and ecological functions. In this study, we investigated the microbial community and its metabolic potential for nitrogen (N) acquisition in the oligotrophic surface waters of the Indian Ocean using a metagenomic approach. Proteobacteria and Cyanobacteria dominated the microbial community with an average 37.85 and 23.56% of relative abundance, respectively, followed by Bacteroidetes (3.73%), Actinobacteria (1.69%), Firmicutes (0.76%), Verrucomicrobia (0.36%), and Planctomycetes (0.31%). Overall, only 24.3% of functional genes were common among all sampling stations indicating a high level of gene diversity. However, the presence of 82.6% common KEGG Orthology (KOs) in all samples showed high functional redundancy across the Indian Ocean. Temperature, phosphate, silicate and pH were important environmental factors regulating the microbial distribution in the Indian Ocean. The cyanobacterial genus Prochlorococcus was abundant with an average 17.4% of relative abundance in the surface waters, and while 54 Prochlorococcus genomes were detected, 53 were grouped mainly within HLII clade. In total, 179 of 234 Prochlorococcus sequences extracted from the global ocean dataset were clustered into HL clades and exhibited less divergence, but 55 sequences of LL clades presented more divergence exhibiting different branch length. The genes encoding enzymes related to ammonia metabolism, such as urease, glutamate dehydrogenase, ammonia transporter, and nitrilase presented higher abundances than the genes involved in inorganic N assimilation in both microbial community and metagenomic Prochlorococcus population. Furthermore, genes associated with dissimilatory nitrate reduction, denitrification, nitrogen fixation, nitrification and anammox were absent in metagenome Prochlorococcus population, i.e., nitrogenase and nitrate reductase. Notably, the de novo biosynthesis pathways of six different amino acids were incomplete in the metagenomic Prochlorococcus population and Prochlorococcus genomes, suggesting compensatory uptake of these amino acids from the environment. These results reveal the features of the taxonomic and functional structure of the Indian Ocean microbiome and their adaptive strategies to ambient N deficiency in the oligotrophic ocean.
Collapse
Affiliation(s)
- Yayu Wang
- BGI-Shenzhen, Shenzhen, China.,Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Shuilin Liao
- BGI-Shenzhen, Shenzhen, China.,BGI Education Center, University of Chinese Academy of Sciences, Beijing, China
| | - Yingbao Gai
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen, China.,Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Guilin Liu
- BGI-Qingdao, BGI-Shenzhen, Qingdao, China
| | - Tao Jin
- BGI-Qingdao, BGI-Shenzhen, Qingdao, China
| | - Huan Liu
- BGI-Shenzhen, Shenzhen, China.,State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
| | - Lone Gram
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Mikael Lenz Strube
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | - Sunil Kumar Sahu
- BGI-Shenzhen, Shenzhen, China.,State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
| | | | | | - Zhangxian Xie
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Lingfen Kong
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | | | - Xin Liu
- BGI-Shenzhen, Shenzhen, China.,State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
| | - Da-Zhi Wang
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen, China
| |
Collapse
|
36
|
Price MN, Deutschbauer AM, Arkin AP. Four families of folate-independent methionine synthases. PLoS Genet 2021; 17:e1009342. [PMID: 33534785 PMCID: PMC7857596 DOI: 10.1371/journal.pgen.1009342] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 01/05/2021] [Indexed: 11/29/2022] Open
Abstract
Although most organisms synthesize methionine from homocysteine and methyl folates, some have “core” methionine synthases that lack folate-binding domains and use other methyl donors. In vitro, the characterized core synthases use methylcobalamin as a methyl donor, but in vivo, they probably rely on corrinoid (vitamin B12-binding) proteins. We identified four families of core methionine synthases that are distantly related to each other (under 30% pairwise amino acid identity). From the characterized enzymes, we identified the families MesA, which is found in methanogens, and MesB, which is found in anaerobic bacteria and archaea with the Wood-Ljungdahl pathway. A third uncharacterized family, MesC, is found in anaerobic archaea that have the Wood-Ljungdahl pathway and lack known forms of methionine synthase. We predict that most members of the MesB and MesC families accept methyl groups from the iron-sulfur corrinoid protein of that pathway. The fourth family, MesD, is found only in aerobic bacteria. Using transposon mutants and complementation, we show that MesD does not require 5-methyltetrahydrofolate or cobalamin. Instead, MesD requires an uncharacterized protein family (DUF1852) and oxygen for activity. Methionine is one of the amino acids that make up proteins, and the final step in methionine synthesis is the transfer of a methyl group. In most organisms, the methyl group is obtained from methyl folates, but some anaerobic bacteria and archaea are thought to use corrinoid (vitamin B12-binding) proteins instead. By analyzing the sequences of the potential methionine synthases across the genomes of diverse bacteria and archaea, we identified four families of folate-independent methionine synthases. For three of these families, we can use co-occurrence with corrinoid proteins to predict their likely partners. We show that the fourth family does not require vitamin B12; instead, it obtains methyl groups from an oxygen-dependent partner protein. Our results will help us understand the growth requirements of diverse bacteria and archaea.
