1
|
Siamalube B, Ehinmitan E. Vibrio cholerae: Understanding a persistent pathogen in Sub-Saharan Africa and the East Mediterranean Region. Pathog Dis 2025; 83:ftaf004. [PMID: 40145130 PMCID: PMC11999019 DOI: 10.1093/femspd/ftaf004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 03/18/2025] [Accepted: 03/25/2025] [Indexed: 03/28/2025] Open
Abstract
Vibrio cholerae remains a significant public health threat in Sub-Saharan Africa and the East Mediterranean Region, where recurrent outbreaks are driven by inadequate water, sanitation, and hygiene infrastructure, climatic variability, and socio-political instability. This review explores the persistence of the pathogen in these regions, examining its epidemiology, environmental reservoirs, and genomic adaptations that enhance its survival and transmission. We highlight the impact of antimicrobial resistance and the role of climate change in cholera dynamics. Furthermore, we discuss current prevention and control strategies, including advancements in oral cholera vaccines, genomic surveillance, and microbiome-targeted interventions. Addressing these challenges requires a multifaceted approach that integrates sustainable sanitation improvements, strengthened disease surveillance, and innovative vaccination strategies. Understanding the persistence of V. cholerae in these high-risk regions is critical for developing effective, long-term mitigation strategies to reduce cholera morbidity and mortality.
Collapse
Affiliation(s)
- Beenzu Siamalube
- Department of Molecular Biology and Biotechnology, Pan African University Institute for Basic Sciences, Technology and Innovation, P.O. Box 62000-00200, Nairobi, Kenya
| | - Emmanuel Ehinmitan
- Department of Molecular Biology and Biotechnology, Pan African University Institute for Basic Sciences, Technology and Innovation, P.O. Box 62000-00200, Nairobi, Kenya
| |
Collapse
|
2
|
Morgado S, Adewale A, Abiodun I, Lawal S, Freitas F, Fonseca É, Vicente AC. Environmental Vibrio cholerae Strains Harboring Cholera Toxin and Vibrio Pathogenicity Island 1, Nigeria, 2008-2015. Emerg Infect Dis 2024; 30:2441-2444. [PMID: 39447207 PMCID: PMC11521170 DOI: 10.3201/eid3011.240495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024] Open
Abstract
Analysis of clinical and environmental Vibrio cholerae O1 strains obtained during 2008-2015 in Nigeria showed that lineages Afr9 and Afr12 carrying cholera toxin and Vibrio pathogenicity island 1 can be isolated from water. Our findings raise concerns about the role of the environment in maintenance and emergence of cholera outbreaks in Nigeria.
Collapse
|
3
|
Mike-Ogburia MI, Eze CC, Okoli MO, Ekada I, Uhegbu CU, Ugwu C, Ogbakiri PA, Alozie FC, Ideozu NO, Amesi AW, Ifeanyi MA. Cholera in Nigeria: A review of outbreaks, trends, contributing factors, and public health responses. Niger Med J 2024; 65:824-843. [PMID: 39877509 PMCID: PMC11770646 DOI: 10.60787/nmj.v65i6.584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025] Open
Abstract
Cholera remains a significant public health challenge in Nigeria, with recurrent outbreaks exacerbated by inadequate water, sanitation, and hygiene (WASH) infrastructure, as well as conflict and displacement. This review examines cholera outbreaks in Nigeria from 2010 to 2024, analyzing epidemiological trends, contributing factors, and public health responses. Seasonal peaks during periods of heavy rainfall and flooding have consistently facilitated Vibrio cholerae transmission, with Northern regions disproportionately affected due to poor infrastructure and ongoing conflicts. Displacement into overcrowded camps has heightened vulnerability, particularly in conflict-affected areas such as Borno and Adamawa. The outbreaks have exhibited multiple epidemic waves within single periods, reflecting persistent transmission dynamics. Recent outbreaks have seen higher incidence rates among children under the age of five and vulnerable populations, highlighting the need for targeted interventions. Public health responses have focused on improving surveillance, case management, and WASH infrastructure, with coordinated efforts from national and international agencies. Vaccination campaigns, particularly in high-risk areas, have proven effective in controlling outbreaks. However, challenges remain, including inadequate healthcare capacity, vaccine stockouts, and the emergence of antimicrobial-resistant Vibrio cholerae strains (serogroup O1) resistant to antibiotics such as tetracycline, doxycycline, ampicillin, and trimethoprim-sulfamethoxazole, complicating treatment efforts. The COVID-19 pandemic further strained Nigeria's healthcare system, underscoring the need for an integrated health system to be strengthened to manage concurrent public health crises. This review emphasizes the importance of a multi-sectoral approach to cholera prevention and control, addressing underlying social determinants and ensuring sustained investments in public health infrastructure to mitigate future outbreaks.
Collapse
Affiliation(s)
- Moore Ikechi Mike-Ogburia
- Department of Medical Microbiology, Rivers State University, Port Harcourt, Nigeria
- School of Public Health, University of Port Harcourt, Nigeria
| | - Chinemerem Cynthia Eze
- Department of Haematology and Blood Transfusion Science, Rivers State University, Port Harcourt, Nigeria
| | | | - Inimuvie Ekada
- Department of Clinical Pharmacy and Public Health, Afe-Babalola University, Ado-Ekiti, Ekiti State, Nigeria
| | | | - Chioma Ugwu
- Department of Medical Laboratory, Cedarcrest Hospitals, Abuja, Nigeria
| | | | | | - Nancy Obutor Ideozu
- Department of Medical Microbiology, Rivers State University, Port Harcourt, Nigeria
| | | | - Margaret Afor Ifeanyi
- Department of Medical Laboratory Services, Federal Medical Center, Yenagoa, Bayelsa State, Nigeria
| |
Collapse
|
4
|
Egyir B, Bortey A, Duedu KO, Boateng G, Bekoe FA, Hedidor G, Adjabeng M, Dayie NT, Obeng-Nkrumah N, Opintan JA. Implementation of antimicrobial resistance surveillance in Ghana using the Integrated Disease Surveillance and Response strategy. Afr J Lab Med 2024; 13:2404. [PMID: 39228899 PMCID: PMC11369569 DOI: 10.4102/ajlm.v13i1.2404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 06/10/2024] [Indexed: 09/05/2024] Open
Affiliation(s)
- Beverly Egyir
- Department of Bacteriology, Noguchi Memorial Institute for Medical Research, Accra, Ghana
| | - Alfred Bortey
- Department of Bacteriology, Noguchi Memorial Institute for Medical Research, Accra, Ghana
| | - Kwabena O. Duedu
- College of Life Sciences, Birmingham City University, Birmingham, United Kingdom
| | - Gifty Boateng
- National Public Health and Reference Lab, Korle-Bu Teaching Hospital, Korle-Bu, Ghana
| | | | - George Hedidor
- World Health Organization Country Office, Ghana, Accra, Ghana
| | | | - Nicholas T.K.D. Dayie
- Department of Medical Microbiology, University of Ghana Medical School, Accra, Ghana
| | - Noah Obeng-Nkrumah
- Department of Medical Laboratory Sciences, School of Biomedical and Allied Health Sciences, Accra, Ghana
| | - Japheth A. Opintan
- Department of Medical Microbiology, University of Ghana Medical School, Accra, Ghana
| |
Collapse
|
5
|
Bitew A, Gelaw A, Wondimeneh Y, Ayenew Z, Getie M, Tafere W, Gebre-Eyesus T, Yimer M, Beyene GT, Bitew M, Abayneh T, Abebe M, Mihret A, Yeshitela B, Teferi M, Gelaw B. Prevalence and antimicrobial susceptibility pattern of Vibrio cholerae isolates from cholera outbreak sites in Ethiopia. BMC Public Health 2024; 24:2071. [PMID: 39085873 PMCID: PMC11292863 DOI: 10.1186/s12889-024-19621-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 07/29/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND Cholera is an acute infectious disease caused by ingestion of contaminated food or water with Vibrio cholerae. Cholera remains a global threat to public health and an indicator of inequity and lack of social development. The aim of this study was to assess the prevalence and antimicrobial susceptibility pattern of V. cholerae from cholera outbreak sites in Ethiopia. METHODS Across-sectional study was conducted from May 2022 to October 2023 across different regions in Ethiopia: Oromia National Regional State, Amhara National Regional State and Addis Ababa City Administration. A total of 415 fecal samples were collected from the three regions. Two milliliter fecal samples were collected from each study participants. The collected samples were cultured on Blood Agar, MacConkey Agar and Thiosulfate Citrate Bile Salt Sucrose Agar. A series of biochemical tests Oxidase test, String test, Motility, Indole, Citrate, Gas production, H2S production, Urease test were used to identify V. cholerae species. Both polyvalent and monovalent antisera were used for agglutination tests to identify and differentiate V. cholerae serogroup and serotypes. In addition, Kirby-Bauer Disk diffusion antibiotic susceptibility test method was done. Data were registered in epi-enfo version 7 and analyzed by Statistical Package for Social Science version 25. Descriptive statistics were used to determine the prevalence of Vibrio cholerae. Logistic regression model was fitted and p-value < 0.05 was considered as statically significant. RESULTS The prevalence of V. cholerae in the fecal samples was 30.1%. Majority of the isolates were from Oromia National Regional State 43.2% (n = 54) followed by Amhara National Regional State 31.2% (n = 39) and Addis Ababa City Administration 25.6% (n = 32). Most of the V. cholerae isolates were O1 serogroups 90.4% (n = 113) and Ogawa serotypes 86.4% (n = 108). Majority of the isolates were susceptible to ciprofloxacin 100% (n = 125), tetracycline 72% (n = 90) and gentamycin 68% (n = 85). More than half of the isolates were resistant to trimethoprim-sulfamethoxazole 62.4% (n = 78) and ampicillin 56.8% (n = 71). In this study, participants unable to read and write were about four times more at risk for V. cholerae infection (AOR: 3.8, 95% CI: 1.07-13.33). In addition, consumption of river water were about three times more at risk for V. cholerae infection (AOR: 2.8, 95% CI: 1.08-7.08). CONCLUSION our study revealed a high prevalence of V. cholerae from fecal samples. The predominant serogroups and serotypes were O1 and Ogawa, respectively. Fortunately, the isolates showed susceptible to most tested antibiotics. Drinking water from river were the identified associated risk factor for V. cholerae infection. Protecting the community from drinking of river water and provision of safe and treated water could reduce cholera outbreaks in the study areas.
Collapse
Affiliation(s)
- Abebaw Bitew
- Department of Medical Microbiology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia.
- Department of Medical Microbiology, College of Medicine and Health Sciences, Debre Markos University, Debre Markos, Ethiopia.
| | - Aschalew Gelaw
- Department of Medical Microbiology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Yitayih Wondimeneh
- Department of Medical Microbiology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Zeleke Ayenew
- Department of Bacteriology, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Michael Getie
- Department of Medical Microbiology, Amhara National Regional State Public Health Institute, Bahir Dar, Ethiopia
| | - Wudu Tafere
- Department of Medical Microbiology, Amhara National Regional State Public Health Institute, Bahir Dar, Ethiopia
| | - Tsehaynesh Gebre-Eyesus
- Department of Medical Microbiology, Amhara National Regional State Public Health Institute, Bahir Dar, Ethiopia
| | - Marechign Yimer
- Bacterial and Viral Disease Research Directorate, Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Getachew Tesfaye Beyene
- Bacterial and Viral Disease Research Directorate, Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Molalegne Bitew
- Bio and Emerging Technology Institute of Ethiopia, Addis Ababa, Ethiopia
| | | | - Markos Abebe
- Bacterial and Viral Disease Research Directorate, Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Adane Mihret
- Bacterial and Viral Disease Research Directorate, Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Biruk Yeshitela
- Bacterial and Viral Disease Research Directorate, Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Mekonnen Teferi
- Bacterial and Viral Disease Research Directorate, Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Baye Gelaw
- Department of Medical Microbiology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
6
|
El-Zamkan MA, Ahmed AS, Abdelhafeez HH, Mohamed HMA. Molecular characterization of Vibrio species isolated from dairy and water samples. Sci Rep 2023; 13:15368. [PMID: 37717062 PMCID: PMC10505214 DOI: 10.1038/s41598-023-42334-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 09/08/2023] [Indexed: 09/18/2023] Open
Abstract
Vibrio species can cause foodborne infections and lead to serious gastrointestinal illnesses. The purpose of this research was to detect the Vibrio cholerae and Vibrio parahaemolyticus in raw milk, dairy products, and water samples. Also, it investigated the virulence factors, antibiotic resistance and biofilm formation in isolated bacteria. Conventional and molecular approaches were used to identify the isolates in this study. Vibrio species were detected in 5% of the samples. Vibrio cholerae and Vibrio parahaemolyticus were isolated from 1.25 and 1.5%, respectively, of the total samples. Penicillin resistance was detected in all strains of Vibrio cholerae and Vibrio parahaemolyticus, with a MAR index ranging from 0.16 to 0.5. Four isolates were moderate biofilm producer and three of them were MDR. When Vibrio cholerae was screened for virulence genes, ctxAB, hlyA, and tcpA were found in 80, 60, and 80% of isolates, respectively. However, tdh + /trh + associated-virulence genes were found in 33.3% of Vibrio parahaemolyticus isolates.
Collapse
Affiliation(s)
- Mona A El-Zamkan
- Department of Food Hygiene and Control (Milk Hygiene), Faculty of Veterinary Medicine, South Valley University, Qena, 83523, Egypt.
| | - Ahmed Shaban Ahmed
- Department of Food Hygiene and Control (Milk Hygiene), Faculty of Veterinary Medicine, South Valley University, Qena, 83523, Egypt
| | - Hanan H Abdelhafeez
- Department of Cell and Tissues, Faculty of Veterinary Medicine, Assiut University, Assiut, 71526, Egypt.
| | - Hams M A Mohamed
- Department of Microbiology, Faculty of Veterinary Medicine, South Valley University, Qena, 83523, Egypt.
| |
Collapse
|
7
|
Abioye OE, Nontongana N, Osunla CA, Okoh AI. Antibiotic resistance and virulence genes profiling of Vibrio cholerae and Vibrio mimicus isolates from some seafood collected at the aquatic environment and wet markets in Eastern Cape Province, South Africa. PLoS One 2023; 18:e0290356. [PMID: 37616193 PMCID: PMC10449182 DOI: 10.1371/journal.pone.0290356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 08/04/2023] [Indexed: 08/26/2023] Open
Abstract
The current study determines the density of Vibrio spp. and isolates V. cholerae and Vibrio mimicus from fish-anatomical-sites, prawn, crab and mussel samples recovered from fish markets, freshwater and brackish water. Virulence and antibiotic resistance profiling of isolates were carried out using standard molecular and microbiology techniques. Vibrio spp. was detected in more than 90% of samples [134/144] and its density was significantly more in fish than in other samples. Vibrio. cholerae and V. mimicus were isolated in at least one sample of each sample type with higher isolation frequency in fish samples. All the V. cholerae isolates belong to non-O1/non-O139 serogroup. One or more V. cholerae isolates exhibited intermediate or resistance against each of the eighteen panels of antibiotics used but 100% of the V. mimicus were susceptible to amikacin, gentamycin and chloramphenicol. Vibrio cholerae exhibited relatively high resistance against polymyxin, ampicillin and amoxicillin/clavulanate while V. mimicus isolates exhibited relatively high resistance against nitrofurantoin, ampicillin and polymixin. The multiple-antibiotic-resistance-index [MARI] for isolates ranges between 0 and 0.67 and 48% of the isolates have MARI that is >0.2 while 55% of the isolates exhibit MultiDrug Resistance Phenotypes. The percentage detection of acc, ant, drf18, sul1, mcr-1, blasvh, blaoxa, blatem, blaoxa48, gyrA, gyrB and parC resistance-associated genes were 2%, 9%, 14%, 7%, 2%, 25%, 7%, 2%, 2%, 32%, 25% and 27% respectively while that for virulence-associated genes in increasing other was ace [2%], tcp [11%], vpi [16%], ompU [34%], toxR [43%], rtxC [70%], rtxA [73%] and hyla [77%]. The study confirmed the potential of environmental non-O1/non-O139 V. cholerae and V. mimicus to cause cholera-like infection and other vibriosis which could be difficult to manage with commonly recommended antibiotics. Thus, regular monitoring of the environment to create necessary awareness for this kind of pathogens is important in the interest of public health.
