1
|
Kumari P, Yadav S, Sarkar S, Satheeshkumar PK. Cleavage of cell junction proteins as a host invasion strategy in leptospirosis. Appl Microbiol Biotechnol 2024; 108:119. [PMID: 38204132 PMCID: PMC10781872 DOI: 10.1007/s00253-023-12945-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/17/2023] [Accepted: 10/24/2023] [Indexed: 01/12/2024]
Abstract
Infection and invasion are the prerequisites for developing the disease symptoms in a host. While the probable mechanism of host invasion and pathogenesis is known in many pathogens, very little information is available on Leptospira invasion/pathogenesis. For causing systemic infection Leptospira must transmigrate across epithelial barriers, which is the most critical and challenging step. Extracellular and membrane-bound proteases play a crucial role in the invasion process. An extensive search for the proteins experimentally proven to be involved in the invasion process through cell junction cleavage in other pathogens has resulted in identifying 26 proteins. The similarity searches on the Leptospira genome for counterparts of these 26 pathogenesis-related proteins identified at least 12 probable coding sequences. The proteins were either extracellular or membrane-bound with a proteolytic domain to cleave the cell junction proteins. This review will emphasize our current understanding of the pathogenic aspects of host cell junction-pathogenic protein interactions involved in the invasion process. Further, potential candidate proteins with cell junction cleavage properties that may be exploited in the diagnostic/therapeutic aspects of leptospirosis will also be discussed. KEY POINTS: • The review focussed on the cell junction cleavage proteins in bacterial pathogenesis • Cell junction disruptors from Leptospira genome are identified using bioinformatics • The review provides insights into the therapeutic/diagnostic interventions possible.
Collapse
Affiliation(s)
- Preeti Kumari
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Suhani Yadav
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Sresha Sarkar
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Padikara K Satheeshkumar
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India.
| |
Collapse
|
2
|
Surdel MC, Coburn J. Leptospiral adhesins: from identification to future perspectives. Front Microbiol 2024; 15:1458655. [PMID: 39206373 PMCID: PMC11350617 DOI: 10.3389/fmicb.2024.1458655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024] Open
Abstract
Leptospirosis is a significant zoonosis worldwide, with disease severity ranging from a mild non-specific illness to multi-organ dysfunction and hemorrhage. The disease is caused by pathogenic bacteria of the genus Leptospira, which are classified into pathogenic and saprophytic clades. Bacterial binding to host molecules and cells, coordinated by adhesin proteins, is an important step in pathogenesis. While many leptospiral adhesins have been identified, the vast majority have not been characterized in vivo. Herein, we present an overview of the current methodologies and successes in identifying adhesins in Leptospira, including known biological roles in vivo. We will also identify and discuss potential areas for future research.
Collapse
Affiliation(s)
- Matthew C. Surdel
- Division of Infectious Diseases, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Jenifer Coburn
- Division of Infectious Diseases, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
3
|
Nascimento Filho EG, Vieira ML, Dias M, Mendes MA, Sanchez FB, Setubal JC, Heinemann MB, Souza GO, Pimenta DC, Nascimento ALTO. Global proteome of the saprophytic strain Leptospira biflexa and comparative analysis with pathogenic strain Leptospira interrogans uncover new pathogenesis mechanisms. J Proteomics 2024; 297:105125. [PMID: 38364905 DOI: 10.1016/j.jprot.2024.105125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 01/08/2024] [Accepted: 02/05/2024] [Indexed: 02/18/2024]
Abstract
Leptospira is a genus of bacteria that includes free-living saprophytic species found in water or soil, and pathogenic species, which are the etiologic agents of leptospirosis. Besides all the efforts, there are only a few proteins described as virulence factors in the pathogenic strain L. interrogans. This work aims to perform L. biflexa serovar Patoc1 strain Paris global proteome and to compare with the proteome database of pathogenic L. interrogans serovar Copenhageni strain Fiocruz L1-130. We identified a total of 2327 expressed proteins of L. biflexa by mass spectrometry. Using the Get Homologues software with the global proteome of L. biflexa and L. interrogans, we found orthologous proteins classified into conserved, low conserved, and specific proteins. Comparative bioinformatic analyses were performed to understand the biological functions of the proteins, subcellular localization, the presence of signal peptide, structural domains, and motifs using public softwares. These results lead to the selection of 182 low conserved within the saprophyte, and 176 specific proteins of L. interrogans. It is anticipated that these findings will indicate further studies to uncover virulence factors in the pathogenic strain. This work presents for the first time the global proteome of saprophytic strain L. biflexa serovar Patoc, strain Patoc1. SIGNIFICANCE: The comparative analysis established an array of specific proteins in pathogenic strain that will narrow down the identification of immune protective proteins that will help fight leptospirosis.
Collapse
Affiliation(s)
- Edson G Nascimento Filho
- Laboratorio de Desenvolvimento de Vacinas, Instituto Butantan, SP, Brazil; Programa de Pos-Graduacao em Biotecnologia, USP-IBU-IPT, SP, Brazil
| | - Mônica L Vieira
- Departmento de Microbiologia, Instituto de Ciências Biológicas, UFMG, MG, Brazil
| | - Meriellen Dias
- Laboratorio Dempster, Departamento de Engenharia Química, Escola Politécnica, USP, SP, Brazil
| | - Maria A Mendes
- Laboratorio Dempster, Departamento de Engenharia Química, Escola Politécnica, USP, SP, Brazil
| | | | | | - Marcos B Heinemann
- Laboratório de Zoonoses Bacterianas do VPS, Faculdade de Medicina Veterinária e Zootecnia, USP, SP, Brazil
| | - Gisele O Souza
- Laboratório de Zoonoses Bacterianas do VPS, Faculdade de Medicina Veterinária e Zootecnia, USP, SP, Brazil
| | | | - Ana L T O Nascimento
- Laboratorio de Desenvolvimento de Vacinas, Instituto Butantan, SP, Brazil; Programa de Pos-Graduacao em Biotecnologia, USP-IBU-IPT, SP, Brazil.
| |
Collapse
|
4
|
Kamaruzaman INA, Staton GJ, Ainsworth S, Carter SD, Evans NJ. Characterisation of Putative Outer Membrane Proteins from Leptospira borgpetersenii Serovar Hardjo-Bovis Identifies Novel Adhesins and Diversity in Adhesion across Genomospecies Orthologs. Microorganisms 2024; 12:245. [PMID: 38399649 PMCID: PMC10891613 DOI: 10.3390/microorganisms12020245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/06/2024] [Accepted: 01/22/2024] [Indexed: 02/25/2024] Open
Abstract
Leptospirosis is a zoonotic bacterial disease affecting mammalian species worldwide. Cattle are a major susceptible host; infection with pathogenic Leptospira spp. represents a public health risk and results in reproductive failure and reduced milk yield, causing economic losses. The characterisation of outer membrane proteins (OMPs) from disease-causing bacteria dissects pathogenesis and underpins vaccine development. As most leptospire pathogenesis research has focused on Leptospira interrogans, this study aimed to characterise novel OMPs from another important genomospecies, Leptospira borgpetersenii, which has global distribution and is relevant to bovine and human diseases. Several putative L. borgpetersenii OMPs were recombinantly expressed, refolded and purified, and evaluated for function and immunogenicity. Two of these unique, putative OMPs (rLBL0972 and rLBL2618) bound to immobilised fibronectin, laminin and fibrinogen, which, together with structural and functional data, supports their classification as leptospiral adhesins. A third putative OMP (rLBL0375), did not exhibit saturable adhesion ability but, together with rLBL0972 and the included control, OmpL1, demonstrated significant cattle milk IgG antibody reactivity from infected cows. To dissect leptospire host-pathogen interactions further, we expressed alleles of OmpL1 and a novel multi-specific adhesin, rLBL2618, from a variety of genomospecies and surveyed their adhesion ability, with both proteins exhibiting divergences in extracellular matrix component binding specificity across synthesised orthologs. We also observed functional redundancy across different L. borgspetersenii OMPs which, together with diversity in function across genomospecies orthologs, delineates multiple levels of plasticity in adhesion that is potentially driven by immune selection and host adaptation. These data identify novel leptospiral proteins which should be further evaluated as vaccine and/or diagnostic candidates. Moreover, functional redundancy across leptospire surface proteins together with identified adhesion divergence across genomospecies further dissect the complex host-pathogen interactions of a genus responsible for substantial global disease burden.
Collapse
Affiliation(s)
- Intan Noor Aina Kamaruzaman
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, Leahurst Campus, Chester High Road, Neston CH64 7TE, UK; (I.N.A.K.); (G.J.S.); (S.A.); (S.D.C.)
- Faculty of Veterinary Medicine, Universiti Malaysia Kelantan, Locked Bag 36, Kota Bharu 16100, Malaysia
| | - Gareth James Staton
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, Leahurst Campus, Chester High Road, Neston CH64 7TE, UK; (I.N.A.K.); (G.J.S.); (S.A.); (S.D.C.)
| | - Stuart Ainsworth
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, Leahurst Campus, Chester High Road, Neston CH64 7TE, UK; (I.N.A.K.); (G.J.S.); (S.A.); (S.D.C.)
| | - Stuart D. Carter
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, Leahurst Campus, Chester High Road, Neston CH64 7TE, UK; (I.N.A.K.); (G.J.S.); (S.A.); (S.D.C.)
| | - Nicholas James Evans
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, Leahurst Campus, Chester High Road, Neston CH64 7TE, UK; (I.N.A.K.); (G.J.S.); (S.A.); (S.D.C.)
| |
Collapse
|
5
|
Menamvar S, Kumar KV, Alamuri A, Kumar E, Swamy HM, Govindaraj G, Nagalingam M, Belaganahally VM, Reddy YN, Shome BR, Balamurugan V. Seroprevalence and associated risk factors of leptospirosis in bovine dairy farms in Telangana state, India. Trop Anim Health Prod 2023; 55:352. [PMID: 37804390 DOI: 10.1007/s11250-023-03736-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 09/12/2023] [Indexed: 10/09/2023]
Abstract
The current cross-sectional study aimed to determine the seroprevalence of Leptospira infection in bovine dairy farms in the Telangana state of India, as well as the associated risk factors, in order to implement effective preventive measures for disease control. A total of 469 blood samples were collected from 67 herds/farms in different areas, covering 20 administrative districts in the state. These samples consisted of 253 from cattle and 216 from buffaloes. Questionnaires were used to collect data on host and epidemiological factors. The collected sera were tested using the gold standard serological test, the Microscopic Agglutination Test (MAT), which employed a panel of 18 reference serovars for Leptospira exposure. The statistical analysis of epidemiological data was carried out to identify the risk factors associated with Leptospira exposure. The overall observed seroprevalence at the animal and farm levels was 41.4% and 77.6%, respectively. The most prevalent anti-leptospiral antibodies were observed against the serogroups Icterohaemorrhagiae (32.4%), Pomona (22.2%), Javanica (19.1%), Australis (17.0%), Bataviae (15.5%), Autumnalis (12.9%), Hebdomadis (12.9%), and others, in the total reacting samples. At the animal level, the significant risk factors associated with exposure to Leptospira species were breed (p = 0.03) and health status (p = 0.03). Furthermore, the multivariate statistical analysis of farm factors revealed that farm size (p = 0.05), presence of dogs (p = 0.04) and rodents (p = 0.01) on the farm, use of fodder from wet soils (p = 0.04), and proximity to water bodies (p = 0.04) were significantly associated with exposure to Leptospira in the studied region. This study provides the first report from India highlighting the important risk factors at the herd/farm and animal level associated with Leptospira infections in cattle and buffaloes. The findings contribute to strengthening the one-health strategy by facilitating the design and planning of appropriate control measures to alleviate the burden of leptospirosis in bovines.
Collapse
Affiliation(s)
- Sonali Menamvar
- Indian Council of Agricultural Research -National Institute of Veterinary Epidemiology and Disease Informatics (ICAR-NIVEDI), Yelahanka, Post Box No. 6450, Bengaluru, 560 064, Karnataka, India
- (KVAFSU), Veterinary College, Hebbal, Bengaluru, 560024, Karnataka, India
- P.V. Narsimha Rao Telangana Veterinary University, Rajendra Nagar, Hyderabad, 500030, Telangana, India
| | - Kirubakaran Vinod Kumar
- Indian Council of Agricultural Research -National Institute of Veterinary Epidemiology and Disease Informatics (ICAR-NIVEDI), Yelahanka, Post Box No. 6450, Bengaluru, 560 064, Karnataka, India
| | - Anusha Alamuri
- Indian Council of Agricultural Research -National Institute of Veterinary Epidemiology and Disease Informatics (ICAR-NIVEDI), Yelahanka, Post Box No. 6450, Bengaluru, 560 064, Karnataka, India
| | - Enumula Kumar
- P.V. Narsimha Rao Telangana Veterinary University, Rajendra Nagar, Hyderabad, 500030, Telangana, India
| | - H Manjunath Swamy
- Indian Council of Agricultural Research -National Institute of Veterinary Epidemiology and Disease Informatics (ICAR-NIVEDI), Yelahanka, Post Box No. 6450, Bengaluru, 560 064, Karnataka, India
| | - Gurrappanaidu Govindaraj
- Indian Council of Agricultural Research -National Institute of Veterinary Epidemiology and Disease Informatics (ICAR-NIVEDI), Yelahanka, Post Box No. 6450, Bengaluru, 560 064, Karnataka, India
| | - Mohandoss Nagalingam
- Indian Council of Agricultural Research -National Institute of Veterinary Epidemiology and Disease Informatics (ICAR-NIVEDI), Yelahanka, Post Box No. 6450, Bengaluru, 560 064, Karnataka, India
| | | | - Yella Narasimha Reddy
- P.V. Narsimha Rao Telangana Veterinary University, Rajendra Nagar, Hyderabad, 500030, Telangana, India
| | - Bibek Ranjan Shome
- Indian Council of Agricultural Research -National Institute of Veterinary Epidemiology and Disease Informatics (ICAR-NIVEDI), Yelahanka, Post Box No. 6450, Bengaluru, 560 064, Karnataka, India
| | - Vinayagamurthy Balamurugan
- Indian Council of Agricultural Research -National Institute of Veterinary Epidemiology and Disease Informatics (ICAR-NIVEDI), Yelahanka, Post Box No. 6450, Bengaluru, 560 064, Karnataka, India.
| |
Collapse
|
6
|
Fernandes LGV, Teixeira AF, Nascimento ALTO. Evaluation of Leptospira interrogans knockdown mutants for LipL32, LipL41, LipL21, and OmpL1 proteins. Front Microbiol 2023; 14:1199660. [PMID: 37426019 PMCID: PMC10326724 DOI: 10.3389/fmicb.2023.1199660] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/05/2023] [Indexed: 07/11/2023] Open
Abstract
Introduction Leptospirosis is a worldwide zoonosis caused by pathogenic and virulent species of the genus Leptospira, whose pathophysiology and virulence factors remain widely unexplored. Recently, the application of CRISPR interference (CRISPRi) has allowed the specific and rapid gene silencing of major leptospiral proteins, favoring the elucidation of their role in bacterial basic biology, host-pathogen interaction and virulence. Episomally expressed dead Cas9 from the Streptococcus pyogenes CRISPR/Cas system (dCas9) and single-guide RNA recognize and block transcription of the target gene by base pairing, dictated by the sequence contained in the 5' 20-nt sequence of the sgRNA. Methods In this work, we tailored plasmids for silencing the major proteins of L. interrogans serovar Copenhageni strain Fiocruz L1-130, namely LipL32, LipL41, LipL21 and OmpL1. Double- and triple-gene silencing by in tandem sgRNA cassettes were also achieved, despite plasmid instability. Results OmpL1 silencing resulted in a lethal phenotype, in both L. interrogans and saprophyte L. biflexa, suggesting its essential role in leptospiral biology. Mutants were confirmed and evaluated regarding interaction with host molecules, including extracellular matrix (ECM) and plasma components, and despite the dominant abundance of the studied proteins in the leptospiral membrane, protein silencing mostly resulted in unaltered interactions, either because they intrinsically display low affinity to the molecules assayed or by a compensation mechanism, where other proteins could be upregulated to fill the niche left by protein silencing, a feature previously described for the LipL32 mutant. Evaluation of the mutants in the hamster model confirms the augmented virulence of the LipL32 mutant, as hinted previously. The essential role of LipL21 in acute disease was demonstrated, since the LipL21 knockdown mutants were avirulent in the animal model, and even though mutants could still colonize the kidneys, they were found in markedly lower numbers in the animals' liver. Taking advantage of higher bacterial burden in LipL32 mutant-infected organs, protein silencing was demonstrated in vivo directly in leptospires present in organ homogenates. Discussion CRISPRi is now a well-established, attractive genetic tool that can be applied for exploring leptospiral virulence factors, leading to the rational for designing more effective subunit or even chimeric recombinant vaccines.