Collapse
Affiliation(s)
- Morgan N. Price
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Lab, Berkeley, California, United States of America
- * E-mail: (MNP); (APA)
| | - Adam M. Deutschbauer
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Lab, Berkeley, California, United States of America
| | - Adam P. Arkin
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Lab, Berkeley, California, United States of America
- Department of Bioengineering, University of California, Berkeley, California, United States of America
- * E-mail: (MNP); (APA)
| |
Collapse
|
37
|
Abstract
There is growing interest in the use of associative, plant growth-promoting bacteria (PGPB) as biofertilizers to serve as a sustainable alternative for agriculture application. While a variety of mechanisms have been proposed to explain bacterial plant growth promotion, the molecular details of this process remain unclear. The plant rhizosphere harbors a diverse population of microorganisms, including beneficial plant growth-promoting bacteria (PGPB), that colonize plant roots and enhance growth and productivity. In order to specifically define bacterial traits that contribute to this beneficial interaction, we used high-throughput transposon mutagenesis sequencing (TnSeq) in two model root-bacterium systems associated with Setaria viridis: Azoarcus olearius DQS4T and Herbaspirillum seropedicae SmR1. This approach identified ∼100 significant genes for each bacterium that appeared to confer a competitive advantage for root colonization. Most of the genes identified specifically in A. olearius encoded metabolism functions, whereas genes identified in H. seropedicae were motility related, suggesting that each strain requires unique functions for competitive root colonization. Genes were experimentally validated by site-directed mutagenesis, followed by inoculation of the mutated bacteria onto S. viridis roots individually, as well as in competition with the wild-type strain. The results identify key bacterial functions involved in iron uptake, polyhydroxybutyrate metabolism, and regulation of aromatic metabolism as important for root colonization. The hope is that by improving our understanding of the molecular mechanisms used by PGPB to colonize plants, we can increase the adoption of these bacteria in agriculture to improve the sustainability of modern cropping systems.
Collapse
|
38
|
Johnson WM, Alexander H, Bier RL, Miller DR, Muscarella ME, Pitz KJ, Smith H. Auxotrophic interactions: a stabilizing attribute of aquatic microbial communities? FEMS Microbiol Ecol 2020; 96:fiaa115. [PMID: 32520336 PMCID: PMC7609354 DOI: 10.1093/femsec/fiaa115] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 06/09/2020] [Indexed: 11/14/2022] Open
Abstract
Auxotrophy, or an organism's requirement for an exogenous source of an organic molecule, is widespread throughout species and ecosystems. Auxotrophy can result in obligate interactions between organisms, influencing ecosystem structure and community composition. We explore how auxotrophy-induced interactions between aquatic microorganisms affect microbial community structure and stability. While some studies have documented auxotrophy in aquatic microorganisms, these studies are not widespread, and we therefore do not know the full extent of auxotrophic interactions in aquatic environments. Current theoretical and experimental work suggests that auxotrophy links microbial community members through a complex web of metabolic dependencies. We discuss the proposed ways in which auxotrophy may enhance or undermine the stability of aquatic microbial communities, highlighting areas where our limited understanding of these interactions prevents us from being able to predict the ecological implications of auxotrophy. Finally, we examine an example of auxotrophy in harmful algal blooms to place this often theoretical discussion in a field context where auxotrophy may have implications for the development and robustness of algal bloom communities. We seek to draw attention to the relationship between auxotrophy and community stability in an effort to encourage further field and theoretical work that explores the underlying principles of microbial interactions.
