1
|
Aninagyei E, Asmah RH, Duedu KO, Deku JG, Tanson KS, Mireku Y, Gbadago F, Acheampong DO. The use of the WHO criteria to detect severe malaria among patients clinically diagnosed with uncomplicated malaria. PLOS GLOBAL PUBLIC HEALTH 2024; 4:e0003158. [PMID: 39146283 PMCID: PMC11326616 DOI: 10.1371/journal.pgph.0003158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 07/08/2024] [Indexed: 08/17/2024]
Abstract
The World Health Organization (WHO) strict defining criteria were used to identify severe malaria among Ghanaian patients clinically diagnosed as uncomplicated malaria. From each study participant, blood haemoglobin (Hb) and plasma bilirubin levels were estimated using automated analyzers. According to the WHO, the criteria for diagnosing severe malaria among children (< 12 years) was assessed using Hb < 5 g/dL and among other patients ≥ 12 years, Hb < 7 g/dL with parasitemia > 10,000/μL, plasma bilirubin > 50 μmol/L amidst parasitemia > 100,000/μL and P. falciparum hyperparasitaemia (> 500,000 parasites/μL). Patients initially diagnosed with asymptomatic malaria (n = 347) were recruited. The parasitemia range was 540-863,402 parasite/μL. Overall, 86.2% of the patients had uncomplicated malaria while 13.8% of the patients were diagnosed with severe malaria of various origins. In children < 12 years, 10.8% (17/157) had Hb < 5g/dL with parasitaemia < 10,000 parasites/μL and in other patients (≥ 12 years), 6.3% (12/190) of them recorded Hb < 7g/dL with parasitaemia < 10,000 parasites/μL. Furthermore, 13.8% (48/347) had serum bilirubin levels > 50 μmol/L with parasitemia > 100,000/μL. In all the patients with hyperbilirubinemia, Hb levels fell below either 5g/dL or 7g/dL, for patients less than and 12 years or more, respectively. Finally, 1.7% (6/347) of the patients with malaria had parasite counts (> 500,000 parasites/μL). Irrespective of the etiology, patients diagnosed with severe malaria presented with pallor, vomiting, diarrhea, chills, fever and nausea, concurrently. Without comprehensive laboratory evaluation, patients with severe malaria could be misdiagnosed. Therefore, healthcare facilities need adequate human and logistical resources to be able to diagnose severe malaria for appropriate management to avert any untoward outcomes.
Collapse
Affiliation(s)
- Enoch Aninagyei
- Department of Biomedical Sciences, School of Basic and Biomedical Sciences, University of Health and Allied Sciences, Ho, Volta Region, Ghana
| | - Richard Harry Asmah
- Department of Biomedical Sciences, School of Basic and Biomedical Sciences, University of Health and Allied Sciences, Ho, Volta Region, Ghana
| | - Kwabena Obeng Duedu
- Department of Biomedical Sciences, School of Basic and Biomedical Sciences, University of Health and Allied Sciences, Ho, Volta Region, Ghana
- College of Life Sciences, Birmingham City University, City South Campus, Birmingham, United Kingdom
| | - John Gameli Deku
- Department of Medical Laboratory Sciences, School of Allied Health Sciences, University of Health and Allied Sciences, Ho, Volta Region, Ghana
| | - Kelvin Senyo Tanson
- Department of Biomedical Sciences, School of Basic and Biomedical Sciences, University of Health and Allied Sciences, Ho, Volta Region, Ghana
| | - Yobo Mireku
- Laboratory Department, Ghana Health Service, Enyiresi Government Hospital, Enyiresi, Eastern Region, Ghana
| | - Fred Gbadago
- Laboratory Department, Ghana Health Service, Suhum Government Hospital, Suhum, Eastern Region, Ghana
| | - Desmond Omane Acheampong
- Department of Biomedical Sciences, School of Allied Health Sciences, University of Cape Coast, Cape Coast, Central Region, Ghana
| |
Collapse
|
2
|
Dunican C, Andradi-Brown C, Ebmeier S, Georgiadou A, Cunnington AJ. The malarial blood transcriptome: translational applications. Biochem Soc Trans 2024; 52:651-660. [PMID: 38421063 PMCID: PMC11088907 DOI: 10.1042/bst20230497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/02/2024]
Abstract
The blood transcriptome of malaria patients has been used extensively to elucidate the pathophysiological mechanisms and host immune responses to disease, identify candidate diagnostic and prognostic biomarkers, and reveal new therapeutic targets for drug discovery. This review gives a high-level overview of the three main translational applications of these studies (diagnostics, prognostics, and therapeutics) by summarising recent literature and outlining the main limitations and future directions of each application. It highlights the need for consistent and accurate definitions of disease states and subject groups and discusses how prognostic studies must distinguish clearly between analyses that attempt to predict future disease states and those which attempt to discriminate between current disease states (classification). Lastly it examines how many promising therapeutics fail due to the choice of imperfect animal models for pre-clinical testing and lack of appropriate validation studies in humans, and how future transcriptional studies may be utilised to overcome some of these limitations.
Collapse
Affiliation(s)
- Claire Dunican
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College London, London, U.K
- Centre for Paediatrics and Child Health, Imperial College London, London, U.K
| | - Clare Andradi-Brown
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College London, London, U.K
- Centre for Paediatrics and Child Health, Imperial College London, London, U.K
| | - Stefan Ebmeier
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College London, London, U.K
- Centre for Paediatrics and Child Health, Imperial College London, London, U.K
| | - Athina Georgiadou
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College London, London, U.K
- Centre for Paediatrics and Child Health, Imperial College London, London, U.K
| | - Aubrey J. Cunnington
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College London, London, U.K
- Centre for Paediatrics and Child Health, Imperial College London, London, U.K
| |
Collapse
|
3
|
Ewald S, Nasuhidehnavi A, Feng TY, Lesani M, McCall LI. The intersection of host in vivo metabolism and immune responses to infection with kinetoplastid and apicomplexan parasites. Microbiol Mol Biol Rev 2024; 88:e0016422. [PMID: 38299836 PMCID: PMC10966954 DOI: 10.1128/mmbr.00164-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024] Open
Abstract
SUMMARYProtozoan parasite infection dramatically alters host metabolism, driven by immunological demand and parasite manipulation strategies. Immunometabolic checkpoints are often exploited by kinetoplastid and protozoan parasites to establish chronic infection, which can significantly impair host metabolic homeostasis. The recent growth of tools to analyze metabolism is expanding our understanding of these questions. Here, we review and contrast host metabolic alterations that occur in vivo during infection with Leishmania, trypanosomes, Toxoplasma, Plasmodium, and Cryptosporidium. Although genetically divergent, there are commonalities among these pathogens in terms of metabolic needs, induction of the type I immune responses required for clearance, and the potential for sustained host metabolic dysbiosis. Comparing these pathogens provides an opportunity to explore how transmission strategy, nutritional demand, and host cell and tissue tropism drive similarities and unique aspects in host response and infection outcome and to design new strategies to treat disease.
