1
|
Gimmelli R, Papoff G, Saccoccia F, Lalli C, Gemma S, Campiani G, Ruberti G. Effects of structurally distinct human HDAC6 and HDAC6/HDAC8 inhibitors against S. mansoni larval and adult worm stages. PLoS Negl Trop Dis 2024; 18:e0011992. [PMID: 38416775 PMCID: PMC10927086 DOI: 10.1371/journal.pntd.0011992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 03/11/2024] [Accepted: 02/13/2024] [Indexed: 03/01/2024] Open
Abstract
Schistosomiasis is a major neglected parasitic disease that affects more than 240 million people worldwide caused by Platyhelminthes of the genus Schistosoma. The treatment of schistosomiasis relies on the long-term application of a single safe drug, praziquantel (PZQ). Unfortunately, PZQ is very effective on adult parasites and poorly on larval stage and immature juvenile worms; this can partially explain the re-infection in endemic areas where patients are likely to host parasites at different developmental stages concurrently. Moreover, the risk of development of drug resistance because of the widespread use of a single drug in a large population is nowadays a serious threat. Hence, research aimed at identifying novel drugs to be used alone or in combination with PZQ is needed. Schistosomes display morphologically distinct stages during their life cycle and epigenetic mechanisms are known to play important roles in parasite growth, survival, and development. Histone deacetylase (HDAC) enzymes, particularly HDAC8, are considered valuable for therapeutic intervention for the treatment of schistosomiasis. Herein, we report the phenotypic screening on both larvae and adult Schistosoma mansoni stages of structurally different HDAC inhibitors selected from the in-house Siena library. All molecules have previously shown inhibition profiles on human HDAC6 and/or HDAC8 enzymes. Among them we identified a quinolone-based HDAC inhibitor, NF2839, that impacts larval and adult parasites as well as egg viability and maturation in vitro. Importantly, this quinolone-based compound also increases histone and tubulin acetylation in S. mansoni parasites, thus representing a leading candidate for the development of new generation anti-Schistosoma chemotherapeutics.
Collapse
Affiliation(s)
- Roberto Gimmelli
- Institute of Biochemistry and Cell Biology, National Research Council (IBBC-CNR), Adriano Buzzati-Traverso Campus, Monterotondo, Rome, Italy
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza Università di Roma, Roma, Italy
| | - Giuliana Papoff
- Institute of Biochemistry and Cell Biology, National Research Council (IBBC-CNR), Adriano Buzzati-Traverso Campus, Monterotondo, Rome, Italy
| | - Fulvio Saccoccia
- Institute of Biochemistry and Cell Biology, National Research Council (IBBC-CNR), Adriano Buzzati-Traverso Campus, Monterotondo, Rome, Italy
| | - Cristiana Lalli
- Institute of Biochemistry and Cell Biology, National Research Council (IBBC-CNR), Adriano Buzzati-Traverso Campus, Monterotondo, Rome, Italy
| | - Sandra Gemma
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Giuseppe Campiani
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Giovina Ruberti
- Institute of Biochemistry and Cell Biology, National Research Council (IBBC-CNR), Adriano Buzzati-Traverso Campus, Monterotondo, Rome, Italy
| |
Collapse
|
2
|
Petukhova VZ, Aboagye SY, Ardini M, Lullo RP, Fata F, Byrne ME, Gabriele F, Martin LM, Harding LNM, Gone V, Dangi B, Lantvit DD, Nikolic D, Ippoliti R, Effantin G, Ling WL, Johnson JJ, Thatcher GRJ, Angelucci F, Williams DL, Petukhov PA. Non-covalent inhibitors of thioredoxin glutathione reductase with schistosomicidal activity in vivo. Nat Commun 2023; 14:3737. [PMID: 37349300 PMCID: PMC10287695 DOI: 10.1038/s41467-023-39444-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 06/12/2023] [Indexed: 06/24/2023] Open
Abstract
Only praziquantel is available for treating schistosomiasis, a disease affecting more than 200 million people. Praziquantel-resistant worms have been selected for in the lab and low cure rates from mass drug administration programs suggest that resistance is evolving in the field. Thioredoxin glutathione reductase (TGR) is essential for schistosome survival and a validated drug target. TGR inhibitors identified to date are irreversible and/or covalent inhibitors with unacceptable off-target effects. In this work, we identify noncovalent TGR inhibitors with efficacy against schistosome infections in mice, meeting the criteria for lead progression indicated by WHO. Comparisons with previous in vivo studies with praziquantel suggests that these inhibitors outperform the drug of choice for schistosomiasis against juvenile worms.
Collapse
Grants
- R33 AI127635 NIAID NIH HHS
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases (Division of Intramural Research of the NIAID)
- Oncomelania hupensis subsp. hupensis, Chinese strain, infected with S. japonicum, Chinese strain, and Biomphalaria glabrata, strain NMRI, infected with S. mansoni, strain NMRI, were provided by the NIAID Schistosomiasis Resource Center for distribution through BEI Resources, NIAID, NIH. We are grateful to Dr. Guy Schoehn (Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, Grenoble, France), Prof. Beatrice Vallone (Sapienza University of Rome, Italy) and Dr. Linda C. Montemiglio (IBPM, National Research Council, Italy) for helpful discussions of the cryo-EM studies. We acknowledge the Elettra-Sincrotrone Trieste (Italy) for support in X-ray data collections and the European Synchrotron Radiation Facility for provision of microscope time on CM01. The study was funded in part by US NIH/NIAID R33AI127635 to F.A., P.A.P., G.R.T. and D.L.W. This work benefited from access to Research Resources Centre and UICentre at University of Illinois at Chicago and used the platforms of the Grenoble Instruct-ERIC center (ISBG; UAR 3518 CNRS-CEA-UGA-EMBL) within the Grenoble Partnership for Structural Biology (PSB), supported by FRISBI (ANR-10-INBS-0005-02) and GRAL, financed within the University Grenoble Alpes graduate school (Ecoles Universitaires de Recherche) CBH-EUR-GS (ANR-17-EURE-0003). The IBS Electron Microscope facility is supported by the Auvergne Rhône-Alpes Region, the Fonds Feder, the Fondation pour la Recherche Médicale and GIS-IBiSA. The IBS acknowledges integration into the Interdisciplinary Research Institute of Grenoble (IRIG, CEA). M.A. has been supported by MIUR - Ministero dell'Istruzione Ministero dell'Università e della Ricerca (Ministry of Education, University and Research) under the national project FSE/FESR - PON Ricerca e Innovazione 2014-2020 (N° AIM1887574, CUP: E18H19000350007). We acknowledge OpenEye/Cadence for providing us with an academic license for the software used in these studies.
Collapse
Affiliation(s)
- Valentina Z Petukhova
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - Sammy Y Aboagye
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL, USA
| | - Matteo Ardini
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Rachel P Lullo
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL, USA
| | - Francesca Fata
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Margaret E Byrne
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL, USA
| | - Federica Gabriele
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Lucy M Martin
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL, USA
| | - Luke N M Harding
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - Vamshikrishna Gone
- UICentre, Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - Bikash Dangi
- Department of Pharmacy Practice, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - Daniel D Lantvit
- UICentre, Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - Dejan Nikolic
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - Rodolfo Ippoliti
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Grégory Effantin
- University of Grenoble Alpes, CEA, CNRS, IBS, F-38000, Grenoble, France
| | - Wai Li Ling
- University of Grenoble Alpes, CEA, CNRS, IBS, F-38000, Grenoble, France
| | - Jeremy J Johnson
- Department of Pharmacy Practice, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - Gregory R J Thatcher
- Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, University of Arizona, Tucson, AZ, USA
| | - Francesco Angelucci
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy.
| | - David L Williams
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL, USA.
| | - Pavel A Petukhov
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
3
|
Girod V, Houssier R, Sahmer K, Ghoris MJ, Caby S, Melnyk O, Dissous C, Senez V, Vicogne J. A self-purifying microfluidic system for identifying drugs acting against adult schistosomes. ROYAL SOCIETY OPEN SCIENCE 2022; 9:220648. [PMID: 36465675 PMCID: PMC9709518 DOI: 10.1098/rsos.220648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 11/09/2022] [Indexed: 06/17/2023]
Abstract
The discovery of novel antihelmintic molecules to combat the development and spread of schistosomiasis, a disease caused by several Schistosoma flatworm species, mobilizes significant research efforts worldwide. With a limited number of biochemical assays for measuring the viability of adult worms, the antischistosomicidal activity of molecules is usually evaluated by a microscopic observation of worm mobility and/or integrity upon drug exposure. Even if these phenotypical assays enable multiple parameters analysis, they are often conducted during several days and need to be associated with image-based analysis to minimized subjectivity. We describe here a self-purifying microfluidic system enabling the selection of healthy adult worms and the identification of molecules acting instantly on the parasite. The worms are assayed in a dynamic environment that eliminates unhealthy worms that cannot attach firmly to the chip walls prior to being exposed to the drug. The detachment of the worms is also used as second step readout for identifying active compounds. We have validated this new fluidic screening approach using the two major antihelmintic drugs, praziquantel and artemisinin. The reported dynamic system is simple to produce and to parallelize. Importantly, it enables a quick and sensitive detection of antischistosomal compounds in no more than one hour.
Collapse
Affiliation(s)
- Vincent Girod
- University of Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277 – CANTHER – Cancer Heterogeneity Plasticity and Resistance to Therapies, Lille F-59000, France
- CNRS, University of Tokyo, IRL2820 – LIMMS, Lille F-59000, France
- University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR9017 – Center for Infection and Immunity of Lille, F-59000 Lille, France
- University of Lille, CNRS, UPHF, JUNIA, CLI, UMR 8520 – IEMN – Institut d'Electronique, de Microélectronique et de Nanotechnologie, Villeneuve d'Ascq F-59650, France
| | - Robin Houssier
- University of Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277 – CANTHER – Cancer Heterogeneity Plasticity and Resistance to Therapies, Lille F-59000, France
- University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR9017 – Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Karin Sahmer
- University of Lille, IMT Lille Douai, University of Artois, JUNIA, ULR 4515 – LGCgE, Laboratoire de Génie Civil et géo-Environnement, F-59000 Lille, France
| | - Marie-José Ghoris
- University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR9017 – Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Stéphanie Caby
- University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR9017 – Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Oleg Melnyk
- University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR9017 – Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Colette Dissous
- University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR9017 – Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Vincent Senez
- University of Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277 – CANTHER – Cancer Heterogeneity Plasticity and Resistance to Therapies, Lille F-59000, France
- CNRS, University of Tokyo, IRL2820 – LIMMS, Lille F-59000, France
| | - Jérôme Vicogne
- University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR9017 – Center for Infection and Immunity of Lille, F-59000 Lille, France
| |
Collapse
|
4
|
Saccoccia F, Pozzetti L, Gimmelli R, Butini S, Guidi A, Papoff G, Giannaccari M, Brogi S, Scognamiglio V, Gemma S, Ruberti G, Campiani G. Crystal structures of Schistosoma mansoni histone deacetylase 8 reveal a novel binding site for allosteric inhibitors. J Biol Chem 2022; 298:102375. [PMID: 35970392 PMCID: PMC9486128 DOI: 10.1016/j.jbc.2022.102375] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 11/30/2022] Open
Abstract
Parasitic diseases cause significant global morbidity and mortality particularly in the poorest regions of the world. Schistosomiasis, one of the most widespread neglected tropical diseases, affects more than 200 million people worldwide. Histone deacetylase (HDAC) inhibitors are prominent epigenetic drugs that are being investigated in the treatment of several diseases, including cancers and parasitic diseases. Schistosoma mansoni HDAC8 (SmHDAC8) is highly expressed in all life cycle stages of the parasite and selective inhibition is required in order to avoid undesirable off-target effects in the host. Herein, by X-ray crystal structures of SmHDAC8-inhibitor complexes, biochemical and phenotypic studies, we found two schistosomicidal spiroindoline-derivatives binding a novel site, next to Trp198, on the enzyme surface. We determined that by acting on this site, either by mutation of the Trp198 or by compound binding, a decrease in the activity of the enzyme is achieved. Remarkably, this allosteric site differs from the human counterpart; rather, it is conserved in all Schistosoma spp., as well as Rhabidoptera and Trematoda classes, thus paving the way for the design of HDAC8-selective allosteric inhibitors with improved properties.