Collapse
Affiliation(s)
- Winifred M Johnson
- MIT/WHOI Joint Program in Oceanography/Applied Ocean Sciences and Engineering, Department of Marine Chemistry & Geochemistry, Woods Hole Oceanographic Institution, 266 Woods Hole Road, Woods Hole, MA 02543, USA
| | - Harriet Alexander
- Biology Department, Woods Hole Oceanographic Institution, 266 Woods Hole Road, Woods Hole, MA 02543, USA
| | - Raven L Bier
- Stroud Water Research Center, 970 Spencer Rd., Avondale, PA 19311, USA
| | - Dan R Miller
- PureMagic LTD, Rambam 67, Yad Rambam 9979300, Israel
| | - Mario E Muscarella
- Department of Plant Biology, University of Illinois, 505 South Goodwin Avenue, Urbana, IL, 61801, USA
| | - Kathleen J Pitz
- Monterey Bay Aquarium Research Institute, 7700 Sandholdt Road, Moss Landing, CA 95039, USA
| | - Heidi Smith
- Center for Biofilm Engineering, Department of Microbiology and Immunology, Montana State University, 366 Barnard Hall, Bozeman, MT 59717, USA
| |
Collapse
|
39
|
Efficient System Wide Metabolic Pathway Comparisons in Multiple Microbes Using Genome to KEGG Orthology (G2KO) Pipeline Tool. Interdiscip Sci 2020; 12:311-322. [PMID: 32632821 DOI: 10.1007/s12539-020-00375-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 05/17/2020] [Accepted: 05/25/2020] [Indexed: 12/29/2022]
Abstract
Comparison of system-wide metabolic pathways among microbes provides valuable insights of organisms' metabolic capabilities that can further assist in rationally screening organisms in silico for various applications. In this work, we present a much needed, efficient and user-friendly Genome to KEGG Orthology (G2KO) pipeline tool that facilitates efficient comparison of system wide metabolic networks of multiple organisms simultaneously. The optimized strategy primarily involves automatic retrieval of the KEGG Orthology (KO) identifiers of user defined organisms from the KEGG database followed by overlaying and visualization of the metabolic genes using the KEGG Mapper reconstruct pathway tool. We demonstrate the applicability of G2KO via two case studies in which we processed 24,314 genes across 15 organisms, mapped on to 530 reference pathways in KEGG, while focusing on pathways of interest. First, an in-silico designing of synthetic microbial consortia towards bioprocessing of cellulose to valuable products by comparing the cellulose degradation and fermentative pathways of microbes was undertaken. Second, we comprehensively compared the amino acid biosynthetic pathways of multiple microbes and demonstrated the potential of G2KO as an efficient tool for metabolic studies. We envisage the tool will find immensely useful to the metabolic engineers as well as systems biologists. The tool's web-server, along with tutorial is publicly available at https://faculty.iitmandi.ac.in/~shyam/tools/g2ko/g2ko.cgi . Also, standalone tool can be downloaded freely from https://sourceforge.net/projects/g2ko/ , and from the supplementary.
Collapse
|
40
|
Takeuchi M, Kuwahara H, Murakami T, Takahashi K, Kajitani R, Toyoda A, Itoh T, Ohkuma M, Hongoh Y. Parallel reductive genome evolution in Desulfovibrio ectosymbionts independently acquired by Trichonympha protists in the termite gut. THE ISME JOURNAL 2020; 14:2288-2301. [PMID: 32483307 PMCID: PMC7608387 DOI: 10.1038/s41396-020-0688-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 05/13/2020] [Accepted: 05/21/2020] [Indexed: 12/13/2022]
Abstract
Several Trichonympha protist species in the termite gut have independently acquired Desulfovibrio ectosymbionts in apparently different stages of symbiosis. Here, we obtained the near-complete genome sequence of Desulfovibrio phylotype ZnDsv-02, which attaches to the surface of Trichonympha collaris cells, and compared it with a previously obtained genome sequence of 'Candidatus Desulfovibrio trichonymphae' phylotype Rs-N31, which is almost completely embedded in the cytoplasm of Trichonympha agilis. Single-nucleotide polymorphism analysis indicated that although Rs-N31 is almost clonal, the ZnDsv-02 population on a single host cell is heterogeneous. Despite these differences, the genome of ZnDsv-02 has been reduced to 1.6 Mb, which is comparable to that of Rs-N31 (1.4 Mb), but unlike other known ectosymbionts of protists with a genome similar in size to their free-living relatives. Except for the presence of a lactate utilization pathway, cell-adhesion components and anti-phage defense systems in ZnDsv-02, the overall gene-loss pattern between the two genomes is very similar, including the loss of genes responsive to environmental changes. Our study suggests that genome reduction can occur in ectosymbionts, even when they can be transmitted horizontally and obtain genes via lateral transfer, and that the symbiont genome size depends heavily on their role in the symbiotic system.
Collapse
Affiliation(s)
- Mariko Takeuchi
- School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, 152-8550, Japan
| | - Hirokazu Kuwahara
- School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, 152-8550, Japan.
| | - Takumi Murakami
- School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, 152-8550, Japan
- Department of Informatics, National Institute of Genetics, Shizuoka, 411-8540, Japan
- Advanced Genomics Center, National Institute of Genetics, Shizuoka, 411-8540, Japan
| | - Kazuki Takahashi
- School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, 152-8550, Japan
| | - Rei Kajitani
- School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, 152-8550, Japan
| | - Atsushi Toyoda
- Advanced Genomics Center, National Institute of Genetics, Shizuoka, 411-8540, Japan
- Department of Genomics and Evolutionary Biology, National Institute of Genetics, Shizuoka, 411-8540, Japan
| | - Takehiko Itoh
- School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, 152-8550, Japan
| | - Moriya Ohkuma
- Japan Collection of Microorganisms, RIKEN BioResource Research Center, Tsukuba, 305-0074, Japan
| | - Yuichi Hongoh
- School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, 152-8550, Japan.