Collapse
Affiliation(s)
- Sarah Ewald
- Department of Microbiology, Immunology, and Cancer Biology at the Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Azadeh Nasuhidehnavi
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, USA
| | - Tzu-Yu Feng
- Department of Microbiology, Immunology, and Cancer Biology at the Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Mahbobeh Lesani
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma, USA
| | - Laura-Isobel McCall
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, USA
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma, USA
- Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma, Norman, Oklahoma, USA
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, California, USA
| |
Collapse
|
4
|
Walker IS, Rogerson SJ. Pathogenicity and virulence of malaria: Sticky problems and tricky solutions. Virulence 2023; 14:2150456. [PMID: 36419237 PMCID: PMC9815252 DOI: 10.1080/21505594.2022.2150456] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 11/25/2022] Open
Abstract
Infections with Plasmodium falciparum and Plasmodium vivax cause over 600,000 deaths each year, concentrated in Africa and in young children, but much of the world's population remain at risk of infection. In this article, we review the latest developments in the immunogenicity and pathogenesis of malaria, with a particular focus on P. falciparum, the leading malaria killer. Pathogenic factors include parasite-derived toxins and variant surface antigens on infected erythrocytes that mediate sequestration in the deep vasculature. Host response to parasite toxins and to variant antigens is an important determinant of disease severity. Understanding how parasites sequester, and how antibody to variant antigens could prevent sequestration, may lead to new approaches to treat and prevent disease. Difficulties in malaria diagnosis, drug resistance, and specific challenges of treating P. vivax pose challenges to malaria elimination, but vaccines and other preventive strategies may offer improved disease control.
Collapse
Affiliation(s)
- Isobel S Walker
- Department of Infectious Diseases, The University of Melbourne, The Doherty Institute, Melbourne, Australia
| | - Stephen J Rogerson
- Department of Infectious Diseases, The University of Melbourne, The Doherty Institute, Melbourne, Australia
| |
Collapse
|
5
|
Sun Y, Zhang M, Wu W, Liu R, Zhang Y, Su S, Zhang E, Sun L, Yue W, Wu Q, Chen G, Zhang W, Yin C. Ambient cold exposure amplifies the effect of ambient PM 1 on blood pressure and hypertensive disorders of pregnancy among Chinese pregnant women: A nationwide cohort study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 897:165234. [PMID: 37400028 DOI: 10.1016/j.scitotenv.2023.165234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 05/05/2023] [Accepted: 06/28/2023] [Indexed: 07/05/2023]
Abstract
BACKGROUND Little evidence exists regarding the combined effect between ambient temperature and air pollution exposure on maternal blood pressure (BP) and hypertensive disorders of pregnancy (HDP). OBJECTIVES To assess effect modification by temperature exposure on the PM1-BP/HDP associations among Chinese pregnant women based on a nationwide study. METHODS We conducted a cross-sectional country-based population study in China, enrolling 86,005 participants from November 2017 to December 2021. BP was measured with standardized sphygmomanometers. HDP was defined according to the American College of Obstetricians and Gynecologists' recommendations. Daily temperature data were obtained from the European Centre for Medium-Range Weather Forecasts. PM1 concentrations were evaluated using generalized additive model. Generalized linear mixed models were used to examine the health effects, controlling for multiple covariates. We also performed a series of stratified and sensitivity analyses. RESULTS The pro-hypertensive effect of PM1 was observed in the first trimester. Cold exposure amplifies the first-trimester PM1-BP/HDP associations, with adjusted estimate (aβ) for systolic blood pressure (SBP) of 3.038 (95 % CI: 2.320-3.755), aβ for diastolic blood pressure (DBP) of 2.189 (95 % CI: 1.503-2.875), and aOR for HDP of 1.392 (95 % CI: 1.160-1.670). Pregnant women who were educated longer than 17 years or living in urban areas appeared to be more vulnerable to the modification in the first trimester. These findings remained robust after sensitivity analyses. CONCLUSIONS First trimester maybe the critical exposure window for the PM1-BP/HDP associations among Chinese pregnant women. Cold exposure amplifies the associations, and those with higher education level or living in urban areas appeared to be more vulnerable.
Collapse
Affiliation(s)
- Yongqing Sun
- Prenatal Diagnosis Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100026, China
| | - Man Zhang
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100026, China
| | - Wenjing Wu
- Department of Medical Statistics, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Ruixia Liu
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100026, China
| | - Yue Zhang
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100026, China
| | - Shaofei Su
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100026, China
| | - Enjie Zhang
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100026, China
| | - Lijuan Sun
- Department of Ultrasound, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100026, China
| | - Wentao Yue
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100026, China
| | - Qingqing Wu
- Department of Ultrasound, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100026, China.
| | - Gongbo Chen
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne VIC3004, Australia.
| | - Wangjian Zhang
- Department of Medical Statistics, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong 510080, China.
| | - Chenghong Yin
- Prenatal Diagnosis Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100026, China.
| |
Collapse
|
6
|
Saito M, Phyo AP, Chu C, Proux S, Rijken MJ, Beau C, Win HH, Archasuksan L, Wiladphaingern J, Phu NH, Hien TT, Day NP, Dondorp AM, White NJ, Nosten F, McGready R. Severe falciparum malaria in pregnancy in Southeast Asia: a multi-centre retrospective cohort study. BMC Med 2023; 21:320. [PMID: 37620809 PMCID: PMC10464355 DOI: 10.1186/s12916-023-02991-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 07/20/2023] [Indexed: 08/26/2023] Open
Abstract
BACKGROUND Severe malaria in pregnancy causes maternal mortality, morbidity, and adverse foetal outcomes. The factors contributing to adverse maternal and foetal outcomes are not well defined. We aimed to identify the factors predicting higher maternal mortality and to describe the foetal mortality and morbidity associated with severe falciparum malaria in pregnancy. METHODS A retrospective cohort study was conducted of severe falciparum malaria in pregnancy, as defined by the World Health Organization severe malaria criteria. The patients were managed prospectively by the Shoklo Malaria Research Unit (SMRU) on the Thailand-Myanmar border or were included in hospital-based clinical trials in six Southeast Asian countries. Fixed-effects multivariable penalised logistic regression was used for analysing maternal mortality. RESULTS We included 213 (123 SMRU and 90 hospital-based) episodes of severe falciparum malaria in pregnancy managed between 1980 and 2020. The mean maternal age was 25.7 (SD 6.8) years, and the mean gestational age was 25.6 (SD 8.9) weeks. The overall maternal mortality was 12.2% (26/213). Coma (adjusted odds ratio [aOR], 7.18, 95% CI 2.01-25.57, p = 0.0002), hypotension (aOR 11.21, 95%CI 1.27-98.92, p = 0.03) and respiratory failure (aOR 4.98, 95%CI 1.13-22.01, p = 0.03) were associated with maternal mortality. Pregnant women with one or more of these three criteria had a mortality of 29.1% (25/86) (95%CI 19.5 to 38.7%) whereas there were no deaths in 88 pregnant women with hyperparasitaemia (> 10% parasitised erythrocytes) only or severe anaemia (haematocrit < 20%) only. In the SMRU prospective cohort, in which the pregnant women were followed up until delivery, the risks of foetal loss (23.3% by Kaplan-Meier estimator, 25/117) and small-for-gestational-age (38.3%, 23/60) after severe malaria were high. Maternal death, foetal loss and preterm birth occurred commonly within a week of diagnosis of severe malaria. CONCLUSIONS Vital organ dysfunction in pregnant women with severe malaria was associated with a very high maternal and foetal mortality whereas severe anaemia or hyperparasitaemia alone were not associated with poor prognosis, which may explain the variation of reported mortality from severe malaria in pregnancy. Access to antenatal care must be promoted to reduce barriers to early diagnosis and treatment of both malaria and anaemia.
