1
|
Jang W, Song EL, Mun SJ, Bong KW. Efficient isolation of encoded microparticles in a degassed micromold for highly sensitive and multiplex immunoassay with signal amplification. Biosens Bioelectron 2024; 261:116465. [PMID: 38850735 DOI: 10.1016/j.bios.2024.116465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/29/2024] [Accepted: 06/02/2024] [Indexed: 06/10/2024]
Abstract
Multiplex detection of low-abundance protein biomarkers in biofluids can contribute to diverse biomedical fields such as early diagnosis and precision medicine. However, conventional techniques such as digital ELISA, microarray, and hydrogel-based assay still face limitations in terms of efficient protein detection due to issues with multiplexing capability, sensitivity, or complicated assay procedures. In this study, we present the degassed micromold-based particle isolation technique for highly sensitive and multiplex immunoassay with enzymatic signal amplification. Using degassing treatment of nanoporous polydimethylsiloxane (PDMS) micromold, the encoded particles are isolated in the mold within 5 min absorbing trapped air bubbles into the mold by air suction capability. Through 10 min of signal amplification in the isolated spaces by fluorogenic substrate and horseradish peroxidase labeled in the particle, the assay signal is amplified with one order of magnitude compared to that of the standard hydrogel-based assay. Using the signal amplification assay, vascular endothelial growth factor (VEGF) and chorionic gonadotropin beta (CG beta), the preeclampsia-related protein biomarkers, are quantitatively detected with a limit of detection (LoD) of 249 fg/mL and 476 fg/mL in phosphate buffer saline. The multiplex immunoassay is conducted to validate negligible non-specific detection signals and robust recovery rates in the multiplex assay. Finally, the VEGF and CG beta in real urine samples are simultaneously and quantitatively detected by the developed assay. Given the high sensitivity, multiplexing capability, and process simplicity, the presented particle isolation-based signal amplification assay holds significant potential in biomedical and proteomic fields.
Collapse
Affiliation(s)
- Wookyoung Jang
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - E Loomee Song
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Seok Joon Mun
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Ki Wan Bong
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
2
|
Rountree W, Lynch HE, Denny TN, Sempowski GD, Macintyre AN. Sources of variability in Luminex bead-based cytokine assays: Evidence from twelve years of multi-site proficiency testing. J Immunol Methods 2024; 531:113699. [PMID: 38823575 PMCID: PMC11246216 DOI: 10.1016/j.jim.2024.113699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/24/2024] [Accepted: 05/29/2024] [Indexed: 06/03/2024]
Abstract
Bead array assays, such as those sold by Luminex, BD Biosciences, Sartorius, Abcam and other companies, are a well-established platform for multiplexed quantification of cytokines and other biomarkers in both clinical and discovery research environments. In 2011, the National Institute of Allergy and Infectious Diseases (NIAID)-funded External Quality Assurance Program Oversight Laboratory (EQAPOL) established a proficiency assessment program to monitor participating laboratories performing multiplex cytokine measurements using Luminex bead array technology. During every assessment cycle, each site was sent an assay kit, a protocol, and blinded samples of human sera spiked with recombinant cytokines. Site results were then evaluated for performance relative to peer laboratories. After over a decade of biannual assessments, the cumulative dataset contained over 15,500 bead array observations collected at more than forty laboratories in twelve countries. These data were evaluated alongside post-assessment survey results to empirically test factors that may contribute to variability and accuracy in Luminex bead-based cytokine assays. Bead material, individual technical ability, analyte, analyte concentration, and assay kit vendor were identified as significant contributors to assay performance. In contrast, the bead reader instrument model and the use of automated plate washers were found not to contribute to variability or accuracy, and sample results were found to be highly-consistent between assay kit-manufacturing lots and over time. In addition to these statistical analyses, subjective evaluations identified technical ability, instrument failure, protocol adherence, and data transcription errors as the most common causes of poor performance in the proficiency program. The findings from the EQAPOL multiplex program were then used to develop recommended best practices for bead array monitoring of human cytokines. These included collecting samples to assay as a single batch, centralizing analysis, participating in a quality assurance program, and testing samples using paramagnetic-bead kits from a single manufacturer using a standardized protocol.
Collapse
Affiliation(s)
- Wes Rountree
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA; Duke Research and Discovery, Research Triangle Park, Durham, NC 27710, USA
| | - Heather E Lynch
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Thomas N Denny
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA; Duke Research and Discovery, Research Triangle Park, Durham, NC 27710, USA; Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Gregory D Sempowski
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA; Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Andrew N Macintyre
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA; Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
3
|
Lim YJ, Choi JH, Mun SJ, Kim J, Bong KW. Real-Time Signal Analysis with Wider Dynamic Range and Enhanced Sensitivity in Multiplex Colorimetric Immunoassays Using Encoded Hydrogel Microparticles. Anal Chem 2024; 96:7204-7211. [PMID: 38662417 DOI: 10.1021/acs.analchem.4c00773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
The simultaneous quantification of multiple proteins is crucial for accurate medical diagnostics. A promising technology, the multiplex colorimetric immunoassay using encoded hydrogel microparticles, has garnered attention, due to its simplicity and multiplex capabilities. However, it encounters challenges related to its dynamic range, as it relies solely on the colorimetric signal analysis of encoded hydrogel microparticles at the specific time point (i.e., end-point analysis). This necessitates the precise determination of the optimal time point for the termination of the colorimetric reaction. In this study, we introduce real-time signal analysis to quantify proteins by observing the continuous colorimetric signal change within the encoded hydrogel microparticles. Real-time signal analysis measures the "slope", the rate of the colorimetric signal generation, by focusing on the kinetics of the accumulation of colorimetric products instead of the colorimetric signal that appears at the end point. By developing a deep learning-based automatic analysis program that automatically reads the code of the graphically encoded hydrogel microparticles and obtains the slope by continuously tracking the colorimetric signal, we achieved high accuracy and high throughput analysis. This technology has secured a dynamic range more than twice as wide as that of the conventional end-point signal analysis, simultaneously achieving a sensitivity that is 4-10 times higher. Finally, as a demonstration of application, we performed multiplex colorimetric immunoassays using real-time signal analysis covering a wide concentration range of protein targets associated with pre-eclampsia.
Collapse
Affiliation(s)
- Yong Jun Lim
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, South Korea
| | - Jun Hee Choi
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, South Korea
| | - Seok Joon Mun
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, South Korea
| | - Jiwoo Kim
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, South Korea
| | - Ki Wan Bong
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, South Korea
| |
Collapse
|
4
|
Roy NS, Wei Y, Ying GS, Maguire MG, Asbell PA. Association of Tear Cytokine Concentrations with Symptoms and Signs of Dry Eye Disease: Baseline Data from the Dry Eye Assessment and Management (DREAM) Study. Curr Eye Res 2023; 48:339-347. [PMID: 36632643 PMCID: PMC10252992 DOI: 10.1080/02713683.2022.2162088] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/12/2022] [Accepted: 12/19/2022] [Indexed: 01/13/2023]
Abstract
PURPOSE To describe tear concentrations of IL-1β, Il-6, IL-8, IL-10, IL-17A, IFNγ and TNFα in tears, collected by microcapillaries, and their correlation with symptoms and signs in subjects with dry eye disease (DED) in the DREAM Study. METHODS Cytokine levels of patients with moderate to severe DED were determined using a magnetic bead assay. Scores for Ocular Surface Disease Index, corneal and conjunctival staining, tear break-up time (TBUT), and Schirmer's test were obtained using standardized procedures. Associations of cytokines with each other and signs/symptoms were assessed with Spearman correlation coefficients (r). RESULTS Assay results from 131 patient samples from 10 sites with tear volumes ≥ 4 ul were analyzed. Cytokine concentrations did not correlate with each other in a generally acknowledged pro-inflammatory/anti-inflammatory pattern, such as proinflammatory IL-17A and IFNγ were not inversely correlated to anti-inflammatory cytokine IL-10, and cytokines did not correlate with DED symptoms. Lower corneal staining was correlated with higher concentrations of IL-17A (r= -0.24, p = 0.006), IL-10 (r= -0.25, p = 0.005) and IFNγ (r= -0.33, p = 0.0001). Higher concentrations of IFNγ were associated with lower conjunctival staining (r= -0.18, p = 0.03). Higher concentrations of IL-17A were associated with higher TBUT scores (r = 0.19 p = 0.02). CONCLUSIONS Cytokines IL-10, IL-17A and IFNγ were highly correlated with each other but weakly correlated with some DED signs. No key cytokines or definitive expression patterns were identified in this study of moderate to severe DED patients. Further studies addressing various biases, including methodological and sampling biases, and standardization of methodology for inter-laboratory consistency are needed to confirm and establish pathological and clinical relevance of tear cytokines in DED.
Collapse
Affiliation(s)
- Neeta S Roy
- Department of Ophthalmology, Hamilton Eye Institute, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Yi Wei
- Department of Ophthalmology, Hamilton Eye Institute, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Gui-Shuang Ying
- Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Maureen G Maguire
- Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Penny A Asbell
- Department of Ophthalmology, Hamilton Eye Institute, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
5
|
Ivanov YD, Kapustina SI, Malsagova KA, Goldaeva KV, Pleshakova TO, Galiullin RA, Shumov ID, Kozlov AF, Glukhov AV, Grabezhova VK, Popov VP, Petrov OF, Ziborov VS, Kushlinskii NE, Alferov AA, Konev VA, Kovalev OB, Uchaikin VF, Archakov AI. "Silicon-On-Insulator"-Based Biosensor for the Detection of MicroRNA Markers of Ovarian Cancer. MICROMACHINES 2022; 14:70. [PMID: 36677130 PMCID: PMC9861449 DOI: 10.3390/mi14010070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/16/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
Ovarian cancer is a gynecological cancer characterized by a high mortality rate and tumor heterogeneity. Its early detection and primary prophylaxis are difficult to perform. Detecting biomarkers for ovarian cancer plays a pivotal role in therapy effectiveness and affects patients' survival. This study demonstrates the detection of microRNAs (miRNAs), which were reported to be associated with ovarian cancer tumorigenesis, with a nanowire biosensor based on silicon-on-insulator structures (SOI-NW biosensor). The advantages of the method proposed for miRNA detection using the SOI-NW biosensor are as follows: (1) no need for additional labeling or amplification reaction during sample preparation, and (2) real-time detection of target biomolecules. The detecting component of the biosensor is a chip with an array of 3 µm wide, 10 µm long silicon nanowires on its surface. The SOI-NW chip was fabricated using the "top-down" method, which is compatible with large-scale CMOS technology. Oligonucleotide probes (oDNA probes) carrying sequences complementary to the target miRNAs were covalently immobilized on the nanowire surface to ensure high-sensitivity biospecific sensing of the target biomolecules. The study involved two experimental series. Detection of model DNA oligonucleotides being synthetic analogs of the target miRNAs was carried out to assess the method's sensitivity. The lowest concentration of the target oligonucleotides detectable in buffer solution was 1.1 × 10-16 M. In the second experimental series, detection of miRNAs (miRNA-21, miRNA-141, and miRNA-200a) isolated from blood plasma samples collected from patients having a verified diagnosis of ovarian cancer was performed. The results of our present study represent a step towards the development of novel highly sensitive diagnostic systems for the early revelation of ovarian cancer in women.
