1
|
Soggia G, ElMaghloob Y, Boromangnaeva AK, Al Jord A. Mechanical Remodeling of Nuclear Biomolecular Condensates. Physiology (Bethesda) 2025; 40:0. [PMID: 39109673 DOI: 10.1152/physiol.00027.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 08/15/2024] Open
Abstract
Organism health relies on cell proliferation, migration, and differentiation. These universal processes depend on cytoplasmic reorganization driven notably by the cytoskeleton and its force-generating motors. Their activity generates forces that mechanically agitate the cell nucleus and its interior. New evidence from reproductive cell biology revealed that these cytoskeletal forces can be tuned to remodel nuclear membraneless compartments, known as biomolecular condensates, and regulate their RNA processing function for the success of subsequent cell division that is critical for fertility. Both cytoskeletal and nuclear condensate reorganization are common to numerous physiological and pathological contexts, raising the possibility that mechanical remodeling of nuclear condensates may be a much broader mechanism regulating their function. Here, we review this newfound mechanism of condensate remodeling and venture into the contexts of health and disease where it may be relevant, with a focus on reproduction, cancer, and premature aging.
Collapse
Affiliation(s)
- Giulia Soggia
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Yasmin ElMaghloob
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
- Systems Biology and Immunology Lab, Children's Cancer Hospital Egypt, Cairo, Egypt
| | | | - Adel Al Jord
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
2
|
Joudeh LA, Schuck PL, Van NM, DiCintio AJ, Stewart JA, Waldman AS. Progerin can induce DNA damage in the absence of global changes in replication or cell proliferation. PLoS One 2024; 19:e0315084. [PMID: 39636792 PMCID: PMC11620420 DOI: 10.1371/journal.pone.0315084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 11/15/2024] [Indexed: 12/07/2024] Open
Abstract
Hutchinson-Gilford Progeria Syndrome (HGPS) is a rare genetic condition characterized by features of accelerated aging, and individuals with HGPS seldom live beyond their mid-teens. The syndrome is commonly caused by a point mutation in the LMNA gene which codes for lamin A and its splice variant lamin C, components of the nuclear lamina. The mutation causing HGPS leads to production of a truncated, farnesylated form of lamin A referred to as "progerin." Progerin is also expressed at low levels in healthy individuals and appears to play a role in normal aging. HGPS is associated with an accumulation of genomic DNA double-strand breaks (DSBs) and alterations in the nature of DSB repair. The source of DSBs in HGPS is often attributed to stalling and subsequent collapse of replication forks in conjunction with faulty recruitment of repair factors to damage sites. In this work, we used a model system involving immortalized human cell lines to investigate progerin-induced genomic damage. Using an immunofluorescence approach to visualize phosphorylated histone H2AX foci which mark sites of genomic damage, we report that cells engineered to express progerin displayed a significant elevation of endogenous damage in the absence of any change in the cell cycle profile or doubling time of cells. Genomic damage was enhanced and persistent in progerin-expressing cells treated with hydroxyurea. Overexpression of wild-type lamin A did not elicit the outcomes associated with progerin expression. Our results show that DNA damage caused by progerin can occur independently from global changes in replication or cell proliferation.
Collapse
Affiliation(s)
- Liza A. Joudeh
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina, United States of America
| | - P. Logan Schuck
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina, United States of America
| | - Nina M. Van
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina, United States of America
| | - Alannah J. DiCintio
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina, United States of America
| | - Jason A. Stewart
- Department of Biology, Western Kentucky University, Bowling Green, Kentucky, United States of America
| | - Alan S. Waldman
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina, United States of America
| |
Collapse
|
3
|
Wang X, Ma L, Lu D, Zhao G, Ren H, Lin Q, Jia M, Huang F, Wang S, Xu Z, Yang Z, Chu Y, Xu Z, Li W, Yu L, Jiang Q, Zhang C. Nuclear envelope budding inhibition slows down progerin-induced aging process. Proc Natl Acad Sci U S A 2024; 121:e2321378121. [PMID: 39352925 PMCID: PMC11474064 DOI: 10.1073/pnas.2321378121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 08/08/2024] [Indexed: 10/04/2024] Open
Abstract
Progerin causes Hutchinson-Gilford progeria syndrome (HGPS), but how progerin accelerates aging is still an interesting question. Here, we provide evidence linking nuclear envelope (NE) budding and accelerated aging. Mechanistically, progerin disrupts nuclear lamina to induce NE budding in concert with lamin A/C, resulting in transport of chromatin into the cytoplasm where it is removed via autophagy, whereas emerin antagonizes this process. Primary cells from both HGPS patients and mouse models express progerin and display NE budding and chromatin loss, and ectopically expressing progerin in cells can mimic this process. More excitingly, we screen a NE budding inhibitor chaetocin by high-throughput screening, which can dramatically sequester progerin from the NE and prevent this NE budding through sustaining ERK1/2 activation. Chaetocin alleviates NE budding-induced chromatin loss and ameliorates HGPS defects in cells and mice and significantly extends lifespan of HGPS mice. Collectively, we propose that progerin-induced NE budding participates in the induction of progeria, highlight the roles of chaetocin and sustained ERK1/2 activation in anti-aging, and provide a distinct avenue for treating HGPS.
Collapse
Affiliation(s)
- Xiangyang Wang
- The Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing100871, China
- The Academy for Cell and Life Health, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming650500, China
| | - Lin Ma
- Department of Dermatology, Beijing Children’s Hospital, Capital Medical University, National Center for Children's Health, Beijing100045, China
| | - Di Lu
- The State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing100084, China
| | - Gan Zhao
- The Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing100871, China
| | - He Ren
- The Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing100871, China
| | - Qiaoyu Lin
- The Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing100871, China
| | - Mingkang Jia
- The Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing100871, China
| | - Fan Huang
- The Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing100871, China
| | - Shan Wang
- Department of Dermatology, Beijing Children’s Hospital, Capital Medical University, National Center for Children's Health, Beijing100045, China
| | - Zhe Xu
- Department of Dermatology, Beijing Children’s Hospital, Capital Medical University, National Center for Children's Health, Beijing100045, China
| | - Zhou Yang
- Department of Dermatology, Beijing Children’s Hospital, Capital Medical University, National Center for Children's Health, Beijing100045, China
| | - Yan Chu
- Department of Dermatology, Beijing Children’s Hospital, Capital Medical University, National Center for Children's Health, Beijing100045, China
| | - Zigang Xu
- Department of Dermatology, Beijing Children’s Hospital, Capital Medical University, National Center for Children's Health, Beijing100045, China
| | - Wei Li
- Genetics and Birth Defects Control Center, Beijing Children’s Hospital, Capital Medical University, National Center for Children's Health, Beijing100045, China
| | - Li Yu
- The State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing100084, China
| | - Qing Jiang
- The Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing100871, China
| | - Chuanmao Zhang
- The Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing100871, China
- The Academy for Cell and Life Health, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming650500, China
| |
Collapse
|
4
|
Labade AS, Chiang ZD, Comenho C, Reginato PL, Payne AC, Earl AS, Shrestha R, Duarte FM, Habibi E, Zhang R, Church GM, Boyden ES, Chen F, Buenrostro JD. Expansion in situ genome sequencing links nuclear abnormalities to hotspots of aberrant euchromatin repression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.24.614614. [PMID: 39386718 PMCID: PMC11463693 DOI: 10.1101/2024.09.24.614614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Microscopy and genomics are both used to characterize cell function, but approaches to connect the two types of information are lacking, particularly at subnuclear resolution. While emerging multiplexed imaging methods can simultaneously localize genomic regions and nuclear proteins, their ability to accurately measure DNA-protein interactions is constrained by the diffraction limit of optical microscopy. Here, we describe expansion in situ genome sequencing (ExIGS), a technology that enables sequencing of genomic DNA and superresolution localization of nuclear proteins in single cells. We applied ExIGS to fibroblast cells derived from an individual with Hutchinson-Gilford progeria syndrome to characterize how variation in nuclear morphology affects spatial chromatin organization. Using this data, we discovered that lamin abnormalities are linked to hotspots of aberrant euchromatin repression that may erode cell identity. Further, we show that lamin abnormalities heterogeneously increase the repressive environment of the nucleus in tissues and aged cells. These results demonstrate that ExIGS may serve as a generalizable platform for connecting nuclear abnormalities to changes in gene regulation across disease contexts.
Collapse
|
5
|
Rolas L, Stein M, Barkaway A, Reglero-Real N, Sciacca E, Yaseen M, Wang H, Vazquez-Martinez L, Golding M, Blacksell IA, Giblin MJ, Jaworska E, Bishop CL, Voisin MB, Gaston-Massuet C, Fossati-Jimack L, Pitzalis C, Cooper D, Nightingale TD, Lopez-Otin C, Lewis MJ, Nourshargh S. Senescent endothelial cells promote pathogenic neutrophil trafficking in inflamed tissues. EMBO Rep 2024; 25:3842-3869. [PMID: 38918502 PMCID: PMC11387759 DOI: 10.1038/s44319-024-00182-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 05/28/2024] [Accepted: 06/07/2024] [Indexed: 06/27/2024] Open
Abstract
Cellular senescence is a hallmark of advanced age and a major instigator of numerous inflammatory pathologies. While endothelial cell (EC) senescence is aligned with defective vascular functionality, its impact on fundamental inflammatory responses in vivo at single-cell level remain unclear. To directly investigate the role of EC senescence on dynamics of neutrophil-venular wall interactions, we applied high resolution confocal intravital microscopy to inflamed tissues of an EC-specific progeroid mouse model, characterized by profound indicators of EC senescence. Progerin-expressing ECs supported prolonged neutrophil adhesion and crawling in a cell autonomous manner that additionally mediated neutrophil-dependent microvascular leakage. Transcriptomic and immunofluorescence analysis of inflamed tissues identified elevated levels of EC CXCL1 on progerin-expressing ECs and functional blockade of CXCL1 suppressed the dysregulated neutrophil responses elicited by senescent ECs. Similarly, cultured progerin-expressing human ECs exhibited a senescent phenotype, were pro-inflammatory and prompted increased neutrophil attachment and activation. Collectively, our findings support the concept that senescent ECs drive excessive inflammation and provide new insights into the mode, dynamics, and mechanisms of this response at single-cell level.
Collapse
Affiliation(s)
- Loïc Rolas
- Centre for Microvascular Research, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Monja Stein
- Centre for Microvascular Research, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Anna Barkaway
- Centre for Microvascular Research, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Natalia Reglero-Real
- Centre for Microvascular Research, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Elisabetta Sciacca
- Centre for Translational Bioinformatics, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Mohammed Yaseen
- Centre for Microvascular Research, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Haitao Wang
- Centre for Microvascular Research, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Laura Vazquez-Martinez
- Centre for Microvascular Research, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Matthew Golding
- Centre for Microvascular Research, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Isobel A Blacksell
- Centre for Biochemical Pharmacology, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Meredith J Giblin
- Centre for Microvascular Research, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Edyta Jaworska
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Cleo L Bishop
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Mathieu-Benoit Voisin
- Centre for Microvascular Research, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Carles Gaston-Massuet
- Centre for Endocrinology, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Liliane Fossati-Jimack
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Costantino Pitzalis
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Dianne Cooper
- Centre for Biochemical Pharmacology, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Thomas D Nightingale
- Centre for Microvascular Research, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Carlos Lopez-Otin
- Centre de Recherche des Cordeliers, Inserm U1138, Université Paris Cité, Sorbonne Université, Paris, France
- Facultad de Ciencias de la Vida y la Naturaleza, Universidad Nebrija, Madrid, Spain
| | - Myles J Lewis
- Centre for Translational Bioinformatics, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Sussan Nourshargh
- Centre for Microvascular Research, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK.
- Centre for Inflammation and Therapeutic Innovation, Queen Mary University of London, London, UK.
| |
Collapse
|
6
|
Yu R, Xue H, Lin W, Collins F, Mount S, Cao K. Progerin mRNA expression in non-HGPS patients is correlated with widespread shifts in transcript isoforms. NAR Genom Bioinform 2024; 6:lqae115. [PMID: 39211333 PMCID: PMC11358823 DOI: 10.1093/nargab/lqae115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 08/06/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024] Open
Abstract
Hutchinson-Gilford Progeria Syndrome (HGPS) is a premature aging disease caused primarily by a C1824T mutation in LMNA. This mutation activates a cryptic splice donor site, producing a lamin variant called progerin. Interestingly, progerin has also been detected in cells and tissues of non-HGPS patients. Here, we investigated progerin expression using publicly available RNA-seq data from non-HGPS patients in the GTEx project. We found that progerin expression is present across all tissue types in non-HGPS patients and correlated with telomere shortening in the skin. Transcriptome-wide correlation analyses suggest that the level of progerin expression is correlated with switches in gene isoform expression patterns. Differential expression analyses show that progerin expression is correlated with significant changes in genes involved in splicing regulation and mitochondrial function. Interestingly, 5' splice sites whose use is correlated with progerin expression have significantly altered frequencies of consensus trinucleotides within the core 5' splice site. Furthermore, introns whose alternative splicing correlates with progerin have reduced GC content. Our study suggests that progerin expression in non-HGPS patients is part of a global shift in splicing patterns.
Collapse
Affiliation(s)
- Reynold Yu
- Department of Cell Biology and Molecular Genetics, University of Maryland College Park, MD, USA
| | - Huijing Xue
- Department of Cell Biology and Molecular Genetics, University of Maryland College Park, MD, USA
| | - Wanru Lin
- Department of Cell Biology and Molecular Genetics, University of Maryland College Park, MD, USA
| | - Francis S Collins
- Molecular Genetics Section, Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Stephen M Mount
- Department of Cell Biology and Molecular Genetics, University of Maryland College Park, MD, USA
| | - Kan Cao
- Department of Cell Biology and Molecular Genetics, University of Maryland College Park, MD, USA
| |
Collapse
|
7
|
Joudeh LA, Logan Schuck P, Van NM, DiCintio AJ, Stewart JA, Waldman AS. Progerin Can Induce DNA Damage in the Absence of Global Changes in Replication or Cell Proliferation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.02.601729. [PMID: 39005395 PMCID: PMC11244969 DOI: 10.1101/2024.07.02.601729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Hutchinson-Gilford Progeria Syndrome (HGPS) is a rare genetic condition characterized by features of accelerated aging, and individuals with HGPS seldom live beyond their mid-teens. The syndrome is commonly caused by a point mutation in the LMNA gene which codes for lamin A and its splice variant lamin C, components of the nuclear lamina. The mutation causing HGPS leads to production of a truncated, farnesylated form of lamin A referred to as "progerin." Progerin is also expressed at low levels in healthy individuals and appears to play a role in normal aging. HGPS is associated with an accumulation of genomic DNA double-strand breaks (DSBs) and alterations in the nature of DSB repair. The source of DSBs in HGPS is often attributed to stalling and subsequent collapse of replication forks in conjunction with faulty recruitment of repair factors to damage sites. In this work, we used a model system involving immortalized human cell lines to investigate progerin-induced genomic damage. Using an immunofluorescence approach to visualize phosphorylated histone H2AX foci which mark sites of genomic damage, we report that cells engineered to express progerin displayed a significant elevation of endogenous damage in the absence of any change in the cell cycle profile or doubling time of cells. Genomic damage was enhanced and persistent in progerin-expressing cells treated with hydroxyurea. Overexpression of wild-type lamin A did not elicit the outcomes associated with progerin expression. Our results show that DNA damage caused by progerin can occur independently from global changes in replication or cell proliferation.