Collapse
Affiliation(s)
| | - Nolonwabo Nontongana
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa
| | - Charles A. Osunla
- Department of Microbiology, Adekunle Ajasin University, Akungba Akoko, Nigeria
| | - Anthony I. Okoh
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa
| |
Collapse
|
8
|
Elimian K, Yennan S, Musah A, Cheshi ID, King C, Dunkwu L, Mohammed AL, Ekeng E, Akande OW, Ayres S, Gandi B, Pembi E, Saleh F, Omar AN, Crawford E, Olopha OO, Nnaji R, Muhammad B, Luka-Lawal R, Ihueze AC, Olatunji D, Ojukwu C, Akinpelu AM, Adaga E, Abubakar Y, Nwadiuto I, Ngishe S, Alowooye AB, Nwogwugwu PC, Kamaldeen K, Abah HN, Chukwuebuka EH, Yusuff HA, Mamadu I, Mohammed AA, Peter S, Abbah OC, Oladotun PM, Oifoh S, Olugbile M, Agogo E, Ndodo N, Babatunde O, Mba N, Oladejo J, Ilori E, Alfvén T, Myles P, Ochu CL, Ihekweazu C, Adetifa I. Epidemiology, diagnostics and factors associated with mortality during a cholera epidemic in Nigeria, October 2020-October 2021: a retrospective analysis of national surveillance data. BMJ Open 2022; 12:e063703. [PMID: 36123095 PMCID: PMC9486350 DOI: 10.1136/bmjopen-2022-063703] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVES Nigeria reported an upsurge in cholera cases in October 2020, which then transitioned into a large, disseminated epidemic for most of 2021. This study aimed to describe the epidemiology, diagnostic performance of rapid diagnostic test (RDT) kits and the factors associated with mortality during the epidemic. DESIGN A retrospective analysis of national surveillance data. SETTING 33 of 37 states (including the Federal Capital Territory) in Nigeria. PARTICIPANTS Persons who met cholera case definition (a person of any age with acute watery diarrhoea, with or without vomiting) between October 2020 and October 2021 within the Nigeria Centre for Disease Control surveillance data. OUTCOME MEASURES Attack rate (AR; per 100 000 persons), case fatality rate (CFR; %) and accuracy of RDT performance compared with culture using area under the receiver operating characteristic curve (AUROC). Additionally, individual factors associated with cholera deaths and hospitalisation were presented as adjusted OR with 95% CIs. RESULTS Overall, 93 598 cholera cases and 3298 deaths (CFR: 3.5%) were reported across 33 of 37 states in Nigeria within the study period. The proportions of cholera cases were higher in men aged 5-14 years and women aged 25-44 years. The overall AR was 46.5 per 100 000 persons. The North-West region recorded the highest AR with 102 per 100 000. Older age, male gender, residency in the North-Central region and severe dehydration significantly increased the odds of cholera deaths. The cholera RDT had excellent diagnostic accuracy (AUROC=0.91; 95% CI 0.87 to 0.96). CONCLUSIONS Cholera remains a serious public health threat in Nigeria with a high mortality rate. Thus, we recommend making RDT kits more widely accessible for improved surveillance and prompt case management across the country.
Collapse
Affiliation(s)
- Kelly Elimian
- Nigeria Centre for Disease Control, Abuja, Nigeria
- Department of Global Public Health, Karolinska Institute, Stockholm, Sweden
| | | | - Anwar Musah
- Department of Risk and Disaster Reduction, University College London, London, UK
| | | | - Carina King
- Department of Global Public Health, Karolinska Institute, Stockholm, Sweden
| | | | | | - Eme Ekeng
- Nigeria Centre for Disease Control, Abuja, Nigeria
| | - Oluwatosin Wuraola Akande
- Department of Epidemiology and Community Health, University of Ilorin Teaching Hospital, Ilorin, Nigeria
| | - Stephanie Ayres
- Department of Global Public Health, Karolinska Institute, Stockholm, Sweden
| | | | | | - Fatima Saleh
- Nigeria Centre for Disease Control, Abuja, Nigeria
| | | | | | | | | | | | | | | | | | | | | | - Ene Adaga
- Nigeria Centre for Disease Control, Abuja, Nigeria
| | - Yusuf Abubakar
- Zamfara State Ministry of Health, Zamfara State, Nigeria
| | | | - Samuel Ngishe
- Public Health, Ministry of Health, Benue State, Makurdi, Nigeria
| | | | | | | | | | | | | | - Ibrahim Mamadu
- World Health Organization Country Office for Nigeria, Abuja, Nigeria
| | | | - Sarah Peter
- Nigeria Centre for Disease Control, Abuja, Nigeria
| | | | | | | | | | | | | | | | - Nwando Mba
- Nigeria Centre for Disease Control, Abuja, Nigeria
| | - John Oladejo
- Nigeria Centre for Disease Control, Abuja, Nigeria
| | - Elsie Ilori
- Nigeria Centre for Disease Control, Abuja, Nigeria
| | - Tobias Alfvén
- Department of Global Public Health, Karolinska Institute, Stockholm, Sweden
| | - Puja Myles
- Clinical Practice Research Datalink, London, UK
| | | | | | | |
Collapse
|
9
|
Kariuki S, Kering K, Wairimu C, Onsare R, Mbae C. Antimicrobial Resistance Rates and Surveillance in Sub-Saharan Africa: Where Are We Now? Infect Drug Resist 2022; 15:3589-3609. [PMID: 35837538 PMCID: PMC9273632 DOI: 10.2147/idr.s342753] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 06/16/2022] [Indexed: 01/03/2023] Open
Abstract
Introduction Although antimicrobials have traditionally been used to treat infections and improve health outcomes, resistance to commonly used antimicrobials has posed a major challenge. An estimated 700,000 deaths occur globally every year as a result of infections caused by antimicrobial-resistant pathogens. Antimicrobial resistance (AMR) also contributes directly to the decline in the global economy. In 2019, sub-Saharan Africa (SSA) had the highest mortality rate (23.5 deaths per 100,000) attributable to AMR compared to other regions. Methods We searched PubMed for articles relevant to AMR in pathogens in the WHO-GLASS list and in other infections of local importance in SSA. In this review, we focused on AMR rates and surveillance of AMR for these priority pathogens and some of the most encountered pathogens of public health significance. In addition, we reviewed the implementation of national action plans to mitigate against AMR in countries in SSA. Results and Discussion The SSA region is disproportionately affected by AMR, in part owing to the prevailing high levels of poverty, which result in a high burden of infectious diseases, poor regulation of antimicrobial use, and a lack of alternatives to ineffective antimicrobials. The global action plan as a strategy for prevention and combating AMR has been adopted by most countries, but fewer countries are able to fully implement country-specific action plans, and several challenges exist in many settings. Conclusion A concerted One Health approach will be required to ramp up implementation of action plans in the region. In addition to AMR surveillance, effective implementation of infection prevention and control, water, sanitation, and hygiene, and antimicrobial stewardship programs will be key cost-effective strategies in helping to tackle AMR.
Collapse
Affiliation(s)
- Samuel Kariuki
- Centre for Microbiology Research, Kenya Medical Research Institute, Nairobi, Kenya,Correspondence: Samuel Kariuki, Centre for Microbiology Research, Kenya Medical Research Institute, Nairobi, Kenya, Email
| | - Kelvin Kering
- Centre for Microbiology Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Celestine Wairimu
- Centre for Microbiology Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Robert Onsare
- Centre for Microbiology Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Cecilia Mbae
- Centre for Microbiology Research, Kenya Medical Research Institute, Nairobi, Kenya
| |
Collapse
|
10
|
Igere BE, Okoh AI, Nwodo UU. Atypical and dual biotypes variant of virulent SA-NAG-Vibrio cholerae: an evidence of emerging/evolving patho-significant strain in municipal domestic water sources. ANN MICROBIOL 2022. [DOI: 10.1186/s13213-021-01661-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Introduction and purpose
The recent cholera spread, new cases, and fatality continue to arouse concern in public health systems; however, interventions on control is at its peak yet statistics show continuous report. This study characterized atypical and patho-significant environmental Vibrio cholerae retrieved from ground/surface/domestic water in rural-urban-sub-urban locations of Amathole District municipality and Chris Hani District municipality, Eastern Cape Province, South Africa.
Methods
Domestic/surface water was sampled and 759 presumptive V. cholerae isolates were retrieved using standard microbiological methods. Virulence phenotypic test: toxin co-regulated pili (tcp), choleragen red, protease production, lecithinase production, and lipase test were conducted. Serotyping using polyvalent antisera (Bengal and Ogawa/Inaba/Hikojima) and molecular typing: 16SrRNA, OmpW, serogroup (Vc-O1/O139), biotype (tcpAClas/El Tor, HlyAClas/El Tor, rstRClas/El Tor, RS1, rtxA, rtxC), and virulence (ctxA, ctxB, zot, ace, cep, prt, toxR, hlyA) genes were targeted.
Result
Result of 16SrRNA typing confirmed 508 (66.9%) while OmpW detected/confirmed 61 (12.01%) V. cholerae strains. Phenotypic-biotyping scheme showed positive test to polymyxin B (68.9%), Voges proskauer (6.6%), and Bengal serology (11.5%). Whereas Vc-O1/O139 was negative, yet two of the isolates harbored the cholera toxin with a gene-type ctxB and hlyAClas: 2/61, revealing atypical/unusual/dual biotype phenotypic/genotypic features. Other potential atypical genotypes detected include rstR: 7/61, Cep: 15/61, ace: 20/61, hlyAElTor: 53/61, rtxA: 30/61, rtxC: 11/61, and prtV: 15/61 respectively.
Conclusion
Although additional patho-significant/virulent genotypes associated with epidemic/sporadic cholera cases were detected, an advanced, bioinformatics, and post-molecular evaluation is necessary. Such stride possesses potential to adequately minimize future cholera cases associated with dynamic/atypical environmental V. cholerae strains.
Collapse
|
11
|
Manjunath GB, Awasthi SP, Zahid MSH, Hatanaka N, Hinenoya A, Iwaoka E, Aoki S, Ramamurthy T, Yamasaki S. Piperine, an active ingredient of white pepper suppresses growth of multidrug resistant toxigenic Vibrio cholerae and other pathogenic bacteria. Lett Appl Microbiol 2022; 74:472-481. [PMID: 34978719 DOI: 10.1111/lam.13646] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/24/2021] [Accepted: 12/28/2021] [Indexed: 11/30/2022]
Abstract
Emergence and rapid spread of multi-drug resistant (MDR) bacteria including Vibrio cholerae are a global public health issue. Much attention has been paid to natural compounds, such as spices and herbs to find novel antimicrobial compounds as they are considered to be cheaper alternatives to develop as a drug. Here, we show that methanol extract of white pepper could inhibit growth of V. cholerae O1 El Tor variant, responsible for the recent outbreaks/epidemics. Furthermore, we demonstrate for the first time that piperine, the major component of white pepper showed a dose-dependent bactericidal effect on V. cholerae growth irrespective of their biotypes and serogroups in presence of 200 and 300 µg ml-1 of piperine, respectively. Piperine also inhibited growth of MDR strains of Pseudomonas aeruginosa, Escherichia coli isolated from poultry and enterohemorrhagic/enteroaggregative E. coli O104 in presence of 200 µg ml-1 . Interestingly, we did not observe any significant inhibitory effect of piperine on E. coli strains isolated from healthy person even up to 200 µg ml-1 . Our data suggest that piperine could be a novel antimicrobial agent in therapeutic and preventive applications against infections caused by pathogenic bacteria including MDR strains.
Collapse
Affiliation(s)
- Goutham Belagula Manjunath
- Department of Veterinary Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
| | - Sharda Prasad Awasthi
- Department of Veterinary Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan.,Asian Health Science Research Institute, Osaka Prefecture University, Osaka, Japan.,Osaka International Research Center for Infectious Diseases, Osaka Prefecture University, Osaka, Japan
| | - M Shamim Hasan Zahid
- Department of Veterinary Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
| | - Noritoshi Hatanaka
- Department of Veterinary Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan.,Asian Health Science Research Institute, Osaka Prefecture University, Osaka, Japan.,Osaka International Research Center for Infectious Diseases, Osaka Prefecture University, Osaka, Japan
| | - Atsushi Hinenoya
- Department of Veterinary Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan.,Asian Health Science Research Institute, Osaka Prefecture University, Osaka, Japan.,Osaka International Research Center for Infectious Diseases, Osaka Prefecture University, Osaka, Japan
| | - Emiko Iwaoka
- Faculty of Pharmacy, Hyogo University of Health Sciences, Hyogo, Japan
| | - Shunji Aoki
- Faculty of Pharmacy, Hyogo University of Health Sciences, Hyogo, Japan
| | | | - Shinji Yamasaki
- Department of Veterinary Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan.,Asian Health Science Research Institute, Osaka Prefecture University, Osaka, Japan.,Osaka International Research Center for Infectious Diseases, Osaka Prefecture University, Osaka, Japan
| |
Collapse
|
12
|
Samuel Amoo O, Awoderu O, Yisau J, Oladele D, David AN, Raheem T, Uwandu M, Bamidele M, Fesobi TW, AbdusSalam A, Nduaga S, Oparaugo CT, Ajayi M, Ogbonna F, Musa AZ, Adedeji A, Ige F, Ihemanma O, Nuhu B, Okebugwu U, Bello IW, Onuigbo TI, Ikemefuna AS, Oraegbu JI, Agboola H, Idris J, Ajayi A, Salako BL, Smith SI. Assessment of potential factors that support the endemicity of cholera in Nigeria from food handlers, health workers and the environment. MICROBIOLOGIA MEDICA 2021. [DOI: 10.4081/mm.2021.10058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background and Aims: Diarrheal diseases caused by bacterial pathogens are widespread and they result in morbidity and mortality of a lot of people yearly. The aim of this study was to assess the role of the environment, health workers and food handlers as reservoirs of Vibrio cholerae, and other diarrhea causing bacteria. Methods: Healthcare workers were proportionally selected and multistage sampling technique was adopted in selecting food handlers for the study. A total of 374 participants consisting of health workers and food handlers were recruited. Socio-demographic and clinical information were collected using questionnaires, while stool and environmental samples were also collected. Results: More female 55.9 % than male 44.1 % participated in the study and the mean age of participants was 38.7 ± 10.9. A significant number of participants identified poor hygiene practices as the major cause of diarrhea. V. cholerae O1 serotype was not detected in any of the environmental samples nor stool samples of both food handlers and health workers. However, V. cholerae (Non O1/Non O139) was isolated from the stool samples of food handlers and health workers in Kano State implying that they could be serving a source of the continuous dissemination of the pathogen. Other bacterial pathogens that are aetiology of diarrhea including Salmonella spp. Escherichia coli, Klebsiella oxytoca, and Enterobacter spp. were also isolated. Conclusion: It is therefore imperative that food handlers and health workers undergo periodic health checks to ensure they are free of pathogens they could easily transmit through food or to patients.