Collapse
Affiliation(s)
- Makoto Saito
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand.
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
- Division of Infectious Diseases, Advanced Clinical Research Center, Institute of Medical Science, University of Tokyo, Tokyo, Japan.
| | - Aung Pyae Phyo
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Cindy Chu
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Stephane Proux
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Marcus J Rijken
- Julius Global Health, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Obstetrics and Gynecology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Candy Beau
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Htun Htun Win
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Laypaw Archasuksan
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Jacher Wiladphaingern
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Nguyen H Phu
- Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam
| | - Tran T Hien
- Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam
| | - Nick P Day
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Arjen M Dondorp
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Nicholas J White
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - François Nosten
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Rose McGready
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
7
|
Zhang M, Yang BY, Zhang Y, Sun Y, Liu R, Zhang Y, Su S, Zhang E, Zhao X, Chen G, Wu Q, Hu L, Zhang Y, Wang L, Luo Y, Liu X, Li J, Wu S, Mi X, Zhang W, Dong G, Yin C, Yue W. Association of ambient PM 1 exposure with maternal blood pressure and hypertensive disorders of pregnancy in China. iScience 2023; 26:106863. [PMID: 37255659 PMCID: PMC10225929 DOI: 10.1016/j.isci.2023.106863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/30/2023] [Accepted: 05/08/2023] [Indexed: 06/01/2023] Open
Abstract
Evidence concerning PM1 exposure, maternal blood pressure (BP), and hypertensive disorders of pregnancy (HDP) is sparse. We evaluated the associations using 105,063 participants from a nationwide cohort. PM1 concentrations were evaluated using generalized additive model. BP was measured according to the American Heart Association recommendations. Generalized linear mixed models were used to assess the PM1-BP/HDP associations. Each 10 μg/m3 higher first-trimester PM1 was significantly associated with 1.696 mmHg and 1.056 mmHg higher first-trimester SBP and DBP, and with 11.4% higher odds for HDP, respectively. The above associations were stronger among older participants (> 35 years) or those educated longer than 17 years or those with higher household annual income (> 400,000 CNY). To conclude, first-trimester PM1 were positively associated with BP/HDP, which may be modified by maternal age, education level, and household annual income. Further research is warranted to provide more information for both health management of HDP and environmental policies enactment.
Collapse
Affiliation(s)
- Man Zhang
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University. Beijing Maternal and Child Health Care Hospital, Beijing 100026, China
| | - Bo-Yi Yang
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Guangdong Provincial Engineering Technology Research Center of Environmental and Health Risk Assessment, Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Yuqin Zhang
- Department of Medical Statistics, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Yongqing Sun
- Prenatal Diagnosis Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University. Beijing Maternal and Child Health Care Hospital, Beijing 100026, China
| | - Ruixia Liu
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University. Beijing Maternal and Child Health Care Hospital, Beijing 100026, China
| | - Yue Zhang
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University. Beijing Maternal and Child Health Care Hospital, Beijing 100026, China
| | - Shaofei Su
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University. Beijing Maternal and Child Health Care Hospital, Beijing 100026, China
| | - Enjie Zhang
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University. Beijing Maternal and Child Health Care Hospital, Beijing 100026, China
| | - Xiaoting Zhao
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University. Beijing Maternal and Child Health Care Hospital, Beijing 100026, China
| | - Gongbo Chen
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Qizhen Wu
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Guangdong Provincial Engineering Technology Research Center of Environmental and Health Risk Assessment, Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Lixin Hu
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Guangdong Provincial Engineering Technology Research Center of Environmental and Health Risk Assessment, Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Yunting Zhang
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Guangdong Provincial Engineering Technology Research Center of Environmental and Health Risk Assessment, Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Lebing Wang
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Guangdong Provincial Engineering Technology Research Center of Environmental and Health Risk Assessment, Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Yana Luo
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Guangdong Provincial Engineering Technology Research Center of Environmental and Health Risk Assessment, Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiaoxuan Liu
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Guangdong Provincial Engineering Technology Research Center of Environmental and Health Risk Assessment, Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Jiaxin Li
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Guangdong Provincial Engineering Technology Research Center of Environmental and Health Risk Assessment, Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Sihan Wu
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Guangdong Provincial Engineering Technology Research Center of Environmental and Health Risk Assessment, Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Xin Mi
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Guangdong Provincial Engineering Technology Research Center of Environmental and Health Risk Assessment, Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Wangjian Zhang
- Department of Medical Statistics, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Guanghui Dong
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Guangdong Provincial Engineering Technology Research Center of Environmental and Health Risk Assessment, Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Chenghong Yin
- Prenatal Diagnosis Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University. Beijing Maternal and Child Health Care Hospital, Beijing 100026, China
| | - Wentao Yue
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University. Beijing Maternal and Child Health Care Hospital, Beijing 100026, China
| |
Collapse
|
8
|
Sun Y, Zhang M, Chen S, Zhang W, Zhang Y, Su S, Zhang E, Sun L, Yang K, Wang J, Yue W, Wu Q, Liu R, Yin C. Potential impact of ambient temperature on maternal blood pressure and hypertensive disorders of pregnancy: A nationwide multicenter study based on the China birth cohort. ENVIRONMENTAL RESEARCH 2023; 227:115733. [PMID: 36965789 DOI: 10.1016/j.envres.2023.115733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 02/17/2023] [Accepted: 03/20/2023] [Indexed: 05/08/2023]
Abstract
Limited evidence exists regarding the association between ambient temperature and blood pressure (BP) level of pregnant women. To investigate the associations of ambient temperature with maternal BP and hypertensive disorders of pregnancy (HDP), we studied 105,063 participants in 38 centers of 17 provinces from November 2017 to December 2021. BP was measured with standardized automated digital sphygmomanometers. Ambient temperature was classified into five classes as very hot, moderate hot, mild, moderate cold, and very cold. Generalized linear mixed models were used to investigate the ambient temperature-BP/HDP associations, controlling for multiple covariates. No significant associations of first-trimester ambient temperature with maternal BP and HDP prevalence were observed. Compared with mild temperature, second-trimester very cold and second-trimester moderate cold were statistically associated with the increase of 1.239 mmHg (95% CI: 0.908, 1.569) and 0.428 mmHg (95% CI: 0.099, 0.757) for second-trimester systolic blood pressure (SBP), respectively. Similar trends were also observed in the association between second-trimester cold exposure and second-trimester diastolic blood pressure (DBP), in the association between second-trimester cold exposure and third-trimester SBP/DBP as well as in the association between third-trimester cold exposure and third-trimester SBP/DBP although some estimates were not statistically significant. Furthermore, in the second and third trimester, very cold [second trimester: adjusted odds ratio (aOR) = 1.298; third trimester: aOR = 1.236) and moderate cold (second trimester: aOR = 1.208; third trimester: aOR = 1.146) exposures also increased the odds of HDP, and these associations were stronger among participants aged ≥35 years or from North China. The second and third trimesters are the critical exposure windows for ambient temperature exposure-BP/HDP associations. During this period, exposure to cold ambient temperature was associated with elevated BP as well as increased HDP prevalence among most Chinese pregnant women, those aged ≥35 years or from North China being more vulnerable.
