1
|
Maraval J, Delahaye-Duriez A, Racine C, Bruel AL, Denommé-Pichon AS, Gaudillat L, Thauvin-Robinet C, Lucain M, Satre V, Coutton C, de Sainte Agathe JM, Keren B, Faivre L. Expanding MNS1 Heterotaxy Phenotype. Am J Med Genet A 2024:e63862. [PMID: 39233552 DOI: 10.1002/ajmg.a.63862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/30/2024] [Accepted: 08/18/2024] [Indexed: 09/06/2024]
Abstract
MNS1 (meiosis-specific nuclear structural protein-1 gene) encodes a structural protein implicated in motile ciliary function and sperm flagella assembly. To date, two different homozygous MNS1 variants have been associated with autosomal recessive visceral heterotaxy (MIM#618948). A French individual was identified with compound heterozygous variants in the MNS1 gene. A collaborative call was proposed via GeneMatcher to describe new cases with this rare syndrome, leading to the identification of another family. The first patient was a female presenting complete situs inversus and unusual symptoms, including severe myopia and dental agenesis of 10 permanent teeth. She was found to carry compound heterozygous frameshift and nonsense variants in MNS1. The second and third patients were sibling fetuses with homozygous in-frame deletion variants in MNS1 and homozygous missense variants in GLDN. Autopsies revealed a complex prenatal malformation syndrome. We add here new cases with the ultra-rare MNS1-related disorder and provide a review of all published individuals.
Collapse
Affiliation(s)
- Julien Maraval
- Centre de Génétique, FHU-TRANSLAD, CHU Dijon Bourgogne, Centre de Référence Maladies Rares Anomalies du Développement et Syndromes Malformatifs, Dijon, France
- Inserm UMR1231 GAD, Université Bourgogne-Franche Comté, Dijon, France
| | - Andrée Delahaye-Duriez
- Hôpitaux Universitaires de Paris Seine-Saint-Denis-APHP, UF de médecine génomique et génétique Clinique, Hôpital Jean Verdier, Bondy, France
- UFR Santé Médecine et Biologie Humaine, Université Sorbonne Paris Nord, Bobigny, France
- Inserm UMR1141 NeuroDiderot, Université Paris Cité, Paris, France
| | - Caroline Racine
- Centre de Génétique, FHU-TRANSLAD, CHU Dijon Bourgogne, Centre de Référence Maladies Rares Anomalies du Développement et Syndromes Malformatifs, Dijon, France
- Inserm UMR1231 GAD, Université Bourgogne-Franche Comté, Dijon, France
| | - Ange-Line Bruel
- Inserm UMR1231 GAD, Université Bourgogne-Franche Comté, Dijon, France
- Unité Fonctionnelle Innovation en Diagnostic génomique des Maladies Rares, CHU Dijon Bourgogne, Dijon, France
| | - Anne-Sophie Denommé-Pichon
- Inserm UMR1231 GAD, Université Bourgogne-Franche Comté, Dijon, France
- Unité Fonctionnelle Innovation en Diagnostic génomique des Maladies Rares, CHU Dijon Bourgogne, Dijon, France
| | - Léa Gaudillat
- Centre de Génétique, FHU-TRANSLAD, CHU Dijon Bourgogne, Centre de Référence Maladies Rares Anomalies du Développement et Syndromes Malformatifs, Dijon, France
- Inserm UMR1231 GAD, Université Bourgogne-Franche Comté, Dijon, France
| | - Christel Thauvin-Robinet
- Centre de Génétique, FHU-TRANSLAD, CHU Dijon Bourgogne, Centre de Référence Maladies Rares Anomalies du Développement et Syndromes Malformatifs, Dijon, France
- Inserm UMR1231 GAD, Université Bourgogne-Franche Comté, Dijon, France
- Unité Fonctionnelle Innovation en Diagnostic génomique des Maladies Rares, CHU Dijon Bourgogne, Dijon, France
| | - Marie Lucain
- Inserm UMR1231 GAD, Université Bourgogne-Franche Comté, Dijon, France
- Unité Fonctionnelle Innovation en Diagnostic génomique des Maladies Rares, CHU Dijon Bourgogne, Dijon, France
| | - Véronique Satre
- Laboratoire de Biologie Médicale Multi-Sites AURAGEN, CHU Grenoble, Grenoble, France
- Laboratoire de Génétique Chromosomique, CHU Grenoble Alpes, Grenoble, France
- Institute for Advanced Biosciences, Inserm U 1209, CNRS UMR2309, Université Grenoble Alpes, Genetic Epigenetic and Therapies of Infertility Team, Grenoble, France
- GCS AURAGEN, Lyon, France
| | - Charles Coutton
- Laboratoire de Biologie Médicale Multi-Sites AURAGEN, CHU Grenoble, Grenoble, France
- Laboratoire de Génétique Chromosomique, CHU Grenoble Alpes, Grenoble, France
- Institute for Advanced Biosciences, Inserm U 1209, CNRS UMR2309, Université Grenoble Alpes, Genetic Epigenetic and Therapies of Infertility Team, Grenoble, France
- GCS AURAGEN, Lyon, France
| | | | - Boris Keren
- Hôpital la Pitié-Salpêtrière, Département de Génétique Médicale, APHP Sorbonne Université, Paris, France
| | - Laurence Faivre
- Centre de Génétique, FHU-TRANSLAD, CHU Dijon Bourgogne, Centre de Référence Maladies Rares Anomalies du Développement et Syndromes Malformatifs, Dijon, France
- Inserm UMR1231 GAD, Université Bourgogne-Franche Comté, Dijon, France
| |
Collapse
|
2
|
Lu H, Twan WK, Ikawa Y, Khare V, Mukherjee I, Schou KB, Chua KX, Aqasha A, Chakrabarti S, Hamada H, Roy S. Localisation and function of key axonemal microtubule inner proteins and dynein docking complex members reveal extensive diversity among vertebrate motile cilia. Development 2024; 151:dev202737. [PMID: 39007638 DOI: 10.1242/dev.202737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024]
Abstract
Vertebrate motile cilia are classified as (9+2) or (9+0), based on the presence or absence of the central pair apparatus, respectively. Cryogenic electron microscopy analyses of (9+2) cilia have uncovered an elaborate axonemal protein composition. The extent to which these features are conserved in (9+0) cilia remains unclear. CFAP53, a key axonemal filamentous microtubule inner protein (fMIP) and a centriolar satellites component, is essential for motility of (9+0), but not (9+2) cilia. Here, we show that in (9+2) cilia, CFAP53 functions redundantly with a paralogous fMIP, MNS1. MNS1 localises to ciliary axonemes, and combined loss of both proteins in zebrafish and mice caused severe outer dynein arm loss from (9+2) cilia, significantly affecting their motility. Using immunoprecipitation, we demonstrate that, whereas MNS1 can associate with itself and CFAP53, CFAP53 is unable to self-associate. We also show that additional axonemal dynein-interacting proteins, two outer dynein arm docking (ODAD) complex members, show differential localisation between types of motile cilia. Together, our findings clarify how paralogous fMIPs, CFAP53 and MNS1, function in regulating (9+2) versus (9+0) cilia motility, and further emphasise extensive structural diversity among these organelles.
Collapse
Affiliation(s)
- Hao Lu
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Proteos, 61 Biopolis Drive, Singapore138673
| | - Wang Kyaw Twan
- Laboratory for Organismal Patterning, RIKEN Centre for Biosystems Dynamics Research, 2-2-3 Minatojima-minamimachi, Chuo-Ku, Kobe 650-0005, Japan
| | - Yayoi Ikawa
- Laboratory for Organismal Patterning, RIKEN Centre for Biosystems Dynamics Research, 2-2-3 Minatojima-minamimachi, Chuo-Ku, Kobe 650-0005, Japan
| | - Vani Khare
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Proteos, 61 Biopolis Drive, Singapore138673
| | - Ishita Mukherjee
- Translational Research Unit of Excellence, Structural Biology and Bioinformatics Division, Council for Scientific and Industrial Research - Indian Institute of Chemical Biology, Kolkata 700091, India
| | - Kenneth Bødtker Schou
- The Danish Cancer Society Research Centre, Danish Cancer Institute, Strandboulevarden 49, 2100 Copenhagen, Denmark
| | - Kai Xin Chua
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Proteos, 61 Biopolis Drive, Singapore138673
| | - Adam Aqasha
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Proteos, 61 Biopolis Drive, Singapore138673
| | - Saikat Chakrabarti
- Translational Research Unit of Excellence, Structural Biology and Bioinformatics Division, Council for Scientific and Industrial Research - Indian Institute of Chemical Biology, Kolkata 700091, India
| | - Hiroshi Hamada
- Laboratory for Organismal Patterning, RIKEN Centre for Biosystems Dynamics Research, 2-2-3 Minatojima-minamimachi, Chuo-Ku, Kobe 650-0005, Japan
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bellary Road, Bengaluru 560065, India
- Trivedi School of Biosciences, Ashoka University, Sonepat, 131029, India
| | - Sudipto Roy
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Proteos, 61 Biopolis Drive, Singapore138673
- Department of Paediatrics, Yong Loo Ling School of Medicine, National University of Singapore, 1E Kent Ridge Road, Singapore119288
| |
Collapse
|
3
|
Deng C, Li M, Wang T, Duan W, Guo A, Ma G, Yang F, Dai F, Li Q. Integrating genomics and transcriptomics to identify candidate genes for high-altitude adaptation and egg production in Nixi chicken. Br Poult Sci 2024:1-13. [PMID: 38922310 DOI: 10.1080/00071668.2024.2367228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/17/2024] [Indexed: 06/27/2024]
Abstract
1. This study combined genome-wide selection signal analysis with RNA-sequencing to identify candidate genes associated with high altitude adaptation and egg production performance in Nixi chickens (NXC).2. Based on the whole-genome data from 20 NXC (♂:10; ♀:10), the population selection signal was analysed by sliding window analysis. The selected genes were screened by combination with the population differentiation statistic (FST). The sequence diversity statistic (θπ). RNA-seq was performed on the ovarian tissues of NXC (n = 6) and Lohmann laying hens (n = 6) to analyse the differentially expressed genes (DEGs) between the two groups. The functional enrichment analysis of the selected genes and differentially expressed genes was performed.3. There were 742 genes under strong positive selection and 509 differentially expressed genes screened in NXC. Integrated analysis of the genome and transcriptome revealing 26 overlapping genes. The candidate genes for adaptation to a high-altitude environment, as well as for egg production, disease resistance, vision and pigmentation in NXC were preliminarily screened.4. The results provided theoretical guidance for further research on the genetic resource protection and utilisation of NXC.
Collapse
Affiliation(s)
- C Deng
- College of Biology and Food Engineering, Southwest Forestry University, Kunming, China
| | - M Li
- School of Mathematics and Computer Science, Yunnan Nationalities University, Kunming, China
| | - T Wang
- School of Pharmacy, Chengdu University, Chengdu, China
| | - W Duan
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - A Guo
- College of Biology and Food Engineering, Southwest Forestry University, Kunming, China
| | - G Ma
- Agricultural and Rural Bureau of Gejiu County, Honghe, China
| | - F Yang
- Agricultural and Rural Bureau of Gejiu County, Honghe, China
| | - F Dai
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Q Li
- College of Biology and Food Engineering, Southwest Forestry University, Kunming, China
- Kunming Xianghao Technology Co. Ltd., Kunming, China
| |
Collapse
|
4
|
Hjeij R, Leslie J, Rizk H, Dworniczak B, Olbrich H, Raidt J, Bode SFN, Gardham A, Stals K, Al-Haggar M, Osman E, Crosby A, Eldesoky T, Baple E, Omran H. Biallelic Variants in MNS1 Are Associated with Laterality Defects and Respiratory Involvement. Cells 2024; 13:1017. [PMID: 38920647 PMCID: PMC11202006 DOI: 10.3390/cells13121017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/27/2024] [Accepted: 06/06/2024] [Indexed: 06/27/2024] Open
Abstract
Defects in motile cilia, termed motile ciliopathies, result in clinical manifestations affecting the respiratory and reproductive system, as well as laterality defects and hydrocephalus. We previously defined biallelic MNS1 variants causing situs inversus and male infertility, mirroring the findings in Mns1-/- mice. Here, we present clinical and genomic findings in five newly identified individuals from four unrelated families affected by MNS1-related disorder. Ciliopathy panel testing and whole exome sequencing identified one previously reported and two novel MNS1 variants extending the genotypic spectrum of disease. A broad spectrum of laterality defects including situs inversus totalis and heterotaxia was confirmed. Interestingly, a single affected six-year-old girl homozygous for an MNS1 nonsense variant presented with a history of neonatal respiratory distress syndrome, recurrent respiratory tract infections, chronic rhinitis, and wet cough. Accordingly, immunofluorescence analysis showed the absence of MNS1 from the respiratory epithelial cells of this individual. Two other individuals with hypomorphic variants showed laterality defects and mild respiratory phenotype. This study represents the first observation of heterotaxia and respiratory disease in individuals with biallelic MNS1 variants, an important extension of the phenotype associated with MNS1-related motile ciliopathy disorder.