- Japan Collection of Microorganisms, RIKEN BioResource Research Center, Tsukuba, 305-0074, Japan.
| |
Collapse
|
41
|
Soto-Martin EC, Warnke I, Farquharson FM, Christodoulou M, Horgan G, Derrien M, Faurie JM, Flint HJ, Duncan SH, Louis P. Vitamin Biosynthesis by Human Gut Butyrate-Producing Bacteria and Cross-Feeding in Synthetic Microbial Communities. mBio 2020; 11:e00886-20. [PMID: 32665271 PMCID: PMC7360928 DOI: 10.1128/mbio.00886-20] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 06/15/2020] [Indexed: 01/14/2023] Open
Abstract
We investigated the requirement of 15 human butyrate-producing gut bacterial strains for eight B vitamins and the proteinogenic amino acids by a combination of genome sequence analysis and in vitro growth experiments. The Ruminococcaceae species Faecalibacterium prausnitzii and Subdoligranulum variabile were auxotrophic for most of the vitamins and the amino acid tryptophan. Within the Lachnospiraceae, most species were prototrophic for all amino acids and several vitamins, but biotin auxotrophy was widespread. In addition, most of the strains belonging to Eubacterium rectale and Roseburia spp., but few of the other Lachnospiraceae strains, were auxotrophic for thiamine and folate. Synthetic coculture experiments of five thiamine or folate auxotrophic strains with different prototrophic bacteria in the absence and presence of different vitamin concentrations were carried out. This demonstrated that cross-feeding between bacteria does take place and revealed differences in cross-feeding efficiency between prototrophic strains. Vitamin-independent growth stimulation in coculture compared to monococulture was also observed, in particular for F. prausnitzii A2-165, suggesting that it benefits from the provision of other growth factors from community members. The presence of multiple vitamin auxotrophies in the most abundant butyrate-producing Firmicutes species found in the healthy human colon indicates that these bacteria depend upon vitamins supplied from the diet or via cross-feeding from other members of the microbial community.IMPORTANCE Microbes in the intestinal tract have a strong influence on human health. Their fermentation of dietary nondigestible carbohydrates leads to the formation of health-promoting short-chain fatty acids, including butyrate, which is the main fuel for the colonic wall and has anticarcinogenic and anti-inflammatory properties. A good understanding of the growth requirements of butyrate-producing bacteria is important for the development of efficient strategies to promote these microbes in the gut, especially in cases where their abundance is altered. The demonstration of the inability of several dominant butyrate producers to grow in the absence of certain vitamins confirms the results of previous in silico analyses. Furthermore, establishing that strains prototrophic for thiamine or folate (butyrate producers and non-butyrate producers) were able to stimulate growth and affect the composition of auxotrophic synthetic communities suggests that the provision of prototrophic bacteria that are efficient cross feeders may stimulate butyrate-producing bacteria under certain in vivo conditions.
Collapse
Affiliation(s)
- Eva C Soto-Martin
- The Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen, United Kingdom
| | - Ines Warnke
- The Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen, United Kingdom
| | - Freda M Farquharson
- The Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen, United Kingdom
| | | | - Graham Horgan
- Biomathematics & Statistics Scotland, Aberdeen, United Kingdom
| | | | | | - Harry J Flint
- The Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen, United Kingdom
| | - Sylvia H Duncan
- The Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen, United Kingdom
| | - Petra Louis
- The Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen, United Kingdom
| |
Collapse
|
42
|
Globally Abundant " Candidatus Udaeobacter" Benefits from Release of Antibiotics in Soil and Potentially Performs Trace Gas Scavenging. mSphere 2020; 5:5/4/e00186-20. [PMID: 32641424 PMCID: PMC7343977 DOI: 10.1128/msphere.00186-20] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Verrucomicrobia affiliated with "Candidatus Udaeobacter" belong to the most abundant soil bacteria worldwide. Although the synthesis of antibiotics presumably evolved in soil, and environmental pollution with antimicrobials increases, the impact of these complex molecules on "Ca Udaeobacter" remains to be elucidated. In this study, we demonstrate that "Ca. Udaeobacter" representatives residing in grassland as well as forest soil ecosystems show multidrug resistance and even take advantage of antibiotics release. Soils treated with up to six different antibiotics exhibited a higher "Ca. Udaeobacter" abundance than corresponding controls after 3, 8, and 20 days of incubation. In this context, we provide evidence that "Ca. Udaeobacter" representatives may utilize nutrients which are released due to antibiotic-driven lysis of other soil microbes and thereby reduce energetically expensive synthesis of required biomolecules. Moreover, genomic analysis revealed the presence of genes conferring resistance to multiple classes of antibiotics and indicated that "Ca. Udaeobacter" representatives most likely oxidize the trace gas H2 to generate energy. This energy might be required for long-term persistence in terrestrial habitats, as already suggested for other dominant soil bacteria. Our study illustrates, for the first time, that globally abundant "Ca. Udaeobacter" benefits from release of antibiotics, which confers advantages over other soil bacteria and represents a so-far overlooked fundamental lifestyle feature of this poorly characterized verrucomicrobial genus. Furthermore, our study suggests that "Ca. Udaeobacter" representatives can utilize H2 as an alternative electron donor.IMPORTANCE Soil bacteria have been investigated for more than a century, but one of the most dominant terrestrial groups on Earth, "Candidatus Udaeobacter," remains elusive and largely unexplored. Its natural habitat is considered a major reservoir of antibiotics, which directly or indirectly impact phylogenetically diverse microorganisms. Here, we found that "Ca. Udaeobacter" representatives exhibit multidrug resistance and not only evade harmful effects of antimicrobials but even benefit from antibiotic pressure in soil. Therefore, "Ca. Udaeobacter" evidently affects the composition of soil resistomes worldwide and might represent a winner of rising environmental pollution with antimicrobials. In addition, our study indicates that "Ca. Udaeobacter" representatives utilize H2 and thereby contribute to global hydrogen cycling. The here-reported findings provide insights into elementary lifestyle features of "Ca. Udaeobacter," potentially contributing to its successful global dissemination.