Collapse
Affiliation(s)
- Yuri D. Ivanov
- Institute of Biomedical Chemistry (IBMC), 119121 Moscow, Russia
- Joint Institute for High Temperatures of Russian Academy of Sciences, 125412 Moscow, Russia
| | - Svetlana I. Kapustina
- Institute of Biomedical Chemistry (IBMC), 119121 Moscow, Russia
- Department of Cybernetics of Chemical and Technological Processes, Mendeleev University of Chemical Technology of Russia (MUCTR), 125047 Moscow, Russia
| | | | | | | | | | - Ivan D. Shumov
- Institute of Biomedical Chemistry (IBMC), 119121 Moscow, Russia
| | | | - Alexander V. Glukhov
- JSC “Novosibirsk Plant of Semiconductor Devices with OKB”, 630082 Novosibirsk, Russia
| | - Victoria K. Grabezhova
- JSC “Design Center for Biomicroelectronic Technologies “Vega””, 630082 Novosibirsk, Russia
| | - Vladimir P. Popov
- Rzhanov Institute of Semiconductor Physics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Oleg F. Petrov
- Joint Institute for High Temperatures of Russian Academy of Sciences, 125412 Moscow, Russia
| | - Vadim S. Ziborov
- Institute of Biomedical Chemistry (IBMC), 119121 Moscow, Russia
- Joint Institute for High Temperatures of Russian Academy of Sciences, 125412 Moscow, Russia
| | | | - Alexander A. Alferov
- N.N. Blokhin National Medical Research Center of Oncology, 115478 Moscow, Russia
| | - Vladimir A. Konev
- Department of Infectious Diseases in Children, Faculty of Pediatrics, Pirogov Russian National Research Medical University (RNRMU), 117997 Moscow, Russia
| | - Oleg B. Kovalev
- Department of Infectious Diseases in Children, Faculty of Pediatrics, Pirogov Russian National Research Medical University (RNRMU), 117997 Moscow, Russia
| | - Vasiliy F. Uchaikin
- Department of Infectious Diseases in Children, Faculty of Pediatrics, Pirogov Russian National Research Medical University (RNRMU), 117997 Moscow, Russia
| | | |
Collapse
|
6
|
Lee S, Lee W, Lee AC, Nam J, Lee J, Kim H, Jeong Y, Yeom H, Kim N, Song SW, Kwon S. I-LIFT (image-based laser-induced forward transfer) platform for manipulating encoded microparticles. BIOMICROFLUIDICS 2022; 16:061101. [PMID: 36483021 PMCID: PMC9726220 DOI: 10.1063/5.0131733] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 11/08/2022] [Indexed: 06/17/2023]
Abstract
Encoded microparticles have great potential in small-volume multiplexed assays. It is important to link the micro-level assays to the macro-level by indexing and manipulating the microparticles to enhance their versatility. There are technologies to actively manipulate the encoded microparticles, but none is capable of directly manipulating the encoded microparticles with homogeneous physical properties. Here, we report the image-based laser-induced forward transfer system for active manipulation of the graphically encoded microparticles. By demonstrating the direct retrieval of the microparticles of interest, we show that this system has the potential to expand the usage of encoded microparticles.
Collapse
Affiliation(s)
- Sumin Lee
- Department of Electrical and Computer Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Wooseok Lee
- Department of Electrical and Computer Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Amos Chungwon Lee
- Bio-MAX Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Juhong Nam
- Department of Electrical and Computer Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - JinYoung Lee
- Division of Engineering Science, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Hamin Kim
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Yunjin Jeong
- Bio-MAX Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Huiran Yeom
- Bio-MAX Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Namphil Kim
- Department of Electrical and Computer Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Seo Woo Song
- Bio-MAX Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Sunghoon Kwon
- Authors to whom correspondence should be addressed: and
| |
Collapse
|
7
|
Lima PH, M.L. Sousa É, Lima DL, Pinheiro JF, Sousa ER, Freitas AS, Silva GS. Factorial design optimization of dispersive liquid–liquid microextraction for analysis of metals in natural and drinking waters. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
8
|
Bae SH, Jang W, Choi JH, Mun SJ, Bong KW. Optimization of particle rinsing process in linker-free post-synthesis functionalization for sensitive encoded hydrogel microparticle-based immunoassay. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.10.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
9
|
Hendriks J, Schasfoort RBM, Huskens J, Saris DF, Karperien M. Kinetic characterization of SPR-based biomarker assays enables quality control, calibration free measurements and robust optimization for clinical application. Anal Biochem 2022; 658:114918. [PMID: 36170905 DOI: 10.1016/j.ab.2022.114918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 09/09/2022] [Accepted: 09/15/2022] [Indexed: 11/27/2022]
Abstract
Biomarker measurements are essential for the early diagnosis of complex diseases. However, many current biomarker assays lack sensitivity and multiplexing capacity, work in a narrow detection range and importantly lack real time quality control opportunities, which hampers clinical translation. In this paper, we demonstrate a toolbox to kinetically characterize a biomarker measurement assay using Surface Plasmon Resonance imaging (SPRi) with ample opportunities for real time quality control by exploiting quantitative descriptions of the various biomolecular interactions. We show an accurate prediction of SPRi measurements at both low and high concentrations of various analytes with deviations <5% between actual measurements and predicted measurement. The biphasic binding sites model was accurate for fitting the experimental curves and enables optimal detection of heterophilic antibodies, cross-reactivity, spotting irregularities and/or other confounders. The toolbox can also be used to create a (simulated) calibration curve, enabling calibration-free measurements with good recovery, it allows for easy assay optimizations, and could help bridge the gap to bring new biomarker assays to the clinic.
Collapse
Affiliation(s)
- Jan Hendriks
- Department of Developmental BioEngineering, Technical Medical Centre, University of Twente, the Netherlands
| | - Richard B M Schasfoort
- Medical Cell Biophysics, Technical Medical Centre, University of Twente, the Netherlands
| | - Jurriaan Huskens
- Molecular Nanofabrication, MESA+ Institute for Nanotechnology, University of Twente, the Netherlands
| | - DaniëlB F Saris
- Department of Orthopedics, Mayo Clinic, Rochester, MN, USA; Department of Orthopedics, UMC Utrecht, the Netherlands
| | - Marcel Karperien
- Department of Developmental BioEngineering, Technical Medical Centre, University of Twente, the Netherlands.
| |
Collapse
|
10
|
Ma E, Shimazu T, Song M, Charvat H, Sawada N, Yamaji T, Inoue M, Camargo MC, Kemp TJ, Pfeiffer RM, Pinto LA, Rabkin CS, Tsugane S. Circulating Inflammation Markers and Pancreatic Cancer Risk: A Prospective Case-Cohort Study in Japan. Cancer Epidemiol Biomarkers Prev 2022; 31:236-241. [PMID: 34697062 PMCID: PMC8755613 DOI: 10.1158/1055-9965.epi-21-0808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/08/2021] [Accepted: 10/14/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Previous prospective studies of associations between circulating inflammation-related molecules and pancreatic cancer risk have included limited numbers of markers. METHODS We conducted a case-cohort study nested within the Japan Public Health Center-based Prospective Study Cohort II. We selected a random subcohort (n = 774) from a total of 23,335 participants aged 40 to 69 years who returned a questionnaire and provided blood samples at baseline. During the follow-up period from 1993 to 2010, we identified 111 newly diagnosed pancreatic cancer cases, including one case within the subcohort. Plasma concentrations of 62 inflammatory markers of chemokines, cytokines, and growth factors were measured by a Luminex fluorescent bead-based assay. Cox regression models were applied to estimate HR and 95% confidence intervals (CI) for pancreatic cancer risk for quartiles of marker levels adjusted for potential confounders. RESULTS The HR (95% CI) for the highest versus the lowest category of C-C motif ligand chemokine 8/monocyte chemoattractant protein 2 (CCL8/MCP2) was 2.03 (1.05-3.93; P trend = 0.048). After we corrected for multiple comparisons, none of the examined biomarkers were associated with pancreatic cancer risk at P-value <0.05. CONCLUSIONS We found no significant associations between 62 inflammatory markers and pancreatic cancer risk. IMPACT The suggestive association with circulating levels of leukocyte recruiting cytokine CCL8/MCP2 may warrant further investigation.
Collapse
Affiliation(s)
- Enbo Ma
- Health Promotion Center, Fukushima Global Medical Science Center, Fukushima Medical University, Fukushima, Japan
- Department of Epidemiology, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Taichi Shimazu
- Epidemiology and Prevention Group, Center for Public Health Sciences, National Cancer Center, Tokyo, Japan.
| | - Minkyo Song
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Hadrien Charvat
- Epidemiology and Prevention Group, Center for Public Health Sciences, National Cancer Center, Tokyo, Japan
| | - Norie Sawada
- Epidemiology and Prevention Group, Center for Public Health Sciences, National Cancer Center, Tokyo, Japan
| | - Taiki Yamaji
- Epidemiology and Prevention Group, Center for Public Health Sciences, National Cancer Center, Tokyo, Japan
| | - Manami Inoue
- Epidemiology and Prevention Group, Center for Public Health Sciences, National Cancer Center, Tokyo, Japan
| | - M Constanza Camargo
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Troy J Kemp
- HPV Immunology Laboratory, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Ruth M Pfeiffer
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Ligia A Pinto
- HPV Immunology Laboratory, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Charles S Rabkin
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Shoichiro Tsugane
- Epidemiology and Prevention Group, Center for Public Health Sciences, National Cancer Center, Tokyo, Japan
| |
Collapse
|
11
|
Ivanov YD, Goldaeva KV, Malsagova KA, Pleshakova TO, Galiullin RA, Popov VP, Kushlinskii NE, Alferov AA, Enikeev DV, Potoldykova NV, Archakov AI. Nanoribbon Biosensor in the Detection of miRNAs Associated with Colorectal Cancer. MICROMACHINES 2021; 12:1581. [PMID: 34945431 PMCID: PMC8705149 DOI: 10.3390/mi12121581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/10/2021] [Accepted: 12/17/2021] [Indexed: 02/07/2023]
Abstract
A nanoribbon biosensor (NRBS) was developed to register synthetic DNAs that simulate and are analogous to miRNA-17-3p associated with colorectal cancer. Using this nanoribbon biosensor, the ability to detect miRNA-17-3p in the blood plasma of a patient diagnosed with colorectal cancer has been demonstrated. The sensing element of the NRBS was a nanochip based on a silicon-on-insulator (SOI) nanostructure. The nanochip included an array of 10 nanoribbons and was designed with the implementation of top-down technology. For biospecific recognition of miRNA-17-3p, the nanochip was modified with DNA probes specific for miRNA-17-3p. The performance of the nanochip was preliminarily tested on model DNA oligonucleotides, which are synthetic analogues of miRNA-17-3p, and a detection limit of ~10-17 M was achieved. The results of this work can be used in the development of serological diagnostic systems for early detection of colorectal cancer.
Collapse
Affiliation(s)
- Yuri D. Ivanov
- Laboratory of Nanobiotechnology, Institute of Biomedical Chemistry, 119121 Moscow, Russia; (K.V.G.); (K.A.M.); (T.O.P.); (R.A.G.); (A.I.A.)
| | - Kristina V. Goldaeva
- Laboratory of Nanobiotechnology, Institute of Biomedical Chemistry, 119121 Moscow, Russia; (K.V.G.); (K.A.M.); (T.O.P.); (R.A.G.); (A.I.A.)
| | - Kristina A. Malsagova
- Laboratory of Nanobiotechnology, Institute of Biomedical Chemistry, 119121 Moscow, Russia; (K.V.G.); (K.A.M.); (T.O.P.); (R.A.G.); (A.I.A.)
| | - Tatyana O. Pleshakova
- Laboratory of Nanobiotechnology, Institute of Biomedical Chemistry, 119121 Moscow, Russia; (K.V.G.); (K.A.M.); (T.O.P.); (R.A.G.); (A.I.A.)
| | - Rafael A. Galiullin
- Laboratory of Nanobiotechnology, Institute of Biomedical Chemistry, 119121 Moscow, Russia; (K.V.G.); (K.A.M.); (T.O.P.); (R.A.G.); (A.I.A.)
| | - Vladimir P. Popov
- Rzhanov Institute of Semiconductor Physics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia;
| | - Nikolay E. Kushlinskii
- N.N. Blokhin National Medical Research Center of Oncology, 115478 Moscow, Russia; (N.E.K.); (A.A.A.)
| | - Alexander A. Alferov
- N.N. Blokhin National Medical Research Center of Oncology, 115478 Moscow, Russia; (N.E.K.); (A.A.A.)
| | - Dmitry V. Enikeev
- Institute of Urology and Reproductive Health, Sechenov University, 119992 Moscow, Russia; (D.V.E.); (N.V.P.)
| | - Natalia V. Potoldykova
- Institute of Urology and Reproductive Health, Sechenov University, 119992 Moscow, Russia; (D.V.E.); (N.V.P.)
| | - Alexander I. Archakov
- Laboratory of Nanobiotechnology, Institute of Biomedical Chemistry, 119121 Moscow, Russia; (K.V.G.); (K.A.M.); (T.O.P.); (R.A.G.); (A.I.A.)
| |
Collapse
|
12
|
Kim JY, Mun SJ, Roh YH, Bong KW. Rapid colorimetric analysis of multiple microRNAs using encoded hydrogel microparticles. Analyst 2021; 146:5508-5516. [PMID: 34346406 DOI: 10.1039/d1an00622c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
microRNAs (miRNAs) have attracted much attention as potential biomarkers for the diagnosis of various fatal diseases. With increasing interest in miRNA detection at practical sites, colorimetric bead-based assays have garnered much attention, because these allow for simple analysis with cheap and portable devices. Among them, the encoded hydrogel microparticle-based colorimetric miRNA assay is considered as one of the promising techniques, due to its strengths, such as large multiplex capacity, acceptable sensitivity, and simple analysis. However, it still imposes a limitation in terms of the assay time, particularly the colorimetric reaction time, which is too long, making the practical application of the assay difficult and undermining its detection accuracy. In this work, we present a rapid colorimetric assay based on encoded hydrogel microparticles, which exhibits a significant decrease in the colorimetric reaction time due to two factors: (1) an increase in the number of enzymes bound to hydrogel microparticles via a post-synthesis functionalization method, and (2) an elevation in the enzyme reaction temperature during colorimetric labeling. We obtained a comparable sensitivity of the colorimetric assay with three different miRNA targets, even with a shortened colorimetric reaction time. Furthermore, we validated that our colorimetric detection method is suitable for multiplex miRNA detection, owing to its low cross-reactivity.
