1
|
Soota D, Saravanan B, Mann R, Kharbanda T, Notani D. RNA fine-tunes estrogen receptor-alpha binding on low-affinity DNA motifs for transcriptional regulation. EMBO J 2024; 43:5186-5210. [PMID: 39284910 PMCID: PMC11535219 DOI: 10.1038/s44318-024-00225-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 06/12/2024] [Accepted: 07/15/2024] [Indexed: 11/06/2024] Open
Abstract
Transcription factors (TFs) regulate gene expression by binding with varying strengths to DNA via their DNA-binding domain. Additionally, some TFs also interact with RNA, which modulates transcription factor binding to chromatin. However, whether RNA-mediated TF binding results in differential transcriptional outcomes remains unknown. In this study, we demonstrate that estrogen receptor α (ERα), a ligand-activated TF, interacts with RNA in a ligand-dependent manner. Defects in RNA binding lead to genome-wide loss of ERα recruitment, particularly at weaker ERα-motifs. Furthermore, ERα mobility in the nucleus increases in the absence of its RNA-binding capacity. Unexpectedly, this increased mobility coincides with robust polymerase loading and transcription of ERα-regulated genes that harbor low-strength motifs. However, highly stable binding of ERα on chromatin negatively impacts ligand-dependent transcription. Collectively, our results suggest that RNA interactions spatially confine ERα on low-affinity sites to fine-tune gene transcription.
Collapse
Affiliation(s)
- Deepanshu Soota
- National Center for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, Karnataka, 560065, India
| | - Bharath Saravanan
- National Center for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, Karnataka, 560065, India
- SASTRA Deemed University, Thanjavur, Tamil Nadu, 613401, India
| | - Rajat Mann
- National Center for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, Karnataka, 560065, India
| | - Tripti Kharbanda
- National Center for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, Karnataka, 560065, India
| | - Dimple Notani
- National Center for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, Karnataka, 560065, India.
| |
Collapse
|
2
|
Mathias KM, Liu Y, Wan L. Dysregulation of transcriptional condensates in human disease: mechanisms, biological functions, and open questions. Curr Opin Genet Dev 2024; 86:102203. [PMID: 38788489 PMCID: PMC11162900 DOI: 10.1016/j.gde.2024.102203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 05/26/2024]
Abstract
Precise gene expression, crucial for normal development and health, depends on the co-ordinated assembly and function of various factors within the crowded nucleus. Recent evidence suggests that this process is in part regulated by mesoscale compartmentalization and concentration of transcriptional components within condensates, offering a new perspective on gene regulation. Dysregulation of transcriptional condensates is increasingly associated with diseases, indicating a potential role in pathogenesis. In this mini-review, we provide a concise overview of the current understanding of the formation and function of transcriptional condensates, with a specific focus on recent advances in their dysregulation and implications in diseases, notably cancer. We also address limitations in the field and highlight open questions for future research.
Collapse
Affiliation(s)
- Kaeli M Mathias
- Department of Cancer Biology and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Biochemistry Biophysics Chemical Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Computational and Genomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Yiman Liu
- Department of Cancer Biology and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Liling Wan
- Department of Cancer Biology and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Computational and Genomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
3
|
Gautam P, Sinha SK. The Blueprint of Logical Decisions in a NF-κB Signaling System. ACS OMEGA 2024; 9:22625-22634. [PMID: 38826544 PMCID: PMC11137707 DOI: 10.1021/acsomega.4c00049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/13/2024] [Accepted: 04/19/2024] [Indexed: 06/04/2024]
Abstract
Nearly identical cells can exhibit substantially different responses to the same stimulus that causes phenotype diversity. Such interplay between phenotype diversity and the architecture of regulatory circuits is crucial since it determines the state of a biological cell. Here, we theoretically analyze how the circuit blueprints of NF-κB in cellular environments are formed and their role in determining the cells' metabolic state. The NF-κB is a collective name for a developmental conserved family of five different transcription factors that can form homodimers or heterodimers and often promote DNA looping to reprogram the inflammatory gene response. The NF-κB controls many biological functions, including cellular differentiation, proliferation, migration, and survival. Our model shows that nuclear localization of NF-κB differentially promotes logic operations such as AND, NAND, NOR, and OR in its regulatory network. Through the quantitative thermodynamic model of transcriptional regulation and systematic variation of promoter-enhancer interaction modes, we can account for the origin of various logic gates as formed in the NF-κB system. We further show that the interconversion or switching of logic gates yielded under systematic variations of the stimuli activity and DNA looping parameters. Such computation occurs in regulatory and signaling pathways in individual cells at a molecular scale, which one can exploit to design a biomolecular computer.
