1
|
Marzi A, Feldmann H. Filovirus vaccines as a response paradigm for emerging infectious diseases. NPJ Vaccines 2024; 9:186. [PMID: 39394249 PMCID: PMC11470150 DOI: 10.1038/s41541-024-00985-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 09/25/2024] [Indexed: 10/13/2024] Open
Abstract
Nowadays, filovirus vaccine development may be seen as a paradigm for our response capabilities to emerging and re-emerging infectious diseases. Specifically, the West African Ebola virus disease (EVD) epidemic accelerated countermeasure licensure for several vaccine and therapeutic products. Those products have been successfully used to control EVD outbreaks in Central Africa over the past years. This positive development, however, has not yet reached beyond EVD. Therefore, it is pertinent to increase our efforts in the development of countermeasures for other human pathogenic members of the family Filoviridae as they continue to threaten public health in Sub-Saharan Africa. This review article summarizes the current filovirus vaccines in preclinical macaque studies and human clinical trials and discusses the most promising recent advancements.
Collapse
Affiliation(s)
- Andrea Marzi
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, USA.
| | - Heinz Feldmann
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, USA.
| |
Collapse
|
2
|
de La Vega MA, XIII A, Massey CS, Spengler JR, Kobinger GP, Woolsey C. An update on nonhuman primate usage for drug and vaccine evaluation against filoviruses. Expert Opin Drug Discov 2024; 19:1185-1211. [PMID: 39090822 PMCID: PMC11466704 DOI: 10.1080/17460441.2024.2386100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 08/04/2024]
Abstract
INTRODUCTION Due to their faithful recapitulation of human disease, nonhuman primates (NHPs) are considered the gold standard for evaluating drugs against Ebolavirus and other filoviruses. The long-term goal is to reduce the reliance on NHPs with more ethical alternatives. In silico simulations and organoid models have the potential to revolutionize drug testing by providing accurate, human-based systems that mimic disease processes and drug responses without the ethical concerns associated with animal testing. However, as these emerging technologies are still in their developmental infancy, NHP models are presently needed for late-stage evaluation of filovirus vaccines and drugs, as they provide critical insights into the efficacy and safety of new medical countermeasures. AREAS COVERED In this review, the authors introduce available NHP models and examine the existing literature on drug discovery for all medically significant filoviruses in corresponding models. EXPERT OPINION A deliberate shift toward animal-free models is desired to align with the 3Rs of animal research. In the short term, the use of NHP models can be refined and reduced by enhancing replicability and publishing negative data. Replacement involves a gradual transition, beginning with the selection and optimization of better small animal models; advancing organoid systems, and using in silico models to accurately predict immunological outcomes.
Collapse
Affiliation(s)
- Marc-Antoine de La Vega
- Galveston National Laboratory, Department of Microbiology
and Immunology, Institute for Human Infections and Immunity, University of Texas
Medical Branch, Galveston, TX, USA
| | - Ara XIII
- Galveston National Laboratory, Department of Microbiology
and Immunology, Institute for Human Infections and Immunity, University of Texas
Medical Branch, Galveston, TX, USA
| | - Christopher S. Massey
- Galveston National Laboratory, Department of Microbiology
and Immunology, Institute for Human Infections and Immunity, University of Texas
Medical Branch, Galveston, TX, USA
| | - Jessica R. Spengler
- Viral Special Pathogens Branch and Infectious Diseases
Pathology Branch, Division of High Consequence Pathogens and Pathology, Centers for
Disease Control and Prevention, Atlanta, GA
| | - Gary P. Kobinger
- Galveston National Laboratory, Department of Microbiology
and Immunology, Institute for Human Infections and Immunity, University of Texas
Medical Branch, Galveston, TX, USA
| | - Courtney Woolsey
- Galveston National Laboratory, Department of Microbiology
and Immunology, Institute for Human Infections and Immunity, University of Texas
Medical Branch, Galveston, TX, USA
| |
Collapse
|
3
|
Janus BM, Wang R, Cleveland TE, Metcalf MC, Lemmer AC, van Dyk N, Jeong S, Astavans A, Class K, Fuerst TR, Ofek G. Macaque antibodies targeting Marburg virus glycoprotein induced by multivalent immunization. J Virol 2024; 98:e0015524. [PMID: 38832790 PMCID: PMC11329191 DOI: 10.1128/jvi.00155-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/07/2024] [Indexed: 06/05/2024] Open
Abstract
Marburg virus infection in humans is associated with case fatality rates that can reach up to 90%, but to date, there are no approved vaccines or monoclonal antibody (mAb) countermeasures. Here, we immunized Rhesus macaques with multivalent combinations of filovirus glycoprotein (GP) antigens belonging to Marburg, Sudan, and Ebola viruses to generate monospecific and cross-reactive antibody responses against them. From the animal that developed the highest titers of Marburg virus GP-specific neutralizing antibodies, we sorted single memory B cells using a heterologous Ravn virus GP probe and cloned and characterized a panel of 34 mAbs belonging to 28 unique lineages. Antibody specificities were assessed by overlapping pepscan and binding competition analyses, revealing that roughly a third of the lineages mapped to the conserved receptor binding region, including potent neutralizing lineages that were confirmed by negative stain electron microscopy to target this region. Additional lineages targeted a protective region on GP2, while others were found to possess cross-filovirus reactivity. Our study advances the understanding of orthomarburgvirus glycoprotein antigenicity and furthers efforts to develop candidate antibody countermeasures against these lethal viruses. IMPORTANCE Marburg viruses were the first filoviruses characterized to emerge in humans in 1967 and cause severe hemorrhagic fever with average case fatality rates of ~50%. Although mAb countermeasures have been approved for clinical use against the related Ebola viruses, there are currently no approved countermeasures against Marburg viruses. We successfully isolated a panel of orthomarburgvirus GP-specific mAbs from a macaque immunized with a multivalent combination of filovirus antigens. Our analyses revealed that roughly half of the antibodies in the panel mapped to regions on the glycoprotein shown to protect from infection, including the host cell receptor binding domain and a protective region on the membrane-anchoring subunit. Other antibodies in the panel exhibited broad filovirus GP recognition. Our study describes the discovery of a diverse panel of cross-reactive macaque antibodies targeting orthomarburgvirus and other filovirus GPs and provides candidate immunotherapeutics for further study and development.
Collapse
Affiliation(s)
- Benjamin M Janus
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland, USA
| | - Ruixue Wang
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland, USA
| | - Thomas E Cleveland
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland, USA
- Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg, Maryland, USA
| | - Matthew C Metcalf
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland, USA
| | - Aaron C Lemmer
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| | - Nydia van Dyk
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland, USA
| | - Sarah Jeong
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland, USA
| | - Anagh Astavans
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| | - Kenneth Class
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| | - Thomas R Fuerst
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland, USA
| | - Gilad Ofek
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland, USA
| |
Collapse
|
4
|
Munyeku-Bazitama Y, Edidi-Atani F, Takada A. Non-Ebola Filoviruses: Potential Threats to Global Health Security. Viruses 2024; 16:1179. [PMID: 39205153 PMCID: PMC11359311 DOI: 10.3390/v16081179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/19/2024] [Accepted: 07/21/2024] [Indexed: 09/04/2024] Open
Abstract
Filoviruses are negative-sense single-stranded RNA viruses often associated with severe and highly lethal hemorrhagic fever in humans and nonhuman primates, with case fatality rates as high as 90%. Of the known filoviruses, Ebola virus (EBOV), the prototype of the genus Orthoebolavirus, has been a major public health concern as it frequently causes outbreaks and was associated with an unprecedented outbreak in several Western African countries in 2013-2016, affecting 28,610 people, 11,308 of whom died. Thereafter, filovirus research mostly focused on EBOV, paying less attention to other equally deadly orthoebolaviruses (Sudan, Bundibugyo, and Taï Forest viruses) and orthomarburgviruses (Marburg and Ravn viruses). Some of these filoviruses have emerged in nonendemic areas, as exemplified by four Marburg disease outbreaks recorded in Guinea, Ghana, Tanzania, and Equatorial Guinea between 2021 and 2023. Similarly, the Sudan virus has reemerged in Uganda 10 years after the last recorded outbreak. Moreover, several novel bat-derived filoviruses have been discovered in the last 15 years (Lloviu virus, Bombali virus, Měnglà virus, and Dehong virus), most of which are poorly characterized but may display a wide host range. These novel viruses have the potential to cause outbreaks in humans. Several gaps are yet to be addressed regarding known and emerging filoviruses. These gaps include the virus ecology and pathogenicity, mechanisms of zoonotic transmission, host range and susceptibility, and the development of specific medical countermeasures. In this review, we summarize the current knowledge on non-Ebola filoviruses (Bombali virus, Bundibugyo virus, Reston virus, Sudan virus, Tai Forest virus, Marburg virus, Ravn virus, Lloviu virus, Měnglà virus, and Dehong virus) and suggest some strategies to accelerate specific countermeasure development.
Collapse
Affiliation(s)
- Yannick Munyeku-Bazitama
- Division of Global Epidemiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan; (Y.M.-B.); (F.E.-A.)
- Institut National de Recherche Biomédicale, Kinshasa P.O. Box 1197, Democratic Republic of the Congo
- Département de Biologie Médicale, Faculté de Médecine, Université de Kinshasa, Kinshasa P.O. Box 123, Democratic Republic of the Congo
| | - Francois Edidi-Atani
- Division of Global Epidemiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan; (Y.M.-B.); (F.E.-A.)
- Institut National de Recherche Biomédicale, Kinshasa P.O. Box 1197, Democratic Republic of the Congo
- Département de Biologie Médicale, Faculté de Médecine, Université de Kinshasa, Kinshasa P.O. Box 123, Democratic Republic of the Congo
| | - Ayato Takada
- Division of Global Epidemiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan; (Y.M.-B.); (F.E.-A.)
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan
- One Health Research Center, Hokkaido University, Sapporo 001-0020, Japan
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka 10101, Zambia
| |
Collapse
|
5
|
Xu D, Powell AE, Utz A, Sanyal M, Do J, Patten JJ, Moliva JI, Sullivan NJ, Davey RA, Kim PS. Design of universal Ebola virus vaccine candidates via immunofocusing. Proc Natl Acad Sci U S A 2024; 121:e2316960121. [PMID: 38319964 PMCID: PMC10873634 DOI: 10.1073/pnas.2316960121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 12/19/2023] [Indexed: 02/08/2024] Open
Abstract
The Ebola virus causes hemorrhagic fever in humans and poses a significant threat to global public health. Although two viral vector vaccines have been approved to prevent Ebola virus disease, they are distributed in the limited ring vaccination setting and only indicated for prevention of infection from orthoebolavirus zairense (EBOV)-one of three orthoebolavirus species that have caused previous outbreaks. Ebola virus glycoprotein GP mediates viral infection and serves as the primary target of neutralizing antibodies. Here, we describe a universal Ebola virus vaccine approach using a structure-guided design of candidates with hyperglycosylation that aims to direct antibody responses away from variable regions and toward conserved epitopes of GP. We first determined the hyperglycosylation landscape on Ebola virus GP and used that to generate hyperglycosylated GP variants with two to four additional glycosylation sites to mask the highly variable glycan cap region. We then created vaccine candidates by displaying wild-type or hyperglycosylated GP variants on ferritin nanoparticles (Fer). Immunization with these antigens elicited potent neutralizing antisera against EBOV in mice. Importantly, we observed consistent cross-neutralizing activity against Bundibugyo virus and Sudan virus from hyperglycosylated GP-Fer with two or three additional glycans. In comparison, elicitation of cross-neutralizing antisera was rare in mice immunized with wild-type GP-Fer. These results demonstrate a potential strategy to develop universal Ebola virus vaccines that confer cross-protective immunity against existing and emerging filovirus species.
Collapse
Affiliation(s)
- Duo Xu
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA94305
- Sarafan ChEM-H, Stanford University, Stanford, CA94305
| | - Abigail E. Powell
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA94305
- Sarafan ChEM-H, Stanford University, Stanford, CA94305
| | - Ashley Utz
- Sarafan ChEM-H, Stanford University, Stanford, CA94305
- Stanford Medical Scientist Training Program, Stanford University School of Medicine, Stanford, CA94305
- Stanford Biophysics Program, Stanford University School of Medicine, Stanford, CA94305
| | - Mrinmoy Sanyal
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA94305
- Sarafan ChEM-H, Stanford University, Stanford, CA94305
| | - Jonathan Do
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA94305
- Sarafan ChEM-H, Stanford University, Stanford, CA94305
| | - J. J. Patten
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA02118
- Department of Virology, Immunology, and Microbiology, Boston University School of Medicine, Boston, MA02118
| | - Juan I. Moliva
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA02118
- Department of Virology, Immunology, and Microbiology, Boston University School of Medicine, Boston, MA02118
| | - Nancy J. Sullivan
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA02118
- Department of Virology, Immunology, and Microbiology, Boston University School of Medicine, Boston, MA02118
- Department of Biology, Boston University, Boston, MA02118
| | - Robert A. Davey
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA02118
- Department of Virology, Immunology, and Microbiology, Boston University School of Medicine, Boston, MA02118
| | - Peter S. Kim
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA94305
- Sarafan ChEM-H, Stanford University, Stanford, CA94305
- Chan Zuckerberg Biohub, San Francisco, CA94158
| |
Collapse
|
6
|
Woolsey C, Strampe J, Fenton KA, Agans KN, Martinez J, Borisevich V, Dobias NS, Deer DJ, Geisbert JB, Cross RW, Connor JH, Geisbert TW. A Recombinant Vesicular Stomatitis Virus-Based Vaccine Provides Postexposure Protection Against Bundibugyo Ebolavirus Infection. J Infect Dis 2023; 228:S712-S720. [PMID: 37290053 PMCID: PMC10651203 DOI: 10.1093/infdis/jiad207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/27/2023] [Accepted: 06/02/2023] [Indexed: 06/10/2023] Open
Abstract
BACKGROUND The filovirus Bundibugyo virus (BDBV) causes severe disease with a mortality rate of approximately 20%-51%. The only licensed filovirus vaccine in the United States, Ervebo, consists of a recombinant vesicular stomatitis virus (rVSV) vector that expresses Ebola virus (EBOV) glycoprotein (GP). Ervebo was shown to rapidly protect against fatal Ebola disease in clinical trials; however, the vaccine is only indicated against EBOV. Recent outbreaks of other filoviruses underscore the need for additional vaccine candidates, particularly for BDBV infections. METHODS To examine whether the rVSV vaccine candidate rVSVΔG/BDBV-GP could provide therapeutic protection against BDBV, we inoculated seven cynomolgus macaques with 1000 plaque-forming units of BDBV, administering rVSVΔG/BDBV-GP vaccine to 6 of them 20-23 minutes after infection. RESULTS Five of the treated animals survived infection (83%) compared to an expected natural survival rate of 21% in this macaque model. All treated animals showed an early circulating immune response, while the untreated animal did not. Surviving animals showed evidence of both GP-specific IgM and IgG production, while animals that succumbed did not produce significant IgG. CONCLUSIONS This small, proof-of-concept study demonstrated early treatment with rVSVΔG/BDBV-GP provides a survival benefit in this nonhuman primate model of BDBV infection, perhaps through earlier initiation of adaptive immunity.