Collapse
Affiliation(s)
- Liza A. Joudeh
- Department of Biological Sciences, University of South Carolina, Columbia, SC 20208
| | - P. Logan Schuck
- Department of Biological Sciences, University of South Carolina, Columbia, SC 20208
| | - Nina M. Van
- Department of Biological Sciences, University of South Carolina, Columbia, SC 20208
| | - Alannah J. DiCintio
- Department of Biological Sciences, University of South Carolina, Columbia, SC 20208
| | - Jason A. Stewart
- Department of Biological Sciences, University of South Carolina, Columbia, SC 20208
- Department of Biology, Western Kentucky University, Bowling Green, KY 42101
| | - Alan S. Waldman
- Department of Biological Sciences, University of South Carolina, Columbia, SC 20208
| |
Collapse
|
8
|
Ngubo M, Chen Z, McDonald D, Karimpour R, Shrestha A, Yockell‐Lelièvre J, Laurent A, Besong OTO, Tsai EC, Dilworth FJ, Hendzel MJ, Stanford WL. Progeria-based vascular model identifies networks associated with cardiovascular aging and disease. Aging Cell 2024; 23:e14150. [PMID: 38576084 PMCID: PMC11258467 DOI: 10.1111/acel.14150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 03/01/2024] [Accepted: 03/05/2024] [Indexed: 04/06/2024] Open
Abstract
Hutchinson-Gilford Progeria syndrome (HGPS) is a lethal premature aging disorder caused by a de novo heterozygous mutation that leads to the accumulation of a splicing isoform of Lamin A termed progerin. Progerin expression deregulates the organization of the nuclear lamina and the epigenetic landscape. Progerin has also been observed to accumulate at low levels during normal aging in cardiovascular cells of adults that do not carry genetic mutations linked with HGPS. Therefore, the molecular mechanisms that lead to vascular dysfunction in HGPS may also play a role in vascular aging-associated diseases, such as myocardial infarction and stroke. Here, we show that HGPS patient-derived vascular smooth muscle cells (VSMCs) recapitulate HGPS molecular hallmarks. Transcriptional profiling revealed cardiovascular disease remodeling and reactive oxidative stress response activation in HGPS VSMCs. Proteomic analyses identified abnormal acetylation programs in HGPS VSMC replication fork complexes, resulting in reduced H4K16 acetylation. Analysis of acetylation kinetics revealed both upregulation of K16 deacetylation and downregulation of K16 acetylation. This correlates with abnormal accumulation of error-prone nonhomologous end joining (NHEJ) repair proteins on newly replicated chromatin. The knockdown of the histone acetyltransferase MOF recapitulates preferential engagement of NHEJ repair activity in control VSMCs. Additionally, we find that primary donor-derived coronary artery vascular smooth muscle cells from aged individuals show similar defects to HGPS VSMCs, including loss of H4K16 acetylation. Altogether, we provide insight into the molecular mechanisms underlying vascular complications associated with HGPS patients and normative aging.
Collapse
Affiliation(s)
- Mzwanele Ngubo
- The Sprott Centre for Stem Cell ResearchOttawa Hospital Research InstituteOttawaOntarioCanada
- Ottawa Institute of Systems BiologyOttawaOntarioCanada
| | - Zhaoyi Chen
- The Sprott Centre for Stem Cell ResearchOttawa Hospital Research InstituteOttawaOntarioCanada
- Department of Cellular and Molecular MedicineUniversity of OttawaOttawaOntarioCanada
| | - Darin McDonald
- Cross Cancer Institute and the Department of Experimental Oncology, Faculty of Medicine and DentistryUniversity of AlbertaEdmontonAlbertaCanada
| | - Rana Karimpour
- Cross Cancer Institute and the Department of Experimental Oncology, Faculty of Medicine and DentistryUniversity of AlbertaEdmontonAlbertaCanada
| | - Amit Shrestha
- The Sprott Centre for Stem Cell ResearchOttawa Hospital Research InstituteOttawaOntarioCanada
| | - Julien Yockell‐Lelièvre
- The Sprott Centre for Stem Cell ResearchOttawa Hospital Research InstituteOttawaOntarioCanada
| | - Aurélie Laurent
- The Sprott Centre for Stem Cell ResearchOttawa Hospital Research InstituteOttawaOntarioCanada
- Université de StrasbourgStrasbourgFrance
| | - Ojong Tabi Ojong Besong
- The Sprott Centre for Stem Cell ResearchOttawa Hospital Research InstituteOttawaOntarioCanada
- School of BioscienceUniversity of SkövdeSkövdeSweden
| | - Eve C. Tsai
- The Sprott Centre for Stem Cell ResearchOttawa Hospital Research InstituteOttawaOntarioCanada
- Ottawa Institute of Systems BiologyOttawaOntarioCanada
- Division of Neurosurgery, Department of Surgery, Faculty of MedicineUniversity of OttawaOttawaOntarioCanada
| | - F. Jeffrey Dilworth
- Department of Cell and Regenerative BiologyUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Michael J. Hendzel
- Cross Cancer Institute and the Department of Experimental Oncology, Faculty of Medicine and DentistryUniversity of AlbertaEdmontonAlbertaCanada
| | - William L. Stanford
- The Sprott Centre for Stem Cell ResearchOttawa Hospital Research InstituteOttawaOntarioCanada
- Ottawa Institute of Systems BiologyOttawaOntarioCanada
- Department of Cellular and Molecular MedicineUniversity of OttawaOttawaOntarioCanada
- Department of Biochemistry, Microbiology & ImmunologyUniversity of OttawaOttawaOntarioCanada
| |
Collapse
|
9
|
Castilho RM, Castilho LS, Palomares BH, Squarize CH. Determinants of Chromatin Organization in Aging and Cancer-Emerging Opportunities for Epigenetic Therapies and AI Technology. Genes (Basel) 2024; 15:710. [PMID: 38927646 PMCID: PMC11202709 DOI: 10.3390/genes15060710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/21/2024] [Accepted: 05/26/2024] [Indexed: 06/28/2024] Open
Abstract
This review article critically examines the pivotal role of chromatin organization in gene regulation, cellular differentiation, disease progression and aging. It explores the dynamic between the euchromatin and heterochromatin, coded by a complex array of histone modifications that orchestrate essential cellular processes. We discuss the pathological impacts of chromatin state misregulation, particularly in cancer and accelerated aging conditions such as progeroid syndromes, and highlight the innovative role of epigenetic therapies and artificial intelligence (AI) in comprehending and harnessing the histone code toward personalized medicine. In the context of aging, this review explores the use of AI and advanced machine learning (ML) algorithms to parse vast biological datasets, leading to the development of predictive models for epigenetic modifications and providing a framework for understanding complex regulatory mechanisms, such as those governing cell identity genes. It supports innovative platforms like CEFCIG for high-accuracy predictions and tools like GridGO for tailored ChIP-Seq analysis, which are vital for deciphering the epigenetic landscape. The review also casts a vision on the prospects of AI and ML in oncology, particularly in the personalization of cancer therapy, including early diagnostics and treatment optimization for diseases like head and neck and colorectal cancers by harnessing computational methods, AI advancements and integrated clinical data for a transformative impact on healthcare outcomes.
Collapse
Affiliation(s)
- Rogerio M. Castilho
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI 48109-1078, USA; (L.S.C.); (C.H.S.)
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109-1078, USA
| | - Leonard S. Castilho
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI 48109-1078, USA; (L.S.C.); (C.H.S.)
| | - Bruna H. Palomares
- Oral Diagnosis Department, Piracicaba School of Dentistry, State University of Campinas, Piracicaba 13414-903, Sao Paulo, Brazil;
| | - Cristiane H. Squarize
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI 48109-1078, USA; (L.S.C.); (C.H.S.)
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109-1078, USA
| |
Collapse
|
10
|
Alshaalan KS, Albawardi TK, Zhra M, Bin Sulaiman N, Jnied OY, Saleem RA, Aljada A. Differential Expression of LMNA/C and Insulin Receptor Transcript Variants in Peripheral Blood Mononuclear Cells of Leukemia Patients. J Clin Med 2024; 13:2568. [PMID: 38731097 PMCID: PMC11084221 DOI: 10.3390/jcm13092568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/16/2024] [Accepted: 04/21/2024] [Indexed: 05/13/2024] Open
Abstract
Background: Recent research has identified alternative transcript variants of LMNA/C (LMNA, LMNC, LMNAΔ10, and LMNAΔ50) and insulin receptors (INSRs) as potential biomarkers for various types of cancer. The objective of this study was to assess the expression of LMNA/C and INSR transcript variants in peripheral blood mononuclear cells (PBMCs) of leukemia patients to investigate their potential as diagnostic biomarkers. Methods: Quantitative TaqMan reverse transcriptase polymerase chain reaction (RT-qPCR) was utilized to quantify the mRNA levels of LMNA/C (LMNA, LMNC, LMNAΔ10, and LMNAΔ50) as well as INSR (IR-A and IR-B) variants in PBMCs obtained from healthy individuals (n = 32) and patients diagnosed with primary leukemias (acute myeloid leukemia (AML): n = 17; acute lymphoblastic leukemia (ALL): n = 8; chronic myeloid leukemia (CML): n = 5; and chronic lymphocytic leukemia (CLL): n = 15). Results: Only LMNA and LMNC transcripts were notably present in PBMCs. Both exhibited significantly decreased expression levels in leukemia patients compared to the healthy control group. Particularly, the LMNC:LMNA ratio was notably higher in AML patients. Interestingly, IR-B expression was not detectable in any of the PBMC samples, precluding the calculation of the IR-A:IR-B ratio as a diagnostic marker. Despite reduced expression across all types of leukemia, IR-A levels remained detectable, indicating its potential involvement in disease progression. Conclusions: This study highlights the distinct expression patterns of LMNA/C and INSR transcript variants in PBMCs of leukemia patients. The LMNC:LMNA ratio shows promise as a potential diagnostic indicator for AML, while further research is necessary to understand the role of IR-A in leukemia pathogenesis and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Khalid Saud Alshaalan
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Riyadh 11481, Saudi Arabia
| | - Turki Khalid Albawardi
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Riyadh 11481, Saudi Arabia
| | - Mahmoud Zhra
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (M.Z.)
| | - Norah Bin Sulaiman
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (M.Z.)
| | - Osama Yaheia Jnied
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (M.Z.)
| | - Rimah Abdullah Saleem
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (M.Z.)
| | - Ahmad Aljada
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (M.Z.)
| |
Collapse
|
11
|
Worman HJ, Michaelis S. Prelamin A and ZMPSTE24 in premature and physiological aging. Nucleus 2023; 14:2270345. [PMID: 37885131 PMCID: PMC10730219 DOI: 10.1080/19491034.2023.2270345] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/06/2023] [Indexed: 10/28/2023] Open
Abstract
As human longevity increases, understanding the molecular mechanisms that drive aging becomes ever more critical to promote health and prevent age-related disorders. Premature aging disorders or progeroid syndromes can provide critical insights into aspects of physiological aging. A major cause of progeroid syndromes which result from mutations in the genes LMNA and ZMPSTE24 is disruption of the final posttranslational processing step in the production of the nuclear scaffold protein lamin A. LMNA encodes the lamin A precursor, prelamin A and ZMPSTE24 encodes the prelamin A processing enzyme, the zinc metalloprotease ZMPSTE24. Progeroid syndromes resulting from mutations in these genes include the clinically related disorders Hutchinson-Gilford progeria syndrome (HGPS), mandibuloacral dysplasia-type B, and restrictive dermopathy. These diseases have features that overlap with one another and with some aspects of physiological aging, including bone defects resembling osteoporosis and atherosclerosis (the latter primarily in HGPS). The progeroid syndromes have ignited keen interest in the relationship between defective prelamin A processing and its accumulation in normal physiological aging. In this review, we examine the hypothesis that diminished processing of prelamin A by ZMPSTE24 is a driver of physiological aging. We review features a new mouse (LmnaL648R/L648R) that produces solely unprocessed prelamin A and provides an ideal model for examining the effects of its accumulation during aging. We also discuss existing data on the accumulation of prelamin A or its variants in human physiological aging, which call out for further validation and more rigorous experimental approaches to determine if prelamin A contributes to normal aging.
Collapse
Affiliation(s)
- Howard J. Worman
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Susan Michaelis
- Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
12
|
Brandt A, Petrovsky R, Kriebel M, Großhans J. Use of Farnesyl Transferase Inhibitors in an Ageing Model in Drosophila. J Dev Biol 2023; 11:40. [PMID: 37987370 PMCID: PMC10660854 DOI: 10.3390/jdb11040040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 11/22/2023] Open
Abstract
The presence of farnesylated proteins at the inner nuclear membrane (INM), such as the Lamins or Kugelkern in Drosophila, leads to specific changes in the nuclear morphology and accelerated ageing on the organismal level reminiscent of the Hutchinson-Gilford progeria syndrome (HGPS). Farnesyl transferase inhibitors (FTIs) can suppress the phenotypes of the nuclear morphology in cultured fibroblasts from HGPS patients and cultured cells overexpressing farnesylated INM proteins. Similarly, FTIs have been reported to suppress the shortened lifespan in model organisms. Here, we report an experimental system combining cell culture and Drosophila flies for testing the activity of substances on the HGPS-like nuclear morphology and lifespan, with FTIs as an experimental example. Consistent with previous reports, we show that FTIs were able to ameliorate the nuclear phenotypes induced by the farnesylated nuclear proteins Progerin, Kugelkern, or truncated Lamin B in cultured cells. The subsequent validation in Drosophila lifespan assays demonstrated the applicability of the experimental system: treating adult Drosophila with the FTI ABT-100 reversed the nuclear phenotypes and extended the lifespan of experimentally induced short-lived flies. Since kugelkern-expressing flies have a significantly shorter average lifespan, half the time is needed for testing substances in the lifespan assay.
