1
|
Siegel SV, Trimarsanto H, Amato R, Murie K, Taylor AR, Sutanto E, Kleinecke M, Whitton G, Watson JA, Imwong M, Assefa A, Rahim AG, Nguyen HC, Tran TH, Green JA, Koh GCKW, White NJ, Day N, Kwiatkowski DP, Rayner JC, Price RN, Auburn S. Lineage-informative microhaplotypes for recurrence classification and spatio-temporal surveillance of Plasmodium vivax malaria parasites. Nat Commun 2024; 15:6757. [PMID: 39117628 PMCID: PMC11310204 DOI: 10.1038/s41467-024-51015-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/25/2024] [Indexed: 08/10/2024] Open
Abstract
Challenges in classifying recurrent Plasmodium vivax infections constrain surveillance of antimalarial efficacy and transmission. Recurrent infections may arise from activation of dormant liver stages (relapse), blood-stage treatment failure (recrudescence) or reinfection. Molecular inference of familial relatedness (identity-by-descent or IBD) can help resolve the probable origin of recurrences. As whole genome sequencing of P. vivax remains challenging, targeted genotyping methods are needed for scalability. We describe a P. vivax marker discovery framework to identify and select panels of microhaplotypes (multi-allelic markers within small, amplifiable segments of the genome) that can accurately capture IBD. We evaluate panels of 50-250 microhaplotypes discovered in a global set of 615 P. vivax genomes. A candidate global 100-microhaplotype panel exhibits high marker diversity in the Asia-Pacific, Latin America and horn of Africa (median HE = 0.70-0.81) and identifies 89% of the polyclonal infections detected with genome-wide datasets. Data simulations reveal lower error in estimating pairwise IBD using microhaplotypes relative to traditional biallelic SNP barcodes. The candidate global panel also exhibits high accuracy in predicting geographic origin and captures local infection outbreak and bottlenecking events. Our framework is open-source enabling customised microhaplotype discovery and selection, with potential for porting to other species or data resources.
Collapse
Affiliation(s)
- Sasha V Siegel
- Wellcome Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
- Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, 0811, Australia
| | - Hidayat Trimarsanto
- Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, 0811, Australia
- Eijkman Research Center for Molecular Biology, National Research and Innovation Agency, Jakarta, 10430, Indonesia
| | - Roberto Amato
- Wellcome Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
| | - Kathryn Murie
- Wellcome Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
| | - Aimee R Taylor
- Institut Pasteur, University de Paris, Infectious Disease Epidemiology and Analytics Unit, Paris, France
| | - Edwin Sutanto
- Exeins Health Initiative, Jakarta Selatan, 12870, Indonesia
| | - Mariana Kleinecke
- Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, 0811, Australia
| | | | - James A Watson
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7LJ, UK
- Oxford University Clinical Research Unit, Hospital for Tropical Diseases, 764 Vo Van Kiet, W.1, Dist.5, Ho Chi Minh City, Vietnam
| | - Mallika Imwong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Ashenafi Assefa
- Ethiopian Public Health Institute, Addis Ababa, Ethiopia
- Institute for Global Health and Infectious Diseases, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Awab Ghulam Rahim
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
- Afghan International Islamic University, Kabul, Afghanistan
| | - Hoang Chau Nguyen
- Oxford University Clinical Research Unit, Hospital for Tropical Diseases, 764 Vo Van Kiet, W.1, Dist.5, Ho Chi Minh City, Vietnam
| | - Tinh Hien Tran
- Oxford University Clinical Research Unit, Hospital for Tropical Diseases, 764 Vo Van Kiet, W.1, Dist.5, Ho Chi Minh City, Vietnam
| | | | - Gavin C K W Koh
- Department of Infectious Diseases, Northwick Park Hospital, Harrow, UK
| | - Nicholas J White
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7LJ, UK
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Nicholas Day
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7LJ, UK
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | | | - Julian C Rayner
- Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge, CB2 0XY, UK
| | - Ric N Price
- Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, 0811, Australia
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7LJ, UK
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Sarah Auburn
- Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, 0811, Australia.
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7LJ, UK.
| |
Collapse
|
2
|
Bradley L, Yewhalaw D, Hemming-Schroeder E, Jeang B, Lee MC, Zemene E, Degefa T, Lo E, King C, Kazura J, Yan G. Epidemiology of Plasmodium vivax in Duffy negatives and Duffy positives from community and health centre collections in Ethiopia. Malar J 2024; 23:76. [PMID: 38486245 PMCID: PMC10941426 DOI: 10.1186/s12936-024-04895-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 02/28/2024] [Indexed: 03/17/2024] Open
Abstract
BACKGROUND Malaria remains a significant cause of morbidity and mortality in Ethiopia with an estimated 3.8 million cases in 2021 and 61% of the population living in areas at risk of malaria transmission. Throughout the country Plasmodium vivax and Plasmodium falciparum are co-endemic, and Duffy expression is highly heterogeneous. The public health significance of Duffy negativity in relation to P. vivax malaria in Ethiopia, however, remains unclear. This study seeks to explore the prevalence and rates of P. vivax malaria infection across Duffy phenotypes in clinical and community settings. METHODS A total of 9580 and 4667 subjects from community and health facilities from a malaria endemic site and an epidemic-prone site in western Ethiopia were enrolled and examined for P. vivax infection and Duffy expression from February 2018 to April 2021. Association between Duffy expression, P. vivax and P. falciparum infections were examined for samples collected from asymptomatic community volunteers and symptomatic subjects from health centres. RESULTS Infection rate of P. vivax among Duffy positives was 2-22 fold higher than Duffy negatives in asymptomatic volunteers from the community. Parasite positivity rate was 10-50 fold higher in Duffy positives than Duffy negatives among samples collected from febrile patients attending health centres and mixed P. vivax and P. falciparum infections were significantly more common than P. vivax mono infections among Duffy negative individuals. Plasmodium vivax parasitaemia measured by 18sRNA parasite gene copy number was similar between Duffy positives and Duffy negatives. CONCLUSIONS Duffy negativity does not offer complete protection against infection by P. vivax, and cases of P. vivax in Duffy negatives are widespread in Ethiopia, being found in asymptomatic volunteers from communities and in febrile patients from health centres. These findings offer evidence for consideration when developing control and intervention strategies in areas of endemic P. vivax and Duffy heterogeneity.
Collapse
Affiliation(s)
- Lauren Bradley
- Department of Ecology and Evolutionary Biology, School of Biological Sciences, University of California Irvine, Irvine, CA, 92697, USA
| | - Delenasaw Yewhalaw
- Department of Medical Laboratory Sciences and Pathology, College of Health Sciences, Jimma University, 5195, Jimma, Ethiopia
- Tropical and Infectious Diseases Research Centre, Jimma University, Jimma, Ethiopia
| | - Elizabeth Hemming-Schroeder
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Brook Jeang
- Department of Ecology and Evolutionary Biology, School of Biological Sciences, University of California Irvine, Irvine, CA, 92697, USA
| | - Ming-Chieh Lee
- Department of Ecology and Evolutionary Biology, School of Biological Sciences, University of California Irvine, Irvine, CA, 92697, USA
| | - Endalew Zemene
- Tropical and Infectious Diseases Research Centre, Jimma University, Jimma, Ethiopia
| | - Teshome Degefa
- School of Medical Laboratory Sciences, Faculty of Health Sciences, Jimma University, Jimma, Ethiopia
| | - Eugenia Lo
- Department of Microbiology and Immunology, Drexel University, Philadelphia, PA, 19104, USA
| | - Christopher King
- Center for Global Health and Disease, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - James Kazura
- Center for Global Health and Disease, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Guiyun Yan
- Department of Ecology and Evolutionary Biology, School of Biological Sciences, University of California Irvine, Irvine, CA, 92697, USA.