Collapse
Affiliation(s)
- Ju Yeon Kim
- Department of Chemical and Biological Engineering, Korea University, Seoul, Republic of Korea.
| | - Seok Joon Mun
- Department of Chemical and Biological Engineering, Korea University, Seoul, Republic of Korea.
| | - Yoon Ho Roh
- Department of Chemical and Biological Engineering, Korea University, Seoul, Republic of Korea.
| | - Ki Wan Bong
- Department of Chemical and Biological Engineering, Korea University, Seoul, Republic of Korea.
| |
Collapse
|
13
|
Highly Magnetized Encoded Hydrogel Microparticles with Enhanced Rinsing Capabilities for Efficient microRNA Detection. Biomedicines 2021; 9:biomedicines9070848. [PMID: 34356912 PMCID: PMC8301431 DOI: 10.3390/biomedicines9070848] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/16/2021] [Accepted: 07/16/2021] [Indexed: 11/16/2022] Open
Abstract
Encoded hydrogel microparticles mounting DNA probes are powerful tools for high-performance microRNA (miRNA) detection in terms of sensitivity, specificity, and multiplex detection capability. However, several particle rinsing steps in the assay procedure present challenges for rapid and efficient detection. To overcome this limitation, we encapsulated dense magnetic nanoparticles to reduce the rinsing steps and duration via magnetic separation. A large number of magnetic nanoparticles were encapsulated into hydrogel microparticles based on a discontinuous dewetting technique combined with degassed micromolding lithography. In addition, we attached DNA probes targeting three types of miRNAs related to preeclampsia to magnetically encoded hydrogel microparticles by post-synthesis conjugation and achieved sensitivity comparable to that of conventional nonmagnetic encoded hydrogel microparticles. To demonstrate the multiplex capability of magnetically encoded hydrogel microparticles while maintaining the advantages of the simplified rinsing process when addressing multiple samples, we conducted a triplex detection of preeclampsia-related miRNAs. In conclusion, the introduction of magnetically encoded hydrogel microparticles not only allowed efficient miRNA detection but also provided comparable sensitivity and multiplexed detectability to conventional nonmagnetic encoded hydrogel microparticles.
Collapse
|
14
|
Hocum Stone L, Oppler SH, Nugent JL, Gresch S, Hering BJ, Murtaugh MP, Hegstad-Davies RL, Ramachandran S, Graham ML. Serum cytokine profiles in healthy nonhuman primates are blunted by sedation and demonstrate sexual dimorphism as detected by a validated multiplex immunoassay. Sci Rep 2021; 11:2340. [PMID: 33504894 PMCID: PMC7840937 DOI: 10.1038/s41598-021-81953-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 01/13/2021] [Indexed: 12/11/2022] Open
Abstract
Cytokine profiling is a valuable tool for monitoring immune responses associated with disease and treatment. This study assessed the impact of sex and sedation on serum cytokines in healthy nonhuman primates (NHPs). Twenty-three cytokines were measured from serum using a bead-based multiplex assay. Assay validation for precision, sensitivity, recovery, linearity, and stability was performed. Samples from male and female cynomolgus and rhesus macaques either cooperating or sedated were compared. All cytokines except TNFα demonstrated acceptable sensitivity and precision, with variable recovery and linearity. IFNγ, IL-2, IL-5, IL-6, IL-8, IL-12/23 (p40), IL-13, IL-15, MCP-1, TGFα, VEGF met acceptance criteria; G-CSF, IL-4, IL-10, MIP1α, sCD40L were marginal. Higher cytokine levels were observed in females and cytokine levels were blunted in sedated NHPs when compared to awake cooperating NHPs. Significant differences observed in cytokines related to sex, species, or imposed by handling highlight the importance of model design on translational relevance for clinical settings.
Collapse
Affiliation(s)
- Laura Hocum Stone
- Department of Surgery, University of Minnesota, Minneapolis, MN, 55455, USA
| | | | - Julia L Nugent
- Department of Surgery, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Sarah Gresch
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN, 55108, USA.,Veterinary Diagnostic Lab, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, 55108, USA
| | - Bernhard J Hering
- Department of Surgery, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Michael P Murtaugh
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, 55108, USA
| | | | | | - Melanie L Graham
- Department of Surgery, University of Minnesota, Minneapolis, MN, 55455, USA. .,Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN, 55108, USA.
| |
Collapse
|
15
|
Tobias C, Climent E, Gawlitza K, Rurack K. Polystyrene Microparticles with Convergently Grown Mesoporous Silica Shells as a Promising Tool for Multiplexed Bioanalytical Assays. ACS APPLIED MATERIALS & INTERFACES 2021; 13:207-218. [PMID: 33348979 DOI: 10.1021/acsami.0c17940] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Functional core/shell particles are highly sought after in analytical chemistry, especially in methods suitable for single-particle analysis such as flow cytometry because they allow for facile multiplexed detection of several analytes in a single run. Aiming to develop a powerful bead platform of which the core particle can be doped in a straightforward manner while the shell offers the highest possible sensitivity when functionalized with (bio)chemical binders, polystyrene particles were coated with different kinds of mesoporous silica shells in a convergent growth approach. Mesoporous shells allow us to obtain distinctly higher surface areas in comparison with conventional nonporous shells. While assessing the potential of narrow- as well as wide-pore silicas such as Mobil composition of matter no. 41 (MCM-41) and Santa Barbara amorphous material no. 15 (SBA-15), especially the synthesis of the latter shells that are much more suitable for biomolecule anchoring was optimized by altering the pH and both, the amount and type of the mediator salt. Our studies showed that the best performing material resulted from a synthesis using neutral conditions and MgSO4 as an ionic mediator. The analytical potential of the particles was investigated in flow cytometric DNA assays after their respective functionalization for individual and multiplexed detection of short oligonucleotide strands. These experiments revealed that a two-step modification of the silica surface with amino silane and succinic anhydride prior to coupling of an amino-terminated capture DNA (c-DNA) strand is superior to coupling carboxylic acid-terminated c-DNA to aminated core/shell particles, yielding limits of detection (LOD) down to 5 pM for a hybridization assay, using labeled complementary single-stranded target DNA (t-DNA) 15mers. The potential of the use of the particles in multiplexed analysis was shown with the aid of dye-doped core particles carrying a respective SBA-15 shell. Characteristic genomic sequences of human papillomaviruses (HPV) were chosen as the t-DNA analytes here, since their high relevance as carcinogens and the high number of different pathogens is a relevant model case. The title particles showed a promising performance and allowed us to unequivocally detect the different high- and low-risk HPV types in a single experimental run.
Collapse
Affiliation(s)
- Charlie Tobias
- Chemical and Optical Sensing Division, Bundesanstalt für Materialforschung und -prüfung (BAM), Richard-Willstätter-Str. 11, D-12489 Berlin, Germany
| | - Estela Climent
- Chemical and Optical Sensing Division, Bundesanstalt für Materialforschung und -prüfung (BAM), Richard-Willstätter-Str. 11, D-12489 Berlin, Germany
| | - Kornelia Gawlitza
- Chemical and Optical Sensing Division, Bundesanstalt für Materialforschung und -prüfung (BAM), Richard-Willstätter-Str. 11, D-12489 Berlin, Germany
| | - Knut Rurack
- Chemical and Optical Sensing Division, Bundesanstalt für Materialforschung und -prüfung (BAM), Richard-Willstätter-Str. 11, D-12489 Berlin, Germany
| |
Collapse
|
16
|
Shakeri A, Jarad NA, Terryberry J, Khan S, Leung A, Chen S, Didar TF. Antibody Micropatterned Lubricant-Infused Biosensors Enable Sub-Picogram Immunofluorescence Detection of Interleukin 6 in Human Whole Plasma. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2003844. [PMID: 33078567 DOI: 10.1002/smll.202003844] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/23/2020] [Indexed: 05/05/2023]
Abstract
Recent studies have shown a correlation between elevated interleukin 6 (IL-6) concentrations and the risk of respiratory failure in COVID-19 patients. Therefore, detection of IL-6 at low concentrations permits early diagnosis of worst-case outcome in viral respiratory infections. Here, a versatile biointerface is presented that eliminates nonspecific adhesion and thus enables immunofluorescence detection of IL-6 in whole human plasma or whole human blood during coagulation, down to a limit of detection of 0.5 pg mL-1 . The sensitivity of the developed lubricant-infused biosensor for immunofluorescence assays in detecting low molecular weight proteins such as IL-6 is facilitated by i) producing a bioink in which the capture antibody is functionalized by an epoxy-based silane for covalent linkage to the fluorosilanized surface and ii) suppressing nonspecific adhesion by patterning the developed bioink into a lubricant-infused coating. The developed biosensor addresses one of the major challenges for biosensing in complex fluids, namely nonspecific adhesion, therefore paving the way for highly sensitive biosensing in complex fluids.
Collapse
Affiliation(s)
- Amid Shakeri
- Department of Mechanical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L7, Canada
| | - Noor Abu Jarad
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada
| | - Jeff Terryberry
- SQI Diagnostics System Inc, 36 Meteor Dr, Toronto, ON M9W 1A4, Canada
| | - Shadman Khan
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada
| | - Ashlyn Leung
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada
| | - Simeng Chen
- SQI Diagnostics System Inc, 36 Meteor Dr, Toronto, ON M9W 1A4, Canada
| | - Tohid F Didar
- Department of Mechanical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L7, Canada
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada
| |
Collapse
|
17
|
Roh YH, Lee HJ, Kim JY, Kim HU, Kim SM, Bong KW. Precipitation-based colorimetric multiplex immunoassay in hydrogel particles. LAB ON A CHIP 2020; 20:2841-2850. [PMID: 32614938 DOI: 10.1039/d0lc00325e] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Despite a growing demand for more accessible diagnostic technologies, current methods struggle to simultaneously detect multiple analytes with acceptable sensitivity and portability. Colorimetric assays have been widely used due to their simplicity of signal readout, but the lack of multiplexibility has been a perpetual constraint. Meanwhile, particle-based assays offer multiplex detection by assigning an identity code to each analyte, but they often require lab-based equipment unsuitable for portable diagnostics. Here, by merging the two approaches, this paper reports a colorimetric multiplex immunoassay based on hydrogel microparticles that achieves the best of both worlds. The low-cost portable multiplex assay demonstrates sensitivities as high as and dynamic ranges greater than the lab-based enzyme-linked immunosorbent assay (ELISA). These critical advances are made possible by local precipitation and amplification of insoluble colour dyes inside the hydrogel networks. For the first time, enzymatic accumulation of colour dyes in hydrogel particles is reported and the kinetics of colour development is characterized in this work. By taking advantage of the colour signals in the visible spectrum, the hydrogel microparticles were imaged and analysed using low-cost portable devices. The colorimetric multiplex immunoassay was used to successfully detect three target biomarkers of preeclampsia and validated clinically using healthy and patient-derived plasma samples.
Collapse
Affiliation(s)
- Yoon Ho Roh
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Republic of Korea.
| | | | | | | | | | | |
Collapse
|
18
|
Roh YH, Seo J, Kim JY, Kim HU, Mun SJ, Seo JH, Bong KW. Phosphorylcholine-based encoded hydrogel microparticles with enhanced fouling resistance for multiplex immunoassays. Analyst 2020; 145:5482-5490. [PMID: 32588844 DOI: 10.1039/d0an00808g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Due to the growing interest in multiplex protein detection, encoded hydrogel microparticles have received attention as a possible path to high performance multiplex immunoassays through a combination of high multiplexing capability and enhanced binding kinetics. However, their practical operation in real complex samples is still limited because polyethylene glycol, which is the main component of hydrogel particles, suffers from oxidative damage and relatively high fouling properties in biochemical solutions. Here, we introduce poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC)-based encoded hydrogel microparticles to perform fouling-resistant multiplex immunoassays, where the anti-fouling characteristics are attributed to the zwitterionic PMPC. By applying a newly developed molding lithography technique, viscous PMPCs with low reactivity were successfully incorporated into the hydrogel network while maintaining uniformity and rigidity for use in multiplex immunoassays. Non-specific protein adsorption on the PMPC particles was reduced by about 37.5% compared to that of conventional PEG particles, which leads to better assay sensitivity. We also validate the multiplex capability of the PMPC particles by performing multiplex detection of two target proteins. Furthermore, we verify that the PMPC particles have a 70% enhancement in anti-fouling characteristics compared to PEG particles in human platelet-rich plasma, potentiating a practical immunoassay platform for clinical diagnosis.