Collapse
Affiliation(s)
- Courtney Woolsey
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas, USA
| | - Jamie Strampe
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, Massachusetts, USA
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Karla A Fenton
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas, USA
| | - Krystle N Agans
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas, USA
| | - Jasmine Martinez
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas, USA
| | - Viktoriya Borisevich
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas, USA
| | - Natalie S Dobias
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas, USA
| | - Daniel J Deer
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas, USA
| | - Joan B Geisbert
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas, USA
| | - Robert W Cross
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas, USA
| | - John H Connor
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, Massachusetts, USA
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Thomas W Geisbert
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
7
|
Xu D, Powell AE, Utz A, Sanyal M, Do J, Patten J, Moliva JI, Sullivan NJ, Davey RA, Kim PS. Design of universal Ebola virus vaccine candidates via immunofocusing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.14.562364. [PMID: 37904982 PMCID: PMC10614775 DOI: 10.1101/2023.10.14.562364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Ebola virus causes hemorrhagic fever in humans and poses a significant threat to global public health. Although two viral vector vaccines have been approved to prevent Ebola virus disease, they are distributed in the limited ring vaccination setting and only indicated for prevention of infection from orthoebolavirus zairense (EBOV) - one of three orthoebolavirus species that have caused previous outbreaks. Ebola virus glycoprotein GP mediates viral infection and serves as the primary target of neutralizing antibodies. Here we describe a universal Ebola virus vaccine approach using structure-guided design of candidates with hyperglycosylation that aims to direct antibody responses away from variable regions and toward conserved epitopes of GP. We first determined the hyperglycosylation landscape on Ebola virus GP and used that to generate hyperglycosylated GP variants with two to four additional glycosylation sites to mask the highly variable glycan cap region. We then created vaccine candidates by displaying wild-type or hyperglycosylated GP variants on ferritin nanoparticles (Fer). Immunization with these antigens elicited potent neutralizing antisera against EBOV in mice. Importantly, we observed consistent cross-neutralizing activity against Bundibugyo virus and Sudan virus from hyperglycosylated GP-Fer with two or three additional glycans. In comparison, elicitation of cross-neutralizing antisera was rare in mice immunized with wild-type GP-Fer. These results demonstrate a potential strategy to develop universal Ebola virus vaccines that confer cross-protective immunity against existing and emerging filovirus species.
Collapse
Affiliation(s)
- Duo Xu
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA 94305, USA
| | - Abigail E. Powell
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA 94305, USA
| | - Ashley Utz
- Sarafan ChEM-H, Stanford University, Stanford, CA 94305, USA
- Stanford Medical Scientist Training Program, Stanford University School of Medicine, Stanford, CA 94305, USA
- Stanford Biophysics Program, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Mrinmoy Sanyal
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA 94305, USA
| | - Jonathan Do
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA 94305, USA
| | - J.J. Patten
- National Emerging Infectious Diseases Laboratories (NEIDL), Boston University, Boston, MA 02118, USA
- Department of Virology, Immunology, and Microbiology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Juan I. Moliva
- National Emerging Infectious Diseases Laboratories (NEIDL), Boston University, Boston, MA 02118, USA
- Department of Virology, Immunology, and Microbiology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Nancy J. Sullivan
- National Emerging Infectious Diseases Laboratories (NEIDL), Boston University, Boston, MA 02118, USA
- Department of Virology, Immunology, and Microbiology, Boston University School of Medicine, Boston, MA 02118, USA
- Department of Biology, Boston University, Boston, MA 02118, USA
| | - Robert A. Davey
- National Emerging Infectious Diseases Laboratories (NEIDL), Boston University, Boston, MA 02118, USA
- Department of Virology, Immunology, and Microbiology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Peter S. Kim
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA 94305, USA
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| |
Collapse
|
8
|
Cao W, He S, Liu G, Schulz H, Emeterio K, Chan M, Tierney K, Azaransky K, Soule G, Tailor N, Salawudeen A, Nichols R, Fusco J, Safronetz D, Banadyga L. The rVSV-EBOV vaccine provides limited cross-protection against Sudan virus in guinea pigs. NPJ Vaccines 2023; 8:91. [PMID: 37301890 DOI: 10.1038/s41541-023-00685-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
Recombinant vesicular stomatitis viruses (rVSVs) engineered to express heterologous viral glycoproteins have proven to be remarkably effective vaccines. Indeed, rVSV-EBOV, which expresses the Ebola virus (EBOV) glycoprotein, recently received clinical approval in the United States and Europe for its ability to prevent EBOV disease. Analogous rVSV vaccines expressing glycoproteins of different human-pathogenic filoviruses have also demonstrated efficacy in pre-clinical evaluations, yet these vaccines have not progressed far beyond research laboratories. In the wake of the most recent outbreak of Sudan virus (SUDV) in Uganda, the need for proven countermeasures was made even more acute. Here we demonstrate that an rVSV-based vaccine expressing the SUDV glycoprotein (rVSV-SUDV) generates a potent humoral immune response that protects guinea pigs from SUDV disease and death. Although the cross-protection generated by rVSV vaccines for different filoviruses is thought to be limited, we wondered whether rVSV-EBOV might also provide protection against SUDV, which is closely related to EBOV. Surprisingly, nearly 60% of guinea pigs that were vaccinated with rVSV-EBOV and challenged with SUDV survived, suggesting that rVSV-EBOV offers limited protection against SUDV, at least in the guinea pig model. These results were confirmed by a back-challenge experiment in which animals that had been vaccinated with rVSV-EBOV and survived EBOV challenge were inoculated with SUDV and survived. Whether these data are applicable to efficacy in humans is unknown, and they should therefore be interpreted cautiously. Nevertheless, this study confirms the potency of the rVSV-SUDV vaccine and highlights the potential for rVSV-EBOV to elicit a cross-protective immune response.
Collapse
Affiliation(s)
- Wenguang Cao
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, R3E 3R2, Canada
| | - Shihua He
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, R3E 3R2, Canada
| | - Guodong Liu
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, R3E 3R2, Canada
| | - Helene Schulz
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, R3E 3R2, Canada
| | - Karla Emeterio
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, R3E 3R2, Canada
| | - Michael Chan
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, R3E 3R2, Canada
| | - Kevin Tierney
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, R3E 3R2, Canada
| | - Kim Azaransky
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, R3E 3R2, Canada
| | - Geoff Soule
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, R3E 3R2, Canada
| | - Nikesh Tailor
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, R3E 3R2, Canada
| | - Abdjeleel Salawudeen
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, R3E 0J9, Canada
| | - Rick Nichols
- Public Health Vaccines, Cambridge, MA, 02142, USA
| | - Joan Fusco
- Public Health Vaccines, Cambridge, MA, 02142, USA
| | - David Safronetz
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, R3E 3R2, Canada
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, R3E 0J9, Canada
| | - Logan Banadyga
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, R3E 3R2, Canada.
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, R3E 0J9, Canada.
| |
Collapse
|
9
|
Zhao Z, Wang B, Wu S, Zhang Z, Chen Y, Zhang J, Wang Y, Zhu D, Li Y, Xu J, Hou L, Chen W. Regulated control of virus replication by 4-hydroxytamoxifen-induced splicing. Front Microbiol 2023; 14:1112580. [PMID: 36992923 PMCID: PMC10040539 DOI: 10.3389/fmicb.2023.1112580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/14/2023] [Indexed: 03/14/2023] Open
Abstract
Designing a modified virus that can be controlled to replicate will facilitate the study of pathogenic mechanisms of virus and virus–host interactions. Here, we report a universal switch element that enables precise control of virus replication after exposure to a small molecule. Inteins mediate a traceless protein splicing–ligation process, and we generate a series of modified vesicular stomatitis virus (VSV) with intein insertion into the nucleocapsid, phosphoprotein, or large RNA-dependent RNA polymerase of VSV. Two recombinant VSV, LC599 and LY1744, were screened for intein insertion in the large RNA-dependent RNA polymerase of VSV, and their replication was regulated in a dose-dependent manner with the small molecule 4-hydroxytamoxifen, which induces intein splicing to restore the VSV replication. Furthermore, in the presence of 4-hydroxytamoxifen, the intein-modified VSV LC599 replicated efficiently in an animal model like a prototype of VSV. Thus, we present a simple and highly adaptable tool for regulating virus replication.
Collapse
Affiliation(s)
| | - Busen Wang
- Beijing Institute of Biotechnology, Beijing, China
| | - Shipo Wu
- Beijing Institute of Biotechnology, Beijing, China
| | - Zhe Zhang
- Beijing Institute of Biotechnology, Beijing, China
| | - Yi Chen
- Beijing Institute of Biotechnology, Beijing, China
| | | | - Yudong Wang
- Beijing Institute of Biotechnology, Beijing, China
| | - Danni Zhu
- Beijing Institute of Biotechnology, Beijing, China
- Qingdao Special Servicemen Recuperation Center of PLA Navy, Qingdao, Shandong, China
| | - Yao Li
- Beijing Institute of Biotechnology, Beijing, China
| | - Jinghan Xu
- Beijing Institute of Biotechnology, Beijing, China
| | - Lihua Hou
- Beijing Institute of Biotechnology, Beijing, China
- *Correspondence: Lihua Hou, ; Wei Chen,
| | - Wei Chen
- Beijing Institute of Biotechnology, Beijing, China
- *Correspondence: Lihua Hou, ; Wei Chen,
| |
Collapse
|
10
|
Widerspick L, Steffen JF, Tappe D, Muñoz-Fontela C. Animal Model Alternatives in Filovirus and Bornavirus Research. Viruses 2023; 15:158. [PMID: 36680198 PMCID: PMC9863967 DOI: 10.3390/v15010158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 01/06/2023] Open
Abstract
The order Mononegavirales contains a variety of highly pathogenic viruses that may infect humans, including the families Filoviridae, Bornaviridae, Paramyxoviridae, and Rhabodoviridae. Animal models have historically been important to study virus pathogenicity and to develop medical countermeasures. As these have inherent shortcomings, the rise of microphysiological systems and organoids able to recapitulate hallmarks of the diseases caused by these viruses may have enormous potential to add to or partially replace animal modeling in the future. Indeed, microphysiological systems and organoids are already used in the pharmaceutical R&D pipeline because they are prefigured to overcome the translational gap between model systems and clinical studies. Moreover, they may serve to alleviate ethical concerns related to animal research. In this review, we discuss the value of animal model alternatives in human pathogenic filovirus and bornavirus research. The current animal models and their limitations are presented followed by an overview of existing alternatives, such as organoids and microphysiological systems, which might help answering open research questions.
Collapse
Affiliation(s)
- Lina Widerspick
- Bernhard-Nocht-Institute for Tropical Medicine, 20359 Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Luebeck-Borstel-Riems, 38124 Braunschweig, Germany
| | | | - Dennis Tappe
- Bernhard-Nocht-Institute for Tropical Medicine, 20359 Hamburg, Germany
- National Reference Center for Tropical Pathogens, Bernhard-Nocht-Institute for Tropical Medicine, 20359 Hamburg, Germany
| | - César Muñoz-Fontela
- Bernhard-Nocht-Institute for Tropical Medicine, 20359 Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Luebeck-Borstel-Riems, 38124 Braunschweig, Germany
| |
Collapse
|
11
|
Malherbe DC, Domi A, Hauser MJ, Atyeo C, Fischinger S, Hyde MA, Williams JM, Alter G, Guirakhoo F, Bukreyev A. A single immunization with a modified vaccinia Ankara vectored vaccine producing Sudan virus-like particles protects from lethal infection. NPJ Vaccines 2022; 7:83. [PMID: 35879311 PMCID: PMC9314403 DOI: 10.1038/s41541-022-00512-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 06/24/2022] [Indexed: 11/25/2022] Open
Abstract
A new vectored vaccine MVA-VLP-SUDV was generated against Sudan ebolavirus (SUDV) combining the advantages of the immunogenicity of a live attenuated vaccine vector (Modified Vaccinia Ankara, MVA) with the authentic conformation of virus-like particles (VLPs). The vaccine expresses minimal components to generate self-assembling VLPs in the vaccinee: the envelope glycoprotein GP and the matrix protein VP40. Guinea pigs vaccinated with one dose of MVA-VLP-SUDV generated SUDV-specific binding and neutralizing antibody responses as well as Fc-mediated protective effects. These responses were boosted by a second vaccine dose. All vaccinated animals which received either one or two vaccine doses were protected from death and disease symptoms following challenge with a lethal dose of SUDV. These data demonstrate single dose protection and potency of the MVA-VLP platform for use in emergency situations to contain outbreaks.
Collapse
Affiliation(s)
- Delphine C Malherbe
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
- Galveston National Laboratory, Galveston, TX, USA
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, KY, USA
| | | | | | - Caroline Atyeo
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | | | | | | | - Galit Alter
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | | | - Alexander Bukreyev
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA.
- Galveston National Laboratory, Galveston, TX, USA.
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
12
|
Travieso T, Li J, Mahesh S, Mello JDFRE, Blasi M. The use of viral vectors in vaccine development. NPJ Vaccines 2022; 7:75. [PMID: 35787629 PMCID: PMC9253346 DOI: 10.1038/s41541-022-00503-y] [Citation(s) in RCA: 99] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 06/15/2022] [Indexed: 12/22/2022] Open
Abstract
Vaccines represent the single most cost-efficient and equitable way to combat and eradicate infectious diseases. While traditional licensed vaccines consist of either inactivated/attenuated versions of the entire pathogen or subunits of it, most novel experimental vaccines against emerging infectious diseases employ nucleic acids to produce the antigen of interest directly in vivo. These include DNA plasmid vaccines, mRNA vaccines, and recombinant viral vectors. The advantages of using nucleic acid vaccines include their ability to induce durable immune responses, high vaccine stability, and ease of large-scale manufacturing. In this review, we present an overview of pre-clinical and clinical data on recombinant viral vector vaccines and discuss the advantages and limitations of the different viral vector platforms.