- Program in Public Health, College of Health Sciences, University of California at Irvine, Irvine, CA, 92697, USA.
| |
Collapse
|
3
|
Gartner V, Redelings BD, Gaither C, Parr JB, Kalonji A, Phanzu F, Brazeau NF, Juliano JJ, Wray GA. Genomic insights into Plasmodium vivax population structure and diversity in central Africa. Malar J 2024; 23:27. [PMID: 38238806 PMCID: PMC10797969 DOI: 10.1186/s12936-024-04852-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 01/12/2024] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND Though Plasmodium vivax is the second most common malaria species to infect humans, it has not traditionally been considered a major human health concern in central Africa given the high prevalence of the human Duffy-negative phenotype that is believed to prevent infection. Increasing reports of asymptomatic and symptomatic infections in Duffy-negative individuals throughout Africa raise the possibility that P. vivax is evolving to evade host resistance, but there are few parasite samples with genomic data available from this part of the world. METHODS Whole genome sequencing of one new P. vivax isolate from the Democratic Republic of the Congo (DRC) was performed and used in population genomics analyses to assess how this central African isolate fits into the global context of this species. RESULTS Plasmodium vivax from DRC is similar to other African populations and is not closely related to the non-human primate parasite P. vivax-like. Evidence is found for a duplication of the gene PvDBP and a single copy of PvDBP2. CONCLUSION These results suggest an endemic P. vivax population is present in central Africa. Intentional sampling of P. vivax across Africa would further contextualize this sample within African P. vivax diversity and shed light on the mechanisms of infection in Duffy negative individuals. These results are limited by the uncertainty of how representative this single sample is of the larger population of P. vivax in central Africa.
Collapse
Affiliation(s)
- Valerie Gartner
- Biology Department, Duke University, Durham, NC, 27708, USA
- University Program in Genetics and Genomics, Duke University, Durham, NC, 27708, USA
| | - Benjamin D Redelings
- Biology Department, Duke University, Durham, NC, 27708, USA
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, 66045, USA
- Ronin Institute, Durham, NC, 27705, USA
| | | | | | - Albert Kalonji
- SANRU Asbl, 149 A/B, Boulevard du 30 Juin, Kinshasa, Gombe, Democratic Republic of Congo
| | - Fernandine Phanzu
- SANRU Asbl, 149 A/B, Boulevard du 30 Juin, Kinshasa, Gombe, Democratic Republic of Congo
| | | | | | - Gregory A Wray
- Biology Department, Duke University, Durham, NC, 27708, USA.
| |
Collapse
|
4
|
Kebede AM, Sutanto E, Trimarsanto H, Benavente ED, Barnes M, Pearson RD, Siegel SV, Erko B, Assefa A, Getachew S, Aseffa A, Petros B, Lo E, Mohammed R, Yilma D, Rumaseb A, Nosten F, Noviyanti R, Rayner JC, Kwiatkowski DP, Price RN, Golassa L, Auburn S. Genomic analysis of Plasmodium vivax describes patterns of connectivity and putative drivers of adaptation in Ethiopia. Sci Rep 2023; 13:20788. [PMID: 38012191 PMCID: PMC10682486 DOI: 10.1038/s41598-023-47889-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/20/2023] [Indexed: 11/29/2023] Open
Abstract
Ethiopia has the greatest burden of Plasmodium vivax in Africa, but little is known about the epidemiological landscape of parasites across the country. We analysed the genomic diversity of 137 P. vivax isolates collected nine Ethiopian districts from 2012 to 2016. Signatures of selection were detected by cross-country comparisons with isolates from Thailand (n = 104) and Indonesia (n = 111), representing regions with low and high chloroquine resistance respectively. 26% (35/137) of Ethiopian infections were polyclonal, and 48.5% (17/35) of these comprised highly related clones (within-host identity-by-descent > 25%), indicating frequent co-transmission and superinfection. Parasite gene flow between districts could not be explained entirely by geographic distance, with economic and cultural factors hypothesised to have an impact on connectivity. Amplification of the duffy binding protein gene (pvdbp1) was prevalent across all districts (16-75%). Cross-population haplotype homozygosity revealed positive selection in a region proximal to the putative chloroquine resistance transporter gene (pvcrt-o). An S25P variant in amino acid transporter 1 (pvaat1), whose homologue has recently been implicated in P. falciparum chloroquine resistance evolution, was prevalent in Ethiopia (96%) but not Thailand or Indonesia (35-53%). The genomic architecture in Ethiopia highlights circulating variants of potential public health concern in an endemic setting with evidence of stable transmission.
Collapse
Affiliation(s)
| | | | - Hidayat Trimarsanto
- Menzies School of Health Research and Charles Darwin University, Casuarina, PO Box 41096, Darwin, NT, 0811, Australia
- Eijkman Institute for Molecular Biology, Jakarta, Indonesia
| | - Ernest Diez Benavente
- Laboratory of Experimental Cardiology, Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Mariana Barnes
- Menzies School of Health Research and Charles Darwin University, Casuarina, PO Box 41096, Darwin, NT, 0811, Australia
| | | | | | - Berhanu Erko
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Ashenafi Assefa
- Ethiopian Public Health Institute, Addis Ababa, Ethiopia
- School of Public Health, Addis Ababa University, Addis Ababa, Ethiopia
| | - Sisay Getachew
- Armauer Hansen Research Unit (AHRI), Addis Ababa, Ethiopia
- Addis Ababa University, Addis Ababa, Ethiopia
- Millipore Sigma (Bioreliance), Rockville, USA
| | - Abraham Aseffa
- Armauer Hansen Research Unit (AHRI), Addis Ababa, Ethiopia
| | | | - Eugenia Lo
- Department of Microbiology and Immunology, College of Medicine, Drexel University, Philadelphia, USA
| | | | - Daniel Yilma
- Jimma University Clinical Trial Unit, Department of Internal Medicine, Jimma University, Jimma, Ethiopia
| | - Angela Rumaseb
- Menzies School of Health Research and Charles Darwin University, Casuarina, PO Box 41096, Darwin, NT, 0811, Australia
| | - Francois Nosten
- Shoklo Malaria Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | - Julian C Rayner
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | | | - Ric N Price
- Menzies School of Health Research and Charles Darwin University, Casuarina, PO Box 41096, Darwin, NT, 0811, Australia
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| | - Lemu Golassa
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Sarah Auburn
- Menzies School of Health Research and Charles Darwin University, Casuarina, PO Box 41096, Darwin, NT, 0811, Australia.
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
5
|
Bradley L, Yewhalaw D, Hemming-Schroeder E, Embury P, Lee MC, Zemene E, Degefa T, King C, Kazura J, Yan G, Dent A. Determination of Plasmodium vivax and Plasmodium falciparum Malaria Exposure in Two Ethiopian Communities and Its Relationship to Duffy Expression. Am J Trop Med Hyg 2023; 109:1028-1035. [PMID: 37918005 PMCID: PMC10622468 DOI: 10.4269/ajtmh.22-0644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 07/16/2023] [Indexed: 11/04/2023] Open
Abstract
Despite historical dogma that Duffy blood group negativity of human erythrocytes confers resistance to Plasmodium vivax blood stage infection, cases of P. vivax malaria and asymptomatic blood stage infection (subclinical malaria) have recently been well documented in Duffy-negative individuals throughout Africa. However, the impact of Duffy negativity on the development of naturally acquired immunity to P. vivax remains poorly understood. We examined antibody reactivity to P. vivax and P. falciparum antigens at two field sites in Ethiopia and assessed Duffy gene expression by polymerase chain reaction amplification and sequencing of the GATA-1 transcription factor-binding site of the Duffy antigen receptor for chemokines (DARC) gene promotor region that is associated with silencing of erythroid cell transcription and absent protein expression. Antibodies to three of the four P. vivax blood stage antigens examined, RBP2b, EBP2, and DBPIISal-1, were significantly lower (P < 0.001) in Duffy-negative individuals relative to Duffy-positive individuals. In stark contrast, no clear pattern was found across Duffy-negative and Duffy-positive genotypes for P. falciparum antibodies. We conclude that lack of erythroid Duffy expression is associated with reduced serologic responses, indicative of less naturally acquired immunity and less cumulative exposure to blood stage P. vivax parasites relative to Duffy positive individuals living in the same communities.