Collapse
Grants
- HJ 7/1-1, HJ 7/1-3, OM6/7, OM6/8, OM6/10, OM6/14, OM6/16, CRU 326, OM6/11, RA3522/1-1, OL 450/1 Deutsche Forschungsgemeinschaft
- Om2/009/12, Om2/015/16, Om2/010/20 Institute for Interdisciplinary Medicine
Collapse
Affiliation(s)
- Rim Hjeij
- Department of General Pediatrics, University Hospital Muenster, 48149 Muenster, Germany; (B.D.); (H.O.); (J.R.); (H.O.)
| | - Joseph Leslie
- Institute of Biomedical and Clinical Science, RILD Wellcome Wolfson Centre, University of Exeter Medical School, Royal Devon University Healthcare NHS Foundation Trust, Exeter EX2 5DW, UK; (J.L.); (A.C.); (E.B.)
| | - Hoda Rizk
- Department of Pediatrics, Faculty of Medicine, University of Mansoura, Mansoura 35516, Egypt; (H.R.); (E.O.); (T.E.)
| | - Bernd Dworniczak
- Department of General Pediatrics, University Hospital Muenster, 48149 Muenster, Germany; (B.D.); (H.O.); (J.R.); (H.O.)
| | - Heike Olbrich
- Department of General Pediatrics, University Hospital Muenster, 48149 Muenster, Germany; (B.D.); (H.O.); (J.R.); (H.O.)
| | - Johanna Raidt
- Department of General Pediatrics, University Hospital Muenster, 48149 Muenster, Germany; (B.D.); (H.O.); (J.R.); (H.O.)
| | | | - Alice Gardham
- North West Thames Regional Genetic Service, North West London Hospitals, London HA1 2UJ, UK;
| | - Karen Stals
- Exeter Genomics Laboratory (NHS South West Genomic Laboratory Hub), Royal Devon University Healthcare NHS Foundation Trust, Exeter EX2 5DW, UK;
| | - Mohammad Al-Haggar
- Genetics Unit, Pediatrics Department, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt;
| | - Engy Osman
- Department of Pediatrics, Faculty of Medicine, University of Mansoura, Mansoura 35516, Egypt; (H.R.); (E.O.); (T.E.)
| | - Andrew Crosby
- Institute of Biomedical and Clinical Science, RILD Wellcome Wolfson Centre, University of Exeter Medical School, Royal Devon University Healthcare NHS Foundation Trust, Exeter EX2 5DW, UK; (J.L.); (A.C.); (E.B.)
| | - Tarek Eldesoky
- Department of Pediatrics, Faculty of Medicine, University of Mansoura, Mansoura 35516, Egypt; (H.R.); (E.O.); (T.E.)
| | - Emma Baple
- Institute of Biomedical and Clinical Science, RILD Wellcome Wolfson Centre, University of Exeter Medical School, Royal Devon University Healthcare NHS Foundation Trust, Exeter EX2 5DW, UK; (J.L.); (A.C.); (E.B.)
- Peninsula Clinical Genetics Service, Royal Devon & Exeter Hospital (Heavitree), Exeter EX1 2ED, UK
| | - Heymut Omran
- Department of General Pediatrics, University Hospital Muenster, 48149 Muenster, Germany; (B.D.); (H.O.); (J.R.); (H.O.)
| |
Collapse
|
5
|
Lu W, Li Y, Meng L, Tan C, Nie H, Zhang Q, Song Y, Zhang H, Tan YQ, Tu C, Guo H, Wu L, Du J. Novel SPEF2 variants cause male infertility and likely primary ciliary dyskinesia. J Assist Reprod Genet 2024; 41:1485-1498. [PMID: 38568462 PMCID: PMC11224184 DOI: 10.1007/s10815-024-03106-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 03/20/2024] [Indexed: 07/05/2024] Open
Abstract
PURPOSE This study aimed to identify the genetic causes of male infertility and primary ciliary dyskinesia (PCD)/PCD-like phenotypes in three unrelated Han Chinese families. METHODS We conducted whole-exome sequencing of three patients with male infertility and PCD/PCD-like phenotypes from three unrelated Chinese families. Ultrastructural and immunostaining analyses of patient spermatozoa and respiratory cilia and in vitro analyses were performed to analyze the effects of SPEF2 variants. Intracytoplasmic sperm injection (ICSI) was administered to three affected patients. RESULTS We identified four novel SPEF2 variants, including one novel homozygous splicing site variant [NC_000005.10(NM_024867.4): c.4447 + 1G > A] of the SPEF2 gene in family 1, novel compound heterozygous nonsense variants [NC_000005.10(NM_024867.4): c.1339C > T (p.R447*) and NC_000005.10(NM_024867.4): c.1645G > T (p.E549*)] in family 2, and one novel homozygous missense variant [NC_000005.10(NM_024867.4): c.2524G > A (p.D842N)] in family 3. All the patients presented with male infertility and PCD/likely PCD. All variants were present at very low levels in public databases, predicted to be deleterious in silico prediction tools, and were further confirmed deleterious by in vitro analyses. Ultrastructural analyses of the spermatozoa of the patients revealed the absence of the central pair complex in the sperm flagella. Immunostaining of the spermatozoa and respiratory cilia of the patients validated the pathogenicity of the SPEF2 variants. All patients carrying SPEF2 variants underwent one ICSI cycle and delivered healthy infants. CONCLUSION Our study reported four novel pathogenic variants of SPEF2 in three male patients with infertility and PCD/PCD-like phenotypes, which not only extend the spectrum of SPEF2 mutations but also provide information for genetic counseling and treatment of such conditions.
Collapse
Affiliation(s)
- Wenqing Lu
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Yong Li
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Lanlan Meng
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Sciences, Central South University, Changsha, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Chen Tan
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Hongchuan Nie
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Sciences, Central South University, Changsha, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Qianjun Zhang
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Sciences, Central South University, Changsha, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Yuying Song
- Changsha Maternal and Child Health Care Hospital, Changsha, China
| | - Huan Zhang
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Sciences, Central South University, Changsha, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Yue-Qiu Tan
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Sciences, Central South University, Changsha, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Chaofeng Tu
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Sciences, Central South University, Changsha, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Haichun Guo
- Changsha Maternal and Child Health Care Hospital, Changsha, China.
| | - Longxiang Wu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China.
| | - Juan Du
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Sciences, Central South University, Changsha, China.
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China.
| |
Collapse
|
6
|
Yang Z, Zhang L, Zhang W, Tian X, Lai W, Lin D, Feng Y, Jiang W, Zhang Z, Zhang Z. Identification of the principal neuropeptide MIP and its action pathway in larval settlement of the echiuran worm Urechis unicinctus. BMC Genomics 2024; 25:337. [PMID: 38641568 PMCID: PMC11027379 DOI: 10.1186/s12864-024-10228-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 03/15/2024] [Indexed: 04/21/2024] Open
Abstract
BACKGROUND Larval settlement and metamorphosis represent critical events in the life history of marine benthic animals. Myoinhibitory peptide (MIP) plays a pivotal role in larval settlement of marine invertebrates. However, the molecular mechanisms of MIP involved in this process are not well understood. RESULTS In this study, we evaluated the effects of thirteen MIP mature peptides on triggering the larval settlement of Urechis unicinctus (Xenopneusta, Urechidae), and determined that MIP2 was the principal neuropeptide. Transcriptomic analysis was employed to identify differentially expressed genes (DEGs) between the MIP2-treated larvae and normal early-segmentation larvae. Both cAMP and calcium signaling pathways were enriched in the DEGs of the MIP2-treated larvae, and two neuropeptide receptor genes (Spr, Fmrfar) were up-regulated in the MIP2-treated larvae. The activation of the SPR-cAMP pathway by MIP2 was experimentally validated in HEK293T cells. Furthermore, fourteen cilia-related genes, including Tctex1d2, Cfap45, Ift43, Ift74, Ift22, Cav1 and Mns1, etc. exhibited down-regulated expression in the MIP2-treated larvae. Whole-mount in situ hybridization identified two selected ciliary genes, Tctex1d2 and Cfap45, were specially expressed in circumoral ciliary cells of the early-segmentation larvae. Knocking down Tctex1d2 mRNA levels by in vivo RNA interference significantly increased the larval settlement rate. CONCLUSION Our findings suggest that MIP2 inhibits the function of the cilia-related genes, such as Tctex1d2, through the SPR-cAMP-PKA pathway, thereby inducing larval settlement in U. unicinctus. The study contributes important data to the understanding of neuropeptide regulation in larval settlement.
Collapse
Affiliation(s)
- Zhi Yang
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Ocean Institute, Ocean University of China, Sanya, China
| | - Long Zhang
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Ocean Institute, Ocean University of China, Sanya, China
| | - Wenqing Zhang
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Ocean Institute, Ocean University of China, Sanya, China
| | - Xinhua Tian
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Ocean Institute, Ocean University of China, Sanya, China
| | - Wenyuan Lai
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Dawei Lin
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Ocean Institute, Ocean University of China, Sanya, China
| | - Yuxin Feng
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Ocean Institute, Ocean University of China, Sanya, China
| | - Wenwen Jiang
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Ocean Institute, Ocean University of China, Sanya, China
| | - Zhengrui Zhang
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China.
| | - Zhifeng Zhang
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Ocean Institute, Ocean University of China, Sanya, China.
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China.
| |
Collapse
|
7
|
Wei C, Zhang H, Fu M, Ye J, Yao B. Novel compound heterozygous variants in the CSPP1 gene causes Joubert syndrome: case report and literature review of the CSPP1 gene's pathogenic mechanism. Front Pediatr 2024; 12:1305754. [PMID: 38586154 PMCID: PMC10995352 DOI: 10.3389/fped.2024.1305754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 03/04/2024] [Indexed: 04/09/2024] Open
Abstract
Joubert syndrome (JS) is a rare autosomal recessive neurodevelopmental condition characterized by congenital mid-hindbrain abnormalities and a variety of clinical manifestations. This article describes a case of Joubert syndrome type 21 with microcephaly, seizures, developmental delay and language regression, caused by a CSPP1 gene variant and examines the contributing variables. This paper advances the understanding of JS by summarizing the literature and offering detection patterns for practitioners with clinical suspicions of JS.
Collapse
Affiliation(s)
| | | | | | - Jingping Ye
- Department of Pediatrics, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Baozhen Yao
- Department of Pediatrics, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
8
|
Perrot A, Rickert-Sperling S. Human Genetics of Defects of Situs. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1441:705-717. [PMID: 38884744 DOI: 10.1007/978-3-031-44087-8_42] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Defects of situs are associated with complex sets of congenital heart defects in which the normal concordance of asymmetric thoracic and abdominal organs is disturbed. The cellular and molecular mechanisms underlying the formation of the embryonic left-right axis have been investigated extensively in the past decade. This has led to the identification of mutations in at least 33 different genes in humans with heterotaxy and situs defects. Those mutations affect a broad range of molecular components, from transcription factors, signaling molecules, and chromatin modifiers to ciliary proteins. A substantial overlap of these genes is observed with genes associated with other congenital heart diseases such as tetralogy of Fallot and double-outlet right ventricle, d-transposition of the great arteries, and atrioventricular septal defects. In this chapter, we present the broad genetic heterogeneity of situs defects including recent human genomics efforts.
Collapse
Affiliation(s)
- Andreas Perrot
- Experimental and Clinical Research Center, a cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité Universitätsmedizin Berlin, Berlin, Germany
| | | |
Collapse
|
9
|
Shaikh Qureshi WM, Hentges KE. Functions of cilia in cardiac development and disease. Ann Hum Genet 2024; 88:4-26. [PMID: 37872827 PMCID: PMC10952336 DOI: 10.1111/ahg.12534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/08/2023] [Accepted: 10/02/2023] [Indexed: 10/25/2023]
Abstract
Errors in embryonic cardiac development are a leading cause of congenital heart defects (CHDs), including morphological abnormalities of the heart that are often detected after birth. In the past few decades, an emerging role for cilia in the pathogenesis of CHD has been identified, but this topic still largely remains an unexplored area. Mouse forward genetic screens and whole exome sequencing analysis of CHD patients have identified enrichment for de novo mutations in ciliary genes or non-ciliary genes, which regulate cilia-related pathways, linking cilia function to aberrant cardiac development. Key events in cardiac morphogenesis, including left-right asymmetric development of the heart, are dependent upon cilia function. Cilia dysfunction during left-right axis formation contributes to CHD as evidenced by the substantial proportion of heterotaxy patients displaying complex CHD. Cilia-transduced signaling also regulates later events during heart development such as cardiac valve formation, outflow tract septation, ventricle development, and atrioventricular septa formation. In this review, we summarize the role of motile and non-motile (primary cilia) in cardiac asymmetry establishment and later events during heart development.
Collapse
Affiliation(s)
- Wasay Mohiuddin Shaikh Qureshi
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science CentreUniversity of ManchesterManchesterUK
| | - Kathryn E. Hentges
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science CentreUniversity of ManchesterManchesterUK
| |
Collapse
|
10
|
Greither T, Dejung M, Behre HM, Butter F, Herlyn H. The human sperm proteome-Toward a panel for male fertility testing. Andrology 2023; 11:1418-1436. [PMID: 36896575 DOI: 10.1111/andr.13431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 02/06/2023] [Accepted: 03/05/2023] [Indexed: 03/11/2023]
Abstract
BACKGROUND Although male factor accounts for 40%-50% of unintended childlessness, we are far from fully understanding the detailed causes. Usually, affected men cannot even be provided with a molecular diagnosis. OBJECTIVES We aimed at a higher resolution of the human sperm proteome for better understanding of the molecular causes of male infertility. We were particularly interested in why reduced sperm count decreases fertility despite many normal-looking spermatozoa and which proteins might be involved. MATERIAL AND METHODS Applying mass spectrometry analysis, we qualitatively and quantitatively examined the proteomic profiles of spermatozoa from 76 men differing in fertility. Infertile men had abnormal semen parameters and were involuntarily childless. Fertile subjects exhibited normozoospermia and had fathered children without medical assistance. RESULTS We discovered proteins from about 7000 coding genes in the human sperm proteome. These were mainly known for involvements in cellular motility, response to stimuli, adhesion, and reproduction. Numbers of sperm proteins showing at least threefold deviating abundances increased from oligozoospermia (N = 153) and oligoasthenozoospermia (N = 154) to oligoasthenoteratozoospermia (N = 368). Deregulated sperm proteins primarily engaged in flagellar assembly and sperm motility, fertilization, and male gametogenesis. Most of these participated in a larger network of male infertility genes and proteins. DISCUSSION We expose 31 sperm proteins displaying deviant abundances under infertility, which already were known before to have fertility relevance, including ACTL9, CCIN, CFAP47, CFAP65, CFAP251 (WDR66), DNAH1, and SPEM1. We propose 18 additional sperm proteins with at least eightfold differential abundance for further testing of their diagnostic potential, such as C2orf16, CYLC1, SPATA31E1, SPATA31D1, SPATA48, EFHB (CFAP21), and FAM161A. CONCLUSION Our results shed light on the molecular background of the dysfunctionality of the fewer spermatozoa produced in oligozoospermia and syndromes including it. The male infertility network presented may prove useful in further elucidating the molecular mechanism of male infertility.