Collapse
Affiliation(s)
- Tatianna Travieso
- Department of Medicine, Division of Infectious Diseases, Duke University School of Medicine, Durham, NC, USA.,Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Jenny Li
- Duke University, Durham, NC, USA
| | - Sneha Mahesh
- Department of Medicine, Division of Infectious Diseases, Duke University School of Medicine, Durham, NC, USA.,Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Juliana Da Fonzeca Redenze E Mello
- Department of Medicine, Division of Infectious Diseases, Duke University School of Medicine, Durham, NC, USA.,Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Maria Blasi
- Department of Medicine, Division of Infectious Diseases, Duke University School of Medicine, Durham, NC, USA. .,Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
13
|
Schoeder CT, Gilchuk P, Sangha AK, Ledwitch KV, Malherbe DC, Zhang X, Binshtein E, Williamson LE, Martina CE, Dong J, Armstrong E, Sutton R, Nargi R, Rodriguez J, Kuzmina N, Fiala B, King NP, Bukreyev A, Crowe JE, Meiler J. Epitope-focused immunogen design based on the ebolavirus glycoprotein HR2-MPER region. PLoS Pathog 2022; 18:e1010518. [PMID: 35584193 PMCID: PMC9170092 DOI: 10.1371/journal.ppat.1010518] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 06/06/2022] [Accepted: 04/12/2022] [Indexed: 01/09/2023] Open
Abstract
The three human pathogenic ebolaviruses: Zaire (EBOV), Bundibugyo (BDBV), and Sudan (SUDV) virus, cause severe disease with high fatality rates. Epitopes of ebolavirus glycoprotein (GP) recognized by antibodies with binding breadth for all three ebolaviruses are of major interest for rational vaccine design. In particular, the heptad repeat 2 -membrane-proximal external region (HR2-MPER) epitope is relatively conserved between EBOV, BDBV, and SUDV GP and targeted by human broadly-neutralizing antibodies. To study whether this epitope can serve as an immunogen for the elicitation of broadly-reactive antibody responses, protein design in Rosetta was employed to transplant the HR2-MPER epitope identified from a co-crystal structure with the known broadly-reactive monoclonal antibody (mAb) BDBV223 onto smaller scaffold proteins. From computational analysis, selected immunogen designs were produced as recombinant proteins and functionally validated, leading to the identification of a sterile alpha motif (SAM) domain displaying the BDBV-HR2-MPER epitope near its C terminus as a promising candidate. The immunogen was fused to one component of a self-assembling, two-component nanoparticle and tested for immunogenicity in rabbits. Robust titers of cross-reactive serum antibodies to BDBV and EBOV GPs and moderate titers to SUDV GP were induced following immunization. To confirm the structural composition of the immunogens, solution NMR studies were conducted and revealed structural flexibility in the C-terminal residues of the epitope. Overall, our study represents the first report on an epitope-focused immunogen design based on the structurally challenging BDBV-HR2-MPER epitope.
Collapse
Affiliation(s)
- Clara T. Schoeder
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, United States of America
- Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, United States of America
- Institute for Drug Discovery, University Leipzig Medical School, Leipzig, Germany
| | - Pavlo Gilchuk
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Tennessee, United States of America
| | - Amandeep K. Sangha
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, United States of America
- Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Kaitlyn V. Ledwitch
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, United States of America
- Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Delphine C. Malherbe
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Galveston National Laboratory, Galveston, Texas, United States of America
| | - Xuan Zhang
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, United States of America
- Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Elad Binshtein
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Tennessee, United States of America
| | - Lauren E. Williamson
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Tennessee, United States of America
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Cristina E. Martina
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, United States of America
- Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Jinhui Dong
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Tennessee, United States of America
| | - Erica Armstrong
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Tennessee, United States of America
| | - Rachel Sutton
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Tennessee, United States of America
| | - Rachel Nargi
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Tennessee, United States of America
| | - Jessica Rodriguez
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Tennessee, United States of America
| | - Natalia Kuzmina
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Galveston National Laboratory, Galveston, Texas, United States of America
| | - Brooke Fiala
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
- Institute for Protein Design, University of Washington, Seattle, Washington, United States of America
| | - Neil P. King
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
- Institute for Protein Design, University of Washington, Seattle, Washington, United States of America
| | - Alexander Bukreyev
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Galveston National Laboratory, Galveston, Texas, United States of America
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, Texas, Unites States, United States of America
| | - James E. Crowe
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Tennessee, United States of America
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Departments of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Jens Meiler
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, United States of America
- Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, United States of America
- Institute for Drug Discovery, University Leipzig Medical School, Leipzig, Germany
| |
Collapse
|
14
|
Yamaoka S, Ebihara H. Pathogenicity and Virulence of Ebolaviruses with Species- and Variant-specificity. Virulence 2021; 12:885-901. [PMID: 33734027 PMCID: PMC7993122 DOI: 10.1080/21505594.2021.1898169] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 02/10/2021] [Accepted: 02/19/2021] [Indexed: 01/05/2023] Open
Abstract
Ebola virus (EBOV), belonging to the species Zaire ebolavirus in the genus Ebolavirus, causes a severe febrile illness in humans with case fatality rates (CFRs) up to 90%. While there have been six virus species classified, which each have a single type virus in the genus Ebolavirus, CFRs of ebolavirus infections vary among viruses belonging to each distinct species. In this review, we aim to define the ebolavirus species-specific virulence on the basis of currently available laboratory and experimental findings. In addition, this review will also cover the variant-specific virulence of EBOV by referring to the unique biological and pathogenic characteristics of EBOV variant Makona, a new EBOV variant isolated from the 2013-2016 EBOV disease outbreak in West Africa. A better definition of species-specific and variant-specific virulence of ebolaviruses will facilitate our comprehensive knowledge on genus Ebolavirus biology, leading to the development of therapeutics against well-focused pathogenic mechanisms of each Ebola disease.
Collapse
Affiliation(s)
- Satoko Yamaoka
- Department of Molecular Medicine, Mayo Clinic, Rochester, USA
| | - Hideki Ebihara
- Department of Molecular Medicine, Mayo Clinic, Rochester, USA
| |
Collapse
|
15
|
Pinski AN, Messaoudi I. Therapeutic vaccination strategies against EBOV by rVSV-EBOV-GP: the role of innate immunity. Curr Opin Virol 2021; 51:179-189. [PMID: 34749265 DOI: 10.1016/j.coviro.2021.10.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 10/14/2021] [Accepted: 10/19/2021] [Indexed: 12/30/2022]
Abstract
Zaire Ebola virus (EBOV) is a member of the Filoviridae family. Infection with EBOV causes Ebola virus disease (EVD) characterized by excessive inflammation, lymphocyte death, coagulopathy, and multi-organ failure. In 2019, the FDA-approved the first anti-EBOV vaccine, rVSV-EBOV-GP (Ervebo® by Merck). This live-recombinant vaccine confers both prophylactic and therapeutic protection to nonhuman primates and humans. While mechanisms conferring prophylactic protection are well-investigated, those underlying protection conferred shortly before and after exposure to EBOV remain poorly understood. In this review, we review data from in vitro and in vivo studies analyzing early immune responses to rVSV-EBOV-GP and discuss the role of innate immune activation in therapeutic protection.
Collapse
Affiliation(s)
- Amanda N Pinski
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, USA
| | - Ilhem Messaoudi
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, USA; Center for Virus Research, University of California, Irvine, Irvine, CA, USA; Institute for Immunology, University of California, Irvine, Irvine, CA, USA; Department of Microbiology, Immunology and Molecular Genetics, College of Medicine, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
16
|
Gilchuk P, Murin CD, Cross RW, Ilinykh PA, Huang K, Kuzmina N, Borisevich V, Agans KN, Geisbert JB, Zost SJ, Nargi RS, Sutton RE, Suryadevara N, Bombardi RG, Carnahan RH, Bukreyev A, Geisbert TW, Ward AB, Crowe JE. Pan-ebolavirus protective therapy by two multifunctional human antibodies. Cell 2021; 184:5593-5607.e18. [PMID: 34715022 PMCID: PMC8716180 DOI: 10.1016/j.cell.2021.09.035] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 07/27/2021] [Accepted: 09/27/2021] [Indexed: 01/14/2023]
Abstract
Ebolaviruses cause a severe and often fatal illness with the potential for global spread. Monoclonal antibody-based treatments that have become available recently have a narrow therapeutic spectrum and are ineffective against ebolaviruses other than Ebola virus (EBOV), including medically important Bundibugyo (BDBV) and Sudan (SUDV) viruses. Here, we report the development of a therapeutic cocktail comprising two broadly neutralizing human antibodies, rEBOV-515 and rEBOV-442, that recognize non-overlapping sites on the ebolavirus glycoprotein (GP). Antibodies in the cocktail exhibited synergistic neutralizing activity, resisted viral escape, and possessed differing requirements for their Fc-regions for optimal in vivo activities. The cocktail protected non-human primates from ebolavirus disease caused by EBOV, BDBV, or SUDV with high therapeutic effectiveness. High-resolution structures of the cocktail antibodies in complex with GP revealed the molecular determinants for neutralization breadth and potency. This study provides advanced preclinical data to support clinical development of this cocktail for pan-ebolavirus therapy.
Collapse
Affiliation(s)
- Pavlo Gilchuk
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Charles D Murin
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Robert W Cross
- Galveston National Laboratory, Galveston, TX 77550, USA; Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Philipp A Ilinykh
- Galveston National Laboratory, Galveston, TX 77550, USA; Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Kai Huang
- Galveston National Laboratory, Galveston, TX 77550, USA; Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Natalia Kuzmina
- Galveston National Laboratory, Galveston, TX 77550, USA; Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Viktoriya Borisevich
- Galveston National Laboratory, Galveston, TX 77550, USA; Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Krystle N Agans
- Galveston National Laboratory, Galveston, TX 77550, USA; Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Joan B Geisbert
- Galveston National Laboratory, Galveston, TX 77550, USA; Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Seth J Zost
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Rachel S Nargi
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Rachel E Sutton
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | - Robin G Bombardi
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Robert H Carnahan
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Alexander Bukreyev
- Galveston National Laboratory, Galveston, TX 77550, USA; Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Thomas W Geisbert
- Galveston National Laboratory, Galveston, TX 77550, USA; Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - James E Crowe
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|
17
|
Levine CB, Mire CE, Geisbert TW. Comparison of Zaire and Bundibugyo Ebolavirus Polymerase Complexes and Susceptibility to Antivirals through a Newly Developed Bundibugyo Minigenome System. J Virol 2021; 95:e0064321. [PMID: 34379503 PMCID: PMC8475504 DOI: 10.1128/jvi.00643-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 07/28/2021] [Indexed: 11/20/2022] Open
Abstract
Members of the genus Ebolavirus cause lethal disease in humans, with Zaire ebolavirus (EBOV) being the most pathogenic (up to 90% morality) and Bundibugyo ebolavirus (BDBV) the least pathogenic (∼37% mortality). Historically, there has been a lack of research on BDBV, and there is no means to study BDBV outside of a high-containment laboratory. Here, we describe a minigenome replication system to study BDBV transcription and compare the efficacy of small-molecule inhibitors between EBOV and BDBV. Using this system, we examined the ability of the polymerase complex proteins from EBOV and BDBV to interact and form a functional unit as well as the impact of the genomic untranslated ends, known to contain important signals for transcription (3'-untranslated region) and replication (5'-untranslated region). Various levels of compatibility were observed between proteins of the polymerase complex from each ebolavirus, resulting in differences in genome transcription efficiency. Most pronounced was the effect of the nucleoprotein and the 3'-untranslated region. These data suggest that there are intrinsic specificities in the polymerase complex and untranslated signaling regions that could offer insight regarding observed pathogenic differences. Further adding to the differences in the polymerase complexes, posttransfection/infection treatment with the compound remdesivir (GS-5734) showed a greater inhibitory effect against BDBV than EBOV. The delayed growth kinetics of BDBV and the greater susceptibility to polymerase inhibitors indicate that disruption of the polymerase complex is a viable target for therapeutics. IMPORTANCE Ebolavirus disease is a viral infection and is fatal in 25 to 90% of cases, depending on the viral species and the amount of supportive care available. Two species have caused outbreaks in the Democratic Republic of the Congo, Zaire ebolavirus (EBOV) and Bundibugyo ebolavirus (BDBV). Pathogenesis and clinical outcome differ between these two species, but there is still limited information regarding the viral mechanism for these differences. Previous studies suggested that BDBV replicates slower than EBOV, but it is unknown if this is due to differences in the polymerase complex and its role in transcription and replication. This study details the construction of a minigenome replication system that can be used in a biosafety level 2 laboratory. This system will be important for studying the polymerase complex of BDBV and comparing it with other filoviruses and can be used as a tool for screening inhibitors of viral growth.
Collapse
Affiliation(s)
- Corri B. Levine
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas, USA
- Institute for Translational Sciences, University of Texas Medical Branch, Galveston, Texas, USA
| | - Chad E. Mire
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Thomas W. Geisbert
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
18
|
Liu G, Cao W, Salawudeen A, Zhu W, Emeterio K, Safronetz D, Banadyga L. Vesicular Stomatitis Virus: From Agricultural Pathogen to Vaccine Vector. Pathogens 2021; 10:1092. [PMID: 34578125 PMCID: PMC8470541 DOI: 10.3390/pathogens10091092] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 11/16/2022] Open
Abstract
Vesicular stomatitis virus (VSV), which belongs to the Vesiculovirus genus of the family Rhabdoviridae, is a well studied livestock pathogen and prototypic non-segmented, negative-sense RNA virus. Although VSV is responsible for causing economically significant outbreaks of vesicular stomatitis in cattle, horses, and swine, the virus also represents a valuable research tool for molecular biologists and virologists. Indeed, the establishment of a reverse genetics system for the recovery of infectious VSV from cDNA transformed the utility of this virus and paved the way for its use as a vaccine vector. A highly effective VSV-based vaccine against Ebola virus recently received clinical approval, and many other VSV-based vaccines have been developed, particularly for high-consequence viruses. This review seeks to provide a holistic but concise overview of VSV, covering the virus's ascension from perennial agricultural scourge to promising medical countermeasure, with a particular focus on vaccines.