Collapse
Affiliation(s)
- Luis G. V. Fernandes
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, SP, Brazil
| | - Aline F. Teixeira
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, SP, Brazil
| | - Ana L. T. O. Nascimento
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, SP, Brazil
- Programa de Pos-Graduacao Interunidades em Biotecnologia, Instituto de Ciencias Biomedicas, São Paulo, Brazil
| |
Collapse
|
7
|
Cavenague MF, Teixeira AF, Fernandes LGV, Nascimento ALTO. LIC12254 Is a Leptospiral Protein That Interacts with Integrins via the RGD Motif. Trop Med Infect Dis 2023; 8:tropicalmed8050249. [PMID: 37235297 DOI: 10.3390/tropicalmed8050249] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
Pathogenic leptospires can bind to receptors on mammalian cells such as cadherins and integrins. Leptospira effectively adheres to cells, overcomes host barriers and spreads into the bloodstream, reaching internal target organs such as the lungs, liver and kidneys. Several microorganisms produce proteins that act as ligands of integrins through the RGD motif. Here, we characterized a leptospiral RGD-containing protein encoded by the gene lic12254. In silico analysis of pathogenic, intermediate and saprophytic species showed that LIC12254 is highly conserved among pathogenic species, and is unique in presenting the RGD motif. The LIC12254-coding sequence is greatly expressed in the virulent Leptospira interrogans L1-130 strain compared with the culture-attenuated L. interrogans M20 strain. We also showed that the recombinant protein rLIC12254 binds to αVβ8 and α8 human integrins most likely via the RGD motif. These interactions are dose-dependent and saturable, a typical property of receptor-ligand interactions. The binding of the recombinant protein lacking this motif-rLIC12254 ΔRAA-to αVβ8 was almost totally abolished, while that with the α8 human integrin was decreased by 65%. Taken together, these results suggest that this putative outer membrane protein interacts with integrins via the RGD domain and may play a key role in leptospirosis pathogenesis.
Collapse
Affiliation(s)
- Maria F Cavenague
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo 05503-000, SP, Brazil
- Programa de Pós-Graduação Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo 05508-900, SP, Brazil
| | - Aline F Teixeira
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo 05503-000, SP, Brazil
| | - Luis G V Fernandes
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo 05503-000, SP, Brazil
| | - Ana L T O Nascimento
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo 05503-000, SP, Brazil
- Programa de Pós-Graduação Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo 05508-900, SP, Brazil
| |
Collapse
|
8
|
Halsey G, Sinha D, Dhital S, Wang X, Vyavahare N. Role of elastic fiber degradation in disease pathogenesis. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166706. [PMID: 37001705 DOI: 10.1016/j.bbadis.2023.166706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 03/31/2023]
Abstract
Elastin is a crucial extracellular matrix protein that provides structural integrity to tissues. Crosslinked elastin and associated microfibrils, named elastic fiber, contribute to biomechanics by providing the elasticity required for proper function. During aging and disease, elastic fiber can be progressively degraded and since there is little elastin synthesis in adults, degraded elastic fiber is not regenerated. There is substantial evidence linking loss or damage of elastic fibers to the clinical manifestation and pathogenesis of a variety of diseases. Disruption of elastic fiber networks by hereditary mutations, aging, or pathogenic stimuli results in systemic ailments associated with the production of elastin degradation products, inflammatory responses, and abnormal physiology. Due to its longevity, unique mechanical properties, and widespread distribution in the body, elastic fiber plays a central role in homeostasis of various physiological systems. While pathogenesis related to elastic fiber degradation has been more thoroughly studied in elastic fiber rich tissues such as the vasculature and the lungs, even tissues containing relatively small quantities of elastic fibers such as the eyes or joints may be severely impacted by elastin degradation. Elastic fiber degradation is a common observation in certain hereditary, age, and specific risk factor exposure induced diseases representing a converging point of pathological clinical phenotypes which may also help explain the appearance of co-morbidities. In this review, we will first cover the role of elastic fiber degradation in the manifestation of hereditary diseases then individually explore the structural role and degradation effects of elastic fibers in various tissues and organ systems. Overall, stabilizing elastic fiber structures and repairing lost elastin may be effective strategies to reverse the effects of these diseases.
Collapse
Affiliation(s)
- Gregory Halsey
- Department of Bioengineering, Clemson University, SC 29634, United States of America
| | - Dipasha Sinha
- Department of Bioengineering, Clemson University, SC 29634, United States of America
| | - Saphala Dhital
- Department of Bioengineering, Clemson University, SC 29634, United States of America
| | - Xiaoying Wang
- Department of Bioengineering, Clemson University, SC 29634, United States of America
| | - Naren Vyavahare
- Department of Bioengineering, Clemson University, SC 29634, United States of America.
| |
Collapse
|
9
|
Host Cell Binding Mediated by Leptospira interrogans Adhesins. Int J Mol Sci 2022; 23:ijms232415550. [PMID: 36555188 PMCID: PMC9779477 DOI: 10.3390/ijms232415550] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/23/2022] [Accepted: 11/30/2022] [Indexed: 12/13/2022] Open
Abstract
Leptospirosis is a neglected infectious disease with global impact on both humans and animals. The increase in urban development without sanitation planning is one of the main reasons for the disease spreading. The symptoms are similar to those of flu-like diseases, such as dengue, yellow fever, and malaria, which can result in a misleading clinical diagnosis. The characterization of host-pathogen interactions is important in the development of new vaccines, treatments, and diagnostics. However, the pathogenesis of leptospirosis is not well understood, and many gaps remain to be addressed. Here, we aimed to determine if Leptospira strains, virulent, culture-attenuated, and saprophytic, and the major outer membrane proteins OmpL37, OmpL1, LipL21, LipL41, and LipL46 are able to adhere to different endothelial, epithelial and fibroblast cell lines in vitro. We showed that virulent leptospires robustly bind to all cells compared to the culture-attenuated and saprophytic lines. The recombinant proteins exhibited certain adhesion, but only OmpL1 and LipL41 were able to bind to several cell lines, either in monolayer or in cell suspension. Blocking OmpL1 with polyclonal antibodies caused a decrease in bacterial binding to cells, contrasting with an increase observed when anti-LipL41 antibodies were used. The adhesion of OmpL1 to HMEC-1 and EA.hy926 was inhibited when cells were pre-incubated with collagen IV, suggesting that both compete for the same cell receptor. We present here for the first time the interaction of five leptospiral outer membrane proteins with several cell lines, and we conclude that LipL41 and OmpL1 may have an impact on leptospiral adhesion to mammalian cells and may mediate the colonization process in leptospiral pathogenesis.
Collapse
|
10
|
Meganathan Y, Vishwakarma A, Mohandass R. Biofilm formation and social interaction of Leptospira in natural and artificial environments. Res Microbiol 2022; 173:103981. [PMID: 35926730 DOI: 10.1016/j.resmic.2022.103981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 10/16/2022]
Abstract
In the recent decades, there has been increased interest in the study on social interactions of pathogenic bacteria and biofilm-forming microbes. Leptospira is a zoonotic pathogen that causes human leptospirosis. Biofilm formation by pathogenic and saprophytic Leptospira has been documented in various biotic and abiotic environments. Biofilm supports cell growth and protects them from a variety of environmental stress. Pathogenic bacterial biofilm might increase the virulence and pathogenesis. However, research on the social behaviour and biofilm production by Leptospira is limited. This review discusses the interplay between the different species in the biofilm formation of saprophytic and pathogenic Leptospira and potential future applications.
Collapse
Affiliation(s)
- Yogesan Meganathan
- Molecular Genetics Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalapattu, TN, India
| | - Archana Vishwakarma
- Molecular Genetics Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalapattu, TN, India
| | - Ramya Mohandass
- Molecular Genetics Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalapattu, TN, India.
| |
Collapse
|
11
|
Barazzone GC, Teixeira AF, Azevedo BOP, Damiano DK, Oliveira MP, Nascimento ALTO, Lopes APY. Revisiting the Development of Vaccines Against Pathogenic Leptospira: Innovative Approaches, Present Challenges, and Future Perspectives. Front Immunol 2022; 12:760291. [PMID: 35046936 PMCID: PMC8761801 DOI: 10.3389/fimmu.2021.760291] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 11/16/2021] [Indexed: 12/12/2022] Open
Abstract
Human vaccination against leptospirosis has been relatively unsuccessful in clinical applications despite an expressive amount of vaccine candidates has been tested over years of research. Pathogenic Leptospira encompass a great number of serovars, most of which do not cross-react, and there has been a lack of genetic tools for many years. These obstacles have hampered the understanding of the bacteria's biology and, consequently, the identification of an effective antigen. Thus far, many approaches have been used in an attempt to find a cost-effective and broad-spectrum protective antigen(s) against the disease. In this extensive review, we discuss several strategies that have been used to develop an effective vaccine against leptospirosis, starting with Leptospira-inactivated bacterin, proteins identified in the genome sequences of pathogenic Leptospira, including reverse vaccinology, plasmid DNA, live vaccines, chimeric multi-epitope, and toll- and nod-like receptors agonists. This overview should be able to guide scientists working in the field to select potential antigens and to choose the appropriate formulation to administer the candidates.
Collapse
Affiliation(s)
- Giovana C. Barazzone
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, Brazil
- Programa de Pós-Graduação Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, Universidade de São Paulo (USP), São Paulo, Brazil
| | - Aline F. Teixeira
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, Brazil
| | - Bruna O. P. Azevedo
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, Brazil
- Programa de Pós-Graduação Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, Universidade de São Paulo (USP), São Paulo, Brazil
| | - Deborah K. Damiano
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, Brazil
- Programa de Pós-Graduação Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, Universidade de São Paulo (USP), São Paulo, Brazil
| | - Marcos P. Oliveira
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, Brazil
- Programa de Pós-Graduação Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, Universidade de São Paulo (USP), São Paulo, Brazil
| | - Ana L. T. O. Nascimento
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, Brazil
- Programa de Pós-Graduação Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, Universidade de São Paulo (USP), São Paulo, Brazil
| | - Alexandre P. Y. Lopes
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, Brazil
- Programa de Pós-Graduação Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, Universidade de São Paulo (USP), São Paulo, Brazil
| |
Collapse
|
12
|
MB T, AF T, ALTO N. The leptospiral LipL21 and LipL41 proteins exhibit a broad spectrum of interactions with host cell components. Virulence 2021; 12:2798-2813. [PMID: 34719356 PMCID: PMC8632080 DOI: 10.1080/21505594.2021.1993427] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 09/08/2021] [Accepted: 10/08/2021] [Indexed: 01/09/2023] Open
Abstract
Leptospirosis is a globally prevalent zoonotic disease, and is caused by pathogenic spirochetes from the genus Leptospira. LipL21 and LipL41 are lipoproteins expressed strongly on the outer membrane of pathogenic Leptospira spp. Many studies have shown that both proteins are interesting targets for vaccines and diagnosis. However, their role in host-pathogen interactions remains underexplored. Therefore, we evaluated the capacity of LipL21 and LipL41 to bind with glycosaminoglycans (GAGs), the cell receptors and extracellular matrix, and plasma components by ELISA. Both proteins interacted with collagen IV, laminin, E-cadherin, and elastin dose-dependently. A broad-spectrum binding to plasma components was also observed. Only LipL21 interacted with all the GAG components tested, whereas LipL41 presented a concentration-dependent binding only for chondroitin 4 sulfate. Although, both proteins have the ability to interact with fibrinogen, only LipL21 inhibited fibrin clot formation partially. Both proteins exhibited a decrease in plasminogen binding in the presence of amino caproic acid (ACA), a competitive inhibitor of lysine residues, suggesting that their binding occurs via the kringle domains of plasminogen. LipL41, but not LipL21, was able to convert plasminogen to plasmin, and recruit plasminogen from normal human serum, suggesting that the interaction of this protein with plasminogen may occur in physiological conditions. This work provides the first report demonstrating the capacity of LipL21 and LipL41 to interact with a broad range of host components, highlighting their importance in host-Leptospira interactions.