Collapse
Affiliation(s)
- Lauren Bradley
- Department of Ecology and Evolutionary Biology, School of Biological Sciences, University of California, Irvine, California
| | - Delenasaw Yewhalaw
- Department of Medical Laboratory Sciences and Pathology, College of Health Sciences, Jimma University, Jimma, Ethiopia
- Tropical and Infectious Diseases Research Center, Jimma University, Jimma, Ethiopia
| | | | - Paula Embury
- Center for Global Health and Disease, Case Western Reserve University, Cleveland, Ohio
| | - Ming-Chieh Lee
- Program in Public Health, College of Health Sciences, University of California, Irvine, California
| | - Endalew Zemene
- Tropical and Infectious Diseases Research Center, Jimma University, Jimma, Ethiopia
| | - Teshome Degefa
- School of Medical Laboratory Sciences, Faculty of Health Sciences, Jimma University, Jimma, Ethiopia
| | - Christopher King
- Center for Global Health and Disease, Case Western Reserve University, Cleveland, Ohio
| | - James Kazura
- Center for Global Health and Disease, Case Western Reserve University, Cleveland, Ohio
| | - Guiyun Yan
- Department of Ecology and Evolutionary Biology, School of Biological Sciences, University of California, Irvine, California
- Program in Public Health, College of Health Sciences, University of California, Irvine, California
| | - Arlene Dent
- Center for Global Health and Disease, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
6
|
Bradley L, Yewhalaw D, Hemming-Schroeder E, Jeang B, Lee MC, Zemene E, Degefa T, Lo E, King C, Kazura J, Yan G. Comparison of Plasmodium Vivax Infections in Duffy Negatives From Community and Health Center Collections in Ethiopia. RESEARCH SQUARE 2023:rs.3.rs-3385916. [PMID: 37886593 PMCID: PMC10602065 DOI: 10.21203/rs.3.rs-3385916/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Background Malaria remains a significant cause of morbidity and mortality in Ethiopia with an estimated 4.2 million annual cases and 61% of the population living in areas at risk of malaria transmission. Throughout the country Plasmodium vivax and P. falciparum are co-endemic, and Duffy expression is highly heterogeneous. The public health significance of Duffy negativity in relation to P. vivax malaria in Ethiopia, however, remains unclear. Methods A total of 9,580 and 4,667 subjects from community and health facilities from a malaria endemic site and an epidemic-prone site in western Ethiopia were enrolled and examined for P. vivax infection and Duffy expression. Association between Duffy expression, P. vivax and P. falciparum infections were examined for samples collected from asymptomatic community volunteers and symptomatic subjects from health centers. Results Among the community-based cross-sectional samples, infection rate of P. vivax among the Duffy positives was 2-22 fold higher than among the Duffy negatives. Parasite positivity rate was 10-50 fold higher in Duffy positive than Duffy negatives among samples collected from the health center settings and mixed P. vivax and P. falciparum infections were significantly more common than P. vivax mono infections among Duffy negative individuals. P. vivax parasitemia measured by 18sRNA parasite gene copy number was similar between Duffy positives and Duffy negatives. Conclusions Duffy negativity does not offer complete protection against infection by P. vivax, and cases of P. vivax in Duffy negatives are widespread in Ethiopia, being found in asymptomatic volunteers from communities and in febrile patients from health centers. These findings offer evidence for consideration when developing control and intervention strategies in areas of endemic P. vivax and Duffy heterogeneity.
Collapse
|
7
|
Kundu P, Naskar D, McKie SJ, Dass S, Kanjee U, Introini V, Ferreira MU, Cicuta P, Duraisingh M, Deane JE, Rayner JC. The structure of a Plasmodium vivax Tryptophan Rich Antigen domain suggests a lipid binding function for a pan-Plasmodium multi-gene family. Nat Commun 2023; 14:5703. [PMID: 37709739 PMCID: PMC10502043 DOI: 10.1038/s41467-023-40885-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 08/10/2023] [Indexed: 09/16/2023] Open
Abstract
Tryptophan Rich Antigens (TRAgs) are encoded by a multi-gene family found in all Plasmodium species, but are significantly expanded in P. vivax and closely related parasites. We show that multiple P. vivax TRAgs are expressed on the merozoite surface and that one, PVP01_0000100 binds red blood cells with a strong preference for reticulocytes. Using X-ray crystallography, we solved the structure of the PVP01_0000100 C-terminal tryptophan rich domain, which defines the TRAg family, revealing a three-helical bundle that is conserved across Plasmodium and has structural homology with lipid-binding BAR domains involved in membrane remodelling. Biochemical assays confirm that the PVP01_0000100 C-terminal domain has lipid binding activity with preference for sulfatide, a glycosphingolipid present in the outer leaflet of plasma membranes. Deletion of the putative orthologue in P. knowlesi, PKNH_1300500, impacts invasion in reticulocytes, suggesting a role during this essential process. Together, this work defines an emerging molecular function for the Plasmodium TRAg family.
Collapse
Affiliation(s)
- Prasun Kundu
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - Deboki Naskar
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - Shannon J McKie
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - Sheena Dass
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Usheer Kanjee
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Viola Introini
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, UK
| | - Marcelo U Ferreira
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- Global Health and Tropical Medicine, Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Institute of Hygiene and Tropical Medicine, NOVA University of Lisbon, Lisbon, Portugal
| | - Pietro Cicuta
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, UK
| | - Manoj Duraisingh
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| | - Janet E Deane
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK.
| | - Julian C Rayner
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK.
| |
Collapse
|
8
|
Ahmed S, Pestana K, Ford A, Elfaki M, Gamil E, Elamin AF, Hamad SO, Elfaki TM, Abukashawa SMA, Lo E, Abdel Hamid MM. Prevalence and distribution of Plasmodium vivax Duffy Binding Protein gene duplications in Sudan. PLoS One 2023; 18:e0287668. [PMID: 37471337 PMCID: PMC10358875 DOI: 10.1371/journal.pone.0287668] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 06/12/2023] [Indexed: 07/22/2023] Open
Abstract
Plasmodium vivax Duffy Binding Protein (PvDBP) is essential for interacting with Duffy antigen receptor for chemokines (DARC) on the surface of red blood cells to allow invasion. Earlier whole genome sequence analyses provided evidence for the duplications of PvDBP. It is unclear whether PvDBP duplications play a role in recent increase of P. vivax in Sudan and in Duffy-negative individuals. In this study, the prevalence and type of PvDBP duplications, and its relationship to demographic and clinical features were investigated. A total of 200 malaria-suspected blood samples were collected from health facilities in Khartoum, River Nile, and Al-Obied. Among them, 145 were confirmed to be P. vivax, and 43 (29.7%) had more than one PvDBP copies with up to four copies being detected. Both the Malagasy and Cambodian types of PvDBP duplication were detected. No significant difference was observed between the two types of duplications between Duffy groups. Parasitemia was significantly higher in samples with the Malagasy-type than those without duplications. No significant difference was observed in PvDBP duplication prevalence and copy number among study sites. The functional significance of PvDBP duplications, especially those Malagasy-type that associated with higher parasitemia, merit further investigations.
