1
|
Aparajita A, Jain U, Srivastava P. "Current and emerging drug therapies in Alzheimer's disease: A pathophysiological Perspective". Neuroscience 2025; 565:499-518. [PMID: 39662528 DOI: 10.1016/j.neuroscience.2024.11.078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/18/2024] [Accepted: 11/30/2024] [Indexed: 12/13/2024]
Abstract
The analytical and experimental investigation of several targets and biomarkers that help in explaining significant cognitive deficits, covering drug development and precision medicine aimed at different chronic neurodegenerative conditions such as Alzheimer's disease (AD), Parkinson's disease, synaptic dysfunction, brain damage from neuronal apoptosis, and other disease pathologies; this served as the foundation for all phase studies. The focus of current therapeutic approaches is on developing humanized antibodies, agonist and antagonist drugs, receptors, signaling molecules, major targeted drug-metabolizing enzymes, and other metabolites to treat neurodegeneration in the AD brain brought on by tau hyperphosphorylation, amyloid plagues, or other cholinergic effects. The five A's-amnesia, agnosia, aphasia, apraxia, and anomia-are the typical symptoms associated with AD. While the main goal of drug therapeutics studies is modified amino acids acting as pro-drugs, pharmacokinetics studies and trends in evaluating drug-drug interactions focus on interactions between drugs and antibodies, drugs and therapeutic biologics like metabolites, herbs, interleukin-based, and gene silencing mechanism-based. Studies on the biotransformation of xenobiotic compounds and the metabolism of exogenous and endogenous substances are conducted under Phase I, Phase II, and Phase III trials because the pivotal pharmacokinetic properties of drugs, such as absorption, distribution, metabolism, and excretion (ADME), aid in understanding variations in the crucial improvement of various target drugs. This review also highlights the developments in soon-to-be genetically created targeted medications that may serve as ground-breaking treatments for cholinergic illnesses in the brains of AD patients and other neurodegenerative conditions.
Collapse
Affiliation(s)
- Aparajita Aparajita
- Department of Biosciences, Institute of Management Studies Ghaziabad 9(University Courses Campus), NH09, Adhyatmik Nagar, Ghaziabad, Uttar Pradesh, India
| | - Unnati Jain
- Department of Biosciences, Institute of Management Studies Ghaziabad 9(University Courses Campus), NH09, Adhyatmik Nagar, Ghaziabad, Uttar Pradesh, India
| | - Priyanka Srivastava
- Department of Biosciences, Institute of Management Studies Ghaziabad 9(University Courses Campus), NH09, Adhyatmik Nagar, Ghaziabad, Uttar Pradesh, India.
| |
Collapse
|
2
|
Jin Y, Du Q, Song M, Kang R, Zhou J, Zhang H, Ding Y. Amyloid-β-targeting immunotherapies for Alzheimer's disease. J Control Release 2024; 375:346-365. [PMID: 39271059 DOI: 10.1016/j.jconrel.2024.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/24/2024] [Accepted: 09/08/2024] [Indexed: 09/15/2024]
Abstract
Recent advances in clinical passive immunotherapy have provided compelling evidence that eliminating amyloid-β (Aβ) slows cognitive decline in Alzheimer's disease (AD). However, the modest benefits and side effects observed in clinical trials indicate that current immunotherapy therapy is not a panacea, highlighting the need for a deeper understanding of AD mechanisms and the significance of early intervention through optimized immunotherapy or immunoprevention. This review focuses on the centrality of Aβ pathology in AD and summarizes recent clinical progress in passive and active immunotherapies targeting Aβ, discussing their lessons and failures to inform future anti-Aβ biotherapeutics design. Various delivery strategies to optimize Aβ-targeting immunotherapies are outlined, highlighting their benefits and drawbacks in overcoming challenges such as poor stability and limited tissue accessibility of anti-Aβ biotherapeutics. Additionally, the perspectives and challenges of immunotherapy and immunoprevention targeting Aβ are concluded in the end, aiming to guide the development of next-generation anti-Aβ immunotherapeutic agents towards improved efficacy and safety.
Collapse
Affiliation(s)
- Yi Jin
- Department of Pharmaceutics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Qiaofei Du
- Department of Pharmaceutics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Mingjie Song
- Department of Pharmaceutics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Ruixin Kang
- Department of Pharmaceutics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Jianping Zhou
- Department of Pharmaceutics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Huaqing Zhang
- Department of Pharmaceutics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.
| | - Yang Ding
- Department of Pharmaceutics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
3
|
Gonzalez-Artero A, Pujols J, Ventura S. Harnessing the immune system: vaccines to fight neurodegenerative diseases. Trends Mol Med 2024:S1471-4914(24)00219-3. [PMID: 39256108 DOI: 10.1016/j.molmed.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/09/2024] [Accepted: 08/12/2024] [Indexed: 09/12/2024]
Abstract
Neurodegenerative diseases strongly impact our aging society, with treatments providing only symptomatic relief. Recent advancements in active immunotherapy offer solutions by stimulating the immune system to produce antibodies against misfolded and toxic amyloid proteins. We discuss vaccines under clinical evaluation for Alzheimer's and Parkinson's diseases, highlighting successes and ongoing trials.
Collapse
Affiliation(s)
- Alba Gonzalez-Artero
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i de Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Bellaterra, (Barcelona), Spain
| | - Jordi Pujols
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i de Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Bellaterra, (Barcelona), Spain.
| | - Salvador Ventura
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i de Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Bellaterra, (Barcelona), Spain; Hospital Universitari Parc Taulí, Institut d'Investigació i Innovació Parc Taulí (I3PT CERCA), Universitat Autònoma de Barcelona, Sabadell, Spain.
| |
Collapse
|
4
|
Sonsalla MM, Lamming DW. Geroprotective interventions in the 3xTg mouse model of Alzheimer's disease. GeroScience 2023; 45:1343-1381. [PMID: 37022634 PMCID: PMC10400530 DOI: 10.1007/s11357-023-00782-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/23/2023] [Indexed: 04/07/2023] Open
Abstract
Alzheimer's disease (AD) is an age-associated neurodegenerative disease. As the population ages, the increasing prevalence of AD threatens massive healthcare costs in the coming decades. Unfortunately, traditional drug development efforts for AD have proven largely unsuccessful. A geroscience approach to AD suggests that since aging is the main driver of AD, targeting aging itself may be an effective way to prevent or treat AD. Here, we discuss the effectiveness of geroprotective interventions on AD pathology and cognition in the widely utilized triple-transgenic mouse model of AD (3xTg-AD) which develops both β-amyloid and tau pathologies characteristic of human AD, as well as cognitive deficits. We discuss the beneficial impacts of calorie restriction (CR), the gold standard for geroprotective interventions, and the effects of other dietary interventions including protein restriction. We also discuss the promising preclinical results of geroprotective pharmaceuticals, including rapamycin and medications for type 2 diabetes. Though these interventions and treatments have beneficial effects in the 3xTg-AD model, there is no guarantee that they will be as effective in humans, and we discuss the need to examine these interventions in additional animal models as well as the urgent need to test if some of these approaches can be translated from the lab to the bedside for the treatment of humans with AD.
Collapse
Affiliation(s)
- Michelle M Sonsalla
- Department of Medicine, University of Wisconsin-Madison, 2500 Overlook Terrace, VAH C3127 Research 151, Madison, WI, 53705, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, 53705, USA
- Comparative Biomedical Sciences Graduate Program, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Dudley W Lamming
- Department of Medicine, University of Wisconsin-Madison, 2500 Overlook Terrace, VAH C3127 Research 151, Madison, WI, 53705, USA.
- William S. Middleton Memorial Veterans Hospital, Madison, WI, 53705, USA.
- Comparative Biomedical Sciences Graduate Program, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| |
Collapse
|
5
|
Xu Y, Deng T, Xie L, Qin T, Sun T. Neuroprotective effects of hawthorn leaf flavonoids in
Aβ
25–35
‐induced
Alzheimer's disease model. Phytother Res 2022; 37:1346-1365. [PMID: 36447359 DOI: 10.1002/ptr.7690] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 10/17/2022] [Accepted: 11/06/2022] [Indexed: 12/02/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by β-amyloid (Aβ) plaques, neurofibrillary tangles, neuronal cell loss, and oxidative stress. Further deposition of Aβ in the brain induces oxidative stress, neuroinflammation, and memory dysfunction. Hawthorn (Crataegus pinnatifida Bge.) leaf, a known traditional Chinese medicine, is commonly used for the treatment of hyperlipidemia, heart palpitations, forgetfulness, and tinnitus, and its main bioactive components are Hawthorn Leaf Flavonoids (HLF). In this study, we investigated the neuroprotective effects of the HLF on the Aβ25-35 (bilateral hippocampus injection) rat model of AD. The results showed that the oral administration of HLF at a dose of 50, 100, and 200 mg/kg for 30 days significantly ameliorated neuronal cell damage and memory deficits, and markedly increased the enzyme activities of superoxide dismutase and catalase, and the content of glutathione whereas it decreased the malondialdehyde content in the Aβ25-35 rat model of AD as well as suppressed the activation of astrocytes. In addition, HLF up-regulated Nrf-2, NQO-1, and HO-1 protein expressions. Also, it reduced neuroinflammation by inhibiting activation of astrocytes. In summary, these results indicated that HLF decreased the oxidative stress via activating Nrf-2/antioxidant response element signaling pathways, and may suggest as a potential candidate for AD therapeutic agent.
Collapse
Affiliation(s)
- Ying Xu
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province Hospital of Chengdu University of Traditional Chinese Medicine Chengdu People's Republic of China
| | - Ting Deng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy Chengdu University of Traditional Chinese Medicine Chengdu People's Republic of China
| | - Linjiang Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy Chengdu University of Traditional Chinese Medicine Chengdu People's Republic of China
| | - Tao Qin
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy Chengdu University of Traditional Chinese Medicine Chengdu People's Republic of China
| | - Tao Sun
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy Chengdu University of Traditional Chinese Medicine Chengdu People's Republic of China
| |
Collapse
|
6
|
Frame G, Schuller A, Smith MA, Crish SD, Dengler-Crish CM. Alterations in Retinal Signaling Across Age and Sex in 3xTg Alzheimer’s Disease Mice. J Alzheimers Dis 2022; 88:471-492. [PMID: 35599482 PMCID: PMC9398084 DOI: 10.3233/jad-220016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Background: Visual disturbances often precede cognitive dysfunction in patients with Alzheimer’s disease (AD) and may coincide with early accumulation of amyloid-β (Aβ) protein in the retina. These findings have inspired critical research on in vivo ophthalmic Aβ imaging for disease biomarker detection but have not fully answered mechanistic questions on how retinal pathology affects visual signaling between the eye and brain. Objective: The goal of this study was to provide a functional and structural assessment of eye-brain communication between retinal ganglion cells (RGCs) and their primary projection target, the superior colliculus, in female and male 3xTg-AD mice across disease stages. Methods: Retinal electrophysiology, axonal transport, and immunofluorescence were used to determine RGC projection integrity, and retinal and collicular Aβ levels were assessed with advanced protein quantitation techniques. Results: 3xTg mice exhibited nuanced deficits in RGC electrical signaling, axonal transport, and synaptic integrity that exceeded normal age-related decrements in RGC function in age- and sex-matched healthy control mice. These deficits presented in sex-specific patterns among 3xTg mice, differing in the timing and severity of changes. Conclusion: These data support the premise that retinal Aβ is not just a benign biomarker in the eye, but may contribute to subtle, nuanced visual processing deficits. Such disruptions might enhance the biomarker potential of ocular amyloid and differentiate patients with incipient AD from patients experiencing normal age-related decrements in visual function.