Collapse
Affiliation(s)
- Takahashi MB
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, Brazil
- Programa de Pós-Graduação Interunidades Em Biotecnologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Teixeira AF
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, Brazil
| | - Nascimento ALTO
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, Brazil
| |
Collapse
|
13
|
Daroz BB, Fernandes LGV, Cavenague MF, Kochi LT, Passalia FJ, Takahashi MB, Nascimento Filho EG, Teixeira AF, Nascimento ALTO. A Review on Host- Leptospira Interactions: What We Know and Future Expectations. Front Cell Infect Microbiol 2021; 11:777709. [PMID: 34900757 PMCID: PMC8657130 DOI: 10.3389/fcimb.2021.777709] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/04/2021] [Indexed: 01/01/2023] Open
Abstract
Leptospirosis is a widespread zoonosis caused by pathogenic Leptospira spp. It is considered a neglected infectious disease of human and veterinary concern. Our group has been investigating proteins annotated as hypothetical, predicted to be located on the leptospiral surface. Because of their location, these proteins may have the ability to interact with various host components, which could allow establishment of the infection. These proteins act as adherence factors by binding to host receptor molecules, such as the extracellular matrix (ECM) components laminin and glycosaminoglycans to help bacterial colonization. Leptospira also interacts with the host fibrinolytic system, which has been demonstrated to be a powerful tool for invasion mechanisms. The interaction with fibrinogen and thrombin has been shown to reduce fibrin clot formation. Additionally, the degradation of coagulation cascade components by secreted proteases or by acquired surface plasmin could also play a role in reducing clot formation, hence facilitating dissemination during infection. Interaction with host complement system regulators also plays a role in helping bacteria to evade the immune system, facilitating invasion. Interaction of Leptospira to cell receptors, such as cadherins, can contribute to investigate molecules that participate in virulence. To achieve a better understanding of the host-pathogen interaction, leptospiral mutagenesis tools have been developed and explored. This work presents several proteins that mediate binding to components of the ECM, plasma, components of the complement system and cells, to gather research achievements that can be helpful in better understanding the mechanisms of leptospiral-host interactions and discuss genetic manipulation for Leptospira spp. aimed at protein function validation.
Collapse
Affiliation(s)
- Brenda B. Daroz
- Laboratorio de Desenvolvimento de Vacinas, Instituto Butantan, Avenida Vital Brazil, Sao Paulo, Brazil
- Programa de Pos-Graduacao Interunidades em Biotecnologia, Instituto de Ciencias Biomedicas, Universidade de São Paulo, Sao Paulo, Brazil
| | - Luis G. V. Fernandes
- Laboratorio de Desenvolvimento de Vacinas, Instituto Butantan, Avenida Vital Brazil, Sao Paulo, Brazil
| | - Maria F. Cavenague
- Laboratorio de Desenvolvimento de Vacinas, Instituto Butantan, Avenida Vital Brazil, Sao Paulo, Brazil
- Programa de Pos-Graduacao Interunidades em Biotecnologia, Instituto de Ciencias Biomedicas, Universidade de São Paulo, Sao Paulo, Brazil
| | - Leandro T. Kochi
- Laboratorio de Desenvolvimento de Vacinas, Instituto Butantan, Avenida Vital Brazil, Sao Paulo, Brazil
- Programa de Pos-Graduacao Interunidades em Biotecnologia, Instituto de Ciencias Biomedicas, Universidade de São Paulo, Sao Paulo, Brazil
| | - Felipe J. Passalia
- Laboratorio de Desenvolvimento de Vacinas, Instituto Butantan, Avenida Vital Brazil, Sao Paulo, Brazil
- Programa de Pos-Graduacao Interunidades em Biotecnologia, Instituto de Ciencias Biomedicas, Universidade de São Paulo, Sao Paulo, Brazil
| | - Maria B. Takahashi
- Laboratorio de Desenvolvimento de Vacinas, Instituto Butantan, Avenida Vital Brazil, Sao Paulo, Brazil
- Programa de Pos-Graduacao Interunidades em Biotecnologia, Instituto de Ciencias Biomedicas, Universidade de São Paulo, Sao Paulo, Brazil
| | - Edson G. Nascimento Filho
- Laboratorio de Desenvolvimento de Vacinas, Instituto Butantan, Avenida Vital Brazil, Sao Paulo, Brazil
- Programa de Pos-Graduacao Interunidades em Biotecnologia, Instituto de Ciencias Biomedicas, Universidade de São Paulo, Sao Paulo, Brazil
| | - Aline F. Teixeira
- Laboratorio de Desenvolvimento de Vacinas, Instituto Butantan, Avenida Vital Brazil, Sao Paulo, Brazil
| | - Ana L. T. O. Nascimento
- Laboratorio de Desenvolvimento de Vacinas, Instituto Butantan, Avenida Vital Brazil, Sao Paulo, Brazil
- Programa de Pos-Graduacao Interunidades em Biotecnologia, Instituto de Ciencias Biomedicas, Universidade de São Paulo, Sao Paulo, Brazil
| |
Collapse
|
14
|
Techawiwattanaboon T, Thaibankluay P, Kreangkaiwal C, Sathean-Anan-Kun S, Khaenam P, Makjaroen J, Pisitkun T, Patarakul K. Surface proteomics and label-free quantification of Leptospira interrogans serovar Pomona. PLoS Negl Trop Dis 2021; 15:e0009983. [PMID: 34843470 PMCID: PMC8659334 DOI: 10.1371/journal.pntd.0009983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 12/09/2021] [Accepted: 11/09/2021] [Indexed: 11/19/2022] Open
Abstract
Leptospirosis is a re-emerging zoonosis with a global distribution. Surface-exposed outer membrane proteins (SE-OMPs) are crucial for bacterial-host interactions. SE-OMPs locate and expose their epitope on cell surface where is easily accessed by host molecules. This study aimed to screen for surface-exposed proteins and their abundance profile of pathogenic Leptospira interrogans serovar Pomona. Two complementary approaches, surface biotinylation and surface proteolytic shaving, followed by liquid chromatography tandem-mass spectrometry (LC-MS/MS) were employed to identify SE-OMPs of intact leptospires. For quantitative comparison, in-depth label-free analysis of SE-OMPs obtained from each method was performed using MaxQuant. The total number of proteins identified was 1,001 and 238 for surface biotinylation and proteinase K shaving, respectively. Among these, 39 were previously known SE-OMPs and 68 were predicted to be localized on the leptospiral surface. Based on MaxQuant analysis for relative quantification, six known SE-OMPs including EF- Tu, LipL21, LipL41, LipL46, Loa22, and OmpL36, and one predicted SE-OMPs, LipL71 were found in the 20 most abundant proteins, in which LipL41 was the highest abundant SE-OMP. Moreover, uncharacterized LIC14011 protein (LIP3228 ortholog in serovar Pomona) was identified as a novel predicted surface βb-OMP. High-abundance leptospiral SE-OMPs identified in this study may play roles in virulence and infection and are potential targets for development of vaccine or diagnostic tests for leptospirosis.
Collapse
Affiliation(s)
- Teerasit Techawiwattanaboon
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Pathumwan, Bangkok, Thailand
- Chula Vaccine Research Center (Chula VRC), Center of Excellence in Vaccine Research and Development, Chulalongkorn University, Pathumwan, Bangkok, Thailand
| | - Praparat Thaibankluay
- Chula Vaccine Research Center (Chula VRC), Center of Excellence in Vaccine Research and Development, Chulalongkorn University, Pathumwan, Bangkok, Thailand
- Medical Science, Faculty of Medicine, Chulalongkorn University, Pathumwan, Bangkok, Thailand
| | - Chahya Kreangkaiwal
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Pathumwan, Bangkok, Thailand
- Chula Vaccine Research Center (Chula VRC), Center of Excellence in Vaccine Research and Development, Chulalongkorn University, Pathumwan, Bangkok, Thailand
| | - Suwitra Sathean-Anan-Kun
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Pathumwan, Bangkok, Thailand
- Chula Vaccine Research Center (Chula VRC), Center of Excellence in Vaccine Research and Development, Chulalongkorn University, Pathumwan, Bangkok, Thailand
| | - Prasong Khaenam
- Center for Standardization and Product Validation, Faculty of Medical Technology, Mahidol University, Bangkok-Noi, Bangkok, Thailand
| | - Jiradej Makjaroen
- Center of Excellence in Systems Biology, Research Affairs, Faculty of Medicine, Chulalongkorn University, Pathumwan, Bangkok, Thailand
| | - Trairak Pisitkun
- Center of Excellence in Systems Biology, Research Affairs, Faculty of Medicine, Chulalongkorn University, Pathumwan, Bangkok, Thailand
| | - Kanitha Patarakul
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Pathumwan, Bangkok, Thailand
- Chula Vaccine Research Center (Chula VRC), Center of Excellence in Vaccine Research and Development, Chulalongkorn University, Pathumwan, Bangkok, Thailand
| |
Collapse
|
15
|
Balamurugan V, Thirumalesh SRA, Alamuri A, SowjanyaKumari S, Vinod Kumar K, Linshamol L, Bharath V, Nagalingam M, Roy P. Evaluation of the diagnostic potential of recombinant leptospiral OMP A-like protein (Loa22) and transmembrane (OmpL37) protein in latex agglutination test for serodiagnosis of leptospirosis in animals. Lett Appl Microbiol 2021; 72:730-740. [PMID: 33590504 DOI: 10.1111/lam.13461] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 02/02/2021] [Accepted: 02/11/2021] [Indexed: 12/22/2022]
Abstract
Leptospirosis is a re-emerging zoonotic disease of animals and humans caused by pathogenic Leptospira, which has major public health concerns. The study is aimed to express the recombinant outer membrane protein (OMP) A-like protein (rLoa22) and transmembrane (rOmpL37) protein of Leptospira interrogans serovar Hardjo in the Escherichia coli and their evaluation as a diagnostic antigen in the latex agglutination test (LAT) to detect anti-leptospiral antibodies in the sera of animals. The Loa22 and OmpL37 genes lacking signal peptide coding sequences were individually amplified (522 and 963 bp), by polymerase chain reaction, and directionally cloned into a pETite N-His Kan vector for expression. The expressed purified proteins were characterized by sodium dodecyl sulphate-polyacrylamide gel electrophoresis and immunoblot, which confirmed leptospiral specific reactive protein with a molecular weight of ~19 and 36 kDa, respectively. The sensitized latex beads coated with these OM proteins separately were evaluated in LAT using cattle sera of microscopic agglutination test (MAT) confirmed positive (n = 53) and negative (n = 52) cases of leptospirosis. The rLoa22 LAT and rOmpL37 LAT revealed the relative diagnostic sensitivity of 94·34 and 96·23%, diagnostic specificity of 92·31 and 96·15% and accuracy of 93·33 and 96·19%, with the excellent agreement of Cohen's kappa value of 0·87 and 0·92, respectively. After extensive evaluation, this rapid recombinant protein-based field diagnostic test can be applied as a screening test for the detection of anti-leptospiral antibodies in the sera of animals in the field conditions.
Collapse
Affiliation(s)
- V Balamurugan
- ICAR-National Institute of Veterinary Epidemiology and Disease informatics (NIVEDI), Yelahanka, Bengaluru, Karnataka, India
| | - S R A Thirumalesh
- ICAR-National Institute of Veterinary Epidemiology and Disease informatics (NIVEDI), Yelahanka, Bengaluru, Karnataka, India.,Jain University, Bengaluru, Karnataka, India
| | - A Alamuri
- ICAR-National Institute of Veterinary Epidemiology and Disease informatics (NIVEDI), Yelahanka, Bengaluru, Karnataka, India
| | - S SowjanyaKumari
- ICAR-National Institute of Veterinary Epidemiology and Disease informatics (NIVEDI), Yelahanka, Bengaluru, Karnataka, India
| | - K Vinod Kumar
- ICAR-National Institute of Veterinary Epidemiology and Disease informatics (NIVEDI), Yelahanka, Bengaluru, Karnataka, India
| | - L Linshamol
- ICAR-National Institute of Veterinary Epidemiology and Disease informatics (NIVEDI), Yelahanka, Bengaluru, Karnataka, India
| | - V Bharath
- ICAR-National Institute of Veterinary Epidemiology and Disease informatics (NIVEDI), Yelahanka, Bengaluru, Karnataka, India
| | - M Nagalingam
- ICAR-National Institute of Veterinary Epidemiology and Disease informatics (NIVEDI), Yelahanka, Bengaluru, Karnataka, India
| | - P Roy
- ICAR-National Institute of Veterinary Epidemiology and Disease informatics (NIVEDI), Yelahanka, Bengaluru, Karnataka, India
| |
Collapse
|
16
|
Samrot AV, Sean TC, Bhavya KS, Sahithya CS, Chan-drasekaran S, Palanisamy R, Robinson ER, Subbiah SK, Mok PL. Leptospiral Infection, Pathogenesis and Its Diagnosis-A Review. Pathogens 2021; 10:pathogens10020145. [PMID: 33535649 PMCID: PMC7912936 DOI: 10.3390/pathogens10020145] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/05/2020] [Accepted: 12/09/2020] [Indexed: 12/22/2022] Open
Abstract
Leptospirosis is a perplexing conundrum for many. In the existing literature, the pathophysiological mechanisms pertaining to leptospirosis is still not understood in full. Considered as a neglected tropical zoonotic disease, leptospirosis is culminating as a serious problem worldwide, seemingly existing as co-infections with various other unrelated diseases, including dengue and malaria. Misdiagnosis is also common as non-specific symptoms are documented extensively in the literature. This can easily lead to death, as the severe form of leptospirosis (Weil's disease) manifests as a complex of systemic complications, especially renal failure. The virulence of Leptospira sp. is usually attributed to the outer membrane proteins, including LipL32. With an armament of virulence factors at their disposal, their ability to easily adhere, invade and replicate within cells calls for a swift refinement in research progress to establish their exact pathophysiological framework. As an effort to reconstitute the current knowledge on leptospirosis, the basis of leptospiral infection, including its risk factors, classification, morphology, transmission, pathogenesis, co-infections and clinical manifestations are highlighted in this review. The various diagnostic techniques are also outlined with emphasis on their respective pros and cons.