Collapse
|
43
|
Starke R, Oliphant K, Jehmlich N, Schäpe SS, Sachsenberg T, Kohlbacher O, Allen-Vercoe E, von Bergen M. Tracing incorporation of heavy water into proteins for species-specific metabolic activity in complex communities. J Proteomics 2020; 222:103791. [PMID: 32335296 DOI: 10.1016/j.jprot.2020.103791] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 04/08/2020] [Accepted: 04/19/2020] [Indexed: 02/07/2023]
Abstract
Stable isotope probing (SIP) approaches are a suitable tool to identify active organisms in bacterial communities, but adding isotopically labeled substrate can alter both the structure and the functionality of the community. Here, we validated and demonstrated a substrate-independent protein-SIP protocol using isotopically labeled water that captures the entire microbial activity of a community. We found that 18O yielded a higher incorporation rate into peptides and thus comprised a higher sensitivity. We then applied the method to an in vitro model of a human distal gut microbial ecosystem grown in two medium formulations, to evaluate changes in microbial activity between a high-fiber and high-protein diet. We showed that only little changes are seen in the community structure but the functionality varied between the diets. In conclusion, our approach can detect species-specific metabolic activity in complex bacterial communities and more specifically to quantify the amount of amino acid synthesis. Heavy water makes possible to analyze the activity of bacterial communities for which adding an isotopically labeled energy and nutrient sources is not easily feasible. SIGNIFICANCE: Heavy stable isotopes allow for the detection of active key players in complex ecosystems where many organisms are thought to be dormant. Opposed to the labelling with energy or nutrient sources, heavy water could be a suitable replacement to trace activity, which has been shown for DNA and RNA. Here we validate, quantify and compare the incorporation of heavy water either labeled with deuterium or 18‑oxygen into proteins of Escherichia coli K12 and of an in vitro model of a human gut microbial ecosystem. The significance of our research is in providing a freely available pipeline to analyze the incorporation of deuterium and 18‑oxygen into proteins together with the validation of the applicability of tracing heavy water as a proxy for activity. Our approach unveils the relative functional contribution of microbiota in complex ecosystems, which will improve our understanding of both animal- and environment-associated microbiomes and in vitro models.
Collapse
Affiliation(s)
- Robert Starke
- Department of Molecular Systems Biology, Helmholtz-Centre for Environmental Research - UFZ, Leipzig, Germany; Laboratory of Environmental Microbiology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic.
| | - Kaitlyn Oliphant
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada.
| | - Nico Jehmlich
- Department of Molecular Systems Biology, Helmholtz-Centre for Environmental Research - UFZ, Leipzig, Germany.
| | - Stephanie Serena Schäpe
- Department of Molecular Systems Biology, Helmholtz-Centre for Environmental Research - UFZ, Leipzig, Germany.
| | - Timo Sachsenberg
- Applied Bioinformatics, Dept. of Computer Science, University of Tübingen, Tübingen, Germany; Center for Bioinformatics, University of Tübingen, Germany
| | - Oliver Kohlbacher
- Applied Bioinformatics, Dept. of Computer Science, University of Tübingen, Tübingen, Germany; Center for Bioinformatics, University of Tübingen, Germany; Biomolecular Interactions, Max Planck Institute for Developmental Biology, Tübingen, Germany; Institute for Translational Bioinformatics, University Hospital Tübingen, Tübingen, Germany.
| | - Emma Allen-Vercoe
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada.
| | - Martin von Bergen
- Department of Molecular Systems Biology, Helmholtz-Centre for Environmental Research - UFZ, Leipzig, Germany; Institute of Biochemistry, Faculty of Biosciences, Pharmacy and Psychology, University of Leipzig, Leipzig, Germany.