Collapse
Affiliation(s)
- Fulvio Saccoccia
- Institute of Biochemistry and Cell Biology, Italian National Research Council (IBBC-CNR), Adriano Buzzati-Traverso Campus, Via Ercole Ramarini 32, 00015 Monterotondo Scalo, Rome, Italy.
| | - Luca Pozzetti
- Department of Biotechnology, Chemistry and Pharmacy, DoE Department of Excellence 2018-2022, University of Siena, via Aldo Moro 2, I-53100 Siena, Italy
| | - Roberto Gimmelli
- Institute of Biochemistry and Cell Biology, Italian National Research Council (IBBC-CNR), Adriano Buzzati-Traverso Campus, Via Ercole Ramarini 32, 00015 Monterotondo Scalo, Rome, Italy
| | - Stefania Butini
- Department of Biotechnology, Chemistry and Pharmacy, DoE Department of Excellence 2018-2022, University of Siena, via Aldo Moro 2, I-53100 Siena, Italy
| | - Alessandra Guidi
- Institute of Biochemistry and Cell Biology, Italian National Research Council (IBBC-CNR), Adriano Buzzati-Traverso Campus, Via Ercole Ramarini 32, 00015 Monterotondo Scalo, Rome, Italy
| | - Giuliana Papoff
- Institute of Biochemistry and Cell Biology, Italian National Research Council (IBBC-CNR), Adriano Buzzati-Traverso Campus, Via Ercole Ramarini 32, 00015 Monterotondo Scalo, Rome, Italy
| | - Marialaura Giannaccari
- Institute of Biochemistry and Cell Biology, Italian National Research Council (IBBC-CNR), Adriano Buzzati-Traverso Campus, Via Ercole Ramarini 32, 00015 Monterotondo Scalo, Rome, Italy
| | - Simone Brogi
- Department of Pharmacy, University of Pisa, Via Bonanno 6, I-56126 Pisa, Italy
| | - Viviana Scognamiglio
- Institute of Crystallography, Italian National Research Council, Department of Chemical Sciences and Materials Technologies, Via Salaria km 29.300, 00015 Monterotondo, Italy
| | - Sandra Gemma
- Department of Biotechnology, Chemistry and Pharmacy, DoE Department of Excellence 2018-2022, University of Siena, via Aldo Moro 2, I-53100 Siena, Italy
| | - Giovina Ruberti
- Institute of Biochemistry and Cell Biology, Italian National Research Council (IBBC-CNR), Adriano Buzzati-Traverso Campus, Via Ercole Ramarini 32, 00015 Monterotondo Scalo, Rome, Italy.
| | - Giuseppe Campiani
- Department of Biotechnology, Chemistry and Pharmacy, DoE Department of Excellence 2018-2022, University of Siena, via Aldo Moro 2, I-53100 Siena, Italy.
| |
Collapse
|
5
|
Herath HMPD, Taki AC, Rostami A, Jabbar A, Keiser J, Geary TG, Gasser RB. Whole-organism phenotypic screening methods used in early-phase anthelmintic drug discovery. Biotechnol Adv 2022; 57:107937. [PMID: 35271946 DOI: 10.1016/j.biotechadv.2022.107937] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/24/2022] [Accepted: 03/03/2022] [Indexed: 01/17/2023]
Abstract
Diseases caused by parasitic helminths (worms) represent a major global health burden in both humans and animals. As vaccines against helminths have yet to achieve a prominent role in worm control, anthelmintics are the primary tool to limit production losses and disease due to helminth infections in both human and veterinary medicine. However, the excessive and often uncontrolled use of these drugs has led to widespread anthelmintic resistance in these worms - particularly of animals - to almost all commercially available anthelmintics, severely compromising control. Thus, there is a major demand for the discovery and development of new classes of anthelmintics. A key component of the discovery process is screening libraries of compounds for anthelmintic activity. Given the need for, and major interest by the pharmaceutical industry in, novel anthelmintics, we considered it both timely and appropriate to re-examine screening methods used for anthelmintic discovery. Thus, we reviewed current literature (1977-2021) on whole-worm phenotypic screening assays developed and used in academic laboratories, with a particular focus on those employed to discover nematocides. This review reveals that at least 50 distinct phenotypic assays with low-, medium- or high-throughput capacity were developed over this period, with more recently developed methods being quantitative, semi-automated and higher throughput. The main features assessed or measured in these assays include worm motility, growth/development, morphological changes, viability/lethality, pharyngeal pumping, egg hatching, larval migration, CO2- or ATP-production and/or enzyme activity. Recent progress in assay development has led to the routine application of practical, cost-effective, medium- to high-throughput whole-worm screening assays in academic or public-private partnership (PPP) contexts, and major potential for novel high-content, high-throughput platforms in the near future. Complementing this progress are major advances in the molecular data sciences, computational biology and informatics, which are likely to further enable and accelerate anthelmintic drug discovery and development.
Collapse
Affiliation(s)
- H M P Dilrukshi Herath
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, Australia
| | - Aya C Taki
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, Australia
| | - Ali Rostami
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Abdul Jabbar
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, Australia
| | - Jennifer Keiser
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, CH-4051 Basel, Switzerland
| | - Timothy G Geary
- Institute of Parasitology, McGill University, Sainte Anne-de-Bellevue, Quebec H9X3V9, Canada; School of Biological Sciences, Queen's University-Belfast, Belfast, Ireland
| | - Robin B Gasser
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
6
|
Ndegwa FK, Kondam C, Aboagye SY, Esan TE, Waxali ZS, Miller ME, Gikonyo NK, Mbugua PK, Okemo PO, Williams DL, Hagen TJ. Traditional Kenyan herbal medicine: exploring natural products' therapeutics against schistosomiasis. J Helminthol 2022; 96:e16. [PMID: 35238288 PMCID: PMC10030042 DOI: 10.1017/s0022149x22000074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Praziquantel (PZQ) remains the only drug of choice for the treatment of schistosomiasis, caused by parasitic flatworms. The widespread use of PZQ in schistosomiasis endemic areas for about four decades raises concerns about the emergence of resistance of Schistosoma spp. to PZQ under drug selection pressure. This reinforces the urgency in finding alternative therapeutic options that could replace or complement PZQ. We explored the potential of medicinal plants commonly used by indigenes in Kenya for the treatment of various ailments including malaria, pneumonia, and diarrhoea for their antischistosomal properties. Employing the Soxhlet extraction method with different solvents, seven medicinal plants Artemisia annua, Ajuga remota, Bredilia micranta, Cordia africana, Physalis peruviana, Prunus africana and Senna didymobotrya were extracted. Qualitative phytochemical screening was performed to determine the presence of various phytochemicals in the plant extracts. Extracts were tested against Schistosoma mansoni newly transformed schistosomula (NTS) and adult worms and the schistosomicidal activity was determined by using the adenosine triphosphate quantitation assay. Phytochemical analysis of the extracts showed different classes of compounds such as alkaloids, tannins, terpenes, etc., in plant extracts active against S. mansoni worms. Seven extracts out of 22 resulted in <20% viability against NTS in 24 h at 100 μg/ml. Five of the extracts with inhibitory activity against NTS showed >69.7% and ≥72.4% reduction in viability against adult worms after exposure for 24 and 48 h, respectively. This study provides encouraging preliminary evidence that extracts of Kenyan medicinal plants deserve further study as potential alternative therapeutics that may form the basis for the development of the new treatments for schistosomiasis.
Collapse
Affiliation(s)
- Fidensio K. Ndegwa
- Department of Pharmacognosy, Pharmaceutical Chemistry and Pharmaceutical & Industrial Pharmacy, Kenyatta University, Nairobi, Kenya
| | - Chaitanya Kondam
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL, USA
| | - Samuel Y. Aboagye
- Department of Microbial Pathogens & Immunity, Rush University Medical Center Chicago IL, USA
| | - Taiwo E. Esan
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL, USA
| | - Zohra Sattar Waxali
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL, USA
| | - Margaret E. Miller
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL, USA
| | - Nicholas K. Gikonyo
- Department of Pharmacognosy, Pharmaceutical Chemistry and Pharmaceutical & Industrial Pharmacy, Kenyatta University, Nairobi, Kenya
| | - Paul K. Mbugua
- Department of Plant Sciences, Kenyatta University, Nairobi, Kenya
| | - Paul O. Okemo
- Department of Microbiology, Kenyatta University, Nairobi, Kenya
| | - David L. Williams
- Department of Microbial Pathogens & Immunity, Rush University Medical Center Chicago IL, USA
| | - Timothy J. Hagen
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL, USA
| |
Collapse
|
7
|
Fustaino V, Gimmelli R, Guidi A, Lentini S, Saccoccia F, Petrella G, Cicero DO, Ruberti G. Comparative metabolic profiling by 1H-NMR spectroscopy analysis reveals the adaptation of S. mansoni from its host to in vitro culture conditions: a pilot study with ex vivo and GSH-supplemented medium-cultured parasites. Parasitol Res 2022; 121:1191-1198. [PMID: 35024953 DOI: 10.1007/s00436-022-07426-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 01/03/2022] [Indexed: 10/19/2022]
Abstract
Schistosomiasis is a neglected tropical disease caused by parasitic flatworms (blood fluke) of the genus Schistosoma. Parasites acquire most nutrients for their development and sustainment within the definitive host either by ingestion into the gut or across the body surface. Over the years, the best conditions for long-term maintenance of parasites in vitro have been thoroughly established. In our hands, 1H-NMR spectroscopy represents a powerful tool to characterize the metabolic changes in S. mansoni in response to culturing condition perturbations. In order to compare the metabolic fingerprint of ex vivo and parasites cultured in vitro with or without the supplement of reduced glutathione, we conducted a pilot study applying the 1H-NMR spectroscopy-based metabolomics. We obtained new insight into specific metabolic pathways modulated under these different experimental conditions.
Collapse
Affiliation(s)
- Valentina Fustaino
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Campus A. Buzzati-Traverso, Monterotondo (Rome), Italy
| | - Roberto Gimmelli
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Campus A. Buzzati-Traverso, Monterotondo (Rome), Italy
| | - Alessandra Guidi
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Campus A. Buzzati-Traverso, Monterotondo (Rome), Italy
| | - Sara Lentini
- Department of Chemical Sciences and Technologies, University of Rome Tor Vergata, Rome, Italy
| | - Fulvio Saccoccia
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Campus A. Buzzati-Traverso, Monterotondo (Rome), Italy.
| | - Greta Petrella
- Department of Chemical Sciences and Technologies, University of Rome Tor Vergata, Rome, Italy.
| | - Daniel Oscar Cicero
- Department of Chemical Sciences and Technologies, University of Rome Tor Vergata, Rome, Italy
| | - Giovina Ruberti
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Campus A. Buzzati-Traverso, Monterotondo (Rome), Italy
| |
Collapse
|
8
|
Adegboye O, Field MA, Kupz A, Pai S, Sharma D, Smout MJ, Wangchuk P, Wong Y, Loiseau C. Natural-Product-Based Solutions for Tropical Infectious Diseases. Clin Microbiol Rev 2021; 34:e0034820. [PMID: 34494873 PMCID: PMC8673330 DOI: 10.1128/cmr.00348-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
About half of the world's population and 80% of the world's biodiversity can be found in the tropics. Many diseases are specific to the tropics, with at least 41 diseases caused by endemic bacteria, viruses, parasites, and fungi. Such diseases are of increasing concern, as the geographic range of tropical diseases is expanding due to climate change, urbanization, change in agricultural practices, deforestation, and loss of biodiversity. While traditional medicines have been used for centuries in the treatment of tropical diseases, the active natural compounds within these medicines remain largely unknown. In this review, we describe infectious diseases specific to the tropics, including their causative pathogens, modes of transmission, recent major outbreaks, and geographic locations. We further review current treatments for these tropical diseases, carefully consider the biodiscovery potential of the tropical biome, and discuss a range of technologies being used for drug development from natural resources. We provide a list of natural products with antimicrobial activity, detailing the source organisms and their effectiveness as treatment. We discuss how technological advancements, such as next-generation sequencing, are driving high-throughput natural product screening pipelines to identify compounds with therapeutic properties. This review demonstrates the impact natural products from the vast tropical biome have in the treatment of tropical infectious diseases and how high-throughput technical capacity will accelerate this discovery process.
Collapse
Affiliation(s)
- Oyelola Adegboye
- Public Health and Tropical Medicine, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, Australia
- World Health Organization Collaborating Center for Vector-Borne and Neglected Tropical Diseases, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Matt A. Field
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Cairns, QLD, Australia
- Centre for Molecular Therapeutics, James Cook University, Cairns, QLD, Australia
- Garvin Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Andreas Kupz
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
- Centre for Molecular Therapeutics, James Cook University, Cairns, QLD, Australia
| | - Saparna Pai
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
- Centre for Molecular Therapeutics, James Cook University, Cairns, QLD, Australia
| | - Dileep Sharma
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
- College of Medicine & Dentistry, James Cook University, Cairns, QLD, Australia
| | - Michael J. Smout
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
- Centre for Molecular Therapeutics, James Cook University, Cairns, QLD, Australia
| | - Phurpa Wangchuk
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
- Centre for Molecular Therapeutics, James Cook University, Cairns, QLD, Australia
| | - Yide Wong
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Cairns, QLD, Australia
- Centre for Molecular Therapeutics, James Cook University, Cairns, QLD, Australia
| | - Claire Loiseau
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
- Centre for Molecular Therapeutics, James Cook University, Cairns, QLD, Australia
| |
Collapse
|
9
|
Nguyen LT, Zajíčková M, Mašátová E, Matoušková P, Skálová L. The ATP bioluminescence assay: a new application and optimization for viability testing in the parasitic nematode Haemonchus contortus. Vet Res 2021; 52:124. [PMID: 34593042 PMCID: PMC8482649 DOI: 10.1186/s13567-021-00980-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/28/2021] [Indexed: 12/27/2022] Open
Abstract
The parasitic gastrointestinal nematode Haemonchus contortus causes serious economic losses to agriculture due to infection and disease in small ruminant livestock. The development of new therapies requires appropriate viability testing, with methods nowadays relying on larval motility or development using procedures that involve microscopy. None of the existing biochemical methods, however, are performed in adults, the target stage of the anthelmintic compounds. Here we present a new test for the viability of H. contortus adults and exsheathed third-stage larvae which is based on a bioluminescent assay of ATP content normalized to total protein concentration measured using bicinchoninic acid. All the procedure steps were optimized to achieve maximal sensitivity and robustness. This novel method can be used as a complementary assay for the phenotypic screening of new compounds with potential antinematode activity in exsheathed third-stage larvae and in adult males. Additionally, it might be used for the detection of drug-resistant isolates.