Collapse
Affiliation(s)
- Guodong Liu
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada
| | - Wenguang Cao
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada
| | - Abdjeleel Salawudeen
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Wenjun Zhu
- Canadian Food Inspection Agency, National Centre for Foreign Animal Disease, Winnipeg, MB R3E 3M4, Canada
| | - Karla Emeterio
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - David Safronetz
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Logan Banadyga
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada
| |
Collapse
|
19
|
Bundibugyo ebolavirus Survival Is Associated with Early Activation of Adaptive Immunity and Reduced Myeloid-Derived Suppressor Cell Signaling. mBio 2021; 12:e0151721. [PMID: 34372693 PMCID: PMC8406165 DOI: 10.1128/mbio.01517-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ebolaviruses Bundibugyo virus (BDBV) and Ebola virus (EBOV) cause fatal hemorrhagic disease in humans and nonhuman primates. While the host response to EBOV is well characterized, less is known about BDBV infection. Moreover, immune signatures that mediate natural protection against all ebolaviruses remain poorly defined. To explore these knowledge gaps, we transcriptionally profiled BDBV-infected rhesus macaques, a disease model that results in incomplete lethality. This approach enabled us to identify prognostic indicators. As expected, survival (∼60%) correlated with reduced clinical pathology and circulating infectious virus, although peak viral RNA loads were not significantly different between surviving and nonsurviving macaques. Survivors had higher anti-BDBV antibody titers and transcriptionally derived cytotoxic T cell-, memory B cell-, and plasma cell-type quantities, demonstrating activation of adaptive immunity. Conversely, a poor prognosis was associated with lack of an appropriate adaptive response, sustained innate immune signaling, and higher expression of myeloid-derived suppressor cell (MDSC)-related transcripts (S100A8, S100A9, CEBPB, PTGS2, CXCR1, and LILRA3). MDSCs are potent immunosuppressors of cellular and humoral immunity, and therefore, they represent a potential therapeutic target. Circulating plasminogen activator inhibitor 1 (PAI-1) and tissue plasminogen activator (tPA) levels were also elevated in nonsurvivors and in survivors exhibiting severe illness, emphasizing the importance of maintaining coagulation homeostasis to control disease progression.
Collapse
|
20
|
Development and Evaluation of an Ebola Virus Glycoprotein Mucin-Like Domain Replacement System as a New Dendritic Cell-Targeting Vaccine Approach against HIV-1. J Virol 2021; 95:e0236820. [PMID: 34011553 PMCID: PMC8274623 DOI: 10.1128/jvi.02368-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The development of efficient vaccine approaches against HIV infection remains challenging in the vaccine field. Here, we developed an Ebola virus envelope glycoprotein (EboGP)-based chimeric fusion protein system and demonstrated that replacement of the mucin-like domain (MLD) of EboGP with HIV C2-V3-C3 (134 amino acids [aa]) or C2-V3-C3-V4-C4-V5-C5 (243 aa) polypeptides (EbGPΔM-V3 and EbGPΔM-V3-V5, respectively) still maintained the efficiency of EboGP-mediated viral entry into human macrophages and dendritic cells (DCs). Animal studies using mice revealed that immunization with virus-like particles (VLPs) containing the above chimeric proteins, especially EbGPΔM-V3, induced significantly more potent anti-HIV antibodies than HIV gp120 alone in mouse serum and vaginal fluid. Moreover, the splenocytes isolated from mice immunized with VLPs containing EbGPΔM-V3 produced significantly higher levels of gamma interferon (IFN-γ), interleukin 2 (IL-2), IL-4, IL-5, and macrophage inflammatory protein 1α (MIP-1α). Additionally, we demonstrated that coexpression of EbGPΔM-V3 and the HIV Env glycoprotein in a recombinant vesicular stomatitis virus (rVSV) vector elicited robust anti-HIV antibodies that may have specifically recognized epitopes outside or inside the C2-V3-C3 region of HIV-1 gp120 and cross-reacted with the gp120 from different HIV strains. Thus, this study has demonstrated the great potential of this DC-targeting vaccine platform as a new vaccine approach for improving immunogen delivery and increasing vaccine efficacy. IMPORTANCE Currently, there are more than 38.5 million reported cases of HIV globally. To date, there is no approved vaccine for HIV-1 infection. Thus, the development of an effective vaccine against HIV infection remains a global priority. This study revealed the efficacy of a novel dendritic cell (DC)-targeting vaccination approach against HIV-1. The results clearly show that the immunization of mice with virus-like particles (VLPs) and VSVs containing HIV Env and a fusion protein composed of a DC-targeting domain of Ebola virus GP with HIV C2-V3-C3 polypeptides (EbGPΔM-V3) could induce robust immune responses against HIV-1 Env and/or Gag in serum and vaginal mucosa. These findings provide a proof of concept of this novel and efficient DC-targeting vaccine approach in delivering various antigenic polypeptides of HIV-1 and/or other emergent infections to the host antigen-presenting cells to prevent HIV and other viral infections.
Collapse
|
21
|
Pathogen Dose in Animal Models of Hemorrhagic Fever Virus Infections and the Potential Impact on Studies of the Immune Response. Pathogens 2021; 10:pathogens10030275. [PMID: 33804381 PMCID: PMC7999429 DOI: 10.3390/pathogens10030275] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/22/2021] [Accepted: 02/25/2021] [Indexed: 12/24/2022] Open
Abstract
Viral hemorrhagic fever viruses come from a wide range of virus families and are a significant cause of morbidity and mortality worldwide each year. Animal models of infection with a number of these viruses have contributed to our knowledge of their pathogenesis and have been crucial for the development of therapeutics and vaccines that have been approved for human use. Most of these models use artificially high doses of virus, ensuring lethality in pre-clinical drug development studies. However, this can have a significant effect on the immune response generated. Here I discuss how the dose of antigen or pathogen is a critical determinant of immune responses and suggest that the current study of viruses in animal models should take this into account when developing and studying animal models of disease. This can have implications for determination of immune correlates of protection against disease as well as informing relevant vaccination and therapeutic strategies.
Collapse
|
22
|
Systematic review of Marburg virus vaccine nonhuman primate studies and human clinical trials. Vaccine 2020; 39:202-208. [PMID: 33309082 DOI: 10.1016/j.vaccine.2020.11.042] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 01/22/2023]
Abstract
BACKGROUND Recent deadly outbreaks of Marburg virus underscore the need for an effective vaccine. A summary of the latest research is needed for this WHO priority pathogen. This systematic review aimed to determine progress towards a vaccine for Marburg virus. METHODS Article search criteria were developed to query PubMed for peer-reviewed articles from 1990 through 2019 on Marburg virus vaccine clinical trials in humans and pre-clinical studies in non-human primates (NHP). Abstracts were reviewed by two authors. Relevant articles were reviewed in full. Discrepancies were resolved by a third author. Data abstracted included year, author, title, vaccine construct, number of subjects, efficacy, and demographics. Assessment for risk of bias was performed using the Syrcle tool for animal studies, and the Cochrane Collaboration risk of bias tool for human studies. RESULTS 101 articles were identified; 27 were related to Marburg vaccines. After full text review, 21 articles were selected. 215 human subjects were in three phase 1 clinical trials, and 203 NHP in 18 studies. Vaccine constructs were DNA plasmids, recombinant vesicular stomatitis virus (VSV) vectors, adenovirus vectors, virus-like particles (VLP), among others. Two human phase 1 studies of DNA vaccines had 4 adverse effects requiring vaccine discontinuation among 128 participants and 31-80% immunogenicity. In NHP challenge studies, 100% survival was seen in 6 VSV vectored vaccines, 2 DNA vaccines, 2 VLP vaccines, and in 1 adenoviral vectored vaccine. CONCLUSION In human trials, two Marburg DNA vaccines provided either low immunogenicity or a failure to elicit durable immunity. A variety of NHP candidate Marburg vaccines demonstrated favorable survival and immunogenicity parameters, to include VSV, VLP, and adenoviral vectored vaccines. Elevated binding antibodies appeared to be consistently associated with protection across the NHP challenge studies. Further human trials are needed to advance vaccines to limit the spread of this highly lethal virus.
Collapse
|
23
|
Scher G, Schnell MJ. Rhabdoviruses as vectors for vaccines and therapeutics. Curr Opin Virol 2020; 44:169-182. [PMID: 33130500 PMCID: PMC8331071 DOI: 10.1016/j.coviro.2020.09.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/12/2020] [Accepted: 09/13/2020] [Indexed: 12/24/2022]
Abstract
Appropriate choice of vaccine vector is crucial for effective vaccine development. Rhabdoviral vectors, such as rabies virus and vesicular stomatitis virus, have been used in a variety of vaccine strategies. These viruses have small, easily manipulated genomes that can stably express foreign glycoproteins due to a well-established reverse genetics system for virus recovery. Both viruses have well-described safety profiles and have been demonstrated to be effective vaccine vectors. This review will describe how these Rhabdoviruses can be manipulated for use as vectors, their various applications as vaccines or therapeutics, and the advantages and disadvantages of their use.
Collapse
Affiliation(s)
- Gabrielle Scher
- Department of Microbiology and Immunology, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Matthias J Schnell
- Department of Microbiology and Immunology, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA; Jefferson Vaccine Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA.
| |
Collapse
|
24
|
To B or Not to B: Mechanisms of Protection Conferred by rVSV-EBOV-GP and the Roles of Innate and Adaptive Immunity. Microorganisms 2020; 8:microorganisms8101473. [PMID: 32992829 PMCID: PMC7600878 DOI: 10.3390/microorganisms8101473] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/22/2020] [Accepted: 09/23/2020] [Indexed: 12/28/2022] Open
Abstract
Zaire Ebola virus (EBOV) is a member of the Filoviridae family of negative sense, single-stranded RNA viruses. EBOV infection causes Ebola virus disease (EVD), characterized by coagulopathy, lymphopenia, and multi-organ failure, which can culminate in death. In 2019, the FDA approved the first vaccine against EBOV, a recombinant live-attenuated viral vector wherein the G protein of vesicular stomatitis virus is replaced with the glycoprotein (GP) of EBOV (rVSV-EBOV-GP, Ervebo® by Merck). This vaccine demonstrates high efficacy in nonhuman primates by providing prophylactic, rapid, and post-exposure protection. In humans, rVSV-EBOV-GP demonstrated 100% protection in several phase III clinical trials in over 10,000 individuals during the 2013–2016 West Africa epidemic. As of 2020, over 218,000 doses of rVSV-EBOV-GP have been administered to individuals with high risk of EBOV exposure. Despite licensure and robust preclinical studies, the mechanisms of rVSV-EBOV-GP-mediated protection are not fully understood. Such knowledge is crucial for understanding vaccine-mediated correlates of protection from EVD and to aid the further design and development of therapeutics against filoviruses. Here, we summarize the current literature regarding the host response to vaccination and EBOV exposure, and evidence regarding innate and adaptive immune mechanisms involved in rVSV-EBOV-GP-mediated protection, with a focus on the host transcriptional response. Current data strongly suggest a protective synergy between rapid innate and humoral immunity.
Collapse
|
25
|
Abstract
The conduct of clinical trials during the West Africa Ebola outbreak in 2014 highlighted many ethical challenges. How these challenges were addressed, what clinical studies were conducted during that outbreak, and the lessons learned for dealing with future outbreaks were the subject of a National Academy of Medicine committee report titled Integrating Clinical Research into Epidemic Response: The Ebola Experience. This report suggested improvements for research during subsequent emerging or re-emerging outbreaks and is summarized in this review. We also discuss the current Ebola outbreak in the Democratic Republic of the Congo and highlight how the dialogue has changed and how successful clinical trials have been implemented. We conclude with a description of productive efforts to include pregnant women and children in therapeutic and vaccine trials during outbreaks that are currently ongoing.
Collapse
Affiliation(s)
- Kathryn M Edwards
- Division of Pediatric Infectious Diseases, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA;
| | - Sonali Kochhar
- Global Healthcare Consulting, New Delhi 110024, India.,Department of Global Health, University of Washington, Seattle, Washington 98104, USA
| |
Collapse
|
26
|
Rugarabamu S, Mboera L, Rweyemamu M, Mwanyika G, Lutwama J, Paweska J, Misinzo G. Forty-two years of responding to Ebola virus outbreaks in Sub-Saharan Africa: a review. BMJ Glob Health 2020; 5:e001955. [PMID: 32201623 PMCID: PMC7061886 DOI: 10.1136/bmjgh-2019-001955] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 01/16/2020] [Accepted: 01/27/2020] [Indexed: 11/24/2022] Open
Abstract
Introduction Ebola virus disease (EVD) is one of the deadliest haemorrhagic fevers affecting humans and non-human primates. Thirty-four outbreaks have been reported in Africa since it was first recognised in 1976. This review analysed 42 years of EVD outbreaks and identified various challenges and opportunities for its control and prevention in Sub-Saharan Africa. Methods A literature search of relevant articles on EVD was done in PubMed, Web of Science and Google Scholar electronic databases. Articles published from 1976 to 2019 were reviewed to document reports of EVD outbreaks in Sub-Saharan Africa. Data extraction focused on the year of outbreak, geographical spread, virus strain involved, number of cases and deaths, case fatality, and outbreak management. Analyses of trends in case fatality were performed by calculating ORs between times. Results In the past four decades, a total of 34 EVD outbreaks affecting 34 356 cases and causing 14 823 deaths were reported in 11 countries in Sub-Saharan Africa. The overall case fatality rate (95% CI) was 66% (62 to 71) and did not change substantially over time (OR in 2019 vs 1976=1.6 (95% CI 1.5 to 1.8), p<0.001). The results of this review indicate that challenges to control EVD outbreaks are related to epidemiological, sociocultural and health system factors. Conclusions Sub-Saharan Africa continues to face considerable challenges in EVD control, whereby there are no significant changes in case fatality rates observed during the past four decades. Socioeconomic and cultural processes need to be critically considered to shape the community behaviours that lead to exposure to EVD outbreaks. Areas that need to be addressed to prevent future EVD outbreaks include a broad-based, one-health approach, effective communication, social mobilisation, and strengthening of the health systems.