Collapse
Affiliation(s)
- Pankaj Gautam
- Theoretical and Computational
Biophysical Chemistry Group, Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| | - Sudipta Kumar Sinha
- Theoretical and Computational
Biophysical Chemistry Group, Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| |
Collapse
|
4
|
Gómez Acuña LI, Flyamer I, Boyle S, Friman ET, Bickmore WA. Transcription decouples estrogen-dependent changes in enhancer-promoter contact frequencies and spatial proximity. PLoS Genet 2024; 20:e1011277. [PMID: 38781242 DOI: 10.1371/journal.pgen.1011277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 06/05/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024] Open
Abstract
How enhancers regulate their target genes in the context of 3D chromatin organization is extensively studied and models which do not require direct enhancer-promoter contact have recently emerged. Here, we use the activation of estrogen receptor-dependent enhancers in a breast cancer cell line to study enhancer-promoter communication at two loci. This allows high temporal resolution tracking of molecular events from hormone stimulation to efficient gene activation. We examine how both enhancer-promoter spatial proximity assayed by DNA fluorescence in situ hybridization, and contact frequencies resulting from chromatin in situ fragmentation and proximity ligation, change dynamically during enhancer-driven gene activation. These orthogonal methods produce seemingly paradoxical results: upon enhancer activation enhancer-promoter contact frequencies increase while spatial proximity decreases. We explore this apparent discrepancy using different estrogen receptor ligands and transcription inhibitors. Our data demonstrate that enhancer-promoter contact frequencies are transcription independent whereas altered enhancer-promoter proximity depends on transcription. Our results emphasize that the relationship between contact frequencies and physical distance in the nucleus, especially over short genomic distances, is not always a simple one.
Collapse
Affiliation(s)
- Luciana I Gómez Acuña
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road, Edinburgh, United Kingdom
| | - Ilya Flyamer
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road, Edinburgh, United Kingdom
| | - Shelagh Boyle
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road, Edinburgh, United Kingdom
| | - Elias T Friman
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road, Edinburgh, United Kingdom
| | - Wendy A Bickmore
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road, Edinburgh, United Kingdom
| |
Collapse
|
5
|
Clarisse D, Van Moortel L, Van Leene C, Gevaert K, De Bosscher K. Glucocorticoid receptor signaling: intricacies and therapeutic opportunities. Trends Biochem Sci 2024; 49:431-444. [PMID: 38429217 DOI: 10.1016/j.tibs.2024.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/10/2024] [Accepted: 01/31/2024] [Indexed: 03/03/2024]
Abstract
The glucocorticoid receptor (GR) is a major nuclear receptor (NR) drug target for the treatment of inflammatory disorders and several cancers. Despite the effectiveness of GR ligands, their systemic action triggers a plethora of side effects, limiting long-term use. Here, we discuss new concepts of and insights into GR mechanisms of action to assist in the identification of routes toward enhanced therapeutic benefits. We zoom in on the communication between different GR domains and how this is influenced by different ligands. We detail findings on the interaction between GR and chromatin, and highlight how condensate formation and coregulator confinement can perturb GR transcriptional responses. Last, we discuss the potential of novel ligands and the therapeutic exploitation of crosstalk with other NRs.
Collapse
Affiliation(s)
- Dorien Clarisse
- VIB Center for Medical Biotechnology, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent, Ghent, Belgium
| | - Laura Van Moortel
- VIB Center for Medical Biotechnology, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent, Ghent, Belgium
| | - Chloé Van Leene
- VIB Center for Medical Biotechnology, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent, Ghent, Belgium
| | - Kris Gevaert
- VIB Center for Medical Biotechnology, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent, Ghent, Belgium
| | - Karolien De Bosscher
- VIB Center for Medical Biotechnology, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent, Ghent, Belgium.
| |
Collapse
|
6
|
Yuan X, Chen L, Saffen D. Allele-Specific Regulation of the Candidate Autism Liability Gene RAI1 by the Enhancer Variant rs4925102 ( C/G). Genes (Basel) 2024; 15:460. [PMID: 38674394 PMCID: PMC11049881 DOI: 10.3390/genes15040460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 03/29/2024] [Accepted: 03/30/2024] [Indexed: 04/28/2024] Open
Abstract
Retinoic acid-induced 1 (RAI1) is a dosage-sensitive gene that causes autistic phenotypes when deleted or duplicated. Observations from clinical cases and animal models also suggest that changes of RAI1 expression levels contribute to autism. Previously, we used a bioinformatic approach to identify several single nucleotide polymorphisms (SNPs) located within the 5'-region of RAI1 that correlate with RAI1 mRNA expression in the human brain. In particular, the SNP rs4925102 was identified as a candidate cis-acting regulatory variant, the genotype of which may affect the binding of transcription factors that influence RAI1 mRNA expression. In this study, we provide experimental evidence based on reporter gene, chromatin immunoprecipitation (ChIP), and chromatin conformation capture (3C) assays that rs4925102 regulates RAI1 mRNA expression in an allele-specific manner in human cell lines, including the neuroblastoma-derived cell line SH-SY5Y. We also describe a statistically significant association between rs4925102 genotype and autism spectrum disorder (ASD) diagnosis in a case-control study and near-statistically significant association in an Autism Genome Project (AGP) transmission disequilibrium (TDT) study using Caucasian subjects.