Collapse
Affiliation(s)
- Linh Thuy Nguyen
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Heyrovského 1203, 500 05, Hradec Králové, Czech Republic
| | - Markéta Zajíčková
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Heyrovského 1203, 500 05, Hradec Králové, Czech Republic
| | - Eva Mašátová
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Heyrovského 1203, 500 05, Hradec Králové, Czech Republic
| | - Petra Matoušková
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Heyrovského 1203, 500 05, Hradec Králové, Czech Republic
| | - Lenka Skálová
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Heyrovského 1203, 500 05, Hradec Králové, Czech Republic.
| |
Collapse
|
10
|
High-content approaches to anthelmintic drug screening. Trends Parasitol 2021; 37:780-789. [PMID: 34092518 DOI: 10.1016/j.pt.2021.05.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/03/2021] [Accepted: 05/11/2021] [Indexed: 11/23/2022]
Abstract
Most anthelmintics were discovered through in vivo screens using animal models of infection. Developing in vitro assays for parasitic worms presents several challenges. The lack of in vitro life cycle culture protocols requires harvesting worms from vertebrate hosts or vectors, limiting assay throughput. Once worms are removed from the host environment, established anthelmintics often show no obvious phenotype - raising concerns about the predictive value of many in vitro assays. However, with recent progress in understanding how anthelmintics subvert host-parasite interactions, and breakthroughs in high-content imaging and machine learning, in vitro assays have the potential to discern subtle cryptic parasite phenotypes. These may prove better endpoints than conventional in vitro viability assays.
Collapse
|
11
|
Moreira-Filho JT, Silva AC, Dantas RF, Gomes BF, Souza Neto LR, Brandao-Neto J, Owens RJ, Furnham N, Neves BJ, Silva-Junior FP, Andrade CH. Schistosomiasis Drug Discovery in the Era of Automation and Artificial Intelligence. Front Immunol 2021; 12:642383. [PMID: 34135888 PMCID: PMC8203334 DOI: 10.3389/fimmu.2021.642383] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 04/30/2021] [Indexed: 12/20/2022] Open
Abstract
Schistosomiasis is a parasitic disease caused by trematode worms of the genus Schistosoma and affects over 200 million people worldwide. The control and treatment of this neglected tropical disease is based on a single drug, praziquantel, which raises concerns about the development of drug resistance. This, and the lack of efficacy of praziquantel against juvenile worms, highlights the urgency for new antischistosomal therapies. In this review we focus on innovative approaches to the identification of antischistosomal drug candidates, including the use of automated assays, fragment-based screening, computer-aided and artificial intelligence-based computational methods. We highlight the current developments that may contribute to optimizing research outputs and lead to more effective drugs for this highly prevalent disease, in a more cost-effective drug discovery endeavor.
Collapse
Affiliation(s)
- José T. Moreira-Filho
- LabMol – Laboratory for Molecular Modeling and Drug Design, Faculdade de Farmácia, Universidade Federal de Goiás – UFG, Goiânia, Brazil
| | - Arthur C. Silva
- LabMol – Laboratory for Molecular Modeling and Drug Design, Faculdade de Farmácia, Universidade Federal de Goiás – UFG, Goiânia, Brazil
| | - Rafael F. Dantas
- LaBECFar – Laboratório de Bioquímica Experimental e Computacional de Fármacos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Barbara F. Gomes
- LaBECFar – Laboratório de Bioquímica Experimental e Computacional de Fármacos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Lauro R. Souza Neto
- LaBECFar – Laboratório de Bioquímica Experimental e Computacional de Fármacos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Jose Brandao-Neto
- Diamond Light Source Ltd., Didcot, United Kingdom
- Research Complex at Harwell, Didcot, United Kingdom
| | - Raymond J. Owens
- The Rosalind Franklin Institute, Harwell, United Kingdom
- Division of Structural Biology, The Wellcome Centre for Human Genetic, University of Oxford, Oxford, United Kingdom
| | - Nicholas Furnham
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Bruno J. Neves
- LabMol – Laboratory for Molecular Modeling and Drug Design, Faculdade de Farmácia, Universidade Federal de Goiás – UFG, Goiânia, Brazil
| | - Floriano P. Silva-Junior
- LaBECFar – Laboratório de Bioquímica Experimental e Computacional de Fármacos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Carolina H. Andrade
- LabMol – Laboratory for Molecular Modeling and Drug Design, Faculdade de Farmácia, Universidade Federal de Goiás – UFG, Goiânia, Brazil
| |
Collapse
|
12
|
Vejzagić N, Prodjinotho UF, El-Khafif N, Huang R, Simeonov A, Spangenberg T, Prazeres da Costa C. Identification of hit compounds with anti-schistosomal activity on in vitro generated juvenile worms in cell-free medium. PLoS Negl Trop Dis 2021; 15:e0009432. [PMID: 34033658 PMCID: PMC8191877 DOI: 10.1371/journal.pntd.0009432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 06/10/2021] [Accepted: 05/01/2021] [Indexed: 11/30/2022] Open
Abstract
Background Anthelminthic treatment options against schistosomiasis are limited. The current treatment relies almost exclusively on a single drug, praziquantel (PZQ). As a consequence, the development of resistance to PZQ and limited activity of PZQ against earlier development stages are respectively a risk and a limitation to achieving the goals of the new WHO roadmap towards elimination. For the discovery of new chemical starting points, the in vitro drug screening on Schistosoma mansoni (S. mansoni) against newly transformed schistosomula (NTS) is still the most predominant approach. The use of only NTS in the initial screening limits sensitivity to potential new compounds which are predominantly active in later developmental stages. Using our recently described highly standardized, straightforward and reliable culture method that generates high rates of juvenile worms, we aimed to repurpose a subset of the National Center for Advancing Translational Sciences (NCATS) Pharmaceutical Collection (340 compounds) to identify new hits with an in vitro worm culture assay. Methodology/Principal findings Cercariae were mechanically transformed into skin-stage (SkS) schistosomula and continuously cultured for 3–6 weeks to the liver stage (LiS). A commercial source of serum was identified, and decrease of NTS/well along with optimal drug testing conditions was established to test compounds on early and late LiS worms. The library was screened in 96-well format assays using praziquantel (PZQ) as a positive control. Primary screening allowed a 5.9% hit rate and generated two confirmed hits on adult worms; a prophylactic antianginal agent and an antihistaminic drug. Conclusion With this standardized and reliable in vitro assay, important S. mansoni developmental stages up to LiS worms can be generated and cultured over an extended period. When exposed to a subset of the NCATS Pharmaceutical Collection, 3 compounds yielded a defined anti-schistosomal phenotype on juvenile worms. Translation of activity on perfused adult S. mansoni worms was achieved only for perhexiline (a prophylactic antianginal agent) and astemizole (an antihistaminic drug). Schistosomiasis continues to be a major public health problem, mainly in developing countries. Although there have been some advances in finding new drugs, praziquantel is still the drug of choice. Certainly, one of the most important advances in the search for new treatments was the ability to in vitro transform cercariae and to grow schistosomula in culture. To reduce animal use in future drug discovery efforts (3Rs), we optimized a previously established reliable and robust in vitro cell-free culture system for the generation of liver-stage worms that we applied to the screening of a compound library stemming from the National Center for Advancing Translational Sciences (NCATS) Pharmaceutical Collection.
Collapse
Affiliation(s)
- Nermina Vejzagić
- Institute for Microbiology, Immunology and Hygiene, Technische Universität München, Munich, Germany
- Center for Global Health, TUM School of Medicine, Technische Universität München, Munich, Germany
| | - Ulrich Fabien Prodjinotho
- Institute for Microbiology, Immunology and Hygiene, Technische Universität München, Munich, Germany
- Center for Global Health, TUM School of Medicine, Technische Universität München, Munich, Germany
| | - Nagwa El-Khafif
- Theodor Bilharz Research Institute, Mahad Al Abhas Al Bahari, Warraq Al Arab, El Warraq, Giza Governorate, Egypt
| | - Ruili Huang
- Division of Pre-clinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, United States of America
| | - Anton Simeonov
- Division of Pre-clinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, United States of America
| | - Thomas Spangenberg
- Global Health Institute of Merck, Ares Trading S.A. (a subsidiary of Merck KGaA Darmstadt Germany), Eysins, Switzerland
| | - Clarissa Prazeres da Costa
- Institute for Microbiology, Immunology and Hygiene, Technische Universität München, Munich, Germany
- Center for Global Health, TUM School of Medicine, Technische Universität München, Munich, Germany
- * E-mail:
| |
Collapse
|
13
|
Sakiyama H, Li L, Kuwahara-Otani S, Nakagawa T, Eguchi H, Yoshihara D, Shinohara M, Fujiwara N, Suzuki K. A lack of ChREBP inhibits mitochondrial cristae formation in brown adipose tissue. Mol Cell Biochem 2021; 476:3577-3590. [PMID: 34021470 DOI: 10.1007/s11010-021-04178-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 05/12/2021] [Indexed: 11/25/2022]
Abstract
The carbohydrate response element binding protein (ChREBP) is a glucose-responsive transcription factor that increases the transcription of multiple genes. ChREBP is highly localized in the liver, where it upregulates the expression of genes that code for glycolytic and lipogenic enzymes, resulting in the conversion of excess carbohydrate into storage fat. ChREBP knockout (KO) mice display an anti-obese phenotype. However, at this time, role of ChREBP in adipose tissue remains unclear. Therefore, the energy metabolism and morphology of mitochondrial brown adipose tissue (BAT) in ChREBP KO mice was examined. We found increased expression levels of electron transport system proteins including the mitochondrial uncoupling protein (UCP1), and mitochondrial structural alterations such as dysplasia of the cristae and the presence of small mitochondria in BAT of ChREBP KO mice. Mass spectrometry analyses revealed that fatty acid synthase was absent in the BAT of ChREBP KO mice, which probably led to a reduction in fatty acids and cardiolipin, a regulator of various mitochondrial events. Our study clarified the new role of ChREBP in adipose tissue and its involvement in mitochondrial function. A clearer understanding of ChREBP in mitochondria could pave the way for improvements in obesity management.
Collapse
Affiliation(s)
- Haruhiko Sakiyama
- Department of Biochemistry, Hyogo College of Medicine, Nishinomiya, Hyogo, 663-8501, Japan.
| | - Lan Li
- Department of Biochemistry, Hyogo College of Medicine, Nishinomiya, Hyogo, 663-8501, Japan
| | - Sachi Kuwahara-Otani
- Department of Anatomy and Cell Biology, Hyogo College of Medicine, Nishinomiya, Hyogo, 663-8501, Japan
| | - Tsutomu Nakagawa
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Ishikari-gun, Hokkaido, 061-0293, Japan
| | - Hironobu Eguchi
- Department of Biochemistry, Hyogo College of Medicine, Nishinomiya, Hyogo, 663-8501, Japan
| | - Daisaku Yoshihara
- Department of Biochemistry, Hyogo College of Medicine, Nishinomiya, Hyogo, 663-8501, Japan
| | - Masakazu Shinohara
- Division of Epidemiology, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan
- The Integrated Center for Mass Spectrometry, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan
| | - Noriko Fujiwara
- Department of Biochemistry, Hyogo College of Medicine, Nishinomiya, Hyogo, 663-8501, Japan
| | - Keiichiro Suzuki
- Department of Biochemistry, Hyogo College of Medicine, Nishinomiya, Hyogo, 663-8501, Japan
| |
Collapse
|
14
|
Guidi A, Gimmelli R, Bresciani A, Ruberti G. Luminescence-Based, Low- and Medium-Throughput Assays for Drug Screening in Schistosoma mansoni Larval Stage. Methods Mol Biol 2021; 2151:219-227. [PMID: 32452008 DOI: 10.1007/978-1-0716-0635-3_18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Schistosomiasis is one of the major parasitic diseases with more than 200 million people infected worldwide every year. Praziquantel is the drug of choice against the schistosomiasis although the use of a single drug to treat such a large amount of infected people appears particularly worrisome. For this reason, the search of new schistosomicidal compounds is viewed as an urgent goal and a number of screening campaigns have been carried out in the past years. The larval stage of Schistosoma (schistosomula) has been widely used in order to identify new compounds against the parasite. Here we describe detailed practical procedures for a luminescence-based assay proven to be highly effective for the selection of schistosomicidal compounds on small and medium-high scale. The assay is based on the quantitation of the parasite ATP, a good indicator of metabolically active cells, as measure of schistosomula viability. This assay is fast and reproducible, and it is suitable either for manual or for semiautomated screenings.