Collapse
Affiliation(s)
- Thomas Greither
- Center for Reproductive Medicine and Andrology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Mario Dejung
- Proteomics Core Facility, Institute of Molecular Biology, Mainz, Germany
| | - Hermann M Behre
- Center for Reproductive Medicine and Andrology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Falk Butter
- Department of Quantitative Proteomics, Institute of Molecular Biology, Mainz, Germany
| | - Holger Herlyn
- Anthropology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
11
|
Safizadeh Shabestari SA, Nassir N, Sopariwala S, Karimov I, Tambi R, Zehra B, Kosaji N, Akter H, Berdiev BK, Uddin M. Overlapping pathogenic de novo CNVs in neurodevelopmental disorders and congenital anomalies impacting constraint genes regulating early development. Hum Genet 2023; 142:1201-1213. [PMID: 36383254 PMCID: PMC10449996 DOI: 10.1007/s00439-022-02482-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/21/2022] [Indexed: 11/17/2022]
Abstract
Neurodevelopmental disorders (NDDs) and congenital anomalies (CAs) are rare disorders with complex etiology. In this study, we investigated the less understood genomic overlap of copy number variants (CNVs) in two large cohorts of NDD and CA patients to identify de novo CNVs and candidate genes associated with both phenotypes. We analyzed clinical microarray CNV data from 10,620 NDD and 3176 CA cases annotated using Horizon platform of GenomeArc Analytics and applied rigorous downstream analysis to evaluate overlapping genes from NDD and CA CNVs. Out of 13,796 patients, only 195 cases contained 218 validated de novo CNVs. Eighteen percent (31/170) de novo CNVs in NDD cases and 40% (19/48) de novo CNVs in CA cases contained genomic overlaps impacting developmentally constraint genes. Seventy-nine constraint genes (10.1% non-OMIM entries) were found to have significantly enriched genomic overlap within rare de novo pathogenic deletions (P value = 0.01, OR = 1.58) and 45 constraint genes (13.3% non-OMIM entries) within rare de novo pathogenic duplications (P value = 0.01, OR = 1.97). Analysis of spatiotemporal transcriptome demonstrated both pathogenic deletion and duplication genes to be highly expressed during the prenatal stage in human developmental brain (P value = 4.95 X 10-6). From the list of overlapping genes, EHMT1, an interesting known NDD gene encompassed pathogenic deletion CNVs from both NDD and CA patients, whereas FAM189A1, and FSTL5 are new candidate genes from non-OMIM entries. In summary, we have identified constraint overlapping genes from CNVs (including de novo) in NDD and CA patients that have the potential to play a vital role in common disease etiology.
Collapse
Affiliation(s)
| | - Nasna Nassir
- Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, UAE
| | | | | | - Richa Tambi
- Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, UAE
| | - Binte Zehra
- Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, UAE
| | - Noor Kosaji
- Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, UAE
| | - Hosneara Akter
- Genetics and Genomic Medicine Centre, NeuroGen Healthcare, Dhaka, Bangladesh
| | - Bakhrom K Berdiev
- Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, UAE
| | - Mohammed Uddin
- Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, UAE.
- GenomeArc Inc, Toronto, ON, Canada.
| |
Collapse
|
12
|
Zhou L, Liu H, Liu S, Yang X, Dong Y, Pan Y, Xiao Z, Zheng B, Sun Y, Huang P, Zhang X, Hu J, Sun R, Feng S, Zhu Y, Liu M, Gui M, Wu J. Structures of sperm flagellar doublet microtubules expand the genetic spectrum of male infertility. Cell 2023; 186:2897-2910.e19. [PMID: 37295417 DOI: 10.1016/j.cell.2023.05.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 04/08/2023] [Accepted: 05/10/2023] [Indexed: 06/12/2023]
Abstract
Sperm motility is crucial for successful fertilization. Highly decorated doublet microtubules (DMTs) form the sperm tail skeleton, which propels the movement of spermatozoa. Using cryo-electron microscopy (cryo-EM) and artificial intelligence (AI)-based modeling, we determined the structures of mouse and human sperm DMTs and built an atomic model of the 48-nm repeat of the mouse sperm DMT. Our analysis revealed 47 DMT-associated proteins, including 45 microtubule inner proteins (MIPs). We identified 10 sperm-specific MIPs, including seven classes of Tektin5 in the lumen of the A tubule and FAM166 family members that bind the intra-tubulin interfaces. Interestingly, the human sperm DMT lacks some MIPs compared with the mouse sperm DMT. We also discovered variants in 10 distinct MIPs associated with a subtype of asthenozoospermia characterized by impaired sperm motility without evident morphological abnormalities. Our study highlights the conservation and tissue/species specificity of DMTs and expands the genetic spectrum of male infertility.
Collapse
Affiliation(s)
- Lunni Zhou
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, Zhejiang, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang, China
| | - Haobin Liu
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, Zhejiang, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang, China
| | - Siyu Liu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, China
| | - Xiaoyu Yang
- State Key Laboratory of Reproductive Medicine and Offspring Health, The Center for Clinical Reproductive Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yue Dong
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, China
| | - Yun Pan
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, China
| | - Zhuang Xiao
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, China
| | - Beihong Zheng
- Center of Reproductive Medicine, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou 350001, China
| | - Yan Sun
- Center of Reproductive Medicine, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou 350001, China
| | - Pengyu Huang
- Center of Reproductive Medicine, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou 350001, China
| | - Xixi Zhang
- Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, Zhejiang, China
| | - Jin Hu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang, China
| | - Rui Sun
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang, China
| | - Shan Feng
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang, China
| | - Yi Zhu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang, China
| | - Mingxi Liu
- State Key Laboratory of Reproductive Medicine and Offspring Health, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Nanjing 211166, China.
| | - Miao Gui
- Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, Zhejiang, China; Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, Zhejiang, China.
| | - Jianping Wu
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, Zhejiang, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang, China.
| |
Collapse
|
13
|
Duan R, Ye K, Li Y, Sun Y, Zhu J, Ren J. Heart failure-related genes associated with oxidative stress and the immune landscape in lung cancer. Front Immunol 2023; 14:1167446. [PMID: 37275875 PMCID: PMC10232804 DOI: 10.3389/fimmu.2023.1167446] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 05/02/2023] [Indexed: 06/07/2023] Open
Abstract
Background Lung cancer is a common comorbidity of heart failure (HF). The early identification of the risk factors for lung cancer in patients with HF is crucial to early diagnosis and prognosis. Furthermore, oxidative stress and immune responses are the two critical biological processes shared by HF and lung cancer. Therefore, our study aimed to select the core genes in HF and then investigate the potential mechanisms underlying HF and lung cancer, including oxidative stress and immune responses through the selected genes. Methods Differentially expressed genes (DEGs) were analyzed for HF using datasets extracted from the Gene Expression Omnibus database. Functional enrichment analysis was subsequently performed. Next, weighted gene co-expression network analysis was performed to select the core gene modules. Support vector machine models, the random forest method, and the least absolute shrinkage and selection operator (LASSO) algorithm were applied to construct a multigene signature. The diagnostic values of the signature genes were measured using receiver operating characteristic curves. Functional analysis of the signature genes and immune landscape was performed using single-sample gene set enrichment analysis. Finally, the oxidative stress-related genes in these signature genes were identified and validated in vitro in lung cancer cell lines. Results The DEGs in the GSE57338 dataset were screened, and this dataset was then clustered into six modules using weighted gene co-expression network analysis; MEblue was significantly associated with HF (cor = -0.72, p < 0.001). Signature genes including extracellular matrix protein 2 (ECM2), methyltransferase-like 7B (METTL7B), meiosis-specific nuclear structural 1 (MNS1), and secreted frizzled-related protein 4 (SFRP4) were selected using support vector machine models, the LASSO algorithm, and the random forest method. The respective areas under the curve of the receiver operating characteristic curves of ECM2, METTL7B, MNS1, and SFRP4 were 0.939, 0.854, 0.941, and 0.926, respectively. Single-sample gene set enrichment analysis revealed significant differences in the immune landscape of the patients with HF and healthy subjects. Functional analysis also suggested that these signature genes may be involved in oxidative stress. In particular, METTL7B was highly expressed in lung cancer cell lines. Meanwhile, the correlation between METTL7B and oxidative stress was further verified using flow cytometry. Conclusion We identified that ECM2, METTL7B, MNS1, and SFRP4 exhibit remarkable diagnostic performance in patients with HF. Of note, METTL7B may be involved in the co-occurrence of HF and lung cancer by affecting the oxidative stress immune responses.
Collapse
|
14
|
Cao H, Xu H, Zhou Y, Xu W, Lu Q, Jiang L, Rong Y, Zhang Q, Yu C. BBOF1 is required for sperm motility and male fertility by stabilizing the flagellar axoneme in mice. Cell Mol Life Sci 2023; 80:152. [PMID: 37198331 PMCID: PMC11072524 DOI: 10.1007/s00018-023-04800-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 05/19/2023]
Abstract
The sperm flagellum is a specialized type of motile cilium composed of a typical "9 + 2" axonemal structure with peri-axonemal structures, such as outer dense fibers (ODFs). This flagellar arrangement is crucial for sperm movement and fertilization. However, the association of axonemal integrity with ODFs remains poorly understood. Here, we demonstrate that mouse BBOF1 could interact with both MNS1, an axonemal component, and ODF2, an ODF protein, and is required for sperm flagellar axoneme maintenance and male fertility. BBOF1 is expressed exclusively in male germ cells from the pachytene stage onwards and is detected in sperm axoneme fraction. Spermatozoa derived from Bbof1-knockout mice exhibit a normal morphology, however, reduced motility due to the absence of certain microtubule doublets, resulting in the failure to fertilize mature oocytes. Furthermore, BBOF1 is found to interact with ODF2 and MNS1 and is also required for their stability. Our findings in mice suggest that Bbof1 could also be essential for human sperm motility and male fertility, thus is a novel potential candidate gene for asthenozoospermia diagnosis.
Collapse
Affiliation(s)
- Huiwen Cao
- College of Life Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Haomang Xu
- College of Life Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Yiqing Zhou
- College of Life Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Wei Xu
- College of Life Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Qinglin Lu
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, 718 East Haizhou Road, Haining, 314400, China
| | - Lingying Jiang
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Assisted Reproduction Unit, Department of Obstetrics and Gynecology, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Yan Rong
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Assisted Reproduction Unit, Department of Obstetrics and Gynecology, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Qianting Zhang
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, 718 East Haizhou Road, Haining, 314400, China.
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.
| | - Chao Yu
- College of Life Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China.
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Assisted Reproduction Unit, Department of Obstetrics and Gynecology, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China.
| |
Collapse
|
15
|
Rabiasz A, Ziętkiewicz E. Schmidtea mediterranea as a Model Organism to Study the Molecular Background of Human Motile Ciliopathies. Int J Mol Sci 2023; 24:ijms24054472. [PMID: 36901899 PMCID: PMC10002865 DOI: 10.3390/ijms24054472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/12/2023] Open
Abstract
Cilia and flagella are evolutionarily conserved organelles that form protrusions on the surface of many growth-arrested or differentiated eukaryotic cells. Due to the structural and functional differences, cilia can be roughly classified as motile and non-motile (primary). Genetically determined dysfunction of motile cilia is the basis of primary ciliary dyskinesia (PCD), a heterogeneous ciliopathy affecting respiratory airways, fertility, and laterality. In the face of the still incomplete knowledge of PCD genetics and phenotype-genotype relations in PCD and the spectrum of PCD-like diseases, a continuous search for new causative genes is required. The use of model organisms has been a great part of the advances in understanding molecular mechanisms and the genetic basis of human diseases; the PCD spectrum is not different in this respect. The planarian model (Schmidtea mediterranea) has been intensely used to study regeneration processes, and-in the context of cilia-their evolution, assembly, and role in cell signaling. However, relatively little attention has been paid to the use of this simple and accessible model for studying the genetics of PCD and related diseases. The recent rapid development of the available planarian databases with detailed genomic and functional annotations prompted us to review the potential of the S. mediterranea model for studying human motile ciliopathies.
Collapse
|
16
|
Jiang G, Zou L, Long L, He Y, Lv X, Han Y, Yao T, Zhang Y, Jiang M, Peng Z, Tao L, Xie W, Meng J. Homozygous mutation in DNAAF4 causes primary ciliary dyskinesia in a Chinese family. Front Genet 2022; 13:1087818. [PMID: 36583018 PMCID: PMC9792849 DOI: 10.3389/fgene.2022.1087818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 12/01/2022] [Indexed: 12/15/2022] Open
Abstract
Primary ciliary dyskinesia (PCD) is a rare autosomal recessive disorder that affects the structure and function of motile cilia, leading to classic clinical phenotypes, such as situs inversus, chronic sinusitis, bronchiectasis, repeated pneumonia and infertility. In this study, we diagnosed a female patient with PCD who was born in a consanguineous family through classic clinical manifestations, transmission electron microscopy and immunofluorescence staining. A novel DNAAF4 variant NM_130810: c.1118G>A (p. G373E) was filtered through Whole-exome sequencing. Subsequently, we explored the effect of the mutation on DNAAF4 protein from three aspects: protein expression, stability and interaction with downstream DNAAF2 protein through a series of experiments, such as transfection of plasmids and Co-immunoprecipitation. Finally, we confirmed that the mutation of DNAAF4 lead to PCD by reducing the stability of DNAAF4 protein, but the expression and function of DNAAF4 protein were not affected.