Collapse
Affiliation(s)
- Gabrielle Frame
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA
- Biomedical Sciences Graduate Program, Kent State University, Kent, OH, USA
| | - Adam Schuller
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Matthew A. Smith
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA
- Rebecca D. Considine Research Institute, Akron Children’s Hospital, Akron, OH, USA
| | - Samuel D. Crish
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA
| | | |
Collapse
|
7
|
Tatulian SA. Challenges and hopes for Alzheimer's disease. Drug Discov Today 2022; 27:1027-1043. [PMID: 35121174 DOI: 10.1016/j.drudis.2022.01.016] [Citation(s) in RCA: 120] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 09/01/2021] [Accepted: 01/27/2022] [Indexed: 12/11/2022]
Abstract
Recent drug development efforts targeting Alzheimer's disease (AD) have failed to produce effective disease-modifying agents for many reasons, including the substantial presymptomatic neuronal damage that is caused by the accumulation of the amyloid β (Aβ) peptide and tau protein abnormalities, deleterious adverse effects of drug candidates, and inadequate design of clinical trials. New molecular targets, biomarkers, and diagnostic techniques, as well as alternative nonpharmacological approaches, are sorely needed to detect and treat early pathological events. This article analyzes the successes and debacles of pharmaceutical endeavors to date, and highlights new technologies that may lead to the more effective diagnosis and treatment of the pathologies that underlie AD. The use of focused ultrasound, deep brain stimulation, stem cell therapy, and gene therapy, in parallel with pharmaceuticals and judicious lifestyle adjustments, holds promise for the deceleration, prevention, or cure of AD and other neurodegenerative disorders.
Collapse
Affiliation(s)
- Suren A Tatulian
- Department of Physics, College of Sciences, and Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816, USA.
| |
Collapse
|
8
|
Arora S, Sharma D, Layek B, Singh J. A Review of Brain-Targeted Nonviral Gene-Based Therapies for the Treatment of Alzheimer's Disease. Mol Pharm 2021; 18:4237-4255. [PMID: 34705472 DOI: 10.1021/acs.molpharmaceut.1c00611] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Diseases of the central nervous system (CNS) are difficult to treat owing to the complexity of the brain and the presence of a natural blood-brain-barrier (BBB). Alzheimer's disease (AD) is one of the major progressive and currently incurable neurodegenerative disorders of the CNS, which accounts for 60-80% of cases of dementia. The pathophysiology of AD involves the accumulation of amyloid beta (Aβ) plaques and neurofibrillary tangles (NFTs) in the brain. Additionally, synaptic loss and imbalance of neuronal signaling molecules are characterized as important markers of AD. Existing treatments of AD help in the management of its symptoms and aim toward the maintenance of cognitive functions, behavior, and attenuation of gradual memory loss. Over the past decade, nonviral gene therapy has attracted increasing interest due to its various advantages over its viral counterparts. Moreover, advancements in nonviral gene technology have led to their increasing contributions in clinical trials. However, brain-targeted nonviral gene delivery vectors come across various extracellular and intracellular barriers, limiting their ability to transfer the therapeutic gene into the target cells. Chief barriers to nonviral gene therapy have been discussed briefly in this review. We have also highlighted the rapid advancement of several nonviral gene therapies for AD, which are broadly categorized into physical and chemical methods. These methods aim to modulate Aβ, beta-site amyloid precursor protein (APP) cleaving enzyme 1 (BACE1), apolipoprotein E, or neurotrophic factors' expression in the CNS. Overall, this review discusses challenges and recent advancements of nonviral gene therapy for AD.
Collapse
Affiliation(s)
- Sanjay Arora
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, North Dakota 58105, United States
| | - Divya Sharma
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, North Dakota 58105, United States
| | - Buddhadev Layek
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, North Dakota 58105, United States
| | - Jagdish Singh
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, North Dakota 58105, United States
| |
Collapse
|
9
|
Effects of Aβ-derived peptide fragments on fibrillogenesis of Aβ. Sci Rep 2021; 11:19262. [PMID: 34584131 PMCID: PMC8479085 DOI: 10.1038/s41598-021-98644-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 09/13/2021] [Indexed: 11/08/2022] Open
Abstract
Amyloid β (Aβ) peptide aggregation plays a central role in Alzheimer's disease (AD) etiology. AD drug candidates have included small molecules or peptides directed towards inhibition of Aβ fibrillogenesis. Although some Aβ-derived peptide fragments suppress Aβ fibril growth, comprehensive analysis of inhibitory potencies of peptide fragments along the whole Aβ sequence has not been reported. The aim of this work is (a) to identify the region(s) of Aβ with highest propensities for aggregation and (b) to use those fragments to inhibit Aβ fibrillogenesis. Structural and aggregation properties of the parent Aβ1-42 peptide and seven overlapping peptide fragments have been studied, i.e. Aβ1-10 (P1), Aβ6-15 (P2), Aβ11-20 (P3), Aβ16-25 (P4), Aβ21-30 (P5), Aβ26-36 (P6), and Aβ31-42 (P7). Structural transitions of the peptides in aqueous buffer have been monitored by circular dichroism and Fourier transform infrared spectroscopy. Aggregation and fibrillogenesis were analyzed by light scattering and thioflavin-T fluorescence. The mode of peptide-peptide interactions was characterized by fluorescence resonance energy transfer. Three peptide fragments, P3, P6, and P7, exhibited exceptionally high propensity for β-sheet formation and aggregation. Remarkably, only P3 and P6 exerted strong inhibitory effect on the aggregation of Aβ1-42, whereas P7 and P2 displayed moderate inhibitory potency. It is proposed that P3 and P6 intercalate between Aβ1-42 molecules and thereby inhibit Aβ1-42 aggregation. These findings may facilitate therapeutic strategies of inhibition of Aβ fibrillogenesis by Aβ-derived peptides.
Collapse
|
10
|
Petrushina I, Hovakimyan A, Harahap-Carrillo IS, Davtyan H, Antonyan T, Chailyan G, Kazarian K, Antonenko M, Jullienne A, Hamer MM, Obenaus A, King O, Zagorski K, Blurton-Jones M, Cribbs DH, Lander H, Ghochikyan A, Agadjanyan MG. Characterization and preclinical evaluation of the cGMP grade DNA based vaccine, AV-1959D to enter the first-in-human clinical trials. Neurobiol Dis 2020; 139:104823. [PMID: 32119976 PMCID: PMC8772258 DOI: 10.1016/j.nbd.2020.104823] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 02/03/2020] [Accepted: 02/27/2020] [Indexed: 02/08/2023] Open
Abstract
The DNA vaccine, AV-1959D, targeting N-terminal epitope of Aβ peptide, has been proven immunogenic in mice, rabbits, and non-human primates, while its therapeutic efficacy has been shown in mouse models of Alzheimer's disease (AD). Here we report for the first time on IND-enabling biodistribution and safety/toxicology studies of cGMP-grade AV-1959D vaccine in the Tg2576 mouse model of AD. We also tested acute neuropathology safety profiles of AV-1959D in another AD disease model, Tg-SwDI mice with established vascular and parenchymal Aβ pathology in a pre-clinical translational study. Biodistribution studies two days after the injection demonstrated high copy numbers of AV-1959D plasmid after single immunization of Tg2576 mice at the injection sites but not in the tissues of distant organs. Plasmids persisted at the injection sites of some mice 60 days after vaccination. In Tg2576 mice with established amyloid pathology, we did not observe short- or long-term toxicities after multiple immunizations with three doses of AV-1959D. Assessment of the repeated dose acute safety of AV-1959D in cerebral amyloid angiopathy (CAA) prone Tg-SwDI mice did not reveal any immunotherapy-induced vasogenic edema detected by magnetic resonance imaging (MRI) or increased microhemorrhages. Multiple immunizations of Tg-SwDI mice with AV-1959D did not induce T and B cell infiltration, glial activation, vascular deposition of Aβ, or neuronal degeneration (necrosis and apoptosis) greater than that in the control group determined by immunohistochemistry of brain tissues. Taken together, the safety data from two different mouse models of AD substantiate a favorable safety profile of the cGMP grade AV-1959D vaccine supporting its progression to first-in-human clinical trials.
Collapse
Affiliation(s)
- Irina Petrushina
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
| | - Armine Hovakimyan
- Department of Molecular Immunology, Institute for Molecular Medicine, Huntington Beach, CA, USA
| | | | - Hayk Davtyan
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA; Department of Molecular Immunology, Institute for Molecular Medicine, Huntington Beach, CA, USA; Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, CA, USA
| | - Tatevik Antonyan
- Department of Molecular Immunology, Institute for Molecular Medicine, Huntington Beach, CA, USA
| | - Gor Chailyan
- Department of Molecular Immunology, Institute for Molecular Medicine, Huntington Beach, CA, USA
| | - Konstantin Kazarian
- Department of Molecular Immunology, Institute for Molecular Medicine, Huntington Beach, CA, USA
| | - Maxim Antonenko
- Department of Molecular Immunology, Institute for Molecular Medicine, Huntington Beach, CA, USA
| | - Amandine Jullienne
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
| | - Mary M Hamer
- Department of Pediatrics, University of California, Irvine, CA, USA
| | - Andre Obenaus
- Department of Pediatrics, University of California, Irvine, CA, USA; Preclinical and Translational Imaging Center, University of California, Irvine, CA, USA
| | - Olga King
- Department of Molecular Immunology, Institute for Molecular Medicine, Huntington Beach, CA, USA
| | - Karen Zagorski
- Department of Molecular Immunology, Institute for Molecular Medicine, Huntington Beach, CA, USA
| | - Mathew Blurton-Jones
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA; Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, CA, USA; Department of Neurobiology and Behavior, University of California, Irvine, CA, USA
| | - David H Cribbs
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
| | - Harry Lander
- Department of Molecular Immunology, Institute for Molecular Medicine, Huntington Beach, CA, USA
| | - Anahit Ghochikyan
- Department of Molecular Immunology, Institute for Molecular Medicine, Huntington Beach, CA, USA.
| | - Michael G Agadjanyan
- Department of Molecular Immunology, Institute for Molecular Medicine, Huntington Beach, CA, USA.
| |
Collapse
|
11
|
Davtyan H, Hovakimyan A, Kiani Shabestari S, Antonyan T, Coburn MA, Zagorski K, Chailyan G, Petrushina I, Svystun O, Danhash E, Petrovsky N, Cribbs DH, Agadjanyan MG, Blurton-Jones M, Ghochikyan A. Testing a MultiTEP-based combination vaccine to reduce Aβ and tau pathology in Tau22/5xFAD bigenic mice. Alzheimers Res Ther 2019; 11:107. [PMID: 31847886 PMCID: PMC6918571 DOI: 10.1186/s13195-019-0556-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 11/11/2019] [Indexed: 02/08/2023]
Abstract
BACKGROUND Alzheimer disease (AD) is characterized by the accumulation of beta-amyloid (Aβ) plaques and neurofibrillary tangles composed of hyperphosphorylated tau, which together lead to neurodegeneration and cognitive decline. Current therapeutic approaches have primarily aimed to reduce pathological aggregates of either Aβ or tau, yet phase 3 clinical trials of these approaches have thus far failed to delay disease progression in humans. Strong preclinical evidence indicates that these two abnormally aggregated proteins interact synergistically to drive downstream neurodegeneration. Therefore, combinatorial therapies that concurrently target both Aβ and tau might be needed for effective disease modification. METHODS A combinatorial vaccination approach was designed to concurrently target both Aβ and tau pathologies. Tau22/5xFAD (T5x) bigenic mice that develop both pathological Aβ and tau aggregates were injected intramuscularly with a mixture of two MultiTEP epitope vaccines: AV-1959R and AV-1980R, targeting Aβ and tau, respectively, and formulated in AdvaxCpG, a potent polysaccharide adjuvant. Antibody responses of vaccinated animals were measured by ELISA, and neuropathological changes were determined in brain homogenates of vaccinated and control mice using ELISA and Meso Scale Discovery (MSD) multiplex assays. RESULTS T5x mice immunized with a mixture of Aβ- and tau-targeting vaccines generated high Aβ- and tau-specific antibody titers that recognized senile plaques and neurofibrillary tangles/neuropil threads in human AD brain sections. Production of these antibodies in turn led to significant reductions in the levels of soluble and insoluble total tau, and hyperphosphorylated tau as well as insoluble Aβ42, within the brains of bigenic T5x mice. CONCLUSIONS AV-1959R and AV-1980R formulated with AdvaxCpG adjuvant are immunogenic and therapeutically potent vaccines that in combination can effectively reduce both of the hallmark pathologies of AD in bigenic mice. Taken together, these findings warrant further development of this vaccine technology for ultimate testing in human AD.