Collapse
Affiliation(s)
- Alessandra Guidi
- National Research Council, Institute of Biochemistry and Cell Biology, Rome, Italy
| | - Roberto Gimmelli
- National Research Council, Institute of Biochemistry and Cell Biology, Rome, Italy
| | | | - Giovina Ruberti
- National Research Council, Institute of Biochemistry and Cell Biology, Rome, Italy.
| |
Collapse
|
15
|
Guidi A, Petrella G, Fustaino V, Saccoccia F, Lentini S, Gimmelli R, Di Pietro G, Bresciani A, Cicero DO, Ruberti G. Drug effects on metabolic profiles of Schistosoma mansoni adult male parasites detected by 1H-NMR spectroscopy. PLoS Negl Trop Dis 2020; 14:e0008767. [PMID: 33044962 PMCID: PMC7580944 DOI: 10.1371/journal.pntd.0008767] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 10/22/2020] [Accepted: 09/02/2020] [Indexed: 11/25/2022] Open
Abstract
Schistosomiasis is one of the most devastating neglected tropical parasitic diseases caused by trematodes of the genus Schistosoma. Praziquantel (PZQ) is today the only drug used in humans and animals for the treatment of schistosomiasis but unfortunately it is poorly effective on larval and juvenile stages of the parasite. Therefore, it is urgent the discovery of new drug targets and compounds. We have recently showed that the anti-anginal drug perhexiline maleate (PHX) is very active on multiple developmental stages of Schistosoma mansoni in vitro. It is well known that PHX impacts the lipid metabolism in mammals, but the final target on schistosomes still remains unknown. The aim of this study was to evaluate the ability of 1H nuclear magnetic resonance (NMR) spectroscopy in revealing metabolic perturbations due to PHX treatment of S. mansoni adult male worms. The effects of PHX were compared with the ones induced by vehicle and gambogic acid, in order to detect different metabolic profiles and specificity of the PHX action. Remarkably a list of metabolites associated to PHX-treatment was identified with enrichment in several connected metabolic pathways including also the Kennedy pathway mediating the glycerophospholipid metabolism. Our study represents the first 1H-NMR metabolomic approach to characterize the response of S. mansoni to drug treatment. The obtained "metabolic fingerprint" associated to PHX treatment could represent a strategy for displaying cellular metabolic changes for any given drug and to compare compounds targeting similar or distinct biochemical pathways.
Collapse
Affiliation(s)
- Alessandra Guidi
- Institute of Biochemistry and Cell Biology, National Research Council, Campus A. Buzzati-Traverso, Monterotondo (Rome) Italy
| | - Greta Petrella
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Rome, Italy
| | - Valentina Fustaino
- Institute of Biochemistry and Cell Biology, National Research Council, Campus A. Buzzati-Traverso, Monterotondo (Rome) Italy
| | - Fulvio Saccoccia
- Institute of Biochemistry and Cell Biology, National Research Council, Campus A. Buzzati-Traverso, Monterotondo (Rome) Italy
| | - Sara Lentini
- Department of Translational Biology, IRBM Science Park Spa, Pomezia (Rome), Italy
| | - Roberto Gimmelli
- Institute of Biochemistry and Cell Biology, National Research Council, Campus A. Buzzati-Traverso, Monterotondo (Rome) Italy
| | - Giulia Di Pietro
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Rome, Italy
| | - Alberto Bresciani
- Department of Translational Biology, IRBM Science Park Spa, Pomezia (Rome), Italy
| | - Daniel Oscar Cicero
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Rome, Italy
| | - Giovina Ruberti
- Institute of Biochemistry and Cell Biology, National Research Council, Campus A. Buzzati-Traverso, Monterotondo (Rome) Italy
| |
Collapse
|
16
|
Guidi A, Prasanth Saraswati A, Relitti N, Gimmelli R, Saccoccia F, Sirignano C, Taglialatela-Scafati O, Campiani G, Ruberti G, Gemma S. (+)-(R)- and (-)-(S)-Perhexiline maleate: Enantioselective synthesis and functional studies on Schistosoma mansoni larval and adult stages. Bioorg Chem 2020; 102:104067. [PMID: 32663671 DOI: 10.1016/j.bioorg.2020.104067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 06/28/2020] [Indexed: 11/26/2022]
Abstract
Schistosomiasis is a neglected tropical disease mainly affecting the poorest tropical and subtropical areas of the world with the impressive number of roughly 200 million infections per year. Schistosomes are blood trematode flukes of the genus Schistosoma causing symptoms in humans and animals. Organ morbidity is caused by the accumulation of parasite eggs and subsequent development of fibrosis. If left untreated, schistosomiasis can result in substantial morbidity and even mortality. Praziquantel (PZQ) is the most effective and widely used compound for the treatment of the disease, in prevention and control programs in the last 30 years. Unfortunately, it has no effect on juvenile immature schistosomes and cannot prevent reinfection or interfere with the schistosome life cycle; moreover drug-resistance represents a serious threat. The search for an alternative or complementary treatment is urgent and drug repurposing could accelerate a solution. The anti-anginal drug perhexiline maleate (PHX) has been previously shown to be effective on larval, juvenile, and adult stages of S. mansoni and to impact egg production in vitro. Since PHX is a racemic mixture of R-(+)- and S-(-)-enantiomers, we designed and realized a stereoselective synthesis of both PHX enantiomers and developed an analytical procedure for the direct quantification of the enantiomeric excess also suitable for semipreparative separation of PHX enantiomers. We next investigated the impact of each enantiomer on viability of newly transformed schistosomula (NTS) and worm pairs of S. mansoni as well as on egg production and vitellarium morphology by in vitro studies. Our results indicate that the R-(+)-PHX is mainly driving the anti-schistosomal activity but that also the S-(-)-PHX possesses a significant activity towards S. mansoni in vitro.
Collapse
Affiliation(s)
- Alessandra Guidi
- Institute of Biochemistry and Cell Biology, National Research Council, Campus A. Buzzati-Traverso via E. Ramarini, 32 00015 Monterotondo (Rome), Italy
| | - A Prasanth Saraswati
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, via Aldo Moro 2, 53100 Siena, Italy
| | - Nicola Relitti
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, via Aldo Moro 2, 53100 Siena, Italy
| | - Roberto Gimmelli
- Institute of Biochemistry and Cell Biology, National Research Council, Campus A. Buzzati-Traverso via E. Ramarini, 32 00015 Monterotondo (Rome), Italy
| | - Fulvio Saccoccia
- Institute of Biochemistry and Cell Biology, National Research Council, Campus A. Buzzati-Traverso via E. Ramarini, 32 00015 Monterotondo (Rome), Italy
| | - Carmina Sirignano
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy
| | - Orazio Taglialatela-Scafati
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy
| | - Giuseppe Campiani
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, via Aldo Moro 2, 53100 Siena, Italy.
| | - Giovina Ruberti
- Institute of Biochemistry and Cell Biology, National Research Council, Campus A. Buzzati-Traverso via E. Ramarini, 32 00015 Monterotondo (Rome), Italy.
| | - Sandra Gemma
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, via Aldo Moro 2, 53100 Siena, Italy.
| |
Collapse
|
17
|
Ravaynia PS, Lombardo FC, Biendl S, Dupuch MA, Keiser J, Hierlemann A, Modena MM. Parallelized Impedance-Based Platform for Continuous Dose-Response Characterization of Antischistosomal Drugs. ACTA ACUST UNITED AC 2020; 4:e1900304. [PMID: 32510834 DOI: 10.1002/adbi.201900304] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 05/19/2020] [Indexed: 11/11/2022]
Abstract
Schistosomiasis is an acute and chronic disease caused by tropical parasitic worms of the genus Schistosoma, which parasitizes annually over 200 million people worldwide. Screening of antischistosomal compounds is hampered by the low throughput and potential subjectivity of the visual evaluation of the parasite phenotypes, which affects the current drug assays. Here, an impedance-based platform, capable of assessing the viability of Schistosoma mansoni schistosomula exposed to drugs, is presented. This automated and parallelized platform enables unbiased and continuous measurements of dose-response relationships for more than 48 h. The platform performance is established by exposure of schistosomula to three test compounds, praziquantel, oxethazaine, and mefloquine, which are known to affect the larvae phenotypes. The system is thereafter used to investigate the response of schistosomula to methiothepine, an antipsychotic compound, which causes complex drug-induced effects. Continuous monitoring of the parasites reveals transient behavioral phenotypes and allows for extracting temporal characteristics of dose-response curves, which are essential for selecting drugs that feature high activity and fast kinetics of action. These measurements demonstrate that impedance-based detection provides a wealth of information for the in vitro characterization of candidate antischistosomals and, represents a promising tool for the identification of new lead compounds.
Collapse
Affiliation(s)
- Paolo S Ravaynia
- Bioengineering Laboratory, Department of Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, Basel, 4058, Switzerland
| | - Flavio C Lombardo
- Swiss Tropical and Public Health Institute, Department of Medical Parasitology and Infection Biology, University of Basel, Socinstrasse 57, Basel, 4051, Switzerland
| | - Stefan Biendl
- Swiss Tropical and Public Health Institute, Department of Medical Parasitology and Infection Biology, University of Basel, Socinstrasse 57, Basel, 4051, Switzerland
| | - Matthias A Dupuch
- Micro and Nanosystems, Department of Mechanical and Process Engineering, ETH Zürich, Tannenstrasse 3, Zurich, 8092, Switzerland
| | - Jennifer Keiser
- Swiss Tropical and Public Health Institute, Department of Medical Parasitology and Infection Biology, University of Basel, Socinstrasse 57, Basel, 4051, Switzerland
| | - Andreas Hierlemann
- Bioengineering Laboratory, Department of Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, Basel, 4058, Switzerland
| | - Mario M Modena
- Bioengineering Laboratory, Department of Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, Basel, 4058, Switzerland
| |
Collapse
|
18
|
Investigating the Antiparasitic Potential of the Marine Sesquiterpene Avarone, Its Reduced form Avarol, and the Novel Semisynthetic Thiazinoquinone Analogue Thiazoavarone. Mar Drugs 2020; 18:md18020112. [PMID: 32075136 PMCID: PMC7074381 DOI: 10.3390/md18020112] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/06/2020] [Accepted: 02/11/2020] [Indexed: 12/26/2022] Open
Abstract
The chemical analysis of the sponge Dysidea avara afforded the known sesquiterpene quinone avarone, along with its reduced form avarol. To further explore the role of the thiazinoquinone scaffold as an antiplasmodial, antileishmanial and antischistosomal agent, we converted the quinone avarone into the thiazinoquinone derivative thiazoavarone. The semisynthetic compound, as well as the natural metabolites avarone and avarol, were pharmacologically investigated in order to assess their antiparasitic properties against sexual and asexual stages of Plasmodium falciparum, larval and adult developmental stages of Schistosomamansoni (eggs included), and also against promastigotes and amastigotes of Leishmania infantum and Leishmania tropica. Furthermore, in depth computational studies including density functional theory (DFT) calculations were performed. A toxic semiquinone radical species which can be produced starting both from quinone- and hydroquinone-based compounds could mediate the anti-parasitic effects of the tested compounds.
Collapse
|
19
|
Gimmelli R, Persico M, Imperatore C, Saccoccia F, Guidi A, Casertano M, Luciano P, Pietrantoni A, Bertuccini L, Paladino A, Papoff G, Menna M, Fattorusso C, Ruberti G. Thiazinoquinones as New Promising Multistage Schistosomicidal Compounds Impacting Schistosoma mansoni and Egg Viability. ACS Infect Dis 2020; 6:124-137. [PMID: 31718145 DOI: 10.1021/acsinfecdis.9b00252] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Schistosomiasis is the most significant neglected tropical parasitic disease caused by helminths in terms of morbidity and mortality caused by helminths. In this work, we present the antischistosomal activity against Schistosoma mansoni of a rationally selected small set of thiazinoquinone derivatives, some of which were previously found to be active against Plasmodium falciparum and others synthesized ad hoc. The effects on larvae, juvenile, and adult parasite viability as well as on egg production and development were investigated, resulting in the identification of new multistage antischistosomal hit compounds. The most promising compounds 6, 8, 13, and 14 with a LC50 value on schistosomula from ∼5 to ∼15 μM also induced complete death of juvenile (28 days old) and adult worm pairs (7 weeks old) and a detrimental effect on egg production and development in vitro. Structure-activity relationships (SARs) were analyzed by means of computational studies leading to the hypothesis of a redox-based mechanism of action with a one-electron reduction bioactivation step and the subsequent formation of a toxic semiquinone species, similarly to what was previously observed for the antiplasmodial activity. Our results also evidenced that the selective toxicity against mammalian cells or parasites as well as specific developmental stages of a parasite can be addressed by varying the nature of the introduced substituents.