Collapse
Affiliation(s)
- Sima Rugarabamu
- SACIDS Foundation for One Health – Africa Centre of Excellence for Infectious Diseases of Human and Animals, Sokoine University of Agriculture, Chuo Kikuu, Tanzania
- Department of Microbiology and Immunology, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Leonard Mboera
- SACIDS Foundation for One Health – Africa Centre of Excellence for Infectious Diseases of Human and Animals, Sokoine University of Agriculture, Chuo Kikuu, Tanzania
| | - Mark Rweyemamu
- SACIDS Foundation for One Health – Africa Centre of Excellence for Infectious Diseases of Human and Animals, Sokoine University of Agriculture, Chuo Kikuu, Tanzania
| | - Gaspary Mwanyika
- SACIDS Foundation for One Health – Africa Centre of Excellence for Infectious Diseases of Human and Animals, Sokoine University of Agriculture, Chuo Kikuu, Tanzania
- Department of Health Science and Technology, Mbeya University of Science and Technology, Mbeya, Tanzania
| | - Julius Lutwama
- Department of Arbovirology, Emerging and Re-emerging Infectious Diseases, Uganda Virus research Institute, Entebbe, Uganda
| | - Janusz Paweska
- National Institute of Communicable Diseases, National Laboratory Services, Johannesburg, South Africa
| | - Gerald Misinzo
- SACIDS Foundation for One Health – Africa Centre of Excellence for Infectious Diseases of Human and Animals, Sokoine University of Agriculture, Chuo Kikuu, Tanzania
| |
Collapse
|
27
|
Bache BE, Grobusch MP, Agnandji ST. Safety, immunogenicity and risk-benefit analysis of rVSV-ΔG-ZEBOV-GP (V920) Ebola vaccine in Phase I-III clinical trials across regions. Future Microbiol 2020; 15:85-106. [PMID: 32030996 DOI: 10.2217/fmb-2019-0237] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
To evaluate the risk-benefits balance of the rVSV-ΔG-ZEBOV-GP vaccine. We performed a systematic review to summarize data on safety, immunogenicity and efficacy. About 17,600 adults and 234 children received 11 different doses of the V920 vaccine ranging from 3000 to 100 million and 20 million plaque-forming units, respectively, during Phase I-III clinical trials. Cases of severe but transient arthritis were reported in about six and 0.08% of vaccinees in high-income countries (HICs) and low-middle-income countries (LMICs), respectively. The 20 million plaque-forming units dose yielded GP-specific antibody titres which peaked at day 28 with a pooled geometric mean titres of 2557.7 (95% CI: 1665.5-3934.2) versus 1156.9 (95% CI: 832.5-1649.2) but with similar seroconversion rates at 96% (95% CI: 87-100) versus 100% (95% CI: 90-100) for HICs and LMICs, respectively. Data from stringent Phase I-II clinical trials in LMICs and HICs and from the ring efficacy trials yielded a good risk-benefit balance of the V920 vaccine in adults, but also in children and pregnant and lactating women and HIV-infected people.
Collapse
Affiliation(s)
- Bache Emmanuel Bache
- Centre de Recherches Médicales de Lambaréné (CERMEL), Biomedicine and Social sciences, BP 242, Lambaréné, Gabon.,Center of Tropical Medicine & Travel Medicine, Department of Infectious Diseases, Division of Internal Medicine, Amsterdam University Medical Centres, location AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Martin P Grobusch
- Centre de Recherches Médicales de Lambaréné (CERMEL), Biomedicine and Social sciences, BP 242, Lambaréné, Gabon.,Center of Tropical Medicine & Travel Medicine, Department of Infectious Diseases, Division of Internal Medicine, Amsterdam University Medical Centres, location AMC, University of Amsterdam, Amsterdam, The Netherlands.,Institut für Tropenmedizin, Universitätsklinikum Tübingen, Tübingen, Germany
| | - Selidji Todagbe Agnandji
- Centre de Recherches Médicales de Lambaréné (CERMEL), Biomedicine and Social sciences, BP 242, Lambaréné, Gabon.,Institut für Tropenmedizin, Universitätsklinikum Tübingen, Tübingen, Germany
| |
Collapse
|
28
|
Cross RW, Xu R, Matassov D, Hamm S, Latham TE, Gerardi CS, Nowak RM, Geisbert JB, Ota-Setlik A, Agans KN, Luckay A, Witko SE, Soukieh L, Deer DJ, Mire CE, Feldmann H, Happi C, Fenton KA, Eldridge JH, Geisbert TW. Quadrivalent VesiculoVax vaccine protects nonhuman primates from viral-induced hemorrhagic fever and death. J Clin Invest 2020; 130:539-551. [PMID: 31820871 PMCID: PMC6934204 DOI: 10.1172/jci131958] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 10/10/2019] [Indexed: 02/04/2023] Open
Abstract
Recent occurrences of filoviruses and the arenavirus Lassa virus (LASV) in overlapping endemic areas of Africa highlight the need for a prophylactic vaccine that would confer protection against all of these viruses that cause lethal hemorrhagic fever (HF). We developed a quadrivalent formulation of VesiculoVax that contains recombinant vesicular stomatitis virus (rVSV) vectors expressing filovirus glycoproteins and that also contains a rVSV vector expressing the glycoprotein of a lineage IV strain of LASV. Cynomolgus macaques were vaccinated twice with the quadrivalent formulation, followed by challenge 28 days after the boost vaccination with each of the 3 corresponding filoviruses (Ebola, Sudan, Marburg) or a heterologous contemporary lineage II strain of LASV. Serum IgG and neutralizing antibody responses specific for all 4 glycoproteins were detected in all vaccinated animals. A modest and balanced cell-mediated immune response specific for the glycoproteins was also detected in most of the vaccinated macaques. Regardless of the level of total glycoprotein-specific immune response detected after vaccination, all immunized animals were protected from disease and death following lethal challenges. These findings indicate that vaccination with attenuated rVSV vectors each expressing a single HF virus glycoprotein may provide protection against those filoviruses and LASV most commonly responsible for outbreaks of severe HF in Africa.
Collapse
Affiliation(s)
- Robert W. Cross
- Galveston National Laboratory and
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | | | | | - Stefan Hamm
- Department of Viral Vaccine Discovery, Profectus BioSciences Inc., Pearl River, New York, USA
| | | | | | - Rebecca M. Nowak
- Department of Viral Vaccine Discovery, Profectus BioSciences Inc., Pearl River, New York, USA
| | - Joan B. Geisbert
- Galveston National Laboratory and
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | | | - Krystle N. Agans
- Galveston National Laboratory and
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | | | | | | | - Daniel J. Deer
- Galveston National Laboratory and
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Chad E. Mire
- Galveston National Laboratory and
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Heinz Feldmann
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, NIH, Hamilton, Montana, USA
| | - Christian Happi
- Department of Biological Sciences and African Center of Excellence for Genomics of Infectious Diseases, Redeemer’s University, Edo, Nigeria
| | - Karla A. Fenton
- Galveston National Laboratory and
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - John H. Eldridge
- Department of Immunology
- Department of Viral Vaccine Development, and
- Department of Viral Vaccine Discovery, Profectus BioSciences Inc., Pearl River, New York, USA
| | - Thomas W. Geisbert
- Galveston National Laboratory and
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
29
|
Kuzmina NA, Younan P, Gilchuk P, Santos RI, Flyak AI, Ilinykh PA, Huang K, Lubaki NM, Ramanathan P, Crowe JE, Bukreyev A. Antibody-Dependent Enhancement of Ebola Virus Infection by Human Antibodies Isolated from Survivors. Cell Rep 2019; 24:1802-1815.e5. [PMID: 30110637 DOI: 10.1016/j.celrep.2018.07.035] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 06/12/2018] [Accepted: 07/10/2018] [Indexed: 12/20/2022] Open
Abstract
Some monoclonal antibodies (mAbs) recovered from survivors of filovirus infections can protect against infection. It is currently unknown whether natural infection also induces some antibodies with the capacity for antibody-dependent enhancement (ADE). A panel of mAbs obtained from human survivors of filovirus infection caused by Ebola, Bundibugyo, or Marburg viruses was evaluated for their ability to facilitate ADE. ADE was observed readily with all mAbs examined at sub-neutralizing concentrations, and this effect was not restricted to mAbs with a particular epitope specificity, neutralizing capacity, or subclass. Blocking of specific Fcγ receptors reduced but did not abolish ADE that was associated with high-affinity binding antibodies, suggesting that lower-affinity interactions still cause ADE. Mutations of Fc fragments of an mAb that altered its interaction with Fc receptors rendered the antibody partially protective in vivo at a low dose, suggesting that ADE counteracts antibody-mediated protection and facilitates dissemination of filovirus infections.
Collapse
Affiliation(s)
- Natalia A Kuzmina
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA; Galveston National Laboratory, Galveston, TX 77550, USA
| | - Patrick Younan
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA; Galveston National Laboratory, Galveston, TX 77550, USA
| | - Pavlo Gilchuk
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Rodrigo I Santos
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA; Galveston National Laboratory, Galveston, TX 77550, USA
| | - Andrew I Flyak
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, TN 37232, USA
| | - Philipp A Ilinykh
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA; Galveston National Laboratory, Galveston, TX 77550, USA
| | - Kai Huang
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA; Galveston National Laboratory, Galveston, TX 77550, USA
| | - Ndongala M Lubaki
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA; Galveston National Laboratory, Galveston, TX 77550, USA
| | - Palaniappan Ramanathan
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA; Galveston National Laboratory, Galveston, TX 77550, USA
| | - James E Crowe
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| | - Alexander Bukreyev
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA; Galveston National Laboratory, Galveston, TX 77550, USA; Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| |
Collapse
|
30
|
Gilchuk P, Mire CE, Geisbert JB, Agans KN, Deer DJ, Cross RW, Slaughter JC, Flyak AI, Mani J, Pauly MH, Velasco J, Whaley KJ, Zeitlin L, Geisbert TW, Crowe JE. Efficacy of Human Monoclonal Antibody Monotherapy Against Bundibugyo Virus Infection in Nonhuman Primates. J Infect Dis 2019; 218:S565-S573. [PMID: 29982718 DOI: 10.1093/infdis/jiy295] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Background The 2013-2016 Ebola virus disease (EVD) epidemics in West Africa highlighted a need for effective therapeutics for treatment of the disease caused by filoviruses. Monoclonal antibodies (mAbs) are promising therapeutic candidates for prophylaxis or treatment of virus infections. Data about efficacy of human mAb monotherapy against filovirus infections in preclinical nonhuman primate models are limited. Methods Previously, we described a large panel of human mAbs derived from the circulating memory B cells from Bundibugyo virus (BDBV) infection survivors that bind to the surface glycoprotein (GP) of the virus. We tested one of these neutralizing mAbs that recognized the glycan cap of the GP, designated mAb BDBV289, as monotherapy in rhesus macaques. Results We found that recombinant mAb BDBV289-N could confer up to 100% protection to BDBV-infected rhesus macaques when treatment was initiated as late as 8 days after virus challenge. Protection was associated with survival and decreased viremia levels in the blood of treated animals. Conclusions These findings define the efficacy of monotherapy of lethal BDBV infection with a glycan cap-specific mAb and identify a candidate mAb therapeutic molecule that could be included in antibody cocktails for prevention or treatment of ebolavirus infections.
Collapse
Affiliation(s)
- Pavlo Gilchuk
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Chad E Mire
- Galveston National Laboratory, University of Texas Medical Branch, Galveston.,Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston
| | - Joan B Geisbert
- Galveston National Laboratory, University of Texas Medical Branch, Galveston.,Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston
| | - Krystle N Agans
- Galveston National Laboratory, University of Texas Medical Branch, Galveston.,Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston
| | - Daniel J Deer
- Galveston National Laboratory, University of Texas Medical Branch, Galveston.,Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston
| | - Robert W Cross
- Galveston National Laboratory, University of Texas Medical Branch, Galveston.,Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston
| | - James C Slaughter
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Andrew I Flyak
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jeremy Mani
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | | | | | | | | | - Thomas W Geisbert
- Galveston National Laboratory, University of Texas Medical Branch, Galveston.,Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston
| | - James E Crowe
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee.,Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee.,Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
31
|
Fathi A, Dahlke C, Addo MM. Recombinant vesicular stomatitis virus vector vaccines for WHO blueprint priority pathogens. Hum Vaccin Immunother 2019; 15:2269-2285. [PMID: 31368826 PMCID: PMC6816421 DOI: 10.1080/21645515.2019.1649532] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The devastating Ebola virus (EBOV) outbreak in West Africa in 2013-2016 has flagged the need for the timely development of vaccines for high-threat pathogens. To be better prepared for new epidemics, the WHO has compiled a list of priority pathogens that are likely to cause future outbreaks and for which R&D efforts are, therefore, paramount (R&D Blueprint: https://www.who.int/blueprint/priority-diseases/en/ ). To this end, the detailed characterization of vaccine platforms is needed. The vesicular stomatitis virus (VSV) has been established as a robust vaccine vector backbone for infectious diseases for well over a decade. The recent clinical trials testing the vaccine candidate VSV-EBOV against EBOV disease now have added a substantial amount of clinical data and suggest VSV to be an ideal vaccine vector candidate for outbreak pathogens. In this review, we discuss insights gained from the clinical VSV-EBOV vaccine trials as well as from animal studies investigating vaccine candidates for Blueprint pathogens.
Collapse
Affiliation(s)
- Anahita Fathi
- Department of Medicine, Division of Infectious Diseases, University Medical-Center Hamburg-Eppendorf , Hamburg , Germany.,Department for Clinical Immunology of Infectious Diseases, Bernhard Nocht Institute for Tropical Medicine , Hamburg , Germany.,German Center for Infection Research, Hamburg-Lübeck-Borstel-Riems , Germany
| | - Christine Dahlke
- Department of Medicine, Division of Infectious Diseases, University Medical-Center Hamburg-Eppendorf , Hamburg , Germany.,Department for Clinical Immunology of Infectious Diseases, Bernhard Nocht Institute for Tropical Medicine , Hamburg , Germany.,German Center for Infection Research, Hamburg-Lübeck-Borstel-Riems , Germany
| | - Marylyn M Addo
- Department of Medicine, Division of Infectious Diseases, University Medical-Center Hamburg-Eppendorf , Hamburg , Germany.,Department for Clinical Immunology of Infectious Diseases, Bernhard Nocht Institute for Tropical Medicine , Hamburg , Germany.,German Center for Infection Research, Hamburg-Lübeck-Borstel-Riems , Germany
| |
Collapse
|
32
|
Vesicular Stomatitis Virus-Based Vaccine Protects Mice against Crimean-Congo Hemorrhagic Fever. Sci Rep 2019; 9:7755. [PMID: 31123310 PMCID: PMC6533279 DOI: 10.1038/s41598-019-44210-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 05/01/2019] [Indexed: 01/17/2023] Open
Abstract
Crimean-Congo hemorrhagic fever virus (CCHFV), a tick-borne bunyavirus, can cause a life-threatening hemorrhagic syndrome in humans but not in its animal host. The virus is widely distributed throughout southeastern Europe, the Middle East, Africa, and Asia. Disease management has proven difficult and there are no broadly licensed vaccines or therapeutics. Recombinant vesicular stomatitis viruses (rVSV) expressing foreign glycoproteins (GP) have shown promise as experimental vaccines for several viral hemorrhagic fevers. Here, we developed and assessed a replication competent rVSV vector expressing the CCHFV glycoprotein precursor (GPC), which encodes CCHFV structural glycoproteins. This construct drives strong expression of CCHFV-GP, in vitro. Using these vectors, we vaccinated STAT-1 knock-out mice, an animal model for CCHFV. The vector was tolerated and 100% efficacious against challenge from a clinical strain of CCHFV. Anti-CCHFV-GP IgG and neutralizing antibody titers were observed in surviving animals. This study demonstrates that a rVSV expressing only the CCHFV-GP has the potential to serve as a replication competent vaccine platform against CCHF infections.