Collapse
Affiliation(s)
- Yoon Ho Roh
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea.
| | | | | | | | | | | | | |
Collapse
|
19
|
Kvas M, Teixeira AG, Chiang B, Frampton JP. Aqueous two-phase system antibody confinement enables cost-effective analysis of protein analytes by sandwich enzyme-linked immunosorbent assay with minimal optical crosstalk. Analyst 2020; 145:5458-5465. [PMID: 32578585 DOI: 10.1039/d0an00699h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
An aqueous two-phase system formed from polyethylene glycol and dextran was used to uniformly coat the bottom surfaces of the wells of standard 96-well assay plates with capture and detection antibodies to improve the performance and cost-effectiveness of sandwich enzyme-linked immunosorbent assay (ELISA). Using this approach, limits of detection and linear dynamic range values comparable to those obtained for conventional sandwich ELISA were obtained using considerably lower antibody quantities due to the much lower reagent volumes required when antibodies are applied in a dextran solution beneath a polyethylene glycol overlay. Confinement of the antibody reagents to the bottom surfaces of the wells within the dextran phase also dramatically decreased the optical crosstalk present between neighboring wells when using transparent microplates. Adaptation of the conventional single sandwich ELISA for aqueous two-phase system antibody confinement was demonstrated by analysis of standard curves for C-reactive protein, transforming growth factor beta 1, and the chemokine CXCL10.
Collapse
Affiliation(s)
- Maia Kvas
- School of Biomedical Engineering, Dalhousie University, Halifax, NS, Canada.
| | | | | | | |
Collapse
|
20
|
Tongdee M, Yamanishi C, Maeda M, Kojima T, Dishinger J, Chantiwas R, Takayama S. One-incubation one-hour multiplex ELISA enabled by aqueous two-phase systems. Analyst 2020; 145:3517-3527. [PMID: 32248215 PMCID: PMC7237315 DOI: 10.1039/d0an00383b] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
This work describes a convenient one-hour enzyme-linked immunosorbent assay (ELISA) formulated with conventional antibodies and horseradish peroxidase (HRP) reagents. The method utilizes aqueous two-phase system (ATPS) droplet formation based on poly(ethylene glycol) (PEG)-containing sample solution-triggered rehydration of dehydrated dextran (DEX) spots that contain all antibody reagents. Key advances in this paper include development of a formulation that allows a quick 1-hour overall incubation time and a procedure where inclusion of the HRP reagent in the PEG solution reduces the number of washing and incubation steps required to perform this assay. As an assay application, a 5-plex cytokine test compares cytokine secretion of differentially-treated human ThP-1 macrophages. Given the use of only readily available reagents and a common Western blot imaging system for the readout, this method is envisioned to be broadly applicable to a variety of multiplex immunoassays. To facilitate broader use, companion image processing software as an ImageJ plugin is also described and provided.
Collapse
Affiliation(s)
- Mintra Tongdee
- Department of Chemistry and Center of Excellence for Innovation in Chemistry and Flow Innovation-Research for Science and Technology Laboratories (FIRST Labs), Faculty of Science, Mahidol University, Rama VI Rd., Bangkok 10400, Thailand and Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta 30332, Georgia, USA
| | - Cameron Yamanishi
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta 30332, Georgia, USA
| | - Midori Maeda
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta 30332, Georgia, USA
| | - Taisuke Kojima
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta 30332, Georgia, USA
| | | | - Rattikan Chantiwas
- Department of Chemistry and Center of Excellence for Innovation in Chemistry and Flow Innovation-Research for Science and Technology Laboratories (FIRST Labs), Faculty of Science, Mahidol University, Rama VI Rd., Bangkok 10400, Thailand
| | - Shuichi Takayama
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta 30332, Georgia, USA
| |
Collapse
|
21
|
Zhang Y, Li X, Di YP. Fast and Efficient Measurement of Clinical and Biological Samples Using Immunoassay-Based Multiplexing Systems. Methods Mol Biol 2020; 2102:129-147. [PMID: 31989552 DOI: 10.1007/978-1-0716-0223-2_6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Immunoassay is one of the most commonly used biomedical techniques to detect the expression of an antibody or an antigen in a test sample. Enzyme-linked immunosorbent assay (ELISA) has been used for a variety of applications including diagnostic tools and quality controls. However, one of the main limitations of ELISA is its lack of multiplexing ability, so ELISA may not be an efficient diagnostic tool when a measurement of multiple determinants is needed for samples with limited quantity such as blood or biological samples from newborns or babies. Although similar to ELISA in assay measurement, multiplex platforms such as bead-based Luminex and multi-array-based MSD (Meso Scale Discovery) are widely used to measure multiple biomarkers from a single analysis. Luminex is a xMAP-based technology that combines several different technologies to provide an efficient and accurate measurement of multiple analytes from a single sample. The multiplexing can be achieved because up to 100 distinct Luminex color-coded microsphere bead sets can be coated with a reagent specific to a particular bioassay, allowing the capture and detection of specific analytes from a sample. Using Multi-array and electrochemiluminescence technologies, the MSD platform provides the multiplex capability with similar consistence as observed in ELISA. Various biological samples that can be analyzed by both Luminex and MSD systems include serum, plasma, tissue and cell lysate, saliva, sputum, and bronchoalveolar Lavage (BAL). The most common Luminex and MSD-based assays are to detect a combined set of cytokines to provide a measurement of cytokine expression profiling for a diagnostic purpose.
Collapse
Affiliation(s)
- Yingze Zhang
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Xiaoyun Li
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Y Peter Di
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
22
|
Carlton EF, Flori HR. Biomarkers in pediatric acute respiratory distress syndrome. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:505. [PMID: 31728358 DOI: 10.21037/atm.2019.09.29] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Pediatric acute respiratory distress syndrome (PARDS) is a heterogenous process resulting in a severe acute lung injury. A single indicator does not exist for PARDS diagnosis. Rather, current diagnosis requires a combination of clinical and physiologic variables. Similarly, there is little ability to predict the path of disease, identify those at high risk of poor outcomes or target therapies specific to the underlying pathophysiology. Biomarkers, a measured indicator of a pathologic state or response to intervention, have been studied in PARDS due to their potential in diagnosis, prognostication and measurement of therapeutic response. Additionally, PARDS biomarkers show great promise in furthering our understanding of specific subgroups or endotypes in this highly variable disease, and thereby predict which patients may benefit and which may be harmed by PARDS specific therapies. In this chapter, we review the what, when, why and how of biomarkers in PARDS and discuss future directions in this quickly changing landscape.
Collapse
Affiliation(s)
- Erin F Carlton
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, University of Michigan, Ann Arbor, Michigan, USA
| | - Heidi R Flori
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
23
|
Manngo PM, Gutschmidt A, Snyders CI, Mutavhatsindi H, Manyelo CM, Makhoba NS, Ahlers P, Hiemstra A, Stanley K, McAnda S, Kidd M, Malherbe ST, Walzl G, Chegou NN. Prospective evaluation of host biomarkers other than interferon gamma in QuantiFERON Plus supernatants as candidates for the diagnosis of tuberculosis in symptomatic individuals. J Infect 2019; 79:228-235. [PMID: 31319143 DOI: 10.1016/j.jinf.2019.07.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 07/02/2019] [Accepted: 07/12/2019] [Indexed: 01/02/2023]
Abstract
BACKGROUND There is an urgent need for new tools for the diagnosis of TB. We evaluated the usefulness recently described host biomarkers in supernatants from the newest generation of the QuantiFERON test (QuantiFERON Plus) as tools for the diagnosis of active TB. METHODS We recruited individuals presenting at primary health care clinics in Cape Town, South Africa with symptoms requiring investigation for TB disease, prior to the establishment of a clinical diagnosis. Participants were later classified as TB or other respiratory diseases (ORD) based on the results of clinical and laboratory tests. Using a multiplex platform, we evaluated the concentrations of 37 host biomarkers in QuantiFERON Plus supernatants from study participants as tools for the diagnosis of TB. RESULTS Out of 120 study participants, 35(29.2%) were diagnosed with active TB, 69(57.5%) with ORD whereas 16(13.3%) were excluded. 14(11.6%) of the study participants were HIV infected. Although individual host markers showed potential as diagnostic candidates, the main finding of the study was the identification of a six-marker biosignature in unstimulated supernatants (Apo-ACIII, CXCL1, CXCL9, CCL8, CCL-1, CD56) which diagnosed TB with sensitivity and specificity of 73.9%(95% CI; 51.6-87.8) and 87.6%(95% CI; 77.2-94.5), respectively, after leave-one-out cross validation. Combinations between TB-antigen specific biomarkers also showed potential (sensitivity of 77.3% and specificity of 69.2%, respectively), with multiple biomarkers being significantly different between TB patients, Quantiferon Plus Positive and Quantiferon Plus negative individuals with ORD, regardless of HIV status. CONCLUSIONS Biomarkers detected in QuantiFERON Plus supernatants may contribute to adjunctive diagnosis of TB.
Collapse
Affiliation(s)
- Portia M Manngo
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Po Box 241, Cape Town 8000, South Africa
| | - Andrea Gutschmidt
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Po Box 241, Cape Town 8000, South Africa
| | - Candice I Snyders
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Po Box 241, Cape Town 8000, South Africa
| | - Hygon Mutavhatsindi
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Po Box 241, Cape Town 8000, South Africa
| | - Charles M Manyelo
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Po Box 241, Cape Town 8000, South Africa
| | - Nonjabulo S Makhoba
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Po Box 241, Cape Town 8000, South Africa
| | - Petri Ahlers
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Po Box 241, Cape Town 8000, South Africa
| | - Andriette Hiemstra
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Po Box 241, Cape Town 8000, South Africa
| | - Kim Stanley
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Po Box 241, Cape Town 8000, South Africa
| | - Shirley McAnda
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Po Box 241, Cape Town 8000, South Africa
| | - Martin Kidd
- Centre for Statistical Consultation, Department of Statistics and Actuarial Sciences, Stellenbosch University, Cape Town, South Africa
| | - Stephanus T Malherbe
- Centre for Statistical Consultation, Department of Statistics and Actuarial Sciences, Stellenbosch University, Cape Town, South Africa
| | - Gerhard Walzl
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Po Box 241, Cape Town 8000, South Africa
| | - Novel N Chegou
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Po Box 241, Cape Town 8000, South Africa.
| |
Collapse
|
24
|
Dowall SD, Graham VA, Fletcher T, Hewson R. Use and reliability of multiplex bead-based assays (Luminex) at Containment Level 4. Methods 2019; 158:17-21. [PMID: 30771491 DOI: 10.1016/j.ymeth.2019.02.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 02/07/2019] [Accepted: 02/11/2019] [Indexed: 12/14/2022] Open
Abstract
In the UK, research on hazard group 4 (HG4) pathogens requires specialised Containment Level 4 (CL4) facilities. These differ from Biosafety Level 4 (BSL4) conditions in that work is conducted in class III microbiological safety cabinets for primary containment instead of using positive pressure suits. This presents unique challenges associated with the physical restrictions of working in a limited space, and prohibits the use of many techniques and specialist equipment. In consequence, detailed studies on the biology of HG4 pathogens and in particular their immunological relationships with the host are understudied in the UK; for example, the majority of immunological assays with which the immune system is interrogated require specialist equipment that is unsuitable for CL4. Multiplexing to simultaneously measure multiple analytes is increasingly being used in immunological studies. This assay is attractive for CL4 work because it reduces the time spent in the laboratory whilst maximising the use of valuable sample volume. The Luminex microsphere approach allows for the determination of many cytokines and chemokines, however, the detection system uses fixed aligned lasers and integrated computer systems which are unsuitable for use at CL4. Therefore, we have developed an approach in which the Luminex assay is conducted within the CL4 laboratory and a formalin-fixation stage is introduced to allow for analysis to be undertaken outside of containment. Quality control preparations allow the assay characteristics to be monitored and analysis of assay performance to be evaluated. Our data demonstrate that Luminex is an applicable tool for use at CL4 and that assays can be run reliably to generate reproducible standardised data across different plates and individual experiments.