Collapse
Affiliation(s)
- Antony V. Samrot
- School of Bioscience, Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jenjarom, Selangor 42610, Malaysia;
- Correspondence: (A.V.S.); (P.L.M.)
| | - Tan Chuan Sean
- School of Bioscience, Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jenjarom, Selangor 42610, Malaysia;
| | - Karanam Sai Bhavya
- Department of Biotechnology, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Jeppiaar Nagar, Chennai, Tamil Nadu 627 011, India; (K.S.B.); (C.S.S.); (S.C.); (R.P.)
| | - Chamarthy Sai Sahithya
- Department of Biotechnology, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Jeppiaar Nagar, Chennai, Tamil Nadu 627 011, India; (K.S.B.); (C.S.S.); (S.C.); (R.P.)
| | - SaiPriya Chan-drasekaran
- Department of Biotechnology, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Jeppiaar Nagar, Chennai, Tamil Nadu 627 011, India; (K.S.B.); (C.S.S.); (S.C.); (R.P.)
| | - Raji Palanisamy
- Department of Biotechnology, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Jeppiaar Nagar, Chennai, Tamil Nadu 627 011, India; (K.S.B.); (C.S.S.); (S.C.); (R.P.)
| | - Emilin Renitta Robinson
- Department of Food Processing Technology, Karunya Institute of Technology and Science, Coimbatore, Tamil Nadu 641 114, India;
| | - Suresh Kumar Subbiah
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia;
- Department of Biotechnology, Bharath Institute of Higher Education and Research (BIHER), Selaiyur, Tamil Nadu 600 073, India
- Genetics and Regenerative Medicine Research Centre, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia
| | - Pooi Ling Mok
- Department of Biotechnology, Bharath Institute of Higher Education and Research (BIHER), Selaiyur, Tamil Nadu 600 073, India
- Genetics and Regenerative Medicine Research Centre, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka P.O. Box 2014, Aljouf Province, Saudi Arabia
- Correspondence: (A.V.S.); (P.L.M.)
| |
Collapse
|
17
|
Putative β-Barrel Outer Membrane Proteins of the Bovine Digital Dermatitis-Associated Treponemes: Identification, Functional Characterization, and Immunogenicity. Infect Immun 2020; 88:IAI.00050-20. [PMID: 32122940 PMCID: PMC7171239 DOI: 10.1128/iai.00050-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 02/20/2020] [Indexed: 12/25/2022] Open
Abstract
Bovine digital dermatitis (BDD), an infectious disease of the bovine foot with a predominant treponemal etiology, is a leading cause of lameness in dairy and beef herds worldwide. BDD is poorly responsive to antimicrobial therapy and exhibits a relapsing clinical course; an effective vaccine is therefore urgently sought. Using a reverse vaccinology approach, the present study surveyed the genomes of the three BDD-associated Treponema phylogroups for putative β-barrel outer membrane proteins and considered their potential as vaccine candidates. Selection criteria included the presence of a signal peptidase I cleavage site, a predicted β-barrel fold, and cross-phylogroup homology. Four candidate genes were overexpressed in Escherichia coli BL21(DE3), refolded, and purified. Consistent with their classification as β-barrel OMPs, circular-dichroism spectroscopy revealed the adoption of a predominantly β-sheet secondary structure. These recombinant proteins, when screened for their ability to adhere to immobilized extracellular matrix (ECM) components, exhibited a diverse range of ligand specificities. All four proteins specifically and dose dependently adhered to bovine fibrinogen. One recombinant protein was identified as a candidate diagnostic antigen (disease specificity, 75%). Finally, when adjuvanted with aluminum hydroxide and administered to BDD-naive calves using a prime-boost vaccination protocol, these proteins were immunogenic, eliciting specific IgG antibodies. In summary, we present the description of four putative treponemal β-barrel OMPs that exhibit the characteristics of multispecific adhesins. The observed interactions with fibrinogen may be critical to host colonization and it is hypothesized that vaccination-induced antibody blockade of these interactions will impede treponemal virulence and thus be of therapeutic value.
Collapse
|
18
|
Role of Supramolecule ErpY-Like Lipoprotein of Leptospira in Thrombin-Catalyzed Fibrin Clot Inhibition and Binding to Complement Factors H and I, and Its Diagnostic Potential. Infect Immun 2019; 87:IAI.00536-19. [PMID: 31548314 DOI: 10.1128/iai.00536-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 09/12/2019] [Indexed: 01/12/2023] Open
Abstract
Leptospirosis is one of the most widespread zoonoses caused by pathogenic Leptospira spp. In this study, we report that the LIC11966/ErpY-like lipoprotein is a surface-exposed outer membrane protein exclusively present in pathogenic species of Leptospira The recombinant ErpY (rErpY)-like protein is recognized by the immunoglobulins of confirmed leptospirosis sera of diverse hosts (human, bovine, and canine), suggesting the expression of the native leptospiral surface protein during infection. Circular dichroism of pure rErpY-like protein showed the secondary structural integrity to be uncompromised during the purification process. Analysis of the rErpY-like protein by native polyacrylamide gel electrophoresis, chemical cross-linking, dynamic light scattering, and field emission transmission electron microscopy demonstrated it undergoes supramolecular assembly. The rErpY-like protein can bind to diverse host extracellular matrices, and it presented a saturable and strong binding affinity (dissociation constant [KD ] of 70.45 ± 4.13 nM) to fibrinogen, a central host plasma component involved in blood clotting. In the presence of the rErpY-like supramolecule, thrombin-catalyzed fibrin clot formation is inhibited up to 7%, implying its role in inhibiting blood coagulation during Leptospira infection. In addition, binding of the rErpY-like supramolecule to complement factors H and I suggests the protein also contributes to Leptospira evading innate host defense during infection by inactivating alternative complement pathways. This study reveals that rErpY-like protein is functionally active in the supramolecular state and performs moonlighting activity under the given in vitro conditions.
Collapse
|
19
|
Cloning and sequencing of the ompL37 gene present in Leptospira interrogans, a surface protein in pathogenic leptospires. IRANIAN JOURNAL OF MICROBIOLOGY 2019; 11:373-378. [PMID: 32148667 PMCID: PMC7049318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
BACKGROUND AND OBJECTIVES Leptospirosis, an infection caused by pathogenic leptospires, is associated with insufficient sanitation and poverty. Leptospira is transmitted through contact with contaminated urine of reservoir animals. The primary objective of this study was to clone and sequence the ompL37 gene present in local and vaccine serovars. MATERIALS AND METHODS A total of 16 Leptospira interrogans serovars were cultured in EMJH liquid medium. After growing, genomic DNA was extracted using phenol-chloroform method. Primer pair was synthesized to amplify the 996 bp ompL37 sequence. The amplified ompL37 gene was cloned into pTZ57R/T vector. The sequences obtained from this study were compared with an only recorded sequence in the Genbank by the Meg Align software. RESULTS PCR products showed an amplified 996bp ompL37 gene product belonging to pathogenic serovars, while no ompL37 products were amplified in non-pathogenic serovars. Sequences comparison tests from 16 native serotypes examined in this study displayed a similarity range of 84% to 99.5% among serovars used. The results showed that two serotypes of L. interrogans including Serjoehardjo (RTCC2810 and RTCC2821) had the highest identity up to 95.5%. Two serovars of L. interrogans including Pomona (RTCC2822) and Icterohaemorrhagiae (RTCC2823) had the lowest identity about 84%. CONCLUSION As the results showed, ompL37, present on the surface of such bacteria, showed a conserved sequence. ompL37, as a key role in cell adhesion and pathogenicity, can be used for designing diagnostic tests and vaccines. Furthermore, sequencing of various sites in ompL37 gene, including binding sites and immunogenic epitopes, can be valuable alternatives for future studies.
Collapse
|
20
|
Chou LF, Chen TW, Yang HY, Chang MY, Hsu SH, Tsai CY, Ko YC, Huang CT, Tian YC, Hung CC, Yang CW. Murine Renal Transcriptome Profiles Upon Leptospiral Infection: Implications for Chronic Kidney Diseases. J Infect Dis 2019; 218:1411-1423. [PMID: 29868892 DOI: 10.1093/infdis/jiy339] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 06/01/2018] [Indexed: 01/21/2023] Open
Abstract
Background Leptospirosis caused by pathogenic Leptospira spp leads to kidney damage that may progress to chronic kidney disease. However, how leptospiral infections induced renal damage is unclear. Methods We apply microarray and next-generation sequencing technologies to investigate the first murine transcriptome-wide, leptospires-mediated changes in renal gene expression to identify biological pathways associated with kidney damage. Results Leptospiral genes were detected in renal transcriptomes of mice infected with Leptospira interrogans at day 28 postinfection, suggesting colonization of leptospires within the kidney with propensity of chronicity. Comparative differential gene expression and pathway analysis were investigated in renal transcriptomes of mice infected with pathogens and nonpathogens. Pathways analysis showed that Toll-like receptor signaling, complements activation, T-helper 1 type immune response, and T cell-mediated immunity/chemotaxis/proliferation were strongly associated with progressive tubulointerstitial damage caused by pathogenic leptospiral infection. In addition, 26 genes related with complement system, immune function, and cell-cell interactions were found to be significantly up-regulated in the L interrogans-infected renal transcriptome. Conclusions Our results provided comprehensive knowledge regarding the host transcriptional response to leptospiral infection in murine kidneys, particularly the involvement of cell-to-cell interaction in the immune response. It would provide valuable resources to explore functional studies of chronic renal damage caused by leptospiral infection.
Collapse
Affiliation(s)
- Li-Fang Chou
- Kidney Research Center, Chang Gung Memorial Hospital, Linkou
| | - Ting-Wen Chen
- Molecular Medicine Research Center, Chang Gung University, Taoyuan.,Department of Otolaryngology-Head and Neck Surgery, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| | - Huang-Yu Yang
- Kidney Research Center, Chang Gung Memorial Hospital, Linkou.,College of Medicine, Chang Gung University, Taoyuan
| | - Ming-Yang Chang
- Kidney Research Center, Chang Gung Memorial Hospital, Linkou.,College of Medicine, Chang Gung University, Taoyuan
| | - Shen-Hsing Hsu
- Kidney Research Center, Chang Gung Memorial Hospital, Linkou
| | - Chung-Ying Tsai
- Kidney Research Center, Chang Gung Memorial Hospital, Linkou
| | - Yi-Ching Ko
- Kidney Research Center, Chang Gung Memorial Hospital, Linkou
| | | | - Ya-Chung Tian
- Kidney Research Center, Chang Gung Memorial Hospital, Linkou.,College of Medicine, Chang Gung University, Taoyuan
| | - Cheng-Chieh Hung
- Kidney Research Center, Chang Gung Memorial Hospital, Linkou.,College of Medicine, Chang Gung University, Taoyuan
| | - Chih-Wei Yang
- Kidney Research Center, Chang Gung Memorial Hospital, Linkou.,College of Medicine, Chang Gung University, Taoyuan
| |
Collapse
|
21
|
Cavenague MF, Teixeira AF, Filho AS, Souza GO, Vasconcellos SA, Heinemann MB, Nascimento ALTO. Characterization of a novel protein of Leptospira interrogans exhibiting plasminogen, vitronectin and complement binding properties. Int J Med Microbiol 2019; 309:116-129. [PMID: 30638770 DOI: 10.1016/j.ijmm.2018.12.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 10/16/2018] [Accepted: 12/28/2018] [Indexed: 01/21/2023] Open
Abstract
Leptospirosis is a severe zoonosis caused by pathogenic species of the genus Leptospira. This work focuses on a hypothetical protein of unknown function, encoded by the gene LIC13259, and predicted to be a surface protein, widely distributed among pathogenic leptospiral strain. The gene was amplified from L. interrogans serovar Copenhageni, strain Fiocruz L1-130, cloned and the protein expressed using Escherichia coli as a host system. Immunofluorescence assay showed that the protein is surface-exposed. The recombinant protein LIC13259 (rLIC13259) has the ability to interact with the extracellular matrix (ECM) laminin, in a dose-dependent manner but saturation was not reach. The rLIC13259 protein is a plasminogen (PLG)-binding protein, generating plasmin, in the presence of urokinase PLG-activator uPA. The recombinant protein is able to mediate the binding to human purified terminal complement route vitronectin, C7, C8 and C9, and to recruit and interact with these components from normal human serum (NHS). These interactions are dose-dependent on NHS increased concentration. The binding of rLIC13259 to C8 and vitronectin was slight and pronounced inhibited in the presence of increasing heparin concentration, respectively, suggesting that the interaction with vitronectin occurs via heparin domain. Most interesting, the interaction of rLIC13259 with C9 protein was capable of preventing C9 polymerization, suggesting that the membrane attack complex (MAC) formation was inhibited. Thus, we tentatively assign the coding sequence (CDS) LIC13259, previously annotated as unknown function, as a novel protein that may play an important role in the host's invasion and immune evasion processes, contributing to the establishment of the leptospiral infection.
Collapse
Affiliation(s)
- Maria F Cavenague
- Laboratorio Especial de Desenvolvimento de Vacinas - Centro de Biotecnologia, Instituto Butantan, Sao Paulo, SP, Brazil; Programa de Pós-Graduação Interunidades em Biotecnologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Aline F Teixeira
- Laboratorio Especial de Desenvolvimento de Vacinas - Centro de Biotecnologia, Instituto Butantan, Sao Paulo, SP, Brazil
| | - Antonio S Filho
- Laboratório de Zoonoses Bacterianas, Faculdade de Medicina Veterinária e Zootecnia, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Gisele O Souza
- Laboratório de Zoonoses Bacterianas, Faculdade de Medicina Veterinária e Zootecnia, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Silvio A Vasconcellos
- Laboratório de Zoonoses Bacterianas, Faculdade de Medicina Veterinária e Zootecnia, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Marcos B Heinemann
- Laboratório de Zoonoses Bacterianas, Faculdade de Medicina Veterinária e Zootecnia, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Ana L T O Nascimento
- Laboratorio Especial de Desenvolvimento de Vacinas - Centro de Biotecnologia, Instituto Butantan, Sao Paulo, SP, Brazil; Programa de Pós-Graduação Interunidades em Biotecnologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, SP, Brazil.
| |
Collapse
|
22
|
Rezaei E, Khaki P, Moradi Bidhendi S, Noofeli M. Identification of Pathogenic Leptospiral Serovars by Detection of the ompl37 Gene Using PCR. MEDICAL LABORATORY JOURNAL 2019. [DOI: 10.29252/mlj.13.1.33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
23
|
McCallum KE, Constantino-Casas F, Cullen JM, Warland JH, Swales H, Linghley N, Kortum AJ, Sterritt AJ, Cogan T, Watson PJ. Hepatic leptospiral infections in dogs without obvious renal involvement. J Vet Intern Med 2018; 33:141-150. [PMID: 30499209 PMCID: PMC6335520 DOI: 10.1111/jvim.15340] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 10/11/2018] [Indexed: 12/23/2022] Open
Abstract
Background Reports of chronic hepatitis in dogs caused by Leptospira spp. are confined to small case series. Fluorescence in situ hybridization (FISH) allows the identification of spirochetes in liver samples. Consequently, this technique may help elucidate the role of Leptospira spp. in cases of chronic hepatitis. Objectives To describe cases of hepatic leptospirosis in dogs diagnosed by FISH and subsequent polymerase chain reaction (PCR) speciation, with the absence of clinically relevant renal involvement. Animals Ten client‐owned dogs. Methods Retrospective case series from the University of Cambridge presented between 2013 and 2016 or cases consulted by telephone advice during this time period. Cases were selected based on histopathologically confirmed granulomatous hepatitis and leptospiral organisms identified by FISH and PCR speciation (Leptospira interrogans/kirschneri). Results All cases had increased liver enzyme activities, and FISH in combination with PCR speciation‐confirmed infection with L. interrogans/kirschneri. Four dogs underwent repeat liver biopsy, FISH and PCR speciation 4‐15 months after initial presentation and doxycycline treatment with 1 dog undergoing repeat sampling at necropsy. Three dogs that underwent repeat biopsy remained positive for L. interrogans/kirschneri infection. Six dogs were alive at the time of manuscript preparation and 4 dogs were euthanized as a result of progressive liver disease. Conclusions and Clinical Importance The presence of hepatic leptospiral organisms may be associated with chronic granulomatous hepatitis without clinical evidence of renal involvement. Further studies are necessary to elucidate the etiological role of these organisms in the disease.