| |
Collapse
|
44
|
Price MN, Deutschbauer AM, Arkin AP. GapMind: Automated Annotation of Amino Acid Biosynthesis. mSystems 2020; 5:e00291-20. [PMID: 32576650 PMCID: PMC7311316 DOI: 10.1128/msystems.00291-20] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 06/05/2020] [Indexed: 11/20/2022] Open
Abstract
GapMind is a Web-based tool for annotating amino acid biosynthesis in bacteria and archaea (http://papers.genomics.lbl.gov/gaps). GapMind incorporates many variant pathways and 130 different reactions, and it analyzes a genome in just 15 s. To avoid error-prone transitive annotations, GapMind relies primarily on a database of experimentally characterized proteins. GapMind correctly handles fusion proteins and split proteins, which often cause errors for best-hit approaches. To improve GapMind's coverage, we examined genetic data from 35 bacteria that grow in defined media without amino acids, and we filled many gaps in amino acid biosynthesis pathways. For example, we identified additional genes for arginine synthesis with succinylated intermediates in Bacteroides thetaiotaomicron, and we propose that Dyella japonica synthesizes tyrosine from phenylalanine. Nevertheless, for many bacteria and archaea that grow in minimal media, genes for some steps still cannot be identified. To help interpret potential gaps, GapMind checks if they match known gaps in related microbes that can grow in minimal media. GapMind should aid the identification of microbial growth requirements.IMPORTANCE Many microbes can make all of the amino acids (the building blocks of proteins). In principle, we should be able to predict which amino acids a microbe can make, and which it requires as nutrients, by checking its genome sequence for all of the necessary genes. However, in practice, it is difficult to check for all of the alternative pathways. Furthermore, new pathways and enzymes are still being discovered. We built an automated tool, GapMind, to annotate amino acid biosynthesis in bacterial and archaeal genomes. We used GapMind to list gaps: cases where a microbe makes an amino acid but a complete pathway cannot be identified in its genome. We used these gaps, together with data from mutants, to identify new pathways and enzymes. However, for most bacteria and archaea, we still do not know how they can make all of the amino acids.
Collapse
Affiliation(s)
- Morgan N Price
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Adam M Deutschbauer
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- Plant & Microbial Biology, University of California, Berkeley, California, USA
| | - Adam P Arkin
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- Department of Bioengineering, University of California, Berkeley, California, USA
| |
Collapse
|
45
|
Bijle MN, Ekambaram M, Lo ECM, Yiu CKY. Antibacterial and mechanical properties of arginine-containing glass ionomer cements. Dent Mater 2020; 36:1226-1240. [PMID: 32563521 DOI: 10.1016/j.dental.2020.05.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/19/2020] [Accepted: 05/25/2020] [Indexed: 12/28/2022]
Abstract
OBJECTIVE The study investigated the effect of incorporating l-arginine (Arg) in a glass ionomer cement (GIC) on its mechanical properties and antibacterial potential. METHODS Pre-determined proportions (1%, 2%, and 4% by wt.) of Arg were incorporated in GIC powder; while GIC without Arg served as control. The flexural strength, nanohardness, surface roughness, elemental analysis using SEM-EDX (n = 6) and F/Arg/Ca/Al/Si release in deionized water for 21 days were assessed. The antibacterial potential was evaluated in a multi-species biofilm model with Streptococcus mutans, Streptococcus sanguinis, Streptococcus gordonii, and Lactobacillus acidophilus for 72 h. Real-time qPCR was used to analyse biofilm bacterial concentrations. Propidium monoazide modification of real-time qPCR was performed to quantify viable/dead bacteria. The pH, lactic acid, ADS activity, and H2O2 metabolism were measured. Confocal microscopy was used to investigate the biofilm bacterial live/dead cells, density, and thickness. RESULTS There was no difference in flexural strength among the different groups (p > 0.05). No significant difference in nanohardness and surface roughness was observed between 4% Arg + GIC and control (p > 0.05). The 4% Arg + GIC showed significantly higher F/Arg/Al/Si release than the other groups (p < 0.05), reduced total bacterial concentration and growth inhibition of viable S. mutans and S. sanguinis (p < 0.05). Lactic acid formation for 4% Arg + GIC was significantly higher than 1% Arg + GIC (p < 0.05). The spent media pH of 4% Arg + GIC was higher than the other groups (p < 0.05), with proportionately lower ammonia and higher H2O2 released (p < 0.05). SIGNIFICANCE Addition of 4% l-arginine in GIC enhanced its antibacterial activity via a biofilm modulatory effect for microbial homeostasis, with no detrimental effect on its mechanical properties.
Collapse
Affiliation(s)
| | - Manikandan Ekambaram
- Paediatric Dentistry, Faculty of Dentistry, University of Otago, Dunedin, New Zealand.
| | - Edward C M Lo
- Dental Public Health, Faculty of Dentistry, The University of Hong Kong, Hong Kong.
| | - Cynthia Kar Yung Yiu
- Paediatric Dentistry, Faculty of Dentistry, The University of Hong Kong, Hong Kong.