Collapse
Affiliation(s)
- Roberto Gimmelli
- Institute of Biochemistry and Cell Biology, National Research Council, Campus A. Buzzati-Traverso, Via E. Ramarini 32, 00015 Monterotondo (Rome), Italy
| | - Marco Persico
- The NeaNat Group, Department of Pharmacy, University of Naples “Federico II”, Via D. Montesano 49, 80131 Napoli, Italy
- Centro Interuniversitario di Ricerca sulla Malaria/Italian Malaria Network, 06126 Perugia, Italy
| | - Concetta Imperatore
- The NeaNat Group, Department of Pharmacy, University of Naples “Federico II”, Via D. Montesano 49, 80131 Napoli, Italy
- Centro Interuniversitario di Ricerca sulla Malaria/Italian Malaria Network, 06126 Perugia, Italy
| | - Fulvio Saccoccia
- Institute of Biochemistry and Cell Biology, National Research Council, Campus A. Buzzati-Traverso, Via E. Ramarini 32, 00015 Monterotondo (Rome), Italy
| | - Alessandra Guidi
- Institute of Biochemistry and Cell Biology, National Research Council, Campus A. Buzzati-Traverso, Via E. Ramarini 32, 00015 Monterotondo (Rome), Italy
| | - Marcello Casertano
- The NeaNat Group, Department of Pharmacy, University of Naples “Federico II”, Via D. Montesano 49, 80131 Napoli, Italy
- Centro Interuniversitario di Ricerca sulla Malaria/Italian Malaria Network, 06126 Perugia, Italy
| | - Paolo Luciano
- The NeaNat Group, Department of Pharmacy, University of Naples “Federico II”, Via D. Montesano 49, 80131 Napoli, Italy
- Centro Interuniversitario di Ricerca sulla Malaria/Italian Malaria Network, 06126 Perugia, Italy
| | - Agostina Pietrantoni
- Core Facilities, Italian National Institute of Health, Viale Regina Elena 299, 00161 Rome, Italy
| | - Lucia Bertuccini
- Core Facilities, Italian National Institute of Health, Viale Regina Elena 299, 00161 Rome, Italy
| | - Antonella Paladino
- Institute of Chemistry of Molecular Recognition, National Research Council, Via M. Bianco 9, 20131 Milano, Italy
| | - Giuliana Papoff
- Institute of Biochemistry and Cell Biology, National Research Council, Campus A. Buzzati-Traverso, Via E. Ramarini 32, 00015 Monterotondo (Rome), Italy
| | - Marialuisa Menna
- The NeaNat Group, Department of Pharmacy, University of Naples “Federico II”, Via D. Montesano 49, 80131 Napoli, Italy
- Centro Interuniversitario di Ricerca sulla Malaria/Italian Malaria Network, 06126 Perugia, Italy
| | - Caterina Fattorusso
- The NeaNat Group, Department of Pharmacy, University of Naples “Federico II”, Via D. Montesano 49, 80131 Napoli, Italy
- Centro Interuniversitario di Ricerca sulla Malaria/Italian Malaria Network, 06126 Perugia, Italy
| | - Giovina Ruberti
- Institute of Biochemistry and Cell Biology, National Research Council, Campus A. Buzzati-Traverso, Via E. Ramarini 32, 00015 Monterotondo (Rome), Italy
| |
Collapse
|
20
|
Saccoccia F, Brindisi M, Gimmelli R, Relitti N, Guidi A, Saraswati AP, Cavella C, Brogi S, Chemi G, Butini S, Papoff G, Senger J, Herp D, Jung M, Campiani G, Gemma S, Ruberti G. Screening and Phenotypical Characterization of Schistosoma mansoni Histone Deacetylase 8 ( SmHDAC8) Inhibitors as Multistage Antischistosomal Agents. ACS Infect Dis 2020; 6:100-113. [PMID: 31661956 DOI: 10.1021/acsinfecdis.9b00224] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Schistosomiasis (also known as bilharzia) is a neglected tropical disease caused by platyhelminths of the genus Schistosoma. The disease is endemic in tropical and subtropical areas of the world where water is infested by the intermediate parasite host, the snail. More than 800 million people live in endemic areas and more than 200 million are infected and require treatment. Praziquantel (PZQ) is the drug of choice for schistosomiasis treatment and transmission control being safe and very effective against adult worms of all the clinically relevant Schistosoma species. Unfortunately, it is ineffective on immature, juvenile worms; therefore, it does not prevent reinfection. Moreover, the risk of development and spread of drug resistance because of the widespread use of a single drug in such a large population represents a serious threat. Therefore, research aimed at identifying novel drugs to be used alone or in combination with PZQ are needed. Schistosoma mansoni histone deacetylase 8 (SmHDAC8) is a class I zinc-dependent HDAC, which is abundantly expressed in all stages of its life cycle, thus representing an interesting target for drug discovery. Through virtual screening and phenotypical characterization of selected hits, we discovered two main chemical classes of compounds characterized by the presence of a hydroxamate-based metal binding group coupled to a spiroindoline or a tricyclic thieno[3,2-b]indole core as capping groups. Some of the compounds of both classes were deeply investigated and showed to impair viability of larval, juvenile, and adult schistosomes, to impact egg production in vitro and/or to induce morphological alterations of the adult schistosome reproductive systems. Noteworthy, all of them inhibit the recombinant form of SmHDAC8 enzyme in vitro. Overall, we identified very interesting scaffolds, paving the way to the development of effective antischistosomal agents.
Collapse
Affiliation(s)
- Fulvio Saccoccia
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Campus A. Buzzati-Traverso, via E. Ramarini 32, 00015 Monterotondo (Rome), Italy
| | - Margherita Brindisi
- Department of Excellence of Pharmacy, University of Napoli Federico II, via D. Montesano 49, 80131 Naples, Italy
| | - Roberto Gimmelli
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Campus A. Buzzati-Traverso, via E. Ramarini 32, 00015 Monterotondo (Rome), Italy
| | - Nicola Relitti
- Department of Excellence of Biotechnology, Chemistry and Pharmacy, University of Siena, via Aldo Moro 2, 53100, Siena, Italy
| | - Alessandra Guidi
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Campus A. Buzzati-Traverso, via E. Ramarini 32, 00015 Monterotondo (Rome), Italy
| | - A Prasanth Saraswati
- Department of Excellence of Biotechnology, Chemistry and Pharmacy, University of Siena, via Aldo Moro 2, 53100, Siena, Italy
| | - Caterina Cavella
- Department of Excellence of Biotechnology, Chemistry and Pharmacy, University of Siena, via Aldo Moro 2, 53100, Siena, Italy
| | - Simone Brogi
- Department of Excellence of Biotechnology, Chemistry and Pharmacy, University of Siena, via Aldo Moro 2, 53100, Siena, Italy
- Department of Pharmacy, University of Pisa, via Bonanno 6, 56126, Pisa, Italy
| | - Giulia Chemi
- Department of Excellence of Biotechnology, Chemistry and Pharmacy, University of Siena, via Aldo Moro 2, 53100, Siena, Italy
| | - Stefania Butini
- Department of Excellence of Biotechnology, Chemistry and Pharmacy, University of Siena, via Aldo Moro 2, 53100, Siena, Italy
| | - Giuliana Papoff
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Campus A. Buzzati-Traverso, via E. Ramarini 32, 00015 Monterotondo (Rome), Italy
| | - Johanna Senger
- Institute of Pharmaceutical Sciences, University of Freiburg, Albertstraße 25, 79104 Freiburg, Germany
| | - Daniel Herp
- Institute of Pharmaceutical Sciences, University of Freiburg, Albertstraße 25, 79104 Freiburg, Germany
| | - Manfred Jung
- Institute of Pharmaceutical Sciences, University of Freiburg, Albertstraße 25, 79104 Freiburg, Germany
| | - Giuseppe Campiani
- Department of Excellence of Biotechnology, Chemistry and Pharmacy, University of Siena, via Aldo Moro 2, 53100, Siena, Italy
| | - Sandra Gemma
- Department of Excellence of Biotechnology, Chemistry and Pharmacy, University of Siena, via Aldo Moro 2, 53100, Siena, Italy
| | - Giovina Ruberti
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Campus A. Buzzati-Traverso, via E. Ramarini 32, 00015 Monterotondo (Rome), Italy
| |
Collapse
|
21
|
Maccesi M, Aguiar PHN, Pasche V, Padilla M, Suzuki BM, Montefusco S, Abagyan R, Keiser J, Mourão MM, Caffrey CR. Multi-center screening of the Pathogen Box collection for schistosomiasis drug discovery. Parasit Vectors 2019; 12:493. [PMID: 31640761 PMCID: PMC6805474 DOI: 10.1186/s13071-019-3747-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 10/11/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Over the past five years, as a public service to encourage and accelerate drug discovery for diseases of poverty, the Medicines for Malaria Venture (MMV) has released box sets of 400 compounds named the Malaria, Pathogen and Stasis Boxes. Here, we screened the Pathogen Box against the post-infective larvae (schistosomula) of Schistosoma mansoni using assays particular to the three contributing institutions, namely, the University of California San Diego (UCSD) in the USA, the Swiss Tropical and Public Health Institute (Swiss TPH) in Switzerland, and the Fundação Oswaldo Cruz (FIOCRUZ) in Brazil. With the same set of compounds, the goal was to determine the degree of inter-assay variability and identify a core set of active compounds common to all three assays. New drugs for schistosomiasis would be welcome given that current treatment and control strategies rely on chemotherapy with just one drug, praziquantel. METHODS Both the UCSD and Swiss TPH assays utilize daily observational scoring methodologies over 72 h, whereas the FIOCRUZ assay employs XTT (2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-5-[(phenylamino)carbonyl]-2H-tetrazolium hydroxide) at 72 h to measure viability as a function of NAD+/NADH redox state. Raw and transformed data arising from each assay were assembled for comparative analysis. RESULTS For the UCSD and Swiss TPH assays, there was strong concordance of at least 87% in identifying active and inactive compounds on one or more of the three days. When all three assays were compared at 72 h, concordance remained a robust 74%. Further, robust Pearson's correlations (0.48-0.68) were measured between the assays. Of those actives at 72 h, the UCSD, Swiss TPH and FIOCRUZ assays identified 86, 103 and 66 compounds, respectively, of which 35 were common. Assay idiosyncrasies included the identification of unique compounds, the differential ability to identify known antischistosomal compounds and the concept that compounds of interest might include those that increase metabolic activity above baseline. CONCLUSIONS The inter-assay data generated were in good agreement, including with previously reported data. A common set of antischistosomal molecules for further exploration has been identified .
Collapse
Affiliation(s)
- Martina Maccesi
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Pedro H N Aguiar
- Laboratório de Helmintologia e Malacologia Médica, René Rachou Institute, FIOCRUZ, Belo Horizonte, Minas Gerais, Brazil
| | - Valérian Pasche
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, P.O. Box, 4002, Basel, Switzerland.,University of Basel, P.O. Box, 4003, Basel, Switzerland
| | - Melody Padilla
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Brian M Suzuki
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Sandro Montefusco
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA.,Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, NA, Italy
| | - Ruben Abagyan
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Jennifer Keiser
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, P.O. Box, 4002, Basel, Switzerland. .,University of Basel, P.O. Box, 4003, Basel, Switzerland.
| | - Marina M Mourão
- Laboratório de Helmintologia e Malacologia Médica, René Rachou Institute, FIOCRUZ, Belo Horizonte, Minas Gerais, Brazil.
| | - Conor R Caffrey
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
22
|
Lu H, Tang X, Sibley M, Coburn J, Rao RSP, Ahsan N, Ramratnam B. Impact of exosomal HIV-1 Tat expression on the human cellular proteome. Oncotarget 2019; 10:5632-5644. [PMID: 31608139 PMCID: PMC6771461 DOI: 10.18632/oncotarget.27207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 08/27/2019] [Indexed: 11/25/2022] Open
Abstract
HIV-1 exists in a latent form in all infected patients. When antiretroviral therapy is stopped, viral replication resumes. The HIV-1 Tat protein is a potent activator of viral transcription. Our previous work has demonstrated that exosomal formulations of Tat can reverse HIV-1 latency in primary CD4+ T lymphocytes isolated from long term antiretroviral treated individuals suggesting a potential role for Tat as a therapeutic HIV-1 Latency Reversal Agent (LRA). Here, we employed the label-free proteomic approach for profiling the proteomic changes associated with exosomal Tat production in human cell lines. Comparative proteomic analysis revealed that >30% peptides were differentially expressed in abundance in the Tat-expressing cell line compared with relevant controls. As expected, many of the known Tat-interactor proteins were upregulated. Tat expression also led to the upregulation of antioxidant proteins suggesting Tat-mediates an oxidative burst. Gene ontology and pathway analyses of these differentially expressed proteins showed enrichment of extracellular vesicular exosome and spliceosome localized proteins and proteins involved with transcriptional and translational mechanisms. Our work suggests that HIV-1 Tat expression leads to perturbations in cellular protein expression. In vivo administration of Tat using HIV/SIV animal models needs to be performed to assess the physiologic significance of Tat-induced proteomic changes prior to developing HIV-1 Tat as an LRA.