Collapse
Affiliation(s)
- Xi Yuan
- Institutes of Brain Science, Fudan University, Shanghai 200032, China;
| | - Li Chen
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - David Saffen
- Institutes of Brain Science, Fudan University, Shanghai 200032, China;
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
- State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200032, China
| |
Collapse
|
7
|
Ryu K, Park G, Cho WK. Emerging insights into transcriptional condensates. Exp Mol Med 2024; 56:820-826. [PMID: 38658705 PMCID: PMC11059374 DOI: 10.1038/s12276-024-01228-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/26/2024] [Accepted: 03/05/2024] [Indexed: 04/26/2024] Open
Abstract
Eukaryotic transcription, a fundamental process that governs cell-specific gene expression, has long been the subject of extensive investigations in the fields of molecular biology, biochemistry, and structural biology. Recent advances in microscopy techniques have led to a fascinating concept known as "transcriptional condensates." These dynamic assemblies are the result of a phenomenon called liquid‒liquid phase separation, which is driven by multivalent interactions between the constituent proteins in cells. The essential proteins associated with transcription are concentrated in transcriptional condensates. Recent studies have shed light on the temporal dynamics of transcriptional condensates and their potential role in enhancing the efficiency of transcription. In this article, we explore the properties of transcriptional condensates, investigate how they evolve over time, and evaluate the significant impact they have on the process of transcription. Furthermore, we highlight innovative techniques that allow us to manipulate these condensates, thus demonstrating their responsiveness to cellular signals and their connection to transcriptional bursting. As our understanding of transcriptional condensates continues to grow, they are poised to revolutionize our understanding of eukaryotic gene regulation.
Collapse
Affiliation(s)
- Kwangmin Ryu
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), 291 Deahak-ro, Yuseong-gu, Daejeon, 34141, Korea
| | - Gunhee Park
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), 291 Deahak-ro, Yuseong-gu, Daejeon, 34141, Korea
| | - Won-Ki Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), 291 Deahak-ro, Yuseong-gu, Daejeon, 34141, Korea.
- KAIST Stem Cell Research Center, Korea Advanced Institute of Science and Technology (KAIST), 291 Deahak-ro, Yuseong-gu, Daejeon, 34141, Korea.
| |
Collapse
|
8
|
Li J, Zhu J, Gray O, Sobreira DR, Wu D, Huang RT, Miao B, Sakabe NJ, Krause MD, Kaikkonen MU, Romanoski CE, Nobrega MA, Fang Y. Mechanosensitive super-enhancers regulate genes linked to atherosclerosis in endothelial cells. J Cell Biol 2024; 223:e202211125. [PMID: 38231044 PMCID: PMC10794123 DOI: 10.1083/jcb.202211125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 10/05/2023] [Accepted: 12/21/2023] [Indexed: 01/18/2024] Open
Abstract
Vascular homeostasis and pathophysiology are tightly regulated by mechanical forces generated by hemodynamics. Vascular disorders such as atherosclerotic diseases largely occur at curvatures and bifurcations where disturbed blood flow activates endothelial cells while unidirectional flow at the straight part of vessels promotes endothelial health. Integrated analysis of the endothelial transcriptome, the 3D epigenome, and human genetics systematically identified the SNP-enriched cistrome in vascular endothelium subjected to well-defined atherosclerosis-prone disturbed flow or atherosclerosis-protective unidirectional flow. Our results characterized the endothelial typical- and super-enhancers and underscored the critical regulatory role of flow-sensitive endothelial super-enhancers. CRISPR interference and activation validated the function of a previously unrecognized unidirectional flow-induced super-enhancer that upregulates antioxidant genes NQO1, CYB5B, and WWP2, and a disturbed flow-induced super-enhancer in endothelium which drives prothrombotic genes EDN1 and HIVEP in vascular endothelium. Our results employing multiomics identify the cis-regulatory architecture of the flow-sensitive endothelial epigenome related to atherosclerosis and highlight the regulatory role of super-enhancers in mechanotransduction mechanisms.