Collapse
Affiliation(s)
- Hayk Davtyan
- Department of Molecular Immunology, Institute for Molecular Medicine, Huntington Beach, CA USA
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA USA
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA USA
| | - Armine Hovakimyan
- Department of Molecular Immunology, Institute for Molecular Medicine, Huntington Beach, CA USA
| | | | - Tatevik Antonyan
- Department of Molecular Immunology, Institute for Molecular Medicine, Huntington Beach, CA USA
| | - Morgan A. Coburn
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA USA
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA USA
| | - Karen Zagorski
- Department of Molecular Immunology, Institute for Molecular Medicine, Huntington Beach, CA USA
- Current address: Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE USA
| | - Gor Chailyan
- Department of Molecular Immunology, Institute for Molecular Medicine, Huntington Beach, CA USA
| | - Irina Petrushina
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA USA
| | - Olga Svystun
- Department of Molecular Immunology, Institute for Molecular Medicine, Huntington Beach, CA USA
| | - Emma Danhash
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA USA
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA USA
- School of Biological Sciences, University of California, Irvine, Irvine, CA USA
| | | | - David H. Cribbs
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA USA
| | - Michael G. Agadjanyan
- Department of Molecular Immunology, Institute for Molecular Medicine, Huntington Beach, CA USA
| | - Mathew Blurton-Jones
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA USA
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA USA
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA USA
- School of Biological Sciences, University of California, Irvine, Irvine, CA USA
| | - Anahit Ghochikyan
- Department of Molecular Immunology, Institute for Molecular Medicine, Huntington Beach, CA USA
| |
Collapse
|
12
|
St-Amour I, Bosoi CR, Paré I, Ignatius Arokia Doss PM, Rangachari M, Hébert SS, Bazin R, Calon F. Peripheral adaptive immunity of the triple transgenic mouse model of Alzheimer's disease. J Neuroinflammation 2019; 16:3. [PMID: 30611289 PMCID: PMC6320637 DOI: 10.1186/s12974-018-1380-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 11/27/2018] [Indexed: 01/25/2023] Open
Abstract
Background Immunologic abnormalities have been described in peripheral blood and central nervous system of patients suffering from Alzheimer’s disease (AD), yet their role in the pathogenesis still remains poorly defined. Aim and methods We used the triple transgenic mouse model (3xTg-AD) to reproduce Aβ (amyloid plaques) and tau (neurofibrillary tangles) neuropathologies. We analyzed important features of the adaptive immune system in serum, primary (bone marrow) as well as secondary (spleen) lymphoid organs of 12-month-old 3xTg-AD mice using flow cytometry and ELISPOT. We further investigated serum cytokines of 9- and 13-month-old 3xTg-AD mice using multiplex ELISA. Results were compared to age-matched non-transgenic controls (NTg). Results In the bone marrow of 12-month-old 3xTg-AD mice, we detected decreased proportions of short-term reconstituting hematopoietic stem cells (0.58-fold, P = 0.0116), while lymphocyte, granulocyte, and monocyte populations remained unchanged. Our results also point to increased activation of both B and T lymphocytes. Indeed, we report elevated levels of plasma cells in bone marrow (1.3-fold, P = 0.0405) along with a 5.4-fold rise in serum IgG concentration (P < 0.0001) in 3xTg-AD animals. Furthermore, higher levels of interleukin (IL)-2 were detected in serum of 9- and 13-month-old 3xTg-AD mice (P = 0.0018). Along with increased concentrations of IL-17 (P = 0.0115) and granulocyte-macrophage colony-stimulating factor (P = 0.0085), these data support helper T lymphocyte activation with Th17 polarization. Conclusion Collectively, these results suggest that the 3xTg-AD model mimics modifications of the adaptive immunity changes previously observed in human AD patients and underscore the activation of both valuable and harmful pathways of immunity in AD.
Collapse
Affiliation(s)
- Isabelle St-Amour
- Axe Neurosciences, Centre de recherche du CHU de Québec-Université Laval, QC, Québec, Canada.,Département de psychiatrie et neurosciences, Faculté de médecine, Université Laval, QC, Canada
| | - Cristina R Bosoi
- Axe Neurosciences, Centre de recherche du CHU de Québec-Université Laval, QC, Québec, Canada.,Centre de Recherche de l'IUCPQ-Université Laval, QC, Québec, Canada
| | - Isabelle Paré
- Medical Affairs and Innovation, Héma-Québec, QC, Québec, Canada
| | - Prenitha Mercy Ignatius Arokia Doss
- Axe Neurosciences, Centre de recherche du CHU de Québec-Université Laval, QC, Québec, Canada.,Département de psychiatrie et neurosciences, Faculté de médecine, Université Laval, QC, Canada
| | - Manu Rangachari
- Axe Neurosciences, Centre de recherche du CHU de Québec-Université Laval, QC, Québec, Canada.,Département de psychiatrie et neurosciences, Faculté de médecine, Université Laval, QC, Canada
| | - Sébastien S Hébert
- Axe Neurosciences, Centre de recherche du CHU de Québec-Université Laval, QC, Québec, Canada.,Département de psychiatrie et neurosciences, Faculté de médecine, Université Laval, QC, Canada
| | - Renée Bazin
- Medical Affairs and Innovation, Héma-Québec, QC, Québec, Canada.,Faculté de pharmacie, Université Laval, QC, Québec, Canada
| | - Frédéric Calon
- Axe Neurosciences, Centre de recherche du CHU de Québec-Université Laval, QC, Québec, Canada. .,Faculté de pharmacie, Université Laval, QC, Québec, Canada.
| |
Collapse
|
13
|
Illouz T, Madar R, Biragyn A, Okun E. Restoring microglial and astroglial homeostasis using DNA immunization in a Down Syndrome mouse model. Brain Behav Immun 2019; 75:163-180. [PMID: 30389461 PMCID: PMC6358279 DOI: 10.1016/j.bbi.2018.10.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 09/22/2018] [Accepted: 10/23/2018] [Indexed: 12/20/2022] Open
Abstract
Down Syndrome (DS), the most common cause of genetic intellectual disability, is characterized by over-expression of the APP and DYRK1A genes, located on the triplicated chromosome 21. This chromosomal abnormality leads to a cognitive decline mediated by Amyloid-β (Aβ) overproduction and tau hyper-phosphorylation as early as the age of 40. In this study, we used the Ts65Dn mouse model of DS to evaluate the beneficial effect of a DNA vaccination against the Aβ1-11 fragment, in ameliorating Aβ-related neuropathology and rescue of cognitive and behavioral abilities. Anti-Aβ1-11 vaccination induced antibody production and facilitated clearance of soluble oligomers and small extracellular inclusions of Aβ from the hippocampus and cortex of Ts65Dn mice. This was correlated with reduced neurodegeneration and restoration of the homeostatic phenotype of microglial and astroglial cells. Vaccinated Ts65Dn mice performed better in spatial-learning tasks, exhibited reduced motor hyperactivity typical for this strain, and restored short-term memory abilities. Our findings support the hypothesis that DS individuals may benefit from active immunotherapy against Aβ from a young age by slowing the progression of dementia.
Collapse
Affiliation(s)
- Tomer Illouz
- The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan 5290002, Israel; The Paul Feder Laboratory on Alzheimer's Disease Research, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Ravit Madar
- The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan 5290002, Israel; The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel; The Paul Feder Laboratory on Alzheimer's Disease Research, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Arya Biragyn
- Laboratory of Molecular Biology and Immunology, NIA, NIH, MD 21224, USA
| | - Eitan Okun
- The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan 5290002, Israel; The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel; The Paul Feder Laboratory on Alzheimer's Disease Research, Bar-Ilan University, Ramat Gan 5290002, Israel.
| |
Collapse
|
14
|
Rosenberg RN, Fu M, Lambracht-Washington D. Active full-length DNA Aβ 42 immunization in 3xTg-AD mice reduces not only amyloid deposition but also tau pathology. ALZHEIMERS RESEARCH & THERAPY 2018; 10:115. [PMID: 30454039 PMCID: PMC6245829 DOI: 10.1186/s13195-018-0441-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 10/12/2018] [Indexed: 12/14/2022]
Abstract
Background Alzheimer’s disease (AD) is the most well-known and most common type of age-related dementia. Amyloid deposition and hyperphosphorylation of tau protein are both pathological hallmarks of AD. Using a triple-transgenic mouse model (3xTg-AD) that develops plaques and tangles in the brain similar to human AD, we provide evidence that active full-length DNA amyloid-β peptide 1–42 (Aβ42) trimer immunization leads to reduction of both amyloid and tau aggregation and accumulation. Methods Immune responses were monitored by enzyme-linked immunosorbent assay (ELISA) (antibody production) and enzyme-linked immunospot (cellular activation, cytokine production). Brains from 20-month-old 3x Tg-AD mice that had received DNA Aβ42 immunotherapy were compared with brains from age- and gender-matched transgenic Aβ42 peptide-immunized and control mice by histology, Western blot analysis, and ELISA. Protein kinase activation and kinase levels were studied in Western blots from mouse hemibrain lysates. Results Quantitative ELISA showed a 40% reduction of Aβ42 peptide and a 25–50% reduction of total tau and different phosphorylated tau molecules in the DNA Aβ42 trimer-immunized 3xTg-AD mice compared with nonimmunized 3xTg-AD control animals. Plaque and Aβ peptide reductions in the brain were due to the anti-Aβ antibodies generated following the immunizations. Reductions of tau were likely due to indirect actions such as less Aβ in the brain resulting in less tau kinase activation. Conclusions The significance of these findings is that DNA Aβ42 trimer immunotherapy targets two major pathologies in AD—amyloid plaques and neurofibrillary tangles—in one vaccine without inducing inflammatory T-cell responses, which carry the danger of autoimmune inflammation, as found in a clinical trial using active Aβ42 peptide immunization in patients with AD (AN1792).
Collapse
Affiliation(s)
- Roger N Rosenberg
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center Dallas, 5323 Harry Hines Boulevard, Dallas, TX, 75390-8813, USA
| | - Min Fu
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center Dallas, 5323 Harry Hines Boulevard, Dallas, TX, 75390-8813, USA
| | - Doris Lambracht-Washington
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center Dallas, 5323 Harry Hines Boulevard, Dallas, TX, 75390-8813, USA.
| |
Collapse
|
15
|
Huber CM, Yee C, May T, Dhanala A, Mitchell CS. Cognitive Decline in Preclinical Alzheimer's Disease: Amyloid-Beta versus Tauopathy. J Alzheimers Dis 2018; 61:265-281. [PMID: 29154274 PMCID: PMC5734131 DOI: 10.3233/jad-170490] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We perform a large-scale meta-analysis of 51 peer-reviewed 3xTg-AD mouse publications to compare Alzheimer’s disease (AD) quantitative clinical outcome measures, including amyloid-β (Aβ), total tau, and phosphorylated tau (pTau), with cognitive performance in Morris water maze (MWM) and Novel Object Recognition (NOR). “High” levels of Aβ (Aβ40, Aβ42) showed significant but weak trends with cognitive decline (MWM: slope = 0.336, R2 = 0.149, n = 259, p < 0.001; NOR: slope = 0.156, R2 = 0.064, n = 116, p < 0.05); only soluble Aβ or directly measured Aβ meaningfully contribute. Tau expression in 3xTg-AD mice was within 10–20% of wild type and not associated with cognitive decline. In contrast, increased pTau is directly and significantly correlated with cognitive decline in MWM (slope = 0.408, R2 = 0.275, n = 371, p < < 0.01) and NOR (slope = 0.319, R2 = 0.176, n = 113, p < 0.05). While a variety of pTau epitopes (AT8, AT270, AT180, PHF-1) were examined, AT8 correlated most strongly with cognition (slope = 0.586, R2 = 0.521, n = 185, p < < 0.001). Multiple linear regression confirmed pTau is a stronger predictor of MWM performance than Aβ. Despite pTau’s lower physical concentration than Aβ, pTau levels more directly and quantitatively correlate with 3xTg-AD cognitive decline. pTau’s contribution to neurofibrillary tangles well after Aβ levels plateau makes pTau a viable treatment target even in late-stage clinical AD. Principal component analysis, which included hyperphosphorylation induced by kinases (pGSK3β, GSK3β, CDK5), identified phosphorylated ser9 GSK3β as the primary contributor to MWM variance. In summary, meta-analysis of cognitive decline in preclinical AD finds tauopathy more impactful than Aβ. Nonetheless, complex AD interactions dictate successful therapeutics harness synergy between Aβ and pTau, possibly through the GSK3 pathway.