Collapse
Affiliation(s)
- Katie E McCallum
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | | | - John M Cullen
- North Carolina State College of Veterinary Medicine, Raleigh, North Carolina
| | - James H Warland
- Department of Haematology, University of Cambridge, NHS Blood & Transplant Donor Centre, Cambridge, United Kingdom
| | - Harry Swales
- Small Animal Teaching Hospital, Leahurst Campus, University of Liverpool, Wirral, United Kingdom
| | | | - Andre J Kortum
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Alex J Sterritt
- Highcroft Veterinary Group, Whitchurch Veterinary Centre, Bristol, United Kingdom
| | | | - Penny J Watson
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
24
|
Ghosh KK, Prakash A, Shrivastav P, Balamurugan V, Kumar M. Evaluation of a novel outer membrane surface-exposed protein, LIC13341 of Leptospira, as an adhesin and serodiagnostic candidate marker for leptospirosis. Microbiology (Reading) 2018; 164:1023-1037. [DOI: 10.1099/mic.0.000685] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Karukriti Kaushik Ghosh
- 1Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Aman Prakash
- 1Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Prateek Shrivastav
- 1Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Vinayagamurthy Balamurugan
- 2Indian Council of Agricultural Research-National Institute of Veterinary Epidemiology and Disease Informatics (ICAR-NIVEDI), Bengaluru, India
| | - Manish Kumar
- 1Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| |
Collapse
|
25
|
Priya SP, Sakinah S, Sharmilah K, Hamat RA, Sekawi Z, Higuchi A, Ling MP, Nordin SA, Benelli G, Kumar SS. Leptospirosis: Molecular trial path and immunopathogenesis correlated with dengue, malaria and mimetic hemorrhagic infections. Acta Trop 2017; 176:206-223. [PMID: 28823908 DOI: 10.1016/j.actatropica.2017.08.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 08/03/2017] [Accepted: 08/04/2017] [Indexed: 12/12/2022]
Abstract
Immuno-pathogenesis of leptospirosis can be recounted well by following its trail path from entry to exit, while inducing disastrous damages in various tissues of the host. Dysregulated, inappropriate and excessive immune responses are unanimously blamed in fatal leptospirosis. The inherent abilities of the pathogen and inabilities of the host were debated targeting the severity of the disease. Hemorrhagic manifestation through various mechanisms leading to a fatal end is observed when this disease is unattended. The similar vascular destructions and hemorrhage manifestations are noted in infections with different microbes in endemic areas. The simultaneous infection in a host with more than one pathogen or parasite is referred as the coinfection. Notably, common endemic infections such as leptospirosis, dengue, chikungunya, and malaria, harbor favorable environments to flourish in similar climates, which is aggregated with stagnated water and aggravated with the poor personal and environmental hygiene of the inhabitants. These factors aid the spread of pathogens and parasites to humans and potential vectors, eventually leading to outbreaks of public health relevance. Malaria, dengue and chikungunya need mosquitoes as vectors, in contrast with leptospirosis, which directly invades human, although the environmental bacterial load is maintained through other mammals, such as rodents. The more complicating issue is that infections by different pathogens exhibiting similar symptoms but require different treatment management. The current review explores different pathogens expressing specific surface proteins and their ability to bind with array of host proteins with or without immune response to enter into the host tissues and their ability to evade the host immune responses to invade and their affinity to certain tissues leading to the common squeal of hemorrhage. Furthermore, at the host level, the increased susceptibility and inability of the host to arrest the pathogens' and parasites' spread in different tissues, various cytokines accumulated to eradicate the microorganisms and their cellular interactions, the antibody dependent defense and the susceptibility of individual organs bringing the manifestation of the diseases were explored. Lastly, we provided a discussion on the immune trail path of pathogenesis from entry to exit to narrate the similarities and dissimilarities among various hemorrhagic fevers mentioned above, in order to outline future possibilities of prevention, diagnosis, and treatment of coinfections, with special reference to endemic areas.
Collapse
|
26
|
Nally JE, Grassmann AA, Planchon S, Sergeant K, Renaut J, Seshu J, McBride AJ, Caimano MJ. Pathogenic Leptospires Modulate Protein Expression and Post-translational Modifications in Response to Mammalian Host Signals. Front Cell Infect Microbiol 2017; 7:362. [PMID: 28848720 PMCID: PMC5553009 DOI: 10.3389/fcimb.2017.00362] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 07/26/2017] [Indexed: 12/24/2022] Open
Abstract
Pathogenic species of Leptospira cause leptospirosis, a bacterial zoonotic disease with a global distribution affecting over one million people annually. Reservoir hosts of leptospirosis, including rodents, dogs, and cattle, exhibit little to no signs of disease but shed large numbers of organisms in their urine. Transmission occurs when mucosal surfaces or abraded skin come into contact with infected urine or urine-contaminated water or soil. Whilst little is known about how Leptospira adapt to and persist within a reservoir host, in vitro studies suggest that leptospires alter their transcriptomic and proteomic profiles in response to environmental signals encountered during mammalian infection. We applied the dialysis membrane chamber (DMC) peritoneal implant model to compare the whole cell proteome of in vivo derived leptospires with that of leptospires cultivated in vitro at 30°C and 37°C by 2-dimensional difference in-gel electrophoresis (2-D DIGE). Of 1,735 protein spots aligned across 9 2-D DIGE gels, 202 protein spots were differentially expressed (p < 0.05, fold change >1.25 or < −1.25) across all three conditions. Differentially expressed proteins were excised for identification by mass spectrometry. Data are available via ProteomeXchange with identifier PXD006995. The greatest differences were detected when DMC-cultivated leptospires were compared with IV30- or IV37-cultivated leptospires, including the increased expression of multiple isoforms of Loa22, a known virulence factor. Unexpectedly, 20 protein isoforms of LipL32 and 7 isoforms of LipL41 were uniformly identified by DIGE as differentially expressed, suggesting that unique post-translational modifications (PTMs) are operative in response to mammalian host conditions. To test this hypothesis, a rat model of persistent renal colonization was used to isolate leptospires directly from the urine of experimentally infected rats. Comparison of urinary derived leptospires to IV30 leptospires by 2-D immunoblotting confirmed that modification of proteins with trimethyllysine and acetyllysine occurs to a different degree in response to mammalian host signals encountered during persistent renal colonization. These results provide novel insights into differential protein and PTMs present in response to mammalian host signals which can be used to further define the unique equilibrium that exists between pathogenic leptospires and their reservoir host of infection.
Collapse
Affiliation(s)
- Jarlath E Nally
- Infectious Bacterial Diseases Research, National Animal Disease Center, United States Department of Agriculture, Agricultural Research ServiceAmes, IA, United States
| | - Andre A Grassmann
- Biotechnology Unit, Technological Development Center, Federal University of PelotasPelotas, Brazil.,Departments of Medicine, Pediatrics, and Molecular Biology and Biophysics, University of Connecticut Health CenterFarmington, CT, United States
| | - Sébastien Planchon
- Environmental Research and Innovation Department, Luxembourg Institute of Science and TechnologyBelvaux, Luxembourg
| | - Kjell Sergeant
- Environmental Research and Innovation Department, Luxembourg Institute of Science and TechnologyBelvaux, Luxembourg
| | - Jenny Renaut
- Environmental Research and Innovation Department, Luxembourg Institute of Science and TechnologyBelvaux, Luxembourg
| | - Janakiram Seshu
- Department of Biology, University of Texas San AntoniaSan Antonia, TX, United States
| | - Alan J McBride
- Biotechnology Unit, Technological Development Center, Federal University of PelotasPelotas, Brazil.,Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Ministry of HealthSalvador, Brazil
| | - Melissa J Caimano
- Departments of Medicine, Pediatrics, and Molecular Biology and Biophysics, University of Connecticut Health CenterFarmington, CT, United States
| |
Collapse
|
27
|
Multifunctional and Redundant Roles of Leptospira interrogans Proteins in Bacterial-Adhesion and fibrin clotting inhibition. Int J Med Microbiol 2017; 307:297-310. [PMID: 28600123 DOI: 10.1016/j.ijmm.2017.05.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 05/16/2017] [Accepted: 05/28/2017] [Indexed: 02/01/2023] Open
Abstract
Pathogenic Leptopira is the etiological agent of leptospirosis, the most widespread zoonotic infection in the world. The disease represents a major public health problem, especially in tropical countries. The present work focused on two hypothetical proteins of unknown function, encoded by the genes LIC13059 and LIC10879, and predicted to be surface-exposed proteins. The genes were cloned and the proteins expressed using E. coli as a host system. We report that the recombinant proteins interacted with extracellular matrix (ECM) laminin, in a dose-dependent fashion and are novel potential adhesins. The recombinant proteins were called Lsa25.6 (rLIC13059) and Lsa16 (rLIC10879), for Leptospiral surface adhesins, followed by the respective molecular masses. The proteins attached to plasminogen (PLG), generating plasmin, in the presence of PLG-activator uPA. Both proteins bind to fibrinogen (Fg), but only Lsa25.6 inhibited fibrin clotting by thrombin-catalyzed reaction. Moreover, Lsa16 interacts with the mammalian cell receptor E-cadherin, and could contribute to bacterial attachment to epithelial cells. The proteins were recognized by confirmed leptospirosis serum samples, suggesting that they are expressed during infection. The corresponding leptospiral proteins are surface exposed based on proteinase K accessibility assay, being LIC10879 most probably exposed in its dimer form. The data of this study extend the spectrum of surface-exposed proteins of L. interrogans and indicate a possible role of the originally annotated hypothetical proteins in infection processes.
Collapse
|
28
|
Hsieh CL, Tseng A, He H, Kuo CJ, Wang X, Chang YF. Leptospira Immunoglobulin-Like Protein B Interacts with the 20th Exon of Human Tropoelastin Contributing to Leptospiral Adhesion to Human Lung Cells. Front Cell Infect Microbiol 2017; 7:163. [PMID: 28536676 PMCID: PMC5422739 DOI: 10.3389/fcimb.2017.00163] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 04/18/2017] [Indexed: 01/21/2023] Open
Abstract
Leptospira immunoglobulin-like protein B (LigB), a surface adhesin, is capable of mediating the attachment of pathogenic leptospira to the host through interaction with various components of the extracellular matrix (ECM). Human tropoelastin (HTE), the building block of elastin, confers resilience and elasticity to lung, and other tissues. Previously identified Ig-like domains of LigB, including LigB4 and LigB12, bind to HTE, which is likely to promote Leptospira adhesion to lung tissue. However, the molecular mechanism that mediates the LigB-HTE interaction is unclear. In this study, the LigB-binding site on HTE was further pinpointed to a N-terminal region of the 20th exon of HTE (HTE20N). Alanine mutants of basic and aromatic residues on HTE20N significantly reduced binding to the LigB. Additionally, HTE-binding site was narrowed down to the first β-sheet of LigB12. On this binding surface, residues F1054, D1061, A1065, and D1066 were critical for the association with HTE. Most importantly, the recombinant HTE truncates could diminish the binding of LigB to human lung fibroblasts (WI-38) by 68%, and could block the association of LigA-expressing L. biflexa to lung cells by 61%. These findings should expand our understanding of leptospiral pathogenesis, particularly in pulmonary manifestations of leptospirosis.
Collapse
Affiliation(s)
- Ching-Lin Hsieh
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell UniversityIthaca, NY, USA
| | - Andrew Tseng
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell UniversityIthaca, NY, USA
| | - Hongxuan He
- National Research Center for Wildlife Borne Diseases, Institute of Zoology, Chinese Academy of SciencesBeijing, China
| | - Chih-Jung Kuo
- Department of Veterinary Medicine, National Chung Hsing UniversityTaichung, Taiwan
| | - Xuannian Wang
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell UniversityIthaca, NY, USA.,Research Center for Biotechnology, Xinxiang UniversityXinxiang, China
| | - Yung-Fu Chang
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell UniversityIthaca, NY, USA
| |
Collapse
|
29
|
Cosate MR, Siqueira GH, de Souza GO, Vasconcellos SA, Nascimento ALTO. Mammalian cell entry (Mce) protein of Leptospira interrogans binds extracellular matrix components, plasminogen and β2 integrin. Microbiol Immunol 2017; 60:586-98. [PMID: 27468683 DOI: 10.1111/1348-0421.12406] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 07/12/2016] [Accepted: 07/24/2016] [Indexed: 01/09/2023]
Abstract
A severe re-emergingzoonosis, leptospirosis, is caused by pathogenic spirochetes of the genus Leptospira. Several studies have identified leptospiral surface proteins with the ability to bind ECM and plasma components, which could mediate adhesion and invasion through the hosts. It has been shown that Mce of pathogenic Leptospira spp. is an RGD (Arg-Gly-Asp)-motif-dependent virulence factor, responsible for infection of cells and animals. In the present article, we decided to further study the repertoire of the Mce activities in leptospiral biological properties. We report that the recombinant Mce is a broad-spectrum ECM-binding protein, capable of interacting with laminin, cellular and plasma fibronectin and collagen IV. Dose--r-esponse interaction was observed for all the components, fulfilling ligand--receptor requirements. Mce is a PLG binding protein capable to recruit this component from NHS, generating PLA in the presence of PLG activator. Binding of Mce was also observed with the leukocyte cell receptors αLβ2 [(CD11a/CD18)-LFA-1] and αMβ2 [(CD11b/CD18)-Mac-1], suggesting the involvement of this protein in the host immune response. Indeed, virulent Leptospira L1-130 was capable of binding both integrins, whereas culture-attenuated M-20 strain only bind to αMβ2 [(CD11b/CD18)-Mac-1]. To the best of our knowledge, this is the first work to describe that Mce surface protein could mediate the attachment of Leptospira interrogans to human cell receptors αLβ2(CD11a/CD18) and αMβ2(CD11b/CD18).