Collapse
Affiliation(s)
- Safaa Ahmed
- Institute of Endemic Diseases, University of Khartoum, Khartoum, Sudan
- Department of Zoology, Faculty of Science, University of Khartoum, Khartoum, Sudan
| | - Kareen Pestana
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, United States of America
| | - Anthony Ford
- Department of Bioinformatics and Genomics, University of North Carolina, Charlotte, NC, United States of America
| | - Mohammed Elfaki
- Institute of Endemic Diseases, University of Khartoum, Khartoum, Sudan
- Department of Microbiology and Parasitology, Faculty of Medicine, Jazan University, Jazan, Saudi Arabia
| | - Eiman Gamil
- Institute of Endemic Diseases, University of Khartoum, Khartoum, Sudan
| | - Arwa F. Elamin
- Institute of Endemic Diseases, University of Khartoum, Khartoum, Sudan
| | - Samuel Omer Hamad
- Institute of Endemic Diseases, University of Khartoum, Khartoum, Sudan
| | - Tarig Mohamed Elfaki
- Institute of Endemic Diseases, University of Khartoum, Khartoum, Sudan
- National Malaria Control Program, Federal Ministry of Health, Khartoum, Sudan
| | | | - Eugenia Lo
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, United States of America
- School of Data Science, University of North Carolina at Charlotte, Charlotte, NC, United States of America
| | | |
Collapse
|
9
|
Siegel SV, Amato R, Trimarsanto H, Sutanto E, Kleinecke M, Murie K, Whitton G, Taylor AR, Watson JA, Imwong M, Assefa A, Rahim AG, Chau NH, Hien TT, Green JA, Koh G, White NJ, Day N, Kwiatkowski DP, Rayner JC, Price RN, Auburn S. Lineage-informative microhaplotypes for spatio-temporal surveillance of Plasmodium vivax malaria parasites. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.03.13.23287179. [PMID: 36993192 PMCID: PMC10055443 DOI: 10.1101/2023.03.13.23287179] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Challenges in understanding the origin of recurrent Plasmodium vivax infections constrains the surveillance of antimalarial efficacy and transmission of this neglected parasite. Recurrent infections within an individual may arise from activation of dormant liver stages (relapse), blood-stage treatment failure (recrudescence) or new inoculations (reinfection). Molecular inference of familial relatedness (identity-by-descent or IBD) based on whole genome sequence data, together with analysis of the intervals between parasitaemic episodes ("time-to-event" analysis), can help resolve the probable origin of recurrences. Whole genome sequencing of predominantly low-density P. vivax infections is challenging, so an accurate and scalable genotyping method to determine the origins of recurrent parasitaemia would be of significant benefit. We have developed a P. vivax genome-wide informatics pipeline to select specific microhaplotype panels that can capture IBD within small, amplifiable segments of the genome. Using a global set of 615 P. vivax genomes, we derived a panel of 100 microhaplotypes, each comprising 3-10 high frequency SNPs within <200 bp sequence windows. This panel exhibits high diversity in regions of the Asia-Pacific, Latin America and the horn of Africa (median HE = 0.70-0.81) and it captured 89% (273/307) of the polyclonal infections detected with genome-wide datasets. Using data simulations, we demonstrate lower error in estimating pairwise IBD using microhaplotypes, relative to traditional biallelic SNP barcodes. Our panel exhibited high accuracy in predicting the country of origin (median Matthew's correlation coefficient >0.9 in 90% countries tested) and it also captured local infection outbreak and bottlenecking events. The informatics pipeline is available open-source and yields microhaplotypes that can be readily transferred to high-throughput amplicon sequencing assays for surveillance in malaria-endemic regions.
Collapse
Affiliation(s)
- Sasha V. Siegel
- Wellcome Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
- Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory 0811, Australia
| | - Roberto Amato
- Wellcome Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
- MRC Centre for Genomics and Global Health, Big Data Institute, University of Oxford, Oxford, UK
| | - Hidayat Trimarsanto
- Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory 0811, Australia
- Eijkman Institute for Molecular Biology, National Research and Innovation Agency, Jakarta 10430, Indonesia
| | - Edwin Sutanto
- Exeins Health Initiative, Jakarta Selatan 12870, Indonesia
| | - Mariana Kleinecke
- Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory 0811, Australia
| | - Kathryn Murie
- Wellcome Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | | | - Aimee R. Taylor
- Institut Pasteur, University de Paris, Infectious Disease Epidemiology and Analytics Unit, Paris, France
| | - James A. Watson
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, OX3 7LJ, UK
| | - Mallika Imwong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | | | - Awab Ghulam Rahim
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
- Nangarhar Medical Faculty, Nangarhar University, Ministry of Higher Education, Afghanistan
| | - Nguyen Hoang Chau
- Oxford University Clinical Research Unit, Hospital for Tropical Diseases, 764 Vo Van Kiet, W.1, Dist.5, Ho Chi Minh City, Vietnam
| | - Tran Tinh Hien
- Oxford University Clinical Research Unit, Hospital for Tropical Diseases, 764 Vo Van Kiet, W.1, Dist.5, Ho Chi Minh City, Vietnam
| | | | | | - Nicholas J. White
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, OX3 7LJ, UK
| | - Nicholas Day
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, OX3 7LJ, UK
| | - Dominic P. Kwiatkowski
- Wellcome Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, OX3 7LJ, UK
| | - Julian C. Rayner
- Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge, CB2 0XY, UK
| | - Ric N. Price
- Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory 0811, Australia
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, OX3 7LJ, UK
| | - Sarah Auburn
- Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory 0811, Australia
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
10
|
Molina-Franky J, Reyes C, Picón Jaimes YA, Kalkum M, Patarroyo MA. The Black Box of Cellular and Molecular Events of Plasmodium vivax Merozoite Invasion into Reticulocytes. Int J Mol Sci 2022; 23:ijms232314528. [PMID: 36498854 PMCID: PMC9739029 DOI: 10.3390/ijms232314528] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 11/16/2022] [Indexed: 11/23/2022] Open
Abstract
Plasmodium vivax is the most widely distributed malaria parasite affecting humans worldwide, causing ~5 million cases yearly. Despite the disease's extensive burden, there are gaps in the knowledge of the pathophysiological mechanisms by which P. vivax invades reticulocytes. In contrast, this crucial step is better understood for P. falciparum, the less widely distributed but more often fatal malaria parasite. This discrepancy is due to the difficulty of studying P. vivax's exclusive invasion of reticulocytes, which represent 1-2% of circulating cells. Its accurate targeting mechanism has not yet been clarified, hindering the establishment of long-term continuous in vitro culture systems. So far, only three reticulocyte invasion pathways have been characterised based on parasite interactions with DARC, TfR1 and CD98 host proteins. However, exposing the parasite's alternative invasion mechanisms is currently being considered, opening up a large field for exploring the entry receptors used by P. vivax for invading host cells. New methods must be developed to ensure better understanding of the parasite to control malarial transmission and to eradicate the disease. Here, we review the current state of knowledge on cellular and molecular mechanisms of P. vivax's merozoite invasion to contribute to a better understanding of the parasite's biology, pathogenesis and epidemiology.
Collapse
Affiliation(s)
- Jessica Molina-Franky
- Department of Immunology and Theranostics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá 112111, Colombia
- Biotechnology, Faculty of Sciences, Universidad Nacional de Colombia, Bogotá 111321, Colombia
| | - César Reyes
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá 112111, Colombia
- Biotechnology, Faculty of Sciences, Universidad Nacional de Colombia, Bogotá 111321, Colombia
- Animal Sciences Faculty, Universidad de Ciencias Aplicadas y Ambientales (U.D.C.A), Bogotá 111166, Colombia
| | | | - Markus Kalkum
- Department of Immunology and Theranostics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
- Correspondence: (M.K.); (M.A.P.)
| | - Manuel Alfonso Patarroyo
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá 112111, Colombia
- Faculty of Medicine, Universidad Nacional de Colombia, Bogotá 111321, Colombia
- Correspondence: (M.K.); (M.A.P.)
| |
Collapse
|
11
|
Brashear AM, Cui L. Population genomics in neglected malaria parasites. Front Microbiol 2022; 13:984394. [PMID: 36160257 PMCID: PMC9493318 DOI: 10.3389/fmicb.2022.984394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Malaria elimination includes neglected human malaria parasites Plasmodium vivax, Plasmodium ovale spp., and Plasmodium malariae. Biological features such as association with low-density infection and the formation of hypnozoites responsible for relapse make their elimination challenging. Studies on these parasites rely primarily on clinical samples due to the lack of long-term culture techniques. With improved methods to enrich parasite DNA from clinical samples, whole-genome sequencing of the neglected malaria parasites has gained increasing popularity. Population genomics of more than 2200 P. vivax global isolates has improved our knowledge of parasite biology and host-parasite interactions, identified vaccine targets and potential drug resistance markers, and provided a new way to track parasite migration and introduction and monitor the evolutionary response of local populations to elimination efforts. Here, we review advances in population genomics for neglected malaria parasites, discuss how the rich genomic information is being used to understand parasite biology and epidemiology, and explore opportunities for the applications of malaria genomic data in malaria elimination practice.