Collapse
Affiliation(s)
- Colin M Huber
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA.,Department of Bioengineering, University of Pennsylvania School of Engineering and Applied Sciences, Philadelphia, PA, USA
| | - Connor Yee
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| | - Taylor May
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| | - Apoorva Dhanala
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| | - Cassie S Mitchell
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
16
|
Kapadia M, Mian MF, Michalski B, Azam AB, Ma D, Salwierz P, Christopher A, Rosa E, Zovkic IB, Forsythe P, Fahnestock M, Sakic B. Sex-Dependent Differences in Spontaneous Autoimmunity in Adult 3xTg-AD Mice. J Alzheimers Dis 2018; 63:1191-1205. [DOI: 10.3233/jad-170779] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Minesh Kapadia
- Department of Psychiatry and Behavioral Neurosciences, McMaster University, Hamilton, ON, Canada
| | - M. Firoz Mian
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Bernadeta Michalski
- Department of Psychiatry and Behavioral Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Amber B. Azam
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Donglai Ma
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Patrick Salwierz
- Biochemistry and Bachelor of Health Sciences Undergraduate programs, McMaster University, Hamilton, ON, Canada
| | - Adam Christopher
- Biochemistry and Bachelor of Health Sciences Undergraduate programs, McMaster University, Hamilton, ON, Canada
| | - Elyse Rosa
- Department of Psychiatry and Behavioral Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Iva B. Zovkic
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Paul Forsythe
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Margaret Fahnestock
- Department of Psychiatry and Behavioral Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Boris Sakic
- Department of Psychiatry and Behavioral Neurosciences, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
17
|
Martins YA, Tsuchida CJ, Antoniassi P, Demarchi IG. Efficacy and Safety of the Immunization with DNA for Alzheimer's Disease in Animal Models: A Systematic Review from Literature. J Alzheimers Dis Rep 2017; 1:195-217. [PMID: 30480238 PMCID: PMC6159633 DOI: 10.3233/adr-170025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2017] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a neurodegenerative disease that does not have a proven cure; however, one of the most promising strategies for its treatment has been DNA vaccines. OBJECTIVE The present review is aimed to report the new developments of the efficacy and safety of DNA vaccines for AD in animal models. METHOD The method PRISMA was used for this review. The article search was made in the electronic databases PubMed, LILACS, and Scopus using the descriptors ''Alzheimer disease" and ''Vaccine, DNA". Articles published between January 2001 and September 2017 in English, Portuguese, and Spanish were included. RESULTS Upon the consensus, the researchers identified 28 original articles. The studies showed satisfying results as for the decrease of amyloid plaques in mouse, rabbits, and monkeys brains using mostly the DNA Aβ42 vaccine, AV-1955, and AdPEDI-(Aβ1-6)11, mainly with a gene gun. In addition to a reduction in tau by the first DNA vaccine (AV-1980D) targeting this protein. The use of adjuvants and boosters also had positive results as they increased the destruction of the amyloid plaques and induced an anti-inflammatory response profile without side effects. CONCLUSION The results of DNA vaccines targeting the amyloid-β and the tau protein with or without adjuvants and boosters were promising in reducing amyloid plaques and tau protein without side effects in animals. Although there are many vaccines being tested in animals, few reach clinical trials. Thus, as a future perspective, we suggest that clinical studies should be conducted with vaccines that have been promising in animal models (e.g., DNA Aβ42 vaccine, AV-1955, and AdPEDI-(Aβ1-6)11).
Collapse
|
18
|
Davtyan H, Zagorski K, Petrushina I, Kazarian K, Goldberg NRS, Petrosyan J, Blurton-Jones M, Masliah E, Cribbs DH, Agadjanyan MG, Ghochikyan A. MultiTEP platform-based DNA vaccines for alpha-synucleinopathies: preclinical evaluation of immunogenicity and therapeutic potency. Neurobiol Aging 2017; 59:156-170. [PMID: 28870518 DOI: 10.1016/j.neurobiolaging.2017.08.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 07/12/2017] [Accepted: 08/02/2017] [Indexed: 11/25/2022]
Abstract
We have previously demonstrated that anti-beta amyloid DNA vaccine (AV-1959D) based on our proprietary MultiTEP platform technology is extremely immunogenic in mice, rabbits, and monkeys. Importantly, MultiTEP platform enables development of vaccines targeting pathological molecules involved in various neurodegenerative disorders. Taking advantage of the universality of MultiTEP platform, we developed DNA vaccines targeting 3 B-cell epitopes (amino acids [aa]85-99, aa109-126, and aa126-140) of human alpha-synuclein (hα-Syn) separately or all 3 epitopes simultaneously. All 4 DNA vaccines (1) generate high titers of anti-hα-Syn antibodies and (2) induce robust MultiTEP-specific T-helper cell responses without activation of potentially detrimental autoreactive anti-hα-Syn T-helper cells. Generated antibodies recognize misfolded hα-Syn produced by neuroblastoma cells, hα-Syn in the brain tissues of transgenic mouse strains and in the brain tissues of dementia with Lewy body cases. Based on these results, the most promising vaccine targeting 3 B-cell epitopes of hα-Syn simultaneously (PV-1950D) has been chosen for ongoing preclinical assessment in mouse models of hα-Syn with the aim to translate it to the human clinical trials.
Collapse
Affiliation(s)
- Hayk Davtyan
- Department of Molecular Immunology, Institute for Molecular Medicine, Huntington Beach, CA, USA; Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, USA
| | - Karen Zagorski
- Department of Molecular Immunology, Institute for Molecular Medicine, Huntington Beach, CA, USA
| | - Irina Petrushina
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, USA
| | - Konstantin Kazarian
- Department of Molecular Immunology, Institute for Molecular Medicine, Huntington Beach, CA, USA
| | - Natalie R S Goldberg
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, USA; Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, USA; Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, USA
| | - Janet Petrosyan
- Department of Molecular Immunology, Institute for Molecular Medicine, Huntington Beach, CA, USA
| | - Mathew Blurton-Jones
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, USA; Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, USA; Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, USA
| | - Eliezer Masliah
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA; Department of Pathology, University of California, San Diego, La Jolla, CA, USA
| | - David H Cribbs
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, USA
| | - Michael G Agadjanyan
- Department of Molecular Immunology, Institute for Molecular Medicine, Huntington Beach, CA, USA; Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, USA.
| | - Anahit Ghochikyan
- Department of Molecular Immunology, Institute for Molecular Medicine, Huntington Beach, CA, USA.
| |
Collapse
|
19
|
Biragyn A, Aliseychik M, Rogaev E. Potential importance of B cells in aging and aging-associated neurodegenerative diseases. Semin Immunopathol 2017; 39:283-294. [PMID: 28083646 DOI: 10.1007/s00281-016-0615-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 12/15/2016] [Indexed: 12/20/2022]
Abstract
Our understanding of B cells as merely antibody producers is slowly changing. Alone or in concert with antibody, they control outcomes of seemingly different diseases such as cancer, rheumatoid arthritis, diabetes, and multiple sclerosis. While their role in activation of effector immune cells is beneficial in cancer but bad in autoimmune diseases, their immunosuppressive and regulatory subsets (Bregs) inhibit autoimmune and anticancer responses. These pathogenic and suppressive functions are not static and appear to be regulated by the nature and strength of inflammation. Although aging increases inflammation and changes the composition and function of B cells, surprisingly, little is known whether the change affects aging-associated neurodegenerative disease, such as Alzheimer's disease (AD). Here, by analyzing B cells in cancer and autoimmune and neuroinflammatory diseases, we elucidate their potential importance in AD and other aging-associated neuroinflammatory diseases.
Collapse
Affiliation(s)
- Arya Biragyn
- Immunoregulation section, National Institute on Aging, 251 Bayview Blvd, Suite 100, Baltimore, MD, 21224, USA.
| | - Maria Aliseychik
- Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | - Evgeny Rogaev
- Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester, MA, USA.,Department of Genomics and Human Genetics, Russian Academy of Sciences, Institute of General Genetics, Moscow, Russia.,Center for Brain Neurobiology and Neurogenetics, Siberian Branch of the Russian Academy of Sciences, Institute of Cytology and Genetics, Novosibirsk, Russia
| |
Collapse
|
20
|
Petrushina I, Davtyan H, Hovakimyan A, Davtyan A, Passos GF, Cribbs DH, Ghochikyan A, Agadjanyan MG. Comparison of Efficacy of Preventive and Therapeutic Vaccines Targeting the N Terminus of β-Amyloid in an Animal Model of Alzheimer's Disease. Mol Ther 2017; 25:153-164. [PMID: 28129111 PMCID: PMC5363310 DOI: 10.1016/j.ymthe.2016.10.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 10/19/2016] [Accepted: 10/21/2016] [Indexed: 12/13/2022] Open
Abstract
Previously, we reported that Alzheimer's disease (AD) epitope vaccines (EVs) composed of N-terminal β-amyloid (Aβ42) B cell epitope fused with universal foreign T helper (Th) epitope(s) were immunogenic, potent, and safe in different amyloid precursor protein (APP) transgenic mice with early AD-like pathology. However, developing an effective therapeutic vaccine is much more challenging, especially when a self-antigen such as Aβ42 is a target. Here, we directly compare the efficacy of anti-Aβ42 antibodies in Tg2576 mice with low or high levels of AD-like pathology at the start of immunizations: 6-6.5 months for preventive vaccinations and 16-19 months for therapeutic vaccinations. EV in a preventive setting induced high levels of anti-Aβ antibodies, significantly reducing pathologic forms of Aβ in the brains of Tg2576 mice. When used therapeutically for immunesenescent Tg2576 mice, EV induced low levels of antibodies not sufficient for clearing of AD-like pathology. Separately, we demonstrated that EV was also not effective in 11-11.5-month-old Tg2576 mice with moderate AD-like pathology. However, we augmented the titers of anti-Aβ antibodies in transgenic (Tg) mice of the same age possessing the pre-existing memory Th cells and detected a significant decrease in diffuse and core plaques in cortical regions compared to control animals along with improved novel object recognition performance.