Collapse
Affiliation(s)
| | - Roman Petrovsky
- Department of Biology, Philipps University, Karl-von-Frisch-Straße 8, 35043 Marburg, Germany
| | - Maria Kriebel
- Department of Biology, Philipps University, Karl-von-Frisch-Straße 8, 35043 Marburg, Germany
| | - Jörg Großhans
- Department of Biology, Philipps University, Karl-von-Frisch-Straße 8, 35043 Marburg, Germany
| |
Collapse
|
13
|
Kim BH, Chung YH, Woo TG, Kang SM, Park S, Park BJ. Progerin, an Aberrant Spliced Form of Lamin A, Is a Potential Therapeutic Target for HGPS. Cells 2023; 12:2299. [PMID: 37759521 PMCID: PMC10527460 DOI: 10.3390/cells12182299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Hutchinson-Gilford progeria syndrome (HGPS) is an extremely rare genetic disorder caused by the mutant protein progerin, which is expressed by the abnormal splicing of the LMNA gene. HGPS affects systemic levels, with the exception of cognition or brain development, in children, showing that cellular aging can occur in the short term. Studying progeria could be useful in unraveling the causes of human aging (as well as fatal age-related disorders). Elucidating the clear cause of HGPS or the development of a therapeutic medicine could improve the quality of life and extend the survival of patients. This review aimed to (i) briefly describe how progerin was discovered as the causative agent of HGPS, (ii) elucidate the puzzling observation of the absence of primary neurological disease in HGPS, (iii) present several studies showing the deleterious effects of progerin and the beneficial effects of its inhibition, and (iv) summarize research to develop a therapy for HGPS and introduce clinical trials for its treatment.
Collapse
Affiliation(s)
- Bae-Hoon Kim
- Rare Disease R&D Center, PRG S&T Co., Ltd., Busan 46274, Republic of Korea; (B.-H.K.); (Y.-H.C.); (T.-G.W.)
| | - Yeon-Ho Chung
- Rare Disease R&D Center, PRG S&T Co., Ltd., Busan 46274, Republic of Korea; (B.-H.K.); (Y.-H.C.); (T.-G.W.)
| | - Tae-Gyun Woo
- Rare Disease R&D Center, PRG S&T Co., Ltd., Busan 46274, Republic of Korea; (B.-H.K.); (Y.-H.C.); (T.-G.W.)
| | - So-Mi Kang
- Department of Molecular Biology, College of Natural Science, Pusan National University, Busan 46231, Republic of Korea; (S.-M.K.); (S.P.)
| | - Soyoung Park
- Department of Molecular Biology, College of Natural Science, Pusan National University, Busan 46231, Republic of Korea; (S.-M.K.); (S.P.)
| | - Bum-Joon Park
- Rare Disease R&D Center, PRG S&T Co., Ltd., Busan 46274, Republic of Korea; (B.-H.K.); (Y.-H.C.); (T.-G.W.)
- Department of Molecular Biology, College of Natural Science, Pusan National University, Busan 46231, Republic of Korea; (S.-M.K.); (S.P.)
| |
Collapse
|
14
|
Cabral WA, Stephan C, Terajima M, Thaivalappil AA, Blanchard O, Tavarez UL, Narisu N, Yan T, Wincovitch S, Taga Y, Yamauchi M, Kozloff KM, Erdos MR, Collins FS. Bone dysplasia in Hutchinson-Gilford progeria syndrome is associated with dysregulated differentiation and function of bone cell populations. Aging Cell 2023; 22:e13903. [PMID: 37365004 PMCID: PMC10497813 DOI: 10.1111/acel.13903] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/15/2023] [Accepted: 05/24/2023] [Indexed: 06/28/2023] Open
Abstract
Hutchinson-Gilford progeria syndrome (HGPS) is a premature aging disorder affecting tissues of mesenchymal origin. Most individuals with HGPS harbor a de novo c.1824C > T (p.G608G) mutation in the gene encoding lamin A (LMNA), which activates a cryptic splice donor site resulting in production of the toxic "progerin" protein. Clinical manifestations include growth deficiency, lipodystrophy, sclerotic dermis, cardiovascular defects, and bone dysplasia. Here we utilized the LmnaG609G knock-in (KI) mouse model of HGPS to further define mechanisms of bone loss associated with normal and premature aging disorders. Newborn skeletal staining of KI mice revealed altered rib cage shape and spinal curvature, and delayed calvarial mineralization with increased craniofacial and mandibular cartilage content. MicroCT analysis and mechanical testing of adult femurs indicated increased fragility associated with reduced bone mass, recapitulating the progressive bone deterioration that occurs in HGPS patients. We investigated mechanisms of bone loss in KI mice at the cellular level in bone cell populations. Formation of wild-type and KI osteoclasts from marrow-derived precursors was inhibited by KI osteoblast-conditioned media in vitro, suggesting a secreted factor(s) responsible for decreased osteoclasts on KI trabecular surfaces in vivo. Cultured KI osteoblasts exhibited abnormal differentiation characterized by reduced deposition and mineralization of extracellular matrix with increased lipid accumulation compared to wild-type, providing a mechanism for altered bone formation. Furthermore, quantitative analyses of KI transcripts confirmed upregulation of adipogenic genes both in vitro and in vivo. Thus, osteoblast phenotypic plasticity, inflammation and altered cellular cross-talk contribute to abnormal bone formation in HGPS mice.
Collapse
Affiliation(s)
- Wayne A. Cabral
- Molecular Genetics Section, Center for Precision Health ResearchNational Human Genome Research Institute, NIHBethesdaMarylandUSA
| | - Chris Stephan
- Departments of Orthopedic Surgery and Biomedical EngineeringUniversity of MichiganAnn ArborMichiganUSA
| | - Masahiko Terajima
- Division of Oral and Craniofacial Health Sciences, Adams School of DentistryUniversity of North CarolinaChapel HillNorth CarolinaUSA
| | - Abhirami A. Thaivalappil
- Molecular Genetics Section, Center for Precision Health ResearchNational Human Genome Research Institute, NIHBethesdaMarylandUSA
| | - Owen Blanchard
- Departments of Orthopedic Surgery and Biomedical EngineeringUniversity of MichiganAnn ArborMichiganUSA
| | - Urraca L. Tavarez
- Molecular Genetics Section, Center for Precision Health ResearchNational Human Genome Research Institute, NIHBethesdaMarylandUSA
| | - Narisu Narisu
- Molecular Genetics Section, Center for Precision Health ResearchNational Human Genome Research Institute, NIHBethesdaMarylandUSA
| | - Tingfen Yan
- Molecular Genetics Section, Center for Precision Health ResearchNational Human Genome Research Institute, NIHBethesdaMarylandUSA
| | - Stephen M. Wincovitch
- Cytogenetics and Microscopy CoreNational Human Genome Research Institute, NIHBethesdaMarylandUSA
| | - Yuki Taga
- Nippi Research Institute of BiomatrixIbarakiJapan
| | - Mitsuo Yamauchi
- Division of Oral and Craniofacial Health Sciences, Adams School of DentistryUniversity of North CarolinaChapel HillNorth CarolinaUSA
| | - Kenneth M. Kozloff
- Departments of Orthopedic Surgery and Biomedical EngineeringUniversity of MichiganAnn ArborMichiganUSA
| | - Michael R. Erdos
- Molecular Genetics Section, Center for Precision Health ResearchNational Human Genome Research Institute, NIHBethesdaMarylandUSA
| | - Francis S. Collins
- Molecular Genetics Section, Center for Precision Health ResearchNational Human Genome Research Institute, NIHBethesdaMarylandUSA
| |
Collapse
|
15
|
Plesa AM, Shadpour M, Boyden E, Church GM. Transcriptomic reprogramming for neuronal age reversal. Hum Genet 2023; 142:1293-1302. [PMID: 37004545 PMCID: PMC10066999 DOI: 10.1007/s00439-023-02529-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 01/24/2023] [Indexed: 04/04/2023]
Abstract
Aging is a progressive multifaceted functional decline of a biological system. Chronic age-related conditions such as neurodegenerative diseases are leading causes of death worldwide, and they are becoming a pressing problem for our society. To address this global challenge, there is a need for novel, safe, and effective rejuvenation therapies aimed at reversing age-related phenotypes and improving human health. With gene expression being a key determinant of cell identity and function, and in light of recent studies reporting rejuvenation effects through genetic perturbations, we propose an age reversal strategy focused on reprogramming the cell transcriptome to a youthful state. To this end, we suggest using transcriptomic data from primary human cells to predict rejuvenation targets and develop high-throughput aging assays, which can be used in large perturbation screens. We propose neural cells as particularly relevant targets for rejuvenation due to substantial impact of neurodegeneration on human frailty. Of all cell types in the brain, we argue that glutamatergic neurons, neuronal stem cells, and oligodendrocytes represent the most impactful and tractable targets. Lastly, we provide experimental designs for anti-aging reprogramming screens that will likely enable the development of neuronal age reversal therapies, which hold promise for dramatically improving human health.
Collapse
Affiliation(s)
- Alexandru M. Plesa
- Department of Genetics, Harvard Medical School, Boston, MA USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA USA
| | - Michael Shadpour
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA USA
- Department of Biological Engineering, MIT, Cambridge, MA USA
| | - Ed Boyden
- Department of Biological Engineering, MIT, Cambridge, MA USA
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA USA
- McGovern Institute for Brain Research, MIT, Cambridge, MA USA
- Howard Hughes Medical Institute, MIT, Cambridge, MA USA
| | - George M. Church
- Department of Genetics, Harvard Medical School, Boston, MA USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA USA
| |
Collapse
|
16
|
Daily N, Elson J, Wakatsuki T. Aging Model for Analyzing Drug-Induced Proarrhythmia Risks Using Cardiomyocytes Differentiated from Progeria-Patient-Derived Induced Pluripotent Stem Cells. Int J Mol Sci 2023; 24:11959. [PMID: 37569335 PMCID: PMC10418415 DOI: 10.3390/ijms241511959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/18/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
Among various cardiac safety concerns, proarrhythmia risks, including QT prolongation leading to Torsade de Pointes, is one of major cause for drugs being withdrawn (~45% 1975-2007). Preclinical study requires the evaluation of proarrhythmia using in silico, in vitro, and/or animal models. Considering that the primary consumers of prescription drugs are elderly patients, applications of "aging-in-a-dish" models would be appropriate for screening proarrhythmia risks. However, acquiring such models, including cardiomyocytes (CMs) derived from induced pluripotent stem cells (iPSCs), presents extensive challenges. We proposed the hypothesis that CMs differentiated from iPSCs derived from Hutchinson-Gilford progeria syndrome (HGPS, progeria) patients, an ultra-rare premature aging syndrome, can mimic the phenotypes of aging CMs. Our objective, therefore, was to examine this hypothesis by analyzing the response of 11 reference compounds utilized by the Food and Drug Administration (FDA)'s Comprehensive in vitro Proarrhythmia Assay (CiPA) using progeria and control CMs. As a sensitive surrogate marker of modulating cardiac excitation-contraction coupling, we evaluated drug-induced changes in calcium transient (CaT). We observed that the 80% CaT peak duration in the progeria CMs (0.98 ± 0.04 s) was significantly longer than that of control CMs (0.70 ± 0.05 s). Furthermore, when the progeria CMs were subjected to four doses of 11 compounds from low-, intermediate-, and high-risk categories, they demonstrated greater arrhythmia susceptibility than control cells, as shown through six-parameter CaT profile analyses. We also employed the regression analysis established by CiPA to classify the 11 reference compounds and compared proarrhythmia susceptibilities between the progeria and control CMs. This analysis revealed a greater proarrhythmia susceptibility in the progeria CMs compared to the control CMs. Interestingly, in both CMs, the compounds categorized as low risk did not exceed the safety risk threshold of 0.8. In conclusion, our study demonstrates increased proarrhythmia sensitivity in progeria CMs when tested with reference compounds. Future studies are needed to analyze underlying mechanisms and further validate our findings using a larger array of reference compounds.
Collapse
|
17
|
Joudeh LA, DiCintio AJ, Ries MR, Gasperson AS, Griffin KE, Robbins VP, Bonner M, Nolan S, Black E, Waldman AS. Corruption of DNA end-joining in mammalian chromosomes by progerin expression. DNA Repair (Amst) 2023; 126:103491. [PMID: 37018982 PMCID: PMC10133198 DOI: 10.1016/j.dnarep.2023.103491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/23/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023]
Abstract
Hutchinson-Gilford Progeria Syndrome (HGPS) is a rare genetic condition characterized by features of accelerated aging and a life expectancy of about 14 years. HGPS is commonly caused by a point mutation in the LMNA gene which codes for lamin A, an essential component of the nuclear lamina. The HGPS mutation alters splicing of the LMNA transcript, leading to a truncated, farnesylated form of lamin A termed "progerin." Progerin is also produced in small amounts in healthy individuals by alternative splicing of RNA and has been implicated in normal aging. HGPS is associated with an accumulation of genomic DNA double-strand breaks (DSBs), suggesting alteration of DNA repair. DSB repair normally occurs by either homologous recombination (HR), an accurate, templated form of repair, or by nonhomologous end-joining (NHEJ), a non-templated rejoining of DNA ends that can be error-prone; however a good portion of NHEJ events occurs precisely with no alteration to joined sequences. Previously, we reported that over-expression of progerin correlated with increased NHEJ relative to HR. We now report on progerin's impact on the nature of DNA end-joining. We used a model system involving a DNA end-joining reporter substrate integrated into the genome of cultured thymidine kinase-deficient mouse fibroblasts. Some cells were engineered to express progerin. Two closely spaced DSBs were induced in the integrated substrate through expression of endonuclease I-SceI, and DSB repair events were recovered through selection for thymidine kinase function. DNA sequencing revealed that progerin expression correlated with a significant shift away from precise end-joining between the two I-SceI sites and toward imprecise end-joining. Additional experiments revealed that progerin did not reduce HR fidelity. Our work suggests that progerin suppresses interactions between complementary sequences at DNA termini, thereby shifting DSB repair toward low-fidelity DNA end-joining and perhaps contributing to accelerated and normal aging through compromised genome stability.
