1
|
Davis E, Velez J, Hamik J, Fitzpatrick K, Haley J, Eschliman J, Panella A, Staples JE, Lambert A, Donahue M, Brault AC, Hughes HR. Evidence of Lineage 1 and 3 West Nile Virus in Person with Neuroinvasive Disease, Nebraska, USA, 2023. Emerg Infect Dis 2024; 30:2090-2098. [PMID: 39320165 PMCID: PMC11431902 DOI: 10.3201/eid3010.240595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024] Open
Abstract
West Nile virus (WNV) is the most common cause of human arboviral disease in the contiguous United States, where only lineage 1 (L1) WNV had been found. In 2023, an immunocompetent patient was hospitalized in Nebraska with West Nile neuroinvasive disease and multisystem organ failure. Testing at the Centers for Disease Control and Prevention indicated an unusually high viral load and acute antibody response. Upon sequencing of serum and cerebrospinal fluid, we detected lineage 3 (L3) and L1 WNV genomes. L3 WNV had previously only been found in Central Europe in mosquitoes. The identification of L3 WNV in the United States and the observed clinical and laboratory features raise questions about the potential effect of L3 WNV on the transmission dynamics and pathogenicity of WNV infections. Determining the distribution and prevalence of L3 WNV in the United States and any public health and clinical implications is critical.
Collapse
|
2
|
Dong HV, Tran GTH, Vu TTT, Le NHT, Nguyen YTH, Rapichai W, Rattanasrisomporn A, Boonkaewwan C, Bui DAT, Rattanasrisomporn J. Duck Tembusu virus in North Vietnam: epidemiological and genetic analysis reveals novel virus strains. Front Vet Sci 2024; 11:1366904. [PMID: 38812564 PMCID: PMC11134369 DOI: 10.3389/fvets.2024.1366904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/18/2024] [Indexed: 05/31/2024] Open
Abstract
Tembusu virus (TMUV) is an important infectious disease, causing economic losses in duck production. Since the first report of TMUV infection in Vietnam in 2020, the disease has persisted and affected poultry production in the country. This study conducted epidemiological and genetic characterization of the viral strains circulating in north Vietnam based on 130 pooled tissue samples collected in six provinces/cities during 2021. The TMUV genome was examined using conventional PCR. The results indicated that 21 (16.15%) samples and 9 (23.68%) farms were positive for the viral genome. The positive rate was 59.26% for ducks at ages 2-4 weeks, which was significantly higher than for ducks at ages >4 weeks and < 2 weeks. Genetic analysis of the partial envelope gene (891 bp) sequences indicated that the five Vietnamese TMUVs shared 99.55-100% nucleotide identity, while the rates were in the range 99.59-100% based on the pre-membrane gene sequences (498 bp). The five Vietnamese TMUV strains obtained formed a novel single subcluster. These strains were closely related to Chinese strains and differed from the vaccine strain, suggesting that Vietnamese TMUV strains were field viruses. It needs to be further studied on vaccine development to prevent effects of TMUV infection on poultry production across Vietnam.
Collapse
Affiliation(s)
- Hieu Van Dong
- Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi, Vietnam
| | - Giang Thi Huong Tran
- Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi, Vietnam
| | - Tra Thi Thu Vu
- Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi, Vietnam
| | - Ngan Hong Thi Le
- Dak Lak Sub-Department of Livestock Production and Animal Health, Dak Lak, Vietnam
| | - Yen Thi Hoang Nguyen
- Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi, Vietnam
| | - Witsanu Rapichai
- Department of Companion Animal Clinical Sciences, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Amonpun Rattanasrisomporn
- Interdisciplinary of Genetic Engineering and Bioinformatics, Graduate School, Kasetsart University, Bangkok, Thailand
| | - Chaiwat Boonkaewwan
- Akkhraratchakumari Veterinary College, Walailak University, Tha Sala District, Thailand
| | - Dao Anh Tran Bui
- Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi, Vietnam
| | - Jatuporn Rattanasrisomporn
- Department of Companion Animal Clinical Sciences, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| |
Collapse
|
3
|
Gangavarapu K, Ji X, Baele G, Fourment M, Lemey P, Matsen FA, Suchard MA. Many-core algorithms for high-dimensional gradients on phylogenetic trees. Bioinformatics 2024; 40:btae030. [PMID: 38243701 PMCID: PMC10868298 DOI: 10.1093/bioinformatics/btae030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 12/20/2023] [Accepted: 01/15/2024] [Indexed: 01/21/2024] Open
Abstract
MOTIVATION Advancements in high-throughput genomic sequencing are delivering genomic pathogen data at an unprecedented rate, positioning statistical phylogenetics as a critical tool to monitor infectious diseases globally. This rapid growth spurs the need for efficient inference techniques, such as Hamiltonian Monte Carlo (HMC) in a Bayesian framework, to estimate parameters of these phylogenetic models where the dimensions of the parameters increase with the number of sequences N. HMC requires repeated calculation of the gradient of the data log-likelihood with respect to (wrt) all branch-length-specific (BLS) parameters that traditionally takes O(N2) operations using the standard pruning algorithm. A recent study proposes an approach to calculate this gradient in O(N), enabling researchers to take advantage of gradient-based samplers such as HMC. The CPU implementation of this approach makes the calculation of the gradient computationally tractable for nucleotide-based models but falls short in performance for larger state-space size models, such as Markov-modulated and codon models. Here, we describe novel massively parallel algorithms to calculate the gradient of the log-likelihood wrt all BLS parameters that take advantage of graphics processing units (GPUs) and result in many fold higher speedups over previous CPU implementations. RESULTS We benchmark these GPU algorithms on three computing systems using three evolutionary inference examples exploring complete genomes from 997 dengue viruses, 62 carnivore mitochondria and 49 yeasts, and observe a >128-fold speedup over the CPU implementation for codon-based models and >8-fold speedup for nucleotide-based models. As a practical demonstration, we also estimate the timing of the first introduction of West Nile virus into the continental Unites States under a codon model with a relaxed molecular clock from 104 full viral genomes, an inference task previously intractable. AVAILABILITY AND IMPLEMENTATION We provide an implementation of our GPU algorithms in BEAGLE v4.0.0 (https://github.com/beagle-dev/beagle-lib), an open-source library for statistical phylogenetics that enables parallel calculations on multi-core CPUs and GPUs. We employ a BEAGLE-implementation using the Bayesian phylogenetics framework BEAST (https://github.com/beast-dev/beast-mcmc).
Collapse
Affiliation(s)
- Karthik Gangavarapu
- Department of Biomathematics, David Geffen School of Medicine at UCLA, University of California, Los Angeles, Los Angeles, CA, United States
| | - Xiang Ji
- Department of Mathematics, School of Science & Engineering, Tulane University, New Orleans, LA, United States
| | - Guy Baele
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Mathieu Fourment
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Ultimo, NSW, Australia
| | - Philippe Lemey
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Frederick A Matsen
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
- Department of Statistics, University of Washington, Seattle, WA, United States
- Department of Genome Sciences, University of Washington, Seattle, WA, United States
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Marc A Suchard
- Department of Biomathematics, David Geffen School of Medicine at UCLA, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Biostatistics, Jonathan and Karin Fielding School of Public Health, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| |
Collapse
|
4
|
Xu J, Wahaab A, Khan S, Nawaz M, Anwar MN, Liu K, Wei J, Hameed M, Ma Z. Recent Population Dynamics of Japanese Encephalitis Virus. Viruses 2023; 15:1312. [PMID: 37376612 DOI: 10.3390/v15061312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/31/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
Japanese encephalitis virus (JEV) causes acute viral encephalitis in humans and reproductive disorders in pigs. JEV emerged during the 1870s in Japan, and since that time, JEV has been transmitted exclusively throughout Asia, according to known reporting and sequencing records. A recent JEV outbreak occurred in Australia, affecting commercial piggeries across different temperate southern Australian states, and causing confirmed infections in humans. A total of 47 human cases and 7 deaths were reported. The recent evolving situation of JEV needs to be reported due to its continuous circulation in endemic regions and spread to non-endemics areas. Here, we reconstructed the phylogeny and population dynamics of JEV using recent JEV isolates for the future perception of disease spread. Phylogenetic analysis shows the most recent common ancestor occurred about 2993 years ago (YA) (95% Highest posterior density (HPD), 2433 to 3569). Our results of the Bayesian skyline plot (BSP) demonstrates that JEV demography lacks fluctuations for the last two decades, but it shows that JEV genetic diversity has increased during the last ten years. This indicates the potential JEV replication in the reservoir host, which is helping it to maintain its genetic diversity and to continue its dispersal into non-endemic areas. The continuous spread in Asia and recent detection from Australia further support these findings. Therefore, an enhanced surveillance system is needed along with precautionary measures such as regular vaccination and mosquito control to avoid future JEV outbreaks.
Collapse
Affiliation(s)
- Jinpeng Xu
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan 056038, China
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China
| | - Abdul Wahaab
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China
| | - Sawar Khan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore 54000, Pakistan
| | - Mohsin Nawaz
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China
- Faculty of Veterinary and Animal sciences, University of Poonch, Rawalakot 12350, Pakistan
| | | | - Ke Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China
| | - Jianchao Wei
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China
| | - Muddassar Hameed
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China
- Center for Zoonotic and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060, USA
| | - Zhiyong Ma
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China
| |
Collapse
|
5
|
Xu G, Gao T, Wang Z, Zhang J, Cui B, Shen X, Zhou A, Zhang Y, Zhao J, Liu H, Liang G. Re-Emerged Genotype IV of Japanese Encephalitis Virus Is the Youngest Virus in Evolution. Viruses 2023; 15:626. [PMID: 36992335 PMCID: PMC10054483 DOI: 10.3390/v15030626] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/02/2023] Open
Abstract
An outbreak of viral encephalitis caused by a Japanese encephalitis virus (JEV) genotype IV infection occurred in Australia between 2021 and 2022. A total of 47 cases and seven deaths were reported as of November 2022. This is the first outbreak of human viral encephalitis caused by JEV GIV since it was first isolated in Indonesia in the late 1970s. Here, a comprehensive phylogenetic analysis based on the whole genome sequences of JEVs revealed it emerged 1037 years ago (95% HPD: 463 to 2100 years). The evolutionary order of JEV genotypes is as follows: GV, GIII, GII, GI, and GIV. The JEV GIV emerged 122 years ago (95% HPD: 57-233) and is the youngest viral lineage. The mean substitution rate of the JEV GIV lineage was 1.145 × 10-3 (95% HPD values, 9.55 × 10-4, 1.35 × 10-3), belonging to rapidly evolving viruses. A series of amino acid mutations with the changes of physico-chemical properties located in the functional important domains within the core and E proteins distinguished emerging GIV isolates from old ones. These results demonstrate the JEV GIV is the youngest JEV genotype at a rapid evolution stage and has good host/vector adaptability for introduction to non-endemic areas. Thus, surveillance of JEVs is highly recommended.
Collapse
Affiliation(s)
- Guanlun Xu
- Shandong Provincial Research Center for Bioinformatic Engineering and Technique, School of Life Sciences, Shandong University of Technology, Zibo 255049, China
| | - Tingting Gao
- Shandong Provincial Research Center for Bioinformatic Engineering and Technique, School of Life Sciences, Shandong University of Technology, Zibo 255049, China
| | - Zhijie Wang
- Shandong Provincial Research Center for Bioinformatic Engineering and Technique, School of Life Sciences, Shandong University of Technology, Zibo 255049, China
| | - Jun Zhang
- Shandong Provincial Research Center for Bioinformatic Engineering and Technique, School of Life Sciences, Shandong University of Technology, Zibo 255049, China
| | - Baoqiu Cui
- Shandong Provincial Research Center for Bioinformatic Engineering and Technique, School of Life Sciences, Shandong University of Technology, Zibo 255049, China
| | - Xinxin Shen
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Anyang Zhou
- Shandong Provincial Research Center for Bioinformatic Engineering and Technique, School of Life Sciences, Shandong University of Technology, Zibo 255049, China
| | - Yuan Zhang
- Shandong Provincial Research Center for Bioinformatic Engineering and Technique, School of Life Sciences, Shandong University of Technology, Zibo 255049, China
| | - Jie Zhao
- Shandong Provincial Research Center for Bioinformatic Engineering and Technique, School of Life Sciences, Shandong University of Technology, Zibo 255049, China
| | - Hong Liu
- Shandong Provincial Research Center for Bioinformatic Engineering and Technique, School of Life Sciences, Shandong University of Technology, Zibo 255049, China
| | - Guangdong Liang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| |
Collapse
|
6
|
Giakountis A, Stylianidou Z, Zaka A, Pappa S, Papa A, Hadjichristodoulou C, Mathiopoulos KD. Development of Toehold Switches as a Novel Ribodiagnostic Method for West Nile Virus. Genes (Basel) 2023; 14:237. [PMID: 36672977 PMCID: PMC9859090 DOI: 10.3390/genes14010237] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
West Nile virus (WNV) is an emerging neurotropic RNA virus and a member of the genus Flavivirus. Naturally, the virus is maintained in an enzootic cycle involving mosquitoes as vectors and birds that are the principal amplifying virus hosts. In humans, the incubation period for WNV disease ranges from 3 to 14 days, with an estimated 80% of infected persons being asymptomatic, around 19% developing a mild febrile infection and less than 1% developing neuroinvasive disease. Laboratory diagnosis of WNV infection is generally accomplished by cross-reacting serological methods or highly sensitive yet expensive molecular approaches. Therefore, current diagnostic tools hinder widespread surveillance of WNV in birds and mosquitoes that serve as viral reservoirs for infecting secondary hosts, such as humans and equines. We have developed a synthetic biology-based method for sensitive and low-cost detection of WNV. This method relies on toehold riboswitches designed to detect WNV genomic RNA as transcriptional input and process it to GFP fluorescence as translational output. Our methodology offers a non-invasive tool with reduced operating cost and high diagnostic value that can be used for field surveillance of WNV in humans as well as in bird and mosquito populations.