Collapse
Affiliation(s)
| | | | - Gisele Oliveira de Souza
- School of Veterinary Medicine and Animal Science, University of Sao Paulo, 05508-270 Sao Paulo, Brazil
| | | | - Ana Lucia T O Nascimento
- Biotechnology Center, Butantan Institute, 05503-900 Sao Paulo, Brazil. .,Post-Graduation Program in Biotechnology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-900, Brazil.
| |
Collapse
|
30
|
Hsieh CL, Chang E, Tseng A, Ptak C, Wu LC, Su CL, McDonough SP, Lin YP, Chang YF. Leptospira Immunoglobulin-Like Protein B (LigB) Binds to Both the C-Terminal 23 Amino Acids of Fibrinogen αC Domain and Factor XIII: Insight into the Mechanism of LigB-Mediated Blockage of Fibrinogen α Chain Cross-Linking. PLoS Negl Trop Dis 2016; 10:e0004974. [PMID: 27622634 PMCID: PMC5021285 DOI: 10.1371/journal.pntd.0004974] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 08/11/2016] [Indexed: 12/20/2022] Open
Abstract
The coagulation system provides a primitive but effective defense against hemorrhage. Soluble fibrinogen (Fg) monomers, composed of α, β and γ chains, are recruited to provide structural support for the formation of a hemostatic plug. Fg binds to platelets and is processed into a cross-linked fibrin polymer by the enzymatic clotting factors, thrombin and Factor XIII (FXIII). The newly formed fibrin-platelet clot can act as barrier to protect against pathogens from entering the bloodstream. Further, injuries caused by bacterial infections can be confined to the initial wound site. Many pathogenic bacteria have Fg-binding adhesins that can circumvent the coagulation pathway and allow the bacteria to sidestep containment. Fg expression is upregulated during lung infection providing an attachment surface for bacteria with the ability to produce Fg-binding adhesins. Fg binding by leptospira might play a crucial factor in Leptospira-associated pulmonary hemorrhage, the main factor contributing to lethality in severe cases of leptospirosis. The 12th domain of Leptospira immunoglobulin-like protein B (LigB12), a leptospiral adhesin, interacts with the C-terminus of FgαC (FgαCC). In this study, the binding site for LigB12 was mapped to the final 23 amino acids at the C-terminal end of FgαCC (FgαCC8). The association of FgαCC8 with LigB12 (ELISA, KD = 0.76 μM; SPR, KD = 0.96 μM) was reduced by mutations of both charged residues (R608, R611 and H614 from FgαCC8; D1061 from LigB12) and hydrophobic residues (I613 from FgαCC8; F1054 and A1065 from LigB12). Additionally, LigB12 bound strongly to FXIII and also inhibited fibrin formation, suggesting that LigB can disrupt coagulation by suppressing FXIII activity. Here, the detailed binding mechanism of a leptospiral adhesin to a host hemostatic factor is characterized for the first time and should provide better insight into the pathogenesis of leptospirosis. Leptospirosis, caused by pathogenic Leptospira spp., has been increasingly recognized as an emerging zoonosis worldwide. In human cases, clinical presentation can vary from a mild flu-like syndrome to severe multi-organ failure including hepatitis, nephritis and occasionally meningitis. Particularly, pulmonary hemorrhage has become one of the major factors leading to fatality. The host coagulation system normally can be activated to confine damage caused by bacteria. However, this spirochete has developed several virulence proteins to manipulate hemostatic factors including fibrinogen (Fg). Previously, we had observed that Leptospira immunoglobulin-like protein B (LigB) can bind to Fg and inhibit fibrin clot formation. In this study, the LigB binding site on fibrinogen was fine-mapped. The key amino acids contributing to this strong pathogen-host interaction were also identified. In addition, LigB bound to factor XIII and further interfered with the cross-linking of Fg. For the first time, a potential mechanism of leptospiral adhesin binding to fibrinogen was revealed, which should provide a better understanding of the pathogenesis of leptospirosis.
Collapse
Affiliation(s)
- Ching-Lin Hsieh
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Eric Chang
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Andrew Tseng
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Christopher Ptak
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Li-Chen Wu
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Chun-Li Su
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Sean P. McDonough
- Department of Biomedical Science, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Yi-Pin Lin
- Division of Infectious Disease, Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
| | - Yung-Fu Chang
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
- * E-mail:
| |
Collapse
|
31
|
Silva LP, Fernandes LGV, Vieira ML, de Souza GO, Heinemann MB, Vasconcellos SA, Romero EC, Nascimento ALTO. Evaluation of two novel leptospiral proteins for their interaction with human host components. Pathog Dis 2016; 74:ftw040. [PMID: 27129366 DOI: 10.1093/femspd/ftw040] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/24/2016] [Indexed: 11/12/2022] Open
Abstract
Pathogenic species of the genus Leptospira are the etiological agents of leptospirosis, the most widespread zoonosis. Mechanisms involved in leptospiral pathogenesis are not well understood. By data mining the genome sequences of Leptospira interrogans we have identified two proteins predicted to be surface exposed, LIC10821 and LIC10064. Immunofluorescence and proteinase K assays confirmed that the proteins are exposed. Reactivity of the recombinant proteins with human sera has shown that rLIC10821, but not rLIC10064, is recognized by antibodies in confirmed leptospirosis serum samples, suggesting its expression during infection. The rLIC10821 was able to bind laminin, in a dose-dependent fashion, and was called Lsa37 (leptospiral surface adhesin of 37 kDa). Studies with human plasma components demonstrated that rLIC10821 interacts with plasminogen (PLG) and fibrinogen (Fg). The binding of Lsa37 with PLG generates plasmin when PLG activator was added. Fibrin clotting reduction was observed in a thrombin-catalyzed reaction, when Fg was incubated with Lsa37, suggesting that this protein may interfere in the coagulation cascade during the disease. Although LIC10064 protein is more abundant than the corresponding Lsa37, binding activity with all the components tested was not detected. Thus, Lsa37 is a novel versatile adhesin that may mediate Leptospira-host interactions.
Collapse
Affiliation(s)
- Lucas P Silva
- Centro de Biotecnologia, Instituto Butantan, Avenida Vital Brazil, 1500, 05503-900, São Paulo, SP, Brazil Programa de Pós-Graduação Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, USP, Avenida Prof. Lineu Prestes, 1730, 05508-900, São Paulo, SP, Brazil
| | - Luis G V Fernandes
- Centro de Biotecnologia, Instituto Butantan, Avenida Vital Brazil, 1500, 05503-900, São Paulo, SP, Brazil Programa de Pós-Graduação Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, USP, Avenida Prof. Lineu Prestes, 1730, 05508-900, São Paulo, SP, Brazil
| | - Monica L Vieira
- Centro de Biotecnologia, Instituto Butantan, Avenida Vital Brazil, 1500, 05503-900, São Paulo, SP, Brazil
| | - Gisele O de Souza
- Laboratório de Zoonoses Bacterianas do VPS, Faculdade de Medicina Veterinária e Zootecnia, USP, Avenida Prof. Dr. Orlando Marques de Paiva, 87, 05508-270, São Paulo, SP, Brazil
| | - Marcos B Heinemann
- Laboratório de Zoonoses Bacterianas do VPS, Faculdade de Medicina Veterinária e Zootecnia, USP, Avenida Prof. Dr. Orlando Marques de Paiva, 87, 05508-270, São Paulo, SP, Brazil
| | - Silvio A Vasconcellos
- Laboratório de Zoonoses Bacterianas do VPS, Faculdade de Medicina Veterinária e Zootecnia, USP, Avenida Prof. Dr. Orlando Marques de Paiva, 87, 05508-270, São Paulo, SP, Brazil
| | - Eliete C Romero
- Centro de Bacteriologia, Instituto Adolfo Lutz, Avenida Dr. Arnaldo, 355, CEP 01246-902, São Paulo, SP, Brazil
| | - Ana L T O Nascimento
- Centro de Biotecnologia, Instituto Butantan, Avenida Vital Brazil, 1500, 05503-900, São Paulo, SP, Brazil Programa de Pós-Graduação Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, USP, Avenida Prof. Lineu Prestes, 1730, 05508-900, São Paulo, SP, Brazil
| |
Collapse
|
32
|
Fernandes LG, Siqueira GH, Teixeira ARF, Silva LP, Figueredo JM, Cosate MR, Vieira ML, Nascimento ALTO. Leptospira spp.: Novel insights into host-pathogen interactions. Vet Immunol Immunopathol 2015; 176:50-7. [PMID: 26727033 DOI: 10.1016/j.vetimm.2015.12.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 12/09/2015] [Accepted: 12/10/2015] [Indexed: 01/30/2023]
Abstract
Leptospirosis is a widespread zoonosis caused by pathogenic Leptospira spp. It is an important infectious disease that affects humans and animals. The disease causes economic losses as it affects livestock, with decreased milk production and death. Our group is investigating the genome sequences of L. interrogans targeting surface-exposed proteins because, due to their location, these proteins are capable to interact with several host components that could allow establishment of the infection. These interactions may involve adhesion of the bacteria to extracellular matrix (ECM) components and, hence, help bacterial colonization. The bacteria could also react with the host fibrinolytic system and/or with the coagulation cascade components, such as, plasminogen (PLG) and fibrinogen (Fg), respectively. The binding with the first system generates plasmin (PLA), increasing the proteolytic power of the bacteria, while the second interferes with clotting in a thrombin-catalyzed reaction, which may promote hemorrhage foci and increase bacterial dissemination. Interaction with the complement system negative regulators may help bacteria to evade the host immune system, facilitating the invasion. This work compiles the main described leptospiral proteins that could act as adhesins, as PLG and fibrinogen receptors and as complement regulator binding proteins. We present models in which we suggest possible mechanisms of how leptospires might colonize and invade host tissues, causing the disease. Understanding leptospiral pathogenesis will help to identify antigen candidates that would contribute to the development of more effective vaccines and diagnostic tests.
Collapse
Affiliation(s)
- Luis G Fernandes
- Centro de Biotecnologia, Instituto Butantan, Avenida Vital Brazil, 1500, 05503-900, São Paulo, SP, Brazil; Programa de Pós Graduação Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, USP, Avenida Prof. Lineu Prestes, 1730, 05508-900, São Paulo, SP, Brazil
| | - Gabriela H Siqueira
- Centro de Biotecnologia, Instituto Butantan, Avenida Vital Brazil, 1500, 05503-900, São Paulo, SP, Brazil; Programa de Pós Graduação Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, USP, Avenida Prof. Lineu Prestes, 1730, 05508-900, São Paulo, SP, Brazil
| | - Aline R F Teixeira
- Centro de Biotecnologia, Instituto Butantan, Avenida Vital Brazil, 1500, 05503-900, São Paulo, SP, Brazil; Programa de Pós Graduação Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, USP, Avenida Prof. Lineu Prestes, 1730, 05508-900, São Paulo, SP, Brazil
| | - Lucas P Silva
- Centro de Biotecnologia, Instituto Butantan, Avenida Vital Brazil, 1500, 05503-900, São Paulo, SP, Brazil; Programa de Pós Graduação Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, USP, Avenida Prof. Lineu Prestes, 1730, 05508-900, São Paulo, SP, Brazil
| | - Jupciana M Figueredo
- Centro de Biotecnologia, Instituto Butantan, Avenida Vital Brazil, 1500, 05503-900, São Paulo, SP, Brazil; Programa de Pós Graduação Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, USP, Avenida Prof. Lineu Prestes, 1730, 05508-900, São Paulo, SP, Brazil
| | - Maria R Cosate
- Centro de Biotecnologia, Instituto Butantan, Avenida Vital Brazil, 1500, 05503-900, São Paulo, SP, Brazil
| | - Monica L Vieira
- Centro de Biotecnologia, Instituto Butantan, Avenida Vital Brazil, 1500, 05503-900, São Paulo, SP, Brazil
| | - Ana L T O Nascimento
- Centro de Biotecnologia, Instituto Butantan, Avenida Vital Brazil, 1500, 05503-900, São Paulo, SP, Brazil; Programa de Pós Graduação Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, USP, Avenida Prof. Lineu Prestes, 1730, 05508-900, São Paulo, SP, Brazil.
| |
Collapse
|
33
|
Oliveira TL, Grassmann AA, Schuch RA, Seixas Neto ACP, Mendonça M, Hartwig DD, McBride AJA, Dellagostin OA. Evaluation of the Leptospira interrogans Outer Membrane Protein OmpL37 as a Vaccine Candidate. PLoS One 2015; 10:e0142821. [PMID: 26588685 PMCID: PMC4654524 DOI: 10.1371/journal.pone.0142821] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 10/27/2015] [Indexed: 12/22/2022] Open
Abstract
The identification of potential vaccine candidates against leptospirosis remains a challenge. However, one such candidate is OmpL37, a potentially surface-exposed antigen that has the highest elastin-binding ability described to date, suggesting that it plays an important role in host colonization. In order to evaluate OmpL37's ability to induce a protective immune response, prime-boost, DNA and subunit vaccine strategies were tested in the hamster model of lethal leptospirosis. The humoral immune response was evaluated using an indirect ELISA test, and the cytokine profile in whole blood was determined by quantitative real-time PCR. Unlike the DNA vaccine, the administration of recombinant OmpL37 induced a strong IgG antibody response. When individually administrated, both formulations stimulated a TNF-α mediated inflammatory response. However, none of the OmpL37 formulations or vaccination strategies induced protective immunity. Further studies are required towards the identification of new vaccine targets against leptospirosis.
Collapse
Affiliation(s)
- Thaís Larré Oliveira
- Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - André Alex Grassmann
- Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Rodrigo Andrade Schuch
- Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Amilton Clair Pinto Seixas Neto
- Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Marcelo Mendonça
- Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Daiane Drawanz Hartwig
- Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
- Departamento de Microbiologia e Parasitologia, Instituto de Biologia, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Alan John Alexander McBride
- Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Odir Antônio Dellagostin
- Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
- * E-mail:
| |
Collapse
|
34
|
Teixeira AF, de Morais ZM, Kirchgatter K, Romero EC, Vasconcellos SA, Nascimento ALTO. Features of two new proteins with OmpA-like domains identified in the genome sequences of Leptospira interrogans. PLoS One 2015; 10:e0122762. [PMID: 25849456 PMCID: PMC4388678 DOI: 10.1371/journal.pone.0122762] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 02/13/2015] [Indexed: 12/12/2022] Open
Abstract
Leptospirosis is an acute febrile disease caused by pathogenic spirochetes of the genus Leptospira. It is considered an important re-emerging infectious disease that affects humans worldwide. The knowledge about the mechanisms by which pathogenic leptospires invade and colonize the host remains limited since very few virulence factors contributing to the pathogenesis of the disease have been identified. Here, we report the identification and characterization of two new leptospiral proteins with OmpA-like domains. The recombinant proteins, which exhibit extracellular matrix-binding properties, are called Lsa46 - LIC13479 and Lsa77 - LIC10050 (Leptospiral surface adhesins of 46 and 77 kDa, respectively). Attachment of Lsa46 and Lsa77 to laminin was specific, dose dependent and saturable, with KD values of 24.3 ± 17.0 and 53.0 ± 17.5 nM, respectively. Lsa46 and Lsa77 also bind plasma fibronectin, and both adhesins are plasminogen (PLG)-interacting proteins, capable of generating plasmin (PLA) and as such, increase the proteolytic ability of leptospires. The proteins corresponding to Lsa46 and Lsa77 are present in virulent L. interrogans L1-130 and in saprophyte L. biflexa Patoc 1 strains, as detected by immunofluorescence. The adhesins are recognized by human leptospirosis serum samples at the onset and convalescent phases of the disease, suggesting that they are expressed during infection. Taken together, our data could offer valuable information to the understanding of leptospiral pathogenesis.