Collapse
Affiliation(s)
- Stuart D Dowall
- Public Health England, Porton Down, Salisbury, Wiltshire SP4 0JG, UK.
| | - Victoria A Graham
- Public Health England, Porton Down, Salisbury, Wiltshire SP4 0JG, UK
| | - Tom Fletcher
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Roger Hewson
- Public Health England, Porton Down, Salisbury, Wiltshire SP4 0JG, UK
| |
Collapse
|
25
|
VanElzakker MB, Brumfield SA, Lara Mejia PS. Neuroinflammation and Cytokines in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS): A Critical Review of Research Methods. Front Neurol 2019; 9:1033. [PMID: 30687207 PMCID: PMC6335565 DOI: 10.3389/fneur.2018.01033] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Accepted: 11/16/2018] [Indexed: 01/18/2023] Open
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is the label given to a syndrome that can include long-term flu-like symptoms, profound fatigue, trouble concentrating, and autonomic problems, all of which worsen after exertion. It is unclear how many individuals with this diagnosis are suffering from the same condition or have the same underlying pathophysiology, and the discovery of biomarkers would be clarifying. The name "myalgic encephalomyelitis" essentially means "muscle pain related to central nervous system inflammation" and many efforts to find diagnostic biomarkers have focused on one or more aspects of neuroinflammation, from periphery to brain. As the field uncovers the relationship between the symptoms of this condition and neuroinflammation, attention must be paid to the biological mechanisms of neuroinflammation and issues with its potential measurement. The current review focuses on three methods used to study putative neuroinflammation in ME/CFS: (1) positron emission tomography (PET) neuroimaging using translocator protein (TSPO) binding radioligand (2) magnetic resonance spectroscopy (MRS) neuroimaging and (3) assays of cytokines circulating in blood and cerebrospinal fluid. PET scanning using TSPO-binding radioligand is a promising option for studies of neuroinflammation. However, methodological difficulties that exist both in this particular technique and across the ME/CFS neuroimaging literature must be addressed for any results to be interpretable. We argue that the vast majority of ME/CFS neuroimaging has failed to use optimal techniques for studying brainstem, despite its probable centrality to any neuroinflammatory causes or autonomic effects. MRS is discussed as a less informative but more widely available, less invasive, and less expensive option for imaging neuroinflammation, and existing studies using MRS neuroimaging are reviewed. Studies seeking to find a peripheral circulating cytokine "profile" for ME/CFS are reviewed, with attention paid to the biological and methodological reasons for lack of replication among these studies. We argue that both the biological mechanisms of cytokines and the innumerable sources of potential variance in their measurement make it unlikely that a consistent and replicable diagnostic cytokine profile will ever be discovered.
Collapse
Affiliation(s)
- Michael B. VanElzakker
- Division of Neurotherapeutics, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | | | | |
Collapse
|
26
|
Sarma D, Carl P, Climent E, Schneider RJ, Rurack K. Multifunctional Polystyrene Core/Silica Shell Microparticles with Antifouling Properties for Bead-Based Multiplexed and Quantitative Analysis. ACS APPLIED MATERIALS & INTERFACES 2019; 11:1321-1334. [PMID: 30507151 DOI: 10.1021/acsami.8b10306] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Commercial bead-based assays are commonly built upon polystyrene particles. The polymeric carrier can be encoded with organic dyes and has ideal material properties for cytometric applications such as low density and high refractive index. However, functional groups are conventionally integrated during polymerization and subsequent modification is limited to the reactivity of those groups. Additionally, polystyrene as the core material leads to many hydrophobic areas still being present on the beads' surfaces even after functionalization, rendering the particles prone to nonspecific adsorption during an application. The latter calls for several washing steps and the use of additives in (bio)analytical assays. In this contribution, we show how these limitations can be overcome by using monodisperse polystyrene (PS) core/silica (SiO2) shell particles (SiO2@PS). Two different hydrophobic BODIPY (boron-dipyrromethene) dyes were encapsulated inside a poly(vinylpyrrolidone) (PVP) -stabilized polystyrene core in different concentrations to create 5-plex arrays in two separate detection channels of a cytometer. A subsequent modification of the silica shell with an equimolar APTES/PEGS (aminopropyltriethoxysilane/polyethylene glycol silane) blend added multifunctional properties to the hybrid core/shell microparticles in a single step: APTES provides amino groups for the attachment of a caffeine derivative (as a hapten) to create antigen-coupled microspheres; the PEG moiety effectively suppresses nonspecific binding of antibodies, endowing the surface with antifouling properties. The particles were applied in a competitive fluorescence immunoassay in suspension, and a highly selective wash-free assay for the detection of caffeine in beverages was developed as a proof of concept.
Collapse
Affiliation(s)
- Dominik Sarma
- Department of Analytical Chemistry; Reference Materials , Bundesanstalt für Materialforschung und -prüfung (BAM) , Richard-Willstätter-Straße 11 , 12489 Berlin , Germany
- Department of Chemistry , Humboldt-Universität zu Berlin , Brook-Taylor-Straße 2 , 12489 Berlin , Germany
| | - Peter Carl
- Department of Analytical Chemistry; Reference Materials , Bundesanstalt für Materialforschung und -prüfung (BAM) , Richard-Willstätter-Straße 11 , 12489 Berlin , Germany
- Department of Chemistry , Humboldt-Universität zu Berlin , Brook-Taylor-Straße 2 , 12489 Berlin , Germany
| | - Estela Climent
- Department of Analytical Chemistry; Reference Materials , Bundesanstalt für Materialforschung und -prüfung (BAM) , Richard-Willstätter-Straße 11 , 12489 Berlin , Germany
| | - Rudolf J Schneider
- Department of Analytical Chemistry; Reference Materials , Bundesanstalt für Materialforschung und -prüfung (BAM) , Richard-Willstätter-Straße 11 , 12489 Berlin , Germany
- Technische Universität Berlin , Straße des 17. Juni 135 , 10623 Berlin , Germany
| | - Knut Rurack
- Department of Analytical Chemistry; Reference Materials , Bundesanstalt für Materialforschung und -prüfung (BAM) , Richard-Willstätter-Straße 11 , 12489 Berlin , Germany
| |
Collapse
|
27
|
Lee HJ, Kim JY, Roh YH, Kim SM, Bong KW. Linker-free antibody conjugation for sensitive hydrogel microparticle-based multiplex immunoassay. Analyst 2019; 144:6712-6720. [DOI: 10.1039/c9an01243e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Graphically encoded hydrogel microparticles were directly conjugated with reduced antibodies without linkers for highly sensitive multiplex immunoassay.
Collapse
Affiliation(s)
- Hyun Jee Lee
- Department of Chemical and Biological Engineering
- Korea University
- Seoul
- Republic of Korea
| | - Ju Yeon Kim
- Department of Chemical and Biological Engineering
- Korea University
- Seoul
- Republic of Korea
| | - Yoon Ho Roh
- Department of Chemical and Biological Engineering
- Korea University
- Seoul
- Republic of Korea
| | - Sun Min Kim
- Department of Obstetrics and Gynecology
- Seoul Metropolitan Government-Seoul National University Boramae Medical Center
- Seoul
- Republic of Korea
| | - Ki Wan Bong
- Department of Chemical and Biological Engineering
- Korea University
- Seoul
- Republic of Korea
| |
Collapse
|
28
|
Zalocusky KA, Kan MJ, Hu Z, Dunn P, Thomson E, Wiser J, Bhattacharya S, Butte AJ. The 10,000 Immunomes Project: Building a Resource for Human Immunology. Cell Rep 2018; 25:513-522.e3. [PMID: 30304689 PMCID: PMC6263160 DOI: 10.1016/j.celrep.2018.09.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 05/01/2018] [Accepted: 09/07/2018] [Indexed: 02/06/2023] Open
Abstract
There is increasing appreciation that the immune system plays critical roles not only in the traditional domains of infection and inflammation but also in many areas of biology, including tumorigenesis, metabolism, and even neurobiology. However, one of the major barriers for understanding human immunological mechanisms is that immune assays have not been reproducibly characterized for a sufficiently large and diverse healthy human cohort. Here, we present the 10,000 Immunomes Project (10KIP), a framework for growing a diverse human immunology reference, from ImmPort, a publicly available resource of subject-level immunology data. Although some measurement types are sparse in the presently deposited ImmPort database, the extant data allow for a diversity of robust comparisons. Using 10KIP, we describe variations in serum cytokines and leukocytes by age, race, and sex; define a baseline cell-cytokine network; and describe immunologic changes in pregnancy. All data in the resource are available for visualization and download at http://10kimmunomes.org/.
Collapse
Affiliation(s)
- Kelly A Zalocusky
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Pediatrics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Matthew J Kan
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Pediatrics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Zicheng Hu
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Pediatrics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Patrick Dunn
- Information Systems Health IT, Northrop Grumman, Rockville, MD 20850, USA
| | - Elizabeth Thomson
- Information Systems Health IT, Northrop Grumman, Rockville, MD 20850, USA
| | - Jeffrey Wiser
- Information Systems Health IT, Northrop Grumman, Rockville, MD 20850, USA
| | - Sanchita Bhattacharya
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Pediatrics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Atul J Butte
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Pediatrics, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
29
|
Cross-laboratory evaluation of multiplex bead assays including independent common reference standards for immunological monitoring of observational and interventional human studies. PLoS One 2018; 13:e0201205. [PMID: 30180167 PMCID: PMC6122788 DOI: 10.1371/journal.pone.0201205] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 07/09/2018] [Indexed: 11/19/2022] Open
Abstract
Background Multiplex assays are increasingly applied to analyze multicomponent signatures of human immune responses, including the dynamics of cytokine and chemokine production, in observational as well as interventional studies following treatment or vaccination. However, relatively limited information is available on the performance of the different available multiplex kits, and comparative evaluations addressing this important issue are lacking. Study design To fill this knowledge gap we performed a technical comparison of multiplex bead assays from 4 manufacturers, each represented by 3 different lots, and with the assays performed by 3 different laboratories. To cross compare kits directly, spiked samples, biological samples and a newly made reference standard were included in all assays. Analyses were performed on 324 standard curves to allow for evaluation of the quality of the standard curves and the subsequent interpretation of biological specimens. Results Manufacturer was the factor which contributed most to the observed variation whereas variation in lots, laboratory or type of detection reagent contributed minimally. Inclusion of a common reference standard allowed us to overcome observed differences in cytokine and chemokine levels between manufacturers. Conclusions We strongly recommend using multiplex assays from the same manufacturer within a single study and across studies that are likely to compare results in a quantitative manner. Incorporation of common reference standards, and application of the same analysis method in assays can overcome many analytical biases and thus could bridge comparison of independent immune profiling (e.g. vaccine immunogenicity) studies. With these recommendations taken into account, the multiplex bead assays performed as described here are useful tools in capturing complex human immune-signatures in observational and interventional studies.
Collapse
|
30
|
Popik W, Correa H, Khatua A, Aronoff DM, Alcendor DJ. Mesangial cells, specialized renal pericytes and cytomegalovirus infectivity: Implications for HCMV pathology in the glomerular vascular unit and post-transplant renal disease. ACTA ACUST UNITED AC 2018; 5. [PMID: 29977613 PMCID: PMC6027753 DOI: 10.15761/jts.1000248] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background Human Cytomegalovirus (HCMV) infection is problematic after kidney transplantation. Human mesangial cells along with human glomerular endothelial cells and podocytes constitute the renal glomerular vascular unit (GVU). HCMV infection of the GVU is poorly understood. Methods GVU cells infectivity was analysed by microscopy and immunofluorescence. Cytokines profiles were measured by Luminex assays. Renal tissue analysis for HCMV infection was performed by immunohistochemistry. Results Mesangial cells and glomerular endothelial cells but not podocytes were permissive for both lab adapted and clinical strains of HCMV. Luminex analysis of cytokines expressed by mesangial cells exposed to the SBCMV clinical strain was examined. A Tricell infection model of the GVU maintains >90% viability with a unique cytokine profile. Finally, we show αSMA stained mesangial cells permissive for HCMV in renal tissue from a transplant patient. Conclusions HCMV infection of mesangial cells induces angiogenic and proinflammatory cytokines that could contribute to glomerular inflammation.