Collapse
|
13
|
Pal BB, Behera DR, Nayak SR, Nayak AK. Origin and Dissemination of Altered El Tor Vibrio cholerae O1 Causing Cholera in Odisha, India: Two and Half Decade's View. Front Microbiol 2021; 12:757986. [PMID: 34867883 PMCID: PMC8637270 DOI: 10.3389/fmicb.2021.757986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/08/2021] [Indexed: 11/13/2022] Open
Abstract
The origin, spread and molecular epidemiology of altered El Tor Vibrio cholerae O1 strains isolated from cholera outbreaks/surveillance studies between 1995 and 2019 from different district of Odisha were analyzed. The stock cultures of V. cholerae O1 strains from 1995 to 2019 were analyzed through molecular analysis using different PCR assays and pulse field gel electrophoresis (PFGE) analysis. The spread map (month, year and place) was constructed to locate the dissemination of altered El Tor variants of V. cholerae O1 in this region. A total of 13 cholera outbreaks were caused by V. cholerae O1 Ogawa biotype El Tor carrying ctxB1 and ctxB7 genotypes. The ctxB1 alleles of V. cholerae O1 mostly confined to the coastal areas, whereas the ctxB7 genotypes, though originating in the coastal region of Odisha, concentrated more in the tribal areas. The positive correlation between virulence-associated genes (VAGs) was found through Pearson’s correlation model, indicative of a stronger association between the VAGs. The clonal relationship through PFGE between ctxB1 and ctxB7 genotypes of V. cholerae O1 strains exhibited 80% similarity indicating single- or multi-clonal evolution. It is evident from this study that the spread of multidrug-resistant V. cholerae O1-altered El Tor was dominant over the prototype El Tor strains in this region. The origin of altered El Tor variants of V. cholerae O1 occurred in the East Coast of Odisha established that the origin of cholera happened in the Gangetic belts of Bay of Bengal where all new variants of V. cholerae O1 might have originated from the Asian countries.
Collapse
Affiliation(s)
- Bibhuti Bhusan Pal
- Microbiology Division, ICMR-Regional Medical Research Centre, Bhubaneswar, India
| | - Dipti Ranjan Behera
- Microbiology Division, ICMR-Regional Medical Research Centre, Bhubaneswar, India
| | - Smruti Ranjan Nayak
- Microbiology Division, ICMR-Regional Medical Research Centre, Bhubaneswar, India
| | - Ashish Kumar Nayak
- Microbiology Division, ICMR-Regional Medical Research Centre, Bhubaneswar, India
| |
Collapse
|
14
|
Dassanayake MK, Khoo TJ, An J. Antibiotic resistance modifying ability of phytoextracts in anthrax biological agent Bacillus anthracis and emerging superbugs: a review of synergistic mechanisms. Ann Clin Microbiol Antimicrob 2021; 20:79. [PMID: 34856999 PMCID: PMC8641154 DOI: 10.1186/s12941-021-00485-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 11/22/2021] [Indexed: 01/17/2023] Open
Abstract
Background and objectives The chemotherapeutic management of infections has become challenging due to the global emergence of antibiotic resistant pathogenic bacteria. The recent expansion of studies on plant-derived natural products has lead to the discovery of a plethora of phytochemicals with the potential to combat bacterial drug resistance via various mechanisms of action. This review paper summarizes the primary antibiotic resistance mechanisms of bacteria and also discusses the antibiotic-potentiating ability of phytoextracts and various classes of isolated phytochemicals in reversing antibiotic resistance in anthrax agent Bacillus anthracis and emerging superbug bacteria. Methods Growth inhibitory indices and fractional inhibitory concentration index were applied to evaluate the in vitro synergistic activity of phytoextract-antibiotic combinations in general. Findings A number of studies have indicated that plant-derived natural compounds are capable of significantly reducing the minimum inhibitory concentration of standard antibiotics by altering drug-resistance mechanisms of B. anthracis and other superbug infection causing bacteria. Phytochemical compounds allicin, oleanolic acid, epigallocatechin gallate and curcumin and Jatropha curcas extracts were exceptional synergistic potentiators of various standard antibiotics. Conclusion Considering these facts, phytochemicals represents a valuable and novel source of bioactive compounds with potent antibiotic synergism to modulate bacterial drug-resistance.
Collapse
Affiliation(s)
- Mackingsley Kushan Dassanayake
- School of Pharmacy, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500, Semenyih, Malaysia.
| | - Teng-Jin Khoo
- School of Pharmacy, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500, Semenyih, Malaysia
| | - Jia An
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
15
|
Opintan JA, Will RC, Kuma GK, Osei M, Akumwena A, Boateng G, Owusu-Okyere G, Antwi L, Opare D, Pragasam AK, Vasudevan K, Srivastava SK, Balaji V, Newman MJ, Dougan G, Mutreja A. Phylogenetic and antimicrobial drug resistance analysis of Vibrio cholerae O1 isolates from Ghana. Microb Genom 2021; 7. [PMID: 34714228 PMCID: PMC8627208 DOI: 10.1099/mgen.0.000668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We investigated the evolution, phylogeny and antimicrobial resistance of Vibrio cholerae O1 isolates (VCO1) from Ghana. Outbreak and environmental sources of VCO1 were characterized, whole-genome sequenced and compared to globally available seventh pandemic (7P) strains of V. cholerae at SNP resolution. Final analyses included 636 isolates. Novel Ghanaian isolates clustered into three distinct clades (clades 1, 2 and 3) in wave 3 of the 7P lineage. The closest relatives of our novel Ghanaian isolates were from Benin, Cameroon, Togo, Niger and Nigeria. All novel Ghanaian isolates were multi-drug resistant. Environmental isolates clustered into clade 2, despite being isolated years later, showing the possibility of persistence and re-emergence of older clades. A lag phase of several years from estimated introduction to reported cases suggests pathogen persistence in the absence of reported cholera cases. These results highlight the importance of deeper surveillance for understanding transmission routes between bordering countries and planning tailored vaccination campaigns in an effort to eradicate cholera.
Collapse
Affiliation(s)
- Japheth A Opintan
- Medical Microbiology Department, University of Ghana Medical School, Accra, Ghana.,Department of Medicine, University of Cambridge, Cambridge, UK
| | - Robert C Will
- Department of Medicine, University of Cambridge, Cambridge, UK.,Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK
| | - George K Kuma
- Laboratory Department, Brong Ahafo Regional Hospital, Sunyani, Ghana
| | - Mary Osei
- Medical Microbiology Department, University of Ghana Medical School, Accra, Ghana
| | - Amos Akumwena
- Medical Microbiology Department, University of Ghana Medical School, Accra, Ghana
| | - Gifty Boateng
- National Public Health Reference Laboratory, Accra, Ghana
| | | | - Lorreta Antwi
- National Public Health Reference Laboratory, Accra, Ghana
| | - David Opare
- National Public Health Reference Laboratory, Accra, Ghana
| | | | - Karthick Vasudevan
- Christian Medical College, Vellore, Tamil Nadu, India.,Department of Biotechnology, School of Applied Sciences, REVA University, Bangalore, India
| | | | | | - Mercy J Newman
- Medical Microbiology Department, University of Ghana Medical School, Accra, Ghana
| | - Gordon Dougan
- Department of Medicine, University of Cambridge, Cambridge, UK.,Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK
| | - Ankur Mutreja
- Department of Medicine, University of Cambridge, Cambridge, UK.,Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK.,Translational Health Science and Technology Institute, Faridabad, India
| |
Collapse
|
16
|
Cheng Y, Ge C, Li W, Yao H. The Intestinal Bacterial Community and Functional Potential of Litopenaeus vannamei in the Coastal Areas of China. Microorganisms 2021; 9:1793. [PMID: 34576689 PMCID: PMC8470311 DOI: 10.3390/microorganisms9091793] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/17/2021] [Accepted: 08/20/2021] [Indexed: 02/07/2023] Open
Abstract
Intestinal bacteria are crucial for the healthy aquaculture of Litopenaeus vannamei, and the coastal areas of China are important areas for concentrated L. vannamei cultivation. In this study, we evaluated different compositions and structures, key roles, and functional potentials of the intestinal bacterial community of L. vannamei shrimp collected in 12 Chinese coastal cities and investigated the correlation between the intestinal bacteria and functional potentials. The dominant bacteria in the shrimp intestines included Proteobacteria, Bacteroidetes, Tenericutes, Firmicutes, and Actinobacteria, and the main potential functions were metabolism, genetic information processing, and environmental information processing. Although the composition and structure of the intestinal bacterial community, potential pathogenic bacteria, and spoilage organisms varied from region to region, the functional potentials were homeostatic and significantly (p < 0.05) correlated with intestinal bacteria (at the family level) to different degrees. The correlation between intestinal bacteria and functional potentials further suggested that L. vannamei had sufficient functional redundancy to maintain its own health. These findings help us understand differences among the intestinal bacterial communities of L. vannamei cultivated in different regions and provide a basis for the disease management and healthy aquaculture of L. vannamei.
Collapse
Affiliation(s)
- Yimeng Cheng
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430073, China; (Y.C.); (W.L.); (H.Y.)
| | - Chaorong Ge
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430073, China; (Y.C.); (W.L.); (H.Y.)
| | - Wei Li
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430073, China; (Y.C.); (W.L.); (H.Y.)
| | - Huaiying Yao
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430073, China; (Y.C.); (W.L.); (H.Y.)
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, Ningbo Urban Environment Observation and Research Station, Chinese Academy of Sciences, Ningbo 315800, China
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| |
Collapse
|
17
|
Adesiyan IM, Bisi-Johnson MA, Ogunfowokan AO, Okoh AI. Occurrence and antibiogram signatures of some Vibrio species recovered from selected rivers in South West Nigeria. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:42458-42476. [PMID: 33813704 DOI: 10.1007/s11356-021-13603-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 03/17/2021] [Indexed: 06/12/2023]
Abstract
Vibrio species, widely distributed in water environments, has emerged as a prominent cause of water and food-related disease outbreaks posing significant risk to human and animal health worldwide. About 40% of presumptive isolates recovered from four selected rivers in Southwest Nigeria and, established as Vibrio species genus through polymerase chain reaction techniques., were subjected to antibiotic susceptibility testing against a panel of 18 commonly used antibiotics. The relative prevalence of key Vibrio species (V. parahaemolyticus, V. vulnificus, V. mimicus, V. harveyi, and V. cholerae) was in the order 17%, 13.3%, 4.4%, 2.2%, and 2.2% respectively. Antibiotic resistance by all Vibrio species was mostly observed against doxycycline (71-89%), erythromycin (86-100%), tetracycline (71-89%), rifampicin (86-100%), and sulfamethoxazole (87-100%), though susceptibility to meropenem (86-100%), cephalothin (60-100%), norfloxacin (93-100%), ciprofloxacin (88-100%), amikacin (64-100%), gentamicin (57-74%), and trimethoprim/sulfamethoxazole (57-81%) was equally observed in all species. Vibrio mimicus expressed highest resistance against streptomycin and chloramphenicol (64%), while V. vulnificus (52%) and V. cholerae (57%) had the highest resistance against cephalothin. High resistance against ampicillin (57%) and amoxicillin (50%) was exhibited by V. cholerae and V. mimicus respectively. Indexes of multiple antibiotic resistances (MARI) among Vibrio species ranged between 0.11 and 0.72 with the highest MAR index of 0.72 observed in one isolate of V. vulnificus. This study reveals high prevalence of Vibrio species in the selected rivers as well as elevated resistance against some first-line antibiotics, which suggests possible inappropriate antimicrobial usage around study communities. We conclude that the freshwater resources investigated are unfit for domestic, industrial, and recreational uses without treatment prior to use and are potential reservoirs of antibiotic-resistant Vibrio species in this environment.
Collapse
Affiliation(s)
- Ibukun M Adesiyan
- Department of Biological Sciences, Achievers University, Owo, Ondo State, Nigeria.
- Institute of Ecology and Environmental Studies, Obafemi Awolowo University, Ile Ife, Osun-State, 220005, Nigeria.
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa.
| | | | - Aderemi O Ogunfowokan
- Department of Industrial Chemistry, The Technical University, Ibadan,, Oyo State, Nigeria
- Department of Chemistry, Obafemi Awolowo University, Ile Ife, Nigeria
| | - Anthony I Okoh
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa
- Department of Environmental Health Sciences College of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
18
|
Abstract
Cholera is one of the major public health problems in the state of Odisha, India since centuries. The current paper is a comprehensive report on epidemiology of cholera in Odisha, which was documented from 1993. PubMed and Web of Knowledge were searched for publications reporting cholera in Odisha during the period 1993–2015. The search was performed using the keywords ‘Odisha’ and/or ‘Orissa’ and ‘Cholera’. In addition, manual search was undertaken to find out relevant papers. During the study period, a total of 37 cholera outbreaks were reported with an average of >1.5 cholera outbreaks per year and case fatality ratio was 0.3%. Vibrio cholerae O1 Ogawa serotype was the major causative agent in most of the cholera cases. The recent studies demonstrated the prevalence of V. cholerae O1, El Tor variants carrying ctxB1, ctxB7 and Haitian variant tcpA allele associated with polymyxin B sensitivity and these variants are replacing the proto type El Tor. The first report of variant ctxB7 in Odisha during super-cyclone 1999 predicted its emergence and subsequent spread causing cholera outbreaks. The prevalence of multidrug-resistant V. cholerae at different time periods created alarming situation. The efficacy trial of oral cholera vaccine (OCV, Shanchol) in a public health set-up in Odisha has shown encouraging results which should be deployed for community level vaccination among the vulnerable population. This paper has taken an effort to disseminate the valuable information of epidemiology of cholera that will influence the policy-makers and epidemiologists for constant surveillance in other parts of Odisha, India and around the globe.
Collapse
|
19
|
Rasool FN, Saavedra MA, Pamba S, Perold V, Mmochi AJ, Maalim M, Simonsen L, Buur L, Pedersen RH, Syberg K, Jelsbak L. Isolation and characterization of human pathogenic multidrug resistant bacteria associated with plastic litter collected in Zanzibar. JOURNAL OF HAZARDOUS MATERIALS 2021; 405:124591. [PMID: 33301968 DOI: 10.1016/j.jhazmat.2020.124591] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 06/12/2023]
Abstract
Plastic pollution is a growing problem, not at least in areas where poor waste management results in direct pollution of coastal zones, such as South Asia and regions in Africa. In addition to the effect on ecosystems and their related services, plastic pollution may also affect human health indirectly as vectors for infectious disease. As plastic offers a suitable surface for the attachment of biofilm forming bacteria, it may contribute to disease outbreaks and antimicrobial resistance. To investigate the role of plastic litter as potential vectors for pathogenic bacteria, we collected plastic litter from four rural sites in Zanzibar, and isolated adhered bacteria. Isolates were short-read sequenced for further molecular analysis. This revealed that collected plastic litter was associated with diverse bacterial species, including human pathogens Citrobacter freundii, Klebsiella pneumoniae and Vibrio cholerae. Furthermore, most isolates were found to be multidrug resistant. Our findings confirm that plastic litter, serve as novel reservoir for human multidrug resistant pathogenic bacteria that combined with poor sanitation and waste handling, may lead to transmission of infectious diseases and antimicrobial resistance. These findings add a new level to the environmental challenges with plastic pollution; the potential health risk associated with exposure to plastic litter.