Collapse
Affiliation(s)
- Liza A Joudeh
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Alannah J DiCintio
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Madeline R Ries
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Andrew S Gasperson
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Kennedy E Griffin
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Victoria P Robbins
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Makenzie Bonner
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Sarah Nolan
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Emma Black
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Alan S Waldman
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA.
| |
Collapse
|
18
|
Hartinger R, Lederer EM, Schena E, Lattanzi G, Djabali K. Impact of Combined Baricitinib and FTI Treatment on Adipogenesis in Hutchinson-Gilford Progeria Syndrome and Other Lipodystrophic Laminopathies. Cells 2023; 12:1350. [PMID: 37408186 DOI: 10.3390/cells12101350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/27/2023] [Accepted: 05/04/2023] [Indexed: 07/07/2023] Open
Abstract
Hutchinson-Gilford progeria syndrome (HGPS) is a rare genetic disease that causes premature aging symptoms, such as vascular diseases, lipodystrophy, loss of bone mineral density, and alopecia. HGPS is mostly linked to a heterozygous and de novo mutation in the LMNA gene (c.1824 C > T; p.G608G), resulting in the production of a truncated prelamin A protein called "progerin". Progerin accumulation causes nuclear dysfunction, premature senescence, and apoptosis. Here, we examined the effects of baricitinib (Bar), an FDA-approved JAK/STAT inhibitor, and a combination of Bar and lonafarnib (FTI) treatment on adipogenesis using skin-derived precursors (SKPs). We analyzed the effect of these treatments on the differentiation potential of SKPs isolated from pre-established human primary fibroblast cultures. Compared to mock-treated HGPS SKPs, Bar and Bar + FTI treatments improved the differentiation of HGPS SKPs into adipocytes and lipid droplet formation. Similarly, Bar and Bar + FTI treatments improved the differentiation of SKPs derived from patients with two other lipodystrophic diseases: familial partial lipodystrophy type 2 (FPLD2) and mandibuloacral dysplasia type B (MADB). Overall, the results show that Bar treatment improves adipogenesis and lipid droplet formation in HGPS, FPLD2, and MADB, indicating that Bar + FTI treatment might further ameliorate HGPS pathologies compared to lonafarnib treatment alone.
Collapse
Affiliation(s)
- Ramona Hartinger
- Epigenetics of Aging, Department of Dermatology and Allergy, TUM School of Medicine, Munich Institute of Biomedical Engineering (MIBE), Technical University of Munich (TUM), 85748 Garching, Germany
| | - Eva-Maria Lederer
- Epigenetics of Aging, Department of Dermatology and Allergy, TUM School of Medicine, Munich Institute of Biomedical Engineering (MIBE), Technical University of Munich (TUM), 85748 Garching, Germany
| | - Elisa Schena
- Unit of Bologna, CNR Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza", 40136 Bologna, Italy
- IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Giovanna Lattanzi
- Unit of Bologna, CNR Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza", 40136 Bologna, Italy
- IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Karima Djabali
- Epigenetics of Aging, Department of Dermatology and Allergy, TUM School of Medicine, Munich Institute of Biomedical Engineering (MIBE), Technical University of Munich (TUM), 85748 Garching, Germany
| |
Collapse
|
19
|
Rajabian N, Ikhapoh I, Shahini S, Choudhury D, Thiyagarajan R, Shahini A, Kulczyk J, Breed K, Saha S, Mohamed MA, Udin SB, Stablewski A, Seldeen K, Troen BR, Personius K, Andreadis ST. Methionine adenosyltransferase2A inhibition restores metabolism to improve regenerative capacity and strength of aged skeletal muscle. Nat Commun 2023; 14:886. [PMID: 36797255 PMCID: PMC9935517 DOI: 10.1038/s41467-023-36483-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 02/01/2023] [Indexed: 02/18/2023] Open
Abstract
We investigate the age-related metabolic changes that occur in aged and rejuvenated myoblasts using in vitro and in vivo models of aging. Metabolic and signaling experiments reveal that human senescent myoblasts and myoblasts from a mouse model of premature aging suffer from impaired glycolysis, insulin resistance, and generate Adenosine triphosphate by catabolizing methionine via a methionine adenosyl-transferase 2A-dependant mechanism, producing significant levels of ammonium that may further contribute to cellular senescence. Expression of the pluripotency factor NANOG downregulates methionine adenosyltransferase 2 A, decreases ammonium, restores insulin sensitivity, increases glucose uptake, and enhances muscle regeneration post-injury. Similarly, selective inhibition of methionine adenosyltransferase 2 A activates Akt2 signaling, repairs pyruvate kinase, restores glycolysis, and enhances regeneration, which leads to significant enhancement of muscle strength in a mouse model of premature aging. Collectively, our investigation indicates that inhibiting methionine metabolism may restore age-associated impairments with significant gain in muscle function.
Collapse
Affiliation(s)
- Nika Rajabian
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Amherst, NY, USA
| | - Izuagie Ikhapoh
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Amherst, NY, USA
| | - Shahryar Shahini
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Amherst, NY, USA
| | - Debanik Choudhury
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Amherst, NY, USA
| | - Ramkumar Thiyagarajan
- Division of Geriatrics and Palliative Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo and Research Service, Veterans Affairs Western New York Healthcare System, Buffalo, NY, USA
| | - Aref Shahini
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Amherst, NY, USA
| | - Joseph Kulczyk
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Amherst, NY, USA
| | - Kendall Breed
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Amherst, NY, USA
| | - Shilpashree Saha
- Department of Biomedical Engineering, University at Buffalo, Amherst, NY, USA
| | - Mohamed Alaa Mohamed
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Amherst, NY, USA
| | - Susan B Udin
- Department of Physiology and Biophysics, School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Aimee Stablewski
- Gene Targeting and Transgenic Shared Resource, Roswell Park Comprehensive Cancer Institute, Buffalo, NY, USA
| | - Kenneth Seldeen
- Division of Geriatrics and Palliative Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo and Research Service, Veterans Affairs Western New York Healthcare System, Buffalo, NY, USA
| | - Bruce R Troen
- Division of Geriatrics and Palliative Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo and Research Service, Veterans Affairs Western New York Healthcare System, Buffalo, NY, USA
| | - Kirkwood Personius
- Department of Rehabilitation Science, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, USA
| | - Stelios T Andreadis
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Amherst, NY, USA.
- Department of Biomedical Engineering, University at Buffalo, Amherst, NY, USA.
- Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY, USA.
- Cell, Gene and Tissue Engineering (CGTE) Center, School of Engineering and Applied Sciences, University at Buffalo, Amherst, NY, USA.
| |
Collapse
|
20
|
Malloy J, Berry E, Correia A, Fragala-Pinkham M, Coucci S, Riley S, Spratt J, Knight Pfaffinger J, Massaro J, Ehrbar R, D'Agostino R, Gurary EB, Gordon LB, Kleinman ME. Baseline Range of Motion, Strength, Motor Function, and Participation in Youth with Hutchinson-Gilford Progeria Syndrome. Phys Occup Ther Pediatr 2023; 43:482-501. [PMID: 36628480 PMCID: PMC10496152 DOI: 10.1080/01942638.2022.2158054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 11/17/2022] [Accepted: 12/05/2022] [Indexed: 01/12/2023]
Abstract
AIMS Limited information is available on impairments, activity limitations and participation restrictions in youth with Hutchinson-Gilford progeria syndrome (HGPS), a rare genetic premature aging disease. The purposes were to: (1) describe range of motion (ROM), grip, pinch and quadriceps strength, functional balance, walking endurance, and gross motor limitations and participation restrictions; (2) evaluate the association between ROM impairments and age; and (3) evaluate the association between the Gross Motor Function Measure-88 (GMFM) scores and lower extremity (LE) ROM, quadriceps strength, and age. METHODS Upper and LE ROM, grip, pinch and quadriceps strength, Timed Up and Go (TUG), Six Minute Walk Test, GMFM-88, and Canadian Occupational Performance Measure data were recorded for 38 participants with HGPS. RESULTS All youth exhibited ROM impairments and most displayed decreased grip and pinch strength, walking endurance, and gross motor skills when compared to same-aged peers. However, the majority had good functional balance with TUG scores in the normal range. Participation restrictions included difficulty keeping up with peers when walking and difficulty completing activities of daily living. Some ROM measurements were negatively associated with age indicating that older participants had more extensive ROM limitation than younger participants. CONCLUSIONS Physical and occupational therapists can use this information when evaluating youth with HGPS, designing a plan of care, and providing treatment interventions.
Collapse
Affiliation(s)
- Julie Malloy
- Department of Physical and Occupational Therapy Services, Boston Children's Hospital, Boston, MA, USA
| | - Emily Berry
- Department of Physical and Occupational Therapy Services, Boston Children's Hospital, Boston, MA, USA
| | - Annette Correia
- Department of Physical and Occupational Therapy Services, Boston Children's Hospital, Boston, MA, USA
| | - Maria Fragala-Pinkham
- Department of Physical and Occupational Therapy Services, Boston Children's Hospital, Boston, MA, USA
| | - Sarah Coucci
- Department of Physical and Occupational Therapy Services, Boston Children's Hospital, Boston, MA, USA
| | - Susan Riley
- Department of Physical and Occupational Therapy Services, Boston Children's Hospital, Boston, MA, USA
| | - Jessica Spratt
- Department of Physical and Occupational Therapy Services, Boston Children's Hospital, Boston, MA, USA
| | - Jessica Knight Pfaffinger
- Department of Physical and Occupational Therapy Services, Boston Children's Hospital, Boston, MA, USA
| | - Joe Massaro
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Rachel Ehrbar
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Ralph D'Agostino
- Department of Mathematics and Statistics, Boston University, Boston, MA, USA
| | - Ellen B Gurary
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Leslie B Gordon
- Department of Anesthesiology, Preoperative and Pain Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Hasbro Children's Hospital and Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Monica E Kleinman
- Department of Anesthesiology, Preoperative and Pain Medicine, Boston Children's Hospital, Boston, MA, USA
| |
Collapse
|
21
|
Kirkland NJ, Skalak SH, Whitehead AJ, Hocker JD, Beri P, Vogler G, Hum B, Wang M, Lakatta EG, Ren B, Bodmer R, Engler AJ. Age-dependent Lamin changes induce cardiac dysfunction via dysregulation of cardiac transcriptional programs. NATURE AGING 2023; 3:17-33. [PMID: 36845078 PMCID: PMC9956937 DOI: 10.1038/s43587-022-00323-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 10/31/2022] [Indexed: 12/24/2022]
Abstract
As we age, structural changes contribute to progressive decline in organ function, which in the heart act through poorly characterized mechanisms. Taking advantage of the short lifespan and conserved cardiac proteome of the fruit fly, we found that cardiomyocytes exhibit progressive loss of Lamin C (mammalian Lamin A/C homologue) with age, coincident with decreasing nuclear size and increasing nuclear stiffness. Premature genetic reduction of Lamin C phenocopies aging's effects on the nucleus, and subsequently decreases heart contractility and sarcomere organization. Surprisingly, Lamin C reduction downregulates myogenic transcription factors and cytoskeletal regulators, possibly via reduced chromatin accessibility. Subsequently, we find a role for cardiac transcription factors in regulating adult heart contractility and show that maintenance of Lamin C, and cardiac transcription factor expression, prevents age-dependent cardiac decline. Our findings are conserved in aged non-human primates and mice, demonstrating that age-dependent nuclear remodeling is a major mechanism contributing to cardiac dysfunction.
Collapse
Affiliation(s)
- Natalie J. Kirkland
- Department of Bioengineering, University California San Diego; La Jolla, CA, USA 92093
- Sanford Consortium for Regenerative Medicine; La Jolla, CA, USA 92037
| | - Scott H. Skalak
- Department of Bioengineering, University California San Diego; La Jolla, CA, USA 92093
- Sanford Consortium for Regenerative Medicine; La Jolla, CA, USA 92037
| | - Alexander J. Whitehead
- Department of Bioengineering, University California San Diego; La Jolla, CA, USA 92093
- Sanford Consortium for Regenerative Medicine; La Jolla, CA, USA 92037
| | - James D. Hocker
- Cell and Molecular Medicine, University California San Diego; La Jolla, CA, USA 92093
- Biomedical Sciences Program, University California San Diego; La Jolla, CA, USA 92093
| | - Pranjali Beri
- Department of Bioengineering, University California San Diego; La Jolla, CA, USA 92093
- Sanford Consortium for Regenerative Medicine; La Jolla, CA, USA 92037
| | - Geo Vogler
- Development, Aging and Regeneration Program, Sanford-Burnham-Prebys Medical Discovery Institute; La Jolla, CA, USA 92037
| | - Bill Hum
- Development, Aging and Regeneration Program, Sanford-Burnham-Prebys Medical Discovery Institute; La Jolla, CA, USA 92037
| | - Mingyi Wang
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA 21224
| | - Edward G. Lakatta
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA 21224
| | - Bing Ren
- Cell and Molecular Medicine, University California San Diego; La Jolla, CA, USA 92093
- Biomedical Sciences Program, University California San Diego; La Jolla, CA, USA 92093
- Ludwig Institute for Cancer Research; La Jolla, CA, USA 92037
| | - Rolf Bodmer
- Development, Aging and Regeneration Program, Sanford-Burnham-Prebys Medical Discovery Institute; La Jolla, CA, USA 92037
| | - Adam J. Engler
- Department of Bioengineering, University California San Diego; La Jolla, CA, USA 92093
- Biomedical Sciences Program, University California San Diego; La Jolla, CA, USA 92093
- Sanford Consortium for Regenerative Medicine; La Jolla, CA, USA 92037
| |
Collapse
|
22
|
Coll-Bonfill N, Mahajan U, Shashkova EV, Lin CJ, Mecham RP, Gonzalo S. Progerin induces a phenotypic switch in vascular smooth muscle cells and triggers replication stress and an aging-associated secretory signature. GeroScience 2022; 45:965-982. [PMID: 36482259 PMCID: PMC9886737 DOI: 10.1007/s11357-022-00694-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 11/17/2022] [Indexed: 12/14/2022] Open
Abstract
Hutchinson-Gilford progeria syndrome is a premature aging disease caused by LMNA gene mutation and the production of a truncated prelamin A protein "progerin" that elicits cellular and organismal toxicity. Progerin accumulates in the vasculature, being especially detrimental for vascular smooth muscle cells (VSMC). Vessel stiffening and aortic atherosclerosis in HGPS patients are accompanied by VSMC depletion in the medial layer, altered extracellular matrix (ECM), and thickening of the adventitial layer. Mechanisms whereby progerin causes massive VSMC loss and vessel alterations remain poorly understood. Mature VSMC retain phenotypic plasticity and can switch to a synthetic/proliferative phenotype. Here, we show that progerin expression in human and mouse VSMC causes a switch towards the synthetic phenotype. This switch elicits some level of replication stress in normal cells, which is exacerbated in the presence of progerin, leading to telomere fragility, genomic instability, and ultimately VSMC death. Calcitriol prevents replication stress, telomere fragility, and genomic instability, reducing VSMC death. In addition, RNA-seq analysis shows induction of a profibrotic and pro-inflammatory aging-associated secretory phenotype upon progerin expression in human primary VSMC. Our data suggest that phenotypic switch-induced replication stress might be an underlying cause of VSMC loss in progeria, which together with loss of contractile features and gain of profibrotic and pro-inflammatory signatures contribute to vascular stiffness in HGPS.