Collapse
|
33
|
Dolzhikova IV, Tukhvatulin AI, Gromova AS, Grousova DM, Tukhvatulina NM, Tokarskaya EA, Logunov DY, Naroditskiy BS, Gintsburg AL. Glycoprotein GP as a basis for the universal vaccine against Ebola virus disease. BULLETIN OF RUSSIAN STATE MEDICAL UNIVERSITY 2019. [DOI: 10.24075/brsmu.2019.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ebola virus disease (EVD) is one of the deadliest viral infections affecting humans and nonhuman primates. Of 6 known representatives of the Ebolavirus genus responsible for the disease, 3 can infect humans, causing acute highly contagious fever characterized by up to 90% fatality. These include Bundibugyo ebolavirus (BDBV), Zaire ebolavirus (ZEBOV) and Sudan ebolavirus (SUDV). The majority of the reported EVD cases are caused by ZEBOV. Vaccine development against the virus started in 1976, immediately after the causative agent of the infection was identified. So far, 4 vaccines have been approved. All of them are based on the protective epitope of the ZEBOV glycoprotein GP. Because SUDV and BDBV can also cause outbreaks and epidemics, it is vital to design a vaccine capable of conferring protection against all known ebolaviruses posing a threat to the human population. This article presents systematized data on the structure, immunogenicity and protective properties of ebolavirus glycoprotein GP, looks closely at the immunodominant epitopes of ZEBOV, SUDV and BDBV glycoprotein GP required to elicit a protective immune response, and offers a rational perspective on the development of a universal vaccine against EVD that relies on the use of vectors expressing two variants of GP represented by ZEBOV and SUDV.
Collapse
Affiliation(s)
- IV Dolzhikova
- N.F. Gamaleya Research Institute of Epidemiology and Microbiology, Moscow, Russia
| | - AI Tukhvatulin
- N.F. Gamaleya Research Institute of Epidemiology and Microbiology, Moscow, Russia
| | - AS Gromova
- N.F. Gamaleya Research Institute of Epidemiology and Microbiology, Moscow, Russia
| | - DM Grousova
- N.F. Gamaleya Research Institute of Epidemiology and Microbiology, Moscow, Russia
| | - NM Tukhvatulina
- N.F. Gamaleya Research Institute of Epidemiology and Microbiology, Moscow, Russia
| | - EA Tokarskaya
- N.F. Gamaleya Research Institute of Epidemiology and Microbiology, Moscow, Russia
| | - DYu Logunov
- N.F. Gamaleya Research Institute of Epidemiology and Microbiology, Moscow, Russia
| | - BS Naroditskiy
- N.F. Gamaleya Research Institute of Epidemiology and Microbiology, Moscow, Russia
| | - AL Gintsburg
- N.F. Gamaleya Research Institute of Epidemiology and Microbiology, Moscow, Russia
| |
Collapse
|
34
|
A Two-Antibody Pan-Ebolavirus Cocktail Confers Broad Therapeutic Protection in Ferrets and Nonhuman Primates. Cell Host Microbe 2019; 25:49-58.e5. [PMID: 30629918 DOI: 10.1016/j.chom.2018.12.005] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 10/28/2018] [Accepted: 11/21/2018] [Indexed: 12/18/2022]
Abstract
Recent and ongoing outbreaks of Ebola virus disease (EVD) underscore the unpredictable nature of ebolavirus reemergence and the urgent need for antiviral treatments. Unfortunately, available experimental vaccines and immunotherapeutics are specific for a single member of the Ebolavirus genus, Ebola virus (EBOV), and ineffective against other ebolaviruses associated with EVD, including Sudan virus (SUDV) and Bundibugyo virus (BDBV). Here we show that MBP134AF, a pan-ebolavirus therapeutic comprising two broadly neutralizing human antibodies (bNAbs), affords unprecedented effectiveness and potency as a therapeutic countermeasure to antigenically diverse ebolaviruses. MBP134AF could fully protect ferrets against lethal EBOV, SUDV, and BDBV infection, and a single 25-mg/kg dose was sufficient to protect NHPs against all three viruses. The development of MBP134AF provides a successful model for the rapid discovery and translational advancement of immunotherapeutics targeting emerging infectious diseases.
Collapse
|
35
|
Warfield KL, Howell KA, Vu H, Geisbert J, Wong G, Shulenin S, Sproule S, Holtsberg FW, Leung DW, Amarasinghe GK, Swenson DL, Bavari S, Kobinger GP, Geisbert TW, Aman MJ. Role of Antibodies in Protection Against Ebola Virus in Nonhuman Primates Immunized With Three Vaccine Platforms. J Infect Dis 2018; 218:S553-S564. [PMID: 29939318 PMCID: PMC6249597 DOI: 10.1093/infdis/jiy316] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Background Several vaccine platforms have been successfully evaluated for prevention of Ebola virus (EBOV) disease (EVD) in nonhuman primates and humans. Despite remarkable efficacy by multiple vaccines, the immunological correlates of protection against EVD are incompletely understood. Methods We systematically evaluated the antibody response to various EBOV proteins in 79 nonhuman primates vaccinated with various EBOV vaccine platforms. We evaluated the serum immunoglobulin (Ig)G titers against EBOV glycoprotein (GP), the ability of the vaccine-induced antibodies to bind GP at acidic pH or to displace ZMapp, and virus neutralization titers. The correlation of these outcomes with survival from EVD was evaluated by appropriate statistical methods. Results Irrespective of the vaccine platform, protection from EVD strongly correlated with anti-GP IgG titers. The GP-directed antibody levels required for protection in animals vaccinated with virus-like particles (VLPs) lacking nucleoprotein (NP) was significantly higher than animals immunized with NP-containing VLPs or adenovirus-expressed GP, platforms that induce strong T-cell responses. Furthermore, protective immune responses correlated with anti-GP antibody binding strength at acidic pH, neutralization of GP-expressing pseudovirions, and the ability to displace ZMapp components from GP. Conclusions These findings suggest key quantitative and qualitative attributes of antibody response to EVD vaccines as potential correlates of protection.
Collapse
Affiliation(s)
| | | | - Hong Vu
- Integrated BioTherapeutics Inc., Rockville, Maryland
| | | | - Gary Wong
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba
| | | | | | | | - Daisy W Leung
- Departments of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri
| | - Gaya K Amarasinghe
- Departments of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri
| | - Dana L Swenson
- US Army Medical Research Institute of Infectious Diseases, Frederick, Maryland
| | - Sina Bavari
- US Army Medical Research Institute of Infectious Diseases, Frederick, Maryland
| | - Gary P Kobinger
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba
| | | | - M Javad Aman
- Integrated BioTherapeutics Inc., Rockville, Maryland
| |
Collapse
|
36
|
Bramble MS, Hoff N, Gilchuk P, Mukadi P, Lu K, Doshi RH, Steffen I, Nicholson BP, Lipson A, Vashist N, Sinai C, Spencer D, Olinger G, Wemakoy EO, Illunga BK, Pettitt J, Logue J, Marchand J, Varughese J, Bennett RS, Jahrling P, Cavet G, Serafini T, Ollmann Saphire E, Vilain E, Muyembe-Tamfum JJ, Hensely LE, Simmons G, Crowe JE, Rimoin AW. Pan-Filovirus Serum Neutralizing Antibodies in a Subset of Congolese Ebolavirus Infection Survivors. J Infect Dis 2018; 218:1929-1936. [PMID: 30107445 PMCID: PMC6217721 DOI: 10.1093/infdis/jiy453] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 07/31/2018] [Indexed: 11/30/2022] Open
Abstract
One year after a Zaire ebolavirus (EBOV) outbreak occurred in the Boende Health Zone of the Democratic Republic of the Congo during 2014, we sought to determine the breadth of immune response against diverse filoviruses including EBOV, Bundibugyo (BDBV), Sudan (SUDV), and Marburg (MARV) viruses. After assessing the 15 survivors, 5 individuals demonstrated some degree of reactivity to multiple ebolavirus species and, in some instances, Marburg virus. All 5 of these survivors had immunoreactivity to EBOV glycoprotein (GP) and EBOV VP40, and 4 had reactivity to EBOV nucleoprotein (NP). Three of these survivors showed serologic responses to the 3 species of ebolavirus GPs tested (EBOV, BDBV, SUDV). All 5 samples also exhibited ability to neutralize EBOV using live virus, in a plaque reduction neutralization test. Remarkably, 3 of these EBOV survivors had plasma antibody responses to MARV GP. In pseudovirus neutralization assays, serum antibodies from a subset of these survivors also neutralized EBOV, BDBV, SUDV, and Taï Forest virus as well as MARV. Collectively, these findings suggest that some survivors of naturally acquired ebolavirus infection mount not only a pan-ebolavirus response, but also in less frequent cases, a pan-filovirus neutralizing response.
Collapse
Affiliation(s)
- Matthew S Bramble
- Department of Epidemiology, School of Public Health, University of California, Los Angeles
- Department of Genetic Medicine Research, Children’s Research Institute, Children’s National Medical Center, Washington, District of Columbia
| | - Nicole Hoff
- Department of Epidemiology, School of Public Health, University of California, Los Angeles
| | - Pavlo Gilchuk
- Vanderbilt Vaccine Center, and Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Patrick Mukadi
- Institut National de Recherche Biomedicale, Kinshasa, Democratic Republic of the Congo
| | - Kai Lu
- Blood Systems Research Institute, and Department of Laboratory Medicine, University of California, San Francisco
| | - Reena H Doshi
- Department of Epidemiology, School of Public Health, University of California, Los Angeles
| | - Imke Steffen
- Blood Systems Research Institute, and Department of Laboratory Medicine, University of California, San Francisco
| | - Bradly P Nicholson
- Institute for Medical Research, Durham Veterans Affairs Medical Center, North Carolina
| | - Allen Lipson
- Department of Epidemiology, School of Public Health, University of California, Los Angeles
| | - Neerja Vashist
- Department of Genetic Medicine Research, Children’s Research Institute, Children’s National Medical Center, Washington, District of Columbia
| | - Cyrus Sinai
- Department of Epidemiology, School of Public Health, University of California, Los Angeles
| | - D’andre Spencer
- Department of Epidemiology, School of Public Health, University of California, Los Angeles
| | - Garrard Olinger
- Boston University, School of Medicine, Department of Medicine, Massachusetts
| | | | - Benoit Kebela Illunga
- Direction de la Lutte Contre les Maladies, Ministère de la Sante, Kinshasa, Democratic Republic of the Congo
| | - James Pettitt
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Frederick, Maryland
| | - James Logue
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Frederick, Maryland
| | - Jonathan Marchand
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Frederick, Maryland
| | - Justin Varughese
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Frederick, Maryland
| | - Richard S Bennett
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Frederick, Maryland
| | - Peter Jahrling
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Frederick, Maryland
| | | | | | - Erica Ollmann Saphire
- Skaggs Institute for Chemical Biology, La Jolla, California
- Department of Immunology and Microbial Science, Scripps Research Institute, La Jolla, California
| | - Eric Vilain
- Department of Genetic Medicine Research, Children’s Research Institute, Children’s National Medical Center, Washington, District of Columbia
| | | | - Lisa E Hensely
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Frederick, Maryland
- Emerging Viral Pathogens Section, NIAID, NIH, Frederick, Maryland
| | - Graham Simmons
- Blood Systems Research Institute, and Department of Laboratory Medicine, University of California, San Francisco
| | - James E Crowe
- Vanderbilt Vaccine Center, and Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
- Departments of Pediatrics and Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Anne W Rimoin
- Department of Epidemiology, School of Public Health, University of California, Los Angeles
| |
Collapse
|
37
|
Drelich A, Judy B, He X, Chang Q, Yu S, Li X, Lu F, Wakamiya M, Popov V, Zhou J, Ksiazek T, Gong B. Exchange Protein Directly Activated by cAMP Modulates Ebola Virus Uptake into Vascular Endothelial Cells. Viruses 2018; 10:v10100563. [PMID: 30332733 PMCID: PMC6213290 DOI: 10.3390/v10100563] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 10/13/2018] [Accepted: 10/13/2018] [Indexed: 12/16/2022] Open
Abstract
Members of the family Filoviridae, including Ebola virus (EBOV) and Marburg virus (MARV), cause severe hemorrhagic fever in humans and nonhuman primates. Given their high lethality, a comprehensive understanding of filoviral pathogenesis is urgently needed. In the present studies, we revealed that the exchange protein directly activated by cAMP 1 (EPAC1) gene deletion protects vasculature in ex vivo explants from EBOV infection. Importantly, pharmacological inhibition of EPAC1 using EPAC-specific inhibitors (ESIs) mimicked the EPAC1 knockout phenotype in the ex vivo model. ESI treatment dramatically decreased EBOV infectivity in both ex vivo vasculature and in vitro vascular endothelial cells (ECs). Furthermore, postexposure protection of ECs against EBOV infection was conferred using ESIs. Protective efficacy of ESIs in ECs was observed also in MARV infection. Additional studies using a vesicular stomatitis virus pseudotype that expresses EBOV glycoprotein (EGP-VSV) confirmed that ESIs reduced infection in ECs. Ultrastructural studies suggested that ESIs blocked EGP-VSV internalization via inhibition of macropinocytosis. The inactivation of EPAC1 affects the early stage of viral entry after viral binding to the cell surface, but before early endosome formation, in a phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)-dependent manner. Our study delineated a new critical role of EPAC1 during EBOV uptake into ECs.
Collapse
Affiliation(s)
- Aleksandra Drelich
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - Barbara Judy
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - Xi He
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA.
- Department of Cardiovascular Surgery, Changhai Institute of Cardiovascular Surgery, Shanghai 200433, China.
| | - Qing Chang
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - Shangyi Yu
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA.
- Department of Cardiovascular Surgery, Changhai Institute of Cardiovascular Surgery, Shanghai 200433, China.
| | - Xiang Li
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - Fanglin Lu
- Department of Cardiovascular Surgery, Changhai Institute of Cardiovascular Surgery, Shanghai 200433, China.
| | - Maki Wakamiya
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - Vsevolod Popov
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - Jia Zhou
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - Thomas Ksiazek
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - Bin Gong
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| |
Collapse
|
38
|
Medaglini D, Santoro F, Siegrist CA. Correlates of vaccine-induced protective immunity against Ebola virus disease. Semin Immunol 2018; 39:65-72. [DOI: 10.1016/j.smim.2018.07.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 07/10/2018] [Accepted: 07/13/2018] [Indexed: 10/28/2022]
|
39
|
Abstract
The West African Ebola virus (EBOV) epidemic has fast-tracked countermeasures for this rare, emerging zoonotic pathogen. Until 2013-2014, most EBOV vaccine candidates were stalled between the preclinical and clinical milestones on the path to licensure, because of funding problems, lack of interest from pharmaceutical companies, and competing priorities in public health. The unprecedented and devastating epidemic propelled vaccine candidates toward clinical trials that were initiated near the end of the active response to the outbreak. Those trials did not have a major impact on the epidemic but provided invaluable data on vaccine safety, immunogenicity, and, to a limited degree, even efficacy in humans. There are plenty of lessons to learn from these trials, some of which are addressed in this review. Better preparation is essential to executing an effective response to EBOV in the future; yet, the first indications of waning interest are already noticeable.