Collapse
Affiliation(s)
- Yongqing Sun
- Prenatal Diagnosis Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University. Beijing Maternal and Child Health Care Hospital, Beijing, 100026, China
| | - Man Zhang
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University. Beijing Maternal and Child Health Care Hospital, Beijing, 100026, China
| | - Shirui Chen
- Department of Medical Statistics, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Wangjian Zhang
- Department of Medical Statistics, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Yue Zhang
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University. Beijing Maternal and Child Health Care Hospital, Beijing, 100026, China
| | - Shaofei Su
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University. Beijing Maternal and Child Health Care Hospital, Beijing, 100026, China
| | - Enjie Zhang
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University. Beijing Maternal and Child Health Care Hospital, Beijing, 100026, China
| | - Lijuan Sun
- Department of Ultrasound, Beijing Obstetrics and Gynecology Hospital, Capital Medical University. Beijing Maternal and Child Health Care Hospital, Beijing, 100026, China
| | - Kai Yang
- Prenatal Diagnosis Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University. Beijing Maternal and Child Health Care Hospital, Beijing, 100026, China
| | - Jingjing Wang
- Department of Ultrasound, Beijing Obstetrics and Gynecology Hospital, Capital Medical University. Beijing Maternal and Child Health Care Hospital, Beijing, 100026, China
| | - Wentao Yue
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University. Beijing Maternal and Child Health Care Hospital, Beijing, 100026, China.
| | - Qingqing Wu
- Department of Ultrasound, Beijing Obstetrics and Gynecology Hospital, Capital Medical University. Beijing Maternal and Child Health Care Hospital, Beijing, 100026, China.
| | - Ruixia Liu
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University. Beijing Maternal and Child Health Care Hospital, Beijing, 100026, China.
| | - Chenghong Yin
- Prenatal Diagnosis Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University. Beijing Maternal and Child Health Care Hospital, Beijing, 100026, China.
| |
Collapse
|
9
|
Huang MZ, Chen HY, Peng GX, Sun H, Peng HC, Li HY, Liu XH, Li Q. Exosomes from artesunate-treated bone marrow-derived mesenchymal stem cells transferring SNHG7 to promote osteogenesis via TAF15-RUNX2 pathway. Regen Med 2022; 17:819-833. [DOI: 10.2217/rme-2022-0065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: Effect of artesunate (ART)-treated bone marrow-derived mesenchymal stem cells-derived exosomes (BMSC-Exos) on osteogenesis and its underlying mechanisms were investigated. Materials & methods: Proliferation, alkaline phosphatase activity and calcified nodule formation of osteoblasts were determined. A mouse model of osteoporosis was established by ovariectomy. Results: SNHG7 was upregulated in BMSC-Exos by twofold, which was further enhanced in ART-BMSC-Exos by about twofold. ART intensified BMSC-Exos-induced proliferation, alkaline phosphatase activity by about fourfold, calcified nodule formation by about threefold and upregulation of osteogenesis related molecules RUNX2 (by 50%), BMP2 (by 30%) and ATF4 (by 40%) via delivering SNHG7. Mechanistically, SNHG7 recruited TAF15 to facilitate RUNX2 stability. Conclusion: ART-BMSC-Exos facilitated osteogenesis via delivering SNHG7 by modulating TAF15/RUNX2 axis.
Collapse
Affiliation(s)
- Ming-Zhi Huang
- Department of Orthopedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550001, China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, 550001, China
| | - Hong-Yan Chen
- Department of Oncology, Affiliated Hospital of Guizhou Medical University, Affiliated Cancer Hospital of Guizhou Medical University, Guiyang, Guizhou, 550001, China
| | - Guo-Xuan Peng
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, 550001, China
| | - Hong Sun
- Department of Orthopedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550001, China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, 550001, China
| | - Hong-Cheng Peng
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, 550001, China
| | - Hai-Yang Li
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, 550001, China
| | - Xiang-Hui Liu
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, 550001, China
| | - Qing Li
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, 550001, China
- Department of Emergency Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550001, China
| |
Collapse
|
10
|
Abstract
Severe malaria is a medical emergency. It is a major cause of preventable childhood death in tropical countries. Severe malaria justifies considerable global investment in malaria control and elimination yet, increasingly, international agencies, funders and policy makers are unfamiliar with it, and so it is overlooked. In sub-Saharan Africa, severe malaria is overdiagnosed in clinical practice. Approximately one third of children diagnosed with severe malaria have another condition, usually sepsis, as the cause of their severe illness. But these children have a high mortality, contributing substantially to the number of deaths attributed to 'severe malaria'. Simple well-established tests, such as examination of the thin blood smear and the full blood count, improve the specificity of diagnosis and provide prognostic information in severe malaria. They should be performed more widely. Early administration of artesunate and broad-spectrum antibiotics to all children with suspected severe malaria would reduce global malaria mortality.