Collapse
Affiliation(s)
- Farah N Rasool
- Roskilde University, Department of Science and Environment, Universitetsvej 1, Roskilde 4000, Denmark
| | - Mariana A Saavedra
- Roskilde University, Department of Science and Environment, Universitetsvej 1, Roskilde 4000, Denmark
| | - Siajali Pamba
- University of Dar es Salaam, Department of Aquatic Sciences and Fisheries Technology, Dar es Salaam, Tanzania
| | - Vonica Perold
- Fitz Patrick Institute of African Ornithology, DST-NRF Centre of Excellence, University of Cape Town, Rondebosch 7701, South Africa
| | - Aviti J Mmochi
- Institute of Marine Sciences, University of Dar es Salaam, P.O. Box 668, Zanzibar, Tanzania
| | - Mohammed Maalim
- Institute of Marine Sciences, University of Dar es Salaam, P.O. Box 668, Zanzibar, Tanzania
| | - Lone Simonsen
- Roskilde University, Department of Science and Environment, Universitetsvej 1, Roskilde 4000, Denmark
| | - Lars Buur
- Roskilde University, Department of Social Science and Business, Universitetsvej 1, Roskilde 4000, Denmark
| | | | - Kristian Syberg
- Roskilde University, Department of Science and Environment, Universitetsvej 1, Roskilde 4000, Denmark
| | - Lotte Jelsbak
- Roskilde University, Department of Science and Environment, Universitetsvej 1, Roskilde 4000, Denmark.
| |
Collapse
|
20
|
Bhandari M, Jennison AV, Rathnayake IU, Huygens F. Evolution, distribution and genetics of atypical Vibrio cholerae - A review. INFECTION GENETICS AND EVOLUTION 2021; 89:104726. [PMID: 33482361 DOI: 10.1016/j.meegid.2021.104726] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 01/07/2021] [Accepted: 01/15/2021] [Indexed: 12/21/2022]
Abstract
Vibrio cholerae is the etiological agent of cholera, a severe diarrheal disease, which can occur as either an epidemic or sporadic disease. Cholera pandemic-causing V. cholerae O1 and O139 serogroups originated from the Indian subcontinent and spread globally and millions of lives are lost each year, mainly in developing and underdeveloped countries due to this disease. V. cholerae O1 is further classified as classical and El Tor biotype which can produce biotype specific cholera toxin (CT). Since 1961, the current seventh pandemic El Tor strains replaced the sixth pandemic strains resulting in the classical biotype strain that produces classical CT. The ongoing evolution of Atypical El Tor V. cholerae srains encoding classical CT is of global concern. The severity in the pathophysiology of these Atypical El Tor strains is significantly higher than El Tor or classical strains. Pathogenesis of V. cholerae is a complex process that involves coordinated expression of different sets of virulence-associated genes to cause disease. We are yet to understand the complete virulence profile of V. cholerae, including direct and indirect expression of genes involved in its survival and stress adaptation in the host. In recent years, whole genome sequencing has paved the way for better understanding of the evolution and strain distribution, outbreak identification and pathogen surveillance for the implementation of direct infection control measures in the clinic against many infectious pathogens including V. cholerae. This review provides a synopsis of recent studies that have contributed to the understanding of the evolution, distribution and genetics of the seventh pandemic Atypical El Tor V. cholerae strains.
Collapse
Affiliation(s)
- Murari Bhandari
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia; Public Health Microbiology, Forensic and Scientific Services, Queensland Department of Health, Brisbane, QLD, Australia
| | - Amy V Jennison
- Public Health Microbiology, Forensic and Scientific Services, Queensland Department of Health, Brisbane, QLD, Australia
| | - Irani U Rathnayake
- Public Health Microbiology, Forensic and Scientific Services, Queensland Department of Health, Brisbane, QLD, Australia
| | - Flavia Huygens
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia.
| |
Collapse
|
21
|
Fu H, Yu P, Liang W, Kan B, Peng X, Chen L. Virulence, Resistance, and Genomic Fingerprint Traits of Vibrio cholerae Isolated from 12 Species of Aquatic Products in Shanghai, China. Microb Drug Resist 2020; 26:1526-1539. [PMID: 33156741 PMCID: PMC7757592 DOI: 10.1089/mdr.2020.0269] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Vibrio cholerae is a waterborne bacterium and can cause epidemic cholera disease worldwide. Continuous monitoring of V. cholerae contamination in aquatic products is imperative for assuring food safety. In this study, we determined virulence, antimicrobial susceptibility, heavy metal tolerance, and genomic fingerprints of 370 V. cholerae isolates recovered from 12 species of commonly consumed aquatic products collected from July to September of 2018 in Shanghai, China. Among the species, Leiocassis longirostris, Ictalurus punetaus, Ophiocephalus argus Cantor, and Pelteobagrus fulvidraco were for the first time detected for V. cholerae. Toxin genes ctxAB, tcpA, ace, and zot were absent from all the V. cholerae isolates. However, high occurrence of virulence-associated genes was detected, such as hapA (82.7%), hlyA (81.4%), rtxCABD (81.4%, 24.3%, 80.3%, and 80.8%, respectively), and tlh (80.5%). Approximately 62.2% of the 370 V. cholerae isolates exhibited resistance to streptomycin, followed by ampicillin (60.3%), rifampicin (53.8%), trimethoprim (38.4%), and sulfamethoxazole-trimethoprim (37.0%). Moreover, ∼57.6% of the isolates showed multidrug resistant phenotypes with 57 resistance profiles, which was significantly different among the 12 species (multiple antimicrobial resistance index, p < 0.001). Meanwhile, high incidence of tolerance to heavy metals Hg2+ (69.5%), Ni2+ (32.4%), and Cd2+ (30.8%) was observed among the isolates. The enterobacterial repetitive intergenic consensus-polymerase chain reaction (ERIC-PCR)-based fingerprinting profiles classified the 370 V. cholerae isolates into 239 different ERIC-genotypes, which demonstrated diverse genomic variation among the isolates. Overall, the results in this study meet the increasing need of food safety risk assessment of aquatic products.
Collapse
Affiliation(s)
- Huiyu Fu
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), China Ministry of Agriculture, College of Food Science and Technology, Shanghai Ocean University, Shanghai, People's Republic of China
| | - Pan Yu
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), China Ministry of Agriculture, College of Food Science and Technology, Shanghai Ocean University, Shanghai, People's Republic of China
| | - Weili Liang
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Biao Kan
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Xu Peng
- Archaea Centre, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Lanming Chen
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), China Ministry of Agriculture, College of Food Science and Technology, Shanghai Ocean University, Shanghai, People's Republic of China
| |
Collapse
|
22
|
Danso EK, Asare P, Otchere ID, Akyeh LM, Asante-Poku A, Aboagye SY, Osei-Wusu S, Opare D, Ntoumi F, Zumla A, Duodu S, Yeboah-Manu D. A molecular and epidemiological study of Vibrio cholerae isolates from cholera outbreaks in southern Ghana. PLoS One 2020; 15:e0236016. [PMID: 32649692 PMCID: PMC7351161 DOI: 10.1371/journal.pone.0236016] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 06/27/2020] [Indexed: 11/18/2022] Open
Abstract
Cholera remains a major global public health threat and continuous emergence of new Vibrio cholerae strains is of major concern. We conducted a molecular epidemiological study to detect virulence markers and antimicrobial resistance patterns of V. cholerae isolates obtained from the 2012–2015 cholera outbreaks in Ghana. Archived clinical isolates obtained from the 2012, 2014 and 2015 cholera outbreaks in Ghana were revived by culture and subjected to microscopy, biochemical identification, serotyping, antibiotic susceptibility testing, molecular detection of distinct virulence factors and Multi-Locus Variable-Number of Tandem-Repeat Analysis (MLVA). Of 277 isolates analysed, 168 (60.6%) were confirmed to be V. cholerae and 109 (39.4%) isolates constituted other bacteria (Escherichia coli, Aeromonas sobria, Pseudomonas aeruginosa, Enterobacter cloacae and Enterococci faecalis). Serotyping the V. cholerae isolates identified 151 (89.9%) as Ogawa, 3 (1.8%) as Inaba and 14 (8.3%) as non-O1/O139 serogroup. The O1 serogroup isolates (154/168, 91.7%) carried the cholera toxin ctxB gene as detected by PCR. Additional virulence genes detected include zot, tcpA, ace, rtxC, toxR, rtxA, tcpP, hlyA and tagA. The most common and rare virulence factors detected among the isolates were rtxC (165 isolates) and tcpP (50 isolates) respectively. All isolates from 2014 and 2015 were multidrug resistant against the selected antibiotics. MLVA differentiated the isolates into 2 large unique clones A and B, with each predominating in a particular year. Spatial analysis showed clustering of most isolates at Ablekuma sub-district. Identification of several virulence genes among the two different genotypes of V. cholerae isolates and resistance to first- and second-line antibiotics, calls for scaleup of preventive strategies to reduce transmission, and strengthening of public health laboratories for rapid antimicrobial susceptibility testing to guide accurate treatment. Our findings support the current WHO licensed cholera vaccines which include both O1 Inaba and Ogawa serotypes.
Collapse
Affiliation(s)
- Emelia Konadu Danso
- Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana Legon, Legon, Accra, Ghana
- Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Legon, Accra, Ghana
| | - Prince Asare
- Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - Isaac Darko Otchere
- Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - Lorenzo Moses Akyeh
- Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - Adwoa Asante-Poku
- Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - Samuel Yaw Aboagye
- Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
- Institute for Environment and Sanitation Studies, University of Ghana, Legon, Accra, Ghana
| | - Stephen Osei-Wusu
- Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - David Opare
- National Public Health and Reference Laboratory, Accra, Ghana
| | - Francine Ntoumi
- Université Marien NGouabi, Fondation Congolaise pour la Recherche Médicale (FCRM), Brazzaville, Congo
- Institute for Tropical Medicine, University of Tübingen, Tübingen, Germany
| | - Alimuddin Zumla
- Division of Infection and Immunity, University College London and NIHR Biomedical Research Centre, UCL Hospitals NHS Foundation Trust, London, England, United Kingdom
| | - Samuel Duodu
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana Legon, Legon, Accra, Ghana
- Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Legon, Accra, Ghana
| | - Dorothy Yeboah-Manu
- Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana Legon, Legon, Accra, Ghana
- * E-mail:
| |
Collapse
|
23
|
Irenge LM, Ambroise J, Mitangala PN, Bearzatto B, Kabangwa RKS, Durant JF, Gala JL. Genomic analysis of pathogenic isolates of Vibrio cholerae from eastern Democratic Republic of the Congo (2014-2017). PLoS Negl Trop Dis 2020; 14:e0007642. [PMID: 32310947 PMCID: PMC7192507 DOI: 10.1371/journal.pntd.0007642] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 04/30/2020] [Accepted: 03/12/2020] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Over the past recent years, Vibrio cholerae has been associated with outbreaks in sub-Saharan Africa, notably in Democratic Republic of the Congo (DRC). This study aimed to determine the genetic relatedness of isolates responsible for cholera outbreaks in eastern DRC between 2014 and 2017, and their potential spread to bordering countries. METHODS/PRINCIPAL FINDINGS Phenotypic analysis and whole genome sequencing (WGS) were carried out on 78 clinical isolates of V. cholerae associated with cholera in eastern provinces of DRC between 2014 and 2017. SNP-based phylogenomic data show that most isolates (73/78) were V. cholerae O1 biotype El Tor with CTX-3 type prophage. They fell within the third transmission wave of the current seventh pandemic El Tor (7PET) lineage and were contained in the introduction event (T)10 in East Africa. These isolates clustered in two sub-clades corresponding to Multiple Locus Sequence Types (MLST) profiles ST69 and the newly assigned ST515, the latter displaying a higher genetic diversity. Both sub-clades showed a distinct geographic clustering, with ST69 isolates mostly restricted to Lake Tanganyika basin and phylogenetically related to V. cholerae isolates associated with cholera outbreaks in western Tanzania, whereas ST515 isolates were disseminated along the Albertine Rift and closely related to isolates in South Sudan, Uganda, Tanzania and Zambia. Other V. cholerae isolates (5/78) were non-O1/non-O139 without any CTX prophage and no phylogenetic relationship with already characterized non-O1/non-O139 isolates. CONCLUSIONS/SIGNIFICANCE Current data confirm the association of both DRC O1 7PET (T)10 sub-clades ST69 and ST515 with recurrent outbreaks in eastern DRC and at regional level over the past 10 years. Interestingly, while ST69 is predominantly a locally endemic sequence type, ST515 became adaptable enough to expand across DRC neighboring countries.
Collapse
Affiliation(s)
- Leonid M. Irenge
- Center for Applied Molecular Technologies, Institute of Clinical and Experimental Research, Université catholique de Louvain, Brussels, Belgium
- Defence Laboratories Department, ACOS Ops&Trg, Belgian Armed Forces, Peutie, Belgium
| | - Jérôme Ambroise
- Center for Applied Molecular Technologies, Institute of Clinical and Experimental Research, Université catholique de Louvain, Brussels, Belgium
| | | | - Bertrand Bearzatto
- Center for Applied Molecular Technologies, Institute of Clinical and Experimental Research, Université catholique de Louvain, Brussels, Belgium
| | | | - Jean-François Durant
- Center for Applied Molecular Technologies, Institute of Clinical and Experimental Research, Université catholique de Louvain, Brussels, Belgium
| | - Jean-Luc Gala
- Center for Applied Molecular Technologies, Institute of Clinical and Experimental Research, Université catholique de Louvain, Brussels, Belgium
- * E-mail:
| |
Collapse
|
24
|
Elimian KO, Mezue S, Musah A, Oyebanji O, Fall IS, Yennan S, Yao M, Abok PO, Williams N, Omar LH, Balde T, Ampah K, Okudo I, Ibrahim L, Jinadu A, Alemu W, Peter C, Ihekweazu C. What are the drivers of recurrent cholera transmission in Nigeria? Evidence from a scoping review. BMC Public Health 2020; 20:432. [PMID: 32245445 PMCID: PMC7118857 DOI: 10.1186/s12889-020-08521-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 03/12/2020] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND The 2018 cholera outbreak in Nigeria affected over half of the states in the country, and was characterised by high attack and case fatality rates. The country continues to record cholera cases and related deaths to date. However, there is a dearth of evidence on context-specific drivers and their operational mechanisms in mediating recurrent cholera transmission in Nigeria. This study therefore aimed to fill this important research gap, with a view to informing the design and implementation of appropriate preventive and control measures. METHODS Four bibliographic literature sources (CINAHL (Plus with full text), Web of Science, Google Scholar and PubMed), and one journal (African Journals Online) were searched to retrieve documents relating to cholera transmission in Nigeria. Titles and abstracts of the identified documents were screened according to a predefined study protocol. Data extraction and bibliometric analysis of all eligible documents were conducted, which was followed by thematic and systematic analyses. RESULTS Forty-five documents met the inclusion criteria and were included in the final analysis. The majority of the documents were peer-reviewed journal articles (89%) and conducted predominantly in the context of cholera epidemics (64%). The narrative analysis indicates that social, biological, environmental and climatic, health systems, and a combination of two or more factors appear to drive cholera transmission in Nigeria. Regarding operational dynamics, a substantial number of the identified drivers appear to be functionally interdependent of each other. CONCLUSION The drivers of recurring cholera transmission in Nigeria are diverse but functionally interdependent; thus, underlining the importance of adopting a multi-sectoral approach for cholera prevention and control.