Collapse
Affiliation(s)
- Guoliang Jiang
- Department of Pulmonary and Critical Care Medicine, The Third Xiangya Hospital, Central South University, Changsha, China,Hunan Key Laboratory of Organ Fibrosis, Central South University, Changsha, China
| | - Lijun Zou
- Department of Pulmonary and Critical Care Medicine, The Third Xiangya Hospital, Central South University, Changsha, China,Hunan Key Laboratory of Organ Fibrosis, Central South University, Changsha, China
| | - Lingzhi Long
- Department of Pulmonary and Critical Care Medicine, The Third Xiangya Hospital, Central South University, Changsha, China,Hunan Key Laboratory of Organ Fibrosis, Central South University, Changsha, China
| | - Yijun He
- Department of Pulmonary and Critical Care Medicine, The Third Xiangya Hospital, Central South University, Changsha, China,Hunan Key Laboratory of Organ Fibrosis, Central South University, Changsha, China
| | - Xin Lv
- Hunan Key Laboratory of Organ Fibrosis, Central South University, Changsha, China,Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
| | - Yuanyuan Han
- Hunan Key Laboratory of Organ Fibrosis, Central South University, Changsha, China,Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
| | - Tingting Yao
- Department of Pulmonary and Critical Care Medicine, The Third Xiangya Hospital, Central South University, Changsha, China,Hunan Key Laboratory of Organ Fibrosis, Central South University, Changsha, China
| | - Yan Zhang
- Department of Pulmonary and Critical Care Medicine, The Third Xiangya Hospital, Central South University, Changsha, China,Hunan Key Laboratory of Organ Fibrosis, Central South University, Changsha, China
| | - Mao Jiang
- Department of Pulmonary and Critical Care Medicine, The Third Xiangya Hospital, Central South University, Changsha, China,Hunan Key Laboratory of Organ Fibrosis, Central South University, Changsha, China
| | - Zhangzhe Peng
- Hunan Key Laboratory of Organ Fibrosis, Central South University, Changsha, China,Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
| | - Lijian Tao
- Hunan Key Laboratory of Organ Fibrosis, Central South University, Changsha, China,Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
| | - Wei Xie
- Hunan Key Laboratory of Organ Fibrosis, Central South University, Changsha, China,Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, China,*Correspondence: Wei Xie, ; Jie Meng,
| | - Jie Meng
- Department of Pulmonary and Critical Care Medicine, The Third Xiangya Hospital, Central South University, Changsha, China,Hunan Key Laboratory of Organ Fibrosis, Central South University, Changsha, China,*Correspondence: Wei Xie, ; Jie Meng,
| |
Collapse
|
17
|
Leslie JS, Hjeij R, Vivante A, Bearce EA, Dyer L, Wang J, Rawlins L, Kennedy J, Ubeyratna N, Fasham J, Irons ZH, Craig SB, Koenig J, George S, Pode-Shakked B, Bolkier Y, Barel O, Mane S, Frederiksen KK, Wenger O, Scott E, Cross HE, Lorentzen E, Norris DP, Anikster Y, Omran H, Grimes DT, Crosby AH, Baple EL. Biallelic DAW1 variants cause a motile ciliopathy characterized by laterality defects and subtle ciliary beating abnormalities. Genet Med 2022; 24:2249-2261. [PMID: 36074124 PMCID: PMC10584193 DOI: 10.1016/j.gim.2022.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 07/20/2022] [Accepted: 07/20/2022] [Indexed: 01/27/2023] Open
Abstract
PURPOSE The clinical spectrum of motile ciliopathies includes laterality defects, hydrocephalus, and infertility as well as primary ciliary dyskinesia when impaired mucociliary clearance results in otosinopulmonary disease. Importantly, approximately 30% of patients with primary ciliary dyskinesia lack a genetic diagnosis. METHODS Clinical, genomic, biochemical, and functional studies were performed alongside in vivo modeling of DAW1 variants. RESULTS In this study, we identified biallelic DAW1 variants associated with laterality defects and respiratory symptoms compatible with motile cilia dysfunction. In early mouse embryos, we showed that Daw1 expression is limited to distal, motile ciliated cells of the node, consistent with a role in left-right patterning. daw1 mutant zebrafish exhibited reduced cilia motility and left-right patterning defects, including cardiac looping abnormalities. Importantly, these defects were rescued by wild-type, but not mutant daw1, gene expression. In addition, pathogenic DAW1 missense variants displayed reduced protein stability, whereas DAW1 loss-of-function was associated with distal type 2 outer dynein arm assembly defects involving axonemal respiratory cilia proteins, explaining the reduced cilia-induced fluid flow in particle tracking velocimetry experiments. CONCLUSION Our data define biallelic DAW1 variants as a cause of human motile ciliopathy and determine that the disease mechanism involves motile cilia dysfunction, explaining the ciliary beating defects observed in affected individuals.
Collapse
Affiliation(s)
- Joseph S Leslie
- Institute of Biomedical and Clinical Science, RILD Wellcome Wolfson Centre, University of Exeter Medical School, Royal Devon University Healthcare NHS Foundation Trust, Exeter, United Kingdom
| | - Rim Hjeij
- Department of General Pediatrics, University Hospital Muenster, Muenster, Germany
| | - Asaf Vivante
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Department of Pediatrics B and Pediatric Nephrology Unit, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel
| | | | - Laura Dyer
- MRC Harwell Institute, Harwell Campus, Oxfordshire, Oxford, United Kingdom
| | - Jiaolong Wang
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Lettie Rawlins
- Institute of Biomedical and Clinical Science, RILD Wellcome Wolfson Centre, University of Exeter Medical School, Royal Devon University Healthcare NHS Foundation Trust, Exeter, United Kingdom; Peninsula Clinical Genetics Service, Royal Devon University Healthcare NHS Foundation Trust, Exeter, United Kingdom
| | - Joanna Kennedy
- Institute of Biomedical and Clinical Science, RILD Wellcome Wolfson Centre, University of Exeter Medical School, Royal Devon University Healthcare NHS Foundation Trust, Exeter, United Kingdom
| | - Nishanka Ubeyratna
- Institute of Biomedical and Clinical Science, RILD Wellcome Wolfson Centre, University of Exeter Medical School, Royal Devon University Healthcare NHS Foundation Trust, Exeter, United Kingdom
| | - James Fasham
- Institute of Biomedical and Clinical Science, RILD Wellcome Wolfson Centre, University of Exeter Medical School, Royal Devon University Healthcare NHS Foundation Trust, Exeter, United Kingdom; Peninsula Clinical Genetics Service, Royal Devon University Healthcare NHS Foundation Trust, Exeter, United Kingdom
| | - Zoe H Irons
- Institute of Molecular Biology, University of Oregon, Eugene, OR
| | - Samuel B Craig
- Institute of Molecular Biology, University of Oregon, Eugene, OR
| | - Julia Koenig
- Department of General Pediatrics, University Hospital Muenster, Muenster, Germany
| | - Sebastian George
- Department of General Pediatrics, University Hospital Muenster, Muenster, Germany
| | - Ben Pode-Shakked
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Metabolic Disease Unit, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel
| | - Yoav Bolkier
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Pediatric Heart Institute, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel
| | - Ortal Barel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; The Genomic Unit, Sheba Cancer Research Center, Sheba Medical Center, Ramat Gan, Israel; Wohl Institute for Translational Medicine, Sheba Medical Center, Ramat Gan, Israel
| | - Shrikant Mane
- Department of Genetics, Yale School of Medicine, New Haven, CT
| | | | - Olivia Wenger
- New Leaf Center Clinic for Special Children, Mt Eaton, OH
| | - Ethan Scott
- New Leaf Center Clinic for Special Children, Mt Eaton, OH
| | - Harold E Cross
- Department of Ophthalmology and Vision Science, University of Arizona College of Medicine, University of Arizona, Tucson, AZ
| | - Esben Lorentzen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Dominic P Norris
- MRC Harwell Institute, Harwell Campus, Oxfordshire, Oxford, United Kingdom
| | - Yair Anikster
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Metabolic Disease Unit, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel; Wohl Institute for Translational Medicine, Sheba Medical Center, Ramat Gan, Israel
| | - Heymut Omran
- Department of General Pediatrics, University Hospital Muenster, Muenster, Germany
| | - Daniel T Grimes
- Institute of Molecular Biology, University of Oregon, Eugene, OR.
| | - Andrew H Crosby
- Institute of Biomedical and Clinical Science, RILD Wellcome Wolfson Centre, University of Exeter Medical School, Royal Devon University Healthcare NHS Foundation Trust, Exeter, United Kingdom.
| | - Emma L Baple
- Institute of Biomedical and Clinical Science, RILD Wellcome Wolfson Centre, University of Exeter Medical School, Royal Devon University Healthcare NHS Foundation Trust, Exeter, United Kingdom; Peninsula Clinical Genetics Service, Royal Devon University Healthcare NHS Foundation Trust, Exeter, United Kingdom.
| |
Collapse
|
18
|
The Plasmodium falciparum CCCH Zinc Finger Protein ZNF4 Plays an Important Role in Gametocyte Exflagellation through the Regulation of Male Enriched Transcripts. Cells 2022; 11:cells11101666. [PMID: 35626703 PMCID: PMC9139750 DOI: 10.3390/cells11101666] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/28/2022] [Accepted: 05/13/2022] [Indexed: 11/26/2022] Open
Abstract
CCCH zinc finger proteins (ZFPs) function mainly as RNA-binding proteins (RBPs) and play a central role in the mRNA metabolism. Over twenty seven CCCH-ZFPs are encoded in the genome of the human malaria parasite Plasmodium falciparum, the causative agent of malaria tropica. However, little is known about their functions. In this study, we characterize one member of the PfCCCH-ZFP named ZNF4. We show that ZNF4 is highly expressed in mature gametocytes, where it predominantly localizes to the cytoplasm. Targeted gene disruption of ZNF4 showed no significant effect in asexual blood stage replication and gametocyte development while male gametocyte exflagellation was significantly impaired, leading to reduced malaria transmission in the mosquito. Comparative transcriptomics between wildtype (WT) and the ZNF4-deficient line (ZNF4-KO) demonstrated the deregulation of about 473 genes (274 upregulated and 199 downregulated) in mature gametocytes. Most of the downregulated genes show peak expression in mature gametocyte with male enriched genes associated to the axonemal dynein complex formation, and cell projection organization is highly affected, pointing to the phenotype in male gametocyte exflagellation. Upregulated genes are associated to ATP synthesis. Our combined data therefore indicate that ZNF4 is a CCCH zinc finger protein which plays an important role in male gametocyte exflagellation through the regulation of male gametocyte-enriched genes.
Collapse
|
19
|
Antony D, Gulec Yilmaz E, Gezdirici A, Slagter L, Bakey Z, Bornaun H, Tanidir IC, Van Dinh T, Brunner HG, Walentek P, Arnold SJ, Backofen R, Schmidts M. Spectrum of Genetic Variants in a Cohort of 37 Laterality Defect Cases. Front Genet 2022; 13:861236. [PMID: 35547246 PMCID: PMC9083912 DOI: 10.3389/fgene.2022.861236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/03/2022] [Indexed: 11/13/2022] Open
Abstract
Laterality defects are defined by the perturbed left–right arrangement of organs in the body, occurring in a syndromal or isolated fashion. In humans, primary ciliary dyskinesia (PCD) is a frequent underlying condition of defective left–right patterning, where ciliary motility defects also result in reduced airway clearance, frequent respiratory infections, and infertility. Non-motile cilia dysfunction and dysfunction of non-ciliary genes can also result in disturbances of the left–right body axis. Despite long-lasting genetic research, identification of gene mutations responsible for left–right patterning has remained surprisingly low. Here, we used whole-exome sequencing with Copy Number Variation (CNV) analysis to delineate the underlying molecular cause in 35 mainly consanguineous families with laterality defects. We identified causative gene variants in 14 families with a majority of mutations detected in genes previously associated with PCD, including two small homozygous CNVs. None of the patients were previously clinically diagnosed with PCD, underlining the importance of genetic diagnostics for PCD diagnosis and adequate clinical management. Identified variants in non-PCD-associated genes included variants in PKD1L1 and PIFO, suggesting that dysfunction of these genes results in laterality defects in humans. Furthermore, we detected candidate variants in GJA1 and ACVR2B possibly associated with situs inversus. The low mutation detection rate of this study, in line with other previously published studies, points toward the possibility of non-coding genetic variants, putative genetic mosaicism, epigenetic, or environmental effects promoting laterality defects.
Collapse
Affiliation(s)
- Dinu Antony
- Genome Research Division, Human Genetics Department, Radboud University Medical Center and Radboud Institute for Molecular Life Sciences, Nijmegen, Netherlands
- Center for Pediatrics and Adolescent Medicine, University Hospital Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Elif Gulec Yilmaz
- Department of Medical Genetics, University of Health Sciences, Istanbul Kanuni Sultan Suleyman Training and Research Hospital, Istanbul, Turkey
| | - Alper Gezdirici
- Department of Medical Genetics, University of Health Sciences, Istanbul Kanuni Sultan Suleyman Training and Research Hospital, Istanbul, Turkey
| | - Lennart Slagter
- Genome Research Division, Human Genetics Department, Radboud University Medical Center and Radboud Institute for Molecular Life Sciences, Nijmegen, Netherlands
| | - Zeineb Bakey
- Genome Research Division, Human Genetics Department, Radboud University Medical Center and Radboud Institute for Molecular Life Sciences, Nijmegen, Netherlands
- Center for Pediatrics and Adolescent Medicine, University Hospital Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Helen Bornaun
- Department of Pediatric Cardiology, University of Health Sciences, Istanbul Kanuni Sultan Suleyman Training and Research Hospital, Istanbul, Turkey
| | | | - Tran Van Dinh
- Bioinformatics Group, Department of Computer Science, University of Freiburg, Freiburg, Germany
| | - Han G. Brunner
- Genome Research Division, Human Genetics Department, Radboud University Medical Center and Radboud Institute for Molecular Life Sciences, Nijmegen, Netherlands
- Maastricht University Medical Center and GROW School of Oncology and Development, Maastricht University, Maastricht, Netherlands
| | - Peter Walentek
- Renal Division, Department of Medicine, University Hospital Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- CIBSS- Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Sebastian J. Arnold
- CIBSS- Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Rolf Backofen
- Bioinformatics Group, Department of Computer Science, University of Freiburg, Freiburg, Germany
- CIBSS- Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Miriam Schmidts
- Genome Research Division, Human Genetics Department, Radboud University Medical Center and Radboud Institute for Molecular Life Sciences, Nijmegen, Netherlands
- Center for Pediatrics and Adolescent Medicine, University Hospital Freiburg, Faculty of Medicine, Freiburg, Germany
- CIBSS- Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
- *Correspondence: Miriam Schmidts,
| |
Collapse
|
20
|
Qiu T, Roy S. Ciliary dynein arms: Cytoplasmic preassembly, intraflagellar transport, and axonemal docking. J Cell Physiol 2022; 237:2644-2653. [DOI: 10.1002/jcp.30689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/04/2022] [Accepted: 01/14/2022] [Indexed: 12/13/2022]
Affiliation(s)
- Tao Qiu
- Institute of Molecular and Cell Biology, Proteos Singapore Singapore
| | - Sudipto Roy
- Institute of Molecular and Cell Biology, Proteos Singapore Singapore
- Department of Biological Sciences National University of Singapore Singapore Singapore
- Department of Pediatrics, Yong Loo Ling School of Medicine National University of Singapore Singapore Singapore
| |
Collapse
|
21
|
Gui M, Farley H, Anujan P, Anderson JR, Maxwell DW, Whitchurch JB, Botsch JJ, Qiu T, Meleppattu S, Singh SK, Zhang Q, Thompson J, Lucas JS, Bingle CD, Norris DP, Roy S, Brown A. De novo identification of mammalian ciliary motility proteins using cryo-EM. Cell 2021; 184:5791-5806.e19. [PMID: 34715025 PMCID: PMC8595878 DOI: 10.1016/j.cell.2021.10.007] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/12/2021] [Accepted: 10/07/2021] [Indexed: 12/15/2022]
Abstract
Dynein-decorated doublet microtubules (DMTs) are critical components of the oscillatory molecular machine of cilia, the axoneme, and have luminal surfaces patterned periodically by microtubule inner proteins (MIPs). Here we present an atomic model of the 48-nm repeat of a mammalian DMT, derived from a cryoelectron microscopy (cryo-EM) map of the complex isolated from bovine respiratory cilia. The structure uncovers principles of doublet microtubule organization and features specific to vertebrate cilia, including previously unknown MIPs, a luminal bundle of tektin filaments, and a pentameric dynein-docking complex. We identify a mechanism for bridging 48- to 24-nm periodicity across the microtubule wall and show that loss of the proteins involved causes defective ciliary motility and laterality abnormalities in zebrafish and mice. Our structure identifies candidate genes for diagnosis of ciliopathies and provides a framework to understand their functions in driving ciliary motility.