Collapse
Affiliation(s)
- Antonis Giakountis
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis-Mezourlo, 41500 Larissa, Greece
| | - Zoe Stylianidou
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis-Mezourlo, 41500 Larissa, Greece
| | - Anxhela Zaka
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis-Mezourlo, 41500 Larissa, Greece
| | - Styliani Pappa
- Department of Microbiology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Anna Papa
- Department of Microbiology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | | | - Kostas D. Mathiopoulos
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis-Mezourlo, 41500 Larissa, Greece
| |
Collapse
|
7
|
Santos PD, Günther A, Keller M, Homeier-Bachmann T, Groschup MH, Beer M, Höper D, Ziegler U. An advanced sequence clustering and designation workflow reveals the enzootic maintenance of a dominant West Nile virus subclade in Germany. Virus Evol 2023; 9:vead013. [PMID: 37197362 PMCID: PMC10184446 DOI: 10.1093/ve/vead013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 01/13/2023] [Accepted: 03/16/2023] [Indexed: 05/19/2023] Open
Abstract
West Nile virus (WNV) is the most widespread arthropod-borne (arbo) virus and the primary cause of arboviral encephalitis globally. Members of WNV species genetically diverged and are classified into different hierarchical groups below species rank. However, the demarcation criteria for allocating WNV sequences into these groups remain individual and inconsistent, and the use of names for different levels of the hierarchical levels is unstructured. In order to have an objective and comprehensible grouping of WNV sequences, we developed an advanced grouping workflow using the 'affinity propagation clustering' algorithm and newly included the 'agglomerative hierarchical clustering' algorithm for the allocation of WNV sequences into different groups below species rank. In addition, we propose to use a fixed set of terms for the hierarchical naming of WNV below species level and a clear decimal numbering system to label the determined groups. For validation, we applied the refined workflow to WNV sequences that have been previously grouped into various lineages, clades, and clusters in other studies. Although our workflow regrouped some WNV sequences, overall, it generally corresponds with previous groupings. We employed our novel approach to the sequences from the WNV circulation in Germany 2020, primarily from WNV-infected birds and horses. Besides two newly defined minor (sub)clusters comprising only three sequences each, Subcluster 2.5.3.4.3c was the predominant WNV sequence group detected in Germany from 2018 to 2020. This predominant subcluster was also associated with at least five human WNV infections in 2019-20. In summary, our analyses imply that the genetic diversity of the WNV population in Germany is shaped by enzootic maintenance of the dominant WNV subcluster accompanied by sporadic incursions of other rare clusters and subclusters. Moreover, we show that our refined approach for sequence grouping yields meaningful results. Although we primarily aimed at a more detailed WNV classification, the presented workflow can also be applied to the objective genotyping of other virus species.
Collapse
Affiliation(s)
| | | | - Markus Keller
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Novel and Emerging Infectious Diseases, 17493, Greifswald-Insel Riems, Germany
| | | | - Martin H Groschup
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Novel and Emerging Infectious Diseases, 17493, Greifswald-Insel Riems, Germany
- German Centre for Infection Research, Partner site Hamburg-Lübeck-Borstel-Riems, 17493, Greifswald-Insel Riems, Germany
| | - Martin Beer
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Diagnostic Virology, 17493, Greifswald-Insel Riems, Germany
| | | | | |
Collapse
|
8
|
Wassenaar TM, Wanchai V, Buzard G, Ussery DW. The first three waves of the Covid-19 pandemic hint at a limited genetic repertoire for SARS-CoV-2. FEMS Microbiol Rev 2022; 46:fuac003. [PMID: 35076068 PMCID: PMC9075578 DOI: 10.1093/femsre/fuac003] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 12/17/2021] [Accepted: 01/13/2022] [Indexed: 11/22/2022] Open
Abstract
The genomic diversity of SARS-CoV-2 is the result of a relatively low level of spontaneous mutations introduced during viral replication. With millions of SARS-CoV-2 genome sequences now available, we can begin to assess the overall genetic repertoire of this virus. We find that during 2020, there was a global wave of one variant that went largely unnoticed, possibly because its members were divided over several sublineages (B.1.177 and sublineages B.1.177.XX). We collectively call this Janus, and it was eventually replaced by the Alpha (B.1.1.7) variant of concern (VoC), next replaced by Delta (B.1.617.2), which itself might soon be replaced by a fourth pandemic wave consisting of Omicron (B.1.1.529). We observe that splitting up and redefining variant lineages over time, as was the case with Janus and is now happening with Alpha, Delta and Omicron, is not helpful to describe the epidemic waves spreading globally. Only ∼5% of the 30 000 nucleotides of the SARS-CoV-2 genome are found to be variable. We conclude that a fourth wave of the pandemic with the Omicron variant might not be that different from other VoCs, and that we may already have the tools in hand to effectively deal with this new VoC.
Collapse
Affiliation(s)
- Trudy M Wassenaar
- Molecular Microbiology and Genomics Consultants, Tannenstrasse 7, 55576 Zotzenheim, Germany
| | - Visanu Wanchai
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR 772205, USA
| | | | - David W Ussery
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR 772205, USA
| |
Collapse
|
9
|
Zecchin B, Fusaro A, Milani A, Schivo A, Ravagnan S, Ormelli S, Mavian C, Michelutti A, Toniolo F, Barzon L, Monne I, Capelli G. The central role of Italy in the spatial spread of USUTU virus in Europe. Virus Evol 2021; 7:veab048. [PMID: 34513027 PMCID: PMC8427344 DOI: 10.1093/ve/veab048] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
USUTU virus (USUV) is an arbovirus maintained in the environment through a bird-mosquito enzootic cycle. Previous surveillance plans highlighted the endemicity of USUV in North-eastern Italy. In this work, we sequenced 138 new USUV full genomes from mosquito pools (Culex pipiens) and wild birds collected in North-eastern Italy and we investigated the evolutionary processes (phylogenetic analysis, selection pressure and evolutionary time-scale analysis) and spatial spread of USUV strains circulating in the European context and in Italy, with a particular focus on North-eastern Italy. Our results confirmed the circulation of viruses belonging to four different lineages in Italy (EU1, EU2, EU3 and EU4), with the newly sequenced viruses from the North-eastern regions, Veneto and Friuli Venezia Giulia, belonging to the EU2 lineage and clustering into two different sub-lineages, EU2-A and EU2-B. Specific mutations characterize each European lineage and geographic location seem to have shaped their phylogenetic structure. By investigating the spatial spread in Europe, we were able to show that Italy acted mainly as donor of USUV to neighbouring countries. At a national level, we identified two geographical clusters mainly circulating in Northern and North-western Italy, spreading both northward and southward. Our analyses provide important information on the spatial and evolutionary dynamics of USUTU virus that can help to improve surveillance plans and control strategies for this virus of increasing concern for human health.
Collapse
Affiliation(s)
- B Zecchin
- Department of Research and Innovation, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - A Fusaro
- Department of Research and Innovation, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - A Milani
- Department of Research and Innovation, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - A Schivo
- Department of Research and Innovation, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - S Ravagnan
- National Reference Centre/OIE Collaborating Centre for Diseases at the Animal-Human Interface, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - S Ormelli
- Department of Research and Innovation, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - C Mavian
- Emerging Pathogens Institute, Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| | - A Michelutti
- National Reference Centre/OIE Collaborating Centre for Diseases at the Animal-Human Interface, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - F Toniolo
- National Reference Centre/OIE Collaborating Centre for Diseases at the Animal-Human Interface, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - L Barzon
- Department of Molecular Medicine, University of Padua, Padova, Italy
| | - I Monne
- Department of Research and Innovation, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - G Capelli
- National Reference Centre/OIE Collaborating Centre for Diseases at the Animal-Human Interface, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| |
Collapse
|
10
|
Wernike K, Reimann I, Banyard AC, Kraatz F, La Rocca SA, Hoffmann B, McGowan S, Hechinger S, Choudhury B, Aebischer A, Steinbach F, Beer M. High genetic variability of Schmallenberg virus M-segment leads to efficient immune escape from neutralizing antibodies. PLoS Pathog 2021; 17:e1009247. [PMID: 33497419 PMCID: PMC7872300 DOI: 10.1371/journal.ppat.1009247] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 02/09/2021] [Accepted: 12/21/2020] [Indexed: 11/19/2022] Open
Abstract
Schmallenberg virus (SBV) is the cause of severe fetal malformations when immunologically naïve pregnant ruminants are infected. In those malformed fetuses, a "hot-spot"-region of high genetic variability within the N-terminal region of the viral envelope protein Gc has been observed previously, and this region co-localizes with a known key immunogenic domain. We studied a series of M-segments of those SBV variants from malformed fetuses with point mutations, insertions or large in-frame deletions of up to 612 nucleotides. Furthermore, a unique cell-culture isolate from a malformed fetus with large in-frame deletions within the M-segment was analyzed. Each Gc-protein with amino acid deletions within the "hot spot" of mutations failed to react with any neutralizing anti-SBV monoclonal antibodies or a domain specific antiserum. In addition, in vitro virus replication of the natural deletion variant could not be markedly reduced by neutralizing monoclonal antibodies or antisera from the field. The large-deletion variant of SBV that could be isolated in cell culture was highly attenuated with an impaired in vivo replication following the inoculation of sheep. In conclusion, the observed amino acid sequence mutations within the N-terminal main immunogenic domain of glycoprotein Gc result in an efficient immune evasion from neutralizing antibodies in the special environment of a developing fetus. These SBV-variants were never detected as circulating viruses, and therefore should be considered to be dead-end virus variants, which are not able to spread further. The observations described here may be transferred to other orthobunyaviruses, particularly those of the Simbu serogroup that have been shown to infect fetuses. Importantly, such mutant strains should not be included in attempts to trace the spatial-temporal evolution of orthobunyaviruses in molecular-epidemiolocal approaches during outbreak investigations.
Collapse
Affiliation(s)
- Kerstin Wernike
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald—Insel Riems, Germany
| | - Ilona Reimann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald—Insel Riems, Germany
| | - Ashley C. Banyard
- Department of Virology, Animal and Plant Health Agency Weybridge, Addlestone, United Kingdom
| | - Franziska Kraatz
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald—Insel Riems, Germany
| | - S. Anna La Rocca
- Department of Virology, Animal and Plant Health Agency Weybridge, Addlestone, United Kingdom
| | - Bernd Hoffmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald—Insel Riems, Germany
| | - Sarah McGowan
- Department of Virology, Animal and Plant Health Agency Weybridge, Addlestone, United Kingdom
| | - Silke Hechinger
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald—Insel Riems, Germany
| | - Bhudipa Choudhury
- Department of Virology, Animal and Plant Health Agency Weybridge, Addlestone, United Kingdom
| | - Andrea Aebischer
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut, Greifswald—Insel Riems, Germany
| | - Falko Steinbach
- Department of Virology, Animal and Plant Health Agency Weybridge, Addlestone, United Kingdom
- School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald—Insel Riems, Germany
| |
Collapse
|
11
|
Dellicour S, Lequime S, Vrancken B, Gill MS, Bastide P, Gangavarapu K, Matteson NL, Tan Y, du Plessis L, Fisher AA, Nelson MI, Gilbert M, Suchard MA, Andersen KG, Grubaugh ND, Pybus OG, Lemey P. Epidemiological hypothesis testing using a phylogeographic and phylodynamic framework. Nat Commun 2020; 11:5620. [PMID: 33159066 PMCID: PMC7648063 DOI: 10.1038/s41467-020-19122-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 09/30/2020] [Indexed: 01/05/2023] Open
Abstract
Computational analyses of pathogen genomes are increasingly used to unravel the dispersal history and transmission dynamics of epidemics. Here, we show how to go beyond historical reconstructions and use spatially-explicit phylogeographic and phylodynamic approaches to formally test epidemiological hypotheses. We illustrate our approach by focusing on the West Nile virus (WNV) spread in North America that has substantially impacted public, veterinary, and wildlife health. We apply an analytical workflow to a comprehensive WNV genome collection to test the impact of environmental factors on the dispersal of viral lineages and on viral population genetic diversity through time. We find that WNV lineages tend to disperse faster in areas with higher temperatures and we identify temporal variation in temperature as a main predictor of viral genetic diversity through time. By contrasting inference with simulation, we find no evidence for viral lineages to preferentially circulate within the same migratory bird flyway, suggesting a substantial role for non-migratory birds or mosquito dispersal along the longitudinal gradient.