Collapse
Affiliation(s)
- Nuria Coll-Bonfill
- grid.262962.b0000 0004 1936 9342Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, 1100 S Grand Blvd, St Louis, MO 63104 USA
| | - Urvashi Mahajan
- grid.262962.b0000 0004 1936 9342Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, 1100 S Grand Blvd, St Louis, MO 63104 USA
| | - Elena V. Shashkova
- grid.262962.b0000 0004 1936 9342Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, 1100 S Grand Blvd, St Louis, MO 63104 USA
| | - Chien-Jung Lin
- grid.4367.60000 0001 2355 7002Cell Biology and Physiology Department & Department of Medicine, Washington University School of Medicine, St Louis, MO 63108 USA ,grid.262962.b0000 0004 1936 9342Department of Internal Medicine, Cardiovascular Division, Saint Louis University School of Medicine, St Louis, MO 63104 USA
| | - Robert P. Mecham
- grid.4367.60000 0001 2355 7002Cell Biology and Physiology Department & Department of Medicine, Washington University School of Medicine, St Louis, MO 63108 USA
| | - Susana Gonzalo
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, 1100 S Grand Blvd, St Louis, MO, 63104, USA.
| |
Collapse
|
23
|
Primmer SR, Liao CY, Kummert OMP, Kennedy BK. Lamin A to Z in normal aging. Aging (Albany NY) 2022; 14:8150-8166. [PMID: 36260869 DOI: 10.18632/aging.204342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 08/31/2022] [Indexed: 11/25/2022]
Abstract
Almost since the discovery that mutations in the LMNA gene, encoding the nuclear structure components lamin A and C, lead to Hutchinson-Gilford progeria syndrome, people have speculated that lamins may have a role in normal aging. The most common HPGS mutation creates a splice variant of lamin A, progerin, which promotes accelerated aging pathology. While some evidence exists that progerin accumulates with normal aging, an increasing body of work indicates that prelamin A, a precursor of lamin A prior to C-terminal proteolytic processing, accumulates with age and may be a driver of normal aging. Prelamin A shares properties with progerin and is also linked to a rare progeroid disease, restrictive dermopathy. Here, we describe mechanisms underlying changes in prelamin A with aging and lay out the case that this unprocessed protein impacts normative aging. This is important since intervention strategies can be developed to modify this pathway as a means to extend healthspan and lifespan.
Collapse
Affiliation(s)
| | - Chen-Yu Liao
- The Buck Institute for Research on Aging, Novato, CA 94945, USA
| | | | - Brian K Kennedy
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Centre for Healthy Longevity, National University Health System, Singapore.,Departments of Biochemistry and Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
24
|
Erichsen L, Adjaye J. Crosstalk between age accumulated DNA-damage and the SIRT1-AKT-GSK3ß axis in urine derived renal progenitor cells. Aging (Albany NY) 2022; 14:8179-8204. [PMID: 36170022 PMCID: PMC9648809 DOI: 10.18632/aging.204300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 09/08/2022] [Indexed: 12/02/2022]
Abstract
The aging process is manifested by a multitude of inter-linked biological processes. These processes contribute to genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, de-regulated nutrient-sensing, mitochondrial dysfunction, cellular senescence, stem cell exhaustion, and altered intercellular communication. The mammalian ortholog of the yeast silent information regulator (Sir2) SIRT1 is a NAD+-dependent class III histone deacetylase and has been recognized to be involved in many of the forementioned processes. Furthermore, the physiological activity of several Sirtuin family members has been connected to the regulation of life span of lower organisms (Caenorhabditis elegans and Drosophila melanogaster) as well as mammals. In the present study, we provide evidence that SIX2-positive urine derived renal progenitor cells-UdRPCs isolated directly from human urine show typical hallmarks of aging. This includes the subsequent transcriptional downregulation of SIRT1 and its downstream targets AKT and GSK3ß with increased donor age. This transcriptional downregulation is accompanied by an increase in DNA damage and transcriptional levels of several cell cycle inhibitors such as P16. We provide evidence that the renal progenitor transcription factor SIX2 binds to the coding sequence of SIRT1. Furthermore, we show that the SIRT1 promoter region is methylation sensitive and becomes methylated during aging, dividing them into SIRT1-high and -low expressing UdRPCs. Our results highlight the importance of SIRT1 in DNA damage repair recognition in UdRPCs and the control of differentiation by regulating the activation of GSK3β through AKT.
Collapse
Affiliation(s)
- Lars Erichsen
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich-Heine- University Düsseldorf, Düsseldorf 40225, Germany
| | - James Adjaye
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich-Heine- University Düsseldorf, Düsseldorf 40225, Germany
| |
Collapse
|
25
|
Maynard S, Hall A, Galanos P, Rizza S, Yamamoto T, Gram H, Munk SHN, Shoaib M, Sørensen CS, Bohr V, Lerdrup M, Maya-Mendoza A, Bartek J. Lamin A/C impairments cause mitochondrial dysfunction by attenuating PGC1α and the NAMPT-NAD+ pathway. Nucleic Acids Res 2022; 50:9948-9965. [PMID: 36099415 PMCID: PMC9508839 DOI: 10.1093/nar/gkac741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 07/30/2022] [Accepted: 08/30/2022] [Indexed: 11/14/2022] Open
Abstract
Mutations in the lamin A/C gene (LMNA) cause laminopathies such as the premature aging Hutchinson Gilford progeria syndrome (HGPS) and altered lamin A/C levels are found in diverse malignancies. The underlying lamin-associated mechanisms remain poorly understood. Here we report that lamin A/C-null mouse embryo fibroblasts (Lmna-/- MEFs) and human progerin-expressing HGPS fibroblasts both display reduced NAD+ levels, unstable mitochondrial DNA and attenuated bioenergetics. This mitochondrial dysfunction is associated with reduced chromatin recruitment (Lmna-/- MEFs) or low levels (HGPS) of PGC1α, the key transcription factor for mitochondrial homeostasis. Lmna-/- MEFs showed reduced expression of the NAD+-biosynthesis enzyme NAMPT and attenuated activity of the NAD+-dependent deacetylase SIRT1. We find high PARylation in lamin A/C-aberrant cells, further decreasing the NAD+ pool and consistent with impaired DNA base excision repair in both cell models, a condition that fuels DNA damage-induced PARylation under oxidative stress. Further, ATAC-sequencing revealed a substantially altered chromatin landscape in Lmna-/- MEFs, including aberrantly reduced accessibility at the Nampt gene promoter. Thus, we identified a new role of lamin A/C as a key modulator of mitochondrial function through impairments of PGC1α and the NAMPT-NAD+ pathway, with broader implications for the aging process.
Collapse
Affiliation(s)
- Scott Maynard
- Danish Cancer Society Research Center, DK-2100 Copenhagen, Denmark
| | - Arnaldur Hall
- Danish Cancer Society Research Center, DK-2100 Copenhagen, Denmark
| | | | - Salvatore Rizza
- Danish Cancer Society Research Center, DK-2100 Copenhagen, Denmark
| | - Tatsuro Yamamoto
- Danish Cancer Society Research Center, DK-2100 Copenhagen, Denmark
| | | | | | - Muhammad Shoaib
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Claus Storgaard Sørensen
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Vilhelm A Bohr
- Department of Cellular and Molecular Medicine, Center for Healthy Aging, University of Copenhagen, DK-2200 Copenhagen, Denmark
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Mads Lerdrup
- The DNRF Center for Chromosome Stability, Department of Cellular and Molecular Medicine, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | | | - Jiri Bartek
- Danish Cancer Society Research Center, DK-2100 Copenhagen, Denmark
- Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Science for Life Laboratory, Karolinska Institute, SE-17177 Stockholm, Sweden
| |
Collapse
|
26
|
Lamis A, Siddiqui SW, Ashok T, Patni N, Fatima M, Aneef AN. Hutchinson-Gilford Progeria Syndrome: A Literature Review. Cureus 2022; 14:e28629. [PMID: 36196312 PMCID: PMC9524302 DOI: 10.7759/cureus.28629] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2022] [Indexed: 11/05/2022] Open
Abstract
Hutchinson-Gilford progeria syndrome (HGPS) is a premature aging condition that involves genetic mutations, resulting in debilitating phenotypic features. The present state of knowledge on the molecular pathways that contribute to the pathophysiology of HGPS and the techniques being tested in vitro and in vivo to combat progerin toxicity have been discussed here. Nuclear morphological abnormalities, dysregulated gene expression, DNA repair deficiencies, telomere shortening, and genomic instability are all caused by progerin accumulation, all of which impair cellular proliferative capability. In addition, HGPS cells and preclinical animal models have revealed new information about the disease's molecular and cellular pathways and putative mechanisms involved in normal aging. This article has discussed the understanding of the molecular pathways by which progerin expression leads to HGPS and how the advanced therapy options for HGPS patients can help us understand and treat the condition.
Collapse
|
27
|
Sengupta D, Sengupta K. Lamin A and telomere maintenance in aging: Two to Tango. Mutat Res 2022; 825:111788. [PMID: 35687934 DOI: 10.1016/j.mrfmmm.2022.111788] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 03/28/2022] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
Lamin proteins which constitute the nuclear lamina in almost all higher eukaryotes, are mainly of two types A & B encoded by LMNA and LMNB1/B2 genes respectively. While lamin A remains the principal product of LMNA gene, variants like lamin C, C2 and A∆10 are also formed as alternate splice products. Role of lamin A in aging has been highlighted in recent times due to its association with progeroid or premature aging syndromes which is classified as a type of laminopathy. Progeria caused by accelerated accumulation of lamin A Δ50 or progerin occurs due to a mutation in this LMNA gene leading to defects in post translational modification of lamin A. One of the most common and severe symptoms of progeroid laminopathy is accelerated cellular senescence or aging along with bone resorption, muscle weakness, lipodystrophy and cardiovascular disorders. On the other hand, progerin accumulation and telomere dysfunction merge as common traits in the process of chronological aging. Two major hallmarks of physiological aging in humans include loss of genomic integrity and telomere attrition which can result from defective laminar organization leading to deformed nuclear architecture and culminates into replicative senescence. This also adversely affects epigenetic landscape, mitochondrial dysfunction and several signalling pathways like DNA repair, mTOR, MAPK, TGFβ. In this review, we discuss the telomere-lamina interplay in the context of physiological aging and progeria.
Collapse
Affiliation(s)
- Duhita Sengupta
- Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, West Bengal, India; Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Kaushik Sengupta
- Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, West Bengal, India; Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India.
| |
Collapse
|
28
|
Stiekema M, Houben F, Verheyen F, Borgers M, Menzel J, Meschkat M, van Zandvoort MAMJ, Ramaekers FCS, Broers JLV. The Role of Lamins in the Nucleoplasmic Reticulum, a Pleiomorphic Organelle That Enhances Nucleo-Cytoplasmic Interplay. Front Cell Dev Biol 2022; 10:914286. [PMID: 35784476 PMCID: PMC9243388 DOI: 10.3389/fcell.2022.914286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/24/2022] [Indexed: 12/15/2022] Open
Abstract
Invaginations of the nuclear membrane occur in different shapes, sizes, and compositions. Part of these pleiomorphic invaginations make up the nucleoplasmic reticulum (NR), while others are merely nuclear folds. We define the NR as tubular invaginations consisting of either both the inner and outer nuclear membrane, or only the inner nuclear membrane. Specifically, invaginations of both the inner and outer nuclear membrane are also called type II NR, while those of only the inner nuclear membrane are defined as type I NR. The formation and structure of the NR is determined by proteins associated to the nuclear membrane, which induce a high membrane curvature leading to tubular invaginations. Here we review and discuss the current knowledge of nuclear invaginations and the NR in particular. An increase in tubular invaginations of the nuclear envelope is associated with several pathologies, such as laminopathies, cancer, (reversible) heart failure, and Alzheimer’s disease. Furthermore, viruses can induce both type I and II NR. In laminopathies, the amount of A-type lamins throughout the nucleus is generally decreased or the organization of lamins or lamin-associated proteins is disturbed. Also, lamin overexpression or modulation of lamin farnesylation status impacts NR formation, confirming the importance of lamin processing in NR formation. Virus infections reorganize the nuclear lamina via (de)phosphorylation of lamins, leading to an uneven thickness of the nuclear lamina and in turn lobulation of the nuclear membrane and the formation of invaginations of the inner nuclear membrane. Since most studies on the NR have been performed with cell cultures, we present additional proof for the existence of these structures in vivo, focusing on a variety of differentiated cardiovascular and hematopoietic cells. Furthermore, we substantiate the knowledge of the lamin composition of the NR by super-resolution images of the lamin A/C and B1 organization. Finally, we further highlight the essential role of lamins in NR formation by demonstrating that (over)expression of lamins can induce aberrant NR structures.