| |
Collapse
|
46
|
Idrees M, Mohammad AR, Karodia N, Rahman A. Multimodal Role of Amino Acids in Microbial Control and Drug Development. Antibiotics (Basel) 2020; 9:E330. [PMID: 32560458 PMCID: PMC7345125 DOI: 10.3390/antibiotics9060330] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/09/2020] [Accepted: 06/16/2020] [Indexed: 12/16/2022] Open
Abstract
Amino acids are ubiquitous vital biomolecules found in all kinds of living organisms including those in the microbial world. They are utilised as nutrients and control many biological functions in microorganisms such as cell division, cell wall formation, cell growth and metabolism, intermicrobial communication (quorum sensing), and microbial-host interactions. Amino acids in the form of enzymes also play a key role in enabling microbes to resist antimicrobial drugs. Antimicrobial resistance (AMR) and microbial biofilms are posing a great threat to the world's human and animal population and are of prime concern to scientists and medical professionals. Although amino acids play an important role in the development of microbial resistance, they also offer a solution to the very same problem i.e., amino acids have been used to develop antimicrobial peptides as they are highly effective and less prone to microbial resistance. Other important applications of amino acids include their role as anti-biofilm agents, drug excipients, drug solubility enhancers, and drug adjuvants. This review aims to explore the emerging paradigm of amino acids as potential therapeutic moieties.
Collapse
Affiliation(s)
- Muhammad Idrees
- Faculty of Science and Technology, University of Wolverhampton, Wolverhampton WV1 1LY, UK; (M.I.); (N.K.)
| | | | - Nazira Karodia
- Faculty of Science and Technology, University of Wolverhampton, Wolverhampton WV1 1LY, UK; (M.I.); (N.K.)
| | - Ayesha Rahman
- Faculty of Science and Technology, University of Wolverhampton, Wolverhampton WV1 1LY, UK; (M.I.); (N.K.)
| |
Collapse
|
47
|
Cain AK, Barquist L, Goodman AL, Paulsen IT, Parkhill J, van Opijnen T. A decade of advances in transposon-insertion sequencing. Nat Rev Genet 2020; 21:526-540. [PMID: 32533119 PMCID: PMC7291929 DOI: 10.1038/s41576-020-0244-x] [Citation(s) in RCA: 226] [Impact Index Per Article: 45.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/24/2020] [Indexed: 01/12/2023]
Abstract
It has been 10 years since the introduction of modern transposon-insertion sequencing (TIS) methods, which combine genome-wide transposon mutagenesis with high-throughput sequencing to estimate the fitness contribution or essentiality of each genetic component in a bacterial genome. Four TIS variations were published in 2009: transposon sequencing (Tn-Seq), transposon-directed insertion site sequencing (TraDIS), insertion sequencing (INSeq) and high-throughput insertion tracking by deep sequencing (HITS). TIS has since become an important tool for molecular microbiologists, being one of the few genome-wide techniques that directly links phenotype to genotype and ultimately can assign gene function. In this Review, we discuss the recent applications of TIS to answer overarching biological questions. We explore emerging and multidisciplinary methods that build on TIS, with an eye towards future applications. In this Review, several experts discuss progress in the decade since the development of transposon-based approaches for bacterial genetic screens. They describe how advances in both experimental technologies and analytical strategies are resulting in insights into diverse biological processes.
Collapse
Affiliation(s)
- Amy K Cain
- ARC Centre of Excellence in Synthetic Biology, Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia.
| | - Lars Barquist
- Helmholtz Institute for RNA-based Infection Research, Helmholtz Centre for Infection Research, Würzburg, Germany.,Faculty of Medicine, University of Würzburg, Würzburg, Germany
| | - Andrew L Goodman
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA.,Microbial Sciences Institute, Yale University, New Haven, CT, USA
| | - Ian T Paulsen
- ARC Centre of Excellence in Synthetic Biology, Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia
| | - Julian Parkhill
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
48
|
Davey L, Valdivia RH. Bacterial genetics and molecular pathogenesis in the age of high throughput DNA sequencing. Curr Opin Microbiol 2020; 54:59-66. [PMID: 32044689 PMCID: PMC8765803 DOI: 10.1016/j.mib.2020.01.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 01/12/2020] [Indexed: 12/17/2022]
Abstract
When Stanley Falkow introduced Molecular Koch's Postulates (Falkow, 1988) as a conceptual framework to identify microbial factors that contributed to disease, he reaffirmed the prominent role that the basic principles of genetic analysis should play in defining genotype-phenotype associations in microbial pathogens. In classical bacterial genetics the nature of mutations is inferred through cis-trans complementation and by indirectly mapping their relative position and physical distance through recombination frequencies - all of which were made possible by the genetic tools of the day: natural transformations, conjugation and transduction. Unfortunately, many of these genetic tools are not always available to study pathogenic bacteria. The recombinant DNA revolution in the 1980s launched the field of molecular pathogenesis as genes could be treated as physical units that could be cut, spliced and transplanted from one microbe to another and thus not only 'prove' that an individual gene complemented a virulence defect in a mutant strain but also could impart pathogenic properties to otherwise benign microbes. The recombinant DNA revolution also enabled the generation of newer versions of genetic tools to generate mutations and engineer microbial genomes. The last decade has ushered in next generation sequencing technologies as a new powerful tool for bacterial genetics. The routine and inexpensive sequencing of microbial genomes has increased the number and phylogenetic scope of microbes that are amenable to functional characterization and experimentation. In this review, we highlight some salient advances in this rapidly evolving area.