Collapse
Affiliation(s)
- Jin Li
- Committee on Molecular Metabolism and Nutrition, Biological Sciences Division, The University of Chicago, Chicago, IL, USA
- Department of Medicine, Biological Sciences Division, The University of Chicago, Chicago, IL, USA
| | - Jiayu Zhu
- Department of Medicine, Biological Sciences Division, The University of Chicago, Chicago, IL, USA
| | - Olivia Gray
- Department of Human Genetics, Biological Sciences Division, The University of Chicago, Chicago, IL, USA
| | - Débora R. Sobreira
- Department of Human Genetics, Biological Sciences Division, The University of Chicago, Chicago, IL, USA
| | - David Wu
- Committee on Molecular Metabolism and Nutrition, Biological Sciences Division, The University of Chicago, Chicago, IL, USA
- Department of Medicine, Biological Sciences Division, The University of Chicago, Chicago, IL, USA
| | - Ru-Ting Huang
- Department of Medicine, Biological Sciences Division, The University of Chicago, Chicago, IL, USA
| | - Bernadette Miao
- Department of Medicine, Biological Sciences Division, The University of Chicago, Chicago, IL, USA
| | - Noboru J. Sakabe
- Department of Human Genetics, Biological Sciences Division, The University of Chicago, Chicago, IL, USA
| | - Matthew D. Krause
- Department of Medicine, Biological Sciences Division, The University of Chicago, Chicago, IL, USA
| | - Minna U. Kaikkonen
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Casey E. Romanoski
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA
| | - Marcelo A. Nobrega
- Department of Human Genetics, Biological Sciences Division, The University of Chicago, Chicago, IL, USA
| | - Yun Fang
- Committee on Molecular Metabolism and Nutrition, Biological Sciences Division, The University of Chicago, Chicago, IL, USA
- Department of Medicine, Biological Sciences Division, The University of Chicago, Chicago, IL, USA
- Committee on Molecular Medicine, The University of Chicago, Chicago, IL, USA
| |
Collapse
|
9
|
Wilderman A, D'haene E, Baetens M, Yankee TN, Winchester EW, Glidden N, Roets E, Van Dorpe J, Janssens S, Miller DE, Galey M, Brown KM, Stottmann RW, Vergult S, Weaver KN, Brugmann SA, Cox TC, Cotney J. A distant global control region is essential for normal expression of anterior HOXA genes during mouse and human craniofacial development. Nat Commun 2024; 15:136. [PMID: 38167838 PMCID: PMC10762089 DOI: 10.1038/s41467-023-44506-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 12/14/2023] [Indexed: 01/05/2024] Open
Abstract
Craniofacial abnormalities account for approximately one third of birth defects. The regulatory programs that build the face require precisely controlled spatiotemporal gene expression, achieved through tissue-specific enhancers. Clusters of coactivated enhancers and their target genes, known as superenhancers, are important in determining cell identity but have been largely unexplored in development. In this study we identified superenhancer regions unique to human embryonic craniofacial tissue. To demonstrate the importance of such regions in craniofacial development and disease, we focused on an ~600 kb noncoding region located between NPVF and NFE2L3. We identified long range interactions with this region in both human and mouse embryonic craniofacial tissue with the anterior portion of the HOXA gene cluster. Mice lacking this superenhancer exhibit perinatal lethality, and present with highly penetrant skull defects and orofacial clefts phenocopying Hoxa2-/- mice. Moreover, we identified two cases of de novo copy number changes of the superenhancer in humans both with severe craniofacial abnormalities. This evidence suggests we have identified a critical noncoding locus control region that specifically regulates anterior HOXA genes and copy number changes are pathogenic in human patients.
Collapse
Affiliation(s)
| | - Eva D'haene
- Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Machteld Baetens
- Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | | | - Emma Wentworth Winchester
- Graduate Program UConn Health, Farmington, CT, USA
- University of Connecticut School of Dental Medicine, Farmington, CT, USA
| | - Nicole Glidden
- Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Ellen Roets
- Department of Obstetrics, Women's Clinic, Ghent University Hospital, Ghent, Belgium
| | - Jo Van Dorpe
- Department of Pathology, Ghent University, Ghent University Hospital, Ghent, Belgium
| | - Sandra Janssens
- Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Danny E Miller
- Department of Pediatrics, Division of Genetic Medicine, University of Washington, Washington, WA, USA
- Seattle Children's Hospital, Seattle, WA, 98195, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA
- Brotman Baty Institute of Precision Medicine, University of Washington, Seattle, WA, 98195, USA
| | - Miranda Galey
- Department of Pediatrics, Division of Genetic Medicine, University of Washington, Washington, WA, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA
| | - Kari M Brown
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Rolf W Stottmann
- Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
- The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA
- Department of Pediatrics, The Ohio State University School of Medicine, Columbus, OH, USA
| | - Sarah Vergult
- Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - K Nicole Weaver
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Samantha A Brugmann
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Timothy C Cox
- Department of Oral & Craniofacial Sciences, University of Missouri Kansas City, Kansas City, MO, USA
- Department of Pediatrics, University of Missouri Kansas City, Kansas City, MO, USA
| | - Justin Cotney
- Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, CT, USA.
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA.
| |
Collapse
|
10
|
Mann R, Notani D. Transcription factor condensates and signaling driven transcription. Nucleus 2023; 14:2205758. [PMID: 37129580 PMCID: PMC10155639 DOI: 10.1080/19491034.2023.2205758] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 04/10/2023] [Accepted: 04/19/2023] [Indexed: 05/03/2023] Open
Abstract
Transcription Factor (TF) condensates are a heterogenous mix of RNA, DNA, and multiple co-factor proteins capable of modulating the transcriptional response of the cell. The dynamic nature and the spatial location of TF-condensates in the 3D nuclear space is believed to provide a fast response, which is on the same pace as the signaling cascade and yet ever-so-specific in the crowded environment of the nucleus. However, the current understanding of how TF-condensates can achieve these feet so quickly and efficiently is still unclear. In this review, we draw parallels with other protein condensates and share our speculations on how the nucleus uses these TF-condensates to achieve high transcriptional specificity and fidelity. We discuss the various constituents of TF-condensates, their properties, and the known and unknown functions of TF-condensates with a particular focus on steroid signaling-induced transcriptional programs.