Collapse
Affiliation(s)
- Miao Gui
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Hannah Farley
- MRC Harwell Institute, Harwell Campus, Oxfordshire OX11 0RD, UK
| | - Priyanka Anujan
- Institute of Molecular and Cell Biology, Proteos, 138673 Singapore, Singapore; Department of Infection, Immunity & Cardiovascular Disease, The Medical School and The Florey Institute for Host Pathogen Interactions, University of Sheffield, Sheffield S10 2TN, UK
| | - Jacob R Anderson
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Dale W Maxwell
- Institute of Molecular and Cell Biology, Proteos, 138673 Singapore, Singapore; School of Biological Sciences, University of Manchester, Manchester M13 9PT, UK
| | | | - J Josephine Botsch
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Tao Qiu
- Institute of Molecular and Cell Biology, Proteos, 138673 Singapore, Singapore
| | - Shimi Meleppattu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Sandeep K Singh
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Qi Zhang
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - James Thompson
- Biomedical Imaging Unit, Southampton General Hospital, Southampton, UK; Primary Ciliary Dyskinesia Centre, NIHR Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Jane S Lucas
- Primary Ciliary Dyskinesia Centre, NIHR Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK; University of Southampton Faculty of Medicine, School of Clinical and Experimental Medicine, Southampton, UK
| | - Colin D Bingle
- Department of Infection, Immunity & Cardiovascular Disease, The Medical School and The Florey Institute for Host Pathogen Interactions, University of Sheffield, Sheffield S10 2TN, UK
| | - Dominic P Norris
- MRC Harwell Institute, Harwell Campus, Oxfordshire OX11 0RD, UK.
| | - Sudipto Roy
- Institute of Molecular and Cell Biology, Proteos, 138673 Singapore, Singapore; Department of Biological Sciences, National University of Singapore, 117543 Singapore, Singapore; Department of Pediatrics, Yong Loo Ling School of Medicine, National University of Singapore, 1E Kent Ridge Road, 119288 Singapore, Singapore.
| | - Alan Brown
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
22
|
Abstract
Primary ciliary dyskinesia (PCD) is an inherited cause of bronchiectasis. The estimated PCD prevalence in children with bronchiectasis is up to 26% and in adults with bronchiectasis is 1 to 13%. Due to dysfunction of the multiple motile cilia of the respiratory tract patients suffer from poor mucociliary clearance. Clinical manifestations are heterogeneous; however, a typical patient presents with chronic productive cough and rhinosinusitis from early life. Other symptoms reflect the multiple roles of motile cilia in other organs and can include otitis media and hearing loss, infertility, situs inversus, complex congenital heart disease, and more rarely other syndromic features such as hydrocephalus and retinitis pigmentosa. Awareness, identification, and diagnosis of a patient with PCD are important for multidisciplinary care and genetic counseling. Diagnosis can be pursued through a multitest pathway which includes the measurement of nasal nitric oxide, sampling the nasal epithelium to assess ciliary function and structure, and genotyping. Diagnosis is confirmed by the identification of a hallmark ultrastructural defect or pathogenic mutations in one of > 45 PCD causing genes. When a diagnosis is established management is centered around improving mucociliary clearance through physiotherapy and treatment of infection with antibiotics. The first international randomized controlled trial in PCD has recently been conducted showing azithromycin is effective in reducing exacerbations. It is likely that evidence-based PCD-specific management guidelines and therapies will be developed in the near future. This article examines prevalence, clinical features, diagnosis, and management of PCD highlighting recent advances in basic science and clinical care.
Collapse
Affiliation(s)
- Amelia Shoemark
- Scottish Centre for Respiratory Research, Division of Molecular and Clinical Medicine, University of Dundee, Dundee DD1 9SY, United Kingdom.,PCD Diagnostic Service, Royal Brompton Hospital, London, United Kingdom
| | - Katharine Harman
- Department of Paediatrics and Child Health, King's College Hospital, London, United Kingdom
| |
Collapse
|
23
|
Jakobsen JR, Schjerling P, Svensson RB, Buhl R, Carstensen H, Koch M, Krogsgaard MR, Kjær M, Mackey AL. RNA sequencing and immunofluorescence of the myotendinous junction of mature horses and humans. Am J Physiol Cell Physiol 2021; 321:C453-C470. [PMID: 34260300 DOI: 10.1152/ajpcell.00218.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The myotendinous junction (MTJ) is a specialized interface for transmitting high forces between the muscle and tendon and yet the MTJ is a common site of strain injury with a high recurrence rate. The aim of this study was to identify previously unknown MTJ components in mature animals and humans. Samples were obtained from the superficial digital flexor (SDF) muscle-tendon interface of 20 horses, and the tissue was separated through a sequential cryosectioning approach into muscle, MTJ (muscle tissue enriched in myofiber tips attached to the tendon), and tendon fractions. RT-PCR was performed for genes known to be expressed in the three tissue fractions and t-distributed stochastic neighbor embedding (t-SNE) plots were used to select the muscle, MTJ, and tendon samples from five horses for RNA sequencing. The expression of previously known and unknown genes identified through RNA sequencing was studied by immunofluorescence on human hamstring MTJ tissue. The main finding was that RNA sequencing identified the expression of a panel of 61 genes enriched at the MTJ. Of these, 48 genes were novel for the MTJ and 13 genes had been reported to be associated with the MTJ in earlier studies. The expression of known [COL22A1 (collagen XXII), NCAM (neural cell adhesion molecule), POSTN (periostin), NES (nestin), OSTN (musclin/osteocrin)] and previously undescribed [MNS1 (meiosis-specific nuclear structural protein 1), and LCT (lactase)] MTJ genes was confirmed at the protein level by immunofluorescence on tissue sections of human MTJ. In conclusion, in muscle-tendon interface tissue enriched with myofiber tips, we identified the expression of previously unknown MTJ genes representing diverse biological processes, which may be important in the maintenance of the specialized MTJ.
Collapse
Affiliation(s)
- Jens R Jakobsen
- Section for Sports Traumatology M51, Department of Orthopaedic Surgery, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Copenhagen, Denmark
| | - Peter Schjerling
- Institute of Sports Medicine Copenhagen, Department of Orthopaedic Surgery, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Copenhagen, Denmark.,Center for Healthy Aging, Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Rene B Svensson
- Institute of Sports Medicine Copenhagen, Department of Orthopaedic Surgery, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Copenhagen, Denmark.,Center for Healthy Aging, Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Rikke Buhl
- Department of Veterinary Clinical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Helena Carstensen
- Department of Veterinary Clinical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Manuel Koch
- Institute for Dental Research and Oral Musculoskeletal Biology, Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Michael R Krogsgaard
- Section for Sports Traumatology M51, Department of Orthopaedic Surgery, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Copenhagen, Denmark
| | - Michael Kjær
- Institute of Sports Medicine Copenhagen, Department of Orthopaedic Surgery, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Copenhagen, Denmark.,Center for Healthy Aging, Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Abigail L Mackey
- Institute of Sports Medicine Copenhagen, Department of Orthopaedic Surgery, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Copenhagen, Denmark.,Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
24
|
Bolkier Y, Barel O, Marek-Yagel D, Atias-Varon D, Kagan M, Vardi A, Mishali D, Katz U, Salem Y, Tirosh-Wagner T, Jacobson JM, Raas-Rothschild A, Chorin O, Eliyahu A, Sarouf Y, Shlomovitz O, Veber A, Shalva N, Javasky E, Ben Moshe Y, Staretz-Chacham O, Rechavi G, Mane S, Anikster Y, Vivante A, Pode-Shakked B. Whole-exome sequencing reveals a monogenic cause in 56% of individuals with laterality disorders and associated congenital heart defects. J Med Genet 2021; 59:691-696. [PMID: 34215651 DOI: 10.1136/jmedgenet-2021-107775] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 06/19/2021] [Indexed: 01/19/2023]
Abstract
BACKGROUND The molecular basis of heterotaxy and congenital heart malformations associated with disruption of left-right asymmetry is broad and heterogenous, with over 25 genes implicated in its pathogenesis thus far. OBJECTIVE We sought to elucidate the molecular basis of laterality disorders and associated congenital heart defects in a cohort of 30 unrelated probands of Arab-Muslim descent, using next-generation sequencing techniques. METHODS Detailed clinical phenotyping followed by whole-exome sequencing (WES) was pursued for each of the probands and their parents (when available). Sanger sequencing was used for segregation analysis of disease-causing mutations in the families. RESULTS Using WES, we reached a molecular diagnosis for 17 of the 30 probands (56.7%). Genes known to be associated with heterotaxy and/or primary ciliary dyskinesia, in which homozygous pathogenic or likely pathogenic variants were detected, included CFAP53 (CCDC11), CFAP298 (C21orf59), CFAP300, LRRC6, GDF1, DNAAF1, DNAH5, CCDC39, CCDC40, PKD1L1 and TTC25. Additionally, we detected a homozygous disease causing mutation in DAND5, as a novel recessive monogenic cause for heterotaxy in humans. Three additional probands were found to harbour variants of uncertain significance. These included variants in DNAH6, HYDIN, CELSR1 and CFAP46. CONCLUSIONS Our findings contribute to the current knowledge regarding monogenic causes of heterotaxy and its associated congenital heart defects and underscore the role of next-generation sequencing techniques in the diagnostic workup of such patients, and especially among consanguineous families.
Collapse
Affiliation(s)
- Yoav Bolkier
- Pediatric Heart Institute, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Metabolic Disease Unit, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Israel
| | - Ortal Barel
- Genomic Unit, Sheba Cancer Research Center, Sheba Medical Center, Tel Hashomer, Israel.,The Wohl Institute for Translational Medicine, Sheba Medical Center, Tel Hashomer, Israel
| | - Dina Marek-Yagel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Metabolic Disease Unit, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Israel
| | - Danit Atias-Varon
- Pediatric Nephrology Unit, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Israel
| | - Maayan Kagan
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Pediatric Nephrology Unit, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Israel
| | - Amir Vardi
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Department of Pediatric Cardiac Intensive Care, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Israel
| | - David Mishali
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Department of Pediatric Cardiac Intensive Care, Edmond Safra International Congenital Heart Center, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Israel
| | - Uriel Katz
- Pediatric Heart Institute, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yishay Salem
- Pediatric Heart Institute, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Tal Tirosh-Wagner
- Pediatric Heart Institute, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Jeffrey M Jacobson
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Pediatric Imaging Unit, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Israel
| | - Annick Raas-Rothschild
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,The Institute of Rare Diseases, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Israel
| | - Odelia Chorin
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,The Institute of Rare Diseases, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Israel
| | - Aviva Eliyahu
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,The Danek Gertner Institute of Human Genetics, Sheba Medical Center, Tel Hashomer, Israel
| | - Yarden Sarouf
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Department of Pediatrics B, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Israel
| | - Omer Shlomovitz
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Department of Pediatrics B, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Israel
| | - Alvit Veber
- Metabolic Disease Unit, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Israel
| | - Nechama Shalva
- Metabolic Disease Unit, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Israel
| | - Elisheva Javasky
- Genomic Unit, Sheba Cancer Research Center, Sheba Medical Center, Tel Hashomer, Israel
| | - Yishay Ben Moshe
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Department of Pediatrics B, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Israel
| | - Orna Staretz-Chacham
- Metabolic Clinic, Division of Pediatrics, Soroka Medical Center, Ben-Gurion University, Beer Sheva, Israel
| | - Gideon Rechavi
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,The Wohl Institute for Translational Medicine, Sheba Medical Center, Tel Hashomer, Israel.,Sheba Cancer Research Center, Sheba Medical Center, Tel Hashomer, Israel
| | - Shrikant Mane
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Yair Anikster
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Metabolic Disease Unit, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Israel.,The Wohl Institute for Translational Medicine, Sheba Medical Center, Tel Hashomer, Israel
| | - Asaf Vivante
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Department of Pediatrics B, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Israel.,Talpiot Medical Leadership Program, Sheba Medical Center, Tel Hashomer, Israel
| | - Ben Pode-Shakked
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel .,Metabolic Disease Unit, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Israel.,Department of Pediatrics B, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Israel.,Talpiot Medical Leadership Program, Sheba Medical Center, Tel Hashomer, Israel
| |
Collapse
|
25
|
Xia H, Huang X, Deng S, Xu H, Yang Y, Liu X, Yuan L, Deng H. DNAH11 compound heterozygous variants cause heterotaxy and congenital heart disease. PLoS One 2021; 16:e0252786. [PMID: 34133440 PMCID: PMC8208527 DOI: 10.1371/journal.pone.0252786] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 05/21/2021] [Indexed: 12/16/2022] Open
Abstract
Heterotaxy (HTX), a condition characterized by internal organs not being arranged as expected relative to each other and to the left-right axis, is often accompanied with congenital heart disease (CHD). The purpose was to detect the pathogenic variants in a Chinese family with HTX and CHD. A non-consanguineous Han Chinese family with HTX and CHD, and 200 unrelated healthy subjects were enlisted. Exome sequencing and Sanger sequencing were applied to identify the genetic basis of the HTX family. Compound heterozygous variants, c.3426-1G>A and c.4306C>T (p.(Arg1436Trp)), in the dynein axonemal heavy chain 11 gene (DNAH11) were identified in the proband via exome sequencing and further confirmed by Sanger sequencing. Neither c.3426-1G>A nor c.4306C>T variant in the DNAH11 gene was detected in 200 healthy controls. The DNAH11 c.3426-1G>A variant was predicted as altering the acceptor splice site and most likely affecting splicing. The DNAH11 c.4306C>T variant was predicted to be damaging, which may reduce the phenotype severity. The compound heterozygous variants, c.3426-1G>A and c.4306C>T, in the DNAH11 gene might be the pathogenic alterations resulting in HTX and CHD in this family. These findings broaden the variant spectrum of the DNAH11 gene and increase knowledge used in genetic counseling for the HTX family.