Collapse
Affiliation(s)
- Heinz Feldmann
- Laboratory of Virology, Rocky Mountain Laboratories, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana 59840, USA;
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba 93E 0J9, Canada
| | - Friederike Feldmann
- Rocky Mountain Veterinary Branch, Rocky Mountain Laboratories, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana 59840, USA
| | - Andrea Marzi
- Laboratory of Virology, Rocky Mountain Laboratories, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana 59840, USA;
| |
Collapse
|
40
|
Gross L, Lhomme E, Pasin C, Richert L, Thiebaut R. Ebola vaccine development: Systematic review of pre-clinical and clinical studies, and meta-analysis of determinants of antibody response variability after vaccination. Int J Infect Dis 2018; 74:83-96. [PMID: 29981944 DOI: 10.1016/j.ijid.2018.06.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 06/20/2018] [Accepted: 06/28/2018] [Indexed: 01/10/2023] Open
Abstract
OBJECTIVES For Ebola vaccine development, antibody response is a major endpoint although its determinants are not well known. We aimed to review Ebola vaccine studies and to assess factors associated with antibody response variability in humans. METHODS We searched PubMed and Scopus for preventive Ebola vaccine studies in humans or non-human primates (NHP), published up to February 2018. For each vaccination group with Ebola Zaire antibody titre measurements after vaccination, data about antibody response and its potential determinants were extracted. A random-effects meta-regression was conducted including human groups with at least 8 individuals. RESULTS We reviewed 49 studies (202 vaccination groups including 74 human groups) with various vaccine platforms and antigen inserts. Mean antibody titre was slightly higher in NHP (3.10, 95% confidence interval [293; 327]) than in humans (2.75 [257; 293]). Vaccine platform (p<0·001) and viral strain used for antibody detection (p<0·001) were associated with antibody response in humans, but adjusted heterogeneity remained at 95%. CONCLUSIONS Various platforms have been evaluated in humans, including Ad26, Ad5, ChimpAd3, DNA, MVA, and VSV. In addition to platforms, viral strain used for antibody detection influences antibody response. However, variability remained mostly unexplained. Therefore, comparison of vaccine immunogenicity needs randomised controlled trials.
Collapse
Affiliation(s)
- Lise Gross
- SISTM Team (Statistics in System Biology and Translational Medicine), INRIA Research Centre, Bordeaux, F-33000, France; Vaccine Research Institute (VRI), Créteil, F-94000, France
| | - Edouard Lhomme
- INSERM, Bordeaux Population Health Research Centre, UMR 1219, Univ. Bordeaux, ISPED, F-33000, Bordeaux, France; SISTM Team (Statistics in System Biology and Translational Medicine), INRIA Research Centre, Bordeaux, F-33000, France; Vaccine Research Institute (VRI), Créteil, F-94000, France; Pôle de Santé Publique, CHU de Bordeaux, Bordeaux, F-33000, France
| | - Chloé Pasin
- INSERM, Bordeaux Population Health Research Centre, UMR 1219, Univ. Bordeaux, ISPED, F-33000, Bordeaux, France; SISTM Team (Statistics in System Biology and Translational Medicine), INRIA Research Centre, Bordeaux, F-33000, France; Vaccine Research Institute (VRI), Créteil, F-94000, France
| | - Laura Richert
- INSERM, Bordeaux Population Health Research Centre, UMR 1219, Univ. Bordeaux, ISPED, F-33000, Bordeaux, France; SISTM Team (Statistics in System Biology and Translational Medicine), INRIA Research Centre, Bordeaux, F-33000, France; Vaccine Research Institute (VRI), Créteil, F-94000, France; Pôle de Santé Publique, CHU de Bordeaux, Bordeaux, F-33000, France
| | - Rodolphe Thiebaut
- INSERM, Bordeaux Population Health Research Centre, UMR 1219, Univ. Bordeaux, ISPED, F-33000, Bordeaux, France; SISTM Team (Statistics in System Biology and Translational Medicine), INRIA Research Centre, Bordeaux, F-33000, France; Vaccine Research Institute (VRI), Créteil, F-94000, France; Pôle de Santé Publique, CHU de Bordeaux, Bordeaux, F-33000, France.
| |
Collapse
|
41
|
Ilinykh PA, Santos RI, Gunn BM, Kuzmina NA, Shen X, Huang K, Gilchuk P, Flyak AI, Younan P, Alter G, Crowe JE, Bukreyev A. Asymmetric antiviral effects of ebolavirus antibodies targeting glycoprotein stem and glycan cap. PLoS Pathog 2018; 14:e1007204. [PMID: 30138408 PMCID: PMC6107261 DOI: 10.1371/journal.ppat.1007204] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 07/08/2018] [Indexed: 01/24/2023] Open
Abstract
Recent studies suggest that some monoclonal antibodies (mAbs) specific for ebolavirus glycoprotein (GP) can protect experimental animals against infections. Most mAbs isolated from ebolavirus survivors appeared to target the glycan cap or the stalk region of the viral GP, which is the envelope protein and the only antigen inducing virus-neutralizing antibody response. Some of the mAbs were demonstrated to be protective in vivo. Here, a panel of mAbs from four individual survivors of ebolavirus infection that target the glycan cap or stem region were selected for investigation of the mechanisms of their antiviral effect. Comparative characterization of the inhibiting effects on multiple steps of viral replication was performed, including attachment, post-attachment, entry, binding at low pH, post-cleavage neutralization of virions, viral trafficking to endosomes, cell-to-cell transmission, viral egress, and inhibition when added early at various time points post-infection. In addition, Fc-domain related properties were characterized, including activation and degranulation of NK cells, antibody-dependent cellular phagocytosis and glycan content. The two groups of mAbs (glycan cap versus stem) demonstrated very different profiles of activities suggesting usage of mAbs with different epitope specificity could coordinate inhibition of multiple steps of filovirus infection through Fab- and Fc-mediated mechanisms, and provide a reliable therapeutic approach.
Collapse
Affiliation(s)
- Philipp A. Ilinykh
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States of America
- Galveston National Laboratory, Galveston, TX, United States of America
| | - Rodrigo I. Santos
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States of America
| | - Bronwyn M. Gunn
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Natalia A. Kuzmina
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States of America
- Galveston National Laboratory, Galveston, TX, United States of America
| | - Xiaoli Shen
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States of America
- Galveston National Laboratory, Galveston, TX, United States of America
| | - Kai Huang
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States of America
- Galveston National Laboratory, Galveston, TX, United States of America
| | - Pavlo Gilchuk
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Andrew I. Flyak
- Departments of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Patrick Younan
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States of America
- Galveston National Laboratory, Galveston, TX, United States of America
| | - Galit Alter
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, United States of America
| | - James E. Crowe
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, United States of America
- Departments of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States of America
- Department of Pediatrics (Infectious Diseases), Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Alexander Bukreyev
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States of America
- Galveston National Laboratory, Galveston, TX, United States of America
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States of America
| |
Collapse
|
42
|
Suder E, Furuyama W, Feldmann H, Marzi A, de Wit E. The vesicular stomatitis virus-based Ebola virus vaccine: From concept to clinical trials. Hum Vaccin Immunother 2018; 14:2107-2113. [PMID: 29757706 PMCID: PMC6183239 DOI: 10.1080/21645515.2018.1473698] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 04/30/2018] [Indexed: 10/25/2022] Open
Abstract
The devastating Ebola virus (EBOV) epidemic in West Africa in 2013-2016 accelerated the progress of several vaccines and antivirals through clinical trials, including the replication-competent vesicular stomatitis virus-based vaccine expressing the EBOV glycoprotein (VSV-EBOV). Extensive preclinical testing in animal models demonstrated the prophylactic and post-exposure efficacy of this vaccine, identified the mechanism of protection, and suggested it was safe for human use. Based on these data, VSV-EBOV was extensively tested in phase 1-3 clinical trials in North America, Europe and Africa. Although some side effects of vaccination were observed, these clinical trials showed that the VSV-EBOV was safe and immunogenic in humans. Moreover, the data supported the use of VSV-EBOV as an emergency vaccine in individuals at risk for Ebola virus disease. In this review, we summarize the results of the extensive preclinical and clinical testing of the VSV-EBOV vaccine.
Collapse
MESH Headings
- Animals
- Clinical Trials as Topic
- Drug Carriers
- Drug Evaluation, Preclinical
- Drug-Related Side Effects and Adverse Reactions/epidemiology
- Drug-Related Side Effects and Adverse Reactions/pathology
- Ebola Vaccines/administration & dosage
- Ebola Vaccines/genetics
- Ebola Vaccines/immunology
- Ebola Vaccines/isolation & purification
- Hemorrhagic Fever, Ebola/prevention & control
- Humans
- Vaccines, Attenuated/administration & dosage
- Vaccines, Attenuated/genetics
- Vaccines, Attenuated/immunology
- Vaccines, Attenuated/isolation & purification
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/immunology
- Vaccines, Synthetic/isolation & purification
- Vesiculovirus/genetics
Collapse
Affiliation(s)
- Ellen Suder
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, USA
| | - Wakako Furuyama
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, USA
| | - Heinz Feldmann
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, USA
| | - Andrea Marzi
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, USA
| | - Emmie de Wit
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, USA
| |
Collapse
|
43
|
Abstract
Lassa virus (LASV) is a persistent global health threat that causes about half a million cases of Lassa fever each year in Western Africa. Although most cases are mild, the disease can cause significant morbidity and results in as many as 5,000 deaths per year. Since 2015, Nigeria has been experiencing a severe and extended outbreak of Lassa fever, raising concerns that it could spill over into other countries and reach a magnitude similar to the West African Ebola outbreak of 2013-2016. Despite the burden that Lassa fever places on public health, both in Africa and around the world, there are still no clinically-approved therapeutics or vaccines to treat or prevent it. Nevertheless, a number of promising candidate vaccines have been developed over the last several years, and there is a growing political and social determination to drive at least one of these candidates towards licensure. This paper describes a LASV vaccine candidate that is being developed at Canada's National Microbiology Laboratory. Based on the same live attenuated vesicular stomatitis virus (VSV) vaccine platform that was used to produce the successful Ebola virus vaccine, the VSV-based LASV vaccine has been shown to elicit a potent and protective immune response against LASV. The vaccine shows 100% protection in the "gold-standard" nonhuman primate model of Lassa fever, inducing both humoral and cellular immune responses. Moreover, studies have shown that a single vaccination may offer universal protection against numerous different strains of the virus, and additional studies have shown that immunization with the VSV platform appears to be unaffected by pre-existing immunity to VSV. The next step in the development of the VSV-based LASV vaccine is phase I human clinical trials to assess vaccine safety and dosage.
Collapse
|
44
|
Abstract
The family Filoviridae, which includes the genera Marburgvirus and Ebolavirus, contains some of the most pathogenic viruses in humans and non-human primates (NHPs), causing severe hemorrhagic fevers with high fatality rates. Small animal models against filoviruses using mice, guinea pigs, hamsters, and ferrets have been developed with the goal of screening candidate vaccines and antivirals, before testing in the gold standard NHP models. In this review, we summarize the different animal models used to understand filovirus pathogenesis, and discuss the advantages and disadvantages of each model with respect to filovirus disease research.
Collapse
Affiliation(s)
- Vinayakumar Siragam
- Special Pathogens Program, Public Health Agency of Canada, Winnipeg, Manitoba R3E 3R2, Canada.,Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba R3E 0J9, Canada
| | - Gary Wong
- Special Pathogens Program, Public Health Agency of Canada, Winnipeg, Manitoba R3E 3R2, Canada.,Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba R3E 0J9, Canada.,Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Shenzhen Guangzhou 518020, China.,Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiang-Guo Qiu
- Special Pathogens Program, Public Health Agency of Canada, Winnipeg, Manitoba R3E 3R2, Canada. .,Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba R3E 0J9, Canada
| |
Collapse
|
45
|
Callendret B, Vellinga J, Wunderlich K, Rodriguez A, Steigerwald R, Dirmeier U, Cheminay C, Volkmann A, Brasel T, Carrion R, Giavedoni LD, Patterson JL, Mire CE, Geisbert TW, Hooper JW, Weijtens M, Hartkoorn-Pasma J, Custers J, Grazia Pau M, Schuitemaker H, Zahn R. A prophylactic multivalent vaccine against different filovirus species is immunogenic and provides protection from lethal infections with Ebolavirus and Marburgvirus species in non-human primates. PLoS One 2018; 13:e0192312. [PMID: 29462200 PMCID: PMC5819775 DOI: 10.1371/journal.pone.0192312] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 01/22/2018] [Indexed: 12/11/2022] Open
Abstract
The search for a universal filovirus vaccine that provides protection against multiple filovirus species has been prompted by sporadic but highly lethal outbreaks of Ebolavirus and Marburgvirus infections. A good prophylactic vaccine should be able to provide protection to all known filovirus species and as an upside potentially protect from newly emerging virus strains. We investigated the immunogenicity and protection elicited by multivalent vaccines expressing glycoproteins (GP) from Ebola virus (EBOV), Sudan virus (SUDV), Taï Forest virus (TAFV) and Marburg virus (MARV). Immune responses against filovirus GP have been associated with protection from disease. The GP antigens were expressed by adenovirus serotypes 26 and 35 (Ad26 and Ad35) and modified Vaccinia virus Ankara (MVA) vectors, all selected for their strong immunogenicity and good safety profile. Using fully lethal NHP intramuscular challenge models, we assessed different vaccination regimens for immunogenicity and protection from filovirus disease. Heterologous multivalent Ad26-Ad35 prime-boost vaccination regimens could give full protection against MARV (range 75%-100% protection) and EBOV (range 50% to 100%) challenge, and partial protection (75%) against SUDV challenge. Heterologous multivalent Ad26-MVA prime-boost immunization gave full protection against EBOV challenge in a small cohort study. The use of such multivalent vaccines did not show overt immune interference in comparison with monovalent vaccines. Multivalent vaccines induced GP-specific antibody responses and cellular IFNγ responses to each GP expressed by the vaccine, and cross-reactivity to TAFV GP was detected in a trivalent vaccine expressing GP from EBOV, SUDV and MARV. In the EBOV challenge studies, higher humoral EBOV GP-specific immune responses (p = 0.0004) were associated with survival from EBOV challenge and less so for cellular immune responses (p = 0.0320). These results demonstrate that it is feasible to generate a multivalent filovirus vaccine that can protect against lethal infection by multiple members of the filovirus family.