Collapse
Affiliation(s)
- Huafei Lu
- Division of Infectious Diseases, Department of Medicine, Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
| | - Xiaoli Tang
- Division of Infectious Diseases, Department of Medicine, Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
| | - Mitchell Sibley
- Division of Infectious Diseases, Department of Medicine, Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
| | - Jillian Coburn
- COBRE Center for Cancer Research Development, Proteomics Core Facility, Rhode Island Hospital, Providence, RI 02903, USA
| | - R. Shyama Prasad Rao
- Biostatistics and Bioinformatics Division, Yenepoya Research Center, Yenepoya University, Mangalore 575018, India
| | - Nagib Ahsan
- COBRE Center for Cancer Research Development, Proteomics Core Facility, Rhode Island Hospital, Providence, RI 02903, USA
- Division of Biology and Medicine, Brown University, Providence, RI 02903, USA
| | - Bharat Ramratnam
- Division of Infectious Diseases, Department of Medicine, Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
- COBRE Center for Cancer Research Development, Proteomics Core Facility, Rhode Island Hospital, Providence, RI 02903, USA
- Clinical Research Center of Lifespan, Providence, RI 02903, USA
| |
Collapse
|
23
|
Casertano M, Imperatore C, Luciano P, Aiello A, Putra MY, Gimmelli R, Ruberti G, Menna M. Chemical Investigation of the Indonesian Tunicate Polycarpa aurata and Evaluation of the Effects Against Schistosoma mansoni of the Novel Alkaloids Polyaurines A and B. Mar Drugs 2019; 17:md17050278. [PMID: 31083316 PMCID: PMC6562961 DOI: 10.3390/md17050278] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/06/2019] [Accepted: 05/07/2019] [Indexed: 12/20/2022] Open
Abstract
A deep study of the metabolic content of the tunicate Polycarpa aurata, collected from Indonesian coast, afforded the isolation of two novel alkaloids, polyaurines A (1) and B (2), along with two new p-substituted benzoyl derivatives (3 and 4) and four known compounds (5–8). The structural elucidation of the new secondary metabolites was assigned by 1D, 2D NMR, and HRESIMS techniques. Computational studies resulted a useful tool to unambiguously determine in polyaurine B the presence of rarely found 1,2,4-thiadiazole ring. The effects of polyaurines A and B on mammalian cells growth and on the viability of different blood-dwelling Schistosoma mansoni (phylum: Platyhelminthes) stages, as well as egg production, were evaluated. Both compounds resulted not cytotoxic; interestingly some of the eggs produced by polyaurine A-treated adult pairs in vitro are smaller, deformed, and/or fragmented; therefore, polyaurine A could represent an interesting bioactive natural molecule to be further investigated.
Collapse
Affiliation(s)
- Marcello Casertano
- The NeaNat Group, Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, 80131 Napoli, Italy.
| | - Concetta Imperatore
- The NeaNat Group, Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, 80131 Napoli, Italy.
| | - Paolo Luciano
- The NeaNat Group, Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, 80131 Napoli, Italy.
| | - Anna Aiello
- The NeaNat Group, Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, 80131 Napoli, Italy.
| | - Masteria Yunovilsa Putra
- Research Center for Oceanography, Indonesian Institute of Sciences, Jl Pasir Putih Raya 1, DKI Jakarta 14430, Indonesia.
| | - Roberto Gimmelli
- Institute of Cell Biology and Neurobiology, National Research Council, Campus A. Buzzati-Traverso, Via E. Ramarini, 32, 00015 Monterotondo (Roma), Italy.
| | - Giovina Ruberti
- Institute of Cell Biology and Neurobiology, National Research Council, Campus A. Buzzati-Traverso, Via E. Ramarini, 32, 00015 Monterotondo (Roma), Italy.
| | - Marialuisa Menna
- The NeaNat Group, Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, 80131 Napoli, Italy.
| |
Collapse
|
24
|
Lombardo FC, Pasche V, Panic G, Endriss Y, Keiser J. Life cycle maintenance and drug-sensitivity assays for early drug discovery in Schistosoma mansoni. Nat Protoc 2019; 14:461-481. [PMID: 30610241 DOI: 10.1038/s41596-018-0101-y] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Drug discovery for schistosomiasis is still limited to a handful of academic laboratories worldwide, with only a few novel antischistosomal lead compounds being actively researched. Despite recent international mobilization against the disease to stimulate and promote antischistosomal drug discovery, setting up a drug-screening flow with schistosome parasites remains challenging. Whereas numerous different protocols to obtain and cultivate schistosomes have been published, those describing the drug-screening process are scarce, and none gather together parasite cultivation and early drug discovery procedures. To help overcome this hurdle, we provide here a set of integrated methods either adapted from already-published protocols or based on our long-term experience in schistosomiasis research. Specifically, we detail the establishment and maintenance of the complex and several-week-long Schistosoma mansoni life cycle in a laboratory setting, as well as the means of retrieving and culturing the parasites at their relevant life stages. The in vitro and in vivo assays that are performed along the drug-screening cascade are also described. In these assays, which can be performed within 5 d, the effect of a drug is determined by phenotypic assessment of the parasites' viability and morphology, for which stage-specific scoring scales are proposed. Finally, the modalities for testing and evaluating a compound in vivo, constituting a procedure lasting up to 10 weeks, are presented in order to go from in vitro hit identification to the selection of early lead candidates.
Collapse
Affiliation(s)
- Flavio C Lombardo
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Valérian Pasche
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Gordana Panic
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Yvette Endriss
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Jennifer Keiser
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland. .,University of Basel, Basel, Switzerland.
| |
Collapse
|
25
|
Chawla K, Modena MM, Ravaynia PS, Lombardo FC, Leonhardt M, Panic G, Bürgel SC, Keiser J, Hierlemann A. Impedance-Based Microfluidic Assay for Automated Antischistosomal Drug Screening. ACS Sens 2018; 3:2613-2620. [PMID: 30426744 PMCID: PMC6396876 DOI: 10.1021/acssensors.8b01027] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Schistosomiasis is a neglected tropical disease, caused by parasitic worms, which affects almost 200 million people worldwide. For over 40 years, chemotherapeutic treatment has relied on the administration of praziquantel, an efficacious drug against schistosomiasis. However, concerns about developing drug resistance require the discovery of novel drug compounds. Currently, the drug-screening process is mostly based on the visual evaluation of drug effects on worm larvae in vitro by a trained operator. This manual process is extremely labor-intensive, has limited throughput, and may be affected by subjectivity of the operator evaluation. In this paper, we introduce a microfluidic platform with integrated electrodes for the automated detection of worm larvae viability using an impedance-based approach. The microfluidic analysis unit consists of two sets of electrodes and a channel of variable geometry to enable counting and size detection of single parasite larvae and the collective evaluation of the motility of the larvae as an unbiased estimator for their viability. The current platform also allows for multiplexing of the analysis units resulting in increased throughput. We used our platform to record size and motility variations of Schistosoma mansoni larvae exposed to different concentrations of mefloquine, a drug with established in vitro antischistosomal properties. The developed platform demonstrates the potential of integrated microfluidic platforms for high-throughput antischistosomal drug screening.
Collapse
Affiliation(s)
- Ketki Chawla
- ETH Zurich, Dept. of Biosystems Science and Engineering, Bio Engineering Laboratory, Basel, Switzerland
| | - Mario M. Modena
- ETH Zurich, Dept. of Biosystems Science and Engineering, Bio Engineering Laboratory, Basel, Switzerland
| | - Paolo S. Ravaynia
- ETH Zurich, Dept. of Biosystems Science and Engineering, Bio Engineering Laboratory, Basel, Switzerland
| | - Flavio C. Lombardo
- Swiss Tropical and Public Health Institute, Department of Medical Parasitology and Infection Biology, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Martin Leonhardt
- ETH Zurich, Dept. of Biosystems Science and Engineering, Bio Engineering Laboratory, Basel, Switzerland
| | - Gordana Panic
- Swiss Tropical and Public Health Institute, Department of Medical Parasitology and Infection Biology, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Sebastian C. Bürgel
- ETH Zurich, Dept. of Biosystems Science and Engineering, Bio Engineering Laboratory, Basel, Switzerland
| | - Jennifer Keiser
- Swiss Tropical and Public Health Institute, Department of Medical Parasitology and Infection Biology, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Andreas Hierlemann
- ETH Zurich, Dept. of Biosystems Science and Engineering, Bio Engineering Laboratory, Basel, Switzerland
| |
Collapse
|
26
|
Guidi A, Saccoccia F, Gennari N, Gimmelli R, Nizi E, Lalli C, Paonessa G, Papoff G, Bresciani A, Ruberti G. Identification of novel multi-stage histone deacetylase (HDAC) inhibitors that impair Schistosoma mansoni viability and egg production. Parasit Vectors 2018; 11:668. [PMID: 30587243 PMCID: PMC6307185 DOI: 10.1186/s13071-018-3268-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 12/12/2018] [Indexed: 12/21/2022] Open
Abstract
Background Novel anti-schistosomal multi-stage drugs are needed because only a single drug, praziquantel, is available for the treatment of schistosomiasis and is poorly effective on larval and juvenile stages of the parasite. Schistosomes have a complex life-cycle and multiple developmental stages in the intermediate and definitive hosts. Acetylation and deacetylation of histones play pivotal roles in chromatin structure and in the regulation of transcription in eukaryotic cells. Histone deacetylase (HDAC) inhibitors modulate acetylation of several other proteins localized both in the nucleus and in the cytoplasm and therefore impact on many signaling networks and biological processes. Histone post-translational modifications may provide parasites with the ability to readily adapt to changes in gene expression required for their development and adaptation to the host environment. The aim of the present study was to screen a HDAC class I inhibitor library in order to identify and characterize novel multi-stage hit compounds. Methods We used a high-throughput assay based on the quantitation of ATP in the Schistosoma mansoni larval stage (schistosomula) and screened a library of 1500 class I HDAC inhibitors. Subsequently, a few hits were selected and further characterized by viability assays and phenotypic analyses on adult parasites by carmine red and confocal microscopy. Results Three compounds (SmI-124, SmI-148 and SmI-558) that had an effect on the viability of both the schistosomula larval stage and the adult worm were identified. Treatment with sub-lethal doses of SmI-148 and SmI-558 also decreased egg production. Moreover, treatment of adult parasites with SmI-148, and to a lesser extent Sm-124, was associated with histone hyperacetylation. Finally, SmI-148 and SmI-558 treatments of worm pairs caused a phenotype characterized by defects in the parasite reproductive system, with peculiar features in the ovary. In addition, SmI-558 induced oocyte- and vitelline cell-engulfment and signs of degeneration in the uterus and/or oviduct. Conclusions We report the screening of a small HDAC inhibitor library and the identification of three novel compounds which impair viability of the S. mansoni larval stage and adult pairs. These compounds are useful tools for studying deacetylase activity during parasite development and for interfering with egg production. Characterization of their specificity for selected S. mansoni versus human HDAC could provide insights that can be used in optimization and compound design.
Collapse
Affiliation(s)
- Alessandra Guidi
- National Research Council, Institute of Cell Biology and Neurobiology, Campus A. Buzzati-Traverso, Monterotondo (Roma), Italy
| | - Fulvio Saccoccia
- National Research Council, Institute of Cell Biology and Neurobiology, Campus A. Buzzati-Traverso, Monterotondo (Roma), Italy
| | - Nadia Gennari
- Biology Department, IRBM Science Park SpA, Pomezia, Italy
| | - Roberto Gimmelli
- National Research Council, Institute of Cell Biology and Neurobiology, Campus A. Buzzati-Traverso, Monterotondo (Roma), Italy
| | - Emanuela Nizi
- Chemistry Department, IRBM Science Park SpA, Pomezia, Italy
| | - Cristiana Lalli
- National Research Council, Institute of Cell Biology and Neurobiology, Campus A. Buzzati-Traverso, Monterotondo (Roma), Italy
| | | | - Giuliana Papoff
- National Research Council, Institute of Cell Biology and Neurobiology, Campus A. Buzzati-Traverso, Monterotondo (Roma), Italy
| | | | - Giovina Ruberti
- National Research Council, Institute of Cell Biology and Neurobiology, Campus A. Buzzati-Traverso, Monterotondo (Roma), Italy.
| |
Collapse
|
27
|
Vicentino ARR, Carneiro VC, Allonso D, Guilherme RDF, Benjamim CF, Dos Santos HAM, Xavier F, Pyrrho ADS, Gomes JDAS, Fonseca MDC, de Oliveira RC, Pereira TA, Ladislau L, Lambertucci JR, Fantappié MR. Emerging Role of HMGB1 in the Pathogenesis of Schistosomiasis Liver Fibrosis. Front Immunol 2018; 9:1979. [PMID: 30258438 PMCID: PMC6143665 DOI: 10.3389/fimmu.2018.01979] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 08/13/2018] [Indexed: 12/11/2022] Open
Abstract
In chronic schistosomiasis, liver fibrosis is linked to portal hypertension, which is a condition associated with high mortality and morbidity. High mobility group box 1 (HMGB1) was originally described as a nuclear protein that functions as a structural co-factor in transcriptional regulation. However, HMGB1 can also be secreted into the extracellular milieu under appropriate signal stimulation. Extracellular HMGB1 acts as a multifunctional cytokine that contributes to infection, injury, inflammation, and immune responses by binding to specific cell-surface receptors. HMGB1 is involved in fibrotic diseases. From a clinical perspective, HMGB1 inhibition may represent a promising therapeutic approach for treating tissue fibrosis. In this study, we demonstrate elevated levels of HMGB1 in the sera in experimental mice or in patients with schistosomiasis. Using immunohistochemistry, we demonstrated that HMGB1 trafficking in the hepatocytes of mice suffering from acute schistosomiasis was inhibited by Glycyrrhizin, a well-known HMGB1 direct inhibitor, as well as by DIC, a novel and potential anti-HMGB1 compound. HMGB1 inhibition led to significant downregulation of IL-6, IL4, IL-5, IL-13, IL-17A, which are involved in the exacerbation of the immune response and liver fibrogenesis. Importantly, infected mice that were treated with DIC or GZR to inhibit HMGB1 pro-inflammatory activity showed a significant increase in survival and a reduction of over 50% in the area of liver fibrosis. Taken together, our findings indicate that HMGB1 is a key mediator of schistosomotic granuloma formation and liver fibrosis and may represent an outstanding target for the treatment of schistosomiasis.