Collapse
Affiliation(s)
- Kelly Osezele Elimian
- Nigeria Centre for Disease Control, Abuja, Nigeria
- University of Benin, Benin, Nigeria
| | | | | | | | - Ibrahima Soce Fall
- World Health Organization, Regional Office for Africa, Brazzaville, Republic of Congo
| | | | - Michel Yao
- World Health Organization, Regional Office for Africa, Brazzaville, Republic of Congo
| | - Patrick Okumu Abok
- World Health Organization, Regional Office for Africa, Brazzaville, Republic of Congo
| | | | - Lynda Haj Omar
- World Health Organization, Regional Office for Africa, Brazzaville, Republic of Congo
| | - Thieno Balde
- World Health Organization, Regional Office for Africa, Brazzaville, Republic of Congo
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Naha A, Mandal RS, Samanta P, Saha RN, Shaw S, Ghosh A, Chatterjee NS, Dutta P, Okamoto K, Dutta S, Mukhopadhyay AK. Deciphering the possible role of ctxB7 allele on higher production of cholera toxin by Haitian variant Vibrio cholerae O1. PLoS Negl Trop Dis 2020; 14:e0008128. [PMID: 32236098 PMCID: PMC7112172 DOI: 10.1371/journal.pntd.0008128] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 02/10/2020] [Indexed: 12/16/2022] Open
Abstract
Cholera continues to be an important public health concern in developing countries where proper hygiene and sanitation are compromised. This severe diarrheal disease is caused by the Gram-negative pathogen Vibrio cholerae belonging to serogroups O1 and O139. Cholera toxin (CT) is the prime virulence factor and is directly responsible for the disease manifestation. The ctxB gene encodes cholera toxin B subunit (CTB) whereas the A subunit (CTA) is the product of ctxA gene. Enzymatic action of CT depends on binding of B pentamers to the lipid-based receptor ganglioside GM1. In recent years, emergence of V. cholerae Haitian variant strains with ctxB7 allele and their rapid spread throughout the globe has been linked to various cholera outbreaks in Africa and Asia. These strains produce classical type (WT) CTB except for an additional mutation in the signal sequence region where an asparagine (N) residue replaces a histidine (H) at the 20th amino acid position (H20N) of CTB precursor (pre-CTB). Here we report that Haitian variant V. cholerae O1 strains isolated in Kolkata produced higher amount of CT compared to contemporary O1 El Tor variant strains under in vitro virulence inducing conditions. We observed that the ctxB7 allele, itself plays a pivotal role in higher CT production. Based on our in silico analysis, we hypothesized that higher accumulation of toxin subunits from ctxB7 allele might be attributed to the structural alteration at the CTB signal peptide region of pre-H20N CTB. Overall, this study provides plausible explanation regarding the hypertoxigenic phenotype of the Haitian variant strains which have spread globally, possibly through positive selection for increased pathogenic traits.
Collapse
Affiliation(s)
- Arindam Naha
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Rahul Shubhra Mandal
- Biomedical Informatics Center, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Prosenjit Samanta
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Rudra Narayan Saha
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Sreeja Shaw
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Amit Ghosh
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | | | - Pujarini Dutta
- Division of Clinical Medicine, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Keinosuke Okamoto
- Collaborative Research Center of Okayama University for Infectious Diseases at NICED, Kolkata, India
| | - Shanta Dutta
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Asish Kumar Mukhopadhyay
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
- * E-mail:
| |
Collapse
|
26
|
Genome Dynamics of Vibrio cholerae Isolates Linked to Seasonal Outbreaks of Cholera in Dhaka, Bangladesh. mBio 2020; 11:mBio.03339-19. [PMID: 32047137 PMCID: PMC7018647 DOI: 10.1128/mbio.03339-19] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The switching of serotype from Ogawa to Inaba and back to Ogawa has been observed temporally in Vibrio cholerae O1, which is responsible for endemic cholera in Bangladesh. The serospecificity is key for effective intervention and for preventing cholera, a deadly disease that continues to cause significant morbidity and mortality worldwide. In the present study, WGS of V. cholerae allowed us to better understand the factors associated with the serotype switching events observed during 2015 to 2018. Genomic data analysis of strains isolated during this interval highlighted variations in the genes ctxB, tcpA, and rtxA and also identified significant differences in the genetic content of the mobilome, which included key elements such as SXT ICE, VSP-II, and PLE. Our results indicate that selective forces such as antibiotic resistance and phage resistance might contribute to the clonal expansion and predominance of a particular V. cholerae serotype responsible for an outbreak. The temporal switching of serotypes from serotype Ogawa to Inaba and back to Ogawa was identified in Vibrio cholerae O1, which was responsible for seasonal outbreaks of cholera in Dhaka during the period 2015 to 2018. In order to delineate the factors responsible for this serotype transition, we performed whole-genome sequencing (WGS) of V. cholerae O1 multidrug-resistant strains belonging to both the serotypes that were isolated during this interval where the emergence and subsequent reduction of the Inaba serotype occurred. The whole-genome-based phylogenetic analysis revealed clonal expansion of the Inaba isolates mainly responsible for the peaks of infection during 2016 to 2017 and that they might have evolved from the prevailing Ogawa strains in 2015 which coclustered with them. Furthermore, the wbeT gene in these Inaba serotype isolates was inactivated due to insertion of a transposable element at the same position signifying the clonal expansion. Also, V. cholerae isolates in the Inaba serotype dominant clade mainly contained classical ctxB allele and revealed differences in the genetic composition of Vibrioseventh pandemic island II (VSP-II) and the SXT integrative and conjugative element (SXT-ICE) compared to those of Ogawa serotype strains which remerged in 2018. The variable presence of phage-inducible chromosomal island-like element 1 (PLE1) was also noted in the isolates of the Inaba serotype dominant clade. The detailed genomic characterization of the sequenced isolates has shed light on the forces which could be responsible for the periodic changes in serotypes of V. cholerae and has also highlighted the need to analyze the mobilome in greater detail to obtain insights into the mechanisms behind serotype switching.
Collapse
|
27
|
Mwape K, Kwenda G, Kalonda A, Mwaba J, Lukwesa-Musyani C, Ngulube J, Smith AM, Mwansa J. Characterisation of Vibrio cholerae isolates from the 2009, 2010 and 2016 cholera outbreaks in Lusaka province, Zambia. Pan Afr Med J 2020; 35:32. [PMID: 32499849 PMCID: PMC7245973 DOI: 10.11604/pamj.2020.35.32.18853] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 11/29/2019] [Indexed: 11/24/2022] Open
Abstract
Introduction In 2009 and 2010, more than 6,000 cholera cases were recorded during these outbreaks with more than 80% of cases recorded in Lusaka province. After a five-year break, in 2016 an outbreak occurred in Lusaka, causing more than 1,000 cases of cholera. This study will strengthen the epidemiological information on the changing characteristics of the cholera outbreaks, for treatment, prevention and control of the disease. Methods This was a laboratory-based descriptive cross-sectional study conducted at the University Teaching Hospital in Lusaka, Zambia. A total of 83 V. cholerae O1 isolates were characterised by biochemical testing, serotyping, antimicrobial susceptibility testing, and macrorestriction analysis using Pulsed-Field Gel Electrophoresis. Results Macrorestriction analysis of the isolates demonstrated high genetic diversity among the isolates with 16 different patterns. The largest pattern comprised 9 isolates while the smallest one had 1 isolate. 2009 and 2010 isolates were highly resistant to nalidixic acid and cotrimoxazole, but highly sensitive to azithromycin and ampicillin. Of the fifty-two isolates from the 2016 cholera outbreak, 90% (47) were sensitive to cotrimoxazole, 94% (49) to tetracycline, and 98% (51) to azithromycin, while 98% (51) were resistant to nalidixic acid and 31(60%) to ampicillin. Conclusion macrorestriction analysis demonstrated high genetic diversity among the V. cholerae O1 strains, suggesting that these isolates were probably not from a similar source. This study also revealed the emergence of multidrug resistance among the 2016 V. cholerae outbreak isolates but were susceptible to cotrimoxazole, tetracycline, and azithromycin, which can be used for treatment of the cholera cases.
Collapse
Affiliation(s)
- Kapambwe Mwape
- Department of Basic Sciences, Michael Chilufya Sata School of Medicine, Copperbelt University, Ndola, Zambia.,Department of Pathology and Microbiology, School of Medicine, University of Zambia, Lusaka, Zambia
| | - Geoffrey Kwenda
- Department of Biomedical Sciences, School of Health Sciences, University of Zambia, Lusaka, Zambia
| | - Annie Kalonda
- Department of Biomedical Sciences, School of Health Sciences, University of Zambia, Lusaka, Zambia
| | - John Mwaba
- Department of Biomedical Sciences, School of Health Sciences, University of Zambia, Lusaka, Zambia.,Department of Pathology and Microbiology, University Teaching Hospital, Lusaka, Zambia
| | | | - Joseph Ngulube
- Department of Pathology and Microbiology, University Teaching Hospital, Lusaka, Zambia
| | - Anthony Marius Smith
- Bacteriology Division, Centre for Enteric Diseases, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa.,Department of Clinical Microbiology and Infectious Diseases, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - James Mwansa
- Department of Medical Microbiology, Faculty of Medicine, Lusaka Apex Medical University, Lusaka, Zambia
| |
Collapse
|
28
|
Kerketta AS, Kar SK, Khuntia HK. Detection of Haitian ctxB7 & tcpA alleles in Vibrio cholerae O1 El Tor biotype in Puri, Odisha, India. Indian J Med Res 2020; 149:558-560. [PMID: 31411182 PMCID: PMC6676824 DOI: 10.4103/ijmr.ijmr_1130_17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Anna Salomi Kerketta
- Division of Microbiology, ICMR-Regional Medical Research Center, Bhubaneswar 751 023, Odisha, India
| | - Shantanu Kumar Kar
- Division of Microbiology, ICMR-Regional Medical Research Center, Bhubaneswar 751 023, Odisha, India
| | - Hemant Kumar Khuntia
- Division of Microbiology, ICMR-Regional Medical Research Center, Bhubaneswar 751 023, Odisha, India
| |
Collapse
|
29
|
Bastaraud A, Cecchi P, Handschumacher P, Altmann M, Jambou R. Urbanization and Waterborne Pathogen Emergence in Low-Income Countries: Where and How to Conduct Surveys? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17020480. [PMID: 31940838 PMCID: PMC7013806 DOI: 10.3390/ijerph17020480] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/16/2019] [Accepted: 12/20/2019] [Indexed: 11/29/2022]
Abstract
A major forthcoming sanitary issue concerns the apparition and spreading of drug-resistant microorganisms, potentially threatening millions of humans. In low-income countries, polluted urban runoff and open sewage channels are major sources of microbes. These microbes join natural microbial communities in aquatic ecosystems already impacted by various chemicals, including antibiotics. These composite microbial communities must adapt to survive in such hostile conditions, sometimes promoting the selection of antibiotic-resistant microbial strains by gene transfer. The low probability of exchanges between planktonic microorganisms within the water column may be significantly improved if their contact was facilitated by particular meeting places. This could be specifically the case within biofilms that develop on the surface of the myriads of floating macroplastics increasingly polluting urban tropical surface waters. Moreover, as uncultivable bacterial strains could be involved, analyses of the microbial communities in their whole have to be performed. This means that new-omic technologies must be routinely implemented in low- and middle-income countries to detect the appearance of resistance genes in microbial ecosystems, especially when considering the new ‘plastic context.’ We summarize the related current knowledge in this short review paper to anticipate new strategies for monitoring and surveying microbial communities.
Collapse
Affiliation(s)
- Alexandra Bastaraud
- Laboratoire d’Hygiène des Aliments et de l’Environnement, Institut Pasteur de Madagascar, BP 1274, Antananarivo 101, Madagascar;
| | - Philippe Cecchi
- MARBEC (IRD, IFREMER, UM2 and CNRS), University Montpellier, 34095 Montpellier, France;
- Centre de Recherche Océanologique (CRO), Abidjan BPV 18, Ivory Coast
| | - Pascal Handschumacher
- IRD UMR 912 SESSTIM, INSERM-IRD-Université de Marseille II, 13000 Marseille, France;
| | - Mathias Altmann
- ISPED Université Victor Segalen Bordeaux II, 146 rue Leo Saignat, 33076 Bordeaux cedex, France;
| | - Ronan Jambou
- Département de Parasitologie et des insectes vecteurs, Institut Pasteur Paris, 75015 Paris, France
- Correspondence: ; Tel.: +33-622-10-72-96
| |
Collapse
|
30
|
Adesiyan IM, Bisi-Johnson MA, Ogunfowokan AO, Okoh AI. Incidence and antimicrobial susceptibility fingerprints of Plesiomonas shigelliodes isolates in water samples collected from some freshwater resources in Southwest Nigeria. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 665:632-640. [PMID: 30776635 DOI: 10.1016/j.scitotenv.2019.02.062] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 02/03/2019] [Accepted: 02/04/2019] [Indexed: 06/09/2023]
Abstract
Plesiomonas shigelloides, is an emerging and significant enteric pathogen in water having implication in both localised and gastrointestinal infections with characteristic of displaying high resistance against commonly used antibiotics. This study evaluated the prevalence of Plesiomonas shigelloides and their antibiogram fingerprints in water sample collected from four rivers in South-western Nigeria. In all, 148 presumptive Plesiomonas shigelloides isolates was recovered from the rivers out of which 66 (44.6%) were confirmed positive for the organism using polymerase chain reaction techniques. Confirmed isolates were evaluated for their antibiogram profiles against a panel of 20 antimicrobials using the disc diffusion method and further screened for relevant antibiotic resistance genes. Resistance of the isolates against the antimicrobials followed the order: sulphamethoxazole (100%), erythromycin (93%), ampicillin (90%), cephalotin (82%), streptomycin (64%), and chloramphenicol (58%), amoxicillin (53%), cefotaxime (50%), tetracycline (49%), neomycin (38%) and trimethoprim + sulphamethoxazole (38%). Conversely, all the isolates were susceptible against netilmicin, and susceptibility against the other antibiotics follows the order: meropenem (94%), gentamicin (88%), imipenem (79%), amikacin (70%), ciprofloxacin (70%), norfloxacin (59%), trimethoprim (56%) and ceftazidine (56%). The multiple antibiotic resistance indices of the organism were higher than the accepted threshold of 0.2. The incidence of 11 antimicrobial resistance determinants were obtained as follows: [sulphonamides; (sulI (18%), sulII (20%), dfr1 (70%), dfr(18) (5%)), [beta-lactams; (ampC 37%)], [tetracyclines; (tetA (78%), tetE (57%)], [phenicols; (catII (16%), cmlA1 (11%)] and [aminoglycosides; (aphA2 (36%) and strA (67%)]. Pearson chi-square exact test revealed positive associations among tetA, tetE, sullI and catII and tetA genes. To the best of our knowledge, this is the first report on the incidence and antibiogram fingerprint of P. shigelloides in these freshwater resources and we conclude that these rivers are important reservoirs of multiple antimicrobial resistant biotypes of this organism, and consequently a threat to public health.