Collapse
|
12
|
Kar S, Sinha A. Plasmodium vivax Duffy Binding Protein-Based Vaccine: a Distant Dream. Front Cell Infect Microbiol 2022; 12:916702. [PMID: 35909975 PMCID: PMC9325973 DOI: 10.3389/fcimb.2022.916702] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 06/21/2022] [Indexed: 11/13/2022] Open
Abstract
The neglected but highly prevalent Plasmodium vivax in South-east Asia and South America poses a great challenge, with regards to long-term in-vitro culturing and heavily limited functional assays. Such visible challenges as well as narrowed progress in development of experimental research tools hinders development of new drugs and vaccines. The leading vaccine candidate antigen Plasmodium vivax Duffy Binding Protein (PvDBP), is essential for reticulocyte invasion by binding to its cognate receptor, the Duffy Antigen Receptor for Chemokines (DARC), on the host’s reticulocyte surface. Despite its highly polymorphic nature, the amino-terminal cysteine-rich region II of PvDBP (PvDBPII) has been considered as an attractive target for vaccine-mediated immunity and has successfully completed the clinical trial Phase 1. Although this molecule is an attractive vaccine candidate against vivax malaria, there is still a question on its viability due to recent findings, suggesting that there are still some aspects which needs to be looked into further. The highly polymorphic nature of PvDBPII and strain-specific immunity due to PvDBPII allelic variation in Bc epitopes may complicate vaccine efficacy. Emergence of various blood-stage antigens, such as PvRBP, PvEBP and supposedly many more might stand in the way of attaining full protection from PvDBPII. As a result, there is an urgent need to assess and re-assess various caveats connected to PvDBP, which might help in designing a long-term promising vaccine for P. vivax malaria. This review mainly deals with a bunch of rising concerns for validation of DBPII as a vaccine candidate antigen for P. vivax malaria.
Collapse
|
13
|
Adam I, Alam MS, Alemu S, Amaratunga C, Amato R, Andrianaranjaka V, Anstey NM, Aseffa A, Ashley E, Assefa A, Auburn S, Barber BE, Barry A, Batista Pereira D, Cao J, Chau NH, Chotivanich K, Chu C, Dondorp AM, Drury E, Echeverry DF, Erko B, Espino F, Fairhurst R, Faiz A, Fernanda Villegas M, Gao Q, Golassa L, Goncalves S, Grigg MJ, Hamedi Y, Hien TT, Htut Y, Johnson KJ, Karunaweera N, Khan W, Krudsood S, Kwiatkowski DP, Lacerda M, Ley B, Lim P, Liu Y, Llanos-Cuentas A, Lon C, Lopera-Mesa T, Marfurt J, Michon P, Miotto O, Mohammed R, Mueller I, Namaik-larp C, Newton PN, Nguyen TN, Nosten F, Noviyanti R, Pava Z, Pearson RD, Petros B, Phyo AP, Price RN, Pukrittayakamee S, Rahim AG, Randrianarivelojosia M, Rayner JC, Rumaseb A, Siegel SV, Simpson VJ, Thriemer K, Tobon-Castano A, Trimarsanto H, Urbano Ferreira M, Vélez ID, Wangchuk S, Wellems TE, White NJ, William T, Yasnot MF, Yilma D. An open dataset of Plasmodium vivax genome variation in 1,895 worldwide samples. Wellcome Open Res 2022; 7:136. [PMID: 35651694 PMCID: PMC9127374 DOI: 10.12688/wellcomeopenres.17795.1] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/08/2022] [Indexed: 01/13/2023] Open
Abstract
This report describes the MalariaGEN Pv4 dataset, a new release of curated genome variation data on 1,895 samples of Plasmodium vivax collected at 88 worldwide locations between 2001 and 2017. It includes 1,370 new samples contributed by MalariaGEN and VivaxGEN partner studies in addition to previously published samples from these and other sources. We provide genotype calls at over 4.5 million variable positions including over 3 million single nucleotide polymorphisms (SNPs), as well as short indels and tandem duplications. This enlarged dataset highlights major compartments of parasite population structure, with clear differentiation between Africa, Latin America, Oceania, Western Asia and different parts of Southeast Asia. Each sample has been classified for drug resistance to sulfadoxine, pyrimethamine and mefloquine based on known markers at the dhfr, dhps and mdr1 loci. The prevalence of all of these resistance markers was much higher in Southeast Asia and Oceania than elsewhere. This open resource of analysis-ready genome variation data from the MalariaGEN and VivaxGEN networks is driven by our collective goal to advance research into the complex biology of P. vivax and to accelerate genomic surveillance for malaria control and elimination.
Collapse
Affiliation(s)
| | - Ishag Adam
- Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Mohammad Shafiul Alam
- Infectious Diseases Division, International Centre for Diarrheal Diseases Research, Bangladesh (ICDDR,B), Dhaka, Bangladesh
| | - Sisay Alemu
- Armauer Hansen Research Unit (AHRI), Addis Ababa, Ethiopia,Addis Ababa University, Addis Ababa, Ethiopia,MilliporeSigma (Bioreliance), Rockville, USA
| | - Chanaki Amaratunga
- National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, USA
| | | | | | - Nicholas M Anstey
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Australia
| | - Abraham Aseffa
- Armauer Hansen Research Unit (AHRI), Addis Ababa, Ethiopia
| | - Elizabeth Ashley
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao People's Democratic Republic,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | - Sarah Auburn
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Australia,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK,Mahidol‐Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| | - Bridget E Barber
- Menzies School of Health Research, Darwin, Australia,QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Alyssa Barry
- Walter and Eliza Hall Institute, Parkville, Australia,Deakin University, Geelong, Australia,Burnet Institute, Melbourne, Australia
| | | | - Jun Cao
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, China,Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Nguyen Hoang Chau
- Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam
| | | | - Cindy Chu
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Arjen M. Dondorp
- Mahidol‐Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| | | | - Diego F. Echeverry
- Departamento de Microbiologia, Facultad de Salud, Universidad del Valle, Cali, Colombia
| | - Berhanu Erko
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Fe Espino
- Research Institute for Tropical Medicine, Department of Health, Manila, Philippines
| | | | | | | | - Qi Gao
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, China
| | - Lemu Golassa
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | | | - Matthew J Grigg
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Australia
| | - Yaghoob Hamedi
- Infectious and Tropical Diseases Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Tran Tinh Hien
- Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam
| | - Ye Htut
- Department of Medical Research, Yangon, Myanmar
| | | | - Nadira Karunaweera
- University of Colombo, Colombo, Sri Lanka,School of Public Health, Harvard University, Boston, USA
| | - Wasif Khan
- Infectious Diseases Division, International Centre for Diarrheal Diseases Research, Bangladesh (ICDDR,B), Dhaka, Bangladesh
| | | | | | - Marcus Lacerda
- Instituto de Pesquisa Clínica Carlos Borborema, Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Manaus, Brazil,Instituto Leônidas & Maria Deane, Fundação Oswaldo Cruz, Manaus, Brazil
| | - Benedikt Ley
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Australia
| | - Pharath Lim
- National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, USA,Parsons Corporation, Walter Reed Army Institute of Research (WRAIR), Silver Spring, USA
| | - Yaobao Liu
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, China,Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | | | - Chanthap Lon
- National Institute of Allergy and Infectious Diseases, Phnom Penh, Cambodia
| | | | - Jutta Marfurt
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Australia
| | | | - Olivo Miotto
- Wellcome Sanger Institute, Hinxton, UK,Mahidol‐Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| | - Rezika Mohammed
- Department of Internal Medicine, University of Gondar, Gondar, Ethiopia
| | - Ivo Mueller
- Walter and Eliza Hall Institute, Parkville, Australia
| | | | - Paul N Newton
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao People's Democratic Republic,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Thuy-Nhien Nguyen
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK,Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam
| | - Francois Nosten
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK,Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | | | - Zuleima Pava
- Centro Internacionale de Entrenamiento e Investigaciones Medicas, Cali, Colombia
| | | | | | - Aung P Phyo
- Mahidol‐Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand,Shoklo Malaria Research Unit, Bangkok, Thailand
| | - Ric N Price
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Australia,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK,Mahidol‐Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| | | | - Awab Ghulam Rahim
- Nangarhar Medical Faculty, Nangarhar University, Ministry of Higher Education, Jalalabad, Afghanistan
| | - Milijaona Randrianarivelojosia