Collapse
Affiliation(s)
- Rajat Mann
- National Centre for Biological Sciences, TIFR, Bangalore, India
| | - Dimple Notani
- National Centre for Biological Sciences, TIFR, Bangalore, India
| |
Collapse
|
11
|
Dhall JK, Kasturacharya N, Pandit A, Cp L. Optimized protocol for assay for transposase-accessible chromatin by sequencing (ATAC-seq) from Drosophila melanogaster brain tissue. STAR Protoc 2023; 4:102153. [PMID: 37074906 PMCID: PMC10148076 DOI: 10.1016/j.xpro.2023.102153] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/11/2023] [Accepted: 02/13/2023] [Indexed: 04/20/2023] Open
Abstract
Transposase-accessible chromatin by sequencing (ATAC-seq) has emerged as an advantageous technique to assess chromatin accessibility owing to the robustness of "tagmentation" process and a relatively faster library preparation. A comprehensive ATAC-seq protocol from Drosophila brain tissue is currently unavailable. Here, we have provided a detailed protocol of ATAC-seq assay from Drosophila brain tissue. Starting from dissection and transposition to amplification of libraries has been elaborated. Furthermore, a robust ATAC-seq analysis pipeline has been presented. The protocol can be easily adapted for other soft tissues.
Collapse
Affiliation(s)
- Jasmine Kaur Dhall
- National Centre for Biological Sciences, TIFR, Bellary Road, Bengaluru 560065, India.
| | - Nandashree Kasturacharya
- National Centre for Biological Sciences, TIFR, Bellary Road, Bengaluru 560065, India; The University of Trans-Disciplinary Health Sciences and Technology (TDU), Bengaluru 560064, India
| | - Awadhesh Pandit
- National Centre for Biological Sciences, TIFR, Bellary Road, Bengaluru 560065, India.
| | - Lakshminarayanan Cp
- National Centre for Biological Sciences, TIFR, Bellary Road, Bengaluru 560065, India
| |
Collapse
|
12
|
Pinheiro EDS, Preato AM, Petrucci TVB, dos Santos LS, Glezer I. Phase-separation: a possible new layer for transcriptional regulation by glucocorticoid receptor. Front Endocrinol (Lausanne) 2023; 14:1160238. [PMID: 37124728 PMCID: PMC10145926 DOI: 10.3389/fendo.2023.1160238] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/20/2023] [Indexed: 05/02/2023] Open
Abstract
Glucocorticoids (GCs) are hormones involved in circadian adaptation and stress response, and it is also noteworthy that these steroidal molecules present potent anti-inflammatory action through GC receptors (GR). Upon ligand-mediated activation, GR translocates to the nucleus, and regulates gene expression related to metabolism, acute-phase response and innate immune response. GR field of research has evolved considerably in the last decades, providing varied mechanisms that contributed to the understanding of transcriptional regulation and also impacted drug design for treating inflammatory diseases. Liquid-liquid phase separation (LLPS) in cellular processes represents a recent topic in biology that conceptualizes membraneless organelles and microenvironments that promote, or inhibit, chemical reactions and interactions of protein or nucleic acids. The formation of these molecular condensates has been implicated in gene expression control, and recent evidence shows that GR and other steroid receptors can nucleate phase separation (PS). Here we briefly review the varied mechanisms of transcriptional control by GR, which are largely studied in the context of inflammation, and further present how PS can be involved in the control of gene expression. Lastly, we consider how the reported advances on LLPS during transcription control, specially for steroid hormone receptors, could impact the different modalities of GR action on gene expression, adding a new plausible molecular event in glucocorticoid signal transduction.
Collapse
|
13
|
Portuguez AS, Grbesa I, Tal M, Deitch R, Raz D, Kliker L, Weismann R, Schwartz M, Loza O, Cohen L, Marchenkov-Flam L, Sung MH, Kaplan T, Hakim O. Ep300 sequestration to functionally distinct glucocorticoid receptor binding loci underlie rapid gene activation and repression. Nucleic Acids Res 2022; 50:6702-6714. [PMID: 35713523 PMCID: PMC9262608 DOI: 10.1093/nar/gkac488] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 05/18/2022] [Accepted: 05/26/2022] [Indexed: 12/24/2022] Open
Abstract
The rapid transcriptional response to the transcription factor, glucocorticoid receptor (GR), including gene activation or repression, is mediated by the spatial association of genes with multiple GR binding sites (GBSs) over large genomic distances. However, only a minority of the GBSs have independent GR-mediated activating capacity, and GBSs with independent repressive activity were rarely reported. To understand the positive and negative effects of GR we mapped the regulatory environment of its gene targets. We show that the chromatin interaction networks of GR-activated and repressed genes are spatially separated and vary in the features and configuration of their GBS and other non-GBS regulatory elements. The convergence of the KLF4 pathway in GR-activated domains and the STAT6 pathway in GR-repressed domains, impose opposite transcriptional effects to GR, independent of hormone application. Moreover, the ROR and Rev-erb transcription factors serve as positive and negative regulators, respectively, of GR-mediated gene activation. We found that the spatial crosstalk between GBSs and non-GBSs provides a physical platform for sequestering the Ep300 co-activator from non-GR regulatory loci in both GR-activated and -repressed gene compartments. While this allows rapid gene repression, Ep300 recruitment to GBSs is productive specifically in the activated compartments, thus providing the basis for gene induction.