Collapse
Affiliation(s)
- Ibukun M Adesiyan
- Institute of Ecology and Environmental Studies, Obafemi Awolowo University, Ile Ife, Nigeria; South Africa Medical Research Council, Water Monitoring Centre, University of Fort Hare, South Africa; Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, South Africa.
| | | | - Aderemi O Ogunfowokan
- Department of Industrial Chemistry, The Technical University, Ibadan, Oyo State, Nigeria; Department of Chemistry, Obafemi Awolowo University, Ile Ife, Nigeria
| | - Anthony I Okoh
- South Africa Medical Research Council, Water Monitoring Centre, University of Fort Hare, South Africa; Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, South Africa
| |
Collapse
|
31
|
Li X, Yang H, Gao X, Zhang H, Chen N, Miao Z, Liu X, Zhang X. The pathogenicity characterization of non-O1 Vibrio cholerae and its activation on immune system in freshwater shrimp Macrobrachium nipponense. FISH & SHELLFISH IMMUNOLOGY 2019; 87:507-514. [PMID: 30711493 DOI: 10.1016/j.fsi.2019.01.050] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 01/26/2019] [Accepted: 01/30/2019] [Indexed: 06/09/2023]
Abstract
Outbreaks of mass mortalities among cultured Macrobrachium nipponense occurred in a commercial hatchery during the autumn of 2017 in Jiangsu province, P. R. China, and non-O1 Vibrio cholerae was isolated and identified as causal agents of M. nipponense, with a LD50 value 4.09 × 104 CFU/mL. Detection of virulence-associated genes by PCR indicated that XL1 was positive for Mp, HlyA, RtxA, OmpU, Ace, Zot and T6SS. Furthermore, the results of extracellular enzyme analysis revealed that the strain can produce lecithinase, amylase, gelatinase and hemolysin. Histopathological analysis revealed that the hepatic tubule lumen and the gap between the hepatic tubules became larger, and the brush border disappeared in the hepatopancreas. Quantitive real-time PCR (qRT-PCR) was undertaken to measure mRNA expression levels for thirteen immune related genes in M. nipponense after non-O1 V. cholerae infection. The transcriptional analysis of these immune related genes demonstrated that the expression levels of dorsal, relish, p38, crustin1, crustin2, crustin3, hemocyanin, i-lysozyme, anti-lipopolysaccharide factors 1, anti-lipopolysaccharide factors 2, prophenoloxidase were significantly up-regulated in hemolymph of M. nipponense post-infection. These results revealed varying expression profiles and clear transcriptional activation of these immune related genes in hemolymph, which will contribute to better understand the pathogenesis and host defensive system in non-O1 V. cholerae invasion.
Collapse
Affiliation(s)
- Xixi Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Hui Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Xiaojian Gao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Honghua Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Nan Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Zhen Miao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Xiaodan Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Xiaojun Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
32
|
Smith AM. Review of molecular subtyping methodologies used to investigate outbreaks due to multidrug-resistant enteric bacterial pathogens in sub-Saharan Africa. Afr J Lab Med 2019; 8:760. [PMID: 31205868 PMCID: PMC6556818 DOI: 10.4102/ajlm.v8i1.760] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 09/25/2018] [Indexed: 01/05/2023] Open
Abstract
Background In sub-Saharan Africa, molecular epidemiological investigation of outbreaks caused by antimicrobial-resistant enteric bacterial pathogens have mostly been described for Salmonella species, Vibrio cholerae, Shigella species and Escherichia coli. For these organisms, I reviewed all publications describing the use of molecular subtyping methodologies to investigate outbreaks caused by multidrug-resistant (MDR) enteric bacterial infections. Objectives To describe the use of molecular subtyping methodologies to investigate outbreaks caused by MDR enteric bacterial pathogens in sub-Saharan Africa and to describe the current status of molecular subtyping capabilities in the region. Methods A PubMed database literature search (English language only) was performed using the search strings: ‘Africa outbreak MDR’, ‘Africa outbreak multi’, ‘Africa outbreak multidrug’, ‘Africa outbreak multi drug’, ‘Africa outbreak resistance’, ‘Africa outbreak resistant’, ‘Africa outbreak drug’, ‘Africa outbreak antibiotic’, ‘Africa outbreak antimicrobial’. These search strings were used in combination with genus and species names of the organisms listed above. All results were included in the review. Results The year 1991 saw one of the first reports describing the use of molecular subtyping methodologies in sub-Saharan Africa; this included the use of plasmid profiling to characterise Salmonella Enteritidis. To date, several methodologies have been used; pulsed-field gel electrophoresis analysis and multilocus sequence typing have been the most commonly used methodologies. Investigations have particularly highlighted the emergence and spread of MDR clones; these include Salmonella Typhi H58 and Salmonella Typhimurium ST313 clones. In recent times, whole-genome sequencing (WGS) analysis approaches have increasingly been used. Conclusion Traditional molecular subtyping methodologies are still commonly used and still have their place in investigations; however, WGS approaches have increasingly been used and are slowly gaining a stronghold. African laboratories need to start adapting their molecular surveillance methodologies to include WGS, as it is foreseen that WGS analysis will eventually replace all traditional methodologies.
Collapse
Affiliation(s)
- Anthony M Smith
- Centre for Enteric Diseases, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa.,Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
33
|
Ghosh P, Sinha R, Samanta P, Saha DR, Koley H, Dutta S, Okamoto K, Ghosh A, Ramamurthy T, Mukhopadhyay AK. Haitian Variant Vibrio cholerae O1 Strains Manifest Higher Virulence in Animal Models. Front Microbiol 2019; 10:111. [PMID: 30804907 PMCID: PMC6370728 DOI: 10.3389/fmicb.2019.00111] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 01/18/2019] [Indexed: 11/13/2022] Open
Abstract
Vibrio cholerae causes fatal diarrheal disease cholera in humans due to consumption of contaminated water and food. To instigate the disease, the bacterium must evade the host intestinal innate immune system; penetrate the mucus layer of the small intestine, adhere and multiply on the surface of microvilli and produce toxin(s) through the action of virulence associated genes. V. cholerae O1 that has caused a major cholera outbreak in Haiti contained several unique genetic signatures. These novel traits are used to differentiate them from the canonical El Tor strains. Several studies reported the spread of these Haitian variant strains in different parts of the world including Asia and Africa, but there is a paucity of information on the clinical consequence of these genetic changes. To understand the impact of these changes, we undertook a study involving mice and rabbit models to evaluate the pathogenesis. The colonization ability of Haitian variant strain in comparison to canonical El Tor strain was found to be significantly more in both suckling mice and rabbit model. Adult mice also displayed the same results. Besides that, infection patterns of Haitian variant strains showed a completely different picture. Increased mucosal damaging, colonization, and inflammatory changes were observed through hematoxylin-eosin staining and transmission electron microscopy. Fluid accumulation ability was also significantly higher in rabbit model. Our study indicated that these virulence features of the Haitian variant strain may have some association with the severe clinical outcome of the cholera patients in different parts of the world.
Collapse
Affiliation(s)
- Priyanka Ghosh
- Division of Bacteriology, National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Ritam Sinha
- Division of Bacteriology, National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Prosenjit Samanta
- Division of Bacteriology, National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Dhira Rani Saha
- Division of Bacteriology, National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Hemanta Koley
- Division of Bacteriology, National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Shanta Dutta
- Division of Bacteriology, National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Keinosuke Okamoto
- Collaborative Research Center of Okayama University for Infectious Diseases in India, Kolkata, India
| | - Amit Ghosh
- Division of Bacteriology, National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - T. Ramamurthy
- Center for Human Microbial Ecology, Translational Health Science and Technology Institute, Faridabad, India
| | - Asish K. Mukhopadhyay
- Division of Bacteriology, National Institute of Cholera and Enteric Diseases, Kolkata, India
| |
Collapse
|
34
|
Investigating the virulence genes and antibiotic susceptibility patterns of Vibrio cholerae O1 in environmental and clinical isolates in Accra, Ghana. BMC Infect Dis 2019; 19:76. [PMID: 30665342 PMCID: PMC6341726 DOI: 10.1186/s12879-019-3714-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 01/10/2019] [Indexed: 12/17/2022] Open
Abstract
Background Cholera has been endemic in Ghana since its detection in 1970. It has been shown that long-term survival of the bacteria may be attained in aquatic environments. Consequently, cholera outbreaks may be triggered predominantly in densely populated urban areas. We investigated clinical and environmental isolates of Vibrio cholerae O1 in Accra to determine their virulence genes, antibiotic susceptibility patterns and environmental factors maintaining their persistence in the environment. Methods Water samples from various sources were analyzed for the presence of V. cholerae O1 using culture methods. Forty clinical isolates from a previous cholera outbreak were included in the study for comparison. Antibiotic susceptibility patterns of the bacteria were determined by disc diffusion. Virulence genes were identified by analyzing genes for ctx, tcpA (tcpAEl Tor tcpACl), zot, ompW, rbfO1 and attRS using PCR. Physicochemical characteristics of water were investigated using standard methods. One-way ANOVA and student t - test were employed to analyze the relationship between physicochemical factors and the occurrence of V. cholerae O1. Results Eleven V. cholerae O1 strains were successfully isolated from streams, storage tanks and wells during the study period. All isolates were resistant to one or more of the eight antibiotics used. Multidrug resistance was observed in over 97% of the isolates. All isolates had genes for at least one virulence factor. Vibrio cholerae toxin gene was detected in 82.4% of the isolates. Approximately 81.8% of the isolates were positive for tcpAEl Tor gene, but also harbored the tcpAcl gene. Isolates were grouped into thirteen genotypes based on the genes analyzed. High temperature, salinity, total dissolved solids and conductivity was found to significantly correlate positively with isolation of V. cholerae O1. V. cholerae serotype Ogawa biotype El tor is the main biotype circulating in Ghana with the emergence of a hybrid strain. Conclusions Multidrug resistant V. cholerae O1 with different genotypes and pathogenicity are present in water sources and co-exist with non O1/O139 in the study area. Electronic supplementary material The online version of this article (10.1186/s12879-019-3714-z) contains supplementary material, which is available to authorized users.
Collapse
|
35
|
Mohammed Y, Aboderin AO, Okeke IN, Olayinka AT. Antimicrobial resistance of Vibrio cholerae from sub-Saharan Africa: A systematic review. Afr J Lab Med 2018; 7:778. [PMID: 30643734 PMCID: PMC6325272 DOI: 10.4102/ajlm.v7i2.778] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 09/27/2018] [Indexed: 01/25/2023] Open
Abstract
Background The World Health Assembly adopted the Global Action Plan on Antimicrobial Resistance, which includes improving the knowledge base through surveillance and research. Noteworthily, the World Health Organization has advocated a Global Antimicrobial Resistance Surveillance System to address the plan’s surveillance objective, with most African countries enrolling in or after 2017. Aim The aim of this article was to review prior data on antimicrobial resistance of Vibrio cholerae from sub-Saharan Africa with a view for future control and intervention strategies. Methods We used the Preferred Reporting Items for Systematic Review and Meta-Analysis (or ‘PRISMA’) guidelines to search the PubMed and African Journals Online databases, as well as additional articles provided by the Nigeria Centre for Disease Control, for articles reporting on the antibiotic susceptibility of V. cholerae between January 2000 and December 2017. Results We identified 340 publications, of which only 25 (reporting from 16 countries within the sub-Saharan African region) were eligible. The majority (20; 80.0%) of the cholera toxigenic V. cholerae isolates were of the serogroup O1 of the El Tor biotype with Ogawa and Inaba serotypes predominating. Resistance was predominantly documented to trimethoprim-sulphamethoxazole (50% of the studies), ampicillin (43.3% of the studies), chloramphenicol (43.3% of the studies) and streptomycin (30% of the studies). Resistance mechanisms were reported in 40% of the studies. Conclusion Our results demonstrate a documented antimicrobial resistance of V. cholerae to multiple antibiotic classes, including cell wall active agents and antimetabolites with evidence of phenotypic/genotypic resistance to fluoroquinolones.
Collapse
Affiliation(s)
- Yahaya Mohammed
- Department of Medical Microbiology and Parasitology, Faculty of Basic Clinical Sciences, College of Health Sciences, Usmanu Danfodiyo University, Sokoto, Nigeria
| | - Aaron O Aboderin
- Department of Medical Microbiology and Parasitology, College of Health Sciences, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Iruka N Okeke
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, University of Ibadan, Ibadan, Nigeria
| | - Adebola T Olayinka
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, Ahmadu Bello University, Zaria, Nigeria
| |
Collapse
|
36
|
Tulatorn S, Preeprem S, Vuddhakul V, Mittraparp-arthorn P. Comparison of virulence gene profiles and genomic fingerprints of Vibrio cholerae O1 and non-O1/non-O139 isolates from diarrheal patients in southern Thailand. Trop Med Health 2018; 46:31. [PMID: 30202236 PMCID: PMC6125998 DOI: 10.1186/s41182-018-0113-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 08/23/2018] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Vibrio cholerae is associated with severe watery diarrheal disease among people in many parts of the world, including the coastal provinces of Southern Thailand. There are relatively few studies focusing on the genetic characterization among V. cholerae isolates in this region. Therefore, this study aimed at exploring the presence of virulence genes and DNA fingerprints among V. cholerae O1 and non-O1/non-O139 isolates obtained from clinical samples in four southern coastal provinces during the period of 2001-2009 (n = 21). RESULTS All V. cholerae O1 isolates possessed ctxA, tcpA, zot, ace, hlyA, and vasH genes. However, only hlyA, vcsV2, and vasH genes were detected in the majority of the non-O1/non-O139 isolates. All O1 isolates showed indistinguishable PCR fingerprints by arbitrarily primed (AP)-PCR and enterobacterial repetitive intergenic consensus (ERIC)-PCR regardless of the geographical area and period of isolation. However, the multi-locus variable-number of tandem-repeat analysis (MLVA) could differentiate these O1 isolates (n = 11) into eight profiles. Isolates exhibiting an undistinguished MLVA profile also showed identical pulsed-field gel electrophoresis (PFGE). In addition, the O1 isolates were grouped into the same cluster by all methods used in this study. CONCLUSIONS This study demonstrated the presence of virulence genes and genetic diversity among different serogroups of V. cholerae isolates from clinical samples in southern Thailand. V. cholerae O1 isolated over a period of multiple years were genetically related, suggesting that they had a clonal origin, whereas non-O1/non-O139 isolates could have evolved independently.