Collapse
Affiliation(s)
- Lauren Davey
- Duke University School of Medicine, Molecular Genetics and Microbiology, 272 Jones Bldg DUMC 3580, Durham, NC 27710, United States
| | - Raphael H Valdivia
- Duke University School of Medicine, Molecular Genetics and Microbiology, 272 Jones Bldg DUMC 3580, Durham, NC 27710, United States.
| |
Collapse
|
49
|
Fabian BK, Tetu SG, Paulsen IT. Application of Transposon Insertion Sequencing to Agricultural Science. FRONTIERS IN PLANT SCIENCE 2020; 11:291. [PMID: 32256512 PMCID: PMC7093568 DOI: 10.3389/fpls.2020.00291] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 02/26/2020] [Indexed: 06/11/2023]
Abstract
Many plant-associated bacteria have the ability to positively affect plant growth and there is growing interest in utilizing such bacteria in agricultural settings to reduce reliance on pesticides and fertilizers. However, our capacity to utilize microbes in this way is currently limited due to patchy understanding of bacterial-plant interactions at a molecular level. Traditional methods of studying molecular interactions have sought to characterize the function of one gene at a time, but the slow pace of this work means the functions of the vast majority of bacterial genes remain unknown or poorly understood. New approaches to improve and speed up investigations into the functions of bacterial genes in agricultural systems will facilitate efforts to optimize microbial communities and develop microbe-based products. Techniques enabling high-throughput gene functional analysis, such as transposon insertion sequencing analyses, have great potential to be widely applied to determine key aspects of plant-bacterial interactions. Transposon insertion sequencing combines saturation transposon mutagenesis and high-throughput sequencing to simultaneously investigate the function of all the non-essential genes in a bacterial genome. This technique can be used for both in vitro and in vivo studies to identify genes involved in microbe-plant interactions, stress tolerance and pathogen virulence. The information provided by such investigations will rapidly accelerate the rate of bacterial gene functional determination and provide insights into the genes and pathways that underlie biotic interactions, metabolism, and survival of agriculturally relevant bacteria. This knowledge could be used to select the most appropriate plant growth promoting bacteria for a specific set of conditions, formulating crop inoculants, or developing crop protection products. This review provides an overview of transposon insertion sequencing, outlines how this approach has been applied to study plant-associated bacteria, and proposes new applications of these techniques for the benefit of agriculture.
Collapse
Affiliation(s)
- Belinda K. Fabian
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, NSW, Australia
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia
| | - Sasha G. Tetu
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, NSW, Australia
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia
| | - Ian T. Paulsen
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, NSW, Australia
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
50
|
Seif Y, Choudhary KS, Hefner Y, Anand A, Yang L, Palsson BO. Metabolic and genetic basis for auxotrophies in Gram-negative species. Proc Natl Acad Sci U S A 2020; 117:6264-6273. [PMID: 32132208 PMCID: PMC7084086 DOI: 10.1073/pnas.1910499117] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Auxotrophies constrain the interactions of bacteria with their environment, but are often difficult to identify. Here, we develop an algorithm (AuxoFind) using genome-scale metabolic reconstruction to predict auxotrophies and apply it to a series of available genome sequences of over 1,300 Gram-negative strains. We identify 54 auxotrophs, along with the corresponding metabolic and genetic basis, using a pangenome approach, and highlight auxotrophies conferring a fitness advantage in vivo. We show that the metabolic basis of auxotrophy is species-dependent and varies with 1) pathway structure, 2) enzyme promiscuity, and 3) network redundancy. Various levels of complexity constitute the genetic basis, including 1) deleterious single-nucleotide polymorphisms (SNPs), in-frame indels, and deletions; 2) single/multigene deletion; and 3) movement of mobile genetic elements (including prophages) combined with genomic rearrangements. Fourteen out of 19 predictions agree with experimental evidence, with the remaining cases highlighting shortcomings of sequencing, assembly, annotation, and reconstruction that prevent predictions of auxotrophies. We thus develop a framework to identify the metabolic and genetic basis for auxotrophies in Gram-negatives.
Collapse
Affiliation(s)
- Yara Seif
- Systems Biology Research Group, Department of Bioengineering, University of California San Diego, CA 92122
| | - Kumari Sonal Choudhary
- Systems Biology Research Group, Department of Bioengineering, University of California San Diego, CA 92122
| | - Ying Hefner
- Systems Biology Research Group, Department of Bioengineering, University of California San Diego, CA 92122
| | - Amitesh Anand
- Systems Biology Research Group, Department of Bioengineering, University of California San Diego, CA 92122
| | - Laurence Yang
- Systems Biology Research Group, Department of Bioengineering, University of California San Diego, CA 92122
- Department of Chemical Engineering, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Bernhard O Palsson
- Systems Biology Research Group, Department of Bioengineering, University of California San Diego, CA 92122;
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Lyngby, Denmark
| |
Collapse
|