Collapse
Affiliation(s)
- Simon Dellicour
- Spatial Epidemiology Lab (SpELL), Université Libre de Bruxelles, CP160/12, 50 Avenue FD Roosevelt, 1050, Bruxelles, Belgium.
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Herestraat 49, 3000, Leuven, Belgium.
| | - Sebastian Lequime
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Bram Vrancken
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Mandev S Gill
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Paul Bastide
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Karthik Gangavarapu
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Nathaniel L Matteson
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Yi Tan
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Infectious Diseases Group, J. Craig Venter Institute, Rockville, MD, USA
| | | | - Alexander A Fisher
- Department of Biomathematics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Martha I Nelson
- Fogarty International Center, National Institutes of Health, Bethesda, MD, 20894, USA
| | - Marius Gilbert
- Spatial Epidemiology Lab (SpELL), Université Libre de Bruxelles, CP160/12, 50 Avenue FD Roosevelt, 1050, Bruxelles, Belgium
| | - Marc A Suchard
- Department of Biomathematics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, CA, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Kristian G Andersen
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Scripps Research Translational Institute, La Jolla, CA, 92037, USA
| | - Nathan D Grubaugh
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, 06510, USA
| | | | - Philippe Lemey
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| |
Collapse
|
12
|
Divergent Mutational Landscapes of Consensus and Minority Genotypes of West Nile Virus Demonstrate Host and Gene-Specific Evolutionary Pressures. Genes (Basel) 2020; 11:genes11111299. [PMID: 33143358 PMCID: PMC7692055 DOI: 10.3390/genes11111299] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/19/2020] [Accepted: 10/29/2020] [Indexed: 01/12/2023] Open
Abstract
Our current understanding of the natural evolution of RNA viruses comes largely from consensus level genetic analyses which ignore the diverse mutant swarms that comprise within-host viral populations. The breadth and composition of viral mutant swarms impact viral fitness and adaptation, and the capacity for swarm plasticity is likely to be particularly important for arthropod-borne viruses (arboviruses) that cycle between taxonomically divergent hosts. Despite this, characterization of the relationship between the selective pressures and genetic signatures of the mutant swarm and consensus sequences is lacking. To clarify this, we analyzed previously generated whole genome, deep-sequencing data from 548 West Nile virus samples isolated from avian tissues or mosquitoes in New York State from 1999-2018. Both consensus level (interhost) and minority level (intrahost) nucleotide and amino acid sequences were analyzed, and diversity at each position was calculated across the genome in order to assess the relationship between minority and consensus sequences for individual genes and hosts. Our results indicate that consensus sequences are an inept representation of the overall genetic diversity. Unique host and gene-specific signatures and selective pressures were identified. These data demonstrate that an accurate and comprehensive understanding of arbovirus evolution and adaptation within and between hosts requires consideration of minority genotypes.
Collapse
|
13
|
West Nile Virus Epidemic in Germany Triggered by Epizootic Emergence, 2019. Viruses 2020; 12:v12040448. [PMID: 32326472 PMCID: PMC7232143 DOI: 10.3390/v12040448] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/09/2020] [Accepted: 04/13/2020] [Indexed: 01/10/2023] Open
Abstract
One year after the first autochthonous transmission of West Nile virus (WNV) to birds and horses in Germany, an epizootic emergence of WNV was again observed in 2019. The number of infected birds and horses was considerably higher compared to 2018 (12 birds, two horses), resulting in the observation of the first WNV epidemy in Germany: 76 cases in birds, 36 in horses and five confirmed mosquito-borne, autochthonous human cases. We demonstrated that Germany experienced several WNV introduction events and that strains of a distinct group (Eastern German WNV clade), which was introduced to Germany as a single introduction event, dominated mosquito, birds, horse and human-related virus variants in 2018 and 2019. Virus strains in this clade are characterized by a specific-Lys2114Arg mutation, which might lead to an increase in viral fitness. Extraordinary high temperatures in 2018/2019 allowed a low extrinsic incubation period (EIP), which drove the epizootic emergence and, in the end, most likely triggered the 2019 epidemic. Spatiotemporal EIP values correlated with the geographical WNV incidence. This study highlights the risk of a further spread in Germany in the next years with additional human WNV infections. Thus, surveillance of birds is essential to provide an early epidemic warning and thus, initiate targeted control measures.
Collapse
|
14
|
Caldwell HS, Ngo K, Pata JD, Kramer LD, Ciota AT. West Nile Virus fidelity modulates the capacity for host cycling and adaptation. J Gen Virol 2020; 101:410-419. [PMID: 32068528 DOI: 10.1099/jgv.0.001393] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The fidelity of flaviviruses is thought to be tightly regulated for optimal fitness within and between hosts. West Nile virus (WNV) high-fidelity (HiFi) mutations V793I and G806R within the RNA-dependent RNA polymerase, and low-fidelity (LoFi) mutation T248I within the methyltransferase, were previously shown to attenuate infectivity and replicative fitness in Culex mosquitoes and Culex tarsalis (CXT) cells but not in mammalian cells. We hypothesized that fidelity alterations would modify adaptation and maintenance in a host-specific manner. To test this hypothesis, wild-type (WT), HiFi (V793I/G806R) and LoFi (T248I) variants were sequentially passaged eight times in avian (PDE) or mosquito cells, or alternately between the two. Initial characterization confirmed that fidelity mutants are attenuated in mosquito, but not avian, cells. Deep sequencing revealed mutations unique to both cell lines and fidelity mutants, including ENV G1378A, a mutation associated with avian cell adaptation. To characterize maintenance and adaptation, viral outputs were monitored throughout passaging and viral fitness was assessed. The results indicate that fidelity mutants can at times recover fitness during mosquito cell passage, but remain attenuated relative to WT. Despite similar initial fitness, LoFi mutants were impaired during sequential passage in avian cells. Conversely, HiFi mutants passaged in avian cells showed increased adaptation, suggesting that increased fidelity may be advantageous in avian hosts. Although some adaptation occurred with individual mutants, the output titres of fidelity mutants were on average lower and were often lost during host switching. These data confirm that arbovirus fidelity is likely fine-tuned to maximize survival in disparate hosts.
Collapse
Affiliation(s)
- Haley S Caldwell
- The Arbovirus Laboratory, Wadsworth Center, New York State Department of Health, Slingerlands, NY, USA.,Department of Biomedical Sciences, State University of New York at Albany School of Public Health, Albany, NY, USA
| | - Kiet Ngo
- The Arbovirus Laboratory, Wadsworth Center, New York State Department of Health, Slingerlands, NY, USA
| | - Janice D Pata
- Department of Biomedical Sciences, State University of New York at Albany School of Public Health, Albany, NY, USA
| | - Laura D Kramer
- The Arbovirus Laboratory, Wadsworth Center, New York State Department of Health, Slingerlands, NY, USA.,Department of Biomedical Sciences, State University of New York at Albany School of Public Health, Albany, NY, USA
| | - Alexander T Ciota
- The Arbovirus Laboratory, Wadsworth Center, New York State Department of Health, Slingerlands, NY, USA.,Department of Biomedical Sciences, State University of New York at Albany School of Public Health, Albany, NY, USA
| |
Collapse
|
15
|
Chaintoutis SC, Papa A, Pervanidou D, Dovas CI. Evolutionary dynamics of lineage 2 West Nile virus in Europe, 2004–2018: Phylogeny, selection pressure and phylogeography. Mol Phylogenet Evol 2019; 141:106617. [DOI: 10.1016/j.ympev.2019.106617] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 09/10/2019] [Accepted: 09/11/2019] [Indexed: 12/29/2022]
|
16
|
Duggal NK, Langwig KE, Ebel GD, Brault AC. On the Fly: Interactions Between Birds, Mosquitoes, and Environment That Have Molded West Nile Virus Genomic Structure Over Two Decades. JOURNAL OF MEDICAL ENTOMOLOGY 2019; 56:1467-1474. [PMID: 31549720 PMCID: PMC7182917 DOI: 10.1093/jme/tjz112] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Indexed: 05/15/2023]
Abstract
West Nile virus (WNV) was first identified in North America almost 20 yr ago. In that time, WNV has crossed the continent and established enzootic transmission cycles, resulting in intermittent outbreaks of human disease that have largely been linked with climatic variables and waning avian seroprevalence. During the transcontinental dissemination of WNV, the original genotype has been displaced by two principal extant genotypes which contain an envelope mutation that has been associated with enhanced vector competence by Culex pipiens L. (Diptera: Culicidae) and Culex tarsalis Coquillett vectors. Analyses of retrospective avian host competence data generated using the founding NY99 genotype strain have demonstrated a steady reduction in viremias of house sparrows over time. Reciprocally, the current genotype strains WN02 and SW03 have demonstrated an inverse correlation between house sparrow viremia magnitude and the time since isolation. These data collectively indicate that WNV has evolved for increased avian viremia while house sparrows have evolved resistance to the virus such that the relative host competence has remained constant. Intrahost analyses of WNV evolution demonstrate that selection pressures are avian species-specific and purifying selection is greater in individual birds compared with individual mosquitoes, suggesting that the avian adaptive and/or innate immune response may impose a selection pressure on WNV. Phylogenomic, experimental evolutionary systems, and models that link viral evolution with climate, host, and vector competence studies will be needed to identify the relative effect of different selective and stochastic mechanisms on viral phenotypes and the capacity of newly evolved WNV genotypes for transmission in continuously changing landscapes.
Collapse
Affiliation(s)
- Nisha K Duggal
- Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University, Blacksburg, VA
| | - Kate E Langwig
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA
| | - Gregory D Ebel
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO
| | - Aaron C Brault
- Division of Vector-borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO
- Corresponding author, e-mail:
| |
Collapse
|
17
|
Hadfield J, Brito AF, Swetnam DM, Vogels CBF, Tokarz RE, Andersen KG, Smith RC, Bedford T, Grubaugh ND. Twenty years of West Nile virus spread and evolution in the Americas visualized by Nextstrain. PLoS Pathog 2019; 15:e1008042. [PMID: 31671157 PMCID: PMC6822705 DOI: 10.1371/journal.ppat.1008042] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
It has been 20 years since West Nile virus first emerged in the Americas, and since then, little progress has been made to control outbreaks caused by this virus. After its first detection in New York in 1999, West Nile virus quickly spread across the continent, causing an epidemic of human disease and massive bird die-offs. Now the virus has become endemic to the United States, where an estimated 7 million human infections have occurred, making it the leading mosquito-borne virus infection and the most common cause of viral encephalitis in the country. To bring new attention to one of the most important mosquito-borne viruses in the Americas, we provide an interactive review using Nextstrain: a visualization tool for real-time tracking of pathogen evolution (nextstrain.org/WNV/NA). Nextstrain utilizes a growing database of more than 2,000 West Nile virus genomes and harnesses the power of phylogenetics for students, educators, public health workers, and researchers to visualize key aspects of virus spread and evolution. Using Nextstrain, we use virus genomics to investigate the emergence of West Nile virus in the U S, followed by its rapid spread, evolution in a new environment, establishment of endemic transmission, and subsequent international spread. For each figure, we include a link to Nextstrain to allow the readers to directly interact with and explore the underlying data in new ways. We also provide a brief online narrative that parallels this review to further explain the data and highlight key epidemiological and evolutionary features (nextstrain.org/narratives/twenty-years-of-WNV). Mirroring the dynamic nature of outbreaks, the Nextstrain links provided within this paper are constantly updated as new West Nile virus genomes are shared publicly, helping to stay current with the research. Overall, our review showcases how genomics can track West Nile virus spread and evolution, as well as potentially uncover novel targeted control measures to help alleviate its public health burden.