Collapse
Affiliation(s)
- Sakrapee Tulatorn
- Department of Microbiology, Faculty of Science, Prince of Songkla University, 15 Kanjanavanich Rd., Hat Yai, Songkhla, 90110 Thailand
| | - Sutima Preeprem
- Department of Microbiology, Faculty of Science, Prince of Songkla University, 15 Kanjanavanich Rd., Hat Yai, Songkhla, 90110 Thailand
| | - Varaporn Vuddhakul
- Department of Microbiology, Faculty of Science, Prince of Songkla University, 15 Kanjanavanich Rd., Hat Yai, Songkhla, 90110 Thailand
| | - Pimonsri Mittraparp-arthorn
- Department of Microbiology, Faculty of Science, Prince of Songkla University, 15 Kanjanavanich Rd., Hat Yai, Songkhla, 90110 Thailand
| |
Collapse
|
37
|
Abstract
PURPOSE OF REVIEW This review describes the basic epidemiologic, clinical, and microbiologic aspects of cholera, highlights new developments within these areas, and presents strategies for applying currently available tools and knowledge more effectively. RECENT FINDINGS From 1990 to 2016, the reported global burden of cholera fluctuated between 74,000 and 595,000 cases per year; however, modeling estimates suggest the real burden is between 1.3 and 4.0 million cases and 95,000 deaths yearly. In 2018, the World Health Assembly endorsed a new initiative to reduce cholera deaths by 90% and eliminate local cholera transmission in 20 countries by 2030. New tools, including localized GIS mapping, climate modeling, whole genome sequencing, oral vaccines, rapid diagnostic tests, and new applications of water, sanitation, and hygiene interventions, could support this goal. Challenges include a high proportion of fragile states among cholera-endemic countries, urbanization, climate change, and the need for cholera treatment guidelines for pregnant women and malnourished children. SUMMARY Reducing cholera morbidity and mortality depends on real-time surveillance, outbreak detection and response; timely access to appropriate case management and cholera vaccines; and provision of safe water, sanitation, and hygiene.
Collapse
Affiliation(s)
- William Davis
- Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road, Mailstop H24-9, Atlanta, GA 30329, USA
| | - Rupa Narra
- Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road, Mailstop H24-9, Atlanta, GA 30329, USA
| | - Eric D. Mintz
- Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road, Mailstop H24-9, Atlanta, GA 30329, USA
| |
Collapse
|
38
|
Recurrent cholera epidemics in Africa: which way forward? A literature review. Infection 2018; 47:341-349. [DOI: 10.1007/s15010-018-1186-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 07/27/2018] [Indexed: 02/03/2023]
|
39
|
Zaw MT, Emran NA, Ibrahim MY, Suleiman M, Awang Mohd TA, Yusuff AS, Naing KS, Myint T, Jikal M, Salleh MA, Lin Z. Genetic diversity of toxigenic Vibrio cholerae O1 from Sabah, Malaysia 2015. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2018; 52:563-570. [PMID: 29428381 DOI: 10.1016/j.jmii.2018.01.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 08/01/2017] [Accepted: 01/09/2018] [Indexed: 10/18/2022]
Abstract
BACKGROUND Cholera is an important health problem in Sabah, a Malaysian state in northern Borneo; however, Vibrio cholerae in Sabah have never been characterized. Since 2002, serogroup O1 strains having the traits of both classical and El Tor biotype, designated as atypical El Tor biotype, have been increasingly reported as the cause of cholera worldwide. These variants are believed to produce clinically more severe disease like classical strains. PURPOSE The purpose of this study is to investigate the genetic diversity of V.cholerae in Sabah and whether V.cholerae in Sabah belong to atypical El Tor biotype. METHODS ERIC-PCR, a DNA fingerprinting method for bacterial pathogens based on the enterobacterial repetitive intergenic consensus sequence, was used to study the genetic diversity of 65 clinical V.cholerae O1 isolates from 3 districts (Kudat, Beluran, Sandakan) in Sabah and one environmental isolate from coastal sea water in Kudat district. In addition, we studied the biotype-specific genetic traits in these isolates to establish their biotype. RESULTS Different fingerprint patterns were seen in isolates from these three districts but one of the patterns was seen in more than one district. Clinical isolates and environmental isolate have different patterns. In addition, Sabah isolates harbor genetic traits specific to both classical biotype (ctxB-1, rstRCla) and El Tor biotype (rstRET, rstC, tcpAET, rtxC, VC2346). CONCLUSION This study revealed that V.cholerae in Sabah were genetically diverse and were atypical El Tor strains. Fingerprint patterns of these isolates will be useful in tracing the origin of this pathogen in the future.
Collapse
Affiliation(s)
- Myo Thura Zaw
- Pathobiological and Medical Diagnostics Department, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah, Malaysia
| | - Nor Amalina Emran
- Pathobiological and Medical Diagnostics Department, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah, Malaysia
| | - Mohd Yusof Ibrahim
- Department of Community Medicine, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah, Malaysia
| | - Maria Suleiman
- Sabah State Health Department, Jalan Tunku Abdul Rahman, Bandaran, 88000 Kota Kinabalu, Sabah, Malaysia
| | - Tajul Ariffin Awang Mohd
- Kota Kinabalu Public Health Laboratory, Bukit Padang, Jalan Kolam, 88850 Kota Kinabalu, Sabah, Malaysia
| | - Aza Sherin Yusuff
- Department of Community Medicine, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah, Malaysia
| | - Khin Saw Naing
- Department of Community Medicine, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah, Malaysia
| | - Than Myint
- Department of Community Medicine, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah, Malaysia
| | | | - Mohd Azmi Salleh
- Pathology Department, Hospital Duchess of Kent, KM3.2 Jalan Utara, 9000 Sandakan, Sabah, Malaysia
| | - Zaw Lin
- Pathobiological and Medical Diagnostics Department, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah, Malaysia.
| |
Collapse
|
40
|
Wang Y, Li H, Wang Y, Zhang L, Zhang J, Xu J, Ye C. Nanoparticle-based lateral flow biosensor combined with multiple cross displacement amplification for rapid, visual and sensitive detection of Vibrio cholerae. FEMS Microbiol Lett 2018; 364:4636548. [PMID: 29155937 DOI: 10.1093/femsle/fnx234] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Accepted: 11/15/2017] [Indexed: 11/13/2022] Open
Abstract
Vibrio cholerae is an important human pathogen that is responsible for cholera, a severe acute watery diarrhea. In the current study, a multiple cross displacement amplification (MCDA) coupled with amplicon detection by chromatographic lateral flow biosensor (LFB) method (MCDA-LFB) was successfully established and evaluated for the identification of V. cholerae. A set of 10 primers was designed specifically to recognize 10 different regions of the V. cholerae-specific gene ompW. The optimized time and temperature conditions for the MCDA were 30 min and 63°C, respectively. The MCDA-LFB assay correctly identified 31 strains of V. cholerae but did not detect 13 non-cholerae Vibrio strains and 30 non-Vibrio strains. The sensitivity of MCDA-LFB for target pathogen detection in pure culture was 10 fg per reaction. In the case of spiked shrimp samples without enrichment, the limit of detection was 4.1 CFUs per reaction or equivalent to 4.1 × 102 CFU g-1. The whole process, including shrimp homogenates processing (30 min), MCDA reaction (30 min) and results reporting (2 min), could be finished within 65 min. These results show that this assay is suitable for the rapid, sensitive and specific detection of V. cholerae in food, environmental and clinical samples.
Collapse
Affiliation(s)
- Yi Wang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, PR, China
| | - Hui Li
- Department of Microbiology, GuiZhou Medical University, Guiyang, Guizhou 550004, PR China
| | - Yan Wang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, PR, China
| | - Lu Zhang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, PR, China
| | - Jingyun Zhang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, PR, China
| | - Jianguo Xu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, PR, China
| | - Changyun Ye
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, PR, China
| |
Collapse
|
41
|
Pal BB, Nayak SR, Khuntia HK. Epidemiology and Antibiogram Profile of Vibrio cholerae Isolates between 2004-2013 from Odisha, India. Jpn J Infect Dis 2017; 71:99-103. [PMID: 29279443 DOI: 10.7883/yoken.jjid.2017.193] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cholera is an acute diarrheal disease caused by Vibrio cholerae serogroups O1 and O139, which are known to cause epidemics of cholera in Odisha. The present study was intended to document the antibiotic resistance pattern among clinical isolates of both serogroups of V. cholerae (O1 and O139) isolated during 2004-2013. Nine-hundred nine isolates of V. cholerae were included in this study and were identified by standard procedures. An antibiotic sensitivity test was performed by the disc diffusion method. The seasonality of cholera in this region indicated that there was one peak in the rainy season only. The number of cholera cases started increasing from July and declined starting from the month of October onward. The adult age group of patients was the worst affected among all age groups of patients. The 2 different serogroups of V. cholerae (O1 and O139) showed different prevalence rates (%) of resistance to all the antibiotics in each year. Serogroup O1 showed uniformly high resistance to co-trimoxazole, furazolidone, and nalidixic acid throughout the study. Chloramphenicol encountered resistance only during 2009, but the strains were sensitive in the other years. The emergence of multiple drug-resistant V. cholerae strains may significantly influence the control of future outbreaks and epidemics of cholera in this region.
Collapse
|
42
|
Vibrio Pathogens: A Public Health Concern in Rural Water Resources in Sub-Saharan Africa. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:ijerph14101188. [PMID: 28991153 PMCID: PMC5664689 DOI: 10.3390/ijerph14101188] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Revised: 09/29/2017] [Accepted: 10/04/2017] [Indexed: 12/12/2022]
Abstract
Members of the Vibrio genus are autochthonous inhabitants of aquatic environments and play vital roles in sustaining the aquatic milieu. The genus comprises about 100 species, which are mostly of marine or freshwater origin, and their classification is frequently updated due to the continuous discovery of novel species. The main route of transmission of Vibrio pathogens to man is through drinking of contaminated water and consumption inadequately cooked aquatic food products. In sub-Saharan Africa and much of the developing world, some rural dwellers use freshwater resources such as rivers for domestic activities, bathing, and cultural and religious purposes. This review describes the impact of inadequately treated sewage effluents on the receiving freshwater resources and the associated risk to the rural dwellers that depends on the water. Vibrio infections remain a threat to public health. In the last decade, Vibrio disease outbreaks have created alertness on the personal, economic, and public health uncertainties associated with the impact of contaminated water in the aquatic environment of sub-Saharan Africa. In this review, we carried out an overview of Vibrio pathogens in rural water resources in Sub-Saharan Africa and the implication of Vibrio pathogens on public health. Continuous monitoring of Vibrio pathogens among environmental freshwater and treated effluents is expected to help reduce the risk associated with the early detection of sources of infection, and also aid our understanding of the natural ecology and evolution of Vibrio pathogens.
Collapse
|
43
|
Kaboré S, Cecchi P, Mosser T, Toubiana M, Traoré O, Ouattara AS, Traoré AS, Barro N, Colwell RR, Monfort P. Occurrence of Vibrio cholerae in water reservoirs of Burkina Faso. Res Microbiol 2017; 169:1-10. [PMID: 28888938 DOI: 10.1016/j.resmic.2017.08.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 08/28/2017] [Accepted: 08/29/2017] [Indexed: 11/26/2022]
Abstract
Africa is currently an important region in which cholera epidemics occur. Little is known about the presence of Vibrio cholerae in freshwater bodies in Africa. There are ca. 1700 lakes and reservoirs in Burkina Faso, most of which have been built within recent decades to secure water resources. The purpose of this study was to investigate the presence of V. cholerae in the water of reservoirs, using the most-probable-number polymerase chain reaction. Results showed that V. cholerae could be detected in water samples collected from 14 of 39 sampled reservoirs. The concentrations varied from 0 MPN/l to more than 1100 MPN/l. Fifty strains of V. cholerae isolated on CHROMagar™ vibrio were identified as V. cholerae non-O1/non-O139, none of which carried the ctxA gene. A significant positive correlation was found between the presence of V. cholerae in the reservoirs and both alkaline pH and phytoplankton biomass. V. cholerae was present in significantly higher numbers in reservoirs of urban areas than in rural areas. Since V. cholerae non-O1/non-O139 has been shown to be a causative agent of endemic diarrheal outbreaks, their presence in Burkina Faso reservoirs suggests they may play a role in gastroenteritis in that country.
Collapse
Affiliation(s)
- Saidou Kaboré
- Laboratoire de Biologie Moléculaire, d'Epidémiologie et de Surveillance des Bactéries et Virus Transmissibles Par Les Aliments (LaBESTA), Centre de Recherches en Sciences Biologiques, Alimentaires et Nutritionnelles (CRSBAN), Université de Ouagadougou, 03 BP 7021 Ouagadougou 03, Burkina Faso.
| | - Philippe Cecchi
- MARBEC UMR 248 IRD, CNRS, Ifremer, Université de Montpellier, Centre de Recherches Océanologiques, Abidjan, Côte d'Ivoire.
| | - Thomas Mosser
- HydroSciences Montpellier, UMR 5569 CNRS, IRD, Université de Montpellier, 34093 Montpellier Cedex 05, France
| | - Mylène Toubiana
- HydroSciences Montpellier, UMR 5569 CNRS, IRD, Université de Montpellier, 34093 Montpellier Cedex 05, France.
| | - Oumar Traoré
- Laboratoire de Biologie Moléculaire, d'Epidémiologie et de Surveillance des Bactéries et Virus Transmissibles Par Les Aliments (LaBESTA), Centre de Recherches en Sciences Biologiques, Alimentaires et Nutritionnelles (CRSBAN), Université de Ouagadougou, 03 BP 7021 Ouagadougou 03, Burkina Faso; Laboratoire National de Santé Publique, 09 BP 24 Ouagadougou 09, Burkina Faso.
| | - Aboubakar S Ouattara
- Laboratoire de Biologie Moléculaire, d'Epidémiologie et de Surveillance des Bactéries et Virus Transmissibles Par Les Aliments (LaBESTA), Centre de Recherches en Sciences Biologiques, Alimentaires et Nutritionnelles (CRSBAN), Université de Ouagadougou, 03 BP 7021 Ouagadougou 03, Burkina Faso.
| | - Alfred S Traoré
- Laboratoire de Biologie Moléculaire, d'Epidémiologie et de Surveillance des Bactéries et Virus Transmissibles Par Les Aliments (LaBESTA), Centre de Recherches en Sciences Biologiques, Alimentaires et Nutritionnelles (CRSBAN), Université de Ouagadougou, 03 BP 7021 Ouagadougou 03, Burkina Faso.
| | - Nicolas Barro
- Laboratoire de Biologie Moléculaire, d'Epidémiologie et de Surveillance des Bactéries et Virus Transmissibles Par Les Aliments (LaBESTA), Centre de Recherches en Sciences Biologiques, Alimentaires et Nutritionnelles (CRSBAN), Université de Ouagadougou, 03 BP 7021 Ouagadougou 03, Burkina Faso.
| | - Rita R Colwell
- Center for Bioinformatics and Computational Biology and Institute for Advanced Computer Studies, 3103 Biomolecular Sciences Building, 8314 Paint Branch Drive, University of Maryland, College Park, MD 20742, USA.
| | - Patrick Monfort
- HydroSciences Montpellier, UMR 5569 CNRS, IRD, Université de Montpellier, 34093 Montpellier Cedex 05, France.
| |
Collapse
|
44
|
Antibiotics resistance in El Tor Vibrio cholerae 01 isolated during cholera outbreaks in Mozambique from 2012 to 2015. PLoS One 2017; 12:e0181496. [PMID: 28792540 PMCID: PMC5549693 DOI: 10.1371/journal.pone.0181496] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 07/03/2017] [Indexed: 11/19/2022] Open
Abstract
RATIONALE Mozambique has recorded cyclically epidemic outbreaks of cholera. Antibiotic therapy is recommended in specific situations for management and control of cholera outbreaks. However, an increase in resistance rates to antibiotics by Vibrio cholerae has been reported in several epidemic outbreaks worldwide. On the other hand, there are few recent records of continuous surveillance of antibiotics susceptibility pattern of V. cholerae in Mozambique. GOALS The purpose of this study was to evaluate antibiotics resistance pattern of Vibrio cholerae O1 Ogawa isolated during Cholera outbreaks in Mozambique to commonly used antibiotics. METHODOLOGY We analyzed data from samples received in the context of surveillance and response to Cholera outbreaks in the National Reference Laboratory of Microbiology from the National Institute of Health of Mozambique, 159 samples suspected of cholera from cholera treatment centers of, Metangula (09), Memba (01), Tete City (08), Moatize (01), Morrumbala (01) districts, City of Quelimane (01), Lichinga (06) and Nampula (86) districts, from 2012 to 2015. Laboratory culture and standard biochemical tests were employed to isolate and identify Vibrio cholerae; serotypes were determined by antisera agglutination reaction in blade. Biotype and presence of important virulence factors analysis was done by PCR. Antibiotics susceptibility pattern was detected by disk diffusion method Kirby Bauer. Antibiotic susceptibility and results were interpreted by following as per recommendations of CLSI (Clinical and Laboratory Standards Institute) 2014. All samples were collected and tested in the context of Africhol Project, approved by the National Bioethics Committee for Health. RESULTS Among isolates from of Vibrio cholerae O1 El Tor Ogawa resistance to Sulphamethoxazole-trimethropim was 100% (53/53) to Trimethoprim-, being 100% (54/54) for Ampicillin, 99% (72/74) for Nalidixic Acid, 97% (64/66) to Chloramphenicol, 95% (42/44) for Nitrofurantoin and (19/20) Cotrimoxazole, 83% (80/97) Tetracycline, 56% (5/13) Doxycycline, 56% (39/70) Azithromycin and 0% (0/101) for Ciprofloxacin. PCR analysis suggested strains of V. cholerae O1 being descendants of the current seventh pandemic V. cholerae O1 CIRS 101 hybrid variant. The V. cholerae O1 currently causing cholera epidemics in north and central Mozambique confirmed a CTXΦ genotype and a molecular arrangement similar to the V. cholerae O1 CIRS 101. CONCLUSION Although V. cholerae infections in Mozambique are generally not treated with antibiotics circulating strains of the bacteria showed high frequency of in vitro resistance to available antibiotics. Continuous monitoring of antibiotic resistance pattern of epidemic strains is therefore crucial since the appearance of antibiotic resistance can influence cholera control strategies.