Collapse
Affiliation(s)
- Merel Stiekema
- Department of Genetics and Cell Biology, Maastricht University Medical Centre, Maastricht, Netherlands
- GROW-School for Oncology and Reproduction, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Frederik Houben
- Department of Genetics and Cell Biology, Maastricht University Medical Centre, Maastricht, Netherlands
- Department of Healthcare, PXL University College, Hasselt, Belgium
| | - Fons Verheyen
- Department of Genetics and Cell Biology, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Marcel Borgers
- Department of Genetics and Cell Biology, Maastricht University Medical Centre, Maastricht, Netherlands
| | | | | | - Marc A. M. J. van Zandvoort
- Department of Genetics and Cell Biology, Maastricht University Medical Centre, Maastricht, Netherlands
- GROW-School for Oncology and Reproduction, Maastricht University Medical Centre, Maastricht, Netherlands
- CARIM-School for Cardiovascular Diseases, Maastricht University Medical Centre, Maastricht, Netherlands
- Institute for Molecular Cardiovascular Research IMCAR, RWTH Aachen University, Aachen, Germany
| | - Frans C. S. Ramaekers
- Department of Genetics and Cell Biology, Maastricht University Medical Centre, Maastricht, Netherlands
- GROW-School for Oncology and Reproduction, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Jos L. V. Broers
- Department of Genetics and Cell Biology, Maastricht University Medical Centre, Maastricht, Netherlands
- GROW-School for Oncology and Reproduction, Maastricht University Medical Centre, Maastricht, Netherlands
- CARIM-School for Cardiovascular Diseases, Maastricht University Medical Centre, Maastricht, Netherlands
- *Correspondence: Jos L. V. Broers,
| |
Collapse
|
29
|
Talukder P, Saha A, Roy S, Ghosh G, Dutta Roy D, Barua S. Progeria-a Rare Genetic Condition with Accelerated Ageing Process. Appl Biochem Biotechnol 2022; 195:2587-2596. [PMID: 35445924 DOI: 10.1007/s12010-021-03514-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 01/18/2021] [Indexed: 11/26/2022]
Abstract
Progeria is a rare genetic disease which is characterised by accelerated ageing and reduced life span. There are differing types of progeria, but the classic type is Hutchinson-Gilford progeria syndrome (HGPS). Within a year of birth, people suffering from it start showing several features such as very low weight, scleroderma, osteoporosis and loss of hair. Their life expectancy is highly reduced and the average life span is around 14.6 years. Research is going on to understand the genetic and molecular level causes of this disease. Apart from that, several studies are also going on to discover therapeutic techniques and drugs to treat this disease but the success rate is very low. To gain a better understanding about research developments of progeria more experimental models, drugs and molecular technologies are under trial. Different important aspects and recent developments in epidemiology, genetic causes, symptoms, diagnosis and treatment options of progeria are discussed in this review.
Collapse
Affiliation(s)
- Pratik Talukder
- Department of Biotechnology, University of Engineering and Management, University Area, Plot, Street Number 03, Action Area III, B/5, Newtown, Kolkata, West Bengal, 700156, India.
| | - Arunima Saha
- Department of Biotechnology, University of Engineering and Management, University Area, Plot, Street Number 03, Action Area III, B/5, Newtown, Kolkata, West Bengal, 700156, India
| | - Sohini Roy
- Department of Biotechnology, University of Engineering and Management, University Area, Plot, Street Number 03, Action Area III, B/5, Newtown, Kolkata, West Bengal, 700156, India
| | - Gargi Ghosh
- Department of Biotechnology, University of Engineering and Management, University Area, Plot, Street Number 03, Action Area III, B/5, Newtown, Kolkata, West Bengal, 700156, India
| | - Debshikha Dutta Roy
- Department of Biotechnology, University of Engineering and Management, University Area, Plot, Street Number 03, Action Area III, B/5, Newtown, Kolkata, West Bengal, 700156, India
| | - Snejuti Barua
- Department of Biotechnology, University of Engineering and Management, University Area, Plot, Street Number 03, Action Area III, B/5, Newtown, Kolkata, West Bengal, 700156, India
| |
Collapse
|
30
|
Mosevitsky MI. Progerin and Its Role in Accelerated and Natural Aging. Mol Biol 2022. [DOI: 10.1134/s0026893322020091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
31
|
Jiang Y, Ji JY. Progerin-Induced Impairment in Wound Healing and Proliferation in Vascular Endothelial Cells. FRONTIERS IN AGING 2022; 3:844885. [PMID: 35821855 PMCID: PMC9261432 DOI: 10.3389/fragi.2022.844885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 01/27/2022] [Indexed: 11/29/2022]
Abstract
Progerin as a mutated isoform of lamin A protein was first known to induce premature atherosclerosis progression in patients with Hutchinson-Gilford progeria syndrome (HGPS), and its role in provoking an inflammatory response in vascular cells and accelerating cell senescence has been investigated recently. However, how progerin triggers endothelial dysfunction that often occurs at the early stage of atherosclerosis in a mechanical environment has not been studied intensively. Here, we generated a stable endothelial cell line that expressed progerin and examined its effects on endothelial wound repair under laminar flow. We found decreased wound healing rate in progerin-expressing ECs under higher shear stress compared with those under low shear. Furthermore, the decreased wound recovery could be due to reduced number of cells at late mitosis, suggesting potential interference by progerin with endothelial proliferation. These findings provided insights into how progerin affects endothelial mechanotransduction and may contribute to the disruption of endothelial integrity in HGPS vasculature, as we continue to examine the mechanistic effect of progerin in shear-induced endothelial functions.
Collapse
|
32
|
Kim BH, Woo TG, Kang SM, Park S, Park BJ. Splicing Variants, Protein-Protein Interactions, and Drug Targeting in Hutchinson-Gilford Progeria Syndrome and Small Cell Lung Cancer. Genes (Basel) 2022; 13:genes13020165. [PMID: 35205210 PMCID: PMC8871687 DOI: 10.3390/genes13020165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 12/15/2022] Open
Abstract
Alternative splicing (AS) is a biological operation that enables a messenger RNA to encode protein variants (isoforms) that give one gene several functions or properties. This process provides one of the major sources of use for understanding the proteomic diversity of multicellular organisms. In combination with post-translational modifications, it contributes to generating a variety of protein–protein interactions (PPIs) that are essential to cellular homeostasis or proteostasis. However, cells exposed to many kinds of stresses (aging, genetic changes, carcinogens, etc.) sometimes derive cancer or disease onset from aberrant PPIs caused by DNA mutations. In this review, we summarize how splicing variants may form a neomorphic protein complex and cause diseases such as Hutchinson-Gilford progeria syndrome (HGPS) and small cell lung cancer (SCLC), and we discuss how protein–protein interfaces obtained from the variants may represent efficient therapeutic target sites to treat HGPS and SCLC.
Collapse
Affiliation(s)
- Bae-Hoon Kim
- Rare Disease R&D Center, PRG S&T Co., Ltd., Busan 46241, Korea; (B.-H.K.); (T.-G.W.)
| | - Tae-Gyun Woo
- Rare Disease R&D Center, PRG S&T Co., Ltd., Busan 46241, Korea; (B.-H.K.); (T.-G.W.)
| | - So-Mi Kang
- Department of Molecular Biology, College of Natural Science, Pusan National University, Busan 46274, Korea; (S.-M.K.); (S.P.)
| | - Soyoung Park
- Department of Molecular Biology, College of Natural Science, Pusan National University, Busan 46274, Korea; (S.-M.K.); (S.P.)
| | - Bum-Joon Park
- Rare Disease R&D Center, PRG S&T Co., Ltd., Busan 46241, Korea; (B.-H.K.); (T.-G.W.)
- Department of Molecular Biology, College of Natural Science, Pusan National University, Busan 46274, Korea; (S.-M.K.); (S.P.)
- Correspondence:
| |
Collapse
|
33
|
Mojiri A, Walther BK, Jiang C, Matrone G, Holgate R, Xu Q, Morales E, Wang G, Gu J, Wang R, Cooke JP. Telomerase therapy reverses vascular senescence and extends lifespan in progeria mice. Eur Heart J 2021; 42:4352-4369. [PMID: 34389865 PMCID: PMC8603239 DOI: 10.1093/eurheartj/ehab547] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 03/29/2021] [Accepted: 08/12/2021] [Indexed: 12/28/2022] Open
Abstract
AIMS Hutchinson-Gilford progeria syndrome (HGPS) is an accelerated ageing syndrome associated with premature vascular disease and death due to heart attack and stroke. In HGPS a mutation in lamin A (progerin) alters nuclear morphology and gene expression. Current therapy increases the lifespan of these children only modestly. Thus, greater understanding of the underlying mechanisms of HGPS is required to improve therapy. Endothelial cells (ECs) differentiated from induced pluripotent stem cells (iPSCs) derived from these patients exhibit hallmarks of senescence including replication arrest, increased expression of inflammatory markers, DNA damage, and telomere erosion. We hypothesized that correction of shortened telomeres may reverse these measures of vascular ageing. METHODS AND RESULTS We generated ECs from iPSCs belonging to children with HGPS and their unaffected parents. Telomerase mRNA (hTERT) was used to treat HGPS ECs. Endothelial morphology and functions were assessed, as well as proteomic and transcriptional profiles with attention to inflammatory markers, DNA damage, and EC identity genes. In a mouse model of HGPS, we assessed the effects of lentiviral transfection of mTERT on measures of senescence, focusing on the EC phenotype in various organs. hTERT treatment of human HGPS ECs improved replicative capacity; restored endothelial functions such as nitric oxide generation, acetylated low-density lipoprotein uptake and angiogenesis; and reduced the elaboration of inflammatory cytokines. In addition, hTERT treatment improved cellular and nuclear morphology, in association with a normalization of the transcriptional profile, effects that may be mediated in part by a reduction in progerin expression and an increase in sirtuin 1 (SIRT1). Progeria mice treated with mTERT lentivirus manifested similar improvements, with a reduction in inflammatory and DNA damage markers and increased SIRT1 in their vasculature and other organs. Furthermore, mTERT therapy increased the lifespan of HGPS mice. CONCLUSION Vascular rejuvenation using telomerase mRNA is a promising approach for progeria and other age-related diseases.
Collapse
Affiliation(s)
- Anahita Mojiri
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, 6670 Bertner Ave., R10-South, Houston, TX 77030, USA
| | - Brandon K Walther
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, 6670 Bertner Ave., R10-South, Houston, TX 77030, USA
- Department of Biomedical Engineering, Texas A&M University, 101 Bizzell St., College Station, TX 77840, USA
| | - Chongming Jiang
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Gianfranco Matrone
- British Heart Foundation Centre for Cardiovascular Science, Queen’s Medical Research Institute, The University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Rhonda Holgate
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, 6670 Bertner Ave., R10-South, Houston, TX 77030, USA
| | - Qiu Xu
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, 6670 Bertner Ave., R10-South, Houston, TX 77030, USA
| | - Elisa Morales
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, 6670 Bertner Ave., R10-South, Houston, TX 77030, USA
| | - Guangyu Wang
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, 6670 Bertner Ave., R10-South, Houston, TX 77030, USA
- Center for Bioinformatics and Computational Biology, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Jianhua Gu
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, 6670 Bertner Ave., R10-South, Houston, TX 77030, USA
| | - Rongfu Wang
- Department of Medicine, and Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - John P Cooke
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, 6670 Bertner Ave., R10-South, Houston, TX 77030, USA
| |
Collapse
|
34
|
Bednarski IA, Ciążyńska M, Kabziński J, Majsterek I, Sobolewska-Sztychny D, Narbutt J, Lesiak A. More Than Skin Deep - the Effects of Ultraviolet Radiation on Cathepsin K and Progerin Expression in Cultured Dermal Fibroblasts. Clin Cosmet Investig Dermatol 2021; 14:1561-1568. [PMID: 34737595 PMCID: PMC8558101 DOI: 10.2147/ccid.s318707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/16/2021] [Indexed: 11/28/2022]
Abstract
Introduction Photoaging is a premature skin aging developing secondarily to the excessive exposure to ultraviolet radiation. Due to its complexity, an exact mechanism of photoaging has not been found yet; however, recent research has shown two new emerging players in this process – cathepsin K and progerin. Aim To evaluate how different wavelengths of ultraviolet radiation (UVA, narrowband UVB and broadband UVB) influence cathepsin K and progerin protein and mRNA expression in dermal cultured fibroblasts. Materials and Methods Primary human dermal fibroblasts (Detroit 551, ATCC CCL-110) were cultured and irradiated with UVA, narrowband UVB (UVBnb) and broadband UVB (UVBwb). Fibroblasts were irradiated with 2 protocols: single high-dose exposure to UVR with protein/mRNA extraction immediately after exposure, 24 h after exposure and 48 h after exposure, and repeated (0 h, 24 h and 48 h) low-dose exposure to UVR with protein/mRNA extraction 48 h after first exposure. Results Single high doses of UVA, UVBwb and UVBnb resulted in decreased expression of cathepsin K and progerin protein/mRNA in all subsequent time points. Repeated exposure to low doses of UVA results in significant increase of progerin mRNA and significant decrease of progerin protein after 48 h, but repeated exposure to UVBwb and UVBnb resulted in decreased progerin mRNA and protein expression. Repeated exposure to UVA, UVBwb and UVBnb resulted in decreased cathepsin K protein and mRNA expression. Conclusion The results suggest that there could be another progerin/cathepsin K regulatory pathway, which has not been described yet. Being contradictory with previous research, the influence of ultraviolet radiation on progerin and cathepsin K needs to be further elucidated.
Collapse
Affiliation(s)
- Igor Aleksander Bednarski
- Department of Dermatology, Pediatric Dermatology and Dermatological Oncology, Medical University of Lodz, Lodz, 91-347, Poland
| | - Magdalena Ciążyńska
- Nicolaus Copernicus Multidisciplinary Centre for Oncology and Traumatology, Lodz, 93-513, Poland
| | - Jacek Kabziński
- Department of Chemistry and Clinical Biochemistry, Medical University of Lodz, Lodz, 90-136, Poland
| | - Ireneusz Majsterek
- Department of Chemistry and Clinical Biochemistry, Medical University of Lodz, Lodz, 90-136, Poland
| | - Dorota Sobolewska-Sztychny
- Department of Dermatology, Pediatric Dermatology and Dermatological Oncology, Medical University of Lodz, Lodz, 91-347, Poland
| | - Joanna Narbutt
- Department of Dermatology, Pediatric Dermatology and Dermatological Oncology, Medical University of Lodz, Lodz, 91-347, Poland
| | - Aleksandra Lesiak
- Department of Dermatology, Pediatric Dermatology and Dermatological Oncology, Medical University of Lodz, Lodz, 91-347, Poland
| |
Collapse
|
35
|
Birks S, Uzer G. At the nuclear envelope of bone mechanobiology. Bone 2021; 151:116023. [PMID: 34051417 PMCID: PMC8600447 DOI: 10.1016/j.bone.2021.116023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 05/11/2021] [Accepted: 05/21/2021] [Indexed: 02/06/2023]
Abstract
The nuclear envelope and nucleoskeleton are emerging as signaling centers that regulate how physical information from the extracellular matrix is biochemically transduced into the nucleus, affecting chromatin and controlling cell function. Bone is a mechanically driven tissue that relies on physical information to maintain its physiological function and structure. Disorder that present with musculoskeletal and cardiac symptoms, such as Emery-Dreifuss muscular dystrophies and progeria, correlate with mutations in nuclear envelope proteins including Linker of Nucleoskeleton and Cytoskeleton (LINC) complex, Lamin A/C, and emerin. However, the role of nuclear envelope mechanobiology on bone function remains underexplored. The mesenchymal stem cell (MSC) model is perhaps the most studied relationship between bone regulation and nuclear envelope function. MSCs maintain the musculoskeletal system by differentiating into multiple cell types including osteocytes and adipocytes, thus supporting the bone's ability to respond to mechanical challenge. In this review, we will focus on how MSC function is regulated by mechanical challenges both in vitro and in vivo within the context of bone function specifically focusing on integrin, β-catenin and YAP/TAZ signaling. The importance of the nuclear envelope will be explored within the context of musculoskeletal diseases related to nuclear envelope protein mutations and nuclear envelope regulation of signaling pathways relevant to bone mechanobiology in vitro and in vivo.