- Institut Pasteur de Madagascar, Antananarivo, Madagascar,Universités d'Antananarivo et de Mahajanga, Antananarivo, Madagascar
| | - Julian C Rayner
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - Angela Rumaseb
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Australia
| | | | | | - Kamala Thriemer
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Australia
| | | | | | - Marcelo Urbano Ferreira
- Universidade de São Paulo, São Paulo, Brazil,Institute of Hygiene and Tropical Medicine, NOVA University of Lisbon, Lisbon, Portugal
| | | | - Sonam Wangchuk
- Royal Center for Disease Control, Department of Public Health, Ministry of Health, Thimphu, Bhutan
| | - Thomas E Wellems
- National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, USA
| | - Nicholas J White
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK,Mahidol‐Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| | - Timothy William
- Clinical Research Centre, Queen Elizabeth Hospital, Sabah, Malaysia,Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Sabah, Malaysia
| | - Maria F Yasnot
- Grupo de Investigaciones Microbiológicas y Biomédicas de Córdoba-GIMBIC, Universidad de Córdoba, Monteria, Colombia
| | | |
Collapse
|
14
|
Golassa L, Messele A, Oriero EC, Amambua-Ngwa A. Sequence analysis of Plasmodium vivax Duffy binding proteins reveals the presence of unique haplotypes and diversifying selection in Ethiopian isolates. Malar J 2021; 20:312. [PMID: 34246262 PMCID: PMC8271342 DOI: 10.1186/s12936-021-03843-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 07/04/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Red blood cell invasion by the Plasmodium vivax merozoite requires interaction between the Duffy antigen receptor for chemokines (DARC) and the P. vivax Duffy-binding protein II (PvDBPII). Given that the disruption of this interaction prevents P. vivax blood-stage infection, a PvDBP-based vaccine development has been well recognized. However, the polymorphic nature of PvDBPII prevents a strain transcending immune response and complicates attempts to design a vaccine. METHODS Twenty-three P. vivax clinical isolates collected from three areas of Ethiopia were sequenced at the pvdbpII locus. A total of 392 global pvdbpII sequences from seven P. vivax endemic countries were also retrieved from the NCBI archive for comparative analysis of genetic diversity, departure from neutrality, linkage disequilibrium, genetic differentiation, PvDBP polymorphisms, recombination and population structure of the parasite population. To establish a haplotype relationship a network was constructed using the median joining algorithm. RESULTS A total of 110 variable sites were found, of which 44 were parsimony informative. For Ethiopian isolates there were 12 variable sites of which 10 were parsimony informative. These parsimony informative variants resulted in 10 nonsynonymous mutations. The overall haplotype diversity for global isolates was 0.9596; however, the haplotype diversity was 0.874 for Ethiopia. Fst values for genetic revealed Ethiopian isolates were closest to Indian isolates as well as to Sri Lankan and Sudanese isolates but further away from Mexican, Papua New Guinean and South Korean isolates. There was a total of 136 haplotypes from the 415 global isolates included for this study. Haplotype prevalence ranged from 36.76% to 0.7%, from this 74.2% were represented by single parasite isolates. None of the Ethiopian isolates grouped with the Sal I reference haplotype. From the total observed nonsynonymous mutations 13 mapped to experimentally verified epitope sequences. Including 10 non-synonymous mutations from Ethiopia. However, all the polymorphic regions in Ethiopian isolates were located away from DARC, responsible for junction formation. CONCLUSION The results of this study are concurrent with the multivalent vaccine approach to design an effective treatment. However, the presence of novel haplotypes in Ethiopian isolates that were not shared by other global sequences warrant further investigation.
Collapse
Affiliation(s)
- Lemu Golassa
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia.
| | - Alebachew Messele
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Eniyou Cheryll Oriero
- Medical Research Council Unit The Gambia At London, School of Hygiene and Tropical Medicin, Banjul, The Gambia
| | - Alfred Amambua-Ngwa
- Medical Research Council Unit The Gambia At London, School of Hygiene and Tropical Medicin, Banjul, The Gambia
| |
Collapse
|
15
|
Ndegwa DN, Kundu P, Hostetler JB, Marin-Menendez A, Sanderson T, Mwikali K, Verzier LH, Coyle R, Adjalley S, Rayner JC. Using Plasmodium knowlesi as a model for screening Plasmodium vivax blood-stage malaria vaccine targets reveals new candidates. PLoS Pathog 2021; 17:e1008864. [PMID: 34197567 PMCID: PMC8279373 DOI: 10.1371/journal.ppat.1008864] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 07/14/2021] [Accepted: 06/01/2021] [Indexed: 11/18/2022] Open
Abstract
Plasmodium vivax is responsible for the majority of malaria cases outside Africa. Unlike P. falciparum, the P. vivax life-cycle includes a dormant liver stage, the hypnozoite, which can cause infection in the absence of mosquito transmission. An effective vaccine against P. vivax blood stages would limit symptoms and pathology from such recurrent infections, and therefore could play a critical role in the control of this species. Vaccine development in P. vivax, however, lags considerably behind P. falciparum, which has many identified targets with several having transitioned to Phase II testing. By contrast only one P. vivax blood-stage vaccine candidate based on the Duffy Binding Protein (PvDBP), has reached Phase Ia, in large part because the lack of a continuous in vitro culture system for P. vivax limits systematic screening of new candidates. We used the close phylogenetic relationship between P. vivax and P. knowlesi, for which an in vitro culture system in human erythrocytes exists, to test the scalability of systematic reverse vaccinology to identify and prioritise P. vivax blood-stage targets. A panel of P. vivax proteins predicted to function in erythrocyte invasion were expressed as full-length recombinant ectodomains in a mammalian expression system. Eight of these antigens were used to generate polyclonal antibodies, which were screened for their ability to recognize orthologous proteins in P. knowlesi. These antibodies were then tested for inhibition of growth and invasion of both wild type P. knowlesi and chimeric P. knowlesi lines modified using CRISPR/Cas9 to exchange P. knowlesi genes with their P. vivax orthologues. Candidates that induced antibodies that inhibited invasion to a similar level as PvDBP were identified, confirming the utility of P. knowlesi as a model for P. vivax vaccine development and prioritizing antigens for further follow up.
Collapse
Affiliation(s)
- Duncan N. Ndegwa
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
- Department of Biological Sciences, University of Embu, Embu, Kenya
| | - Prasun Kundu
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Hills Road, Cambridge, United Kingdom
| | - Jessica B. Hostetler
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | | | - Theo Sanderson
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Kioko Mwikali
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Lisa H. Verzier
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Rachael Coyle
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Sophie Adjalley
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Julian C. Rayner
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Hills Road, Cambridge, United Kingdom
| |
Collapse
|
16
|
Su XZ, Wu J. Zoonotic Transmissions and Host Switches of Malaria Parasites. ZOONOSES (BURLINGTON, MASS.) 2021; 1. [PMID: 35282332 DOI: 10.15212/zoonoses-2021-0015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Malaria is a deadly disease that affects the health of hundreds of millions of people annually. There are five Plasmodium parasite species that can naturally infect humans, including Plasmodium falciparum, Plasmodium vivax, Plasmodium malariae, Plasmodium ovale and Plasmodium knowlesi. Some of the parasites can also infect various non-human primates. Parasites mainly infecting monkeys such as Plasmodium cynomolgi (in fact P. knowlesi was considered as a parasite of monkeys for years) can also be transmitted to human hosts. Recently, many new Plasmodium species were discovered in African apes, and it is possible that some of the parasites can be transmitted to humans in the future. Here, we searched PubMed and the internet via Google and selected articles concerning zoonotic transmission and evolution of selected malaria parasite species. We reviewed the current advances in the relevant topics emphasizing on transmissions of malaria parasites between humans and non-human primates. We also briefly discuss the transmissions of some avian malaria parasites between wild birds and domestic fowls. Zoonotic malaria transmissions are widespread, which poses a threat to public health. More studies on parasite species identification in non-human primates, transmission, and evolution are needed to reduce or prevent transmission of malaria parasites from non-human primates to humans.