Collapse
Affiliation(s)
- Amanda R R Vicentino
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vitor C Carneiro
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Diego Allonso
- Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rafael de Freitas Guilherme
- Departamento de Farmacologia Básica e Clínica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Claudia F Benjamim
- Departamento de Farmacologia Básica e Clínica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Hílton A M Dos Santos
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fabíola Xavier
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alexandre Dos Santos Pyrrho
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Juliana de Assis Silva Gomes
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | | | - Thiago A Pereira
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Leandro Ladislau
- Departamento de Farmacologia Básica e Clínica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - José R Lambertucci
- Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Marcelo R Fantappié
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
28
|
Abstract
In the last 2 decades, renewed attention to neglected tropical diseases (NTDs) has spurred the development of antiparasitic agents, especially in light of emerging drug resistance. The need for new drugs has required in vitro screening methods using parasite culture. Furthermore, clinical laboratories sought to correlate in vitro susceptibility methods with treatment outcomes, most notably with malaria. Parasites with their various life cycles present greater complexity than bacteria, for which standardized susceptibility methods exist. This review catalogs the state-of-the-art methodologies used to evaluate the effects of drugs on key human parasites from the point of view of drug discovery as well as the need for laboratory methods that correlate with clinical outcomes.
Collapse
|
29
|
Guidi A, Lalli C, Gimmelli R, Nizi E, Andreini M, Gennari N, Saccoccia F, Harper S, Bresciani A, Ruberti G. Discovery by organism based high-throughput screening of new multi-stage compounds affecting Schistosoma mansoni viability, egg formation and production. PLoS Negl Trop Dis 2017; 11:e0005994. [PMID: 28985236 PMCID: PMC5646872 DOI: 10.1371/journal.pntd.0005994] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 10/18/2017] [Accepted: 09/26/2017] [Indexed: 11/22/2022] Open
Abstract
Schistosomiasis, one of the most prevalent neglected parasitic diseases affecting humans and animals, is caused by the Platyhelminthes of the genus Schistosoma. Schistosomes are the only trematodes to have evolved sexual dimorphism and the constant pairing with a male is essential for the sexual maturation of the female. Pairing is required for the full development of the two major female organs, ovary and vitellarium that are involved in the production of different cell types such as oocytes and vitellocytes, which represent the core elements of the whole egg machinery. Sexually mature females can produce a large number of eggs each day. Due to the importance of egg production for both life cycle and pathogenesis, there is significant interest in the search for new strategies and compounds not only affecting parasite viability but also egg production. Here we use a recently developed high-throughput organism-based approach, based on ATP quantitation in the schistosomula larval stage of Schistosoma mansoni for the screening of a large compound library, and describe a pharmacophore-based drug selection approach and phenotypic analyses to identify novel multi-stage schistosomicidal compounds. Interestingly, worm pairs treated with seven of the eight compounds identified show a phenotype characterized by defects in eggshell assemblage within the ootype and egg formation with degenerated oocytes and vitelline cells engulfment in the uterus and/or oviduct. We describe promising new molecules that not only impair the schistosomula larval stage but also impact juvenile and adult worm viability and egg formation and production in vitro. Schistosomiasis is a neglected disease caused by parasitic flatworms called schistosomes. The disease affects hundreds of millions of people in developing countries in the poorest tropical and subtropical regions of the world and it represents a major public health and socio-economical problem in several countries. In humans, these blood flukes reside in the mesenteric and vesicle venules. They have a life span of many years and produce hundreds of eggs daily, which are able to pass through the gut lumen or the bladder to be finally excreted into the environment for maintaining the life cycle. Part of the eggs can be trapped in host tissues inducing immunologically mediated granulomatous inflammation and fibrosis leading eventually to severe sequelae such as hepatosplenomegaly and even death. Importantly, schistosome infections increase susceptibility to other parasitic, bacterial and viral diseases. To date, essentially a single drug, praziquantel, is available to treat this parasitic disease. Despite its high tolerability and efficacy against adult parasites it has an incomplete efficacy across all stages of the S. mansoni life cycle and it does not prevent reinfection. Moreover the potential risk of drug resistance is an increasing concern. In search of novel schistosomicidal molecules we screened a large compound collection using the schistosomula, larval stage of the parasite. We identified eight novel molecules able to impair viability of schistosomula, juvenile and adult worms and also egg formation and production, two important features required for both disease transmission and progression.
Collapse
Affiliation(s)
- Alessandra Guidi
- National Research Council, Institute of Cell Biology and Neurobiology, Campus A. Buzzati-Traverso, Monterotondo (Roma), Italy
| | - Cristiana Lalli
- National Research Council, Institute of Cell Biology and Neurobiology, Campus A. Buzzati-Traverso, Monterotondo (Roma), Italy
| | - Roberto Gimmelli
- National Research Council, Institute of Cell Biology and Neurobiology, Campus A. Buzzati-Traverso, Monterotondo (Roma), Italy
| | - Emanuela Nizi
- IRBM Science Park SpA Chemistry Department, Pomezia, Italy
| | | | - Nadia Gennari
- IRBM Science Park SpA, Biology Department, Pomezia, Italy
| | - Fulvio Saccoccia
- National Research Council, Institute of Cell Biology and Neurobiology, Campus A. Buzzati-Traverso, Monterotondo (Roma), Italy
| | - Steven Harper
- IRBM Science Park SpA Chemistry Department, Pomezia, Italy
| | | | - Giovina Ruberti
- National Research Council, Institute of Cell Biology and Neurobiology, Campus A. Buzzati-Traverso, Monterotondo (Roma), Italy
- * E-mail:
| |
Collapse
|
30
|
Aguiar PHN, Fernandes NMGS, Zani CL, Mourão MM. A high-throughput colorimetric assay for detection of Schistosoma mansoni viability based on the tetrazolium salt XTT. Parasit Vectors 2017; 10:300. [PMID: 28637488 PMCID: PMC5480175 DOI: 10.1186/s13071-017-2240-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 06/11/2017] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Schistosoma mansoni is a trematode parasite that causes schistosomiasis, one of the most prevalent neglected tropical diseases, leading to the loss of 2.6 million disability-adjusted life years. Praziquantel is the only drug available, and new drugs are required. The most common strategy in schistosomiasis drug discovery is the use of the schistosomula larval-stage for a pre-screen in drug sensitivity assays. However, assessing schistosomula viability by microscopy has always been a limitation to the throughput of such assays. Hence, the development of validated, robust high-throughput in vitro assays for Schistosoma with simple readouts is needed. Here, we present a simple and affordable alternative to assess schistosomula viability. The method employed is based on the hydrosoluble tetrazolium salt XTT which has been widely used in other organisms but has never been used to drug screen in schistosomes. RESULTS We showed that schistosomula reduce XTT salt to a coloured formazan product and that absorbance levels reflected the viability and parasites number. This XTT viability assay was validated for high throughput screening of compounds in schistosomula, and dose-response curves of compounds could be reproduced. CONCLUSIONS We conclude that the XTT viability assay could be applied for the screening of large compounds collections in S. mansoni and accelerate the identification of novel antischistosomal compounds.
Collapse
Affiliation(s)
| | | | - Carlos Leomar Zani
- Laboratório de Química dos Produtos Naturais, René Rachou Research Center, FIOCRUZ, Belo Horizonte, Minas Gerais Brazil
| | - Marina Moraes Mourão
- Laboratório de Helmintologia e Malacologia Médica, René Rachou Research Center, FIOCRUZ, Belo Horizonte, Minas Gerais Brazil
| |
Collapse
|
31
|
Alvarenga TA, de Oliveira PF, de Souza JM, Tavares DC, Andrade E Silva ML, Cunha WR, Groppo M, Januário AH, Magalhães LG, Pauletti PM. Schistosomicidal Activity of Alkyl-phenols from the Cashew Anacardium occidentale against Schistosoma mansoni Adult Worms. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:8821-8827. [PMID: 27934289 DOI: 10.1021/acs.jafc.6b04200] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Bioassay-guided study of the ethanol extract from the cashew Anacardium occidentale furnished cardol triene (1), cardol diene (2), anacardic acid triene (3), cardol monoene (4), anacardic acid diene (5), 2-methylcardol triene (6), and 2-methylcardol diene (7). 1D- and 2D-NMR experiments and HRMS analysis confirmed the structures of compounds 1-7. Compounds 2 and 7 were active against Schistosoma mansoni adult worms in vitro, with LC50 values of 32.2 and 14.5 μM and selectivity indices of 6.1 and 21.2, respectively. Scanning electron microscopy of the tegument of male worms in the presence of compound 7 at 25 μM after 24 h of incubation showed severe damage as well as peeling and reduction in the number of spine tubercles. Transmission electron microscopy analyses revealed swollen mitochondrial membrane, vacuoles, and altered tegument in worms incubated with compound 2 (25 μM after 24 h). Worms incubated with compound 7 (25 μM after 24 h) had lysed interstitial tissue, degenerated mitochondria, and drastically altered tegument. Together, the results indicated that compound 7 presents promising in vitro schistosomicidal activity.
Collapse
Affiliation(s)
- Tavane A Alvarenga
- Center for Research in Exact and Technological Sciences, University of Franca , Avenida Doutor Armando Salles Oliveira 201, Franca, São Paulo 14404-600, Brazil
| | - Pollyanna F de Oliveira
- Center for Research in Exact and Technological Sciences, University of Franca , Avenida Doutor Armando Salles Oliveira 201, Franca, São Paulo 14404-600, Brazil
| | - Julia M de Souza
- Center for Research in Exact and Technological Sciences, University of Franca , Avenida Doutor Armando Salles Oliveira 201, Franca, São Paulo 14404-600, Brazil
| | - Denise C Tavares
- Center for Research in Exact and Technological Sciences, University of Franca , Avenida Doutor Armando Salles Oliveira 201, Franca, São Paulo 14404-600, Brazil
| | - Márcio L Andrade E Silva
- Center for Research in Exact and Technological Sciences, University of Franca , Avenida Doutor Armando Salles Oliveira 201, Franca, São Paulo 14404-600, Brazil
| | - Wilson R Cunha
- Center for Research in Exact and Technological Sciences, University of Franca , Avenida Doutor Armando Salles Oliveira 201, Franca, São Paulo 14404-600, Brazil
| | - Milton Groppo
- Department of Biology, Faculdade de Filosofia, Ciências e Letras, Ribeirão Preto, University of São Paulo , Avenida Bandeirantes 3900, Ribeirão Preto, São Paulo 14040-901, Brazil
| | - Ana H Januário
- Center for Research in Exact and Technological Sciences, University of Franca , Avenida Doutor Armando Salles Oliveira 201, Franca, São Paulo 14404-600, Brazil
| | - Lizandra G Magalhães
- Center for Research in Exact and Technological Sciences, University of Franca , Avenida Doutor Armando Salles Oliveira 201, Franca, São Paulo 14404-600, Brazil
| | - Patrícia M Pauletti
- Center for Research in Exact and Technological Sciences, University of Franca , Avenida Doutor Armando Salles Oliveira 201, Franca, São Paulo 14404-600, Brazil
| |
Collapse
|
32
|
Tekwu EM, Anyan WK, Boamah D, Baffour-Awuah KO, Keyetat Tekwu S, Penlap Beng V, Nyarko AK, Bosompem KM. Mechanically produced schistosomula as a higher-throughput tools for phenotypic pre-screening in drug sensitivity assays: current research and future trends. Biomark Res 2016; 4:21. [PMID: 27895916 PMCID: PMC5120492 DOI: 10.1186/s40364-016-0075-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 11/08/2016] [Indexed: 11/10/2022] Open
Abstract
It is crucial to develop new antischistosomal drugs since there is no vaccine and the whole world is relying on only a single drug for the treatment of schistosomiasis. One of the obstacles to the development of drugs is the absence of the high throughput objective screening methods to assess drug compounds efficacy. Thus for identification of new drug compounds candidates, fast and accurate in vitro assays are unavoidable and more research efforts in the field of drug discovery can target schistosomula. This review presents a substantial overview of the present state of in vitro drug sensitivity assays developed so far for the determination of anti-schistosomula activity of drug compounds, natural products and derivatives using newly transformed schistosomula (NTS). It highlights some of the challenges involved in in vitro compound screening using NTS and the way forward.