Collapse
Affiliation(s)
| | - Jort Vellinga
- Janssen Vaccines & Prevention B.V., Leiden, Netherlands
| | | | | | | | | | | | | | - Trevor Brasel
- University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Ricardo Carrion
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| | - Luis D. Giavedoni
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| | - Jean L. Patterson
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| | - Chad E. Mire
- University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Thomas W. Geisbert
- University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Jay W. Hooper
- Virology Division, US Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, United States of America
| | - Mo Weijtens
- Janssen Vaccines & Prevention B.V., Leiden, Netherlands
| | | | | | | | | | - Roland Zahn
- Janssen Vaccines & Prevention B.V., Leiden, Netherlands
| |
Collapse
|
46
|
|
47
|
Singh RK, Dhama K, Malik YS, Ramakrishnan MA, Karthik K, Khandia R, Tiwari R, Munjal A, Saminathan M, Sachan S, Desingu PA, Kattoor JJ, Iqbal HMN, Joshi SK. Ebola virus - epidemiology, diagnosis, and control: threat to humans, lessons learnt, and preparedness plans - an update on its 40 year's journey. Vet Q 2017; 37:98-135. [PMID: 28317453 DOI: 10.1080/01652176.2017.1309474] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Ebola virus (EBOV) is an extremely contagious pathogen and causes lethal hemorrhagic fever disease in man and animals. The recently occurred Ebola virus disease (EVD) outbreaks in the West African countries have categorized it as an international health concern. For the virus maintenance and transmission, the non-human primates and reservoir hosts like fruit bats have played a vital role. For curbing the disease timely, we need effective therapeutics/prophylactics, however, in the absence of any approved vaccine, timely diagnosis and monitoring of EBOV remains of utmost importance. The technologically advanced vaccines like a viral-vectored vaccine, DNA vaccine and virus-like particles are underway for testing against EBOV. In the absence of any effective control measure, the adaptation of high standards of biosecurity measures, strict sanitary and hygienic practices, strengthening of surveillance and monitoring systems, imposing appropriate quarantine checks and vigilance on trade, transport, and movement of visitors from EVD endemic countries remains the answer of choice for tackling the EBOV spread. Herein, we converse with the current scenario of EBOV giving due emphasis on animal and veterinary perspectives along with advances in diagnosis and control strategies to be adopted, lessons learned from the recent outbreaks and the global preparedness plans. To retrieve the evolutionary information, we have analyzed a total of 56 genome sequences of various EBOV species submitted between 1976 and 2016 in public databases.
Collapse
Affiliation(s)
- Raj Kumar Singh
- a ICAR-Indian Veterinary Research Institute , Bareilly , India
| | - Kuldeep Dhama
- b Division of Pathology, ICAR-Indian Veterinary Research Institute , Bareilly , India
| | - Yashpal Singh Malik
- c Division of Biological Standardization, ICAR-Indian Veterinary Research Institute , Bareilly , India
| | | | - Kumaragurubaran Karthik
- e Divison of Bacteriology and Mycology, ICAR-Indian Veterinary Research Institute , Bareilly , India
| | - Rekha Khandia
- f Department of Biochemistry and Genetics , Barkatullah University , Bhopal , India
| | - Ruchi Tiwari
- g Department of Veterinary Microbiology and Immunology , College of Veterinary Sciences, Deen Dayal Upadhayay Pashu Chikitsa Vigyan Vishwavidyalay Evum Go-Anusandhan Sansthan (DUVASU) , Mathura , India
| | - Ashok Munjal
- f Department of Biochemistry and Genetics , Barkatullah University , Bhopal , India
| | - Mani Saminathan
- b Division of Pathology, ICAR-Indian Veterinary Research Institute , Bareilly , India
| | - Swati Sachan
- h Immunology Section, ICAR-Indian Veterinary Research Institute , Bareilly , India
| | | | - Jobin Jose Kattoor
- c Division of Biological Standardization, ICAR-Indian Veterinary Research Institute , Bareilly , India
| | - Hafiz M N Iqbal
- i School of Engineering and Science, Tecnologico de Monterrey , Monterrey , Mexico
| | - Sunil Kumar Joshi
- j Cellular Immunology Lab , Frank Reidy Research Center for Bioelectrics , School of Medical Diagnostics & Translational Sciences, Old Dominion University , Norfolk , VA , USA
| |
Collapse
|
48
|
Vesicular Stomatitis Virus Pseudotyped with Ebola Virus Glycoprotein Serves as a Protective, Noninfectious Vaccine against Ebola Virus Challenge in Mice. J Virol 2017; 91:JVI.00479-17. [PMID: 28615211 DOI: 10.1128/jvi.00479-17] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 06/07/2017] [Indexed: 11/20/2022] Open
Abstract
The recent Ebola virus (EBOV) epidemic in West Africa demonstrates the potential for a significant public health burden caused by filoviral infections. No vaccine or antiviral is currently FDA approved. To expand the vaccine options potentially available, we assessed protection conferred by an EBOV vaccine composed of vesicular stomatitis virus pseudovirions that lack native G glycoprotein (VSVΔG) and bear EBOV glycoprotein (GP). These pseudovirions mediate a single round of infection. Both single-dose and prime/boost vaccination regimens protected mice against lethal challenge with mouse-adapted Ebola virus (ma-EBOV) in a dose-dependent manner. The prime/boost regimen provided significantly better protection than a single dose. As N-linked glycans are thought to shield conserved regions of the EBOV GP receptor-binding domain (RBD), thereby blocking epitopes within the RBD, we also tested whether VSVΔG bearing EBOV GPs that lack GP1 N-linked glycans provided effective immunity against challenge with ma-EBOV or a more distantly related virus, Sudan virus. Using a prime/boost strategy, high doses of GP/VSVΔG partially or fully denuded of N-linked glycans on GP1 protected mice against ma-EBOV challenge, but these mutants were no more effective than wild-type (WT) GP/VSVΔG and did not provide cross protection against Sudan virus. As reported for other EBOV vaccine platforms, the protection conferred correlated with the quantity of EBOV GP-specific Ig produced but not with the production of neutralizing antibodies. Our results show that EBOV GP/VSVΔG pseudovirions serve as a successful vaccination platform in a rodent model of Ebola virus disease and that GP1 N-glycan loss does not influence immunogenicity or vaccination success.IMPORTANCE The West African Ebola virus epidemic was the largest to date, with more than 28,000 people infected. No FDA-approved vaccines are yet available, but in a trial vaccination strategy in West Africa, recombinant, infectious VSV encoding the Ebola virus glycoprotein effectively prevented virus-associated disease. VSVΔG pseudovirion vaccines may prove as efficacious and have better safety, but they have not been tested to date. Thus, we tested the efficacy of VSVΔG pseudovirions bearing Ebola virus glycoprotein as a vaccine platform. We found that wild-type Ebola virus glycoprotein, in the context of this platform, provides robust protection of EBOV-challenged mice. Further, we found that removal of the heavy glycan shield surrounding conserved regions of the glycoprotein does not enhance vaccine efficacy.
Collapse
|
49
|
Ruedas JB, Ladner JT, Ettinger CR, Gummuluru S, Palacios G, Connor JH. Spontaneous Mutation at Amino Acid 544 of the Ebola Virus Glycoprotein Potentiates Virus Entry and Selection in Tissue Culture. J Virol 2017; 91:e00392-17. [PMID: 28539437 PMCID: PMC5651722 DOI: 10.1128/jvi.00392-17] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 05/11/2017] [Indexed: 11/20/2022] Open
Abstract
Ebolaviruses have a surface glycoprotein (GP1,2) that is required for virus attachment and entry into cells. Mutations affecting GP1,2 functions can alter virus growth properties. We generated a recombinant vesicular stomatitis virus encoding Ebola virus Makona variant GP1,2 (rVSV-MAK-GP) and observed emergence of a T544I mutation in the Makona GP1,2 gene during tissue culture passage in certain cell lines. The T544I mutation emerged within two passages when VSV-MAK-GP was grown on Vero E6, Vero, and BS-C-1 cells but not when it was passaged on Huh7 and HepG2 cells. The mutation led to a marked increase in virus growth kinetics and conferred a robust growth advantage over wild-type rVSV-MAK-GP on Vero E6 cells. Analysis of complete viral genomes collected from patients in western Africa indicated that this mutation was not found in Ebola virus clinical samples. However, we observed the emergence of T544I during serial passage of various Ebola Makona isolates on Vero E6 cells. Three independent isolates showed emergence of T544I from undetectable levels in nonpassaged virus or virus passaged once to frequencies of greater than 60% within a single passage, consistent with it being a tissue culture adaptation. Intriguingly, T544I is not found in any Sudan, Bundibugyo, or Tai Forest ebolavirus sequences. Furthermore, T544I did not emerge when we serially passaged recombinant VSV encoding GP1,2 from these ebolaviruses. This report provides experimental evidence that the spontaneous mutation T544I is a tissue culture adaptation in certain cell lines and that it may be unique for the species Zaire ebolavirusIMPORTANCE The Ebola virus (Zaire) species is the most lethal species of all ebolaviruses in terms of mortality rate and number of deaths. Understanding how the Ebola virus surface glycoprotein functions to facilitate entry in cells is an area of intense research. Recently, three groups independently identified a polymorphism in the Ebola glycoprotein (I544) that enhanced virus entry, but they did not agree in their conclusions regarding its impact on pathogenesis. Our findings here address the origins of this polymorphism and provide experimental evidence showing that it is the result of a spontaneous mutation (T544I) specific to tissue culture conditions, suggesting that it has no role in pathogenesis. We further show that this mutation may be unique to the species Zaire ebolavirus, as it does not occur in Sudan, Bundibugyo, and Tai Forest ebolaviruses. Understanding the mechanism behind this mutation can provide insight into functional differences that exist in culture conditions and among ebolavirus glycoproteins.
Collapse
Affiliation(s)
- John B Ruedas
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, USA
- National Emerging Infectious Diseases Laboratories, Boston, Massachusetts, USA
| | - Jason T Ladner
- Center for Genome Sciences, U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, USA
| | - Chelsea R Ettinger
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Suryaram Gummuluru
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Gustavo Palacios
- Center for Genome Sciences, U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, USA
| | - John H Connor
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, USA
- National Emerging Infectious Diseases Laboratories, Boston, Massachusetts, USA
| |
Collapse
|
50
|
Zhao X, Howell KA, He S, Brannan JM, Wec AZ, Davidson E, Turner HL, Chiang CI, Lei L, Fels JM, Vu H, Shulenin S, Turonis AN, Kuehne AI, Liu G, Ta M, Wang Y, Sundling C, Xiao Y, Spence JS, Doranz BJ, Holtsberg FW, Ward AB, Chandran K, Dye JM, Qiu X, Li Y, Aman MJ. Immunization-Elicited Broadly Protective Antibody Reveals Ebolavirus Fusion Loop as a Site of Vulnerability. Cell 2017; 169:891-904.e15. [PMID: 28525756 PMCID: PMC5803079 DOI: 10.1016/j.cell.2017.04.038] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 03/20/2017] [Accepted: 04/27/2017] [Indexed: 12/30/2022]
Abstract
While neutralizing antibodies are highly effective against ebolavirus infections, current experimental ebolavirus vaccines primarily elicit species-specific antibody responses. Here, we describe an immunization-elicited macaque antibody (CA45) that clamps the internal fusion loop with the N terminus of the ebolavirus glycoproteins (GPs) and potently neutralizes Ebola, Sudan, Bundibugyo, and Reston viruses. CA45, alone or in combination with an antibody that blocks receptor binding, provided full protection against all pathogenic ebolaviruses in mice, guinea pigs, and ferrets. Analysis of memory B cells from the immunized macaque suggests that elicitation of broadly neutralizing antibodies (bNAbs) for ebolaviruses is possible but difficult, potentially due to the rarity of bNAb clones and their precursors. Unexpectedly, germline-reverted CA45, while exhibiting negligible binding to full-length GP, bound a proteolytically remodeled GP with picomolar affinity, suggesting that engineered ebolavirus vaccines could trigger rare bNAb precursors more robustly. These findings have important implications for developing pan-ebolavirus vaccine and immunotherapeutic cocktails.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antibodies, Neutralizing/chemistry
- Antibodies, Neutralizing/immunology
- Antibodies, Neutralizing/isolation & purification
- Antibodies, Viral/chemistry
- Antibodies, Viral/immunology
- Antibodies, Viral/isolation & purification
- Complementarity Determining Regions
- Cross Reactions
- Ebola Vaccines/immunology
- Ebolavirus/immunology
- Epitope Mapping
- Epitopes, B-Lymphocyte/immunology
- Female
- Ferrets
- Guinea Pigs
- Hemorrhagic Fever, Ebola/immunology
- Immunoglobulin Fab Fragments/ultrastructure
- Macaca fascicularis
- Male
- Mice
- Mice, Inbred BALB C
- Models, Molecular
Collapse
Affiliation(s)
- Xuelian Zhao
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20878, USA
| | | | - Shihua He
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada; Deparment of Medical Microbiology, University of Manitoba, MB R3E 0J9, Canada
| | - Jennifer M Brannan
- US Army Medical Research Institute of Infectious Diseases, Frederick, MD 21701, USA
| | - Anna Z Wec
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | - Hannah L Turner
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Chi-I Chiang
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20878, USA
| | - Lin Lei
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20878, USA
| | - J Maximilian Fels
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Hong Vu
- Integrated BioTherapeutics, Rockville, MD 20850, USA
| | | | | | - Ana I Kuehne
- US Army Medical Research Institute of Infectious Diseases, Frederick, MD 21701, USA
| | - Guodong Liu
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada; Deparment of Medical Microbiology, University of Manitoba, MB R3E 0J9, Canada
| | - Mi Ta
- Integral Molecular, Philadelphia, PA 19104, USA
| | - Yimeng Wang
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20878, USA
| | - Christopher Sundling
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales 2010, Australia
| | - Yongli Xiao
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Jennifer S Spence
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Kartik Chandran
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - John M Dye
- US Army Medical Research Institute of Infectious Diseases, Frederick, MD 21701, USA
| | - Xiangguo Qiu
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada; Deparment of Medical Microbiology, University of Manitoba, MB R3E 0J9, Canada
| | - Yuxing Li
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20878, USA; Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | - M Javad Aman
- Integrated BioTherapeutics, Rockville, MD 20850, USA.
| |
Collapse
|