Collapse
Affiliation(s)
- Aline F. Teixeira
- Centro de Biotecnologia, Instituto Butantan, Sao Paulo, SP, Brazil
- Programa de Pós-Graduação Interunidades em Biotecnologia,Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Zenaide M. de Morais
- Laboratório de Zoonoses Bacterianas, Faculdade de Medicina Veterinária e Zootecnia, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Karin Kirchgatter
- Nucleo de Estudos em Malária, Superintendência de Controle de Endemias - Instituto de Medicina Tropical, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Eliete C. Romero
- Centro de Bacteriologia, Instituto Adolfo Lutz, Sao Paulo, Brazil
| | - Silvio A. Vasconcellos
- Laboratório de Zoonoses Bacterianas, Faculdade de Medicina Veterinária e Zootecnia, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Ana Lucia T. O. Nascimento
- Centro de Biotecnologia, Instituto Butantan, Sao Paulo, SP, Brazil
- Programa de Pós-Graduação Interunidades em Biotecnologia,Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
- * E-mail:
| |
Collapse
|
35
|
Abstract
The mechanisms of disease pathogenesis in leptospirosis are poorly defined. Recent developments in the application of genetic tools in the study of Leptospira have advanced our understanding by allowing the assessment of mutants in animal models. As a result, a small number of essential virulence factors have been identified, though most do not have a clearly defined function. Significant advances have also been made in the in vitro characterization of leptospiral interaction with host structures, including extracellular matrix proteins (such as laminin, elastin, fibronectin, collagens), proteins related to hemostasis (fibrinogen, plasmin), and soluble mediators of complement resistance (factor H, C4b-binding protein), although none of these in vitro findings has been translated to the host animal. Binding to host structures may permit colonization of the host, prevention of blood clotting may contribute to hemorrhage, while interaction with complement resistance mediators may contribute to survival in serum. While not a classical intracellular pathogen, the interaction of leptospires and phagocytic cells appears complex, with bacteria surviving uptake and promoting apoptosis; mutants relating to these processes (such as cell invasion and oxidative stress resistance) are attenuated in vivo. Another feature of leptospiral biology is the high degree of functional redundancy and the surprising lack of attenuation of mutants in what appear to be certain virulence factors, such as LipL32 and LigB. While many advances have been made, there remains a lack of understanding of how Leptospira causes tissue pathology. It is likely that leptospires have many novel pathogenesis mechanisms that are yet to be identified.
Collapse
|
36
|
Oliveira T, Grassmann A, Schuch R, Pereira M, Hartwig D, McBride A, Dellagostin O. Cytokine expression profile in hamsters immunized with OmpL37 from Leptospirainterrogans in different vaccine formulations. BMC Proc 2014. [PMCID: PMC4211092 DOI: 10.1186/1753-6561-8-s4-p164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
37
|
Pathogenesis of leptospirosis: Cellular and molecular aspects. Vet Microbiol 2014; 172:353-8. [DOI: 10.1016/j.vetmic.2014.06.015] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 06/09/2014] [Accepted: 06/14/2014] [Indexed: 11/23/2022]
|
38
|
Oliveira R, Domingos RF, de Morais ZM, Vasconcellos SA, Alves IJ, Romero EC, Nascimento ALTO. Intermediate and C-terminal regions of leptospiral adhesin Lsa66 are responsible for binding with plasminogen and extracellular matrix components. J Med Microbiol 2014; 63:1119-1130. [PMID: 24928214 DOI: 10.1099/jmm.0.078378-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Leptospirosis, a worldwide zoonotic infection, is an important human and veterinary health problem. We have previously identified a leptospiral multipurpose adhesin, Lsa66, capable of binding extracellular matrix (ECM) components and plasminogen (PLG). In this work, we report the cloning, expression, purification and characterization of three fragments derived from the full-length Lsa66: N-terminal, intermediate and C-terminal regions. We employed Escherichia coli BL21-SI as expression cells. The recombinant fragments tagged with N-terminal His6 were purified by metal-charged chromatography to major protein bands that were recognized by anti-His-tag mAbs. The recombinant fragments were evaluated for their capacity to attach to ECM components and to PLG. The intermediate region bound to laminin, plasma fibronectin and PLG. Laminin also bound to the C-terminal region. Antibodies in leptospirosis-positive serum samples recognized Lsa66, being the immune epitopes located at the N-terminal and intermediate fragments. The data confirm that Lsa66 is expressed during infection and that this protein might have a role in bacterial infection.
Collapse
Affiliation(s)
- Rosane Oliveira
- Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, USP, Avenida Prof. Lineu Prestes, 1730, 05508-900 São Paulo, SP, Brazil.,Centro de Biotecnologia, Instituto Butantan, Avenida Vital Brazil, 1500, 05503-900 São Paulo, SP, Brazil
| | - Renan F Domingos
- Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, USP, Avenida Prof. Lineu Prestes, 1730, 05508-900 São Paulo, SP, Brazil.,Centro de Biotecnologia, Instituto Butantan, Avenida Vital Brazil, 1500, 05503-900 São Paulo, SP, Brazil
| | - Zenaide M de Morais
- Laboratório de Zoonoses Bacterianas do VPS, Faculdade de Medicina Veterinária e Zootecnia, USP, Avenida Prof. Dr Orlando Marques de Paiva, 87, 05508-270 São Paulo, SP, Brazil
| | - Silvio A Vasconcellos
- Laboratório de Zoonoses Bacterianas do VPS, Faculdade de Medicina Veterinária e Zootecnia, USP, Avenida Prof. Dr Orlando Marques de Paiva, 87, 05508-270 São Paulo, SP, Brazil
| | - Ivy J Alves
- Instituto Adolfo Lutz, Laboratório Regional de Santos, Núcleo de Ciências Biomédicas, Rua Silva Jardim, 90, 11015-020, Santos, SP, Brazil
| | - Eliete C Romero
- Centro de Bacteriologia, Instituto Adolfo Lutz, Av. Dr Arnaldo, 355, 01246-902 São Paulo, SP, Brazil
| | - Ana L T O Nascimento
- Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, USP, Avenida Prof. Lineu Prestes, 1730, 05508-900 São Paulo, SP, Brazil.,Centro de Biotecnologia, Instituto Butantan, Avenida Vital Brazil, 1500, 05503-900 São Paulo, SP, Brazil
| |
Collapse
|
39
|
Seidman D, Ojogun N, Walker NJ, Mastronunzio J, Kahlon A, Hebert KS, Karandashova S, Miller DP, Tegels BK, Marconi RT, Fikrig E, Borjesson DL, Carlyon JA. Anaplasma phagocytophilum surface protein AipA mediates invasion of mammalian host cells. Cell Microbiol 2014; 16:1133-45. [PMID: 24612118 DOI: 10.1111/cmi.12286] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 02/18/2014] [Accepted: 02/20/2014] [Indexed: 01/11/2023]
Abstract
Anaplasma phagocytophilum, which causes granulocytic anaplasmosis in humans and animals, is a tick-transmitted obligate intracellular bacterium that mediates its own uptake into neutrophils and non-phagocytic cells. Invasins of obligate intracellular pathogens are attractive targets for protecting against or curing infection because blocking the internalization step prevents survival of these organisms. The complement of A. phagocytophilum invasins is incompletely defined. Here, we report the significance of a novel A. phagocytophilum invasion protein, AipA. A. phagocytophilum induced aipA expression during transmission feeding of infected ticks on mice. The bacterium upregulated aipA transcription when it transitioned from its non-infectious reticulate cell morphotype to its infectious dense-cored morphotype during infection of HL-60 cells. AipA localized to the bacterial surface and was expressed during in vivo infection. Of the AipA regions predicted to be surface-exposed, only residues 1 to 87 (AipA1-87 ) were found to be essential for host cell invasion. Recombinant AipA1-87 protein bound to and competitively inhibited A. phagocytophilum infection of mammalian cells. Antiserum specific for AipA1-87 , but not other AipA regions, antagonized infection. Additional blocking experiments using peptide-specific antisera narrowed down the AipA invasion domain to residues 9 to 21. An antisera combination targeting AipA1-87 together with two other A. phagocytophilum invasins, OmpA and Asp14, nearly abolished infection of host cells. This study identifies AipA as an A. phagocytophilum surface protein that is critical for infection, demarcates its invasion domain, and establishes a rationale for targeting multiple invasins to protect against granulocytic anaplasmosis.
Collapse
Affiliation(s)
- David Seidman
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Fernandes LGV, Vieira ML, Alves IJ, de Morais ZM, Vasconcellos SA, Romero EC, Nascimento ALTO. Functional and immunological evaluation of two novel proteins of Leptospira spp. Microbiology (Reading) 2014; 160:149-164. [DOI: 10.1099/mic.0.072074-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
This work shows the production and characterization of two novel putative lipoproteins encoded by the genes LIC10645 and LIC10731 identified in the genome sequences of Leptospira
interrogans. In silico conservation analysis indicated that the proteins are well conserved among pathogenic leptospiral serovars and species. Recombinant proteins were obtained in Escherichia coli BL21(DE3) Star pLysS strain, purified by metal-affinity chromatography, and used for characterization and immunological evaluations. Recombinant proteins were capable of eliciting a combination of humoral and cellular immune responses in animal models, and could be recognized by antibodies present in human serum samples. The recombinant proteins Lsa44 and Lsa45 were able to bind laminin, and were named Lsa44 and Lsa45 for leptospiral surface adhesins of 44 and 45 kDa, respectively. The attachment to laminin was dose-responsive with K
D values of 108.21 and 250.38 nM for Lsa44 and Lsa45, respectively. Moreover, these proteins interact with plasminogen (PLG) with K
D values of 53.56 and 36.80 nM, respectively. PLG bound to the recombinant proteins could be converted to plasmin (PLA) in the presence of an activator. Cellular localization assays suggested that the Lsa44 and Lsa45 were surface-exposed. These are versatile proteins capable of interacting with laminin and PLG/PLA, and hence could mediate bacterial adhesion and contribute to tissue penetration.
Collapse
Affiliation(s)
- Luis G. V. Fernandes
- Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
- Centro de Biotecnologia, Instituto Butantan, Avenida Vital Brazil 1500, 05503-900 São Paulo, SP, Brazil
| | - Monica L. Vieira
- Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
- Centro de Biotecnologia, Instituto Butantan, Avenida Vital Brazil 1500, 05503-900 São Paulo, SP, Brazil
| | - Ivy J. Alves
- Centro de Biotecnologia, Instituto Butantan, Avenida Vital Brazil 1500, 05503-900 São Paulo, SP, Brazil
| | - Zenaide M. de Morais
- Laboratório de Zoonoses Bacterianas do VPS, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, Brazil
| | - Silvio A. Vasconcellos
- Laboratório de Zoonoses Bacterianas do VPS, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, Brazil
| | - Eliete C. Romero
- Divisão de Biologia Medica, Instituto Adolfo Lutz, São Paulo, Brazil
| | - Ana L. T. O. Nascimento
- Centro de Biotecnologia, Instituto Butantan, Avenida Vital Brazil 1500, 05503-900 São Paulo, SP, Brazil
| |
Collapse
|
41
|
Vieira ML, Fernandes LG, Domingos RF, Oliveira R, Siqueira GH, Souza NM, Teixeira ARF, Atzingen MV, Nascimento ALTO. Leptospiral extracellular matrix adhesins as mediators of pathogen-host interactions. FEMS Microbiol Lett 2013; 352:129-39. [PMID: 24289724 DOI: 10.1111/1574-6968.12349] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 11/19/2013] [Accepted: 11/26/2013] [Indexed: 01/21/2023] Open
Abstract
Leptospirosis is been considered an important infectious disease that affects humans and animals worldwide. This review summarizes our current knowledge of bacterial attachment to extracellular matrix (ECM) components and discusses the possible role of these interactions for leptospiral pathogenesis. Leptospiral proteins show different binding specificity for ECM molecules: some are exclusive laminin-binding proteins (Lsa24/LfhA/LenA, Lsa27), while others have broader spectrum binding profiles (LigB, Lsa21, LipL53). These proteins may play a primary role in the colonization of host tissues. Moreover, there are multifunctional proteins that exhibit binding activities toward a number of target proteins including plasminogen/plasmin and regulators of the complement system, and as such, might also act in bacterial dissemination and immune evasion processes. Many ECM-interacting proteins are recognized by human leptospirosis serum samples indicating their expression during infection. This compilation of data should enhance our understanding of the molecular mechanisms of leptospiral pathogenesis.