Collapse
Affiliation(s)
- Irina Petrushina
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA 92697, USA
| | - Hayk Davtyan
- Department of Molecular Immunology, Institute for Molecular Medicine, Huntington Beach, CA 92647, USA
| | - Armine Hovakimyan
- Department of Molecular Immunology, Institute for Molecular Medicine, Huntington Beach, CA 92647, USA
| | - Arpine Davtyan
- Department of Molecular Immunology, Institute for Molecular Medicine, Huntington Beach, CA 92647, USA
| | - Giselle F Passos
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA 92697, USA
| | - David H Cribbs
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA 92697, USA
| | - Anahit Ghochikyan
- Department of Molecular Immunology, Institute for Molecular Medicine, Huntington Beach, CA 92647, USA.
| | - Michael G Agadjanyan
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA 92697, USA; Department of Molecular Immunology, Institute for Molecular Medicine, Huntington Beach, CA 92647, USA.
| |
Collapse
|
21
|
Enhanced efficacy of DNA vaccination against botulinum neurotoxin serotype A by co-administration of plasmids encoding DC-stimulating Flt3L and MIP-3α cytokines. Biologicals 2016; 44:441-7. [DOI: 10.1016/j.biologicals.2016.04.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 04/19/2016] [Accepted: 04/21/2016] [Indexed: 01/31/2023] Open
|
22
|
Alzheimer's disease Advax(CpG)- adjuvanted MultiTEP-based dual and single vaccines induce high-titer antibodies against various forms of tau and Aβ pathological molecules. Sci Rep 2016; 6:28912. [PMID: 27363809 PMCID: PMC4929459 DOI: 10.1038/srep28912] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 05/09/2016] [Indexed: 12/21/2022] Open
Abstract
Although β-amyloid (Aβ) may be the primary driver of Alzheimer's disease (AD) pathology, accumulation of pathological tau correlates with dementia in AD patients. Thus, the prevention/inhibition of AD may require vaccine/s targeting Aβ and tau simultaneously or sequentially. Since high antibody titers are required for AD vaccine efficacy, we have decided to generate vaccines, targeting Aβ (AV-1959R), Tau (AV-1980R) or Aβ/tau (AV-1953R) B cell epitopes, based on immunogenic MultiTEP platform and evaluate the immunogenicity of these vaccines formulated with Advax(CpG), delta inulin, Alhydrogel(®), Montanide-ISA51, Montanide-ISA720, MPLA-SM pharmaceutical grade adjuvants. Formulation of AV-1959R in Advax(CpG) induced the highest cellular and humoral immune responses in mice. The dual-epitope vaccine, AV-1953R, or the combination of AV-1959R and AV-1980R vaccines formulated with Advax(CpG) induced robust antibody responses against various forms of both, Aβ and tau pathological molecules. While anti-Aβ antibody titers after AV-1953R immunization were similar to that in mice vaccinated with AV-1959R or AV-1959R/AV-1980R combination, anti-tau titers were significantly lower after AV-1953R injection when compared to the AV-1980R or AV-1959R/AV-1980R. In silico 3D-modeling provided insight into the differences in immunogenicity of these vaccine constructs. In sum, AV-1959R and AV-1980R formulated with Advax(CpG) adjuvant were identified as promising immunogenic vaccines for ongoing pre-clinical assessment and future human clinical trials.
Collapse
|
23
|
A novel recombinant 6Aβ15-THc-C chimeric vaccine (rCV02) mitigates Alzheimer's disease-like pathology, cognitive decline and synaptic loss in aged 3 × Tg-AD mice. Sci Rep 2016; 6:27175. [PMID: 27255752 PMCID: PMC4891678 DOI: 10.1038/srep27175] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 05/13/2016] [Indexed: 12/14/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder that impairs memory and cognition. Targeting amyloid-β (Aβ) may be currently the most promising immunotherapeutic strategy for AD. In this study, a recombinant chimeric 6Aβ15-THc-C immunogen was formulated with alum adjuvant as a novel Aβ B-cell epitope candidate vaccine (rCV02) for AD. We examined its efficacy in preventing the cognitive deficit and synaptic impairment in 3 × Tg-AD mice. Using a toxin-derived carrier protein, the rCV02 vaccine elicited robust Aβ-specific antibodies that markedly reduced AD-like pathology and improved behavioral performance in 3 × Tg-AD mice. Along with the behavioral improvement in aged 3 × Tg-AD mice, rCV02 significantly decreased calpain activation concurrent with reduced soluble Aβ or oligomeric forms of Aβ, probably by preventing dynamin 1 and PSD-95 degradation. Our data support the hypothesis that reducing Aβ levels in rCV02-immunized AD mice increases the levels of presynaptic dynamin 1 and postsynaptic PSD-95 allowing functional recovery of cognition. In conclusion, this novel and highly immunogenic rCV02 shows promise as a new candidate prophylactic vaccine for AD and may be useful for generating rapid and strong Aβ-specific antibodies in AD patients with pre-existing memory Th cells generated after immunization with conventional tetanus toxoid vaccine.
Collapse
|
24
|
Peripherally administered sera antibodies recognizing amyloid-β oligomers mitigate Alzheimer's disease-like pathology and cognitive decline in aged 3× Tg-AD mice. Vaccine 2016; 34:1758-66. [PMID: 26945100 DOI: 10.1016/j.vaccine.2016.02.056] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 02/05/2016] [Accepted: 02/19/2016] [Indexed: 02/06/2023]
Abstract
Active and passive immunotherapy targeting amyloid-β (Aβ) may be the most promising strategy to prevent or treat Alzheimer's disease (AD). Previously, immunization with the recombinant 6Aβ15-T antigen generated robust anti-Aβ serum antibodies that strongly recognized Aβ42 oligomers in different mice, markedly reduced the amyloid burden, and improved behavioral performance of immunized older AD mice. Here, we further determined that these anti-6Aβ15-T serum antibodies from different strains of mice displayed anti-Aβ antibody responses against the same epitopes in the Aβ1-15 region. Peripheral administration of anti-6Aβ15-T serum antibodies was also effective to mitigate AD-like pathology and cognitive decline in aged 3× Tg-AD mice. Specifically, the levels of Aβ and tau in the brains of 3× Tg-AD mice were significantly reduced after passive immunotherapy, which seemed necessary or beneficial to ameliorate memory impairment. In addition, our results showed that this immunotherapy also prevented presynaptic dynamin 1 degradation, which might help to further protect synaptic functions and allow functional recovery of cognition. Moreover, immunization with 6Aβ15-T in rabbits induced a similar antibody response as that in mice, and the rabbit serum antibodies reacted strongly with Aβ42 oligomers and inhibited oligomer-mediated neurotoxicity. We concluded that passive immunization with Aβ42 oligomer conformation-sensitive anti-6Aβ15-T serum antibodies is effective in providing potentially therapeutic effects in aged 3× Tg-AD mice by reducing Aβ and tau.
Collapse
|
25
|
Takagane K, Nojima J, Mitsuhashi H, Suo S, Yanagihara D, Takaiwa F, Urano Y, Noguchi N, Ishiura S. Aβ induces oxidative stress in senescence-accelerated (SAMP8) mice. Biosci Biotechnol Biochem 2015; 79:912-8. [PMID: 25612552 DOI: 10.1080/09168451.2014.1002449] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
According to the amyloid hypothesis, amyloid β accumulates in brains with Alzheimer's disease (AD) and triggers cell death and memory deficit. Previously, we developed a rice Aβ vaccine expressing Aβ, which reduced brain Aβ levels in the Tg2576 mouse model of familial AD. We used senescence-accelerated SAMP8 mice as a model of sporadic AD and investigated the relationship between Aβ and oxidative stress. Insoluble Aβ and 4-hydroxynonenal (4-HNE) levels tended to be reduced in SAMP8 mice-fed the rice Aβ vaccine. We attempted to clarify the relationship between oxidative stress and Aβ in vitro. Addition of Aβ peptide to the culture medium resulted in an increase in 4-HNE levels in SH-SY5Y cells. Tg2576 mice, which express large amounts of Aβ in their brain, also exhibited increased 4-HNE levels; this increase was inhibited by the Aβ vaccine. These results indicate that Aβ induces oxidative stress in cultured cells and in the mouse brain.
Collapse
Affiliation(s)
- Kurara Takagane
- a Department of Biological Sciences, Graduate School of Science , The University of Tokyo , Tokyo , Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
|
27
|
CCL22 to Activate Treg Migration and Suppress Depigmentation in Vitiligo. J Invest Dermatol 2015; 135:1574-1580. [PMID: 25634358 PMCID: PMC5044299 DOI: 10.1038/jid.2015.26] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2014] [Revised: 01/13/2015] [Accepted: 01/14/2015] [Indexed: 11/16/2022]
Abstract
In vitiligo, gradual cutaneous depigmentation and cytotoxic T cell activity against melanocytes is accompanied by a paucity of regulatory T cells (Tregs) in vitiligo patient skin, indicating that autoimmune responses are not adequately held in check. Thus we sought a means to repopulate patient skin with Tregs. We hypothesized that enhanced expression of CCL22 can promote Treg skin homing to suppress depigmentation. The mouse Ccl22 gene was cloned into an expression vector and resulting DNA was used for gene gun treatment. Two spontaneous depigmentation models with different kinetics of melanocyte loss were utilized, expressing tyrosinase-reactive and gp100-reactive T cell receptor transgenes. Mice were subjected to 5 gene gun treatments 6 days apart, scanned for depigmentation weekly thereafter and monitored for activation and proliferation of relevant T cells and for Treg infiltration to the skin. Significantly reduced depigmentation 2 weeks after treatment was accompanied by a markedly increased abundance of Tregs in the skin at the expense of melanocyte reactive, TCR transgenic T cells as well as by reduced proliferation and reduced IFN-γ production in response to cognate peptide. Continued treatment may be necessary for sustained, local immunosuppression. These findings suggest that topical CCL22 may be used for the treatment of vitiligo.
Collapse
|
28
|
Davtyan H, Ghochikyan A, Hovakimyan A, Davtyan A, Cadagan R, Marleau AM, Albrecht RA, García-Sastre A, Agadjanyan MG. A dual vaccine against influenza & Alzheimer's disease failed to enhance anti-β-amyloid antibody responses in mice with pre-existing virus specific memory. J Neuroimmunol 2014; 277:77-84. [PMID: 25455094 PMCID: PMC4314405 DOI: 10.1016/j.jneuroim.2014.10.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 10/03/2014] [Accepted: 10/07/2014] [Indexed: 01/13/2023]
Abstract
Novel dual vaccine, WSN-Aβ(1-10), based on the recombinant influenza virus, expressing immunodominant B-cell epitope of β-amyloid, simultaneously induced therapeutically potent anti-Aβ and anti-influenza antibodies. In this study we showed that boosting of WSN-WT primed mice with WSN-Aβ(1-10) enhances anti-viral, but fails to induce anti-Aβ antibody responses. This inhibition is associated with expression of Aβ(1-10) within the context of an inactivated influenza virus vaccine. These results demonstrate that the use of an inactivated influenza virus as a carrier for AD vaccine may not be applicable due to the possible inhibition of anti-Aβ antibody response in individuals previously vaccinated or infected with influenza.
Collapse
Affiliation(s)
- Hayk Davtyan
- Department of Molecular Immunology, Institute for Molecular Medicine, Huntington Beach, CA 92647, USA
| | - Anahit Ghochikyan
- Department of Molecular Immunology, Institute for Molecular Medicine, Huntington Beach, CA 92647, USA
| | - Armine Hovakimyan
- Department of Molecular Immunology, Institute for Molecular Medicine, Huntington Beach, CA 92647, USA
| | - Arpine Davtyan
- Department of Molecular Immunology, Institute for Molecular Medicine, Huntington Beach, CA 92647, USA
| | - Richard Cadagan
- Department of Microbiology, Mount Sinai School of Medicine, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Annette M Marleau
- Department of Molecular Immunology, Institute for Molecular Medicine, Huntington Beach, CA 92647, USA
| | - Randy A Albrecht
- Department of Microbiology, Mount Sinai School of Medicine, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Adolfo García-Sastre
- Department of Microbiology, Mount Sinai School of Medicine, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Mount Sinai School of Medicine, New York, NY 10029, USA; Department of Medicine, Division of Infection Diseases, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Michael G Agadjanyan
- Department of Molecular Immunology, Institute for Molecular Medicine, Huntington Beach, CA 92647, USA; University of California, Irvine, Institute for Memory Impairments and Neurological Disorders, Irvine, CA 92697, USA.
| |
Collapse
|
29
|
Guo W, Sha S, Jiang T, Xing X, Cao Y. A new DNA vaccine fused with the C3d-p28 induces a Th2 immune response against amyloid-beta. Neural Regen Res 2014; 8:2581-90. [PMID: 25206569 PMCID: PMC4145937 DOI: 10.3969/j.issn.1673-5374.2013.27.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2013] [Accepted: 08/02/2013] [Indexed: 01/11/2023] Open
Abstract
To enhance anti-amyloid-beta (Aβ) antibody generation and induce a Th2 immune response, we constructed a new DNA vaccine p(Aβ3–10)10-C3d-p28.3 encoding ten repeats of Aβ3–10 and three copies of C3d-p28 as a molecular adjuvant. In this study, we administered this adjuvant cularly to female C57BL/6J mice at 8–10 weeks of age. Enzyme linked immunosorbent assay was used to detect the titer of serum anti-Aβ antibody, isotypes, and cytokines in splenic T cells. A 3-(4,5-cimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay was used to detect the prolifera-tion rate of splenic T cells. Brain sections from a 12-month-old APP/PS1 transgenic mouse were used for detecting the binding capacities of anti-Aβ antibodies to Aβ plaques. The p(Aβ3–10)10-C3d-p28.3 vaccine induced high titers of anti-amyloid-β antibodies, which bound to Aβ plaques in APP/PS1 transgenic mouse brain tissue, demonstrating that the vaccine is effective against plaques in a mouse model of Alzheimer's disease. Moreover, the vaccine elicited a predo-minantly IgG1 humoral response and low levels of interferon-γ in ex vivo cultured splenocytes, dicating that the vaccine could shift the cellular immune response towards a Th2 phenotype. This indicated that the vaccine did not elicit a detrimental immune response and had a favorable safety profile. Our results indicate that the p(Aβ3–10)10-C3d-p28.3 vaccine is a promising immunothe-peutic option for Aβ vaccination in Alzheimer's disease.