Collapse
Affiliation(s)
- Xin-Zhuan Su
- Malaria Functional Genomics Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD 20892-8132, USA
| | - Jian Wu
- Malaria Functional Genomics Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD 20892-8132, USA
| |
Collapse
|
17
|
Kepple D, Pestana K, Tomida J, Abebe A, Golassa L, Lo E. Alternative Invasion Mechanisms and Host Immune Response to Plasmodium vivax Malaria: Trends and Future Directions. Microorganisms 2020; 9:E15. [PMID: 33374596 PMCID: PMC7822457 DOI: 10.3390/microorganisms9010015] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/19/2020] [Accepted: 12/21/2020] [Indexed: 11/21/2022] Open
Abstract
Plasmodium vivax malaria is a neglected tropical disease, despite being more geographically widespread than any other form of malaria. The documentation of P. vivax infections in different parts of Africa where Duffy-negative individuals are predominant suggested that there are alternative pathways for P. vivax to invade human erythrocytes. Duffy-negative individuals may be just as fit as Duffy-positive individuals and are no longer resistant to P.vivax malaria. In this review, we describe the complexity of P. vivax malaria, characterize pathogenesis and candidate invasion genes of P. vivax, and host immune responses to P. vivax infections. We provide a comprehensive review on parasite ligands in several Plasmodium species that further justify candidate genes in P. vivax. We also summarize previous genomic and transcriptomic studies related to the identification of ligand and receptor proteins in P. vivax erythrocyte invasion. Finally, we identify topics that remain unclear and propose future studies that will greatly contribute to our knowledge of P. vivax.
Collapse
Affiliation(s)
- Daniel Kepple
- Biological Sciences, University of North Carolina, Charlotte, NC 28223, USA; (K.P.); (J.T.)
| | - Kareen Pestana
- Biological Sciences, University of North Carolina, Charlotte, NC 28223, USA; (K.P.); (J.T.)
| | - Junya Tomida
- Biological Sciences, University of North Carolina, Charlotte, NC 28223, USA; (K.P.); (J.T.)
| | - Abnet Abebe
- Ethiopian Public Health Institute, Addis Ababa 1000, Ethiopia;
| | - Lemu Golassa
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa 1000, Ethiopia;
| | - Eugenia Lo
- Biological Sciences, University of North Carolina, Charlotte, NC 28223, USA; (K.P.); (J.T.)
| |
Collapse
|
18
|
Ford A, Kepple D, Abagero BR, Connors J, Pearson R, Auburn S, Getachew S, Ford C, Gunalan K, Miller LH, Janies DA, Rayner JC, Yan G, Yewhalaw D, Lo E. Whole genome sequencing of Plasmodium vivax isolates reveals frequent sequence and structural polymorphisms in erythrocyte binding genes. PLoS Negl Trop Dis 2020; 14:e0008234. [PMID: 33044985 PMCID: PMC7581005 DOI: 10.1371/journal.pntd.0008234] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 10/22/2020] [Accepted: 08/21/2020] [Indexed: 12/16/2022] Open
Abstract
Plasmodium vivax malaria is much less common in Africa than the rest of the world because the parasite relies primarily on the Duffy antigen/chemokine receptor (DARC) to invade human erythrocytes, and the majority of Africans are Duffy negative. Recently, there has been a dramatic increase in the reporting of P. vivax cases in Africa, with a high number of them being in Duffy negative individuals, potentially indicating P. vivax has evolved an alternative invasion mechanism that can overcome Duffy negativity. Here, we analyzed single nucleotide polymorphism (SNP) and copy number variation (CNV) in Whole Genome Sequence (WGS) data from 44 P. vivax samples isolated from symptomatic malaria patients in southwestern Ethiopia, where both Duffy positive and Duffy negative individuals are found. A total of 123,711 SNPs were detected, of which 22.7% were nonsynonymous and 77.3% were synonymous mutations. The largest number of SNPs were detected on chromosomes 9 (24,007 SNPs; 19.4% of total) and 10 (16,852 SNPs, 13.6% of total). There were particularly high levels of polymorphism in erythrocyte binding gene candidates including merozoite surface protein 1 (MSP1) and merozoite surface protein 3 (MSP3.5, MSP3.85 and MSP3.9). Two genes, MAEBL and MSP3.8 related to immunogenicity and erythrocyte binding function were detected with significant signals of positive selection. Variation in gene copy number was also concentrated in genes involved in host-parasite interactions, including the expansion of the Duffy binding protein gene (PvDBP) on chromosome 6 and MSP3.11 on chromosome 10. Based on the phylogeny constructed from the whole genome sequences, the expansion of these genes was an independent process among the P. vivax lineages in Ethiopia. We further inferred transmission patterns of P. vivax infections among study sites and showed various levels of gene flow at a small geographical scale. The genomic features of P. vivax provided baseline data for future comparison with those in Duffy-negative individuals and allowed us to develop a panel of informative Single Nucleotide Polymorphic markers diagnostic at a micro-geographical scale. Plasmodium vivax is the most geographically widespread parasite species that causes malaria in humans. Although it occurs in Africa as a member of a mix of Plasmodium species, P. vivax is dominant in other parts of the world outside of Africa (e.g., Brazil). It was previously thought that most African populations were immune to P. vivax infections due to the absence of Duffy antigen chemokine receptor (DARC) gene expression required for erythrocyte invasion. However, several recent reports have indicated the emergence and potential spread of P. vivax across human populations in Africa. Compared to Southeast Asia and South America where P. vivax is highly endemic, data on polymorphisms in erythrocyte binding gene candidates of P. vivax from Africa is limited. Filling this knowlege gap is critical for identifying functional genes in erythrocyte invasion, biomarkers for tracking the P. vivax isolates from Africa, as well as potential gene targets for vaccine development. This paper examined the level of genetic polymorphisms in a panel of 43 potential erythrocyte binding protein genes based on whole genome sequences and described transmission patterns of P. vivax infections from different study sites in Ethiopia based on the genetic variants. Our analyses showed that chromosomes 9 and 10 of the P. vivax genomes isolated in Ethiopia had the most high-quality genetic polymorphisms. Among all erythrocyte binding protein gene candidates, the merozoite surface proteins 1 and merozoite surface protein 3 showed high levels of polymorphism. MAEBL and MSP3.8 related to immunogenicity and erythrocyte binding function were detected with significant signals of positive selection. The expansion of the Duffy binding protein and merozoite surface protein 3 gene copies was an independent process among the P. vivax lineages in Ethiopia. Various levels of gene flow were observed even at a smaller geographical scale. Our study provided baseline data for future comparison with P. vivax in Duffy negative individuals and help develop a panel of genetic markers that are informative at a micro-geographical scale.