Collapse
Affiliation(s)
- Monica L Vieira
- Centro de Biotecnologia, Instituto Butantan, São Paulo, SP, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Oliveira R, Domingos RF, Siqueira GH, Fernandes LG, Souza NM, Vieira ML, de Morais ZM, Vasconcellos SA, Nascimento ALTO. Adhesins of Leptospira interrogans mediate the interaction to fibrinogen and inhibit fibrin clot formation in vitro. PLoS Negl Trop Dis 2013; 7:e2396. [PMID: 24009788 PMCID: PMC3757074 DOI: 10.1371/journal.pntd.0002396] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 07/19/2013] [Indexed: 12/31/2022] Open
Abstract
We report in this work that Leptospira strains, virulent L. interrogans serovar Copenhageni, attenuated L. interrogans serovar Copenhageni and saprophytic L. biflexa serovar Patoc are capable of binding fibrinogen (Fg). The interaction of leptospires with Fg inhibits thrombin- induced fibrin clot formation that may affect the haemostatic equilibrium. Additionally, we show that plasminogen (PLG)/plasmin (PLA) generation on the surface of Leptospira causes degradation of human Fg. The data suggest that PLA-coated leptospires were capable to employ their proteolytic activity to decrease one substrate of the coagulation cascade. We also present six leptospiral adhesins and PLG- interacting proteins, rLIC12238, Lsa33, Lsa30, OmpL1, rLIC11360 and rLIC11975, as novel Fg-binding proteins. The recombinant proteins interact with Fg in a dose-dependent and saturable fashion when increasing protein concentration was set to react to a fix human Fg concentration. The calculated dissociation equilibrium constants (KD) of these reactions ranged from 733.3±276.8 to 128±89.9 nM for rLIC12238 and Lsa33, respectively. The interaction of recombinant proteins with human Fg resulted in inhibition of fibrin clot by thrombin-catalyzed reaction, suggesting that these versatile proteins could mediate Fg interaction in Leptospira. Our data reveal for the first time the inhibition of fibrin clot by Leptospira spp. and presents adhesins that could mediate these interactions. Decreasing fibrin clot would cause an imbalance of the coagulation cascade that may facilitate bleeding and help bacteria dissemination Leptospirosis is probably the most widespread zoonosis in the world. Caused by spirochaetes of the genus Leptospira, it has greater incidence in tropical and subtropical regions. The disease has become prevalent in cities with sanitation problems and a large population of urban rodent reservoirs, which contaminate the environment through their urine. Understanding the mechanisms involved in pathogenesis of leptospirosis should contribute to new strategies that would help fight the disease. We show in this work that Leptospira strains, virulent, attenuated or saprophytic are capable of binding fibrinogen (Fg). The interaction of leptospires with Fg inhibits the formation of fibrin clot that may result of an imbalance in the haemostatic equilibrium. In addition, we show that plasminogen (PLG)/plasmin (PLA) generation on the surface of leptospires can lead to Fg degradation, showing evidence of possible route of fibrinolysis in leptospirosis. We also present six leptospiral proteins, as novel Fg-binding proteins, capable of inhibiting fibrin clot formation by thrombin-catalyzed reaction, suggesting that in Leptospira these multifunctional proteins could mediate Fg interaction. Our data suggest possible mechanisms that leptospires could employ to affect the coagulation cascade and fibrinolytic system that might lead to bacteria spreading.
Collapse
Affiliation(s)
- Rosane Oliveira
- Centro de Biotecnologia, Instituto Butantan, São Paulo, São Paulo, Brazil
- Programa Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Renan F. Domingos
- Centro de Biotecnologia, Instituto Butantan, São Paulo, São Paulo, Brazil
- Programa Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Gabriela H. Siqueira
- Centro de Biotecnologia, Instituto Butantan, São Paulo, São Paulo, Brazil
- Programa Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Luis G. Fernandes
- Centro de Biotecnologia, Instituto Butantan, São Paulo, São Paulo, Brazil
- Programa Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Natalie M. Souza
- Centro de Biotecnologia, Instituto Butantan, São Paulo, São Paulo, Brazil
- Programa Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Monica L. Vieira
- Centro de Biotecnologia, Instituto Butantan, São Paulo, São Paulo, Brazil
| | - Zenaide M. de Morais
- Laboratorio de Zoonoses Bacterianas do VPS, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, Brazil
| | - Silvio A. Vasconcellos
- Laboratorio de Zoonoses Bacterianas do VPS, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, Brazil
| | - Ana L. T. O. Nascimento
- Centro de Biotecnologia, Instituto Butantan, São Paulo, São Paulo, Brazil
- Programa Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
- * E-mail: .
| |
Collapse
|
43
|
Siqueira GH, Atzingen MV, Alves IJ, de Morais ZM, Vasconcellos SA, Nascimento ALTO. Characterization of three novel adhesins of Leptospira interrogans. Am J Trop Med Hyg 2013; 89:1103-16. [PMID: 23958908 DOI: 10.4269/ajtmh.13-0205] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
We report cloning, expression, purification, and characterization of three predicted leptospiral membrane proteins (LIC11360, LIC11009, and LIC11975). In silico analysis and proteinase K accessibility data suggest that these proteins might be surface exposed. We show that proteins encoded by LIC11360, LIC11009 and LIC11975 genes interact with laminin in a dose-dependent and saturable manner. The proteins are referred to as leptospiral surface adhesions 23, 26, and 36 (Lsa23, Lsa26, and Lsa36), respectively. These proteins also bind plasminogen and generate active plasmin. Attachment of Lsa23 and Lsa36 to fibronectin occurs through the involvement of the 30-kDa and 70-kDa heparin-binding domains of the ligand. Dose-dependent, specific-binding of Lsa23 to the complement regulator C4BP and to a lesser extent, to factor H, suggests that this protein may interfere with the complement cascade pathways. Leptospira spp. may use these interactions as possible mechanisms during the establishment of infection.
Collapse
Affiliation(s)
- Gabriela H Siqueira
- Centro de Biotecnologia, Instituto Butantan, São Paulo, Brazil; Programa de Pós-Graduação Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, e Laboratório de Zoonoses Bacterianas do Veterinária Preventiva e Saúde Animal, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
44
|
Zeng L, Zhang Y, Zhu Y, Yin H, Zhuang X, Zhu W, Guo X, Qin J. Extracellular proteome analysis of Leptospira interrogans serovar Lai. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2013; 17:527-35. [PMID: 23895271 DOI: 10.1089/omi.2013.0043] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Abstract Leptospirosis is one of the most important zoonoses. Leptospira interrogans serovar Lai is a pathogenic spirochete that is responsible for leptospirosis. Extracellular proteins play an important role in the pathogenicity of this bacterium. In this study, L. interrogans serovar Lai was grown in protein-free medium; the supernatant was collected and subsequently analyzed as the extracellular proteome. A total of 66 proteins with more than two unique peptides were detected by MS/MS, and 33 of these were predicted to be extracellular proteins by a combination of bioinformatics analyses, including Psortb, cello, SoSuiGramN and SignalP. Comparisons of the transcriptional levels of these 33 genes between in vivo and in vitro conditions revealed that 15 genes were upregulated and two genes were downregulated in vivo compared to in vitro. A BLAST search for the components of secretion system at the genomic and proteomic levels revealed the presence of the complete type I secretion system and type II secretion system in this strain. Moreover, this strain also exhibits complete Sec translocase and Tat translocase systems. The extracellular proteome analysis of L. interrogans will supplement the previously generated whole proteome data and provide more information for studying the functions of specific proteins in the infection process and for selecting candidate molecules for vaccines or diagnostic tools for leptospirosis.
Collapse
Affiliation(s)
- Lingbing Zeng
- 1 Department of Medical Microbiology and Parasitology, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine , Shanghai, China
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Raja V, Natarajaseenivasan K. Pathogenic, diagnostic and vaccine potential of leptospiral outer membrane proteins (OMPs). Crit Rev Microbiol 2013; 41:1-17. [PMID: 23688248 DOI: 10.3109/1040841x.2013.787387] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Pathogenic Leptospira species are important human and animal pathogen that causes leptospirosis, with more than half a million cases reported annually but little is known regarding the true incidence of leptospirosis due to the limitations in diagnosis. Proteins embedded in the outer membrane are found to be prime drug targets due to its key role as receptors for cellular communication and gatekeepers for iron and substrate transport across cell membranes. The major key issues to be addressed to overcome the disease burden of leptospirosis are: need to identify the genes that turn on in vivo; development of rapid diagnostic methods to facilitate the early diagnosis and to develop a universal vaccine. Recent whole genome sequencing of Leptospira species and development of in silico analysis tools have led to the identification of a large number of leptospiral virulence genes, metabolic pathways and surface protein secretion systems that represent potential new targets for the development of anti-leptospiral drug, vaccine and diagnostic strategies. This review surveys the different types of outer membrane proteins (OMPs) of Leptospira and combines all the novel features of OMPs reported till date and put forth some views for future research.
Collapse
Affiliation(s)
- Veerapandian Raja
- Medical Microbiology Laboratory, Department of Microbiology, Bharathidasan University , Tiruchirappalli , India
| | | |
Collapse
|
46
|
Ching ATC, Fávaro RD, Lima SS, Chaves ADAM, de Lima MA, Nader HB, Abreu PAE, Ho PL. Leptospira interrogans shotgun phage display identified LigB as a heparin-binding protein. Biochem Biophys Res Commun 2012; 427:774-9. [PMID: 23044419 DOI: 10.1016/j.bbrc.2012.09.137] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Accepted: 09/28/2012] [Indexed: 10/27/2022]
Abstract
LigB is an adhesin from pathogenic Leptospira that is able to bind to extracellular matrix and is considered a virulence factor. A shotgun phage display genomic library was constructed and used for panning against Heparan Sulfate Proteoglycan (HSPG). A phage clone encoding part of LigB protein was selected in panning experiments and showed specific binding to heparin. To validate the selected clone, fragments of LigB were produced as recombinant proteins and showed affinity to heparin and to mammalian cells. Heparin was also able to reduce the binding of rLB-Ct to mammalian cells. Our data suggests that the glycosaminoglycan moiety of the HSPG is responsible for its binding and could mediate the attachment of the recombinant protein rLB-Ct. Thus, heparin may act as a receptor for Leptospira to colonize and to invade the host tissue.
Collapse
Affiliation(s)
- Ana Tung Ching Ching
- Centro de Biotecnologia, Instituto Butantan, CEP 05503-900 São Paulo, SP, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Chou LF, Chen YT, Lu CW, Ko YC, Tang CY, Pan MJ, Tian YC, Chiu CH, Hung CC, Yang CW. Sequence of Leptospira santarosai serovar Shermani genome and prediction of virulence-associated genes. Gene 2012; 511:364-70. [PMID: 23041083 DOI: 10.1016/j.gene.2012.09.074] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2012] [Revised: 09/10/2012] [Accepted: 09/12/2012] [Indexed: 01/19/2023]
Abstract
Leptospirosis, a widespread zoonosis, is a re-emerging infectious disease caused by pathogenic Leptospira species. In Taiwan, Leptospira santarosai serovar Shermani is the most frequently isolated serovar, causing both renal and systemic infections. This study aimed to generate a L. santarosai serovar Shermani genome sequence and categorize its hypothetical genes, particularly those associated with virulence. The genome sequence consists of 3,936,333 nucleotides and 4033 predicted genes. Additionally, 2244 coding sequences could be placed into clusters of orthologous groups and the number of genes involving cell wall/membrane/envelope biogenesis and defense mechanisms was higher than that of other Leptospira spp. Comparative genetic analysis based on BLASTX data revealed that about 73% and 68.8% of all coding sequences have matches to pathogenic L. interrogans and L. borgpetersenii, respectively, and about 57.6% to saprophyte L. biflexa. Among the hypothetical proteins, 421 have a transmembrane region, 172 have a signal peptide and 17 possess a lipoprotein signature. According to PFAM prediction, 32 hypothetical proteins have properties of toxins and surface proteins mediated bacterial attachment, suggesting they may have roles associated with virulence. The availability of the genome sequence of L. santarosai serovar Shermani and the bioinformatics re-annotation of leptospiral hypothetical proteins will facilitate further functional genomic studies to elucidate the pathogenesis of leptospirosis and develop leptospiral vaccines.
Collapse
Affiliation(s)
- Li-Fang Chou
- Kidney Research Center, Chang Gung Memorial Hospital, Linkou, and College of Medicine, Chang Gung University, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Leptospiral outer membrane protein microarray, a novel approach to identification of host ligand-binding proteins. J Bacteriol 2012; 194:6074-87. [PMID: 22961849 DOI: 10.1128/jb.01119-12] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Leptospirosis is a zoonosis with worldwide distribution caused by pathogenic spirochetes belonging to the genus Leptospira. The leptospiral life cycle involves transmission via freshwater and colonization of the renal tubules of their reservoir hosts. Infection requires adherence to cell surfaces and extracellular matrix components of host tissues. These host-pathogen interactions involve outer membrane proteins (OMPs) expressed on the bacterial surface. In this study, we developed an Leptospira interrogans serovar Copenhageni strain Fiocruz L1-130 OMP microarray containing all predicted lipoproteins and transmembrane OMPs. A total of 401 leptospiral genes or their fragments were transcribed and translated in vitro and printed on nitrocellulose-coated glass slides. We investigated the potential of this protein microarray to screen for interactions between leptospiral OMPs and fibronectin (Fn). This approach resulted in the identification of the recently described fibronectin-binding protein, LIC10258 (MFn8, Lsa66), and 14 novel Fn-binding proteins, denoted Microarray Fn-binding proteins (MFns). We confirmed Fn binding of purified recombinant LIC11612 (MFn1), LIC10714 (MFn2), LIC11051 (MFn6), LIC11436 (MFn7), LIC10258 (MFn8, Lsa66), and LIC10537 (MFn9) by far-Western blot assays. Moreover, we obtained specific antibodies to MFn1, MFn7, MFn8 (Lsa66), and MFn9 and demonstrated that MFn1, MFn7, and MFn9 are expressed and surface exposed under in vitro growth conditions. Further, we demonstrated that MFn1, MFn4 (LIC12631, Sph2), and MFn7 enable leptospires to bind fibronectin when expressed in the saprophyte, Leptospira biflexa. Protein microarrays are valuable tools for high-throughput identification of novel host ligand-binding proteins that have the potential to play key roles in the virulence mechanisms of pathogens.
Collapse
|
49
|
Chagnot C, Listrat A, Astruc T, Desvaux M. Bacterial adhesion to animal tissues: protein determinants for recognition of extracellular matrix components. Cell Microbiol 2012; 14:1687-96. [PMID: 22882798 DOI: 10.1111/cmi.12002] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 07/25/2012] [Accepted: 07/26/2012] [Indexed: 12/13/2022]
Abstract
The extracellular matrix (ECM) is present within all animal tissues and organs. Actually, it surrounds the eukaryotic cells composing the four basic tissue types, i.e. epithelial, muscle, nerve and connective. ECM does not solely refer to connective tissue but composes all tissues where its composition, structure and organization vary from one tissue to another. Constituted of the four main fibrous proteins, i.e. collagen, fibronectin, laminin and elastin, ECM components form a highly structured and functional network via specific interactions. From the basement membrane to interstitial matrix, further heterogeneity exists in the organization of the ECM in various tissues and organs also depending on their physiological state. Back to a molecular level, bacterial proteins represent the most significant part of the microbial surface components recognizing adhesive matrix molecules (MSCRAMM). These cell surface proteins are secreted and localized differently in monoderm and diderm-LPS bacteria. While one collagen-binding domain (CBD) and different fibronectin-binding domains (FBD1 to 8) have been registered in databases, much remains to be learned on specific binding to other ECM proteins via single or supramolecular protein structures. Besides theinteraction of bacterial proteins with individual ECM components, this review aims at stressing the importance of fully considering the ECM at supramolecular, cellular, tissue and organ levels. This conceptual view should not be overlooked to rigorously comprehend the physiology of bacterial interaction from commensal to pathogenic species.
Collapse
|
50
|
Lsa30, a novel adhesin of Leptospira interrogans binds human plasminogen and the complement regulator C4bp. Microb Pathog 2012; 53:125-34. [DOI: 10.1016/j.micpath.2012.06.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 06/13/2012] [Accepted: 06/14/2012] [Indexed: 11/23/2022]
|