Collapse
Affiliation(s)
- James Hadfield
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Anderson F. Brito
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
| | - Daniele M. Swetnam
- Department of Pathology, Microbiology and Immunology, University of California, Davis, Davis, California, United States of America
| | - Chantal B. F. Vogels
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
| | - Ryan E. Tokarz
- Department of Entomology, Iowa State University, Ames, Iowa, United States of America
| | - Kristian G. Andersen
- Department of Immunology and Microbiology, Scripps Research, La Jolla, California, United States of America
- Scripps Research Translational Institute, La Jolla, California, United States of America
| | - Ryan C. Smith
- Department of Entomology, Iowa State University, Ames, Iowa, United States of America
| | - Trevor Bedford
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Nathan D. Grubaugh
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
| |
Collapse
|
18
|
Therrien C, Fournier É, Ludwig A, Ménard J, Charest H, Martineau C. Phylogenetic analysis of West Nile virus in Quebec, Canada, 2004-2016: Co-circulation of distinct variants harbouring conserved amino acid motifs in North America. Virology 2019; 537:65-73. [PMID: 31465892 DOI: 10.1016/j.virol.2019.08.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/16/2019] [Accepted: 08/19/2019] [Indexed: 11/18/2022]
Abstract
West Nile virus (WNV) was introduced for the first time in the western hemisphere in 1999 in New York City. In 2002, a phenotype-modifying mutation (Env-V159A) defined the first North American genotype WN02. So far, three genotypes has been described in North America but little is known about WNV evolution in Canada. We report the phylogenetic characterization of twenty-six WNV genomes isolated from mosquitoes in the province of Quebec. WNV strains found in Quebec are phylogenetically related to American strains collected in northern and southern regions. We also noted the presence of two robust monophyletic groups of isolates characterized by distinct conserved amino acid motifs. These emerging genotypes were detected for several years in different ecosystems. These results highlight the need for the maintenance of a nationwide surveillance to follow the dispersion of emergent WNV genotypes.
Collapse
Affiliation(s)
- Christian Therrien
- Laboratoire de santé publique du Québec, Institut national de santé publique du Québec. 20045 Chemin Sainte-Marie, Saint-Anne-de-Bellevue, H9X 3Y3, QC, Canada.
| | - Éric Fournier
- Laboratoire de santé publique du Québec, Institut national de santé publique du Québec. 20045 Chemin Sainte-Marie, Saint-Anne-de-Bellevue, H9X 3Y3, QC, Canada
| | - Antoinette Ludwig
- Laboratoire National de microbiologie, Agence de santé publique du Canada, 3200 Sicotte, Saint-Hyacinthe, QC, J2S 2M2, Canada
| | - Joel Ménard
- Laboratoire de santé publique du Québec, Institut national de santé publique du Québec. 20045 Chemin Sainte-Marie, Saint-Anne-de-Bellevue, H9X 3Y3, QC, Canada
| | - Hugues Charest
- Laboratoire de santé publique du Québec, Institut national de santé publique du Québec. 20045 Chemin Sainte-Marie, Saint-Anne-de-Bellevue, H9X 3Y3, QC, Canada
| | - Christine Martineau
- Laboratoire de santé publique du Québec, Institut national de santé publique du Québec. 20045 Chemin Sainte-Marie, Saint-Anne-de-Bellevue, H9X 3Y3, QC, Canada
| |
Collapse
|
19
|
Bialosuknia SM, Tan Y, Zink SD, Koetzner CA, Maffei JG, Halpin RA, Mueller EA, Novotny M, Shilts M, Fedorova NB, Amedeo P, Das SR, Pickett B, Kramer LD, Ciota AT. Evolutionary dynamics and molecular epidemiology of West Nile virus in New York State: 1999-2015. Virus Evol 2019; 5:vez020. [PMID: 31341640 PMCID: PMC6642743 DOI: 10.1093/ve/vez020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Following its introduction into New York State (NYS) in 1999, West Nile virus (WNV; Flavivirus, Flaviviridae) underwent a rapid expansion throughout the USA and into Canada and Latin America. WNV has been characterized as being evolutionarily stable, with weak geographic structure, a dominance of purifying selection and limited adaptive change. We analyzed all available full-genome WNV sequences, focusing on the 543 available sequences from NYS, which included 495 newly sequenced 2000-15 isolates. In addition, we analyzed deep-sequencing data from 317 of these isolates. While our data are generally in agreement with the limited pace of evolutionary change and broad geographic and temporal mixing identified in other studies, we have identified some important exceptions. Most notably, there are 14 codons which demonstrated evidence of positive selection as determined by multiple models, including some positions with evidence of selection in NYS exclusively. Coincident with increased WNV activity, genotypes possessing one or more of these mutations, designated NY01, NY07, and NY10, have increased in prevalence in recent years and displaced historic strains. In addition, we have found a geographical bias with many of these mutations, which suggests selective pressures and adaptations could be regional. Lastly, our deep-sequencing data suggest both increased overall diversity in avian tissue isolates relative to mosquito isolates and multiple non-synonymous minority variants that are both host-specific and retained over time and space. Together, these data provide novel insight into the evolutionary pressures on WNV and the need for continued genetic surveillance and characterization of emergent strains.
Collapse
Affiliation(s)
- Sean M Bialosuknia
- The Arbovirus Laboratory, New York State Department of Health, Wadsworth Center, 5668 State Farm Road, Slingerlands, NY, USA
| | - Yi Tan
- Department of Medicine, Vanderbilt University Medical Center, Nashville, 1161 21st Street, Nashville, TN, USA
| | - Steven D Zink
- The Arbovirus Laboratory, New York State Department of Health, Wadsworth Center, 5668 State Farm Road, Slingerlands, NY, USA
| | - Cheri A Koetzner
- The Arbovirus Laboratory, New York State Department of Health, Wadsworth Center, 5668 State Farm Road, Slingerlands, NY, USA
| | - Joseph G Maffei
- The Arbovirus Laboratory, New York State Department of Health, Wadsworth Center, 5668 State Farm Road, Slingerlands, NY, USA
| | - Rebecca A Halpin
- J. Craig Venter Institute, Virology, 9605 Medical Center Drive, Rockville, MD, USA
| | - Emmi A Mueller
- J. Craig Venter Institute, Virology, 9605 Medical Center Drive, Rockville, MD, USA
| | - Mark Novotny
- J. Craig Venter Institute, Virology, 9605 Medical Center Drive, Rockville, MD, USA
| | - Meghan Shilts
- Department of Medicine, Vanderbilt University Medical Center, Nashville, 1161 21st Street, Nashville, TN, USA
- J. Craig Venter Institute, Virology, 9605 Medical Center Drive, Rockville, MD, USA
| | - Nadia B Fedorova
- J. Craig Venter Institute, Virology, 9605 Medical Center Drive, Rockville, MD, USA
| | - Paolo Amedeo
- J. Craig Venter Institute, Virology, 9605 Medical Center Drive, Rockville, MD, USA
| | - Suman R Das
- Department of Medicine, Vanderbilt University Medical Center, Nashville, 1161 21st Street, Nashville, TN, USA
| | - Brett Pickett
- J. Craig Venter Institute, Virology, 9605 Medical Center Drive, Rockville, MD, USA
| | - Laura D Kramer
- The Arbovirus Laboratory, New York State Department of Health, Wadsworth Center, 5668 State Farm Road, Slingerlands, NY, USA
- Department of Biomedical Sciences, State University of New York at Albany School of Public Health, Rensselear, NY, USA
| | - Alexander T Ciota
- The Arbovirus Laboratory, New York State Department of Health, Wadsworth Center, 5668 State Farm Road, Slingerlands, NY, USA
- Department of Biomedical Sciences, State University of New York at Albany School of Public Health, Rensselear, NY, USA
| |
Collapse
|
20
|
Swetnam D, Widen SG, Wood TG, Reyna M, Wilkerson L, Debboun M, Symonds DA, Mead DG, Beaty BJ, Guzman H, Tesh RB, Barrett ADT. Terrestrial Bird Migration and West Nile Virus Circulation, United States. Emerg Infect Dis 2019; 24:2184-2194. [PMID: 30457531 PMCID: PMC6256381 DOI: 10.3201/eid2412.180382] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Host migration and emerging pathogens are strongly associated, especially with regard to zoonotic diseases. West Nile virus (WNV), a mosquitoborne pathogen capable of causing severe, sometimes fatal, neuroinvasive disease in humans, is maintained in highly mobile avian hosts. Using phylogeographic approaches, we investigated the relationship between WNV circulation in the United States and the flight paths of terrestrial birds. We demonstrated southward migration of WNV in the eastern flyway and northward migration in the central flyway, which is consistent with the looped flight paths of many terrestrial birds. We also identified 3 optimal locations for targeted WNV surveillance campaigns in the United States—Illinois, New York, and Texas. These results illustrate the value of multidisciplinary approaches to surveillance of infectious diseases, especially zoonotic diseases.
Collapse
|
21
|
Abstract
West Nile virus (WNV) emerged in the Americas with its introduction in 1999 and now is considered endemic across the continent. In 2002, WNV was detected in Mexico, where its occurrence and mortality are considerably lower compared with the US. However, continuous national surveillance programs in Mexico are nonexistent. Birds are considered the primary hosts and primary geographic dispersers of this pathogen. A total of 200 cloacal and tracheal samples from wild migratory or resident birds were retrospectively analyzed using reverse transcription PCR to detect WNV from birds collected in Mexico from 2008 to 2009. The overall prevalence was 8% (16/200), and positive samples were from Oaxaca, Chiapas, and Tamaulipas in Ruby-throated Hummingbird ( Archilochus colubris), Double-crested Cormorant ( Phalacrocorax auritus), Ring-billed Gull ( Larus delawarensis), and Mourning Dove ( Zenaida macroura). Analysis of the partial sequence of the envelope gene from one of the samples from Oaxaca provided evidence that the virus belonged to the WN99 genotype. Taken together, these results demonstrated that WNV circulated in wild birds from northern and southern Mexico during the 2008-09 season, providing further information about the presence of WNV in Mexico.
Collapse
|
22
|
Tan Y, Pickett BE, Shrivastava S, Gresh L, Balmaseda A, Amedeo P, Hu L, Puri V, Fedorova NB, Halpin RA, LaPointe MP, Cone MR, Heberlein-Larson L, Kramer LD, Ciota AT, Gordon A, Shabman RS, Das SR, Harris E. Differing epidemiological dynamics of Chikungunya virus in the Americas during the 2014-2015 epidemic. PLoS Negl Trop Dis 2018; 12:e0006670. [PMID: 30059496 PMCID: PMC6085065 DOI: 10.1371/journal.pntd.0006670] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 08/09/2018] [Accepted: 07/07/2018] [Indexed: 02/07/2023] Open
Abstract
Chikungunya virus (CHIKV) has been detected sporadically since the 1950s and includes three distinct co-circulating genotypes. In late 2013, the Asian genotype of CHIKV was responsible for the Caribbean outbreak (CO) that rapidly became an epidemic throughout the Americas. There is a limited understanding of the molecular evolution of CHIKV in the Americas during this epidemic. We sequenced 185 complete CHIKV genomes collected mainly from Nicaragua in Central America and Florida in the United States during the 2014-2015 Caribbean/Americas epidemic. Our comprehensive phylogenetic analyses estimated the epidemic history of the Asian genotype and the recent Caribbean outbreak (CO) clade, revealed considerable genetic diversity within the CO clade, and described different epidemiological dynamics of CHIKV in the Americas. Specifically, we identified multiple introductions in both Nicaragua and Florida, with rapid local spread of viruses in Nicaragua but limited autochthonous transmission in Florida in the US. Our phylogenetic analysis also showed phylogeographic clustering of the CO clade. In addition, we identified the significant amino acid substitutions that were observed across the entire Asian genotype during its evolution and examined amino acid changes that were specific to the CO clade. Deep sequencing analysis identified specific minor variants present in clinical specimens below-consensus levels. Finally, we investigated the association between viral phylogeny and geographic/clinical metadata in Nicaragua. To date, this study represents the largest single collection of CHIKV complete genomes during the Caribbean/Americas epidemic and significantly expands our understanding of the emergence and evolution of CHIKV CO clade in the Americas.
Collapse
Affiliation(s)
- Yi Tan
- J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Brett E. Pickett
- J. Craig Venter Institute, Rockville, Maryland, United States of America
| | | | - Lionel Gresh
- Sustainable Sciences Institute, Managua, Nicaragua
| | - Angel Balmaseda
- Laboratorio Nacional de Virología, Centro Nacional de Diagnóstico y Referencia, Ministry of Health, Managua, Nicaragua
| | - Paolo Amedeo
- J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Lihui Hu
- J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Vinita Puri
- J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Nadia B. Fedorova
- J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Rebecca A. Halpin
- J. Craig Venter Institute, Rockville, Maryland, United States of America
| | | | - Marshall R. Cone
- Florida Department of Health, Bureau of Public Health Laboratories, Tampa, Florida, United States of America
| | - Lea Heberlein-Larson
- Florida Department of Health, Bureau of Public Health Laboratories, Tampa, Florida, United States of America
| | - Laura D. Kramer
- Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
| | - Alexander T. Ciota
- Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
| | - Aubree Gordon
- Department of Epidemiology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Reed S. Shabman
- J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Suman R. Das
- J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, California, United States of America
| |
Collapse
|
23
|
Large-Scale Complete-Genome Sequencing and Phylodynamic Analysis of Eastern Equine Encephalitis Virus Reveals Source-Sink Transmission Dynamics in the United States. J Virol 2018; 92:JVI.00074-18. [PMID: 29618651 DOI: 10.1128/jvi.00074-18] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 03/30/2018] [Indexed: 11/20/2022] Open
Abstract
Eastern equine encephalitis virus (EEEV) has a high case-fatality rate in horses and humans, and Florida has been hypothesized to be the source of EEEV epidemics for the northeastern United States. To test this hypothesis, we sequenced complete genomes of 433 EEEV strains collected within the United States from 1934 to 2014. Phylogenetic analysis suggested EEEV evolves relatively slowly and that transmission is enzootic in Florida, characterized by higher genetic diversity and long-term local persistence. In contrast, EEEV strains in New York and Massachusetts were characterized by lower genetic diversity, multiple introductions, and shorter local persistence. Our phylogeographic analysis supported a source-sink model in which Florida is the major source of EEEV compared to the other localities sampled. In sum, this study revealed the complex epidemiological dynamics of EEEV in different geographic regions in the United States and provided general insights into the evolution and transmission of other avian mosquito-borne viruses in this region.IMPORTANCE Eastern equine encephalitis virus (EEEV) infections are severe in horses and humans on the east coast of the United States with a >90% mortality rate in horses, an ∼33% mortality rate in humans, and significant brain damage in most human survivors. However, little is known about the evolutionary characteristics of EEEV due to the lack of genome sequences. By generating large collection of publicly available complete genome sequences, this study comprehensively determined the evolution of the virus, described the epidemiological dynamics of EEEV in different states in the United States, and identified Florida as one of the major sources. These results may have important implications for the control and prevention of other mosquito-borne viruses in the Americas.