Collapse
Affiliation(s)
- Anthony Ford
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, United States of America
- Department of Biological Sciences, University of North Carolina at Charlotte, United States of America
- * E-mail: (AF); (GY); (EL)
| | - Daniel Kepple
- Department of Biological Sciences, University of North Carolina at Charlotte, United States of America
| | - Beka Raya Abagero
- Tropical Infectious Disease Research Center, Jimma University, Ethiopia
| | - Jordan Connors
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, United States of America
| | - Richard Pearson
- Malaria Programme, Wellcome Trust Sanger Institute, Hinxton, United States of America
| | - Sarah Auburn
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
| | - Sisay Getachew
- College of Natural Sciences, Addis Ababa University, Ethiopia
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Colby Ford
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, United States of America
| | - Karthigayan Gunalan
- Laboratory of Malaria and Vector Research, NIAID/NIH, Bethesda, United States of America
| | - Louis H. Miller
- Laboratory of Malaria and Vector Research, NIAID/NIH, Bethesda, United States of America
| | - Daniel A. Janies
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, United States of America
| | - Julian C. Rayner
- Department of Clinical Biochemistry, Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 OXY, United Kingdom
| | - Guiyun Yan
- Program in Public Health, University of California at Irvine, United States of America
- * E-mail: (AF); (GY); (EL)
| | | | - Eugenia Lo
- Department of Biological Sciences, University of North Carolina at Charlotte, United States of America
- * E-mail: (AF); (GY); (EL)
| |
Collapse
|
19
|
Mittal P, Mishra S, Kar S, Pande V, Sinha A, Sharma A. Global distribution of single amino acid polymorphisms in Plasmodium vivax Duffy-binding-like domain and implications for vaccine development efforts. Open Biol 2020; 10:200180. [PMID: 32993415 PMCID: PMC7536081 DOI: 10.1098/rsob.200180] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Plasmodium vivax (Pv) malaria continues to be geographically widespread with approximately 15 million worldwide cases annually. Along with other proteins, Duffy-binding proteins (DBPs) are used by plasmodium for RBC invasion and the parasite-encoded receptor binding regions lie in their Duffy-binding-like (DBL) domains-thus making it a prime vaccine candidate. This study explores the sequence diversity in PvDBL globally, with an emphasis on India as it remains a major contributor to the global Pv malaria burden. Based on 1358 PvDBL protein sequences available in NCBI, we identified 140 polymorphic sites within 315 residues of PvDBL. Alarmingly, country-wise mapping of SAAPs from field isolates revealed varied and distinct polymorphic profiles for different nations. We report here 31 polymorphic residue positions in the global SAAP profile, most of which map to the PvDBL subdomain 2 (α1-α6). A distinct clustering of SAAPs distal to the DARC-binding sites is indicative of immune evasive strategies by the parasite. Analyses of PvDBL-neutralizing antibody complexes revealed that between 24% and 54% of interface residues are polymorphic. This work provides a framework to recce and expand the polymorphic space coverage in PvDBLs as this has direct implications for vaccine development studies. It also emphasizes the significance of surveying global SAAP distributions before or alongside the identification of vaccine candidates.
Collapse
Affiliation(s)
- Payal Mittal
- Molecular Medicine Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India.,ICMR-National Institute of Malaria Research, New Delhi, 110077, India
| | - Siddhartha Mishra
- Molecular Medicine Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India.,ICMR-National Institute of Malaria Research, New Delhi, 110077, India
| | - Sonalika Kar
- ICMR-National Institute of Malaria Research, New Delhi, 110077, India.,Department of Biotechnology, Kumaun University, Nainital, Uttarakhand, 263001 India
| | - Veena Pande
- Department of Biotechnology, Kumaun University, Nainital, Uttarakhand, 263001 India
| | - Abhinav Sinha
- ICMR-National Institute of Malaria Research, New Delhi, 110077, India
| | - Amit Sharma
- Molecular Medicine Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India.,ICMR-National Institute of Malaria Research, New Delhi, 110077, India
| |
Collapse
|
20
|
Golassa L, Amenga-Etego L, Lo E, Amambua-Ngwa A. The biology of unconventional invasion of Duffy-negative reticulocytes by Plasmodium vivax and its implication in malaria epidemiology and public health. Malar J 2020; 19:299. [PMID: 32831093 PMCID: PMC7443611 DOI: 10.1186/s12936-020-03372-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/10/2020] [Indexed: 12/30/2022] Open
Abstract
Plasmodium vivax has been largely neglected over the past century, despite a widespread recognition of its burden across region where it is endemic. The parasite invades reticulocytes, employing the interaction between Plasmodium vivax Duffy binding protein (PvDBP) and human Duffy antigen receptor for chemokines (DARC). However, P. vivax has now been observed in Duffy-negative individuals, presenting a potentially serious public health problem as the majority of African populations are Duffy-negative. Invasion of Duffy-negative reticulocytes is suggested to be through duplication of the PvDBP and a novel protein encoded by P. vivax erythrocyte binding protein (EBP) genes. The emergence and spread of specific P. vivax strains with ability to invade Duffy-negative reticulocytes has, therefore, drawn substantial attention and further complicated the epidemiology and public health implication of vivax malaria. Given the right environment and vectorial capacity for transmission coupled with the parasite’s ability to invade Duffy-negative individuals, P. vivax could increase its epidemiological significance in Africa. In this review, authors present accruing knowledge on the paradigm shift in P. vivax invasion of Duffy-negative reticulocytes against the established mechanism of invading only Duffy-positive individuals and offer a perspective on the epidemiological diagnostic and public health implication in Africa.
Collapse
Affiliation(s)
- Lemu Golassa
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia.
| | - Lucas Amenga-Etego
- West African Center for Cell Biology of Infectious Pathogens, University of Ghana, Accra, Ghana
| | - Eugenia Lo
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Alfred Amambua-Ngwa
- Medical Research Council Unit, The Gambia at London School of Hygiene and Tropical Medicine, Banjul, The Gambia
| |
Collapse
|
21
|
A Way Forward for Culturing Plasmodium vivax. Trends Parasitol 2020; 36:512-519. [PMID: 32360314 DOI: 10.1016/j.pt.2020.04.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/28/2020] [Accepted: 04/02/2020] [Indexed: 01/12/2023]
Abstract
Trager and Jensen established a method for culturing Plasmodium falciparum, a breakthrough for malaria research worldwide. Since then, multiple attempts to establish Plasmodium vivax in continuous culture have failed. Unlike P. falciparum, which can invade all aged erythrocytes, P. vivax is restricted to reticulocytes. Thus, a constant supply of reticulocytes is considered critical for continuous P. vivax growth in vitro. A critical question remains why P. vivax selectively invades reticulocytes? What do reticulocytes offer to P. vivax that is not present in mature erythrocytes? One possibility is protection from oxidative stress by glucose-6-phosphate dehydrogenase (G6PD). Here, we also suggest supplements to the media and procedures that may reduce oxidative stress and, as a result, establish a system for the continuous culture of P. vivax.
Collapse
|
22
|
Popovici J, Roesch C, Rougeron V. The enigmatic mechanisms by which Plasmodium vivax infects Duffy-negative individuals. PLoS Pathog 2020; 16:e1008258. [PMID: 32078643 PMCID: PMC7032691 DOI: 10.1371/journal.ppat.1008258] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The absence of the Duffy protein at the surface of erythrocytes was considered for decades to confer full protection against Plasmodium vivax as this blood group is the receptor for the key parasite ligand P. vivax Duffy binding protein (PvDBP). However, it is now clear that the parasite is able to break through this protection and induce clinical malaria in Duffy-negative people, although the underlying mechanisms are still not understood. Here, we briefly review the evidence of Duffy-negative infections by P. vivax and summarize the current hypothesis at the basis of this invasion process. We discuss those in the perspective of malaria-elimination challenges, notably in African countries.
Collapse
Affiliation(s)
- Jean Popovici
- Malaria Molecular Epidemiology Unit, Institut Pasteur du Cambodge, Phnom Penh Cambodia
- Malaria Translational Research Unit, Institut Pasteur, Paris & Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Camille Roesch
- Malaria Molecular Epidemiology Unit, Institut Pasteur du Cambodge, Phnom Penh Cambodia
- Malaria Translational Research Unit, Institut Pasteur, Paris & Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Virginie Rougeron
- Laboratoire MIVEGEC (Université de Montpellier-CNRS-IRD), Montpellier, France
| |
Collapse
|