Collapse
Affiliation(s)
| | | | - Moran Tal
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Building 206, Ramat-Gan 5290002, Israel
| | - Rachel Deitch
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Building 206, Ramat-Gan 5290002, Israel
| | - Dana Raz
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Building 206, Ramat-Gan 5290002, Israel
| | - Limor Kliker
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Building 206, Ramat-Gan 5290002, Israel
| | - Ran Weismann
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Building 206, Ramat-Gan 5290002, Israel
| | - Michal Schwartz
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Building 206, Ramat-Gan 5290002, Israel
| | - Olga Loza
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Building 206, Ramat-Gan 5290002, Israel
| | - Leslie Cohen
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Building 206, Ramat-Gan 5290002, Israel
| | - Libi Marchenkov-Flam
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Building 206, Ramat-Gan 5290002, Israel
| | - Myong-Hee Sung
- Laboratory of Molecular Biology and Immunology, NIA, National Institutes of Health, Baltimore, MD 21224, USA
| | - Tommy Kaplan
- School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem 91904, Israel,Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91121, Israel
| | - Ofir Hakim
- To whom correspondence should be addressed. Tel: +972 3 738 4295; Fax: +972 3 738 4296;
| |
Collapse
|
14
|
Taylor T, Sikorska N, Shchuka VM, Chahar S, Ji C, Macpherson NN, Moorthy SD, de Kort MAC, Mullany S, Khader N, Gillespie ZE, Langroudi L, Tobias IC, Lenstra TL, Mitchell JA, Sexton T. Transcriptional regulation and chromatin architecture maintenance are decoupled functions at the Sox2 locus. Genes Dev 2022; 36:699-717. [PMID: 35710138 PMCID: PMC9296009 DOI: 10.1101/gad.349489.122] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 06/03/2022] [Indexed: 11/24/2022]
Abstract
How distal regulatory elements control gene transcription and chromatin topology is not clearly defined, yet these processes are closely linked in lineage specification during development. Through allele-specific genome editing and chromatin interaction analyses of the Sox2 locus in mouse embryonic stem cells, we found a striking disconnection between transcriptional control and chromatin architecture. We traced nearly all Sox2 transcriptional activation to a small number of key transcription factor binding sites, whose deletions have no effect on promoter-enhancer interaction frequencies or topological domain organization. Local chromatin architecture maintenance, including at the topologically associating domain (TAD) boundary downstream from the Sox2 enhancer, is widely distributed over multiple transcription factor-bound regions and maintained in a CTCF-independent manner. Furthermore, partial disruption of promoter-enhancer interactions by ectopic chromatin loop formation has no effect on Sox2 transcription. These findings indicate that many transcription factors are involved in modulating chromatin architecture independently of CTCF.
Collapse
Affiliation(s)
- Tiegh Taylor
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario M55 3G5, Canada
| | - Natalia Sikorska
- Institute of Genetics and Molecular and Cellular Biology (IGBMC), UMR7104, Centre National de la Recherche Scientifique, U1258, Institut National de la Santé et de la Recherche Médicale, University of Strasbourg, 6704 Illkirch, France
| | - Virlana M Shchuka
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario M55 3G5, Canada
| | - Sanjay Chahar
- Institute of Genetics and Molecular and Cellular Biology (IGBMC), UMR7104, Centre National de la Recherche Scientifique, U1258, Institut National de la Santé et de la Recherche Médicale, University of Strasbourg, 6704 Illkirch, France
| | - Chenfan Ji
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario M55 3G5, Canada
| | - Neil N Macpherson
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario M55 3G5, Canada
| | - Sakthi D Moorthy
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario M55 3G5, Canada
| | - Marit A C de Kort
- Division of Gene Regulation, the Netherlands Cancer Institute, Oncode Institute, 1066CX Amsterdam, the Netherlands
| | - Shanelle Mullany
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario M55 3G5, Canada
| | - Nawrah Khader
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario M55 3G5, Canada
| | - Zoe E Gillespie
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario M55 3G5, Canada
| | - Lida Langroudi
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario M55 3G5, Canada
| | - Ian C Tobias
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario M55 3G5, Canada
| | - Tineke L Lenstra
- Division of Gene Regulation, the Netherlands Cancer Institute, Oncode Institute, 1066CX Amsterdam, the Netherlands
| | - Jennifer A Mitchell
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario M55 3G5, Canada
| | - Tom Sexton
- Institute of Genetics and Molecular and Cellular Biology (IGBMC), UMR7104, Centre National de la Recherche Scientifique, U1258, Institut National de la Santé et de la Recherche Médicale, University of Strasbourg, 6704 Illkirch, France
| |
Collapse
|
15
|
Warwick T, Schulz MH, Gilsbach R, Brandes RP, Seuter S. Nuclear receptor activation shapes spatial genome organization essential for gene expression control: lessons learned from the vitamin D receptor. Nucleic Acids Res 2022; 50:3745-3763. [PMID: 35325193 PMCID: PMC9023275 DOI: 10.1093/nar/gkac178] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 02/23/2022] [Accepted: 03/07/2022] [Indexed: 12/02/2022] Open