Collapse
Affiliation(s)
- Emmanuel Mouafo Tekwu
- Noguchi Memorial Institute for Medical Research (NMIMR), College of Health Sciences, University of Ghana, PO Box LG581 Legon, Accra, Ghana
- Laboratory for Tuberculosis Research and Pharmacology, Biotechnology Centre, Nkolbisson, University of Yaoundé 1, Yaoundé, Cameroon
| | - William Kofi Anyan
- Noguchi Memorial Institute for Medical Research (NMIMR), College of Health Sciences, University of Ghana, PO Box LG581 Legon, Accra, Ghana
| | - Daniel Boamah
- Centre for Plant Medicine Research (CPMR), Akwapim, Mampong, Ghana
| | - Kofi Owusu Baffour-Awuah
- Noguchi Memorial Institute for Medical Research (NMIMR), College of Health Sciences, University of Ghana, PO Box LG581 Legon, Accra, Ghana
| | | | - Veronique Penlap Beng
- Laboratory for Tuberculosis Research and Pharmacology, Biotechnology Centre, Nkolbisson, University of Yaoundé 1, Yaoundé, Cameroon
| | | | - Kwabena Mante Bosompem
- Noguchi Memorial Institute for Medical Research (NMIMR), College of Health Sciences, University of Ghana, PO Box LG581 Legon, Accra, Ghana
| |
Collapse
|
33
|
Guidi A, Lalli C, Perlas E, Bolasco G, Nibbio M, Monteagudo E, Bresciani A, Ruberti G. Discovery and Characterization of Novel Anti-schistosomal Properties of the Anti-anginal Drug, Perhexiline and Its Impact on Schistosoma mansoni Male and Female Reproductive Systems. PLoS Negl Trop Dis 2016; 10:e0004928. [PMID: 27518281 PMCID: PMC4982595 DOI: 10.1371/journal.pntd.0004928] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 07/26/2016] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Schistosomiasis, one of the world's greatest human neglected tropical diseases, is caused by parasitic trematodes of the genus Schistosoma. A unique feature of schistosome biology is that the induction of sexual maturation as well as the maintenance of the differentiation status of female reproductive organs and egg production, necessary for both disease transmission and pathogenesis, are strictly dependent on the male. The treatment and most control initiatives of schistosomiasis rely today on the long-term application of a single drug, praziquantel (PZQ), mostly by campaigns of mass drug administration. PZQ, while very active on adult parasites, has much lower activity against juvenile worms. Monotherapy also favors the selection of drug resistance and, therefore, new drugs are urgently needed. METHODS AND FINDINGS Following the screening of a small compound library with an ATP-based luminescent assay on Schistosoma mansoni schistosomula, we here report the identification and characterization of novel antischistosomal properties of the anti-anginal drug perhexiline maleate (PHX). By phenotypic worm survival assays and confocal microscopy studies we show that PHX, in vitro, has a marked lethal effect on all S. mansoni parasite life stages (newly transformed schistosomula, juvenile and adult worms) of the definitive host. We further demonstrate that sub-lethal doses of PHX significantly impair egg production and lipid depletion within the vitellarium of adult female worms. Moreover, we highlighted tegumental damage in adult male worms and remarkable reproductive system alterations in both female and male adult parasites. The in vivo study in S. mansoni-patent mice showed a notable variability of worm burdens in the individual experiments, with an overall minimal schistosomicidal effect upon PHX treatment. The short PHX half-life in mice, together with its very high rodent plasma proteins binding could be the cause of the modest efficacy of PHX in the schistosomiasis murine model. CONCLUSIONS/SIGNIFICANCE Overall, our data indicate that PHX could represent a promising starting point for novel schistosomicidal drug discovery programmes.
Collapse
Affiliation(s)
- Alessandra Guidi
- National Research Council, Institute of Cell Biology and Neurobiology, Campus A. Buzzati-Traverso Monterotondo, Roma, Italy
| | - Cristiana Lalli
- National Research Council, Institute of Cell Biology and Neurobiology, Campus A. Buzzati-Traverso Monterotondo, Roma, Italy
| | - Emerald Perlas
- European Molecular Biology Laboratory (EMBL), Mouse Biology Unit, Monterotondo, Italy
| | - Giulia Bolasco
- European Molecular Biology Laboratory (EMBL), Mouse Biology Unit, Monterotondo, Italy
| | - Martina Nibbio
- IRBM Science Park, Department of Preclinical Research, Pomezia, Italy
| | - Edith Monteagudo
- IRBM Science Park, Department of Preclinical Research, Pomezia, Italy
| | | | - Giovina Ruberti
- National Research Council, Institute of Cell Biology and Neurobiology, Campus A. Buzzati-Traverso Monterotondo, Roma, Italy
- * E-mail:
| |
Collapse
|
34
|
Neves BJ, Muratov E, Machado RB, Andrade CH, Cravo PVL. Modern approaches to accelerate discovery of new antischistosomal drugs. Expert Opin Drug Discov 2016; 11:557-67. [PMID: 27073973 PMCID: PMC6534417 DOI: 10.1080/17460441.2016.1178230] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION The almost exclusive use of only praziquantel for the treatment of schistosomiasis has raised concerns about the possible emergence of drug-resistant schistosomes. Consequently, there is an urgent need for new antischistosomal drugs. The identification of leads and the generation of high quality data are crucial steps in the early stages of schistosome drug discovery projects. AREAS COVERED Herein, the authors focus on the current developments in antischistosomal lead discovery, specifically referring to the use of automated in vitro target-based and whole-organism screens and virtual screening of chemical databases. They highlight the strengths and pitfalls of each of the above-mentioned approaches, and suggest possible roadmaps towards the integration of several strategies, which may contribute for optimizing research outputs and led to more successful and cost-effective drug discovery endeavors. EXPERT OPINION Increasing partnerships and access to funding for drug discovery have strengthened the battle against schistosomiasis in recent years. However, the authors believe this battle also includes innovative strategies to overcome scientific challenges. In this context, significant advances of in vitro screening as well as computer-aided drug discovery have contributed to increase the success rate and reduce the costs of drug discovery campaigns. Although some of these approaches were already used in current antischistosomal lead discovery pipelines, the integration of these strategies in a solid workflow should allow the production of new treatments for schistosomiasis in the near future.
Collapse
Affiliation(s)
- Bruno Junior Neves
- a LabMol - Laboratory for Molecular Modeling and Drug Design, Faculdade de Farmácia , Universidade Federal de Goiás , Goiânia , Brazil
| | - Eugene Muratov
- b Laboratory for Molecular Modeling, Eshelman School of Pharmacy , University of North Carolina , Chapel Hill , NC , USA
| | - Renato Beilner Machado
- c GenoBio - Laboratory of Genomics and Biotechnology, Instituto de Patologia Tropical e Saúde Pública , Universidade Federal de Goiás , Goiânia , Brazil
| | - Carolina Horta Andrade
- a LabMol - Laboratory for Molecular Modeling and Drug Design, Faculdade de Farmácia , Universidade Federal de Goiás , Goiânia , Brazil
| | - Pedro Vitor Lemos Cravo
- c GenoBio - Laboratory of Genomics and Biotechnology, Instituto de Patologia Tropical e Saúde Pública , Universidade Federal de Goiás , Goiânia , Brazil
- d Instituto de Higiene e Medicina Tropical , Universidade Nova de Lisboa , Lisbon , Portugal
| |
Collapse
|
35
|
Croft SL. Neglected tropical diseases in the genomics era: re-evaluating the impact of new drugs and mass drug administration. Genome Biol 2016; 17:46. [PMID: 26975569 PMCID: PMC4791878 DOI: 10.1186/s13059-016-0916-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Simon Croft answers Genome Biology's questions on ways to approach neglected tropical diseases in the genomics era, including re-evaluating the impact of new drugs and mass drug administration.
Collapse
Affiliation(s)
- Simon L Croft
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, Keppel Street, London, WC1E 7HT, UK.
| |
Collapse
|
36
|
Panic G, Flores D, Ingram-Sieber K, Keiser J. Fluorescence/luminescence-based markers for the assessment of Schistosoma mansoni schistosomula drug assays. Parasit Vectors 2015; 8:624. [PMID: 26644133 PMCID: PMC4672532 DOI: 10.1186/s13071-015-1233-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 11/26/2015] [Indexed: 12/27/2022] Open
Abstract
Background Schistosomiasis is responsible for a tremendous public health burden, yet only a single drug, praziquantel, is available. New antischistosomal treatments should therefore be developed. The accuracy, speed and objectivity of in vitro drug screening depend on the assay read-out. Microscopy is still the current gold standard and is in need of updating to an automated format. The aim of the present study was to investigate a panel of fluorescence/luminescence dyes for their applicability as viability markers in drug sensitivity assays for Schistosoma mansoni schistosomula. Methods A search for available viability and cytotoxicity marker assays and dyes was carried out and a short-list of the most interesting candidates was created. The selected kits and dyes were tested on S. mansoni Newly Transformed Schistosomula (NTS), first to assess whether they correlate with parasite viability, with comparatively low background noise, and to optimise assay conditions. Markers fulfilling these criteria were then tested in a dose–response drug assay using standard and experimental drugs and those for which an IC50 value could be accurately and reproducibly calculated were also tested on a subset of a compound library to determine their hit-identification accuracy. Results Of the 11 markers selected for testing, resazurin, Vybrant® and CellTiter-Glo® correlated best with NTS viability, produced signals ≥ 3-fold stronger than background noise and revealed a significant signal-to-NTS concentration relationship. Of these, CellTiter-Glo® could be used to accurately determine IC50 values for antischistosomals. Use of CellTiter-Glo® in a compound subset screen identified 100 % of hits that were identified using standard microscopic evaluation. Conclusion This study presents a comprehensive overview of the utility of colorimetric markers in drug screening. Our study demonstrates that it is difficult to develop a simple, cheap “just add” colorimetric marker-based drug assay for the larval stage of S. mansoni. CellTiter-Glo® can likely be used for endpoint go/no go screens and potentially for drug dose–response studies. Electronic supplementary material The online version of this article (doi:10.1186/s13071-015-1233-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gordana Panic
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, CH-4002, Basel, Switzerland. .,University of Basel, CH-4003, Basel, Switzerland.
| | - Dayana Flores
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, CH-4002, Basel, Switzerland. .,University of Basel, CH-4003, Basel, Switzerland.
| | - Katrin Ingram-Sieber
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, CH-4002, Basel, Switzerland. .,University of Basel, CH-4003, Basel, Switzerland.
| | - Jennifer Keiser
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, CH-4002, Basel, Switzerland. .,University of Basel, CH-4003, Basel, Switzerland.
| |
Collapse
|
37
|
Rinaldi G, Loukas A, Brindley PJ, Irelan JT, Smout MJ. Viability of developmental stages of Schistosoma mansoni quantified with xCELLigence worm real-time motility assay (xWORM). INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2015; 5:141-8. [PMID: 26288742 PMCID: PMC4534758 DOI: 10.1016/j.ijpddr.2015.07.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 07/09/2015] [Accepted: 07/13/2015] [Indexed: 12/15/2022]
Abstract
Infection with helminth parasites causes morbidity and mortality in billions of people and livestock worldwide. Where anthelmintic drugs are available, drug resistance is a major problem in livestock parasites, and a looming threat to public health. Monitoring the efficacy of these medicines and screening for new drugs has been hindered by the lack of objective, high-throughput approaches. Several cell monitoring technologies have been adapted for parasitic worms, including video-, fluorescence-, metabolism enzyme- and impedance-based tools that minimize the screening bottleneck. Using the xCELLigence impedance-based system we previously developed a motility-viability assay that is applicable for a range of helminth parasites. Here we have improved substantially the assay by using diverse frequency settings, and have named it the xCELLigence worm real-time motility assay (xWORM). By utilizing strictly standardized mean difference analysis we compared the xWORM output measured with 10, 25 and 50 kHz frequencies to quantify the motility of schistosome adults (human blood flukes) and hatching of schistosome eggs. Furthermore, we have described a novel application of xWORM to monitor movement of schistosome cercariae, the developmental stage that is infectious to humans. For all three stages, 25 kHz was either optimal or near-optimal for monitoring and quantifying schistosome motility. These improvements in methodology sensitivity should enhance the capacity to screen small compound libraries for new drugs both for schistosomes and other helminth pathogens at large. 25 kHz on the xCELLigence system dramatically improves the schistosome xWORM assay. xWORM assay can efficiently determine viability of Schistome adults or eggs. First time cercariae have been incorporated into an automated viability assay. Other helminth monitoring may benefit from alternate xCELLigence frequency options.
Collapse
Affiliation(s)
- Gabriel Rinaldi
- Department of Microbiology, Immunology & Tropical Medicine, and Research Center for the Neglected Diseases of Poverty, School of Medicine and Health Sciences, George Washington University, Washington, D.C. 20037, USA
| | - Alex Loukas
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, McGregor Rd, Smithfield, Cairns, Queensland 4878, Australia
| | - Paul J. Brindley
- Department of Microbiology, Immunology & Tropical Medicine, and Research Center for the Neglected Diseases of Poverty, School of Medicine and Health Sciences, George Washington University, Washington, D.C. 20037, USA
| | | | - Michael J. Smout
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, McGregor Rd, Smithfield, Cairns, Queensland 4878, Australia
- Corresponding author. James Cook University, Cairns, Queensland 4878, Australia.
| |
Collapse
|