Collapse
Affiliation(s)
- Wanshu Guo
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Sha Sha
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Tongzi Jiang
- Department of Neurology, First People's Hospital of Shenyang City, Shenyang 110041, Liaoning Province, China
| | - Xiaona Xing
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Yunpeng Cao
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| |
Collapse
|
30
|
Jiang T, Guo W, Sha S, Xing X, Guo R, Cao Y. Nasal mucosal inhalation of amyloid-beta peptide 3-10 defective adenovirus attenuates cytotoxicity induced by beta-amyloid (1-42). Neural Regen Res 2014; 9:872-7. [PMID: 25206904 PMCID: PMC4146261 DOI: 10.4103/1673-5374.131605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/25/2014] [Indexed: 11/06/2022] Open
Abstract
Three-month-old Alzheimer's disease model transgenic mice were immunized with Aβ1–42 Plp-Adenovirus [Ad]-X-CMV-(Aβ3–10)10-CpG [AdCpG-(Aβ3–10)10] or AdCpG virus fluid via nasal mucosal inhalation, respectively. ELISA analysis of serum showed Aβ42 antibody titers were significantly increased in mice immunized with Aβ1–42 and AdCpG-(Aβ3–10)10. Concanavalin A and AdCpG-(Aβ3–10)10 stimulation significantly increased the number of proliferating spleen cells cultured from AdCpG(Aβ3–10)10 and Aβ42 groups compared with the control group. In the AdCpG(Aβ3–10)10 group, levels of interleukin (IL)-4 and IL-10 were increased, while those of IL-2 and interferon-γ were decreased. In the Aβ42 group, levels of IL-4, IL-10, IL-2 and interferon-γ were all increased. Experimental findings indicate that AdCpG-(Aβ3–10)10 vaccine can produce strong T helper 2 (Th2) humoral immune responses in addition to the production of Aβ42 antibody. The cellular immunologic response was weak and avoided Aβ1–42-mediated cytotoxicity.
Collapse
Affiliation(s)
- Tongzi Jiang
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Wanshu Guo
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Sha Sha
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Xiaona Xing
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Rong Guo
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Yunpeng Cao
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| |
Collapse
|
31
|
Sha S, Xing XN, Cao YP. Active immunotherapy facilitates Aβ plaque removal following through microglial activation without obvious T cells infiltrating the CNS. J Neuroimmunol 2014; 274:62-70. [DOI: 10.1016/j.jneuroim.2014.06.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 06/13/2014] [Accepted: 06/17/2014] [Indexed: 12/30/2022]
|
32
|
Alves R, Yang M, Batista M, Ferreira L. Alzheimer's disease: is a vaccine possible? Braz J Med Biol Res 2014; 47:438-44. [PMID: 24878604 PMCID: PMC4086169 DOI: 10.1590/1414-431x20143434] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2013] [Accepted: 03/31/2014] [Indexed: 12/21/2022] Open
Abstract
The cause of Alzheimer's disease is still unknown, but the disease is distinctively characterized by the accumulation of β-amyloid plaques and neurofibrillary tangles in the brain. These features have become the primary focus of much of the research looking for new treatments for the disease, including immunotherapy and vaccines targeting β-amyloid in the brain. Adverse effects observed in a clinical trial based on the β-amyloid protein were attributed to the presence of the target antigen and emphasized the relevance of finding safer antigen candidates for active immunization. For this kind of approach, different vaccine formulations using DNA, peptide, and heterologous prime-boost immunization regimens have been proposed. Promising results are expected from different vaccine candidates encompassing B-cell epitopes of the β-amyloid protein. In addition, recent results indicate that targeting another protein involved in the etiology of the disease has opened new perspectives for the effective prevention of the illness. Collectively, the evidence indicates that the idea of finding an effective vaccine for the control of Alzheimer's disease, although not without challenges, is a possibility.
Collapse
Affiliation(s)
- R.P.S. Alves
- Universidade de São Paulo, Instituto de Ciências Biomédicas II,
Departamento de Microbiologia, Laboratório de Desenvolvimento de Vacinas, São Paulo,
SP, Brasil, Laboratório de Desenvolvimento de Vacinas, Departamento de Microbiologia,
Instituto de Ciências Biomédicas II, Universidade de São Paulo, São Paulo, SP,
Brasil
| | - M.J. Yang
- Instituto Butantan, Laboratório de Genética, São Paulo, SP, Brasil,
Laboratório de Genética, Instituto Butantan, São Paulo, SP, Brasil
| | - M.T. Batista
- Universidade de São Paulo, Instituto de Ciências Biomédicas II,
Departamento de Microbiologia, Laboratório de Desenvolvimento de Vacinas, São Paulo,
SP, Brasil, Laboratório de Desenvolvimento de Vacinas, Departamento de Microbiologia,
Instituto de Ciências Biomédicas II, Universidade de São Paulo, São Paulo, SP,
Brasil
| | - L.C.S. Ferreira
- Universidade de São Paulo, Instituto de Ciências Biomédicas II,
Departamento de Microbiologia, Laboratório de Desenvolvimento de Vacinas, São Paulo,
SP, Brasil, Laboratório de Desenvolvimento de Vacinas, Departamento de Microbiologia,
Instituto de Ciências Biomédicas II, Universidade de São Paulo, São Paulo, SP,
Brasil
| |
Collapse
|
33
|
Evans CF, Davtyan H, Petrushina I, Hovakimyan A, Davtyan A, Hannaman D, Cribbs DH, Agadjanyan MG, Ghochikyan A. Epitope-based DNA vaccine for Alzheimer's disease: translational study in macaques. Alzheimers Dement 2014; 10:284-95. [PMID: 23916838 PMCID: PMC3825833 DOI: 10.1016/j.jalz.2013.04.505] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 04/09/2013] [Accepted: 04/29/2013] [Indexed: 01/07/2023]
Abstract
BACKGROUND Clinical trials with passive and active Alzheimer's disease (AD) vaccines suggest that early interventions are needed for improvement of cognitive and/or functional performance in patients, providing impetus for the development of safe and immunologically potent active vaccines targeting amyloid β (Aβ). The AN-1792 trial has indicated that Aβ-specific T cells may be unsafe for humans; therefore, other vaccines based on small Aβ epitopes are undergoing preclinical and clinical testing. METHODS Humoral and cellular immune responses elicited in response to a novel DNA epitope-based vaccine (AV-1955) delivered to rhesus macaques using the TriGrid electroporation device were evaluated. Functional activities of anti-Aβ antibodies generated in response to vaccination were assessed in vitro. RESULTS AV-1955 generates long-term, potent anti-Aβ antibodies and cellular immune responses specific to foreign T-helper epitopes but not to self-Aβ. CONCLUSIONS This translational study demonstrates that a DNA-based epitope vaccine for AD could be appropriate for human clinical testing.
Collapse
Affiliation(s)
| | - Hayk Davtyan
- Department of Molecular Immunology, Institute for Molecular Medicine, Huntington Beach, CA, USA; Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, USA
| | - Irina Petrushina
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, USA
| | - Armine Hovakimyan
- Department of Molecular Immunology, Institute for Molecular Medicine, Huntington Beach, CA, USA
| | - Arpine Davtyan
- Department of Molecular Immunology, Institute for Molecular Medicine, Huntington Beach, CA, USA
| | | | - David H Cribbs
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, USA; Department of Neurology, University of California, Irvine, Irvine, CA, USA
| | - Michael G Agadjanyan
- Department of Molecular Immunology, Institute for Molecular Medicine, Huntington Beach, CA, USA; Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, USA.
| | - Anahit Ghochikyan
- Department of Molecular Immunology, Institute for Molecular Medicine, Huntington Beach, CA, USA
| |
Collapse
|
34
|
Davtyan H, Ghochikyan A, Hovakimyan A, Petrushina I, Yu J, Flyer D, Madsen PJ, Pedersen LO, Cribbs DH, Agadjanyan MG. Immunostimulant patches containing Escherichia coli LT enhance immune responses to DNA- and recombinant protein-based Alzheimer's disease vaccines. J Neuroimmunol 2014; 268:50-7. [PMID: 24507620 PMCID: PMC3951952 DOI: 10.1016/j.jneuroim.2014.01.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 12/19/2013] [Accepted: 01/07/2014] [Indexed: 12/22/2022]
Abstract
Immunotherapeutic approaches to treating Alzheimer's disease (AD) using vaccination strategies must overcome the obstacle of achieving adequate responses to vaccination in the elderly. Here we demonstrate for the first time that application of the Escherichia coli heat-labile enterotoxin adjuvant-laden immunostimulatory patches (LT-IS) dramatically enhances the onset and magnitude of immune responses to DNA- and protein-based vaccines for Alzheimer's disease following intradermal immunization via gene gun and conventional needles, respectively. Our studies suggest that the immune activation mediated by LT-IS offers improved potency for generating AD-specific vaccination responses that should be investigated as an adjuvant in the clinical arena.
Collapse
Affiliation(s)
- Hayk Davtyan
- Department of Molecular Immunology, Institute for Molecular Medicine, Huntington Beach, CA 92647, USA
| | - Anahit Ghochikyan
- Department of Molecular Immunology, Institute for Molecular Medicine, Huntington Beach, CA 92647, USA
| | - Armine Hovakimyan
- Department of Molecular Immunology, Institute for Molecular Medicine, Huntington Beach, CA 92647, USA
| | - Irina Petrushina
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA 92697, USA
| | - Jianmei Yu
- Intercell USA, Inc., Gaithersburg, MD 20878, USA
| | - David Flyer
- Intercell USA, Inc., Gaithersburg, MD 20878, USA
| | | | | | - David H Cribbs
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA 92697, USA; Department of Neurology, University of California, Irvine, CA 92697, USA
| | - Michael G Agadjanyan
- Department of Molecular Immunology, Institute for Molecular Medicine, Huntington Beach, CA 92647, USA; Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA 92697, USA.
| |
Collapse
|
35
|
Abstract
PURPOSE OF REVIEW We reviewed clinical trials on active and passive anti-β-amyloid (Aβ) immunotherapy for the treatment of Alzheimer's disease with a particular focus on monoclonal antibodies against Aβ. RECENT FINDINGS Studies on anti-Alzheimer's disease immunotherapy published in the period from January 2012 to October 2013 were reviewed. SUMMARY Both active and passive anti-Aβ immunotherapies were shown to clear brain Aβ deposits. However, an active anti-Aβ vaccine (AN1792) has been discontinued because it caused meningoencephalitis in 6% of Alzheimer's disease patients treated. Among passive immunotherapeutics, two Phase III clinical trials in mild-to-moderate Alzheimer's disease patients with bapineuzumab, a humanized monoclonal antibody directed at the N-terminal sequence of Aβ, were disappointing. Another antibody, solanezumab, directed at the mid-region of Aβ, failed in two Phase III clinical trials in mild-to-moderate Alzheimer's disease patients. A third Phase III study with solanezumab is ongoing in mildly affected Alzheimer's disease patients based on encouraging results in this subgroup of patients. Second-generation active Aβ vaccines (ACC-001, CAD106, and Affitope AD02) and new passive anti-Aβ immunotherapies (gantenerumab and crenezumab) are being tested in prodromal Alzheimer's disease patients, in presymptomatic individuals with Alzheimer's disease-related mutations, or in asymptomatic individuals at risk of developing Alzheimer's disease to definitely test the Aβ cascade hypothesis of Alzheimer's disease.