Collapse
|
24
|
Nyaga MM, Tan Y, Seheri ML, Halpin RA, Akopov A, Stucker KM, Fedorova NB, Shrivastava S, Duncan Steele A, Mwenda JM, Pickett BE, Das SR, Jeffrey Mphahlele M. Whole-genome sequencing and analyses identify high genetic heterogeneity, diversity and endemicity of rotavirus genotype P[6] strains circulating in Africa. INFECTION GENETICS AND EVOLUTION 2018; 63:79-88. [PMID: 29782933 DOI: 10.1016/j.meegid.2018.05.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 05/15/2018] [Accepted: 05/16/2018] [Indexed: 10/16/2022]
Abstract
Rotavirus A (RVA) exhibits a wide genotype diversity globally. Little is known about the genetic composition of genotype P[6] from Africa. This study investigated possible evolutionary mechanisms leading to genetic diversity of genotype P[6] VP4 sequences. Phylogenetic analyses on 167 P[6] VP4 full-length sequences were conducted, which included six porcine-origin sequences. Of the 167 sequences, 57 were newly acquired through whole genome sequencing as part of this study. The other 110 sequences were all publicly-available global P[6] VP4 full-length sequences downloaded from GenBank. The strength of association between the phenotypic features and the phylogeny was also determined. A number of reassortment and mixed infections of RVA genotype P[6] strains were observed in this study. Phylogenetic analyses demostrated the extensive genetic diversity that exists among human P[6] strains, porcine-like strains, their concomitant clades/subclades and estimated that P[6] VP4 gene has a higher substitution rate with the mean of 1.05E-3 substitutions/site/year. Further, the phylogenetic analyses indicated that genotype P[6] strains were endemic in Africa, characterised by an extensive genetic diversity and long-time local evolution of the viruses. This was also supported by phylogeographic clustering and G-genotype clustering of the P[6] strains when Bayesian Tip-association Significance testing (BaTS) was applied, clearly supporting that the viruses evolved locally in Africa instead of spatial mixing among different regions. Overall, the results demonstrated that multiple mechanisms such as reassortment events, various mutations and possibly interspecies transmission account for the enormous diversity of genotype P[6] strains in Africa. These findings highlight the need for continued global surveillance of rotavirus diversity.
Collapse
Affiliation(s)
- Martin M Nyaga
- South African Medical Research Council/Diarrhoeal Pathogens Research Unit, Faculty of Health Sciences, Sefako Makgatho Health Sciences University, Medunsa, Pretoria, South Africa; Next Generation Sequencing Unit, Department of Medical Virology, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa
| | - Yi Tan
- Infectious Diseases Group, J. Craig Venter Institute, Rockville, MD, USA; Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Mapaseka L Seheri
- South African Medical Research Council/Diarrhoeal Pathogens Research Unit, Faculty of Health Sciences, Sefako Makgatho Health Sciences University, Medunsa, Pretoria, South Africa
| | - Rebecca A Halpin
- Infectious Diseases Group, J. Craig Venter Institute, Rockville, MD, USA
| | - Asmik Akopov
- Infectious Diseases Group, J. Craig Venter Institute, Rockville, MD, USA
| | - Karla M Stucker
- Infectious Diseases Group, J. Craig Venter Institute, Rockville, MD, USA
| | - Nadia B Fedorova
- Infectious Diseases Group, J. Craig Venter Institute, Rockville, MD, USA
| | | | - A Duncan Steele
- South African Medical Research Council/Diarrhoeal Pathogens Research Unit, Faculty of Health Sciences, Sefako Makgatho Health Sciences University, Medunsa, Pretoria, South Africa; Enteric and Diarrhoeal Diseases Programme, Global Health Program, Bill and Melinda Gates Foundation, Seattle, WA, USA
| | - Jason M Mwenda
- World Health Organization, Regional Office for Africa, Brazzaville, People's Republic of Congo
| | - Brett E Pickett
- Infectious Diseases Group, J. Craig Venter Institute, Rockville, MD, USA
| | - Suman R Das
- Infectious Diseases Group, J. Craig Venter Institute, Rockville, MD, USA; Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - M Jeffrey Mphahlele
- South African Medical Research Council/Diarrhoeal Pathogens Research Unit, Faculty of Health Sciences, Sefako Makgatho Health Sciences University, Medunsa, Pretoria, South Africa.
| |
Collapse
|
25
|
Full-Genome Characterization and Genetic Evolution of West African Isolates of Bagaza Virus. Viruses 2018; 10:v10040193. [PMID: 29652824 PMCID: PMC5923487 DOI: 10.3390/v10040193] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 03/12/2018] [Accepted: 03/30/2018] [Indexed: 01/26/2023] Open
Abstract
Bagaza virus is a mosquito-borne flavivirus, first isolated in 1966 in Central African Republic. It has currently been identified in mosquito pools collected in the field in West and Central Africa. Emergence in wild birds in Europe and serological evidence in encephalitis patients in India raise questions on its genetic evolution and the diversity of isolates circulating in Africa. To better understand genetic diversity and evolution of Bagaza virus, we describe the full-genome characterization of 11 West African isolates, sampled from 1988 to 2014. Parameters such as genetic distances, N-glycosylation patterns, recombination events, selective pressures, and its codon adaptation to human genes are assessed. Our study is noteworthy for the observation of N-glycosylation and recombination in Bagaza virus and provides insight into its Indian origin from the 13th century. Interestingly, evidence of Bagaza virus codon adaptation to human house-keeping genes is also observed to be higher than those of other flaviviruses well known in human infections. Genetic variations on genome of West African Bagaza virus could play an important role in generating diversity and may promote Bagaza virus adaptation to other vertebrates and become an important threat in human health.
Collapse
|
26
|
The Effects of Sampling Location and Predictor Point Estimate Certainty on Posterior Support in Bayesian Phylogeographic Generalized Linear Models. Sci Rep 2018; 8:5905. [PMID: 29651124 PMCID: PMC5897398 DOI: 10.1038/s41598-018-24264-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 03/26/2018] [Indexed: 01/27/2023] Open
Abstract
The use of generalized linear models in Bayesian phylogeography has enabled researchers to simultaneously reconstruct the spatiotemporal history of a virus and quantify the contribution of predictor variables to that process. However, little is known about the sensitivity of this method to the choice of the discrete state partition. Here we investigate this question by analyzing a data set containing 299 sequences of the West Nile virus envelope gene sampled in the United States and fifteen predictors aggregated at four spatial levels. We demonstrate that although the topology of the viral phylogenies was consistent across analyses, support for the predictors depended on the level of aggregation. In particular, we found that the variance of the predictor support metrics was minimized at the most precise level for several predictors and maximized at more sparse levels of aggregation. These results suggest that caution should be taken when partitioning a region into discrete locations to ensure that interpretable, reproducible posterior estimates are obtained. These results also demonstrate why researchers should use the most precise discrete states possible to minimize the posterior variance in such estimates and reveal what truly drives the diffusion of viruses.
Collapse
|
27
|
Ninvilai P, Nonthabenjawan N, Limcharoen B, Tunterak W, Oraveerakul K, Banlunara W, Amonsin A, Thontiravong A. The presence of duck Tembusu virus in Thailand since 2007: A retrospective study. Transbound Emerg Dis 2018. [PMID: 29520997 DOI: 10.1111/tbed.12859] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Duck Tembusu virus (DTMUV), a newly emerging virus in ducks, was first reported in China in 2010. However, an unknown severe contagious disease associated with severe neurological signs and egg production losses in ducks, resembling to DTMUV infection, was observed in Thailand since 2007. To determine the presence of DTMUV in 2007, the clinical samples from affected ducks collected in 2007 were tested for DTMUV using pathological and virological analyses. Gross and histopathological lesions of affected ducks were mostly restricted to the ovary, brain and spinal cord, and correlated with the presence of flavivirus antigen in the brain and spinal cord samples. Subsequently, DTMUV was identified by RT-PCR and nucleotide sequencing of the polyprotein gene. Phylogenetic analysis of the polyprotein gene sequence revealed that the 2007 Thai DTMUV was a unique virus, belonged within DTMUV cluster 1, but distinctively separated from the Malaysian DTMUV, which was the most closely related DTMUV. It is interesting to note that the 2007 Thai DTMUV was genetically different from the currently circulating Thai and Chinese DTMUVs, which belonged to cluster 2. Our findings indicated that the 2007 Thai DTMUV emerged earlier from a common ancestor with the recently reported DTMUVs; however, it was genetically distinctive to any of the currently circulating DTMUVs. In conclusion, our data demonstrated the presence of DTMUV in the Thai ducks since 2007, prior to the first report of DTMUV in China in 2010. This study indicates that DTMUV may have circulated in the region long before 2010 and highlights high genetic diversity of DTMUVs in Asia.
Collapse
Affiliation(s)
- P Ninvilai
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - N Nonthabenjawan
- Emerging and Re-emerging Infectious Diseases in Animals (CUEIDAs), Center of Excellence, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.,Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - B Limcharoen
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - W Tunterak
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.,Emerging and Re-emerging Infectious Diseases in Animals (CUEIDAs), Center of Excellence, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - K Oraveerakul
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - W Banlunara
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - A Amonsin
- Emerging and Re-emerging Infectious Diseases in Animals (CUEIDAs), Center of Excellence, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.,Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - A Thontiravong
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.,Emerging and Re-emerging Infectious Diseases in Animals (CUEIDAs), Center of Excellence, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
28
|
Carrasco-Hernandez R, Jácome R, López Vidal Y, Ponce de León S. Are RNA Viruses Candidate Agents for the Next Global Pandemic? A Review. ILAR J 2017; 58:343-358. [PMID: 28985316 PMCID: PMC7108571 DOI: 10.1093/ilar/ilx026] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 07/14/2017] [Accepted: 07/15/2017] [Indexed: 12/16/2022] Open
Abstract
Pathogenic RNA viruses are potentially the most important group involved in zoonotic disease transmission, and they represent a challenge for global disease control. Their biological diversity and rapid adaptive rates have proved to be difficult to overcome and to anticipate by modern medical technology. Also, the anthropogenic change of natural ecosystems and the continuous population growth are driving increased rates of interspecies contacts and the interchange of pathogens that can develop into global pandemics. The combination of molecular, epidemiological, and ecological knowledge of RNA viruses is therefore essential towards the proper control of these emergent pathogens. This review outlines, throughout different levels of complexity, the problems posed by RNA viral diseases, covering some of the molecular mechanisms allowing them to adapt to new host species-and to novel pharmaceutical developments-up to the known ecological processes involved in zoonotic transmission.