Collapse
Affiliation(s)
- Scott Birks
- Boise State University, Micron School of Materials Science and Engineering, United States of America
| | - Gunes Uzer
- Boise State University, Mechanical and Biomedical Engineering, United States of America.
| |
Collapse
|
36
|
Najdi F, Krüger P, Djabali K. Impact of Progerin Expression on Adipogenesis in Hutchinson-Gilford Progeria Skin-Derived Precursor Cells. Cells 2021; 10:cells10071598. [PMID: 34202258 PMCID: PMC8306773 DOI: 10.3390/cells10071598] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 06/19/2021] [Accepted: 06/23/2021] [Indexed: 01/10/2023] Open
Abstract
Hutchinson–Gilford progeria syndrome (HGPS) is a segmental premature aging disease caused by a mutation in LMNA. The mutation generates a truncated and farnesylated form of prelamin A, called progerin. Affected individuals develop several features of normal aging, including lipodystrophy caused by the loss of general subcutaneous fat. To determine whether premature cellular senescence is responsible for the altered adipogenesis in patients with HGPS, we evaluated the differentiation of HGPS skin-derived precursor stem cells (SKPs) into adipocytes. The SKPs were isolated from primary human HGPS and normal fibroblast cultures, with senescence of 5 and 30%. We observed that the presence of high numbers of senescent cells reduced SKPs’ adipogenic differentiation potential. Treatment with baricitinib, a JAK–STAT inhibitor, ameliorated the ability of HGPS SKPs to differentiate into adipocytes. Our findings suggest that the development of lipodystrophy in patients with HGPS may be associated with an increased rate of cellular senescence and chronic inflammation.
Collapse
|
37
|
von Kleeck R, Castagnino P, Roberts E, Talwar S, Ferrari G, Assoian RK. Decreased vascular smooth muscle contractility in Hutchinson-Gilford Progeria Syndrome linked to defective smooth muscle myosin heavy chain expression. Sci Rep 2021; 11:10625. [PMID: 34012019 PMCID: PMC8134495 DOI: 10.1038/s41598-021-90119-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 05/06/2021] [Indexed: 01/12/2023] Open
Abstract
Children with Hutchinson-Gilford Progeria Syndrome (HGPS) suffer from multiple cardiovascular pathologies due to the expression of progerin, a mutant form of the nuclear envelope protein Lamin A. Progerin expression has a dramatic effect on arterial smooth muscle cells (SMCs) and results in decreased viability and increased arterial stiffness. However, very little is known about how progerin affects SMC contractility. Here, we studied the LaminAG609G/G609G mouse model of HGPS and found reduced arterial contractility at an early age that correlates with a decrease in smooth muscle myosin heavy chain (SM-MHC) mRNA and protein expression. Traction force microscopy on isolated SMCs from these mice revealed reduced force generation compared to wild-type controls; this effect was phenocopied by depletion of SM-MHC in WT SMCs and overcome by ectopic expression of SM-MHC in HGPS SMCs. Arterial SM-MHC levels are also reduced with age in wild-type mice and humans, suggesting a common defect in arterial contractility in HGPS and normal aging.
Collapse
Affiliation(s)
- Ryan von Kleeck
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Center for Engineering MechanoBiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Paola Castagnino
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Institute of Translational Medicine and Therapeutics at University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Emilia Roberts
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Institute of Translational Medicine and Therapeutics at University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Shefali Talwar
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Center for Engineering MechanoBiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Giovanni Ferrari
- Departments of Surgery and Biomedical Engineering, Columbia University, New York, NY, 10032, USA
| | - Richard K Assoian
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Center for Engineering MechanoBiology, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Institute of Translational Medicine and Therapeutics at University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
38
|
Molecular and Cellular Mechanisms Driving Cardiovascular Disease in Hutchinson-Gilford Progeria Syndrome: Lessons Learned from Animal Models. Cells 2021; 10:cells10051157. [PMID: 34064612 PMCID: PMC8151355 DOI: 10.3390/cells10051157] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/29/2021] [Accepted: 05/07/2021] [Indexed: 02/07/2023] Open
Abstract
Hutchinson-Gilford progeria syndrome (HGPS) is a rare genetic disease that recapitulates many symptoms of physiological aging and precipitates death. Patients develop severe vascular alterations, mainly massive vascular smooth muscle cell loss, vessel stiffening, calcification, fibrosis, and generalized atherosclerosis, as well as electrical, structural, and functional anomalies in the heart. As a result, most HGPS patients die of myocardial infarction, heart failure, or stroke typically during the first or second decade of life. No cure exists for HGPS, and therefore it is of the utmost importance to define the mechanisms that control disease progression in order to develop new treatments to improve the life quality of patients and extend their lifespan. Since the discovery of the HGPS-causing mutation, several animal models have been generated to study multiple aspects of the syndrome and to analyze the contribution of different cell types to the acquisition of the HGPS-associated cardiovascular phenotype. This review discusses current knowledge about cardiovascular features in HGPS patients and animal models and the molecular and cellular mechanisms through which progerin causes cardiovascular disease.
Collapse
|
39
|
Xiang Y, Qin Z, Guo C, He T, Liu Y, Quan T. Progerin mRNA expression is elevated in aged human dermis and impairs TGF-β/Smad signaling. J Dermatol Sci 2021; 103:49-52. [PMID: 33985864 DOI: 10.1016/j.jdermsci.2021.04.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/20/2021] [Accepted: 04/23/2021] [Indexed: 12/12/2022]
Affiliation(s)
- Yaping Xiang
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Zhaoping Qin
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Chunfang Guo
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Tianyuan He
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Yingchun Liu
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Taihao Quan
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, Michigan, USA.
| |
Collapse
|
40
|
Shokrollahi M, Mekhail K. Interphase microtubules in nuclear organization and genome maintenance. Trends Cell Biol 2021; 31:721-731. [PMID: 33902985 DOI: 10.1016/j.tcb.2021.03.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/10/2021] [Accepted: 03/23/2021] [Indexed: 12/11/2022]
Abstract
Microtubules are major cytoskeletal components mediating fundamental cellular processes, including cell division. Recent evidence suggests that microtubules also regulate the nucleus during the cell cycle's interphase stage. Deciphering such roles of microtubules should uncover direct crosstalk between the nucleus and cytoplasm, impacting genome function and organismal health. Here, we review emerging roles for microtubules in interphase genome regulation. We explore how microtubules exert cytoplasmic forces on the nucleus or transport molecular cargo, including DNA, into or within the nucleus. We also describe how microtubules perform these functions by establishing transient or stable connections with nuclear envelope elements. Lastly, we discuss how the regulation of the nucleus by microtubules impacts genome organization and repair. Together, the literature indicates that interphase microtubules are critical regulators of nuclear structure and genome stability.
Collapse
Affiliation(s)
- Mitra Shokrollahi
- Department of Laboratory Medicine and Pathobiology, MaRS Centre, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Karim Mekhail
- Department of Laboratory Medicine and Pathobiology, MaRS Centre, Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Canada Research Chairs Program, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
41
|
Willaume S, Rass E, Fontanilla-Ramirez P, Moussa A, Wanschoor P, Bertrand P. A Link between Replicative Stress, Lamin Proteins, and Inflammation. Genes (Basel) 2021; 12:genes12040552. [PMID: 33918867 PMCID: PMC8070205 DOI: 10.3390/genes12040552] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/23/2021] [Accepted: 04/08/2021] [Indexed: 12/12/2022] Open
Abstract
Double-stranded breaks (DSB), the most toxic DNA lesions, are either a consequence of cellular metabolism, programmed as in during V(D)J recombination, or induced by anti-tumoral therapies or accidental genotoxic exposure. One origin of DSB sources is replicative stress, a major source of genome instability, especially when the integrity of the replication forks is not properly guaranteed. To complete stalled replication, restarting the fork requires complex molecular mechanisms, such as protection, remodeling, and processing. Recently, a link has been made between DNA damage accumulation and inflammation. Indeed, defects in DNA repair or in replication can lead to the release of DNA fragments in the cytosol. The recognition of this self-DNA by DNA sensors leads to the production of inflammatory factors. This beneficial response activating an innate immune response and destruction of cells bearing DNA damage may be considered as a novel part of DNA damage response. However, upon accumulation of DNA damage, a chronic inflammatory cellular microenvironment may lead to inflammatory pathologies, aging, and progression of tumor cells. Progress in understanding the molecular mechanisms of DNA damage repair, replication stress, and cytosolic DNA production would allow to propose new therapeutical strategies against cancer or inflammatory diseases associated with aging. In this review, we describe the mechanisms involved in DSB repair, the replicative stress management, and its consequences. We also focus on new emerging links between key components of the nuclear envelope, the lamins, and DNA repair, management of replicative stress, and inflammation.
Collapse
|
42
|
von Kleeck R, Roberts E, Castagnino P, Bruun K, Brankovic SA, Hawthorne EA, Xu T, Tobias JW, Assoian RK. Arterial stiffness and cardiac dysfunction in Hutchinson-Gilford Progeria Syndrome corrected by inhibition of lysyl oxidase. Life Sci Alliance 2021; 4:4/5/e202000997. [PMID: 33687998 PMCID: PMC8008950 DOI: 10.26508/lsa.202000997] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/12/2021] [Accepted: 02/23/2021] [Indexed: 12/18/2022] Open
Abstract
The findings show that increased lysyl oxidase abundance is causal for the elevated arterial stiffness present in the arteries of Hutchinson–Gilford Progeria Syndrome mice. Pharmacologic inhibition of lysyl oxidase improves cardiac dysfunction and restores arterial compliance. Arterial stiffening and cardiac dysfunction are hallmarks of premature aging in Hutchinson–Gilford Progeria Syndrome (HGPS), but the molecular regulators remain unknown. Here, we show that the LaminAG609G mouse model of HGPS recapitulates the premature arterial stiffening and early diastolic dysfunction seen in human HGPS. Lysyl oxidase (LOX) is up-regulated in the arteries of these mice, and treatment with the LOX inhibitor, β-aminopropionitrile, improves arterial mechanics and cardiac function. Genome-wide and mechanistic analysis revealed reduced expression of the LOX-regulator, miR-145, in HGPS arteries, and forced expression of miR-145 restores normal LOX gene expression in HGPS smooth muscle cells. LOX abundance is also increased in the carotid arteries of aged wild-type mice, but its spatial expression differs from HGPS and its up-regulation is independent of changes in miR-145 abundance. Our results show that miR-145 is selectively misregulated in HGPS and that the consequent up-regulation of LOX is causal for premature arterial stiffening and cardiac dysfunction.
Collapse
Affiliation(s)
- Ryan von Kleeck
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA.,Center for Engineering MechanoBiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Emilia Roberts
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA.,Institute of Translational Medicine and Therapeutics and University of Pennsylvania, Philadelphia, PA, USA
| | - Paola Castagnino
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA.,Institute of Translational Medicine and Therapeutics and University of Pennsylvania, Philadelphia, PA, USA
| | - Kyle Bruun
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
| | - Sonja A Brankovic
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA.,Center for Engineering MechanoBiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Elizabeth A Hawthorne
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
| | - Tina Xu
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
| | - John W Tobias
- Penn Genomic Analysis Core and University of Pennsylvania, Philadelphia, PA, USA
| | - Richard K Assoian
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA .,Center for Engineering MechanoBiology, University of Pennsylvania, Philadelphia, PA, USA.,Institute of Translational Medicine and Therapeutics and University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
43
|
Röhrl JM, Arnold R, Djabali K. Nuclear Pore Complexes Cluster in Dysmorphic Nuclei of Normal and Progeria Cells during Replicative Senescence. Cells 2021; 10:cells10010153. [PMID: 33466669 PMCID: PMC7828780 DOI: 10.3390/cells10010153] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/10/2021] [Accepted: 01/11/2021] [Indexed: 01/10/2023] Open
Abstract
Hutchinson-Gilford progeria syndrome (HGPS) is a rare premature aging disease caused by a mutation in LMNA. A G608G mutation in exon 11 of LMNA is responsible for most HGPS cases, generating a truncated protein called “progerin”. Progerin is permanently farnesylated and accumulates in HGPS cells, causing multiple cellular defects such as nuclear dysmorphism, a thickened lamina, loss of heterochromatin, premature senescence, and clustering of Nuclear Pore Complexes (NPC). To identify the mechanism of NPC clustering in HGPS cells, we evaluated post-mitotic NPC assembly in control and HGPS cells and found no defects. Next, we examined the occurrence of NPC clustering in control and HGPS cells during replicative senescence. We reported that NPC clustering occurs solely in the dysmorphic nuclei of control and HGPS cells. Hence, NPC clustering occurred at a higher frequency in HGPS cells compared to control cells at early passages; however, in late cultures with similar senescence index, NPCs clustering occurred at a similar rate in both control and HGPS. Our results show that progerin does not disrupt post-mitotic reassembly of NPCs. However, NPCs frequently cluster in dysmorphic nuclei with a high progerin content. Additionally, nuclear envelope defects that arise during replicative senescence cause NPC clustering in senescent cells with dysmorphic nuclei.
Collapse
|
44
|
Progerinin, an optimized progerin-lamin A binding inhibitor, ameliorates premature senescence phenotypes of Hutchinson-Gilford progeria syndrome. Commun Biol 2021; 4:5. [PMID: 33398110 PMCID: PMC7782499 DOI: 10.1038/s42003-020-01540-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 12/01/2020] [Indexed: 02/08/2023] Open
Abstract
Previous work has revealed that progerin-lamin A binding inhibitor (JH4) can ameliorate pathological features of Hutchinson-Gilford progeria syndrome (HGPS) such as nuclear deformation, growth suppression in patient’s cells, and very short life span in an in vivo mouse model. Despite its favorable effects, JH4 is rapidly eliminated in in vivo pharmacokinetic (PK) analysis. Thus, we improved its property through chemical modification and obtained an optimized drug candidate, Progerinin (SLC-D011). This chemical can extend the life span of LmnaG609G/G609G mouse for about 10 weeks and increase its body weight. Progerinin can also extend the life span of LmnaG609G/+ mouse for about 14 weeks via oral administration, whereas treatment with lonafarnib (farnesyl-transferase inhibitor) can only extend the life span of LmnaG609G/+ mouse for about two weeks. In addition, progerinin can induce histological and physiological improvement in LmnaG609G/+ mouse. These results indicate that progerinin is a strong drug candidate for HGPS. Kang, Park and colleagues develop and demonstrate the effects of a new drug candidate for treatment of Hutchinson-Gilford progeria syndrome pathologies. Progerinin extends the life span of mice used to model this disease and induces histological and physiological improvements.