Collapse
Affiliation(s)
- Hong Xia
- Center for Experimental Medicine, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Emergency, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiangjun Huang
- Department of General Surgery, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Sheng Deng
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hongbo Xu
- Center for Experimental Medicine, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yan Yang
- Department of Neurology, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xin Liu
- Center for Experimental Medicine, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lamei Yuan
- Center for Experimental Medicine, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China
- * E-mail: (HD); (LY)
| | - Hao Deng
- Center for Experimental Medicine, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China
- * E-mail: (HD); (LY)
| |
Collapse
|
26
|
Yi Y, Yu MC, Fu PY, Liu G, Zhou PY, Guan RY, Zhou C, Sun BY, Qiu SJ. MNS1 promotes hepatocarcinogenesis and metastasis via activating PI3K/AKT by translocating β-catenin and predicts poor prognosis. Liver Int 2021; 41:1409-1420. [PMID: 33506565 DOI: 10.1111/liv.14803] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 12/30/2020] [Accepted: 01/22/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS Hepatocellular carcinoma (HCC) is a fatal disease characterized by vast molecular heterogeneity. Although major advances in tumour genetics has led to the identification of new biomarkers, the prognosis of patients with HCC remains dismal. METHODS Quantitative reverse-transcription polymerase chain reaction (qRT-PCR) and western blot (WB) were used to evaluate meiosis-specific nuclear structural 1 (MNS1) expression in HCC cells. Immunohistochemistry staining was used to evaluate MNS1 expression in HCC tissues. Clinical significance of MNS1 was evaluated by Cox regression analysis. Transwell assays were conducted to assess cells migration ability. Cell counting kit-8 and colony formation assays were performed to detect cells proliferation ability. NOD/SCID/γc(null) (NOG) mice model was adopted to investigate functions of MNS1 in vivo. RESULTS The expression of MNS1, which is elevated in most HCC tissues, correlated with poor survival in HCC patients. Functional experiments revealed the oncogenic role of MNS1, which promotes HCC growth and metastasis through AKT-dependent modulation of β-catenin. β-Catenin expression was crucial for MNS1's oncogenic effects. MNS1 indirectly translocated β-catenin from the cytoplasm to the nucleus via the MNS1-GSK3β axis. CONCLUSIONS MNS1 promotes HCC growth and metastasis via activating PI3K/AKT signalling and may serve as an important prognostic biomarker as well as potential novel therapeutic target for HCC.
Collapse
Affiliation(s)
- Yong Yi
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
| | - Min-Cheng Yu
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
| | - Pei-Yao Fu
- Endoscopy Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Gao Liu
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
| | - Pei-Yun Zhou
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
| | - Ruo-Yu Guan
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
| | - Cheng Zhou
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
| | - Bao-Ye Sun
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
| | - Shuang-Jian Qiu
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
| |
Collapse
|
27
|
Li Y, Wang WL, Tu CF, Meng LL, Hu TY, Du J, Lin G, Nie HC, Tan YQ. A novel homozygous frameshift mutation in MNS1 associated with severe oligoasthenoteratozoospermia in humans. Asian J Androl 2021; 23:197-204. [PMID: 33037173 PMCID: PMC7991825 DOI: 10.4103/aja.aja_56_20] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Oligoasthenoteratozoospermia (OAT) refers to the combination of various sperm abnormalities, including a decreased sperm count, reduced motility, and abnormal sperm morphology. Only a few genetic causes have been shown to be associated with OAT. Herein, we identified a novel homozygous frameshift mutation in meiosis-specific nuclear structural 1 (MNS1; NM_018365: c.603_604insG: p.Lys202Glufs*6) by whole-exome sequencing in an OAT proband from a consanguineous Chinese family. Subsequent variant screening identified four additional heterozygous MNS1 variants in 6/219 infertile individuals with oligoasthenospermia, but no MNS1 variants were observed among 223 fertile controls. Immunostaining analysis showed MNS1 to be normally located in the whole-sperm flagella, but was absent in the proband's sperm. Expression analysis by Western blot also confirmed that MNS1 was absent in the proband's sperm. Abnormal flagellum morphology and ultrastructural disturbances in outer doublet microtubules were observed in the proband's sperm. A total of three intracytoplasmic sperm injection cycles were carried out for the proband's wife, but they all failed to lead to a successful pregnancy. Overall, this is the first study to report a loss-of-function mutation in MNS1 causing OAT in a Han Chinese patient.
Collapse
Affiliation(s)
- Yong Li
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha 410078, China
| | - Wei-Li Wang
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha 410078, China
| | - Chao-Feng Tu
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha 410078, China.,Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha 410078, China.,Clinical Research Center for Reproduction and Genetics in Hunan Province, Changsha 410078, China
| | - Lan-Lan Meng
- Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha 410078, China.,Clinical Research Center for Reproduction and Genetics in Hunan Province, Changsha 410078, China
| | - Tong-Yao Hu
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha 410078, China
| | - Juan Du
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha 410078, China.,Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha 410078, China.,Clinical Research Center for Reproduction and Genetics in Hunan Province, Changsha 410078, China
| | - Ge Lin
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha 410078, China.,Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha 410078, China.,Clinical Research Center for Reproduction and Genetics in Hunan Province, Changsha 410078, China
| | - Hong-Chuan Nie
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha 410078, China.,Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha 410078, China.,Clinical Research Center for Reproduction and Genetics in Hunan Province, Changsha 410078, China
| | - Yue-Qiu Tan
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha 410078, China.,Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha 410078, China.,Clinical Research Center for Reproduction and Genetics in Hunan Province, Changsha 410078, China
| |
Collapse
|
28
|
Legendre M, Zaragosi LE, Mitchison HM. Motile cilia and airway disease. Semin Cell Dev Biol 2020; 110:19-33. [PMID: 33279404 DOI: 10.1016/j.semcdb.2020.11.007] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/10/2020] [Accepted: 11/14/2020] [Indexed: 01/10/2023]
Abstract
A finely regulated system of airway epithelial development governs the differentiation of motile ciliated cells of the human respiratory tract, conferring the body's mucociliary clearance defence system. Human cilia dysfunction can arise through genetic mutations and this is a cause of debilitating disease morbidities that confer a greatly reduced quality of life. The inherited human motile ciliopathy disorder, primary ciliary dyskinesia (PCD), can arise from mutations in genes affecting various aspects of motile cilia structure and function through deficient production, transport and assembly of cilia motility components or through defective multiciliogenesis. Our understanding about the development of the respiratory epithelium, motile cilia biology and the implications for human pathology has expanded greatly over the past 20 years since isolation of the first PCD gene, rising to now nearly 50 genes. Systems level insights about cilia motility in health and disease have been made possible through intensive molecular and omics (genomics, transcriptomics, proteomics) research, applied in ciliate organisms and in animal and human disease modelling. Here, we review ciliated airway development and the genetic stratification that underlies PCD, for which the underlying genotype can increasingly be connected to biological mechanism and disease prognostics. Progress in this field can facilitate clinical translation of research advances, with potential for great medical impact, e.g. through improvements in ciliopathy disease diagnosis, management, family counselling and by enhancing the potential for future genetically tailored approaches to disease therapeutics.
Collapse
Affiliation(s)
- Marie Legendre
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Childhood Genetic Disorders, Département de Génétique Médicale, Hôpital Armand-Trousseau, Assistance Publique-Hôpitaux de Paris, Paris 75012, France
| | | | - Hannah M Mitchison
- Genetics and Genomic Medicine, University College London, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK; NIHR Biomedical Research Centre at Great Ormond Street Hospital, London, UK.
| |
Collapse
|
29
|
Abdelhamed Z, Lukacs M, Cindric S, Ali S, Omran H, Stottmann RW. A novel hypomorphic allele of Spag17 causes primary ciliary dyskinesia phenotypes in mice. Dis Model Mech 2020; 13:dmm045344. [PMID: 32988999 PMCID: PMC7648611 DOI: 10.1242/dmm.045344] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 08/24/2020] [Indexed: 12/22/2022] Open
Abstract
Primary ciliary dyskinesia (PCD) is a human condition of dysfunctional motile cilia characterized by recurrent lung infection, infertility, organ laterality defects and partially penetrant hydrocephalus. We recovered a mouse mutant from a forward genetic screen that developed many of the hallmark phenotypes of PCD. Whole-exome sequencing identified this primary ciliary dyskinesia only (Pcdo) allele to be a nonsense mutation (c.5236A>T) in the Spag17 coding sequence creating a premature stop codon (K1746*). The Pcdo variant abolished several isoforms of SPAG17 in the Pcdo mutant testis but not in the brain. Our data indicate differential requirements for SPAG17 in different types of motile cilia. SPAG17 is essential for proper development of the sperm flagellum and is required for either development or stability of the C1 microtubule structure within the central pair apparatus of the respiratory motile cilia, but not the brain ependymal cilia. We identified changes in ependymal ciliary beating frequency, but these did not appear to alter lateral ventricle cerebrospinal fluid flow. Aqueductal stenosis resulted in significantly slower and abnormally directed cerebrospinal fluid flow, and we suggest that this is the root cause of the hydrocephalus. The Spag17Pcdo homozygous mutant mice are generally viable to adulthood but have a significantly shortened lifespan, with chronic morbidity. Our data indicate that the c.5236A>T Pcdo variant is a hypomorphic allele of Spag17 that causes phenotypes related to motile, but not primary, cilia. Spag17Pcdo is a useful new model for elucidating the molecular mechanisms underlying central pair PCD pathogenesis in the mouse.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Zakia Abdelhamed
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Anatomy and Embryology, Faculty of Medicine (Girl's Section), Al-Azhar University, Cairo 11651, Egypt
| | - Marshall Lukacs
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
- Medical Scientist Training Program, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Sandra Cindric
- Department of General Pediatrics, University Children's Hospital Münster, 48149 Münster, Germany
| | - Saima Ali
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Heymut Omran
- Department of General Pediatrics, University Children's Hospital Münster, 48149 Münster, Germany
| | - Rolf W Stottmann
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
- Medical Scientist Training Program, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH 45229, USA
| |
Collapse
|
30
|
Jiao SY, Yang YH, Chen SR. Molecular genetics of infertility: loss-of-function mutations in humans and corresponding knockout/mutated mice. Hum Reprod Update 2020; 27:154-189. [PMID: 33118031 DOI: 10.1093/humupd/dmaa034] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 07/15/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Infertility is a major issue in human reproductive health, affecting an estimated 15% of couples worldwide. Infertility can result from disorders of sex development (DSD) or from reproductive endocrine disorders (REDs) with onset in infancy, early childhood or adolescence. Male infertility, accounting for roughly half of all infertility cases, generally manifests as decreased sperm count (azoospermia or oligozoospermia), attenuated sperm motility (asthenozoospermia) or a higher proportion of morphologically abnormal sperm (teratozoospermia). Female infertility can be divided into several classical types, including, but not limited to, oocyte maturation arrest, premature ovarian insufficiency (POI), fertilization failure and early embryonic arrest. An estimated one half of infertility cases have a genetic component; however, most genetic causes of human infertility are currently uncharacterized. The advent of high-throughput sequencing technologies has greatly facilitated the identification of infertility-associated gene mutations in patients over the past 20 years. OBJECTIVE AND RATIONALE This review aims to conduct a narrative review of the genetic causes of human infertility. Loss-of-function mutation discoveries related to human infertility are summarized and further illustrated in tables. Corresponding knockout/mutated animal models of causative genes for infertility are also introduced. SEARCH METHODS A search of the PubMed database was performed to identify relevant studies published in English. The term 'mutation' was combined with a range of search terms related to the core focus of the review: infertility, DSD, REDs, azoospermia or oligozoospermia, asthenozoospermia, multiple morphological abnormalities of the sperm flagella (MMAF), primary ciliary dyskinesia (PCD), acephalic spermatozoa syndrome (ASS), globozoospermia, teratozoospermia, acrosome, oocyte maturation arrest, POI, zona pellucida, fertilization defects and early embryonic arrest. OUTCOMES Our search generated ∼2000 records. Overall, 350 articles were included in the final review. For genetic investigation of human infertility, the traditional candidate gene approach is proceeding slowly, whereas high-throughput sequencing technologies in larger cohorts of individuals is identifying an increasing number of causative genes linked to human infertility. This review provides a wide panel of gene mutations in several typical forms of human infertility, including DSD, REDs, male infertility (oligozoospermia, MMAF, PCD, ASS and globozoospermia) and female infertility (oocyte maturation arrest, POI, fertilization failure and early embryonic arrest). The causative genes, their identified mutations, mutation rate, studied population and their corresponding knockout/mutated mice of non-obstructive azoospermia, MMAF, ASS, globozoospermia, oocyte maturation arrest, POI, fertilization failure and early embryonic arrest are further illustrated by tables. In this review, we suggest that (i) our current knowledge of infertility is largely obtained from knockout mouse models; (ii) larger cohorts of clinical cases with distinct clinical characteristics need to be recruited in future studies; (iii) the whole picture of genetic causes of human infertility relies on both the identification of more mutations for distinct types of infertility and the integration of known mutation information; (iv) knockout/mutated animal models are needed to show whether the phenotypes of genetically altered animals are consistent with findings in human infertile patients carrying a deleterious mutation of the homologous gene; and (v) the molecular mechanisms underlying human infertility caused by pathogenic mutations are largely unclear in most current studies. WILDER IMPLICATIONS It is important to use our current understanding to identify avenues and priorities for future research in the field of genetic causes of infertility as well as to apply mutation knowledge to risk prediction, genetic diagnosis and potential treatment for human infertility.