Collapse
Affiliation(s)
- R Carrasco-Hernandez
- R. Carrasco-Hernandez, PhD, is a postdoctoral research fellow at the Microbiome Laboratory in the Postgraduate Division of the Faculty of Medicine at the Universidad Nacional Autónoma de México, CDMX
| | - Rodrigo Jácome
- Rodrigo Jácome, MD, PhD, is a postdoctoral research fellow at the Microbiome Laboratory in the Postgraduate Division of the Faculty of Medicine at the Universidad Nacional Autónoma de México, CDMX
| | - Yolanda López Vidal
- Yolanda López-Vidal, MD, PhD, is an associate professor “C” and is responsible for the Program of Microbial Molecular Immunology in the Department of Microbiology and Parasitology of the Faculty of Medicine at the Universidad Nacional Autónoma de México, CDMX
| | - Samuel Ponce de León
- Samuel Ponce-de-León, MD, MSc, is an associate professor “C”, is responsible for the Microbiome Laboratory and Coordinator of the University Program for Health Research of the Faculty of Medicine at the Universidad Nacional Autónoma de México, CDMX
| |
Collapse
|
29
|
Motoya T, Nagasawa K, Matsushima Y, Nagata N, Ryo A, Sekizuka T, Yamashita A, Kuroda M, Morita Y, Suzuki Y, Sasaki N, Katayama K, Kimura H. Molecular Evolution of the VP1 Gene in Human Norovirus GII.4 Variants in 1974-2015. Front Microbiol 2017; 8:2399. [PMID: 29259596 PMCID: PMC5723339 DOI: 10.3389/fmicb.2017.02399] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 11/20/2017] [Indexed: 12/14/2022] Open
Abstract
Human norovirus (HuNoV) is a leading cause of viral gastroenteritis worldwide, of which GII.4 is the most predominant genotype. Unlike other genotypes, GII.4 has created various variants that escaped from previously acquired immunity of the host and caused repeated epidemics. However, the molecular evolutionary differences among all GII.4 variants, including recently discovered strains, have not been elucidated. Thus, we conducted a series of bioinformatic analyses using numerous, globally collected, full-length GII.4 major capsid (VP1) gene sequences (466 strains) to compare the evolutionary patterns among GII.4 variants. The time-scaled phylogenetic tree constructed using the Bayesian Markov chain Monte Carlo (MCMC) method showed that the common ancestor of the GII.4 VP1 gene diverged from GII.20 in 1840. The GII.4 genotype emerged in 1932, and then formed seven clusters including 14 known variants after 1980. The evolutionary rate of GII.4 strains was estimated to be 7.68 × 10−3 substitutions/site/year. The evolutionary rates probably differed among variants as well as domains [protruding 1 (P1), shell, and P2 domains]. The Osaka 2007 variant strains probably contained more nucleotide substitutions than any other variant. Few conformational epitopes were located in the shell and P1 domains, although most were contained in the P2 domain, which, as previously established, is associated with attachment to host factors and antigenicity. We found that positive selection sites for the whole GII.4 genotype existed in the shell and P1 domains, while Den Haag 2006b, New Orleans 2009, and Sydney 2012 variants were under positive selection in the P2 domain. Amino acid substitutions overlapped with putative epitopes or were located around the epitopes in the P2 domain. The effective population sizes of the present strains increased stepwise for Den Haag 2006b, New Orleans 2009, and Sydney 2012 variants. These results suggest that HuNoV GII.4 rapidly evolved in a few decades, created various variants, and altered its evolutionary rate and antigenicity.
Collapse
Affiliation(s)
- Takumi Motoya
- Ibaraki Prefectural Institute of Public Health, Mito, Japan.,Laboratory of Laboratory Animal Science and Medicine, Faculty of Veterinary Medicine, Kitasato University, Towada, Japan
| | - Koo Nagasawa
- Infectious Disease Surveillance Center, National Institute of Infectious Diseases, Musashimurayama, Japan
| | - Yuki Matsushima
- Division of Virology, Kawasaki City Institute for Public Health, Kawasaki, Japan
| | - Noriko Nagata
- Ibaraki Prefectural Institute of Public Health, Mito, Japan
| | - Akihide Ryo
- Department of Microbiology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Tsuyoshi Sekizuka
- Pathogen Genomics Center, National Institute of Infectious Diseases, Musashimurayama, Japan
| | - Akifumi Yamashita
- Pathogen Genomics Center, National Institute of Infectious Diseases, Musashimurayama, Japan
| | - Makoto Kuroda
- Pathogen Genomics Center, National Institute of Infectious Diseases, Musashimurayama, Japan
| | - Yukio Morita
- Department of Food and Nutrition, Tokyo Kasei University, Itabashi-ku, Japan
| | - Yoshiyuki Suzuki
- Graduate School of Natural Sciences, Nagoya City University, Nagoya, Japan
| | - Nobuya Sasaki
- Laboratory of Laboratory Animal Science and Medicine, Faculty of Veterinary Medicine, Kitasato University, Towada, Japan
| | - Kazuhiko Katayama
- Laboratory of Viral Infection I, Kitasato Institute for Life Sciences, Kitasato University, Minato-ku, Japan
| | - Hirokazu Kimura
- Infectious Disease Surveillance Center, National Institute of Infectious Diseases, Musashimurayama, Japan.,Department of Microbiology, Yokohama City University Graduate School of Medicine, Yokohama, Japan.,School of Medical Technology, Faculty of Health Sciences, Gunma Paz University, Takasaki, Japan
| |
Collapse
|
30
|
Aldunate F, Gámbaro F, Fajardo A, Soñora M, Cristina J. Evidence of increasing diversification of Zika virus strains isolated in the American continent. J Med Virol 2017; 89:2059-2063. [PMID: 28792064 DOI: 10.1002/jmv.24910] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 08/01/2017] [Indexed: 11/10/2022]
Abstract
Zika virus (ZIKV) is a member of the family Flaviviridae. ZIKV emerged in Brazil in 2015, causing an unprecedented epidemic and since then the virus has rapidly spread throughout the Americas. These facts highlight the need of detailed phylogenetic studies to understand the emergence, spread, and evolution of ZIKV populations. For these reasons, a Bayesian coalescent Markov Chain Monte Carlo analysis of complete genome sequences of ZIKV strains recently isolated in the American continent was performed. The results of these studies revealed an increasing diversification of ZIKV strains in different genetic lineages and co-circulation of distinct genetic lineages in several countries in the region. The time of the most recent common ancestor (tMRCA) was established to be around February 20, 2014 for ZIKV strains circulating in the American region. A mean rate of evolution of 1.55 × 10-3 substitutions/site/year was obtained for ZIKV strains included in this study. A Bayesian skyline plot indicate a sharp increase in population size from February 2014 to July 2015 and a decline during 2016. These results are discussed in terms of the emergence and evolution of ZIKV populations in the American continent.
Collapse
Affiliation(s)
- Fabián Aldunate
- Facultad de Ciencias, Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Universidad de la Republica, Montevideo, Uruguay
| | - Fabiana Gámbaro
- Facultad de Ciencias, Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Universidad de la Republica, Montevideo, Uruguay
| | - Alvaro Fajardo
- Facultad de Ciencias, Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Universidad de la Republica, Montevideo, Uruguay
| | - Martín Soñora
- Facultad de Ciencias, Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Universidad de la Republica, Montevideo, Uruguay
| | - Juan Cristina
- Facultad de Ciencias, Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Universidad de la Republica, Montevideo, Uruguay
| |
Collapse
|
31
|
Zhang HL, Ye HQ, Deng CL, Liu SQ, Shi PY, Qin CF, Yuan ZM, Zhang B. Generation and characterization of West Nile pseudo-infectious reporter virus for antiviral screening. Antiviral Res 2017; 141:38-47. [DOI: 10.1016/j.antiviral.2017.02.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 02/10/2017] [Accepted: 02/11/2017] [Indexed: 01/27/2023]
|
32
|
High levels of local inter- and intra-host genetic variation of West Nile virus and evidence of fine-scale evolutionary pressures. INFECTION GENETICS AND EVOLUTION 2017; 51:219-226. [PMID: 28411164 DOI: 10.1016/j.meegid.2017.04.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 04/07/2017] [Accepted: 04/10/2017] [Indexed: 01/21/2023]
Abstract
West Nile virus (WNV; Flaviviridae, Flavivirus) has been endemic in New York State (NYS) since its 1999 introduction, yet prevalence in Culex mosquitoes varies substantially over small spatial and temporal scales. It is unclear if viral genetics plays a role in this variability, as genetic and phenotypic characterization on local scales has generally been lacking. In addition, intrahost diversity of circulating strains have not been fully characterized despite the documented role of minority variants in viral fitness and virulence. In an effort to characterize WNV variability within epidemiologically relevant scales, we performed phylogenetic analyses on NYS isolates from 1999 to 2012. In addition, we performed full-genome, deep-sequencing and genetic analyses on 15 WNV strains isolated in 2012 from Cx. pipiens in an endemic focus of Suffolk County, NY. Our results indicate continued evolution and seasonal maintenance in NYS, yet also widespread mixing and high levels of genetic diversity within geographic foci and individual seasons. Well supported local clusters with shared amino acid differences were identified and suggest local evolutionary pressures and the potential for phenotypic variability. Intrahost diversity of focal isolates was also high, with polymorphism at levels >1.0% identified in approximately 10% of the WNV genome. Although most minority mutations were unique, mutational hotspots shared among local isolates were identified, particularly in C, NS1 and NS2A genes. The most polymorphic region, positions 3198-3388 of the NS1 gene, was comprised predominately of non-synonymous mutations, suggesting a selective advantage for amino acid diversity in this region.
Collapse
|
33
|
Betsem E, Kaidarova Z, Stramer SL, Shaz B, Sayers M, LeParc G, Custer B, Busch MP, Murphy EL. Correlation of West Nile Virus Incidence in Donated Blood with West Nile Neuroinvasive Disease Rates, United States, 2010-2012. Emerg Infect Dis 2017; 23:212-219. [PMID: 27935796 PMCID: PMC5324803 DOI: 10.3201/eid2302.161058] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Over the past decade, West Nile virus (WNV) has spread across the United States. We aggregated blood donor data from 2010–2012 and then calculated the incidence of WNV RNA–positive donations and compared the incidence with neuroinvasive disease (NID) case data from the ArboNET surveillance system. Of 10,107,853 donations, 640 were confirmed positive. The seasonal WNV incidence rate per 100,000 persons was 33.4 (95% CI 22–45) in 2010, 25.7 (95% CI 15–34) in 2011, and 119.9 (95% CI 98–141) in 2012. NID to blood donor ratios were 1 in 164 (95% CI 152–178) in 2010, 1 in 158 (95% CI 145–174) in 2011, and 1 in 131 (95% CI 127–136) in 2012. We updated estimates of the ratio of NID to WNV infection rates, demonstrating stable disease penetrance over the study period. Blood donor WNV RNA screening is a valuable public health tool for WNV surveillance.
Collapse
|
34
|
Diseases of the Nervous System. Vet Med (Auckl) 2017. [PMCID: PMC7322266 DOI: 10.1016/b978-0-7020-5246-0.00014-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
35
|
Development of a microarray-based assay for rapid monitoring of genetic variants of West Nile virus circulating in the United States. J Virol Methods 2017; 239:17-25. [DOI: 10.1016/j.jviromet.2016.10.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 09/30/2016] [Accepted: 10/25/2016] [Indexed: 12/23/2022]
|
36
|
Molecular evolution of emerging Banna virus. INFECTION GENETICS AND EVOLUTION 2016; 45:250-255. [PMID: 27590713 DOI: 10.1016/j.meegid.2016.08.034] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 08/24/2016] [Accepted: 08/29/2016] [Indexed: 11/22/2022]
Abstract
Banna virus (BAV) is an emerging pathogen that causes human viral encephalitis and has been isolated from types of blood-sucking insects and mammals in Asia. However, there are no reported systematic studies that describe the origin and evolution of BAV. Here, a phylogenetic analysis of BAVs isolated from a variety of potential vectors and vertebrate hosts worldwide revealed that BAVs emerged in the beginning of the 20th century and do not exhibit a species barrier. The mean substitution rate of BAVs was 2.467×10-2substitution/site/year (95% HPD, 1.093×10-3 to 5.628×10-2). The lineage is mainly composed of BAVs from high-latitude regions, which are the most recently emerged viruses with significantly higher substitution rates compared with the lineage comprised of the isolates from middle or low-latitude regions. The genetic differences between BAV strains are positively correlated with the geographic distribution. Strains from the same latitude regions are almost 100% identical, whereas the differences between strains from long distance regions with different latitudes could be >60%. Our results demonstrate that BAV is an emerging virus at a stage that involves rapid evolution and has great potential for introduction into non-endemic areas. Thus, enhanced surveillance of BAV is highly recommended worldwide.
Collapse
|
37
|
Genetic Variability of West Nile Virus in U.S. Blood Donors from the 2012 Epidemic Season. PLoS Negl Trop Dis 2016; 10:e0004717. [PMID: 27182734 PMCID: PMC4868353 DOI: 10.1371/journal.pntd.0004717] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 04/27/2016] [Indexed: 12/26/2022] Open
Abstract
West Nile virus (WNV) is an arbovirus maintained in nature in a bird-mosquito enzootic cycle which can also infect other vertebrates including humans. WNV is now endemic in the United States (U.S.), causing yearly outbreaks that have resulted in an estimated total of 4-5 million human infections. Over 41,700 cases of West Nile disease, including 18,810 neuroinvasive cases and 1,765 deaths, were reported to the CDC between 1999 and 2014. In 2012, the second largest West Nile outbreak in the U.S. was reported, which caused 5,674 cases and 286 deaths. WNV continues to evolve, and three major WNV lineage I genotypes (NY99, WN02, and SW/WN03) have been described in the U.S. since introduction of the virus in 1999. We report here the WNV sequences obtained from 19 human samples acquired during the 2012 U.S. outbreak and our examination of the evolutionary dynamics in WNV isolates sequenced from 1999-2012. Maximum-likelihood and Bayesian methods were used to perform the phylogenetic analyses. Selection pressure analyses were performed with the HyPhy package using the Datamonkey web-server. Using different codon-based and branch-site selection models, we detected a number of codons subjected to positive pressure in WNV genes. Thirteen of the 19 completely sequenced isolates from 10 U.S. states were genetically similar, sharing up to 55 nucleotide mutations and 4 amino acid substitutions when compared with the prototype isolate WN-NY99. Overall, these analyses showed that following a brief contraction in 2008-2009, WNV genetic divergence in the U.S. continued to increase in 2012, and that closely related variants were found across a broad geographic range of the U.S., coincident with the second-largest WNV outbreak in U.S.