Abstract
Spatial genome organization is tightly controlled by several regulatory mechanisms and is essential for gene expression control. Nuclear receptors are ligand-activated transcription factors that modulate physiological and pathophysiological processes and are primary pharmacological targets. DNA binding of the important loop-forming insulator protein CCCTC-binding factor (CTCF) was modulated by 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3). We performed CTCF HiChIP assays to produce the first genome-wide dataset of CTCF long-range interactions in 1,25(OH)2D3-treated cells, and to determine whether dynamic changes of spatial chromatin interactions are essential for fine-tuning of nuclear receptor signaling. We detected changes in 3D chromatin organization upon vitamin D receptor (VDR) activation at 3.1% of all observed CTCF interactions. VDR binding was enriched at both differential loop anchors and within differential loops. Differential loops were observed in several putative functional roles including TAD border formation, promoter-enhancer looping, and establishment of VDR-responsive insulated neighborhoods. Vitamin D target genes were enriched in differential loops and at their anchors. Secondary vitamin D effects related to dynamic chromatin domain changes were linked to location of downstream transcription factors in differential loops. CRISPR interference and loop anchor deletion experiments confirmed the functional relevance of nuclear receptor ligand-induced adjustments of the chromatin 3D structure for gene expression regulation.
Collapse
Affiliation(s)
- Timothy Warwick
- Institute for Cardiovascular Physiology, Goethe University, Frankfurt/Main, Germany
- German Center for Cardiovascular Research (DZHK), Partner site Rhein-Main 60590, Frankfurt am Main, Germany
| | - Marcel H Schulz
- Institute for Cardiovascular Regeneration, Goethe University, Frankfurt/Main, Germany
- German Center for Cardiovascular Research (DZHK), Partner site Rhein-Main 60590, Frankfurt am Main, Germany
| | - Ralf Gilsbach
- Institute for Cardiovascular Physiology, Goethe University, Frankfurt/Main, Germany
- German Center for Cardiovascular Research (DZHK), Partner site Rhein-Main 60590, Frankfurt am Main, Germany
| | - Ralf P Brandes
- Institute for Cardiovascular Physiology, Goethe University, Frankfurt/Main, Germany
- German Center for Cardiovascular Research (DZHK), Partner site Rhein-Main 60590, Frankfurt am Main, Germany
| | - Sabine Seuter
- Institute for Cardiovascular Physiology, Goethe University, Frankfurt/Main, Germany
- German Center for Cardiovascular Research (DZHK), Partner site Rhein-Main 60590, Frankfurt am Main, Germany
| |
Collapse
|
16
|
Appelman MD, Hollaar EE, Schuijers J, van Mil SWC. Protein Condensation in the Nuclear Receptor Family; Implications for Transcriptional Output. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1390:243-253. [DOI: 10.1007/978-3-031-11836-4_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|
17
|
Blobel GA, Higgs DR, Mitchell JA, Notani D, Young RA. Testing the super-enhancer concept. Nat Rev Genet 2021; 22:749-755. [PMID: 34480110 DOI: 10.1038/s41576-021-00398-w] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2021] [Indexed: 12/17/2022]
Affiliation(s)
- Gerd A Blobel
- The Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Douglas R Higgs
- Laboratory of Gene Regulation, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
| | - Jennifer A Mitchell
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada.
| | - Dimple Notani
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India.
| | - Richard A Young
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA.
| |
Collapse
|
18
|
Phasing the intranuclear organization of steroid hormone receptors. Biochem J 2021; 478:443-461. [DOI: 10.1042/bcj20200883] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/28/2020] [Accepted: 01/07/2021] [Indexed: 12/15/2022]
Abstract
Steroid receptors (SRs) encompass a family of transcription factors that regulate the expression of thousands of genes upon binding to steroid hormones and include the glucocorticoid, androgen, progesterone, estrogen and mineralocorticoid receptors. SRs control key physiological and pathological processes, thus becoming relevant drug targets. As with many other nuclear proteins, hormone-activated SRs concentrate in multiple discrete foci within the cell nucleus. Even though these foci were first observed ∼25 years ago, their exact structure and function remained elusive. In the last years, new imaging methodologies and theoretical frameworks improved our understanding of the intranuclear organization. These studies led to a new paradigm stating that many membraneless nuclear compartments, including transcription-related foci, form through a liquid–liquid phase separation process. These exciting ideas impacted the SR field by raising the hypothesis of SR foci as liquid condensates involved in transcriptional regulation. In this work, we review the current knowledge about SR foci formation under the light of the condensate model, analyzing how these structures may impact SR function. These new ideas, combined with state-of-the-art techniques, may shed light on the biophysical mechanisms governing the formation of SR foci and the biological function of these structures in normal physiology and disease.