Collapse
Affiliation(s)
- Shi-Ya Jiao
- Education Key Laboratory of Cell Proliferation & Regulation Biology, College of Life Sciences, Beijing Normal University, 100875 Beijing, China
| | - Yi-Hong Yang
- Reproduction Medical Center of West China Second University Hospital, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University, 610041 Chengdu, China
| | - Su-Ren Chen
- Education Key Laboratory of Cell Proliferation & Regulation Biology, College of Life Sciences, Beijing Normal University, 100875 Beijing, China
| |
Collapse
|
31
|
Petriman NA, Lorentzen E. Structural insights into the architecture and assembly of eukaryotic flagella. MICROBIAL CELL (GRAZ, AUSTRIA) 2020; 7:289-299. [PMID: 33150161 PMCID: PMC7590530 DOI: 10.15698/mic2020.11.734] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/07/2020] [Accepted: 09/14/2020] [Indexed: 12/16/2022]
Abstract
Cilia and flagella are slender projections found on most eukaryotic cells including unicellular organisms such as Chlamydomonas, Trypanosoma and Tetrahymena, where they serve motility and signaling functions. The cilium is a large molecular machine consisting of hundreds of different proteins that are trafficked into the organelle to organize a repetitive microtubule-based axoneme. Several recent studies took advantage of improved cryo-EM methodology to unravel the high-resolution structures of ciliary complexes. These include the recently reported purification and structure determination of axonemal doublet microtubules from the green algae Chlamydomonas reinhardtii, which allows for the modeling of more than 30 associated protein factors to provide deep molecular insight into the architecture and repetitive nature of doublet microtubules. In addition, we will review several recent contributions that dissect the structure and function of ciliary trafficking complexes that ferry structural and signaling components between the cell body and the cilium organelle.
Collapse
Affiliation(s)
- Narcis-Adrian Petriman
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10c, DK-8000 Aarhus C, Denmark
| | - Esben Lorentzen
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10c, DK-8000 Aarhus C, Denmark
| |
Collapse
|
32
|
Abstract
Motile cilia are highly complex hair-like organelles of epithelial cells lining the surface of various organ systems. Genetic mutations (usually with autosomal recessive inheritance) that impair ciliary beating cause a variety of motile ciliopathies, a heterogeneous group of rare disorders. The pathogenetic mechanisms, clinical symptoms and severity of the disease depend on the specific affected genes and the tissues in which they are expressed. Defects in the ependymal cilia can result in hydrocephalus, defects in the cilia in the fallopian tubes or in sperm flagella can cause female and male subfertility, respectively, and malfunctional motile monocilia of the left-right organizer during early embryonic development can lead to laterality defects such as situs inversus and heterotaxy. If mucociliary clearance in the respiratory epithelium is severely impaired, the disorder is referred to as primary ciliary dyskinesia, the most common motile ciliopathy. No single test can confirm a diagnosis of motile ciliopathy, which is based on a combination of tests including nasal nitric oxide measurement, transmission electron microscopy, immunofluorescence and genetic analyses, and high-speed video microscopy. With the exception of azithromycin, there is no evidence-based treatment for primary ciliary dyskinesia; therapies aim at relieving symptoms and reducing the effects of reduced ciliary motility.
Collapse
|
33
|
Lee L, Ostrowski LE. Motile cilia genetics and cell biology: big results from little mice. Cell Mol Life Sci 2020; 78:769-797. [PMID: 32915243 DOI: 10.1007/s00018-020-03633-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 08/11/2020] [Accepted: 09/03/2020] [Indexed: 12/13/2022]
Abstract
Our understanding of motile cilia and their role in disease has increased tremendously over the last two decades, with critical information and insight coming from the analysis of mouse models. Motile cilia form on specific epithelial cell types and typically beat in a coordinated, whip-like manner to facilitate the flow and clearance of fluids along the cell surface. Defects in formation and function of motile cilia result in primary ciliary dyskinesia (PCD), a genetically heterogeneous disorder with a well-characterized phenotype but no effective treatment. A number of model systems, ranging from unicellular eukaryotes to mammals, have provided information about the genetics, biochemistry, and structure of motile cilia. However, with remarkable resources available for genetic manipulation and developmental, pathological, and physiological analysis of phenotype, the mouse has risen to the forefront of understanding mammalian motile cilia and modeling PCD. This is evidenced by a large number of relevant mouse lines and an extensive body of genetic and phenotypic data. More recently, application of innovative cell biological techniques to these models has enabled substantial advancement in elucidating the molecular and cellular mechanisms underlying the biogenesis and function of mammalian motile cilia. In this article, we will review genetic and cell biological studies of motile cilia in mouse models and their contributions to our understanding of motile cilia and PCD pathogenesis.
Collapse
Affiliation(s)
- Lance Lee
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, USA. .,Department of Pediatrics, Sanford School of Medicine of the University of South Dakota, Sioux Falls, SD, USA.
| | - Lawrence E Ostrowski
- Marsico Lung Institute/Cystic Fibrosis Center and Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
34
|
Chen X, Deng S, Xia H, Yuan L, Xu H, Tang S, Deng H. Identification of a CCDC114 variant in a Han-Chinese patient with situs inversus. Exp Ther Med 2020; 20:3336-3342. [PMID: 32855706 DOI: 10.3892/etm.2020.9059] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 02/18/2020] [Indexed: 12/14/2022] Open
Abstract
The function and position of the internal organs within the human body are based on left-right (LR) asymmetry. Human LR asymmetry disorders are characterized by abnormal LR asymmetric arrangement of the internal organs resulting from defective embryonic nodal cilia and nodal signaling pathway. The coiled-coil domain containing 114 gene (CCDC114) is related to the biogenesis of cilia and attachment of the outer dynein arms (ODAs) to the axoneme of cilia. Mutations in the CCDC114 gene are reported to cause a subtype of primary ciliary dyskinesia (PCD) named ciliary dyskinesia, primary, 20 (CILD20). Patients with CCDC114 mutations present with a type of ciliopathy with high clinical heterogeneity. In the present study, a Han-Chinese patient with situs inversus was recruited. Exome sequencing was performed on this patient combined with variant validation by Sanger sequencing. A homozygous variant c.584T>C (p.L195P) in the CCDC114 gene was identified as the likely genetic cause for situs inversus in this patient. The findings of our study extend the mutational spectrum of the CCDC114 gene, and contribute to clarifying the pathogenesis of human ciliopathies and benefit genetic counseling.
Collapse
Affiliation(s)
- Xiangyu Chen
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Sheng Deng
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China.,Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Hong Xia
- Department of Emergency, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Lamei Yuan
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Hongbo Xu
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Shiyu Tang
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Hao Deng
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China.,Neurology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| |
Collapse
|
35
|
Sironen A, Shoemark A, Patel M, Loebinger MR, Mitchison HM. Sperm defects in primary ciliary dyskinesia and related causes of male infertility. Cell Mol Life Sci 2020; 77:2029-2048. [PMID: 31781811 PMCID: PMC7256033 DOI: 10.1007/s00018-019-03389-7] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 11/12/2019] [Accepted: 11/19/2019] [Indexed: 01/22/2023]
Abstract
The core axoneme structure of both the motile cilium and sperm tail has the same ultrastructural 9 + 2 microtubular arrangement. Thus, it can be expected that genetic defects in motile cilia also have an effect on sperm tail formation. However, recent studies in human patients, animal models and model organisms have indicated that there are differences in components of specific structures within the cilia and sperm tail axonemes. Primary ciliary dyskinesia (PCD) is a genetic disease with symptoms caused by malfunction of motile cilia such as chronic nasal discharge, ear, nose and chest infections and pulmonary disease (bronchiectasis). Half of the patients also have situs inversus and in many cases male infertility has been reported. PCD genes have a role in motile cilia biogenesis, structure and function. To date mutations in over 40 genes have been identified cause PCD, but the exact effect of these mutations on spermatogenesis is poorly understood. Furthermore, mutations in several additional axonemal genes have recently been identified to cause a sperm-specific phenotype, termed multiple morphological abnormalities of the sperm flagella (MMAF). In this review, we discuss the association of PCD genes and other axonemal genes with male infertility, drawing particular attention to possible differences between their functions in motile cilia and sperm tails.
Collapse
Affiliation(s)
- Anu Sironen
- Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London, WC1N 1EH, UK.
| | - Amelia Shoemark
- Department of Paediatrics, Royal Brompton Hospital, London, UK
- School of Medicine, University of Dundee, Dundee, UK
| | - Mitali Patel
- Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London, WC1N 1EH, UK
| | - Michael R Loebinger
- Host Defence Unit, Royal Brompton and Harefield NHS Foundation Trust, London, UK
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Hannah M Mitchison
- Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London, WC1N 1EH, UK
| |
Collapse
|
36
|
Marek‐Yagel D, Bolkier Y, Barel O, Vardi A, Mishali D, Katz U, Salem Y, Abudi S, Nayshool O, Kol N, Raas‐Rothschild A, Rechavi G, Anikster Y, Pode‐Shakked B. A founder truncating variant in
GDF1
causes autosomal‐recessive right isomerism and associated congenital heart defects in multiplex Arab kindreds. Am J Med Genet A 2020; 182:987-993. [DOI: 10.1002/ajmg.a.61509] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 12/06/2019] [Accepted: 01/23/2020] [Indexed: 01/23/2023]
Affiliation(s)
- Dina Marek‐Yagel
- Metabolic Disease UnitEdmond and Lily Safra Children's Hospital, Sheba Medical Center Tel‐Hashomer Israel
- Sackler Faculty of MedicineTel‐Aviv University Tel‐Aviv Israel
| | - Yoav Bolkier
- Sackler Faculty of MedicineTel‐Aviv University Tel‐Aviv Israel
- Pediatric Cardiology UnitEdmond and Lily Safra Children's Hospital, Sheba Medical Center Tel‐Hashomer Israel
| | - Ortal Barel
- Sheba Cancer Research Center, Sheba Medical Center Tel‐Hashomer Israel
| | - Amir Vardi
- Sackler Faculty of MedicineTel‐Aviv University Tel‐Aviv Israel
- Department of Pediatric Cardiac Intensive Care, Edmond Safra International Congenital Heart CenterEdmond and Lily Safra Children's Hospital, Sheba Medical Center Tel‐Hashomer Israel
| | - David Mishali
- Sackler Faculty of MedicineTel‐Aviv University Tel‐Aviv Israel
- Department of Pediatric Cardiac Intensive Care, Edmond Safra International Congenital Heart CenterEdmond and Lily Safra Children's Hospital, Sheba Medical Center Tel‐Hashomer Israel
| | - Uriel Katz
- Sackler Faculty of MedicineTel‐Aviv University Tel‐Aviv Israel
- Pediatric Cardiology UnitEdmond and Lily Safra Children's Hospital, Sheba Medical Center Tel‐Hashomer Israel
| | - Yishay Salem
- Sackler Faculty of MedicineTel‐Aviv University Tel‐Aviv Israel
- Pediatric Cardiology UnitEdmond and Lily Safra Children's Hospital, Sheba Medical Center Tel‐Hashomer Israel
| | - Shachar Abudi
- Metabolic Disease UnitEdmond and Lily Safra Children's Hospital, Sheba Medical Center Tel‐Hashomer Israel
- Sackler Faculty of MedicineTel‐Aviv University Tel‐Aviv Israel
| | - Omri Nayshool
- Sheba Cancer Research Center, Sheba Medical Center Tel‐Hashomer Israel
| | - Nitzan Kol
- Sheba Cancer Research Center, Sheba Medical Center Tel‐Hashomer Israel
| | - Annick Raas‐Rothschild
- Sackler Faculty of MedicineTel‐Aviv University Tel‐Aviv Israel
- The Institute for Rare Diseases, Edmond and Lily Safra Children's Hospital, Sheba Medical Center Tel‐Hashomer Israel
| | - Gideon Rechavi
- Sackler Faculty of MedicineTel‐Aviv University Tel‐Aviv Israel
- Sheba Cancer Research Center, Sheba Medical Center Tel‐Hashomer Israel
- The Wohl Institute for Translational Medicine, Sheba Medical Center Tel‐Hashomer Israel
| | - Yair Anikster
- Metabolic Disease UnitEdmond and Lily Safra Children's Hospital, Sheba Medical Center Tel‐Hashomer Israel
- Sackler Faculty of MedicineTel‐Aviv University Tel‐Aviv Israel
- The Wohl Institute for Translational Medicine, Sheba Medical Center Tel‐Hashomer Israel
| | - Ben Pode‐Shakked
- Metabolic Disease UnitEdmond and Lily Safra Children's Hospital, Sheba Medical Center Tel‐Hashomer Israel
- Sackler Faculty of MedicineTel‐Aviv University Tel‐Aviv Israel
- Talpiot Medical Leadership ProgramSheba Medical Center Tel‐Hashomer Israel
| |
Collapse
|
37
|
Deng H, Zhang Y, Yao Y, Xiao H, Su B, Xu K, Guan N, Ding J, Wang F. Interpretation of Autosomal Recessive Kidney Diseases With "Presumed Homozygous" Pathogenic Variants Should Consider Technical Pitfalls. Front Pediatr 2020; 8:165. [PMID: 32363171 PMCID: PMC7180205 DOI: 10.3389/fped.2020.00165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 03/24/2020] [Indexed: 12/18/2022] Open
Abstract
Background: A false interpretation of homozygosity for pathogenic variants causing autosomal recessive disorders can lead to improper genetic counseling. The aim of this study was to demonstrate the underlying etiologies of presumed homozygous disease-causing variants harbored in six unrelated children with five different genetic renal diseases when the same variant was identified in a heterozygous state in only one of the two parents from each family using direct sequencing. Methods: Peripheral blood genomic DNA samples were extracted. Six short tandem repeats were used to verify the biological relationships between the probands and their parents. Quantitative PCR was performed to detect mutant exons with deletions. Single nucleotide polymorphism analysis and genotyping with polymorphic microsatellite markers were performed to identify uniparental disomy (UPD). Results: Each proband and his/her parents had biological relationships. Patients 2, 4, and 6 were characterized by large deletions encompassing a missense/small deletion in DGKE, NPHP1, and NPHS1, respectively. Patients 1 and 5 were caused by segmental UPD in NPHS2 and SMARCAL1, respectively. In patient 6, maternal UPD, mosaicism in paternal sperm or de novo variant in NPHP1 could not be ruled out. Conclusions: When a variant analysis report shows that a patient of non-consanguineous parents has a pathogenic presumed homozygous variant, we should remember the need to assess real homozygosity for the variant, and a segregation analysis of the variants within the parental DNAs and comprehensive molecular tests to evaluate the potential molecular etiologies, such as a point variant and an overlapping exon deletion, UPD, germline mosaicism and de novo variant, are crucial.