Collapse
|
45
|
Antimicrobial Resistance Risks of Cholera Prophylaxis for United Nations Peacekeepers. Antimicrob Agents Chemother 2017; 61:AAC.00026-17. [DOI: 10.1128/aac.00026-17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 05/12/2017] [Indexed: 11/20/2022] Open
Abstract
ABSTRACT
More than 5 years after a United Nations peacekeeping battalion introduced cholera to Haiti, over 150,000 peacekeepers continue to be deployed annually from countries where cholera is endemic. The United Nations has thus far declined to provide antimicrobial chemoprophylaxis to peacekeepers, a policy based largely on concerns that the risks of drug resistance generation and spread would outweigh the potential benefits of preventing future cholera importations. In this study, we sought to better understand the relative benefits and risks of cholera chemoprophylaxis for peacekeepers in terms of antibiotic resistance. Using a stochastic model to quantify the potential impact of chemoprophylaxis on importation and transmission of drug-resistant and drug-sensitive
Vibrio cholerae
, we found that chemoprophylaxis would decrease the probability of cholera importation but would increase the expected number of drug-resistant infections if an importation event were to occur. Despite this potential increase, we found that at least 10 drug-sensitive infections would likely be averted per excess drug-resistant infection under a wide range of assumptions about the underlying prevalence of drug resistance and risk of acquired resistance. Given these findings, policymakers should reconsider whether the potential resistance risks of providing antimicrobial chemoprophylaxis to peacekeepers are sufficient to outweigh the anticipated benefits.
Collapse
|
46
|
Antibiogram and Serotyping of Vibrio cholerae O1 Isolates from a Tertiary Care Centre in South India. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2017. [DOI: 10.22207/jpam.11.2.46] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
47
|
Characterization of Vibrio cholerae O1 strains that trace the origin of Haitian-like genetic traits. INFECTION GENETICS AND EVOLUTION 2017. [PMID: 28625543 DOI: 10.1016/j.meegid.2017.06.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Vibrio cholerae O1 is the etiological agent of the severe diarrheal disease cholera. The bacterium has recently been causing outbreaks in Haiti with catastrophic effects. Numerous mutations have been reported in V. cholerae O1 strains associated with the Haitian outbreak. These mutations encompass among other the genes encoding virulence factors such as the pilin subunit of the toxin-co-regulated pilus (tcpA), cholera toxin B subunit (ctxB), repeat in toxins (rtxA), and other genes such as the quinolone resistance-determining region (QRDR) of gyrase A (gyrA), rstB of RS element along with the alteration in the number of repeat sequences at the promoter region of ctxAB. Given the numerous genetic changes in those Haitian isolates, we decided to investigate the possible origins of those variations in the Indian subcontinent. Thus, we determined the genetic traits among V. cholerae O1 strains in Delhi, India. A total of 175 strains isolated from cholera patients during 2004 to 2012 were analysed in the present study. Our results showed that all the tested strains carried Haitian type tcpA (tcpACIRS) and variant gyrA indicating their first appearance before 2004 in Delhi. The Haitian variant rtxA and ctxB7 were first detected in Delhi during 2004 and 2006, respectively. Interestingly, not a single strain with the combination of El Tor rtxA and ctxB7 was detected in this study. The Delhi strains carried four heptad repeats (TTTTGAT) in the CT promoter region whereas Haitian strains carried 5 such repeats. Delhi strains did not have any deletion mutations in the rstB like Haitian strains. Overall, our study demonstrates the sequential accumulation of Haitian-like genetic traits among V. cholerae O1 strains in Delhi at different time points prior to the Haitian cholera outbreak.
Collapse
|
48
|
Riverbed Sediments as Reservoirs of Multiple Vibrio cholerae Virulence-Associated Genes: A Potential Trigger for Cholera Outbreaks in Developing Countries. JOURNAL OF ENVIRONMENTAL AND PUBLIC HEALTH 2017. [PMID: 28642796 PMCID: PMC5470021 DOI: 10.1155/2017/5646480] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Africa remains the most cholera stricken continent in the world as many people lacking access to safe drinking water rely mostly on polluted rivers as their main water sources. However, studies in these countries investigating the presence of Vibrio cholerae in aquatic environments have paid little attention to bed sediments. Also, information on the presence of virulence-associated genes (VAGs) in environmental ctx-negative V. cholerae strains in this region is lacking. Thus, we investigated the presence of V. cholerae VAGs in water and riverbed sediment of the Apies River, South Africa. Altogether, 120 samples (60 water and 60 sediment samples) collected from ten sites on the river (January and February 2014) were analysed using PCR. Of the 120 samples, 37 sediment and 31 water samples were positive for at least one of the genes investigated. The haemolysin gene (hlyA) was the most isolated gene. The cholera toxin (ctxAB) and non-O1 heat-stable (stn/sto) genes were not detected. Genes were frequently detected at sites influenced by human activities. Thus, identification of V. cholerae VAGs in sediments suggests the possible presence of V. cholerae and identifies sediments of the Apies River as a reservoir for potentially pathogenic V. cholerae with possible public health implications.
Collapse
|
49
|
Rashed SM, Hasan NA, Alam M, Sadique A, Sultana M, Hoq MM, Sack RB, Colwell RR, Huq A. Vibrio cholerae O1 with Reduced Susceptibility to Ciprofloxacin and Azithromycin Isolated from a Rural Coastal Area of Bangladesh. Front Microbiol 2017; 8:252. [PMID: 28270803 PMCID: PMC5318396 DOI: 10.3389/fmicb.2017.00252] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 02/06/2017] [Indexed: 12/22/2022] Open
Abstract
Cholera outbreaks occur each year in the remote coastal areas of Bangladesh and epidemiological surveillance and routine monitoring of cholera in these areas is challenging. In this study, a total of 97 Vibrio cholerae O1 isolates from Mathbaria, Bangladesh, collected during 2010 and 2014 were analyzed for phenotypic and genotypic traits, including antimicrobial susceptibility. Of the 97 isolates, 95 possessed CTX-phage mediated genes, ctxA, ace, and zot, and two lacked the cholera toxin gene, ctxA. Also both CTX+ and CTX−V. cholerae O1 isolated in this study carried rtxC, tcpAET, and hlyA. The classical cholera toxin gene, ctxB1, was detected in 87 isolates, while eight had ctxB7. Of 95 CTX+V. cholerae O1, 90 contained rstRET and 5 had rstRCL. All isolates, except two, contained SXT related integrase intSXT. Resistance to penicillin, streptomycin, nalidixic acid, sulfamethoxazole-trimethoprim, erythromycin, and tetracycline varied between the years of study period. Most importantly, 93% of the V. cholerae O1 were multidrug resistant. Six different resistance profiles were observed, with resistance to streptomycin, nalidixic acid, tetracycline, and sulfamethoxazole-trimethoprim predominant every year. Ciprofloxacin and azithromycin MIC were 0.003–0.75 and 0.19–2.00 μg/ml, respectively, indicating reduced susceptibility to these antibiotics. Sixteen of the V. cholerae O1 isolates showed higher MIC for azithromycin (≥0.5 μg/ml) and were further examined for 10 macrolide resistance genes, erm(A), erm(B), erm(C), ere(A), ere(B), mph(A), mph(B), mph(D), mef(A), and msr(A) with none testing positive for the macrolide resistance genes.
Collapse
Affiliation(s)
- Shah M Rashed
- Maryland Pathogen Research Institute, University of Maryland College Park, MD, USA
| | - Nur A Hasan
- CosmosID, Inc.Rockville, MD, USA; Center of Bioinformatics and Computational Biology, University of Maryland Institute of Advanced Computer Studies, University of MarylandCollege Park, MD, USA
| | - Munirul Alam
- International Centre for Diarrhoeal Disease Research Bangladesh, Dhaka, Bangladesh
| | - Abdus Sadique
- International Centre for Diarrhoeal Disease Research Bangladesh, Dhaka, Bangladesh
| | - Marzia Sultana
- International Centre for Diarrhoeal Disease Research Bangladesh, Dhaka, Bangladesh
| | - Md Mozammel Hoq
- Department of Microbiology, University of Dhaka Dhaka, Bangladesh
| | - R Bradley Sack
- Johns Hopkins Bloomberg School of Public Health Baltimore, MD, USA
| | - Rita R Colwell
- Maryland Pathogen Research Institute, University of MarylandCollege Park, MD, USA; CosmosID, Inc.Rockville, MD, USA; Center of Bioinformatics and Computational Biology, University of Maryland Institute of Advanced Computer Studies, University of MarylandCollege Park, MD, USA; Johns Hopkins Bloomberg School of Public HealthBaltimore, MD, USA
| | - Anwar Huq
- Maryland Pathogen Research Institute, University of MarylandCollege Park, MD, USA; Maryland Institute of Applied Environmental Health, University of MarylandCollege Park, MD, USA
| |
Collapse
|
50
|
Siriphap A, Leekitcharoenphon P, Kaas RS, Theethakaew C, Aarestrup FM, Sutheinkul O, Hendriksen RS. Characterization and Genetic Variation of Vibrio cholerae Isolated from Clinical and Environmental Sources in Thailand. PLoS One 2017; 12:e0169324. [PMID: 28103259 PMCID: PMC5245877 DOI: 10.1371/journal.pone.0169324] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 12/15/2016] [Indexed: 11/29/2022] Open
Abstract
Cholera is still an important public health problem in several countries, including Thailand. In this study, a collection of clinical and environmental V. cholerae serogroup O1, O139, and non-O1/non-O139 strains originating from Thailand (1983 to 2013) was characterized to determine phenotypic and genotypic traits and to investigate the genetic relatedness. Using a combination of conventional methods and whole genome sequencing (WGS), 78 V. cholerae strains were identified. WGS was used to determine the serogroup, biotype, virulence, mobile genetic elements, and antimicrobial resistance genes using online bioinformatics tools. In addition, phenotypic antimicrobial resistance was determined by the minimal inhibitory concentration (MIC) test. The 78 V. cholerae strains belonged to the following serogroups O1: (n = 44), O139 (n = 16) and non-O1/non-O139 (n = 18). Interestingly, we found that the typical El Tor O1 strains were the major cause of clinical cholera during 1983–2000 with two Classical O1 strains detected in 2000. In 2004–2010, the El Tor variant strains revealed genotypes of the Classical biotype possessing either only ctxB or both ctxB and rstR while they harbored tcpA of the El Tor biotype. Thirty O1 and eleven O139 clinical strains carried CTXϕ (Cholera toxin) and tcpA as well four different pathogenic islands (PAIs). Beside non-O1/non-O139, the O1 environmental strains also presented chxA and Type Three Secretion System (TTSS). The in silico MultiLocus Sequence Typing (MLST) discriminated the O1 and O139 clinical strains from other serogroups and environmental strains. ST69 was dominant in the clinical strains belonging to the 7th pandemic clone. Non-O1/non-O139 and environmental strains showed various novel STs indicating genetic variation. Multidrug-resistant (MDR) strains were observed and conferred resistance to ampicillin, azithromycin, nalidixic acid, sulfamethoxazole, tetracycline, and trimethoprim and harboured variants of the SXT elements. For the first time since 1986, the presence of V. cholerae O1 Classical was reported causing cholera outbreaks in Thailand. In addition, we found that V. cholerae O1 El Tor variant and O139 were pre-dominating the pathogenic strains in Thailand. Using WGS and bioinformatic tools to analyze both historical and contemporary V. cholerae circulating in Thailand provided a more detailed understanding of the V. cholerae epidemiology, which ultimately could be applied for control measures and management of cholera in Thailand.
Collapse
Affiliation(s)
- Achiraya Siriphap
- Department of Microbiology, Faculty of Public Health, Mahidol University, Bangkok, Thailand
| | - Pimlapas Leekitcharoenphon
- National Food Institute, Technical University of Denmark, Research Group for Genomic Epidemiology, WHO Collaborating Center for Antimicrobial Resistance in Foodborne Pathogens and Genomics and European Union Reference Laboratory for Antimicrobial Resistance, Kgs. Lyngby, Denmark
| | - Rolf S Kaas
- National Food Institute, Technical University of Denmark, Research Group for Genomic Epidemiology, WHO Collaborating Center for Antimicrobial Resistance in Foodborne Pathogens and Genomics and European Union Reference Laboratory for Antimicrobial Resistance, Kgs. Lyngby, Denmark
| | - Chonchanok Theethakaew
- Department of Microbiology, Faculty of Public Health, Mahidol University, Bangkok, Thailand
| | - Frank M Aarestrup
- National Food Institute, Technical University of Denmark, Research Group for Genomic Epidemiology, WHO Collaborating Center for Antimicrobial Resistance in Foodborne Pathogens and Genomics and European Union Reference Laboratory for Antimicrobial Resistance, Kgs. Lyngby, Denmark
| | - Orasa Sutheinkul
- Faculty of Public Health, Thammasat University, Rangsit Center, Pathumthani, Thailand
| | - Rene S Hendriksen
- National Food Institute, Technical University of Denmark, Research Group for Genomic Epidemiology, WHO Collaborating Center for Antimicrobial Resistance in Foodborne Pathogens and Genomics and European Union Reference Laboratory for Antimicrobial Resistance, Kgs. Lyngby, Denmark
| |
Collapse
|