Collapse
Affiliation(s)
- Nicholas J White
- Mahidol Oxford Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
11
|
Naz R, Khan A, Alghamdi BS, Ashraf GM, Alghanmi M, Ahmad A, Bashir SS, Haq QMR. An Insight into Animal Glutamate Receptors Homolog of Arabidopsis thaliana and Their Potential Applications-A Review. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11192580. [PMID: 36235446 PMCID: PMC9572488 DOI: 10.3390/plants11192580] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/19/2022] [Accepted: 08/26/2022] [Indexed: 06/01/2023]
Abstract
Most excitatory impulses received by neurons are mediated by ionotropic glutamate receptors (iGluRs). These receptors are located at the apex and play an important role in memory, neuronal development, and synaptic plasticity. These receptors are ligand-dependent ion channels that allow a wide range of cations to pass through. Glutamate, a neurotransmitter, activates three central ionotropic receptors: N-methyl-D-aspartic acid (NMDA), -amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA), and kainic acid (KA). According to the available research, excessive glutamate release causes neuronal cell death and promotes neurodegenerative disorders. Arabidopsis thaliana contains 20 glutamate receptor genes (AtGluR) comparable to the human ionotropic glutamate (iGluRs) receptor. Many studies have proved that AtGL-rec genes are involved in a number of plant growth and physiological activities, such as in the germination of seeds, roots, abiotic and biotic stress, and cell signaling, which clarify the place of these genes in plant biology. In spite of these, the iGluRs, Arabidopsis glutamate receptors (AtGluR), is associated with the ligand binding activity, which confirms the evolutionary relationship between animal and plant glutamate receptors. Along with the above activities, the impact of mammalian agonists and antagonists on Arabidopsis suggests a correlation between plant and animal glutamate receptors. In addition, these glutamate receptors (plant/animal) are being utilized for the early detection of neurogenerative diseases using the fluorescence resonance energy transfer (FRET) approach. However, a number of scientific laboratories and institutes are consistently working on glutamate receptors with different aspects. Currently, we are also focusing on Arabidopsis glutamate receptors. The current review is focused on updating knowledge on AtGluR genes, their evolution, functions, and expression, and as well as in comparison with iGluRs. Furthermore, a high throughput approach based on FRET nanosensors developed for understanding neurotransmitter signaling in animals and plants via glutamate receptors has been discussed. The updated information will aid in the future comprehension of the complex molecular dynamics of glutamate receptors and the exploration of new facts in plant/animal biology.
Collapse
Affiliation(s)
- Ruphi Naz
- Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Andleeb Khan
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Badrah S. Alghamdi
- Department of Physiology, Neuroscience Unit, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ghulam Md Ashraf
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Maimonah Alghanmi
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Altaf Ahmad
- Department of Botany, Aligarh Muslim University, Aligarh 202002, India
| | | | | |
Collapse
|
12
|
Watson JA, Uyoga S, Wanjiku P, Makale J, Nyutu GM, Mturi N, George EC, Woodrow CJ, Day NPJ, Bejon P, Opoka RO, Dondorp AM, John CC, Maitland K, Williams TN, White NJ. Improving the diagnosis of severe malaria in African children using platelet counts and plasma PfHRP2 concentrations. Sci Transl Med 2022; 14:eabn5040. [PMID: 35857826 PMCID: PMC7613613 DOI: 10.1126/scitranslmed.abn5040] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Severe malaria caused by Plasmodium falciparum is difficult to diagnose accurately in children in high-transmission settings. Using data from 2649 pediatric and adult patients enrolled in four studies of severe illness in three countries (Bangladesh, Kenya, and Uganda), we fitted Bayesian latent class models using two diagnostic markers: the platelet count and the plasma concentration of P. falciparum histidine-rich protein 2 (PfHRP2). In severely ill patients with clinical features consistent with severe malaria, the combination of a platelet count of ≤150,000/μl and a plasma PfHRP2 concentration of ≥1000 ng/ml had an estimated sensitivity of 74% and specificity of 93% in identifying severe falciparum malaria. Compared with misdiagnosed children, pediatric patients with true severe malaria had higher parasite densities, lower hematocrits, lower rates of invasive bacterial disease, and a lower prevalence of both sickle cell trait and sickle cell anemia. We estimate that one-third of the children enrolled into clinical studies of severe malaria in high-transmission settings in Africa had another cause of their severe illness.
Collapse
Affiliation(s)
- James A. Watson
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK,Corresponding author.
| | - Sophie Uyoga
- KEMRI Wellcome Trust Research Programme, Centre for Geographic Medicine Research, Coast, Kilifi 80108, Kenya
| | - Perpetual Wanjiku
- KEMRI Wellcome Trust Research Programme, Centre for Geographic Medicine Research, Coast, Kilifi 80108, Kenya
| | - Johnstone Makale
- KEMRI Wellcome Trust Research Programme, Centre for Geographic Medicine Research, Coast, Kilifi 80108, Kenya
| | - Gideon M. Nyutu
- KEMRI Wellcome Trust Research Programme, Centre for Geographic Medicine Research, Coast, Kilifi 80108, Kenya
| | - Neema Mturi
- KEMRI Wellcome Trust Research Programme, Centre for Geographic Medicine Research, Coast, Kilifi 80108, Kenya
| | - Elizabeth C. George
- Medical Research Council Clinical Trials Unit, University College London, London, UK
| | - Charles J. Woodrow
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Nicholas P. J. Day
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Philip Bejon
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK,KEMRI Wellcome Trust Research Programme, Centre for Geographic Medicine Research, Coast, Kilifi 80108, Kenya
| | - Robert O. Opoka
- Makerere University, Department of Paediatrics and Child Health, Kampala, Uganda
| | - Arjen M. Dondorp
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Chandy C. John
- Department of Pediatrics, Indiana University, Indiana, IN, USA
| | - Kathryn Maitland
- KEMRI Wellcome Trust Research Programme, Centre for Geographic Medicine Research, Coast, Kilifi 80108, Kenya,Institute of Global Health Innovation, Department of Surgery and Cancer, Imperial College, London, UK
| | - Thomas N. Williams
- KEMRI Wellcome Trust Research Programme, Centre for Geographic Medicine Research, Coast, Kilifi 80108, Kenya,Institute of Global Health Innovation, Department of Surgery and Cancer, Imperial College, London, UK
| | - Nicholas J. White
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
13
|
Carrasco-Escobar G, Matta-Chuquisapon J, Manrique E, Ruiz-Cabrejos J, Barboza JL, Wong D, Henostroza G, Llanos-Cuentas A, Benmarhnia T. Quantifying the effect of human population mobility on malaria risk in the Peruvian Amazon. ROYAL SOCIETY OPEN SCIENCE 2022; 9:211611. [PMID: 35875474 PMCID: PMC9297009 DOI: 10.1098/rsos.211611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
The impact of human population movement (HPM) on the epidemiology of vector-borne diseases, such as malaria, has been described. However, there are limited data on the use of new technologies for the study of HPM in endemic areas with difficult access such as the Amazon. In this study conducted in rural Peruvian Amazon, we used self-reported travel surveys and GPS trackers coupled with a Bayesian spatial model to quantify the role of HPM on malaria risk. By using a densely sampled population cohort, this study highlighted the elevated malaria transmission in a riverine community of the Peruvian Amazon. We also found that the high connectivity between Amazon communities for reasons such as work, trading or family plausibly sustains such transmission levels. Finally, by using multiple human mobility metrics including GPS trackers, and adapted causal inference methods we identified for the first time the effect of human mobility patterns on malaria risk in rural Peruvian Amazon. This study provides evidence of the causal effect of HPM on malaria that may help to adapt current malaria control programmes in the Amazon.