Collapse
|
45
|
Georgakopoulou EA, Valsamidi C, Veroutis D, Havaki S. The bright and dark side of skin senescence. Could skin rejuvenation anti-senescence interventions become a "bright" new strategy for the prevention of age-related skin pathologies? Mech Ageing Dev 2020; 193:111409. [PMID: 33249190 DOI: 10.1016/j.mad.2020.111409] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 10/17/2020] [Accepted: 11/20/2020] [Indexed: 01/10/2023]
Abstract
The number of senescent cells in the skin is increasing with age. Numerous studies have attempted to elucidate the role of these cells in normal aging of the skin as well as in age-related skin conditions. In recent years, attempts have also been made to find treatments that aim either to cleanse the skin tissues of senescent cells or to neutralize their effects (referred to as senolytics and senomorphics respectively) and thus prevent the consequences, particularly on the skin's appearance in advanced age. Through this review, we have tried to gather data on the role of senescent cells in the skin, in treatments aimed at removing them, and we are asking a reasonable question as to whether anti-senescence treatments may contribute to the protection against age-related skin pathologies, including skin cancer, such as non-melanoma skin cancer, in addition to their involvement in skin rejuvenation.
Collapse
Affiliation(s)
- Eleni A Georgakopoulou
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str., 11527 Athens, Greece
| | - Christina Valsamidi
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str., 11527 Athens, Greece
| | - Dimitrios Veroutis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str., 11527 Athens, Greece
| | - Sophia Havaki
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str., 11527 Athens, Greece.
| |
Collapse
|
46
|
Komari CJ, Guttman AO, Carr SR, Trachtenberg TL, Orloff EA, Haas AV, Patrick AR, Chowdhary S, Waldman BC, Waldman AS. Alteration of genetic recombination and double-strand break repair in human cells by progerin expression. DNA Repair (Amst) 2020; 96:102975. [PMID: 33010688 DOI: 10.1016/j.dnarep.2020.102975] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/21/2020] [Accepted: 09/04/2020] [Indexed: 01/04/2023]
Abstract
Hutchinson-Gilford Progeria Syndrome (HGPS) is a rare autosomal, dominant genetic condition characterized by many features of accelerated aging. On average, children with HGPS live to about fourteen years of age. The syndrome is commonly caused by a point mutation in the LMNA gene which normally codes for lamin A and its splice variant lamin C, components of the nuclear lamina. The LMNA mutation alters splicing, leading to production of a truncated, farnesylated form of lamin A referred to as "progerin." Progerin is also expressed at very low levels in healthy individuals and appears to play a role in normal aging. HGPS is associated with an accumulation of genomic DNA double-strand breaks (DSBs), suggesting corruption of DNA repair. In this work, we investigated the influence of progerin expression on DSB repair in the human genome at the nucleotide level. We used a model system that involves a reporter DNA substrate inserted in the genome of cultured human cells. A DSB could be induced within the substrate through exogenous expression of endonuclease I-SceI, and DSB repair events occurring via either homologous recombination (HR) or nonhomologous end-joining (NHEJ) were recoverable. Additionally, spontaneous HR events were recoverable in the absence of artificial DSB induction. We compared DSB repair and spontaneous HR in cells overexpressing progerin versus cells expressing no progerin. We report that overexpression of progerin correlated with an increase in DSB repair via NHEJ relative to HR, as well as an increased fraction of HR events occurring via gene conversion. Progerin also engendered an apparent increase in spontaneous HR events, with a highly significant shift toward gene conversion events, and an increase in DNA amplification events. Such influences of progerin on DNA transactions may impact genome stability and contribute to aging.
Collapse
Affiliation(s)
- Celina J Komari
- Department of Public Health, University of South Carolina, Columbia, SC 29208, USA
| | - Anne O Guttman
- Department of Exercise Science, University of South Carolina, Columbia, SC 29208, USA
| | - Shelby R Carr
- Department of Exercise Science, University of South Carolina, Columbia, SC 29208, USA
| | - Taylor L Trachtenberg
- Department of Exercise Science, University of South Carolina, Columbia, SC 29208, USA
| | - Elise A Orloff
- Department of Exercise Science, University of South Carolina, Columbia, SC 29208, USA
| | - Ashley V Haas
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Andrew R Patrick
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Sona Chowdhary
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Barbara C Waldman
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Alan S Waldman
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA.
| |
Collapse
|
47
|
Báez-Becerra CT, Valencia-Rincón E, Velásquez-Méndez K, Ramírez-Suárez NJ, Guevara C, Sandoval-Hernandez A, Arboleda-Bustos CE, Olivos-Cisneros L, Gutiérrez-Ospina G, Arboleda H, Arboleda G. Nucleolar disruption, activation of P53 and premature senescence in POLR3A-mutated Wiedemann-Rautenstrauch syndrome fibroblasts. Mech Ageing Dev 2020; 192:111360. [PMID: 32976914 DOI: 10.1016/j.mad.2020.111360] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 09/15/2020] [Accepted: 09/17/2020] [Indexed: 01/01/2023]
Abstract
Recently, mutations in the RNA polymerase III subunit A (POLR3A) have been described as the cause of the neonatal progeria or Wiedemann-Rautenstrauch syndrome (WRS). POLR3A has important roles in transcription regulation of small RNAs, including tRNA, 5S rRNA, and 7SK rRNA. We aim to describe the cellular and molecular features of WRS fibroblasts. Cultures of primary fibroblasts from one WRS patient [monoallelic POLR3A variant c.3772_3773delCT (p.Leu1258Glyfs*12)] and one control patient were cultured in vitro. The mutation caused a decrease in the expression of wildtype POLR3A mRNA and POLR3A protein and a sharp increase in mutant protein expression. In addition, there was an increase in the nuclear localization of the mutant protein. These changes were associated with an increase in the number and area of nucleoli and to a high increase in the expression of pP53 and pH2AX. All these changes were associated with premature senescence. The present observations add to our understanding of the differences between Hutchinson-Gilford progeria syndrome and WRS and opens new alternatives to study cell senesce and human aging.
Collapse
Affiliation(s)
- Cindy Tatiana Báez-Becerra
- Grupo de Neurociencias y Muerte Celular, Instituto de Genética, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Estefania Valencia-Rincón
- Grupo de Neurociencias y Muerte Celular, Instituto de Genética, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Karen Velásquez-Méndez
- Grupo de Neurociencias y Muerte Celular, Instituto de Genética, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Nelson J Ramírez-Suárez
- Grupo de Neurociencias y Muerte Celular, Instituto de Genética, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Claudia Guevara
- Grupo de Neurociencias y Muerte Celular, Instituto de Genética, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Adrian Sandoval-Hernandez
- Grupo de Neurociencias y Muerte Celular, Instituto de Genética, Universidad Nacional de Colombia, Bogotá, Colombia; Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Carlos E Arboleda-Bustos
- Grupo de Neurociencias y Muerte Celular, Instituto de Genética, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Leonora Olivos-Cisneros
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de Mexico, Mexico
| | - Gabriel Gutiérrez-Ospina
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de Mexico, Mexico
| | - Humberto Arboleda
- Grupo de Neurociencias y Muerte Celular, Instituto de Genética, Universidad Nacional de Colombia, Bogotá, Colombia; Departamento de Pediatría, Facultad de Medicina, Universidad Nacional de Colombia Bogotá, Colombia
| | - Gonzalo Arboleda
- Grupo de Neurociencias y Muerte Celular, Instituto de Genética, Universidad Nacional de Colombia, Bogotá, Colombia; Departamento de Patología, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, Colombia.
| |
Collapse
|
48
|
Machiela E, Jeloka R, Caron NS, Mehta S, Schmidt ME, Baddeley HJE, Tom CM, Polturi N, Xie Y, Mattis VB, Hayden MR, Southwell AL. The Interaction of Aging and Cellular Stress Contributes to Pathogenesis in Mouse and Human Huntington Disease Neurons. Front Aging Neurosci 2020; 12:524369. [PMID: 33192449 PMCID: PMC7531251 DOI: 10.3389/fnagi.2020.524369] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 08/18/2020] [Indexed: 12/26/2022] Open
Abstract
Huntington disease (HD) is a fatal, inherited neurodegenerative disorder caused by a mutation in the huntingtin (HTT) gene. While mutant HTT is present ubiquitously throughout life, HD onset typically occurs in mid-life. Oxidative damage accumulates in the aging brain and is a feature of HD. We sought to interrogate the roles and interaction of age and oxidative stress in HD using primary Hu97/18 mouse neurons, neurons differentiated from HD patient induced pluripotent stem cells (iPSCs), and the brains of HD mice. We find that primary neurons must be matured in culture for canonical stress responses to occur. Furthermore, when aging is accelerated in mature HD neurons, mutant HTT accumulates and sensitivity to oxidative stress is selectively enhanced. Furthermore, we observe HD-specific phenotypes in neurons and mouse brains that have undergone accelerated aging, including a selective increase in DNA damage. These findings suggest a role for aging in HD pathogenesis and an interaction between the biological age of HD neurons and sensitivity to exogenous stress.
Collapse
Affiliation(s)
- Emily Machiela
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, United States
| | - Ritika Jeloka
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, United States
| | - Nicholas S. Caron
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | - Shagun Mehta
- The Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Mandi E. Schmidt
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | - Helen J. E. Baddeley
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | - Colton M. Tom
- The Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Nalini Polturi
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, United States
| | - Yuanyun Xie
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, United States
| | - Virginia B. Mattis
- The Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Michael R. Hayden
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | - Amber L. Southwell
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, United States
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
49
|
Fanjul V, Jorge I, Camafeita E, Macías Á, González‐Gómez C, Barettino A, Dorado B, Andrés‐Manzano MJ, Rivera‐Torres J, Vázquez J, López‐Otín C, Andrés V. Identification of common cardiometabolic alterations and deregulated pathways in mouse and pig models of aging. Aging Cell 2020; 19:e13203. [PMID: 32729659 PMCID: PMC7511870 DOI: 10.1111/acel.13203] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 06/10/2020] [Accepted: 07/03/2020] [Indexed: 12/15/2022] Open
Abstract
Aging is the main risk factor for cardiovascular and metabolic diseases, which have become a global concern as the world population ages. These diseases and the aging process are exacerbated in Hutchinson–Gilford progeria syndrome (HGPS or progeria). Here, we evaluated the cardiometabolic disease in animal models of premature and normal aging with the aim of identifying alterations that are shared or specific to each condition. Despite differences in body composition and metabolic markers, prematurely and normally aging mice developed heart failure and similar cardiac electrical abnormalities. High‐throughput proteomics of the hearts of progeric and normally aged mice revealed altered protein oxidation and glycation, as well as dysregulated pathways regulating energy metabolism, proteostasis, gene expression, and cardiac muscle contraction. These results were corroborated in the hearts of progeric pigs, underscoring the translational potential of our findings, which could help in the design of strategies to prevent or slow age‐related cardiometabolic disease.
Collapse
Affiliation(s)
- Víctor Fanjul
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC) Madrid Spain
- Departamento de Bioquímica y Biología Molecular Facultad de Medicina Instituto Universitario de Oncología Universidad de Oviedo Oviedo Spain
- Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV) Spain
| | - Inmaculada Jorge
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC) Madrid Spain
- Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV) Spain
| | - Emilio Camafeita
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC) Madrid Spain
- Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV) Spain
| | - Álvaro Macías
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC) Madrid Spain
- Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV) Spain
| | - Cristina González‐Gómez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC) Madrid Spain
- Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV) Spain
| | - Ana Barettino
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC) Madrid Spain
- Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV) Spain
| | - Beatriz Dorado
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC) Madrid Spain
- Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV) Spain
| | - María Jesús Andrés‐Manzano
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC) Madrid Spain
- Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV) Spain
| | - José Rivera‐Torres
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC) Madrid Spain
- Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV) Spain
| | - Jesús Vázquez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC) Madrid Spain
- Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV) Spain
| | - Carlos López‐Otín
- Departamento de Bioquímica y Biología Molecular Facultad de Medicina Instituto Universitario de Oncología Universidad de Oviedo Oviedo Spain
- Centro de Investigación Biomédica en Red Enfermedades Cáncer (CIBERONC) Spain
| | - Vicente Andrés
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC) Madrid Spain
- Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV) Spain
| |
Collapse
|
50
|
Lessel D, Kubisch C. Hereditary Syndromes with Signs of Premature Aging. DEUTSCHES ARZTEBLATT INTERNATIONAL 2020; 116:489-496. [PMID: 31452499 DOI: 10.3238/arztebl.2019.0489] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 11/19/2018] [Accepted: 05/13/2019] [Indexed: 01/01/2023]
Abstract
BACKGROUND Segmental progeroid syndromes (SPS) are rare hereditary diseases in which the affected individuals show signs of premature aging in more than one organ or type of tissue. We review the clinical and genetic features of some of these syndromes and discuss the extent to which their study affords a complementary opportunity to study aging processes in general. METHODS This review is based on publications retrieved by a selective search in PubMed. RESULTS Segmental progeroid syndromes are a clinically and genetically heterogeneous group of hereditary diseases. They can be categorized, for example, by the age of onset of manifestations (congenital vs. infantile vs. juvenile/adult forms). They are diagnosed on clinical grounds supplemented by genetic testing on the basis of next-generation sequencing, which is of central importance in view of the marked heterogeneity and complexity of their overlapping clinical features. The elucidation of the genetic and molecular causes of these diseases can lead to causally directed treatment, as shown by the initial clinical trials in Hutchinson- Gilford progeria syndrome. The molecular features of SPS are identical in many ways to those of "physiological" aging. Thus, studying the molecular mechanisms of SPS may be helpful for the development of molecularly defined treatment approaches for age-associated diseases in general. CONCLUSION Segmental progeroid syndromes are a complex group of diseases with overlapping clinical features. Current research efforts focus on the elucidation of the molecular mechanisms of these diseases, most of which are very rare. This should enable the development of treatments that might be applicable to general processes of aging as well.
Collapse
Affiliation(s)
- Davor Lessel
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg; Martin Zeitz Center for Rare Diseases, University Medical Center Hamburg-Eppendorf, Hamburg
| | | |
Collapse
|