Collapse
|
38
|
Reconstruction of the Evolutionary History and Dispersal of Usutu Virus, a Neglected Emerging Arbovirus in Europe and Africa. mBio 2016; 7:e01938-15. [PMID: 26838717 PMCID: PMC4742707 DOI: 10.1128/mbio.01938-15] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Usutu virus (USUV), one of the most neglected Old World encephalitic flaviviruses, causes epizootics among wild and captive birds and sporadic infection in humans. The dynamics of USUV spread and evolution in its natural hosts are unknown. Here, we present the phylogeny and evolutionary history of all available USUV strains, including 77 newly sequenced complete genomes from a variety of host species at a temporal and spatial scaled resolution. The results showed that USUV can be classified into six distinct lineages and that the most recent common ancestor of the recent European epizootics emerged in Africa at least 500 years ago. We demonstrated that USUV was introduced regularly from Africa into Europe in the last 50 years, and the genetic diversity of European lineages is shaped primarily by in situ evolution, while the African lineages have been driven by extensive gene flow. Most of the amino acid changes are deleterious polymorphisms removed by purifying selection, with adaptive evolution restricted to the NS5 gene and several others evolving under episodic directional selection, indicating that the ecological or immunological factors were mostly the key determinants of USUV dispersal and outbreaks. Host-specific mutations have been detected, while the host transition analysis identified mosquitoes as the most likely origin of the common ancestor and birds as the source of the recent European USUV lineages. Our results suggest that the major migratory bird flyways could predict the continental and intercontinental dispersal patterns of USUV and that migratory birds might act as potential long-distance dispersal vehicles. Usutu virus (USUV), a mosquito-borne flavivirus of the Japanese encephalitis virus antigenic group, caused massive bird die-offs, mostly in Europe. There is increasing evidence that USUV appears to be pathogenic for humans, becoming a potential public health problem. The emergence of USUV in Europe allows us to understand how an arbovirus spreads, adapts, and evolves in a naive environment. Thus, understanding the epidemiological and evolutionary processes that contribute to the emergence, maintenance, and further spread of viral diseases is the sine qua non to develop and implement surveillance strategies for their control. In this work, we performed an expansive phylogeographic and evolutionary analysis of USUV using all published sequences and those generated during this study. Subsequently, we described the genetic traits, reconstructed the potential pattern of geographic spread between continents/countries of the identified viral lineages and the drivers of viral migration, and traced the origin of outbreaks and transition events between different hosts.
Collapse
|
39
|
Incidence of West Nile virus infection in the Dallas–Fort Worth metropolitan area during the 2012 epidemic. Epidemiol Infect 2016; 145:2536-2544. [DOI: 10.1017/s0950268816000042] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
SUMMARYThe 2012 West Nile virus (WNV) epidemic was the largest since 2003 and the North Texas region was the most heavily impacted. We conducted a serosurvey of blood donors from four counties in the Dallas–Fort Worth area to characterize the epidemic. Blood donor specimens collected in November 2012 were tested for WNV-specific antibodies. Donors positive for WNV-specific IgG, IgM, and neutralizing antibodies were considered to have been infected in 2012. This number was adjusted using a multi-step process that accounted for timing of IgM seroreversion determined from previous longitudinal studies of WNV-infected donors. Of 4971 donations screened, 139 (2·8%) were confirmed WNV IgG positive, and 69 (1·4%) had IgM indicating infection in 2012. After adjusting for timing of sampling and potential seroreversion, we estimated that 1·8% [95% confidence interval (CI) 1·5–2·2] of the adult population in the Dallas–Fort Worth area were infected during 2012. The resulting overall estimate for the ratio of infections to reported WNV neuroinvasive disease (WNND) cases was 238:1 (95% CI 192–290), with significantly increased risk of WNND in older age groups. These findings were very similar to previous estimates of infections per WNND case, indicating no change in virulence as WNV evolved into an endemic infection in the United States.
Collapse
|
40
|
Shah S, Fite LP, Lane N, Parekh P. Purpura fulminans associated with acute West Nile virus encephalitis. J Clin Virol 2015; 75:1-4. [PMID: 26686320 DOI: 10.1016/j.jcv.2015.11.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Revised: 11/17/2015] [Accepted: 11/26/2015] [Indexed: 12/01/2022]
Abstract
Purpura fulminans is a progressive thrombotic disorder that presents with widespread purpura due to deficiency or dysfunction of protein C or protein S. Lesions present as well-demarcated erythematous macules that progress to irregular areas of hemorrhagic necrosis.West Nile virus is a member of the Flaviviridae family transmitted to humans through the bite of various mosquito species. It manifests as West Nile fever in 25% of those infected and less commonly as neuroinvasive disease. An African American man in his fortiespresented with altered mental status and was noted to have evidence of disseminated intravascular coagulation according to his lab data. He then developed dusky skin discoloration and systemic flaccid bullae with desquamation. Biopsy was consistent with purpura fulminans and the patient eventually developed symmetric peripheral gangrene, requiring amputations of all four extremities. Infectious work up revealed positive testing for IgM and IgG antibodies in serum and cerebrospinal fluid leading to the diagnosis of acute West Nile Virus encephalitis. We present this case to describe the rarely reported association of purpura fulminans with West Nile Virus infection.
Collapse
Affiliation(s)
- Sheevam Shah
- Texas A&M Health Science Center College of Medicine, Temple, TX, United States
| | - Laura Paul Fite
- Department of Dermatology, Scott & White Memorial Hospital, Temple, TX, United States.
| | - Natalie Lane
- Department of Dermatology, Scott & White Memorial Hospital, Temple, TX, United States
| | - Palak Parekh
- Department of Dermatology, Scott & White Memorial Hospital, Temple, TX, United States
| |
Collapse
|
41
|
Lustig Y, Hindiyeh M, Orshan L, Weiss L, Koren R, Katz-Likvornik S, Zadka H, Glatman-Freedman A, Mendelson E, Shulman LM. Mosquito Surveillance for 15 Years Reveals High Genetic Diversity Among West Nile Viruses in Israel. J Infect Dis 2015; 213:1107-14. [PMID: 26597260 DOI: 10.1093/infdis/jiv556] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 11/12/2015] [Indexed: 12/16/2022] Open
Abstract
West Nile Virus (WNV) is endemic in Israel and has been the cause of several outbreaks in recent years. In 2000, a countrywide mosquito survey was established to monitor WNV activity and characterize viral genotypes in Israel. We analyzed data from 7135 pools containing 277 186 mosquitoes collected over the past 15 years and, here, report partial sequences of WNV genomes obtained from 102 of the 336 positive mosquito pools. Phylogenetic analysis demonstrated that cluster 4 and the Mediterranean and Eastern European subtypes of cluster 2 within WNV lineage 1 circulated in Israel, as did WNV lineage 2, highlighting a high genetic diversity of WNV genotypes in our region. As a major crossroads for bird migration between Africa and Eurasia and with a long history of human infection, Israel serves as a resource hub for WNV in Africa and Eurasia and provides valuable information on WNV circulation in these regions.
Collapse
Affiliation(s)
- Yaniv Lustig
- Central Virology Laboratory, Ministry of Health, Chaim Sheba Medical center, Tel-Hashomer
| | - Musa Hindiyeh
- Central Virology Laboratory, Ministry of Health, Chaim Sheba Medical center, Tel-Hashomer Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine, Tel-Aviv University, Israel
| | - Laor Orshan
- Laboratory of Entomology, Ministry of Health, Jerusalem
| | - Leah Weiss
- Central Virology Laboratory, Ministry of Health, Chaim Sheba Medical center, Tel-Hashomer
| | - Ravit Koren
- Central Virology Laboratory, Ministry of Health, Chaim Sheba Medical center, Tel-Hashomer
| | - Shiri Katz-Likvornik
- Central Virology Laboratory, Ministry of Health, Chaim Sheba Medical center, Tel-Hashomer
| | - Hila Zadka
- Israel Center for Disease Control, Ministry of Health, Chaim Sheba Medical center, Tel-Hashomer
| | - Aharona Glatman-Freedman
- Israel Center for Disease Control, Ministry of Health, Chaim Sheba Medical center, Tel-Hashomer New York Medical College, Valhalla, New York
| | - Ella Mendelson
- Central Virology Laboratory, Ministry of Health, Chaim Sheba Medical center, Tel-Hashomer Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine, Tel-Aviv University, Israel
| | - Lester M Shulman
- Central Virology Laboratory, Ministry of Health, Chaim Sheba Medical center, Tel-Hashomer Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine, Tel-Aviv University, Israel
| |
Collapse
|
42
|
Fluid Spatial Dynamics of West Nile Virus in the United States: Rapid Spread in a Permissive Host Environment. J Virol 2015; 90:862-72. [PMID: 26512086 DOI: 10.1128/jvi.02305-15] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 10/24/2015] [Indexed: 12/29/2022] Open
Abstract
UNLABELLED The introduction of West Nile virus (WNV) into North America in 1999 is a classic example of viral emergence in a new environment, with its subsequent dispersion across the continent having a major impact on local bird populations. Despite the importance of this epizootic, the pattern, dynamics, and determinants of WNV spread in its natural hosts remain uncertain. In particular, it is unclear whether the virus encountered major barriers to transmission, or spread in an unconstrained manner, and if specific viral lineages were favored over others indicative of intrinsic differences in fitness. To address these key questions in WNV evolution and ecology, we sequenced the complete genomes of approximately 300 avian isolates sampled across the United States between 2001 and 2012. Phylogenetic analysis revealed a relatively star-like tree structure, indicative of explosive viral spread in the United States, although with some replacement of viral genotypes through time. These data are striking in that viral sequences exhibit relatively limited clustering according to geographic region, particularly for those viruses sampled from birds, and no strong phylogenetic association with well-sampled avian species. The genome sequence data analyzed here also contain relatively little evidence for adaptive evolution, particularly of structural proteins, suggesting that most viral lineages are of similar fitness and that WNV is well adapted to the ecology of mosquito vectors and diverse avian hosts in the United States. In sum, the molecular evolution of WNV in North America depicts a largely unfettered expansion within a permissive host and geographic population with little evidence of major adaptive barriers. IMPORTANCE How viruses spread in new host and geographic environments is central to understanding the emergence and evolution of novel infectious diseases and for predicting their likely impact. The emergence of the vector-borne West Nile virus (WNV) in North America in 1999 represents a classic example of this process. Using approximately 300 new viral genomes sampled from wild birds, we show that WNV experienced an explosive spread with little geographical or host constraints within birds and relatively low levels of adaptive evolution. From its introduction into the state of New York, WNV spread across the United States, reaching California and Florida within 4 years, a migration that is clearly reflected in our genomic sequence data, and with a general absence of distinct geographical clusters of bird viruses. However, some geographically distinct viral lineages were found to circulate in mosquitoes, likely reflecting their limited long-distance movement compared to avian species.
Collapse
|
43
|
Barzon L, Papa A, Lavezzo E, Franchin E, Pacenti M, Sinigaglia A, Masi G, Trevisan M, Squarzon L, Toppo S, Papadopoulou E, Nowotny N, Ulbert S, Piralla A, Rovida F, Baldanti F, Percivalle E, Palù G. Phylogenetic characterization of Central/Southern European lineage 2 West Nile virus: analysis of human outbreaks in Italy and Greece, 2013-2014. Clin Microbiol Infect 2015; 21:1122.e1-10. [PMID: 26235197 DOI: 10.1016/j.cmi.2015.07.018] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 06/29/2015] [Accepted: 07/23/2015] [Indexed: 01/10/2023]
Abstract
In recent years, West Nile virus (WNV) lineage 2 has been spreading and causing disease outbreaks in humans and animals in Europe. In order to characterize viral diversity, we performed full-length genome sequencing of WNV lineage 2 from human samples collected during outbreaks in Italy and Greece in 2013 and 2014. Phylogenetic analysis showed that these WNV lineage 2 genomes belonged to a monophyletic clade derived from a single introduction into Europe of the prototype Hungarian strain. Correlation of phylogenetic data with geospatial information showed geographical clustering of WNV genome sequences both in Italy and in Greece, indicating that the virus had evolved and diverged during its dispersal in Europe, leading to the emergence of novel genotypes, as it adapted to local ecological niches. These genotypes carried divergent conserved amino acid substitutions, which might have been relevant for viral adaptation, as suggested by selection pressure analysis and in silico and experimental modelling of sequence changes. In conclusion, the results of this study provide further information on WNV lineage 2 transmission dynamics in Europe, and emphasize the need for WNV surveillance activities to monitor viral evolution and diversity.