Collapse
Affiliation(s)
- Haiyue Deng
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Yanqin Zhang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Yong Yao
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Huijie Xiao
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Baige Su
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Ke Xu
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Na Guan
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Jie Ding
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Fang Wang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| |
Collapse
|
38
|
Fassad MR, Patel MP, Shoemark A, Cullup T, Hayward J, Dixon M, Rogers AV, Ollosson S, Jackson C, Goggin P, Hirst RA, Rutman A, Thompson J, Jenkins L, Aurora P, Moya E, Chetcuti P, O'Callaghan C, Morris-Rosendahl DJ, Watson CM, Wilson R, Carr S, Walker W, Pitno A, Lopes S, Morsy H, Shoman W, Pereira L, Constant C, Loebinger MR, Chung EMK, Kenia P, Rumman N, Fasseeh N, Lucas JS, Hogg C, Mitchison HM. Clinical utility of NGS diagnosis and disease stratification in a multiethnic primary ciliary dyskinesia cohort. J Med Genet 2019; 57:322-330. [PMID: 31879361 DOI: 10.1136/jmedgenet-2019-106501] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/23/2019] [Accepted: 11/01/2019] [Indexed: 01/21/2023]
Abstract
BACKGROUND Primary ciliary dyskinesia (PCD), a genetically heterogeneous condition enriched in some consanguineous populations, results from recessive mutations affecting cilia biogenesis and motility. Currently, diagnosis requires multiple expert tests. METHODS The diagnostic utility of multigene panel next-generation sequencing (NGS) was evaluated in 161 unrelated families from multiple population ancestries. RESULTS Most (82%) families had affected individuals with biallelic or hemizygous (75%) or single (7%) pathogenic causal alleles in known PCD genes. Loss-of-function alleles dominate (73% frameshift, stop-gain, splice site), most (58%) being homozygous, even in non-consanguineous families. Although 57% (88) of the total 155 diagnostic disease variants were novel, recurrent mutations and mutated genes were detected. These differed markedly between white European (52% of families carry DNAH5 or DNAH11 mutations), Arab (42% of families carry CCDC39 or CCDC40 mutations) and South Asian (single LRRC6 or CCDC103 mutations carried in 36% of families) patients, revealing a striking genetic stratification according to population of origin in PCD. Genetics facilitated successful diagnosis of 81% of families with normal or inconclusive ultrastructure and 67% missing prior ultrastructure results. CONCLUSIONS This study shows the added value of high-throughput targeted NGS in expediting PCD diagnosis. Therefore, there is potential significant patient benefit in wider and/or earlier implementation of genetic screening.
Collapse
Affiliation(s)
- Mahmoud R Fassad
- Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, University College London, London, UK.,Department of Human Genetics, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Mitali P Patel
- Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Amelia Shoemark
- PCD Diagnostic Team and Department of Pediatric Respiratory Medicine, Royal Brompton and Harefield NHS Foundation Trust, London, UK.,Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | - Thomas Cullup
- NE Thames Regional Molecular Genetics Laboratory, Great Ormond Street Hospital For Children NHS Foundation Trust, London, UK
| | - Jane Hayward
- NE Thames Regional Molecular Genetics Laboratory, Great Ormond Street Hospital For Children NHS Foundation Trust, London, UK
| | - Mellisa Dixon
- PCD Diagnostic Team and Department of Pediatric Respiratory Medicine, Royal Brompton and Harefield NHS Foundation Trust, London, UK
| | - Andrew V Rogers
- Host Defence Unit, Royal Brompton and Harefield NHS Trust, London, UK
| | - Sarah Ollosson
- PCD Diagnostic Team and Department of Pediatric Respiratory Medicine, Royal Brompton and Harefield NHS Foundation Trust, London, UK
| | - Claire Jackson
- Primary Ciliary Dyskinesia Centre, University Hospital Southampton NHS Foundation Trust and Clinical and Experimental Sciences Academic Unit, University of Southampton Faculty of Medicine, Southampton, UK.,NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Patricia Goggin
- Primary Ciliary Dyskinesia Centre, University Hospital Southampton NHS Foundation Trust and Clinical and Experimental Sciences Academic Unit, University of Southampton Faculty of Medicine, Southampton, UK.,NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Robert A Hirst
- Centre for PCD Diagnosis and Research, Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, UK
| | - Andrew Rutman
- Centre for PCD Diagnosis and Research, Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, UK
| | - James Thompson
- Primary Ciliary Dyskinesia Centre, University Hospital Southampton NHS Foundation Trust and Clinical and Experimental Sciences Academic Unit, University of Southampton Faculty of Medicine, Southampton, UK.,NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Lucy Jenkins
- NE Thames Regional Molecular Genetics Laboratory, Great Ormond Street Hospital For Children NHS Foundation Trust, London, UK
| | - Paul Aurora
- Department of Paediatric Respiratory Medicine, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK.,Department of Respiratory, Critical Care and Anaesthesia Unit, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Eduardo Moya
- Children's Services (Paediatrics), Bradford Royal Infirmary, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - Philip Chetcuti
- Department of Respiratory Paediatrics, Leeds General Infirmary, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Chris O'Callaghan
- Centre for PCD Diagnosis and Research, Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, UK.,Department of Respiratory, Critical Care and Anaesthesia Unit, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Deborah J Morris-Rosendahl
- Clinical Genetics and Genomics Laboratory, Royal Brompton and Harefield NHS Foundation Trust, London, UK
| | | | - Robert Wilson
- Host Defence Unit, Royal Brompton and Harefield NHS Trust, London, UK
| | - Siobhan Carr
- PCD Diagnostic Team and Department of Pediatric Respiratory Medicine, Royal Brompton and Harefield NHS Foundation Trust, London, UK
| | - Woolf Walker
- Primary Ciliary Dyskinesia Centre, University Hospital Southampton NHS Foundation Trust and Clinical and Experimental Sciences Academic Unit, University of Southampton Faculty of Medicine, Southampton, UK.,NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Andreia Pitno
- PCD Diagnostic Team and Department of Pediatric Respiratory Medicine, Royal Brompton and Harefield NHS Foundation Trust, London, UK.,Laboratório de Histologia e Patologia Comparada, Instituto de Medicina Molecular, Centro Académico de Medicina de Lisboa, Lisbon, Portugal
| | - Susana Lopes
- CEDOC, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Heba Morsy
- Department of Human Genetics, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Walaa Shoman
- Department of Pediatrics, Faculty of Medicine, Alexandria University Children's Hospital, Alexandria, Egypt
| | - Luisa Pereira
- Paediatric Pulmonology Unit, Department of Pediatrics, Hospital de Santa Maria, Centro Hospitalar Lisboa Norte, Centro Académico de Medicina de Lisboa, Lisbon, Portugal
| | - Carolina Constant
- Paediatric Pulmonology Unit, Department of Pediatrics, Hospital de Santa Maria, Centro Hospitalar Lisboa Norte, Centro Académico de Medicina de Lisboa, Lisbon, Portugal
| | | | - Eddie M K Chung
- Population, Policy and Practice, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Priti Kenia
- Department of Respiratory Paediatrics, Birmingham Women's and Children's Hospital NHS Foundation Trust, Birmingham, UK
| | - Nisreen Rumman
- Pediatrics Department, Makassed Hospital, East Jerusalem, Israel
| | - Nader Fasseeh
- Department of Pediatrics, Faculty of Medicine, Alexandria University Children's Hospital, Alexandria, Egypt
| | - Jane S Lucas
- Primary Ciliary Dyskinesia Centre, University Hospital Southampton NHS Foundation Trust and Clinical and Experimental Sciences Academic Unit, University of Southampton Faculty of Medicine, Southampton, UK.,NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Claire Hogg
- PCD Diagnostic Team and Department of Pediatric Respiratory Medicine, Royal Brompton and Harefield NHS Foundation Trust, London, UK
| | - Hannah M Mitchison
- Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| |
Collapse
|
39
|
Rare Human Diseases: Model Organisms in Deciphering the Molecular Basis of Primary Ciliary Dyskinesia. Cells 2019; 8:cells8121614. [PMID: 31835861 PMCID: PMC6952885 DOI: 10.3390/cells8121614] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/02/2019] [Accepted: 12/10/2019] [Indexed: 12/17/2022] Open
Abstract
Primary ciliary dyskinesia (PCD) is a recessive heterogeneous disorder of motile cilia, affecting one per 15,000-30,000 individuals; however, the frequency of this disorder is likely underestimated. Even though more than 40 genes are currently associated with PCD, in the case of approximately 30% of patients, the genetic cause of the manifested PCD symptoms remains unknown. Because motile cilia are highly evolutionarily conserved organelles at both the proteomic and ultrastructural levels, analyses in the unicellular and multicellular model organisms can help not only to identify new proteins essential for cilia motility (and thus identify new putative PCD-causative genes), but also to elucidate the function of the proteins encoded by known PCD-causative genes. Consequently, studies involving model organisms can help us to understand the molecular mechanism(s) behind the phenotypic changes observed in the motile cilia of PCD affected patients. Here, we summarize the current state of the art in the genetics and biology of PCD and emphasize the impact of the studies conducted using model organisms on existing knowledge.
Collapse
|
40
|
Ma M, Stoyanova M, Rademacher G, Dutcher SK, Brown A, Zhang R. Structure of the Decorated Ciliary Doublet Microtubule. Cell 2019; 179:909-922.e12. [PMID: 31668805 PMCID: PMC6936269 DOI: 10.1016/j.cell.2019.09.030] [Citation(s) in RCA: 144] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/29/2019] [Accepted: 09/23/2019] [Indexed: 02/02/2023]
Abstract
The axoneme of motile cilia is the largest macromolecular machine of eukaryotic cells. In humans, impaired axoneme function causes a range of ciliopathies. Axoneme assembly, structure, and motility require a radially arranged set of doublet microtubules, each decorated in repeating patterns with non-tubulin components. We use single-particle cryo-electron microscopy to visualize and build an atomic model of the repeating structure of a native axonemal doublet microtubule, which reveals the identities, positions, repeat lengths, and interactions of 38 associated proteins, including 33 microtubule inner proteins (MIPs). The structure demonstrates how these proteins establish the unique architecture of doublet microtubules, maintain coherent periodicities along the axoneme, and stabilize the microtubules against the repeated mechanical stress induced by ciliary motility. Our work elucidates the architectural principles that underpin the assembly of this large, repetitive eukaryotic structure and provides a molecular basis for understanding the etiology of human ciliopathies.
Collapse
Affiliation(s)
- Meisheng Ma
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
| | - Mihaela Stoyanova
- Department of Genetics, Washington University in St. Louis, St. Louis, MO, USA
| | - Griffin Rademacher
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Susan K Dutcher
- Department of Genetics, Washington University in St. Louis, St. Louis, MO, USA
| | - Alan Brown
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
| | - Rui Zhang
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
41
|
Lucas JS, Davis SD, Omran H, Shoemark A. Primary ciliary dyskinesia in the genomics age. THE LANCET RESPIRATORY MEDICINE 2019; 8:202-216. [PMID: 31624012 DOI: 10.1016/s2213-2600(19)30374-1] [Citation(s) in RCA: 163] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 08/06/2019] [Accepted: 08/06/2019] [Indexed: 01/10/2023]
Abstract
Primary ciliary dyskinesia is a genetically and clinically heterogeneous syndrome. Impaired function of motile cilia causes failure of mucociliary clearance. Patients typically present with neonatal respiratory distress of unknown cause and then continue to have a daily wet cough, recurrent chest infections, perennial rhinosinusitis, otitis media with effusion, and bronchiectasis. Approximately 50% of patients have situs inversus, and infertility is common. While understanding of the underlying genetics and disease mechanisms have substantially advanced in recent years, there remains a paucity of evidence for treatment. Next-generation sequencing has increased gene discovery, and mutations in more than 40 genes have been reported to cause primary ciliary dyskinesia, with many other genes likely to be discovered. Increased knowledge of cilia genes is challenging perceptions of the clinical phenotype, as some genes reported in the last 5 years are associated with mild respiratory disease. Developments in genomics and molecular medicine are rapidly improving diagnosis, and a genetic cause can be identified in approximately 70% of patients known to have primary ciliary dyskinesia. Groups are now investigating novel and personalised treatments, although gene therapies are unlikely to be available in the near future.
Collapse
Affiliation(s)
- Jane S Lucas
- Primary Ciliary Dyskinesia Centre, NIHR Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK; University of Southampton Faculty of Medicine, Academic Unit of Clinical and Experimental Medicine, Southampton, UK.
| | - Stephanie D Davis
- Department of Pediatrics, Division of Pediatric Pulmonology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Heymut Omran
- Department of General Pediatrics, University Hospital Muenster, Muenster, Germany
| | - Amelia Shoemark
- Division of Molecular and Clinical Medicine, University of Dundee, Dundee, UK; Department of Paediatrics, Royal Brompton and Harefield NHS Trust, London, UK
| |
Collapse
|
42
|
MNS1 variant associated with situs inversus and male infertility. Eur J Hum Genet 2019; 28:50-55. [PMID: 31534215 PMCID: PMC6906318 DOI: 10.1038/s41431-019-0489-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 07/05/2019] [Accepted: 07/16/2019] [Indexed: 12/22/2022] Open
Abstract
Ciliopathy disorders due to abnormalities of motile cilia encompass a range of autosomal recessive conditions typified by chronic otosinopulmonary disease, infertility, situs abnormalities and hydrocephalus. Using a combination of genome-wide SNP mapping and whole exome sequencing (WES), we investigated the genetic cause of a form of situs inversus (SI) and male infertility present in multiple individuals in an extended Amish family, assuming that an autosomal recessive founder variant was responsible. This identified a single shared (2.34 Mb) region of autozygosity on chromosome 15q21.3 as the likely disease locus, in which we identified a single candidate biallelic frameshift variant in MNS1 [NM_018365.2: c.407_410del; p.(Glu136Glyfs*16)]. Genotyping of multiple family members identified randomisation of the laterality defects in other homozygous individuals, with all wild type or MNS1 c.407_410del heterozygous carriers being unaffected, consistent with an autosomal recessive mode of inheritance. This study identifies an MNS1 variant as a cause of laterality defects and male infertility in humans, mirroring findings in Mns1-deficient mice which also display male infertility and randomisation of left–right asymmetry of internal organs, confirming a crucial role for MNS1 in nodal cilia and sperm flagella formation and function.
Collapse
|