Collapse
Affiliation(s)
- Gabriel Carrasco-Escobar
- Health Innovation Lab, Institute of Tropical Medicine ‘Alexander von Humboldt’, Universidad Peruana Cayetano Heredia, Lima, Peru
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, La Jolla, CA, USA
| | - Jose Matta-Chuquisapon
- Health Innovation Lab, Institute of Tropical Medicine ‘Alexander von Humboldt’, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Edgar Manrique
- Health Innovation Lab, Institute of Tropical Medicine ‘Alexander von Humboldt’, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Jorge Ruiz-Cabrejos
- Health Innovation Lab, Institute of Tropical Medicine ‘Alexander von Humboldt’, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Jose Luis Barboza
- Health Innovation Lab, Institute of Tropical Medicine ‘Alexander von Humboldt’, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Daniel Wong
- Health Innovation Lab, Institute of Tropical Medicine ‘Alexander von Humboldt’, Universidad Peruana Cayetano Heredia, Lima, Peru
| | | | - Alejandro Llanos-Cuentas
- Instituto de Medicinal Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
- Facultad de Salud Pública y Administración, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Tarik Benmarhnia
- Scripps Institution of Oceanography, University of California, San Diego, CA, USA
| |
Collapse
|
14
|
Watson JA, Ndila CM, Uyoga S, Macharia A, Nyutu G, Mohammed S, Ngetsa C, Mturi N, Peshu N, Tsofa B, Rockett K, Leopold S, Kingston H, George EC, Maitland K, Day NPJ, Dondorp AM, Bejon P, Williams TN, Holmes CC, White NJ. Improving statistical power in severe malaria genetic association studies by augmenting phenotypic precision. eLife 2021; 10:e69698. [PMID: 34225842 PMCID: PMC8315799 DOI: 10.7554/elife.69698] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/22/2021] [Indexed: 12/14/2022] Open
Abstract
Severe falciparum malaria has substantially affected human evolution. Genetic association studies of patients with clinically defined severe malaria and matched population controls have helped characterise human genetic susceptibility to severe malaria, but phenotypic imprecision compromises discovered associations. In areas of high malaria transmission, the diagnosis of severe malaria in young children and, in particular, the distinction from bacterial sepsis are imprecise. We developed a probabilistic diagnostic model of severe malaria using platelet and white count data. Under this model, we re-analysed clinical and genetic data from 2220 Kenyan children with clinically defined severe malaria and 3940 population controls, adjusting for phenotype mis-labelling. Our model, validated by the distribution of sickle trait, estimated that approximately one-third of cases did not have severe malaria. We propose a data-tilting approach for case-control studies with phenotype mis-labelling and show that this reduces false discovery rates and improves statistical power in genome-wide association studies.
Collapse
Affiliation(s)
- James A Watson
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol UniversityBangkokThailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of OxfordOxfordUnited Kingdom
| | - Carolyne M Ndila
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol UniversityBangkokThailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of OxfordOxfordUnited Kingdom
| | - Sophie Uyoga
- KEMRI-Wellcome Trust Research Programme, Centre for Geographic Medicine Research-CoastKilifiKenya
| | - Alexander Macharia
- KEMRI-Wellcome Trust Research Programme, Centre for Geographic Medicine Research-CoastKilifiKenya
| | - Gideon Nyutu
- KEMRI-Wellcome Trust Research Programme, Centre for Geographic Medicine Research-CoastKilifiKenya
| | - Shebe Mohammed
- KEMRI-Wellcome Trust Research Programme, Centre for Geographic Medicine Research-CoastKilifiKenya
| | - Caroline Ngetsa
- KEMRI-Wellcome Trust Research Programme, Centre for Geographic Medicine Research-CoastKilifiKenya
| | - Neema Mturi
- KEMRI-Wellcome Trust Research Programme, Centre for Geographic Medicine Research-CoastKilifiKenya
| | - Norbert Peshu
- KEMRI-Wellcome Trust Research Programme, Centre for Geographic Medicine Research-CoastKilifiKenya
| | - Benjamin Tsofa
- KEMRI-Wellcome Trust Research Programme, Centre for Geographic Medicine Research-CoastKilifiKenya
| | - Kirk Rockett
- The Wellcome Sanger InstituteCambridgeUnited Kingdom
- Wellcome Trust Centre for Human Genetics, University of OxfordOxfordUnited Kingdom
| | - Stije Leopold
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol UniversityBangkokThailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of OxfordOxfordUnited Kingdom
| | - Hugh Kingston
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol UniversityBangkokThailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of OxfordOxfordUnited Kingdom
| | - Elizabeth C George
- Medical Research Council Clinical Trials Unit, University College LondonLondonUnited Kingdom
| | - Kathryn Maitland
- KEMRI-Wellcome Trust Research Programme, Centre for Geographic Medicine Research-CoastKilifiKenya
- Institute of Global Health Innovation, Imperial College, LondonLondonUnited Kingdom
| | - Nicholas PJ Day
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol UniversityBangkokThailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of OxfordOxfordUnited Kingdom
| | - Arjen M Dondorp
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol UniversityBangkokThailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of OxfordOxfordUnited Kingdom
| | - Philip Bejon
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of OxfordOxfordUnited Kingdom
- KEMRI-Wellcome Trust Research Programme, Centre for Geographic Medicine Research-CoastKilifiKenya
| | - Thomas N Williams
- KEMRI-Wellcome Trust Research Programme, Centre for Geographic Medicine Research-CoastKilifiKenya
- Institute of Global Health Innovation, Imperial College, LondonLondonUnited Kingdom
| | - Chris C Holmes
- Nuffield Department of Medicine, University of OxfordOxfordUnited Kingdom
- Department of Statistics, University of OxfordOxfordUnited Kingdom
| | - Nicholas J White
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol UniversityBangkokThailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of OxfordOxfordUnited Kingdom
| |
Collapse
|
15
|
Artesunate inhibits osteoclastogenesis through the miR-503/RANK axis. Biosci Rep 2021; 40:225313. [PMID: 32542308 PMCID: PMC7374274 DOI: 10.1042/bsr20194387] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 05/15/2020] [Accepted: 06/01/2020] [Indexed: 12/11/2022] Open
Abstract
Osteoporosis is a metabolic bone disease that is characterized by decreased bone density and strength due to excessive loss of bone protein and mineral content, which can be induced by increased osteoclast activity. Developing agents targeting osteoclast activation is considered to be the most effective method to reverse bone destruction and alleviate the pain caused by osteoporosis. MTT assay was conducted to detect the cell viability after artesunate treatment of RAW264.7 cells. TRACP staining and pit formation assays were performed to examine the TRACP-positive cells and pit-forming activity of osteoclasts. qRT-PCR and Western blot analysis were performed to assess the mRNA and protein expression levels of the osteoclastogenesis-related genes NFATc1, TRAP, and cathepsin k. The protein levels of RANK, p-Akt, p-p38, and p-ERK were examined by Western blotting. Luciferase reporter assay was conducted to determine whether miR-503 targeted RANK directly. Artesunate inhibited TRACP-positive cells and the pit-forming activity of osteoclasts. However, artesunate increased the expression of miR-503. Artesunate suppressed osteoclastogenesis-related gene expression and RANKL-induced activation of MAPKs and the AKT pathway. In addition, miR-503 inhibited RANK expression by directly targeting RANK during osteoclast differentiation. Artesunate inhibited osteoclastogenesis and osteoclast functions in vitro by regulating the miR-503/RANK axis and suppressing the MAPK and AKT pathways, which resulted in decreased expression of osteoclastogenesis-related markers.