Collapse
Affiliation(s)
- L Barzon
- Department of Molecular Medicine, University of Padova, Padova, Italy; Microbiology and Virology Unit, Padova University Hospital, Padova, Italy.
| | - A Papa
- National Reference Centre for Arboviruses, Department of Microbiology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - E Lavezzo
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - E Franchin
- Department of Molecular Medicine, University of Padova, Padova, Italy; Microbiology and Virology Unit, Padova University Hospital, Padova, Italy
| | - M Pacenti
- Microbiology and Virology Unit, Padova University Hospital, Padova, Italy
| | - A Sinigaglia
- IRCCS-IOV Istituto Oncologico Veneto, Padova, Italy
| | - G Masi
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - M Trevisan
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - L Squarzon
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - S Toppo
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - E Papadopoulou
- National Reference Centre for Arboviruses, Department of Microbiology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - N Nowotny
- Institute of Virology, University of Veterinary Medicine, Vienna, Austria; Department of Microbiology and Immunology, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - S Ulbert
- Department of Immunology, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - A Piralla
- Molecular Virology Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - F Rovida
- Molecular Virology Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - F Baldanti
- Molecular Virology Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy; Department of Clinical Sciences, Surgery, Diagnostics and Paediatrics, University of Pavia, Pavia, Italy
| | - E Percivalle
- Molecular Virology Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - G Palù
- Department of Molecular Medicine, University of Padova, Padova, Italy; Microbiology and Virology Unit, Padova University Hospital, Padova, Italy
| |
Collapse
|
44
|
Zhou J, Zhang YY, Li QY, Cai ZH. Evolutionary History of Cathepsin L (L-like) Family Genes in Vertebrates. Int J Biol Sci 2015. [PMID: 26221069 PMCID: PMC4515813 DOI: 10.7150/ijbs.11751] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Cathepsin L family, an important cysteine protease found in lysosomes, is categorized into cathepsins B, F, H, K, L, S, and W in vertebrates. This categorization is based on their sequence alignment and traditional functional classification, but the evolutionary relationship of family members is unclear. This study determined the evolutionary relationship of cathepsin L family genes in vertebrates through phylogenetic construction. Results showed that cathepsins F, H, S and K, and L and V were chronologically diverged. Tandem-repeat duplication was found to occur in the evolutionary history of cathepsin L family. Cathepsin L in zebrafish, cathepsins S and K in xenopus, and cathepsin L in mice and rats underwent evident tandem-repeat events. Positive selection was detected in cathepsin L-like members in mice and rats, and amino acid sites under positive selection pressure were calculated. Most of these sites appeared at the connection of secondary structures, suggesting that the sites may slightly change spatial structure. Severe positive selection was also observed in cathepsin V (L2) of primates, indicating that this enzyme had some special functions. Our work provided a brief evolutionary history of cathepsin L family and differentiated cathepsins S and K from cathepsin L based on vertebrate appearance. Positive selection was the specific cause of differentiation of cathepsin L family genes, confirming that gene function variation after expansion events was related to interactions with the environment and adaptability.
Collapse
Affiliation(s)
- Jin Zhou
- 1. The Division of Ocean Science & Technology, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, P. R. China ; 2. Shenzhen Public Platform of Screening & Application of Marine Microbial Resources, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, P. R. China ; 3. Shenzhen Key Laboratory for Coastal Ocean Dynamic and Environment, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Yao-Yang Zhang
- 4. School of Life Science, Tsinghua University, Beijing, 100084, P. R. China
| | - Qing-Yun Li
- 4. School of Life Science, Tsinghua University, Beijing, 100084, P. R. China
| | - Zhong-Hua Cai
- 1. The Division of Ocean Science & Technology, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, P. R. China ; 2. Shenzhen Public Platform of Screening & Application of Marine Microbial Resources, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, P. R. China ; 3. Shenzhen Key Laboratory for Coastal Ocean Dynamic and Environment, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, P. R. China
| |
Collapse
|
45
|
Dai L, Li Z, Tao P. Evolutionary analysis of Tembusu virus: evidence for the emergence of a dominant genotype. INFECTION GENETICS AND EVOLUTION 2015; 32:124-9. [PMID: 25770418 DOI: 10.1016/j.meegid.2015.03.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 03/03/2015] [Accepted: 03/04/2015] [Indexed: 01/09/2023]
Abstract
We recently identified Tembusu virus (TMUV) as a causative agent of duck infectious disease, which has spread in China since 2010. A recent study has indicated a potential case of human infection by TMUV, highlighting the need for further study of TMUV, especially its evolution. Because no information exists regarding the evolution of TMUV, we conducted comprehensive phylogenetic analyses using the largest collection of complete open reading frame (ORF) sequences of TMUV. Our results indicated that two lineages of viruses were associated with the 2010 outbreak in China, and lineage II, in particular sublineage II-c, has arisen as the dominant lineage currently circulating. We inferred that the most recent common ancestor (MRCA) of this TMUV was emerged around 1996. Evidence of natural recombination was also detected in TMUV. Molecular adaptation analyses revealed that strong negative selection shaped the evolution of TMUV, while a number of codons subjected to positive pressure were also identified. Our study, for the first time, illustrated the evolutionary history and character of TMUV and will be helpful for vaccine and diagnostic development.
Collapse
Affiliation(s)
- Li Dai
- Department of Biology, The Catholic University of America, 620 Michigan Avenue NE, Washington, DC 20064, USA
| | - Zejun Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Pan Tao
- Department of Biology, The Catholic University of America, 620 Michigan Avenue NE, Washington, DC 20064, USA.
| |
Collapse
|
46
|
Abstract
Mosquito-borne diseases affect horses worldwide. Mosquito-borne diseases generally cause encephalomyelitis in the horse and can be difficult to diagnose antemortem. In addition to general disease, and diagnostic and treatment aspects, this review article summarizes the latest information on these diseases, covering approximately the past 5 years, with a focus on new equine disease encroachments, diagnostic and vaccination aspects, and possible therapeutics on the horizon.
Collapse
|
47
|
Complete Genome Sequence of West Nile Virus Strains Used for the Formulation of CBER/FDA RNA Reference Reagents and Lot Release Panels for Nucleic Acid Testing. GENOME ANNOUNCEMENTS 2014; 2:2/5/e00811-14. [PMID: 25359905 PMCID: PMC4214981 DOI: 10.1128/genomea.00811-14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
We report the complete sequences of two West Nile virus strains (FDA-Hu02 and NY99) used for the formulation of CBER/FDA RNA reference reagents and lot release panels for use with nucleic acid technology testing.
Collapse
|
48
|
Plante JA, Burkhalter KL, Mann BR, Godsey MS, Mutebi JP, Beasley DWC. Co-circulation of West Nile virus variants, Arizona, USA, 2010. Emerg Infect Dis 2014; 20:272-5. [PMID: 24447818 PMCID: PMC3901498 DOI: 10.3201/eid2002.131008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Molecular analysis of West Nile virus (WNV) isolates obtained during a 2010 outbreak in Maricopa County, Arizona, USA, demonstrated co-circulation of 3 distinct genetic variants, including strains with novel envelope protein mutations. These results highlight the continuing evolution of WNV in North America and the current complexity of WNV dispersal and transmission.
Collapse
|
49
|
Van Le S, Le DH, Hoang HT, Hoang H, Nguyen NT, Chu HH. Characterization of rubella virus genotypes among pregnant women in northern Vietnam, 2011-2013. J Med Virol 2014; 87:338-43. [PMID: 25111367 DOI: 10.1002/jmv.24049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2014] [Indexed: 11/12/2022]
Abstract
Rubella virus (RV) infection is an unresolved clinical complication that affects children in developing countries including Vietnam. RV infection during the first trimester of pregnancy causes severe birth defects known as congenital rubella syndrome. This study reports on the genomic characterization of RV strains circulating in northern Vietnam during 2011-2013. RV-IgM positive amniotic fluid specimens were collected from 38 women from northern Vietnam who presented with clinical rubella at the National Hospital of Obstetrics and Gynecology in Hanoi, Vietnam. The RV genes were determined by nested PCR with primers amplifying the 739-nucleotide coding region of the E1 gene. The sequences from the amplified DNA fragments were phylogenetically analyzed and compared to reference RV strains. Seventeen out of 38 samples are positive for RV detecting. All new RV isolates are clustered to genotype 2B. Eighteen amino acid mutations were found in the T and B cell epitopes. These results suggest that genotype 2B RV strains frequently circulate in northern Vietnam. These data describe the RV genotype in Vietnam with the aim of improving maternal and child health in this country.
Collapse
Affiliation(s)
- Son Van Le
- Laboratory of Applied DNA Technology, Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Vietnam; National Key Laboratory of Gene Technology, Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | | | | | | | | | | |
Collapse
|
50
|
Ocwieja KE, Fernando AN, Sherrill-Mix S, Sundararaman SA, Tennekoon RN, Tippalagama R, Krishnananthasivam S, Premawansa G, Premawansa S, De Silva AD. Phylogeography and molecular epidemiology of an epidemic strain of dengue virus type 1 in Sri Lanka. Am J Trop Med Hyg 2014; 91:225-34. [PMID: 24799375 DOI: 10.4269/ajtmh.13-0523] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
In 2009, a severe epidemic of dengue disease occurred in Sri Lanka, with higher mortality and morbidity than any previously recorded epidemic in the country. It corresponded to a shift to dengue virus 1 as the major disease-causing serotype in Sri Lanka. Dengue disease reached epidemic levels in the next 3 years. We report phylogenetic evidence that the 2009 epidemic DENV-1 strain continued to circulate within the population and caused severe disease in the epidemic of 2012. Bayesian phylogeographic analyses suggest that the 2009 Sri Lankan epidemic DENV-1 strain may have traveled directly or indirectly from Thailand through China to Sri Lanka, and after spreading within the Sri Lankan population, it traveled to Pakistan and Singapore. Our findings delineate the dissemination route of a virulent DENV-1 strain in Asia. Understanding such routes will be of particular importance to global control efforts.
Collapse
Affiliation(s)
- Karen E Ocwieja
- University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania; Genetech Research Institute, Colombo, Sri Lanka; North Colombo Teaching Hospital, Ragama, Sri Lanka; Department of Zoology, University of Colombo, Colombo, Sri Lanka; Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, California
| | - Anira N Fernando
- University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania; Genetech Research Institute, Colombo, Sri Lanka; North Colombo Teaching Hospital, Ragama, Sri Lanka; Department of Zoology, University of Colombo, Colombo, Sri Lanka; Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, California
| | - Scott Sherrill-Mix
- University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania; Genetech Research Institute, Colombo, Sri Lanka; North Colombo Teaching Hospital, Ragama, Sri Lanka; Department of Zoology, University of Colombo, Colombo, Sri Lanka; Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, California
| | - Sesh A Sundararaman
- University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania; Genetech Research Institute, Colombo, Sri Lanka; North Colombo Teaching Hospital, Ragama, Sri Lanka; Department of Zoology, University of Colombo, Colombo, Sri Lanka; Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, California
| | - Rashika N Tennekoon
- University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania; Genetech Research Institute, Colombo, Sri Lanka; North Colombo Teaching Hospital, Ragama, Sri Lanka; Department of Zoology, University of Colombo, Colombo, Sri Lanka; Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, California
| | - Rashmi Tippalagama
- University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania; Genetech Research Institute, Colombo, Sri Lanka; North Colombo Teaching Hospital, Ragama, Sri Lanka; Department of Zoology, University of Colombo, Colombo, Sri Lanka; Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, California
| | - Shivankari Krishnananthasivam
- University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania; Genetech Research Institute, Colombo, Sri Lanka; North Colombo Teaching Hospital, Ragama, Sri Lanka; Department of Zoology, University of Colombo, Colombo, Sri Lanka; Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, California
| | - Gayani Premawansa
- University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania; Genetech Research Institute, Colombo, Sri Lanka; North Colombo Teaching Hospital, Ragama, Sri Lanka; Department of Zoology, University of Colombo, Colombo, Sri Lanka; Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, California
| | - Sunil Premawansa
- University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania; Genetech Research Institute, Colombo, Sri Lanka; North Colombo Teaching Hospital, Ragama, Sri Lanka; Department of Zoology, University of Colombo, Colombo, Sri Lanka; Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, California
| | - Aruna Dharshan De Silva
- University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania; Genetech Research Institute, Colombo, Sri Lanka; North Colombo Teaching Hospital, Ragama, Sri Lanka; Department of Zoology, University of Colombo, Colombo, Sri Lanka; Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, California
| |
Collapse
|