Collapse
|
36
|
Davtyan H, Ghochikyan A, Petrushina I, Hovakimyan A, Davtyan A, Cribbs DH, Agadjanyan MG. The MultiTEP platform-based Alzheimer's disease epitope vaccine activates a broad repertoire of T helper cells in nonhuman primates. Alzheimers Dement 2014; 10:271-83. [PMID: 24560029 DOI: 10.1016/j.jalz.2013.12.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2013] [Revised: 11/20/2013] [Accepted: 12/05/2013] [Indexed: 01/02/2023]
Abstract
BACKGROUND As a prelude to clinical trials we have characterized B- and T-cell immune responses in macaques to AD vaccine candidates: AV-1955 and its slightly modified version, AV-1959 (with 3 additional promiscuous Th epitopes). METHODS T- and B-cell epitope mapping was performed using the ELISPOT assay and competition ELISA, respectively. RESULTS AV-1955 and AV-1959 did not stimulate potentially harmful autoreactive T cells, but instead activated a broad but individualized repertoire of Th cells specific to the MultiTEP platform in macaques. Although both vaccines induced robust anti-Aβ antibody responses without producing antibodies specific to Th epitopes of MultiTEP platforms, analyses of cellular immune responses in macaques demonstrated that the addition of Th epitopes in the case of AV-1959 created a more potent, superior vaccine. CONCLUSION AV-1959 is a promising vaccine candidate capable of producing therapeutically potent anti-amyloid antibody in a broader population of vaccinated subjects with high MHC class II gene polymorphisms.
Collapse
Affiliation(s)
- Hayk Davtyan
- Department of Molecular Immunology, Institute for Molecular Medicine, Huntington Beach, CA, USA; Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, USA
| | - Anahit Ghochikyan
- Department of Molecular Immunology, Institute for Molecular Medicine, Huntington Beach, CA, USA
| | - Irina Petrushina
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, USA
| | - Armine Hovakimyan
- Department of Molecular Immunology, Institute for Molecular Medicine, Huntington Beach, CA, USA
| | - Arpine Davtyan
- Department of Molecular Immunology, Institute for Molecular Medicine, Huntington Beach, CA, USA
| | - David H Cribbs
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, USA; Department of Neurology, University of California, Irvine, Irvine, CA, USA
| | - Michael G Agadjanyan
- Department of Molecular Immunology, Institute for Molecular Medicine, Huntington Beach, CA, USA; Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, USA.
| |
Collapse
|
37
|
Davtyan H, Bacon A, Petrushina I, Zagorski K, Cribbs DH, Ghochikyan A, Agadjanyan MG. Immunogenicity of DNA- and recombinant protein-based Alzheimer disease epitope vaccines. Hum Vaccin Immunother 2014; 10:1248-55. [PMID: 24525778 DOI: 10.4161/hv.27882] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Alzheimer disease (AD) process involves the accumulation of amyloid plaques and tau tangles in the brain, nevertheless the attempts at targeting the main culprits, neurotoxic β-amyloid (Aβ) peptides, have thus far proven unsuccessful for improving cognitive function. Important lessons about anti-Aβ immunotherapeutic strategies were learned from the first active vaccination clinical trials. AD progression could be safely prevented or delayed if the vaccine (1) induces high titers of antibodies specific to toxic forms of Aβ; (2) does not activate the harmful autoreactive T cells that may induce inflammation; (3) is initiated before or at least at the early stages of the accumulation of toxic forms of Aβ. Data from the recent passive vaccination trials with bapineuzumab and solanezumab also indicated that anti-Aβ immunotherapy might be effective in reduction of the AD pathology and even improvement of cognitive and/or functional performance in patients when administered early in the course of the disease. For the prevention of AD the active immunization strategy may be more desirable than passive immunotherapy protocol and it can offer the potential for sustainable clinical and commercial advantages. Here we discuss the active vaccine approaches, which are still in preclinical development and vaccines that are already in clinical trials.
Collapse
Affiliation(s)
- Hayk Davtyan
- Department of Molecular Immunology; Institute for Molecular Medicine; Huntington Beach, CA USA
| | | | - Irina Petrushina
- Institute for Memory Impairments and Neurological Disorders; University of California at Irvine; Irvine, CA USA
| | - Karen Zagorski
- Department of Molecular Immunology; Institute for Molecular Medicine; Huntington Beach, CA USA
| | - David H Cribbs
- Institute for Memory Impairments and Neurological Disorders; University of California at Irvine; Irvine, CA USA; Department of Neurology; University of California at Irvine; Irvine, CA USA
| | - Anahit Ghochikyan
- Department of Molecular Immunology; Institute for Molecular Medicine; Huntington Beach, CA USA
| | - Michael G Agadjanyan
- Department of Molecular Immunology; Institute for Molecular Medicine; Huntington Beach, CA USA; Institute for Memory Impairments and Neurological Disorders; University of California at Irvine; Irvine, CA USA
| |
Collapse
|
38
|
Panza F, Solfrizzi V, Imbimbo BP, Tortelli R, Santamato A, Logroscino G. Amyloid-based immunotherapy for Alzheimer's disease in the time of prevention trials: the way forward. Expert Rev Clin Immunol 2014; 10:405-19. [DOI: 10.1586/1744666x.2014.883921] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
39
|
Davtyan H, Petrushina I, Ghochikyan A. Immunotherapy for Alzheimer's disease: DNA- and protein-based epitope vaccines. Methods Mol Biol 2014; 1143:259-81. [PMID: 24715293 DOI: 10.1007/978-1-4939-0410-5_16] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Active immunotherapy for Alzheimer's disease (AD) is aimed to induce antibodies specific to amyloid-beta (Aβ) that are capable to reduce the level of Aβ in the CNS of Alzheimer's disease patients. First clinical trial AN-1792 that was based on vaccination with full-length Aβ42 showed that safe and effective AD vaccine should induce high titers of anti-Aβ antibodies without activation of harmful autoreactive T cells. Replacement of self-T cell epitope with foreign epitope, keeping self-B cell epitope intact, may allow to induce high titers of anti-Aβ antibodies while avoiding the activation of T cells specific to Aβ. Here we describe the protocols for evaluation of AD DNA- or multiple antigenic peptide (MAP)-based epitope vaccines composed of Aβ(1-11) B cell epitope fused to synthetic T cell epitope PADRE (Aβ(1-11)-PADRE). All protocols could be used for testing any epitope vaccine constructed in your lab and composed of other T cell epitopes using the appropriate peptides in tests for evaluation of humoral and cellular immune responses.
Collapse
Affiliation(s)
- Hayk Davtyan
- Department of Molecular Immunology, Institute for Molecular Medicine, 16371 Gothard Street, Huntington Beach, CA, 92647, USA
| | | | | |
Collapse
|
40
|
Ghochikyan A, Petrushina I, Davtyan H, Hovakimyan A, Saing T, Davtyan A, Cribbs DH, Agadjanyan MG. Immunogenicity of epitope vaccines targeting different B cell antigenic determinants of human α-synuclein: feasibility study. Neurosci Lett 2013; 560:86-91. [PMID: 24361548 DOI: 10.1016/j.neulet.2013.12.028] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 11/28/2013] [Accepted: 12/14/2013] [Indexed: 01/09/2023]
Abstract
Immunotherapeutic approaches reducing α-synuclein deposits may provide therapeutic benefit for Dementia with Lewy Bodies (DLB). Immunization with full-length human α-synuclein (hα-Syn) protein in a Parkinson's disease mouse model decreased the accumulation of the aggregated forms of this protein in neurons and reduced neurodegeneration. To enhance the immunogenicity of candidate vaccines and to avoid the risk of autoreactive anti-hα-Syn T-helper (Th) cell responses, we generated three peptide-based epitope vaccines composed of different B-cell epitopes of hα-Syn fused with a "non-self" Th epitope from tetanus toxin (P30). Immunization of mice with these epitope vaccines produced high titers of anti-hα-Syn antibodies that bound to Lewy bodies (LBs) and Lewy neurites (LNs) in brain tissue from DLB cases and induced robust Th cell responses to P30, but not to hα-Syn. Further development of these first generation epitope vaccines may facilitate induction of anti-hα-Syn immunotherapy without producing potentially harmful autoreactive Th cell responses.
Collapse
Affiliation(s)
- Anahit Ghochikyan
- The Institute for Molecular Medicine, Department of Immunology, Huntington Beach, CA 92647, United States.
| | - Irina Petrushina
- The Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA 92697, United States
| | - Hayk Davtyan
- The Institute for Molecular Medicine, Department of Immunology, Huntington Beach, CA 92647, United States; The Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA 92697, United States
| | - Armine Hovakimyan
- The Institute for Molecular Medicine, Department of Immunology, Huntington Beach, CA 92647, United States
| | - Tommy Saing
- The Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA 92697, United States
| | - Arpine Davtyan
- The Institute for Molecular Medicine, Department of Immunology, Huntington Beach, CA 92647, United States
| | - David H Cribbs
- The Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA 92697, United States; Department of Neurology, University of California, Irvine, CA 92697, United States
| | - Michael G Agadjanyan
- The Institute for Molecular Medicine, Department of Immunology, Huntington Beach, CA 92647, United States; The Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA 92697, United States.
| |
Collapse
|
41
|
Yu YZ, Wang S, Bai JY, Zhao M, Chen A, Wang WB, Chang Q, Liu S, Qiu WY, Pang XB, Xu Q, Sun ZW. Effective DNA epitope chimeric vaccines for Alzheimer's disease using a toxin-derived carrier protein as a molecular adjuvant. Clin Immunol 2013; 149:11-24. [DOI: 10.1016/j.clim.2013.05.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 04/30/2013] [Accepted: 05/25/2013] [Indexed: 10/26/2022]
|
42
|
Monsonego A, Nemirovsky A, Harpaz I. CD4 T cells in immunity and immunotherapy of Alzheimer's disease. Immunology 2013; 139:438-46. [PMID: 23534386 DOI: 10.1111/imm.12103] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 03/13/2013] [Accepted: 03/18/2013] [Indexed: 01/09/2023] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia, with prevalence progressively increasing with aging. Pathological hallmarks of the disease include accumulation of amyloid β-protein (Aβ) peptides and neurofibrillary tangles in the brain associated with glial activation and synaptotoxicity. In addition, AD involves peripheral and brain endogenous inflammatory processes that appear to enhance disease progression. More than a decade ago a new therapeutic paradigm emerged for AD, namely the activation of the adaptive immune system directly against the self-peptide Aβ, aimed at lowering its accumulation in the brain. This was the first time that a brain peptide was used to vaccinate human subjects in a manner similar to classic viral or bacterial vaccines. The vaccination approach has taken several forms, from initially active to passive and then back to modified active vaccines. As the first two approaches to date failed to show sufficient efficacy, the last is presently being evaluated in ongoing clinical trials. The present review summarizes the immunogenic characteristics of Aβ in humans and mice and discusses past, present and future Aβ-based immunotherapeutic approaches for AD. We emphasize potential pathogenic and beneficial roles of CD4 T cells in light of the pathogenesis and the general decline in T-cell responsiveness evident in the disease.