Collapse
Affiliation(s)
- Waldemar Popik
- Department of Internal Medicine and 4Department of Microbiology and Immunology, Center for AIDS Health Disparities Research, Meharry Medical College, School of Medicine, 1005 Dr. D.B. Todd Jr. Blvd., Nashville, Tennessee 37208-3599 USA
| | - Hernan Correa
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, Tennessee, USA
| | - Atanu Khatua
- Meharry Medical College, School of Medicine, Centre for AIDS Health Disparities Research, 1005 Dr. D.B. Todd Jr. Blvd., Nashville, Tennessee 37208-3599, USA
| | - David M Aronoff
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, Tennessee, USA.,Division of Infectious Diseases, Department of Medicine, and Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Centre, Nashville, Tennessee 37232, USA
| | - Donald J Alcendor
- Meharry Medical College, School of Medicine, Centre for AIDS Health Disparities Research, 1005 Dr. D.B. Todd Jr. Blvd., Nashville, Tennessee 37208-3599, USA
| |
Collapse
|
31
|
Martinez P, Lien L, Zemore S, Bramness JG, Neupane SP. Circulating cytokine levels are associated with symptoms of depression and anxiety among people with alcohol and drug use disorders. J Neuroimmunol 2018; 318:80-86. [PMID: 29500107 DOI: 10.1016/j.jneuroim.2018.02.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 01/28/2018] [Accepted: 02/19/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND Psychological distress is common among people with a substance abuse disorder in treatment. Identifying correlates of psychological distress may serve as points of intervention to improve substance abuse treatment outcomes. Immune function measured as cytokine levels have been associated with psychological distress, but this association remains unexplored among people with a substance abuse disorder in treatment. This study aimed to examine whether cytokine levels in patients treated for a substance use disorder were related to depression, anxiety, and overall psychological distress, and to observe these associations separately among people with a past year alcohol use disorder and those with a past year drug use disorder. METHODS We collected cross-sectional data from 80 inpatients at five alcohol and substance abuse treatment centers in Norway. We determined alcohol and drug diagnoses, and assessed symptoms of depression, anxiety, and overall psychological distress. We tested blood samples for IL-1, IL-6, TNF-α, INF-γ, and IL-10. We used multivariate linear regressions to examine the associations between cytokine levels and psychological distress measures. RESULTS All cytokines were significantly and positively associated with depression score. INF-γ was significantly and negatively associated with anxiety, and IL-6 was significantly and positively associated psychological distress. Among people with only an alcohol use disorder, IL-6 was positively associated with depression and psychological distress scores, and IL-10 was negatively associated with anxiety score. Among people with only a drug use disorder, TNF-α was positively associated with depression score. CONCLUSION The relationship between immune function and psychological distress is robust in the context of substance abuse, and further research is warranted.
Collapse
Affiliation(s)
- Priscilla Martinez
- Alcohol Research Group, Public Health Institute, 6001 Shellmound St, Suite 450, Emervyville, CA 94608, USA.
| | - Lars Lien
- Norwegian National Advisory Unit on Concurrent Substance Abuse and Mental Health Disorders, Innlandet Hospital Trust, Box 104, 2381 Brumunddal, Norway.
| | - Sarah Zemore
- Alcohol Research Group, Public Health Institute, 6001 Shellmound St, Suite 450, Emervyville, CA 94608, USA.
| | - Jørgen G Bramness
- Norwegian National Advisory Unit on Concurrent Substance Abuse and Mental Health Disorders, Innlandet Hospital Trust, Box 104, 2381 Brumunddal, Norway.
| | - Sudan Prasad Neupane
- Norwegian National Advisory Unit on Concurrent Substance Abuse and Mental Health Disorders, Innlandet Hospital Trust, Box 104, 2381 Brumunddal, Norway; Norwegian Center for Addiction Research, University Of Oslo, Box 1171, Blindern, 0318 Oslo, Norway.
| |
Collapse
|
32
|
Stricker-Krongrad A, Shoemake C, Zhong M, Liu J, Bouchard G. Comparison of a microsphere-based platform with a multiplex flow cytometric assay for determination of circulating cytokines in the mouse. BMC Clin Pathol 2018; 18:1. [PMID: 29311759 PMCID: PMC5756325 DOI: 10.1186/s12907-017-0068-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 12/28/2017] [Indexed: 11/10/2022] Open
Abstract
Background Measuring expression profiles of inflammatory biomarkers is important in monitoring the polarization of immune responses; therefore, results should be independent of quantitation methods if they are to be accepted as validated clinical pathology biomarkers. To evaluate effects of differing quantitation methods, the seven major circulating Th1/Th2/Th17 cytokines interleukin 2 (IL-2), interferon γ (IFN-γ), tumor necrosis factor α (TNF-α), IL-4, IL-6, IL-10 and IL-17A were quantified in plasma of lipopolysaccharide (LPS)-treated mice with two different multiplex platforms. Methods Female C57BL6 mice were treated orally with vehicle or dexamethasone, followed by LPS intravenously. Plasma samples were analyzed 0.5, 1, 2, 4, and 6 h post-LPS challenge with assays at Myriad-RBM and compared to assays performed on a BD Accuri C6 flow cytometer. Results IL-17A response to LPS was limited but sustained, and the response for the remaining cytokines were early and transient; dexamethasone reduced expression of all 7 cytokines. TNF-α and IL-6 levels were similar across both assays, and IL-4 levels were generally very low. Plasma levels of remaining cytokines were variably lower with BD assays than Myriad-RBM assays. Conclusions The present findings demonstrate that quantitation of circulating biomarkers of inflammation can be achieved using multiplexed flow cytometry, but careful consideration must be taken for assay validation when cross-referencing with another multiplexed assay.
Collapse
Affiliation(s)
| | | | - Miao Zhong
- Sinclair Research Center, LLC, 562 State Rd. DD, Auxvasse, MO 65231 USA
| | - Jason Liu
- Sinclair Research Center, LLC, 562 State Rd. DD, Auxvasse, MO 65231 USA
| | - Guy Bouchard
- Sinclair Research Center, LLC, 562 State Rd. DD, Auxvasse, MO 65231 USA
| |
Collapse
|
33
|
Al-Mazidi S, Alotaibi M, Nedjadi T, Chaudhary A, Alzoghaibi M, Djouhri L. Blocking of cytokines signalling attenuates evoked and spontaneous neuropathic pain behaviours in the paclitaxel rat model of chemotherapy-induced neuropathy. Eur J Pain 2017; 22:810-821. [DOI: 10.1002/ejp.1169] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2017] [Indexed: 12/26/2022]
Affiliation(s)
- S. Al-Mazidi
- Department of Physiology; College of Medicine; King Saud University; Riyadh Saudi Arabia
- Rehabilitation Department; College of Health, and Rehabilitation Sciences; Princess Nourah Bint Abdulrahman University; Riyadh Saudi Arabia
| | - M. Alotaibi
- Department of Physiology; College of Medicine; King Saud University; Riyadh Saudi Arabia
| | - T. Nedjadi
- King Abdullah International Medical Research Center (KAIMRC); King Fahd Medical Research Center; King Abdulaziz University; Jeddah Saudi Arabia
| | - A. Chaudhary
- Center of Excellence in Genomic Medicine Research; King Abdulaziz University; Jeddah Saudi Arabia
| | - M. Alzoghaibi
- Department of Physiology; College of Medicine; King Saud University; Riyadh Saudi Arabia
| | - L. Djouhri
- Department of Physiology; College of Medicine; King Saud University; Riyadh Saudi Arabia
| |
Collapse
|
34
|
Vasquez MM, Hu C, Roe DJ, Halonen M, Guerra S. Measurement error correction in the least absolute shrinkage and selection operator model when validation data are available. Stat Methods Med Res 2017; 28:670-680. [PMID: 29166842 DOI: 10.1177/0962280217734241] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Measurement of serum biomarkers by multiplex assays may be more variable as compared to single biomarker assays. Measurement error in these data may bias parameter estimates in regression analysis, which could mask true associations of serum biomarkers with an outcome. The Least Absolute Shrinkage and Selection Operator (LASSO) can be used for variable selection in these high-dimensional data. Furthermore, when the distribution of measurement error is assumed to be known or estimated with replication data, a simple measurement error correction method can be applied to the LASSO method. However, in practice the distribution of the measurement error is unknown and is expensive to estimate through replication both in monetary cost and need for greater amount of sample which is often limited in quantity. We adapt an existing bias correction approach by estimating the measurement error using validation data in which a subset of serum biomarkers are re-measured on a random subset of the study sample. We evaluate this method using simulated data and data from the Tucson Epidemiological Study of Airway Obstructive Disease (TESAOD). We show that the bias in parameter estimation is reduced and variable selection is improved.
Collapse
Affiliation(s)
- Monica M Vasquez
- 1 Mel and Enid Zuckerman College of Public Health, The University of Arizona, Tucson, AZ, USA.,2 Asthma and Airway Disease Research Center, The University of Arizona, Tucson, AZ, USA
| | - Chengcheng Hu
- 1 Mel and Enid Zuckerman College of Public Health, The University of Arizona, Tucson, AZ, USA
| | - Denise J Roe
- 1 Mel and Enid Zuckerman College of Public Health, The University of Arizona, Tucson, AZ, USA
| | - Marilyn Halonen
- 2 Asthma and Airway Disease Research Center, The University of Arizona, Tucson, AZ, USA
| | - Stefano Guerra
- 2 Asthma and Airway Disease Research Center, The University of Arizona, Tucson, AZ, USA.,3 ISGlobal, CREAL, Barcelona, Spain
| |
Collapse
|
35
|
Aronoff DM, Correa H, Rogers LM, Arav-Boger R, Alcendor DJ. Placental pericytes and cytomegalovirus infectivity: Implications for HCMV placental pathology and congenital disease. Am J Reprod Immunol 2017; 78:10.1111/aji.12728. [PMID: 28741727 PMCID: PMC5561471 DOI: 10.1111/aji.12728] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 06/13/2017] [Indexed: 12/29/2022] Open
Abstract
PROBLEM Placental pericytes are essential for placental microvascular function, stability, and integrity. Mechanisms of human cytomegalovirus (HCMV) pathogenesis incorporating placental pericytes are unknown. METHOD OF STUDY HCMV-infected placental tissue was stained by dual-labeled immunohistochemistry. Primary placental pericytes, cytotrophoblasts, and villous fibroblasts were exposed to HCMV; and infectivity was analyzed by microscopy and immunofluorescence. Cytokine expression was examined by Luminex assay. A HCMV-GFP recombinant virus was used to examine replication kinetics. RESULTS Immunohistochemistry showed HCMV in trophoblast and the villous core with T-cell and macrophage infiltration. Primary HCMV isolate from a patient (SBCMV)- infected pericytes showed dysregulation of proinflammatory and angiogenic cytokines when compared to control cells. A tri-cell model of the villous floor showed a unique expression profile. Finally, we show pericytes infected in vivo with HCMV in placental tissue from a congenitally infected child. CONCLUSION Placental pericytes support HCMV replication, inducing proinflammatory and angiogenic cytokines that likely contribute to viral dissemination, placenta inflammation, and dysregulation of placental angiogenesis.
Collapse
Affiliation(s)
- David M. Aronoff
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
- Department of Microbiology and Immunology, Center for AIDS Health Disparities Research, Meharry Medical College, School of Medicine, 1005 Dr. D.B. Todd Jr. Blvd., Nashville, Tennessee 37208, USA
| | - Hernan Correa
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | - Lisa M. Rogers
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | - Ravit. Arav-Boger
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
| | - Donald J. Alcendor
- Department of Microbiology and Immunology, Center for AIDS Health Disparities Research, Meharry Medical College, School of Medicine, 1005 Dr. D.B. Todd Jr. Blvd., Nashville, Tennessee 37208, USA
| |
Collapse
|
36
|
Chang R, Faleo G, Russ HA, Parent AV, Elledge SK, Bernards DA, Allen JL, Villanueva K, Hebrok M, Tang Q, Desai TA. Nanoporous Immunoprotective Device for Stem-Cell-Derived β-Cell Replacement Therapy. ACS NANO 2017; 11:7747-7757. [PMID: 28763191 PMCID: PMC5667644 DOI: 10.1021/acsnano.7b01239] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Encapsulation of human embryonic stem-cell-differentiated beta cell clusters (hES-βC) holds great promise for cell replacement therapy for the treatment of diabetics without the need for chronic systemic immune suppression. Here, we demonstrate a nanoporous immunoprotective polymer thin film cell encapsulation device that can exclude immune molecules while allowing exchange of oxygen and nutrients necessary for in vitro and in vivo stem cell viability and function. Biocompatibility studies show the device promotes neovascular formation with limited foreign body response in vivo. The device also successfully prevented teratoma escape into the peritoneal cavity of mice. Long-term animal studies demonstrate evidence of engraftment, viability, and function of cells encapsulated in the device after 6 months. Finally, in vivo study confirms that the device was able to effectively immuno-isolate cells from the host immune system.