Collapse
|
16
|
Awab GR, Aaram F, Jamornthanyawat N, Suwannasin K, Pagornrat W, Watson JA, Woodrow CJ, Dondorp AM, Day NPJ, Imwong M, White NJ. Protective effect of Mediterranean-type glucose-6-phosphate dehydrogenase deficiency against Plasmodium vivax malaria. eLife 2021; 10:e62448. [PMID: 33543710 PMCID: PMC7884069 DOI: 10.7554/elife.62448] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 02/03/2021] [Indexed: 01/19/2023] Open
Abstract
X-linked glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common human enzymopathy. The severe Mediterranean variant (G6PD Med) found across Europe and Asia is thought to confer protection against malaria, but its effect is unclear. We fitted a Bayesian statistical model to observed G6PD Med allele frequencies in 999 Pashtun patients presenting with acute Plasmodium vivax malaria and 1408 population controls. G6PD Med was associated with reductions in symptomatic P. vivax malaria incidence of 76% (95% credible interval [CI], 58-88) in hemizygous males and homozygous females combined and 55% (95% CI, 38-68) in heterozygous females. Unless there is very large population stratification within the Pashtun (confounding these results), the G6PD Med genotype confers a very large and gene-dose proportional protective effect against acute vivax malaria. The proportion of patients with vivax malaria at risk of haemolysis following 8-aminoquinoline radical cure is substantially overestimated by studies measuring G6PD deficiency prevalence in healthy subjects.
Collapse
Affiliation(s)
- Ghulam R Awab
- Mahidol Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol UniversityBangkokThailand
- Nangarhar Medical FacultyJalalabadAfghanistan
| | | | - Natsuda Jamornthanyawat
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol UniversityBangkokThailand
| | - Kanokon Suwannasin
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol UniversityBangkokThailand
| | - Watcharee Pagornrat
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol UniversityBangkokThailand
| | - James A Watson
- Mahidol Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol UniversityBangkokThailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of OxfordOxfordUnited Kingdom
| | - Charles J Woodrow
- Mahidol Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol UniversityBangkokThailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of OxfordOxfordUnited Kingdom
| | - Arjen M Dondorp
- Mahidol Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol UniversityBangkokThailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of OxfordOxfordUnited Kingdom
| | - Nicholas PJ Day
- Mahidol Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol UniversityBangkokThailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of OxfordOxfordUnited Kingdom
| | - Mallika Imwong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol UniversityBangkokThailand
| | - Nicholas J White
- Mahidol Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol UniversityBangkokThailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of OxfordOxfordUnited Kingdom
| |
Collapse
|
17
|
Ackerman H, Olola CHO, Krishna S, Roberts DJ, Kremsner PG, Newton CR, Taylor T, Valim C, Casals-Pascual C. Time-to-death is a potential confounder in observational studies of blood transfusion in severe malaria - Authors' reply. LANCET HAEMATOLOGY 2020; 8:e12-e13. [PMID: 33357473 DOI: 10.1016/s2352-3026(20)30412-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 12/07/2020] [Indexed: 10/22/2022]
Affiliation(s)
- Hans Ackerman
- Laboratory of Malaria and Vector Research, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, Rockville, MD, USA.
| | - Christopher H O Olola
- Severe Malaria in African Children Network, Welcome Trust Research Laboratories, Kilifi, Kenya; International Academies of Emergency Dispatch, Salt Lake City, UT, USA
| | - Sanjeev Krishna
- Centre for Diagnostics and Antimicrobial Resistance, Institute for Infection and Immunity, St George's University of London, London, UK
| | - David J Roberts
- Radcliffe Department of Medicine, University of Oxford, National Institute for Health Research Oxford Biomedical Research Centre, Oxford, UK; National Health Service Blood and Transplant, John Radcliffe Hospital, Oxford, UK
| | - Peter G Kremsner
- Institute of Tropical Medicine, German Center for Infection Research, University of Tübingen, Tübingen, Germany; Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
| | - Charles R Newton
- Kemri-Wellcome Trust Collaborative Programme, Centre for Geographic Medicine Research Programme, Kilifi, Kenya
| | - Terrie Taylor
- Department of Osteopathic Medical Specialties, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA; Blantyre Malaria Project, University of Malawi College of Medicine, Blantyre, Malawi
| | - Clarissa Valim
- Department of Osteopathic Medical Specialties, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA; Blantyre Malaria Project, University of Malawi College of Medicine, Blantyre, Malawi; Department of Immunology and Infectious Diseases, Harvard T H Chan School of Public Health, Boston, MA, USA; Department of Global Health, Boston University School of Public Health, Boston, MA, USA
| | - Climent Casals-Pascual
- ISGlobal, Barcelona, Spain; Hospital Clínic i Provincial de Barcelona, Centro de Diagnóstico Biomédico, Universitat de Barcelona, Barcelona, Spain; Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| |
Collapse
|
18
|
Time-to-death is a potential confounder in observational studies of blood transfusion in severe malaria. LANCET HAEMATOLOGY 2020; 8:e12. [PMID: 33357474 DOI: 10.1016/s2352-3026(20)30395-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 11/16/2020] [Indexed: 11/21/2022]
|
19
|
Patel H, Dunican C, Cunnington AJ. Predictors of outcome in childhood Plasmodium falciparum malaria. Virulence 2020; 11:199-221. [PMID: 32063099 PMCID: PMC7051137 DOI: 10.1080/21505594.2020.1726570] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 01/16/2020] [Accepted: 01/20/2020] [Indexed: 12/16/2022] Open
Abstract
Plasmodium falciparum malaria is classified as either uncomplicated or severe, determining clinical management and providing a framework for understanding pathogenesis. Severe malaria in children is defined by the presence of one or more features associated with adverse outcome, but there is wide variation in the predictive value of these features. Here we review the evidence for the usefulness of these features, alone and in combination, to predict death and other adverse outcomes, and we consider the role that molecular biomarkers may play in augmenting this prediction. We also examine whether a more personalized approach to predicting outcome for specific presenting syndromes of severe malaria, particularly cerebral malaria, has the potential to be more accurate. We note a general need for better external validation in studies of outcome predictors and for the demonstration that predictors can be used to guide clinical management in a way that improves survival and long-term health.