Collapse
Affiliation(s)
- Alon Monsonego
- The Shraga Segal Department of Microbiology and Immunology, Faculty of Health Sciences, The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| | | | | |
Collapse
|
43
|
Lambracht-Washington D, Rosenberg RN. Anti-amyloid beta to tau - based immunization: Developments in immunotherapy for Alzheimer disease. Immunotargets Ther 2013; 2013:105-114. [PMID: 24926455 PMCID: PMC4051350 DOI: 10.2147/itt.s31428] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Immunotherapy might provide an effective treatment for Alzheimer’s disease (AD). A unique feature of AD immunotherapies is that an immune response against a self-antigen needs to be elicited without causing adverse autoimmune reactions. Current research is focused on two possible targets in this regard. One is the inhibition of accumulation and deposition of amyloid beta 1–42 (Aβ42), which is one of the major peptides found in senile plaques, and the second target is hyperphosphorylated tau, which forms neurofibrillary tangles inside the nerve cell and shows association with the progression of dementia. Mouse models have shown that immunotherapy targeting Aβ42 as well as tau with the respective anti-Aβ or anti-tau antibodies can provide significant improvements in these mice. While anti-Aβ immunotherapy (active and passive immunizations) is already in several stages of clinical trials, tau-based immunizations have been analyzed only in mouse models. Recently, as a significant correlation of progression of dementia and levels of phosphorylated tau have been found, high interest has again focused on further development of tau-based therapies. While Aβ immunotherapy might delay the onset of AD, immunotherapy targeting tau might provide benefits in later stages of this disease. Last but not least, targeting Aβ and tau simultaneously with immunotherapy might provide additional therapeutic effects, as these two pathologies are likely synergistic; this is an approach that has not been tested yet. In this review, we will summarize animal models used to test possible therapies for AD, some of the facts about Aβ42 and tau biology, and present an overview on halted, ongoing, and upcoming clinical trials together with ongoing preclinical studies targeting tau or Aβ42.
Collapse
Affiliation(s)
- Doris Lambracht-Washington
- Department of Neurology and Neurotherapeutics, Alzheimer's Disease Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Roger N Rosenberg
- Department of Neurology and Neurotherapeutics, Alzheimer's Disease Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
44
|
Giménez-Llort L, Rivera-Hernández G, Marin-Argany M, Sánchez-Quesada JL, Villegas S. Early intervention in the 3xTg-AD mice with an amyloid β-antibody fragment ameliorates first hallmarks of Alzheimer disease. MAbs 2013; 5:665-77. [PMID: 23884018 DOI: 10.4161/mabs.25424] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The single-chain variable fragment, scFv-h3D6, has been shown to prevent in vitro toxicity induced by the amyloid β (Aβ) peptide in neuroblastoma cell cultures by withdrawing Aβ oligomers from the amyloid pathway. Present study examined the in vivo effects of scFv-h3D6 in the triple-transgenic 3xTg-AD mouse model of Alzheimer disease. Prior to the treatment, five-month-old female animals, corresponding to early stages of the disease, showed the first behavioral and psychological symptoms of dementia -like behaviors. Cognitive deficits included long- and short-term learning and memory deficits and high swimming navigation speed. After a single intraperitoneal dose of scFv-h3D6, the swimming speed was reversed to normal levels and the learning and memory deficits were ameliorated. Brain tissues of these animals revealed a global decrease of Aβ oligomers in the cortex and olfactory bulb after treatment, but this was not seen in the hippocampus and cerebellum. In the untreated 3xTg-AD animals, we observed an increase of both apoJ and apoE concentrations in the cortex, as well as an increase of apoE in the hippocampus. Treatment significantly recovered the non-pathological levels of these apolipoproteins. Our results suggest that the benefit of scFv-h3D6 occurs at both behavioral and molecular levels.
Collapse
Affiliation(s)
- Lydia Giménez-Llort
- Institut de Neurociències; Unitat de Biociències; Universitat Autònoma de Barcelona; Barcelona, Spain; Departament de Psiquiatria i Medicina Legal; Unitat de Biociències; Universitat Autònoma de Barcelona; Barcelona, Spain
| | | | | | | | | |
Collapse
|
45
|
Immunogenicity, efficacy, safety, and mechanism of action of epitope vaccine (Lu AF20513) for Alzheimer's disease: prelude to a clinical trial. J Neurosci 2013; 33:4923-34. [PMID: 23486963 DOI: 10.1523/jneurosci.4672-12.2013] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The Alzheimer's disease (AD) process is understood to involve the accumulation of amyloid plaques and tau tangles in the brain. However, attempts at targeting the main culprits, neurotoxic Aβ peptides, have thus far proven unsuccessful for improving cognitive function. Recent clinical trials with passively administrated anti-Aβ antibodies failed to slow cognitive decline in mild to moderate AD patients, but suggest that an immunotherapeutic approach could be effective in patients with mild AD. Using an AD mouse model (Tg2576), we tested the immunogenicity (cellular and humoral immune responses) and efficacy (AD-like pathology) of clinical grade Lu AF20513 vaccine. We found that Lu AF20513 induces robust "non-self" T-cell responses and the production of anti-Aβ antibodies that reduce AD-like pathology in the brains of Tg2576 mice without inducing microglial activation and enhancing astrocytosis or cerebral amyloid angiopathy. A single immunization with Lu AF20513 induced strong humoral immunity in mice with preexisting memory T-helper cells. In addition, Lu AF20513 induced strong humoral responses in guinea pigs and monkeys. These data support the translation of Lu AF20513 to the clinical setting with the aims of: (1) inducing therapeutically potent anti-Aβ antibody responses in patients with mild AD, particularly if they have memory T-helper cells generated after immunizations with conventional tetanus toxoid vaccine, and (2) preventing pathological autoreactive T-cell responses.
Collapse
|
46
|
Lambracht-Washington D, Rosenberg RN. Advances in the development of vaccines for Alzheimer's disease. DISCOVERY MEDICINE 2013; 15:319-326. [PMID: 23725605 PMCID: PMC3696351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
One of the challenges of our society is to find a treatment or cure for Alzheimer's disease (AD). AD is the leading form of age-related dementia and with the increase of life expectancy worldwide, the social and economic burden from this disease will increase dramatically. It is a progressive and, in regard to clinical scores, a highly variable disease. AD pathogenesis has been associated with the accumulation, aggregation, and deposition of amyloid beta (Abeta) peptides in the brain. Hallmarks of AD are the amyloid plaques consisting of fibrillar Abeta and neurofibrillary tangles which are intracellular fibrils of hyperphosphorylated tau protein that develop later in this disease. The amyloid cascade hypothesis postulates that Abeta deposition is an initial event in the multifactorial pathogenesis and Abeta deposition may precede AD symptoms in some patients by at least 20 years. Amyloid beta therapy with active and passive immunizations against Abeta has a high possibility to be effective in removing Abeta from brain and might thus prevent the downstream pathology. Since 2000 a number of clinical trials for AD immunotherapy have started, have failed, and are continuing to be pursued. This article will review these clinical trials and ongoing research in this regard.
Collapse
Affiliation(s)
- Doris Lambracht-Washington
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.
| | | |
Collapse
|
47
|
Ghochikyan A, Davtyan H, Petrushina I, Hovakimyan A, Movsesyan N, Davtyan A, Kiyatkin A, Cribbs DH, Agadjanyan MG. Refinement of a DNA based Alzheimer's disease epitope vaccine in rabbits. Hum Vaccin Immunother 2013; 9:1002-10. [PMID: 23399748 DOI: 10.4161/hv.23875] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
We previously demonstrated that our second-generation DNA-based Alzheimer disease (AD) epitope vaccine comprising three copies of a short amyloid-β (Aβ) B cell epitope, Aβ 11 fused with the foreign promiscuous Th epitope, PADRE (p3Aβ 11-PADRE) was immunogenic in mice. However, since DNA vaccines exhibit poor immunogenicity in large animals and humans, in this study, we sought to improve the immunogenicity of p3Aβ 11-PADRE by modifying this vaccine to express protein 3Aβ 11-PADRE with a free N-terminal aspartic acid fused with eight additional promiscuous Th epitopes. Generated pN-3Aβ 11-PADRE-Thep vaccine has been designated as AV-1955. We also delivered this vaccine using the TriGrid electroporation system to improve the efficiency of DNA transfection. This third-generation DNA epitope vaccine was evaluated for immunogenicity in rabbits in comparison to the parent construct p3Aβ 11-PADRE. AV-1955 vaccination induced significantly stronger humoral immune responses in rabbits compared with p3Aβ 11-PADRE vaccine. Anti-Aβ 11 antibodies recognized all forms of human β-amyloid peptide (monomers, oligomers and fibrils), bound to amyloid plaques in brain sections from an AD case and reduced oligomer- and fibril-mediated cytotoxicity ex vivo. These findings suggest that AV-1955 could represent an effective DNA epitope vaccine for AD therapy, pending safety and efficacy studies that are currently being conducted in Rhesus monkeys.
Collapse
Affiliation(s)
- Anahit Ghochikyan
- Department of Molecular Immunology; Institute for Molecular Medicine; Huntington Beach, CA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
A peptide prime-DNA boost immunization protocol provides significant benefits as a new generation Aβ42 DNA vaccine for Alzheimer disease. J Neuroimmunol 2012; 254:63-8. [PMID: 23036592 DOI: 10.1016/j.jneuroim.2012.09.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2012] [Revised: 09/06/2012] [Accepted: 09/07/2012] [Indexed: 11/20/2022]
Abstract
Immunotherapy has the potential to provide a possible treatment therapy to prevent or delay Alzheimer disease. In a clinical trial (AN1792) in which patients received this immunotherapy and received active Aβ1-42 peptide immunizations, treatment was stopped when 6% of patients showed signs of meningoencephalitis. Follow up on these patients led to the conclusion that the antibody response was beneficial in removing Aβ1-42 from brain but an accompanying inflammatory Th1 T cell response was harmful. As a safe alternative treatment targeting the same self protein, Aβ1-42, in brain, we and others are working on a DNA Aβ1-42 immunization protocol as the immune response to DNA immunizations differs in many aspects from immunizations with peptide antigens. Because the immune response to DNA vaccination has different kinetics and has a significantly lower antibody production, we evaluated two different prime boost regimens, Aβ1-42 DNA prime/Aβ1-42 peptide boost and Aβ1-42 peptide prime/Aβ1-42 DNA boost for their effectiveness in antibody production and possible side effects due to inflammatory T cell responses. While both boost regimes significantly enhanced the specific antibody production with comparable antibody concentrations, the absence of the Aβ1-42 T cell response (no proliferation and no cytokine production) is consistent with our previous findings using this DNA Aβ1-42 trimer immunization and greatly enhances the safety aspect for possible clinical use.
Collapse
|
49
|
Wang W, Fan L, Xu D, Wen Z, Yu R, Ma Q. Immunotherapy for Alzheimer's disease. Acta Biochim Biophys Sin (Shanghai) 2012; 44:807-14. [PMID: 22899646 DOI: 10.1093/abbs/gms065] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Alzheimer's disease (AD) is characterized by β-amyloid (Aβ) plaques consisted primarily of aggregated Aβ proteins and neurofibrillary tangles formed by hyperphosphorylated tau protein. Both Aβ and hyperphosphorylated tau are toxic both in vivo and in vitro. Immunotherapy targeting Aβ seems to provide a promising approach to reduce the toxic species in the brain. However, there is little evidence from clinical trials so far indicating the efficacy of Aβ immunotherapy in cognitive improvement. Immunization with tau peptides or anti-tau antibodies could remove the tau aggregates and improve the cognitive function in preclinical study, which provides a novel strategy of AD therapy. In this article, we will summarize the immunotherapeutic strategies targeting either Aβ or tau.
Collapse
Affiliation(s)
- Weihua Wang
- Institute of Neuroscience, Soochow University, Suzhou, China
| | | | | | | | | | | |
Collapse
|
50
|
Li Y, Ma Y, Zong LX, Xing XN, Guo R, Jiang TZ, Sha S, Liu L, Cao YP. Intranasal inoculation with an adenovirus vaccine encoding ten repeats of Aβ3-10 reduces AD-like pathology and cognitive impairment in Tg-APPswe/PSEN1dE9 mice. J Neuroimmunol 2012; 249:16-26. [DOI: 10.1016/j.jneuroim.2012.04.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 04/09/2012] [Accepted: 04/15/2012] [Indexed: 10/28/2022]
|