Collapse
Affiliation(s)
- Ryan Chang
- UCSF-UC Berkeley Joint PhD Program in Bioengineering, San Francisco, California 94143, United States
| | - Gaetano Faleo
- Department of Surgery, University of California, San Francisco, San Francisco, California 94143, United States
| | - Holger A. Russ
- Diabetes Center, University of California, San Francisco, San Francisco, California 94143, United States
| | - Audrey V. Parent
- Diabetes Center, University of California, San Francisco, San Francisco, California 94143, United States
| | - Susanna K. Elledge
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California 94143, United States
| | - Daniel A. Bernards
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California 94143, United States
| | - Jessica L. Allen
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California 94143, United States
| | - Karina Villanueva
- Diabetes Center, University of California, San Francisco, San Francisco, California 94143, United States
| | - Matthias Hebrok
- Diabetes Center, University of California, San Francisco, San Francisco, California 94143, United States
| | - Qizhi Tang
- Department of Surgery, University of California, San Francisco, San Francisco, California 94143, United States
- Diabetes Center, University of California, San Francisco, San Francisco, California 94143, United States
| | - Tejal A. Desai
- UCSF-UC Berkeley Joint PhD Program in Bioengineering, San Francisco, California 94143, United States
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California 94143, United States
| |
Collapse
|
37
|
Performance Assessment of a Trypanosoma cruzi Chimeric Antigen in Multiplex Liquid Microarray Assays. J Clin Microbiol 2017; 55:2934-2945. [PMID: 28724556 DOI: 10.1128/jcm.00851-17] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Accepted: 07/12/2017] [Indexed: 11/20/2022] Open
Abstract
Diagnosing chronic Chagas disease (CD) requires antibody-antigen detection methods, which are traditionally based on enzymatic assay techniques whose performance depend on the type and quality of antigen used. Previously, 4 recombinant chimeric proteins from the Instituto de Biologia Molecular do Paraná (IBMP-8.1 to 8.4) comprising immuno-dominant regions of diverse Trypanosoma cruzi antigens showed excellent diagnostic performance in enzyme-linked immunosorbent assays. Considering that next-generation platforms offer improved CD diagnostic accuracy with different T. cruzi-specific recombinant antigens, we assessed the performance of these chimeras in liquid microarrays (LMAs). The chimeric proteins were expressed in Escherichia coli and purified by chromatography. Sera from 653 chagasic and 680 healthy individuals were used to assess the performance of these chimeras in detecting specific anti-T. cruzi antibodies. Accuracies ranged from 98.1 to 99.3%, and diagnostic odds ratio values were 3,548 for IBMP-8.3, 4,826 for IBMP-8.1, 7,882 for IBMP-8.2, and 25,000 for IBMP-8.4. A separate sera bank (851 samples) was employed to assess cross-reactivity with other tropical diseases. Leishmania, a pathogen with high similarity to T. cruzi, showed cross-reactivity rates ranging from 0 to 2.17%. Inconclusive results were negligible (0 to 0.71%). Bland-Altman and Deming regression analysis based on 200 randomly selected CD-positive and negative samples demonstrated interchangeability with respect to CD diagnostic performance in both singleplex and multiplex assays. Our results suggested that these chimeras can potentially replace antigens currently used in commercially available assay kits. Moreover, the use of multiplex platforms, such as LMA assays employing 2 or more IBMP antigens, would abrogate the need for 2 different testing techniques when diagnosing CD.
Collapse
|
38
|
Cheslack-Postava K, Cremers S, Bao Y, Shen L, Schaefer CA, Brown AS. Maternal serum cytokine levels and risk of bipolar disorder. Brain Behav Immun 2017; 63:108-114. [PMID: 27477922 PMCID: PMC5276795 DOI: 10.1016/j.bbi.2016.07.160] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 07/23/2016] [Accepted: 07/28/2016] [Indexed: 02/09/2023] Open
Abstract
Prenatal exposure to influenza has previously been associated with increased risk of bipolar disorder (BD), an association that may be mediated by maternal cytokines. The objective of this study was to determine the association between maternal levels of cytokines measured during each trimester of pregnancy and the risk of BD in offspring. We conducted a case-control study nested in the Child Health and Development Study, a birth cohort that enrolled pregnant women in 1959-1966. Potential cases with DSM-IV-TR bipolar I disorder, bipolar II disorder, BD not otherwise specified, and BD with psychotic features were ascertained through electronic medical records, a public agency database, and a mailing to the cohort. Diagnoses were confirmed by clinical interview. Nine cytokines (IL-1β, IL-4, IL-5, IL-6, IL-8, IL-10, IFN-γ, TNF-α and GM-CSF) were measured simultaneously by Luminex assays in archived prenatal maternal serum samples from 85 cases and 170 matched controls. Data were analyzed using conditional logistic regression. In the overall study sample, there were no significant associations between prenatal maternal cytokine levels and BD after adjustment for confounders. The risk of BD without psychotic features was decreased among subjects with higher maternal levels of first trimester log-transformed IL-4 (OR (95% CI)=0.76 (0.58, 0.98); p=0.04) and third trimester log-transformed IL-6 (OR (95% CI)=0.64 (0.42, 0.98); p=0.04). In conclusion, higher levels of prenatal maternal cytokines were not associated with increased risk for BD. Further studies with larger samples are necessary to confirm the finding.
Collapse
Affiliation(s)
- Keely Cheslack-Postava
- Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York, United States.
| | - Serge Cremers
- Pathology and Cell Biology, Columbia University Medical Center, New York, NY
| | - Yuanyuan Bao
- Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York, United States
| | - Ling Shen
- KPNC Permanente Division of Research, Oakland, CA, United States
| | | | - Alan S. Brown
- Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York, United States,Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, United States
| |
Collapse
|
39
|
Al-Mazidi S, Farhat K, Nedjadi T, Chaudhary A, Zin Al-Abdin O, Rabah D, Al-Zoghaibi M, Djouhri L. Association of Interleukin-6 and Other Cytokines with Self-Reported Pain in Prostate Cancer Patients Receiving Chemotherapy. PAIN MEDICINE 2017; 19:1058-1066. [DOI: 10.1093/pm/pnx145] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Sarah Al-Mazidi
- Department of Physiology, College of Medicine, King Saud University, P.O. Box 7805, Riyadh 11472, Saudi Arabia
- Rehabilitation Department, College of Health and Rehabilitation Sciences, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Karim Farhat
- Cancer Research Chair, Department of Surgery, College of Medicine, King Saud University, P.O. Box 7805, Riyadh 11472, Saudi Arabia
| | - TaoufiK Nedjadi
- King Abdullah International Medical Research Center (KAIMRC), King Fahd Medical Research Center, King Abdulaziz University, P.O. Box 9515, Jeddah 21423, Saudi Arabia
| | - Adeel Chaudhary
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, P.O. Box 9515, Jeddah 21423, Saudi Arabia
| | - Osman Zin Al-Abdin
- Cancer Research Chair, Department of Surgery, College of Medicine, King Saud University, P.O. Box 7805, Riyadh 11472, Saudi Arabia
| | - Danny Rabah
- Cancer Research Chair, Department of Surgery, College of Medicine, King Saud University, P.O. Box 7805, Riyadh 11472, Saudi Arabia
| | - Mohammad Al-Zoghaibi
- Department of Physiology, College of Medicine, King Saud University, P.O. Box 7805, Riyadh 11472, Saudi Arabia
| | - Laiche Djouhri
- Department of Physiology, College of Medicine, King Saud University, P.O. Box 7805, Riyadh 11472, Saudi Arabia
| |
Collapse
|
40
|
Ghodasra DH, Fante R, Gardner TW, Langue M, Niziol LM, Besirli C, Cohen SR, Dedania VS, Demirci H, Jain N, Jayasundera KT, Johnson MW, Kalyani PS, Rao RC, Zacks DN, Sundstrom JM. Safety and Feasibility of Quantitative Multiplexed Cytokine Analysis From Office-Based Vitreous Aspiration. Invest Ophthalmol Vis Sci 2017; 57:3017-23. [PMID: 27273720 PMCID: PMC4904801 DOI: 10.1167/iovs.15-18721] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose The goals of this study were to evaluate the safety of office-based vitreous sampling, and determine the utility of these samples with multiplex cytokine analysis. Methods Vitreous samples were collected from office-based needle aspiration and the rate of adverse events during follow-up was reviewed. The vitreous cytokine concentrations in a subset of patients with diabetic macular edema (DME) were analyzed using a 42 plex-cytokine bead array. These results were compared with vitreous cytokine concentrations in proliferative diabetic retinopathy (PDR) and controls (macular hole, epiretinal membrane, symptomatic vitreous floaters) from pars plana vitrectomy. Results An adequate volume of vitreous fluid (100–200 μL) was obtained in 52 (88%) of 59 office-based sampling attempts. The average length of follow-up was 300 days (range, 42–926 days). There were no complications, including cataract, retinal tear or detachment, and endophthalmitis. Two patients (3%) had posterior vitreous detachments within 3 months. Vitreous cytokine concentrations were measured in 44 patients: 14 controls, 13 with DME, and 17 with PDR. The concentration of ADAM11, CXCL-10, IL-8, and PDGF-A were higher in PDR compared with controls and DME. The concentration of IL-6 was higher in PDR compared with controls, but not compared with DME. Conclusions Office-based vitreous aspiration is safe and yields high-quality samples for multiplex vitreous cytokine analysis. Significant elevations of vitreous cytokines were found in PDR compared with DME and controls, including the novel finding of elevated ADAM11. As such, office-based aspiration is a safe and effective means to identify vitreous factors associated with vitreoretinal disease.
Collapse
Affiliation(s)
- Devon H Ghodasra
- Kellogg Eye Center University of Michigan, Ann Arbor, Michigan, United States
| | - Ryan Fante
- Kellogg Eye Center University of Michigan, Ann Arbor, Michigan, United States
| | - Thomas W Gardner
- Kellogg Eye Center University of Michigan, Ann Arbor, Michigan, United States
| | - Michael Langue
- Penn State Hershey Eye Center, Hershey, Pennsylvania, United States
| | - Leslie M Niziol
- Kellogg Eye Center University of Michigan, Ann Arbor, Michigan, United States
| | - Cagri Besirli
- Kellogg Eye Center University of Michigan, Ann Arbor, Michigan, United States
| | - Steven R Cohen
- Kellogg Eye Center University of Michigan, Ann Arbor, Michigan, United States
| | - Vaidehi S Dedania
- Kellogg Eye Center University of Michigan, Ann Arbor, Michigan, United States
| | - Hakan Demirci
- Kellogg Eye Center University of Michigan, Ann Arbor, Michigan, United States
| | - Nieraj Jain
- Kellogg Eye Center University of Michigan, Ann Arbor, Michigan, United States
| | | | - Mark W Johnson
- Kellogg Eye Center University of Michigan, Ann Arbor, Michigan, United States
| | - Partho S Kalyani
- Kellogg Eye Center University of Michigan, Ann Arbor, Michigan, United States
| | - Rajesh C Rao
- Kellogg Eye Center University of Michigan, Ann Arbor, Michigan, United States
| | - David N Zacks
- Kellogg Eye Center University of Michigan, Ann Arbor, Michigan, United States
| | | |
Collapse
|
41
|
Roach T, Alcendor DJ. Zika virus infection of cellular components of the blood-retinal barriers: implications for viral associated congenital ocular disease. J Neuroinflammation 2017; 14:43. [PMID: 28253931 PMCID: PMC5335843 DOI: 10.1186/s12974-017-0824-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 02/25/2017] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Ocular abnormalities present in microcephalic infants with presumed Zika virus (ZIKV) congenital disease includes focal pigment mottling of the retina, chorioretinal atrophy, optic nerve abnormalities, and lens dislocation. Target cells in the ocular compartment for ZIKV infectivity are unknown. The cellular response of ocular cells to ZIKV infection has not been described. Mechanisms for viral dissemination in the ocular compartment of ZIKV-infected infants and adults have not been reported. Here, we identify target cells for ZIKV infectivity in both the inner and outer blood-retinal barriers (IBRB and OBRB), describe the cytokine expression profile in the IBRB after ZIKV exposure, and propose a mechanism for viral dissemination in the retina. METHODS We expose primary cellular components of the IBRB including human retinal microvascular endothelial cells, retinal pericytes, and Müller cells as well as retinal pigmented epithelial cells of the OBRB to the PRVABC56 strain of ZIKV. Viral infectivity was analyzed by microscopy, immunofluorescence, and reverse transcription polymerase chain reaction (RT-PCR and qRT-PCR). Angiogenic and proinflammatory cytokines were measured by Luminex assays. RESULTS We find by immunofluorescent staining using the Flavivirus 4G2 monoclonal antibody that retinal endothelial cells and pericytes of the IBRB and retinal pigmented epithelial cells of the OBRB are fully permissive for ZIKV infection but not Müller cells when compared to mock-infected controls. We confirmed ZIKV infectivity in retinal endothelial cells, retinal pericytes, and retinal pigmented epithelial cells by RT-PCR and qRT-PCR using ZIKV-specific oligonucleotide primers. Expression profiles by Luminex assays in retinal endothelial cells infected with ZIKV revealed a marginal increase in levels of beta-2 microglobulin (β2-m), granulocyte macrophage colony-stimulating factor (GMCSF), intercellular adhesion molecule 1 (ICAM-1), interleukin-6 (IL-6), monocyte chemotactic protein-1 (MCP1), and vascular cell adhesion molecule 1 (VCAM-1) and higher levels of regulated upon activation, normal T cell expressed and presumably secreted (RANTES) but lower levels of interleukin-4 (IL-4) compared to controls. CONCLUSIONS Retinal endothelial cells, retinal pericytes, and retinal pigmented epithelial cells are fully permissive for ZIKV lytic replication and are primary target cells in the retinal barriers for infection. ZIKV infection of retinal endothelial cells and retinal pericytes induces significantly higher levels of RANTES that likely contributes to ocular inflammation.