Collapse
|
19
|
Carleton JB, Ginley-Hidinger M, Berrett KC, Layer RM, Quinlan AR, Gertz J. Regulatory sharing between estrogen receptor α bound enhancers. Nucleic Acids Res 2020; 48:6597-6610. [PMID: 32479598 PMCID: PMC7337896 DOI: 10.1093/nar/gkaa454] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/15/2020] [Accepted: 05/18/2020] [Indexed: 12/28/2022] Open
Abstract
The human genome encodes an order of magnitude more gene expression enhancers than promoters, suggesting that most genes are regulated by the combined action of multiple enhancers. We have previously shown that neighboring estrogen-responsive enhancers exhibit complex synergistic contributions to the production of an estrogenic transcriptional response. Here we sought to determine the molecular underpinnings of this enhancer cooperativity. We generated genetic deletions of four estrogen receptor α (ER) bound enhancers that regulate two genes and found that enhancers containing full estrogen response element (ERE) motifs control ER binding at neighboring sites, while enhancers with pre-existing histone acetylation/accessibility confer a permissible chromatin environment to the neighboring enhancers. Genome engineering revealed that two enhancers with half EREs could not compensate for the lack of a full ERE site within the cluster. In contrast, two enhancers with full EREs produced a transcriptional response greater than the wild-type locus. By swapping genomic sequences, we found that the genomic location of a full ERE strongly influences enhancer activity. Our results lead to a model in which a full ERE is required for ER recruitment, but the presence of a pre-existing permissible chromatin environment can also be needed for estrogen-driven gene regulation to occur.
Collapse
Affiliation(s)
- Julia B Carleton
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA.,Department of Oncological Sciences, University of Utah, Salt Lake City, UT, USA
| | - Matthew Ginley-Hidinger
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA.,Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
| | - Kristofer C Berrett
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA.,Department of Oncological Sciences, University of Utah, Salt Lake City, UT, USA
| | - Ryan M Layer
- BioFrontiers Institute, University of Colorado, Boulder, CO, USA.,Department of Computer Science, University of Colorado, Boulder, CO, USA
| | - Aaron R Quinlan
- Departments of Human Genetics and Biomedical Informatics, University of Utah, Salt Lake City, UT, USA
| | - Jason Gertz
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA.,Department of Oncological Sciences, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
20
|
Stortz M, Pecci A, Presman DM, Levi V. Unraveling the molecular interactions involved in phase separation of glucocorticoid receptor. BMC Biol 2020; 18:59. [PMID: 32487073 PMCID: PMC7268505 DOI: 10.1186/s12915-020-00788-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 05/05/2020] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Functional compartmentalization has emerged as an important factor modulating the kinetics and specificity of biochemical reactions in the nucleus, including those involved in transcriptional regulation. The glucocorticoid receptor (GR) is a ligand-activated transcription factor that translocates to the nucleus upon hormone stimulation and distributes between the nucleoplasm and membraneless compartments named nuclear foci. While a liquid-liquid phase separation process has been recently proposed to drive the formation of many nuclear compartments, the mechanisms governing the heterogeneous organization of GR in the nucleus and the functional relevance of foci formation remain elusive. RESULTS We dissected some of the molecular interactions involved in the formation of GR condensates and analyzed the GR structural determinants relevant to this process. We show that GR foci present properties consistent with those expected for biomolecular condensates formed by a liquid-liquid phase separation process in living human cells. Their formation requires an initial interaction of GR with certain chromatin regions at specific locations within the nucleus. Surprisingly, the intrinsically disordered region of GR is not essential for condensate formation, in contrast to many nuclear proteins that require disordered regions to phase separate, while the ligand-binding domain seems essential for that process. We finally show that GR condensates include Mediator, a protein complex involved in transcription regulation. CONCLUSIONS We show that GR foci have properties of liquid condensates and propose that active GR molecules interact with chromatin and recruit multivalent cofactors whose interactions with additional molecules lead to the formation of a focus. The biological relevance of the interactions occurring in GR condensates supports their involvement in transcription regulation.
Collapse
Affiliation(s)
- Martin Stortz
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, C1428EGA, Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular, Universidad de Buenos Aires, C1428EGA, Buenos Aires, Argentina
| | - Adali Pecci
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, C1428EGA, Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Universidad de Buenos Aires, C1428EGA, Buenos Aires, Argentina
| | - Diego M Presman
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, C1428EGA, Buenos Aires, Argentina.
| | - Valeria Levi
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, C1428EGA, Buenos Aires, Argentina.
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Universidad de Buenos Aires, C1428EGA, Buenos Aires, Argentina.
| |
Collapse
|