Collapse
Affiliation(s)
- Harsita Patel
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College London, London, UK
| | - Claire Dunican
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College London, London, UK
| | - Aubrey J. Cunnington
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College London, London, UK
| |
Collapse
|
20
|
Shanks GD. Decreased Mortality of falciparum Malaria in Anemic Prisoners of War? Am J Trop Med Hyg 2020; 103:2171-2173. [PMID: 32901592 PMCID: PMC7695054 DOI: 10.4269/ajtmh.20-0791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 07/27/2020] [Indexed: 11/07/2022] Open
Abstract
Modern clinical trials have suggested that anemia protects against malaria mortality. Military records of the Second World War in Asia were examined to see if there was support for this hypothesis. When relatively well-nourished Imperial Japanese Navy sailors captured on Nauru (n = 799) were imprisoned on the Fauro Islands, 26% died from falciparum malaria. Similarly treated but very malnourished colocated Imperial Army soldiers experienced low stable malaria mortality. One-fifth of previously healthy Australian Army soldiers (n = 252) retreating from New Britain died largely because of malaria in April 1942. Malnourished prisoners of war, who were as a group very anemic, both Australian Army soldiers in Thailand and Japanese Army soldiers in Papua New Guinea, had high malaria rates but very low (< 3%) mortality rates. Malaria immunity does not adequately explain this dichotomy, suggesting that severe nutritional deprivation may be protective against malaria mortality possibly because of iron-deficiency anemia.
Collapse
Affiliation(s)
- George Dennis Shanks
- Address correspondence to George Dennis Shanks, Australian Defence Force Malaria and Infectious Disease Institute, Weary Dunlop Dr., Gallipoli Barracks, Enoggera 4051, Australia. E-mail:
| |
Collapse
|
21
|
Ackerman H, Ayestaran A, Olola CHO, Jallow M, Agbenyega T, Bojang K, Roberts DJ, Krishna S, Kremsner PG, Newton CR, Taylor T, Valim C, Casals-Pascual C. The effect of blood transfusion on outcomes among African children admitted to hospital with Plasmodium falciparum malaria: a prospective, multicentre observational study. Lancet Haematol 2020; 7:e789-e797. [PMID: 33091354 PMCID: PMC7611367 DOI: 10.1016/s2352-3026(20)30288-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/31/2020] [Accepted: 09/02/2020] [Indexed: 01/13/2023]
Abstract
BACKGROUND Infection with Plasmodium falciparum leads to severe malaria and death in approximately 400 000 children each year in sub-Saharan Africa. Blood transfusion might benefit some patients with malaria but could potentially harm others. The aim of this study was to estimate the association between transfusion and death among children admitted to hospital with P falciparum malaria. METHODS In this prospective, multicentre observational study, we analysed admissions to six tertiary care hospitals in The Gambia, Malawi, Gabon, Kenya, and Ghana that participated in the Severe Malaria in African Children network. Patients were enrolled if they were younger than 180 months and had a Giemsa-stained thick blood smear that was positive for P falciparum. Blood transfusion (whole blood at a target volume of 20 mL per kg) was administered at the discretion of the responsible physicians who were aware of local and international transfusion guidelines. The primary endpoint was death associated with transfusion, which was estimated using models adjusted for site and disease severity. We also aimed to identify factors associated with the decision to transfuse. The exploratory objective was to estimate optimal haemoglobin transfusion thresholds using generalised additive models. FINDINGS Between Dec 19, 2000, and March 8, 2005, 26 106 patients were enrolled in the study, 25 893 of whom had their transfusion status recorded and were included in the primary analysis. 8513 (32·8%) patients received a blood transfusion. Patients were followed-up until discharge from hospital for a median of 2 days (IQR 1-4). 405 (4·8%) of 8513 patients who received a transfusion died compared with 689 (4·0%) of 17 380 patients who did not receive a transfusion. Transfusion was associated with decreased odds of death in site-adjusted analysis (odds ratio [OR] 0·82 [95% CI 0·71-0·94]) and after adjusting for the increased disease severity of patients who received a transfusion (0·50 [0·42-0·60]). Severe anaemia, elevated lactate concentration, respiratory distress, and parasite density were associated with greater odds of receiving a transfusion. Among all study participants, transfusion was associated with improved survival when the admission haemoglobin concentration was up to 77 g/L (95% CI 65-110). Among those with impaired consciousness (Blantyre Coma Score ≤4), transfusion was associated with improved survival at haemoglobin concentrations up to 105 g/L (95% CI 71-115). Among those with hyperlactataemia (blood lactate ≥5·0 mmol/L), transfusion was not significantly associated with harm at any haemoglobin concentration-ie, the OR of death comparing transfused versus not transfused was less than 1 at all haemoglobin concentrations (lower bound of the 95% CI for the haemoglobin concentration at which the OR of death equals 1: 90 g/L; no upper bound). INTERPRETATION Our findings suggest that whole blood transfusion was associated with improved survival among children hospitalised with P falciparum malaria. Among those with impaired consciousness or hyperlactataemia, transfusion was associated with improved survival at haemoglobin concentrations above the currently recommended transfusion threshold. These findings highlight the need to do randomised controlled trials to test higher transfusion thresholds among African children with severe malaria complicated by these factors. FUNDING US National Institute of Allergy and Infectious Diseases.
Collapse
|
22
|
Ashley EA, Poespoprodjo JR. Treatment and prevention of malaria in children. THE LANCET CHILD & ADOLESCENT HEALTH 2020; 4:775-789. [PMID: 32946831 DOI: 10.1016/s2352-4642(20)30127-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 03/11/2020] [Accepted: 03/25/2020] [Indexed: 10/23/2022]
Abstract
Malaria disproportionately affects children younger than 5 years. Falciparum malaria is responsible for more than 200 000 child deaths per year in Africa and vivax malaria is well documented as a cause of severe anaemia and excess mortality in children in Asia and Oceania. For the treatment of malaria in children, paediatric dosing recommendations for several agents, including parenteral artesunate and dihydroartemisinin-piperaquine, have belatedly been shown to be suboptimal. Worsening antimalarial resistance in Plasmodium falciparum in the Greater Mekong Subregion threatens to undermine global efforts to control malaria. Triple antimalarial combination therapies are being evaluated to try to impede this threat. The RTS,S/AS01 vaccine gives partial protection against falciparum malaria and is being evaluated in large, pilot studies in Ghana, Malawi, and Kenya as a complementary tool to other preventive measures. Seasonal malaria chemoprevention in west Africa has resulted in declines in malaria incidence and deaths and there is interest in scaling up efforts by expanding the age range of eligible recipients. Preventing relapse in Plasmodium vivax infection with primaquine is challenging because treating children who have G6PD deficiency with primaquine can cause acute haemolytic anaemia. The safety of escalating dose regimens for primaquine is being studied to mitigate this risk.
Collapse
Affiliation(s)
- Elizabeth A Ashley
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Vientiane, Laos; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| | - Jeanne Rini Poespoprodjo
- Timika Research Facility, Papuan Health and Community Development Foundation, Timika, Indonesia; Department of Child Health, Faculty of Medicine, Public Health and Nursing, Gadjah Mada University, Yogyakarta, Indonesia
| |
Collapse
|
23
|
Severe malaria. Current concepts and practical overview: What every intensivist should know. Intensive Care Med 2020; 46:907-918. [PMID: 32347322 DOI: 10.1007/s00134-020-06019-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 03/19/2020] [Indexed: 10/24/2022]
|