Collapse
Affiliation(s)
- Tracoyia Roach
- Department of Microbiology and Immunology, Center for AIDS Health Disparities Research, School of Medicine, Meharry Medical College, 1005 Dr. D.B. Todd Jr. Blvd., Nashville, TN 37208-3599 USA
| | - Donald J. Alcendor
- Department of Microbiology and Immunology, Center for AIDS Health Disparities Research, School of Medicine, Meharry Medical College, 1005 Dr. D.B. Todd Jr. Blvd., Nashville, TN 37208-3599 USA
| |
Collapse
|
42
|
Saia-Cereda VM, Cassoli JS, Martins-de-Souza D, Nascimento JM. Psychiatric disorders biochemical pathways unraveled by human brain proteomics. Eur Arch Psychiatry Clin Neurosci 2017; 267:3-17. [PMID: 27377417 DOI: 10.1007/s00406-016-0709-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 06/25/2016] [Indexed: 12/17/2022]
Abstract
Approximately 25 % of the world population is affected by a mental disorder at some point in their life. Yet, only in the mid-twentieth century a biological cause has been proposed for these diseases. Since then, several studies have been conducted toward a better comprehension of those disorders, and although a strong genetic influence was revealed, the role of these genes in disease mechanism is still unclear. This led most recent studies to focus on the molecular basis of mental disorders. One line of investigation that has risen in the post-genomic era is proteomics, due to its power of revealing proteins and biochemical pathways associated with biological systems. Therefore, this review compiled and analyzed data of differentially expressed proteins, which were found in postmortem brain studies of the three most prevalent psychiatric diseases: schizophrenia, bipolar disorder and major depressive disorders. Overviewing both the proteomic methods used in postmortem brain studies, the most consistent metabolic pathways found altered in these diseases. We have unraveled those disorders share about 21 % of proteins affected, and though most are related to energy metabolism pathways deregulation, the main differences found are 14-3-3-mediated signaling in schizophrenia, mitochondrial dysfunction in bipolar disorder and oxidative phosphorylation in depression.
Collapse
Affiliation(s)
- Verônica M Saia-Cereda
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato, 255, Campinas, SP, 13083-862, Brazil
| | - Juliana S Cassoli
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato, 255, Campinas, SP, 13083-862, Brazil
| | - Daniel Martins-de-Souza
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato, 255, Campinas, SP, 13083-862, Brazil. .,UNICAMP's Neurobiology Center, Campinas, Brazil.
| | - Juliana M Nascimento
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato, 255, Campinas, SP, 13083-862, Brazil.,D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
| |
Collapse
|
43
|
Ajmera V, Perito ER, Bass NM, Terrault NA, Yates KP, Gill R, Loomba R, Diehl AM, Aouizerat B. Novel plasma biomarkers associated with liver disease severity in adults with nonalcoholic fatty liver disease. Hepatology 2017; 65:65-77. [PMID: 27532276 PMCID: PMC5191932 DOI: 10.1002/hep.28776] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 06/02/2016] [Accepted: 08/02/2016] [Indexed: 02/06/2023]
Abstract
UNLABELLED Despite the high prevalence of nonalcoholic fatty liver disease (NAFLD), therapeutic options and noninvasive markers of disease activity and severity remain limited. We investigated the association between plasma biomarkers and liver histology in order to identify markers of disease activity and severity in patients with biopsy-proven NAFLD. Thirty-two plasma biomarkers chosen a priori as possible discriminators of NAFLD were measured in participants enrolled in the Nonalcoholic Steatohepatitis (NASH) Clinical Research Network. Dichotomized histologic outcomes were evaluated using centrally read biopsies. Biomarkers with statistically significant associations with NAFLD histology were evaluated in multivariable models adjusted for clinical factors. Of 648 participants (74.4% white, 61.7% female, mean age 47.7 years), 58.0% had definite NASH, 55.5% had mild/no fibrosis (stage 0-1), and 44.4% had significant fibrosis (stage 2-4). Increased activated plasminogen activator inhibitor 1 had a strong association with definite NASH compared to not NASH or borderline NASH in multivariable analysis (odds ratio = 1.20, 95% confidence interval 1.08-1.34, P < 0.001). Biomarkers associated with significant fibrosis (versus mild/no fibrosis) in multivariable analysis included higher levels of interleukin-8, monocyte chemoattractant protein-1, resistin, soluble interleukin-1 receptor I, soluble interleukin-2 receptor alpha, and tumor necrosis factor alpha and lower levels of insulin-like growth factor 2. CONCLUSIONS Specific plasma biomarkers are significantly associated with disease activity and severity of fibrosis in NAFLD and are potentially valuable tools for noninvasive stratification of patients with NAFLD and identification of targets for therapeutic intervention. (Hepatology 2017;65:65-77).
Collapse
Affiliation(s)
- Veeral Ajmera
- Gastroenterology, UCSF, San Francisco, CA, United States
| | - Emily R. Perito
- Pediatric Gastroenterology, UCSF, San Francisco, CA, United States
| | - Nathan M. Bass
- Gastroenterology, UCSF, San Francisco, CA, United States
| | | | | | - Ryan Gill
- Pathology, UCSF, San Francisco, CA, United States
| | - Rohit Loomba
- Gastroenterology, UCSD, San Diego, CA, United States
| | - Anna Mae Diehl
- Gastroenterology, Duke University, Durham, NC, United States
| | | | | |
Collapse
|
44
|
Cai X, Bao L, Ding Y, Dai X, Zhang Z, Li Y. Quercetin alleviates cell apoptosis and inflammation via the ER stress pathway in vascular endothelial cells cultured in high concentrations of glucosamine. Mol Med Rep 2016; 15:825-832. [PMID: 28000870 DOI: 10.3892/mmr.2016.6054] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 11/03/2016] [Indexed: 11/06/2022] Open
Abstract
Glucosamine is a possible cause of vascular endothelial injury in the initial stages of atherosclerosis, through endoplasmic reticulum (ER) stress resulting in fatty streaks in the vascular wall. Quercetin is an anti‑diabetic and cardiovascular protective agent that has previously been demonstrated to reduce ER stress in human umbilical vein endothelial cells (HUVECs). The present study aimed to investigate whether quercetin prevents glucosamine‑induced apoptosis and inflammation via ER stress pathway in HUVECs. The effect of quercetin on cell viability, apoptosis, and protein expression levels of inflammatory cytokines and ER stress markers was investigated in glucosamine‑supplemented HUVECs. Quercetin was demonstrated to protect against glucosamine‑induced apoptosis, improved cell viability, and inhibited expression of pro‑inflammatory factors and endothelin‑1. Quercetin treatment also reduced the expression levels of glucose‑regulated protein 78, phosphorylated protein kinase‑like ER kinase, phosphorylated c‑Jun N‑terminal kinase and C/EBP homologous protein. In conclusion, quercetin may have auxiliary therapeutic potential against glucosamine‑induced cell apoptosis and inflammation, which may be partially due to alleviation of ER stress.
Collapse
Affiliation(s)
- Xiaxia Cai
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, P.R. China
| | - Lei Bao
- Department of Clinical Nutrition, Peking University International Hospital, Beijing 100191, P.R. China
| | - Ye Ding
- Department of Maternal, Child and Adolescent Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Xiaoqian Dai
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, P.R. China
| | - Zhaofeng Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, P.R. China
| | - Yong Li
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, P.R. China
| |
Collapse
|
45
|
Won EJ, Choi JH, Cho YN, Jin HM, Kee HJ, Park YW, Kwon YS, Kee SJ. Biomarkers for discrimination between latent tuberculosis infection and active tuberculosis disease. J Infect 2016; 74:281-293. [PMID: 27871809 DOI: 10.1016/j.jinf.2016.11.010] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 11/09/2016] [Accepted: 11/09/2016] [Indexed: 01/20/2023]
Abstract
OBJECTIVE We aimed to determine whether combinations of multiplex cytokine responses could differentiate Mycobacterium tuberculosis (Mtb) infection states. METHODS Mtb-specific antigen-induced and unstimulated cytokines were measured by Luminex assay in supernatants of QuantiFERON® Gold In-Tube assay (QFT) in 48 active pulmonary TB patients (TB), 15 latent TB infection subjects (LTBI), and 13 healthy controls (HCs). RESULTS Among the 29 cytokines, eight Mtb antigen-specific biomarkers (GM-CSF, IFN-γ, IL-1RA, IL-2, IL-3, IL-13, IP-10, and MIP-1β) in the Mtb-infected group were significantly different from those of the HCs. Five Mtb-specific biomarkers (EGF, GM-CSF, IL-5, IL-10, and VEGF), two unstimulated biomarkers (TNF-α[Nil] and VEGF[Nil]), and one Mtb-specific biomarker ratio (IL-2/IFN-γ) showed significant differences between active TB and LTBI. Three unstimulated biomarkers (IL-8[Nil], IL-13[Nil], and VEGF[Nil]) and 5 Mtb-specific biomarkers (IFN-γ, IL-2, IL-3, IP-10, and VEGF) were significantly different between active TB and non-active TB groups. Combinations of three cytokine biomarkers resulted in the accurate prediction of 92.1-93.7% of Mtb-infected cases and 92.3-100% of HCs, respectively. Moreover, combinations of five biomarkers accurately predicted 90.9-100% of active TB cases and 80-100% of LTBI subjects, respectively. In discriminating between active TB and non-active TB regardless of QFT results, combinations of six biomarkers predicted 79.2-95.8% of active TB cases and 67.9-89.3% of non-active TB subjects. CONCLUSIONS Taken together, our data suggest that combinations of whole blood Mtb antigen-dependent cytokines could serve as biomarkers to determine TB disease states. Especially, VEGF is highlighted as a key biomarker for reflecting active TB, irrespective of stimulation.
Collapse
Affiliation(s)
- Eun-Jeong Won
- Department of Laboratory Medicine, Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Jung-Ho Choi
- Department of Laboratory Medicine, Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Young-Nan Cho
- Department of Rheumatology, Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Hye-Mi Jin
- Department of Rheumatology, Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Hae Jin Kee
- Heart Research Center, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Yong-Wook Park
- Heart Research Center, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Yong-Soo Kwon
- Department of Pulmonary and Critical Care Medicine, Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea.
| | - Seung-Jung Kee
- Department of Laboratory Medicine, Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea.
| |
Collapse
|
46
|
Surenaud M, Manier C, Richert L, Thiébaut R, Levy Y, Hue S, Lacabaratz C. Optimization and evaluation of Luminex performance with supernatants of antigen-stimulated peripheral blood mononuclear cells. BMC Immunol 2016; 17:44. [PMID: 27835944 PMCID: PMC5106791 DOI: 10.1186/s12865-016-0182-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 11/03/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The Luminex bead-based multiplex assay is useful for quantifying immune mediators such as cytokines and chemokines. Cross-comparisons of reagents for this technique from different suppliers have already been performed using serum or plasma but rarely with supernatants collected from antigen-stimulated peripheral blood mononuclear cells (PBMC). Here, we first describe an optimization protocol for cell culture including quantity of cells and culture duration to obtain reproducible cytokine and chemokine quantifications. Then, we compared three different Luminex kit suppliers. RESULTS Intraclass correlation coefficients (ICCs) for a 2-days stimulation protocol were >0.8 for IFNγ and Perforin. The specific concentration was maximal after two or five days of stimulation, depending on the analyte, using 0.5 million PBMC per well, a cell quantity that gave the same level of specific cytokine secretion as 1.0 million. In the second part of the study, Luminex kits from Millipore showed a better working range than Bio-Rad and Ozyme ones. For tuberculin purified protein derivative (PPD)-stimulated samples, the overall mean pooled coefficients of variation (CVs) for all donors and all cytokines was 17.2 % for Bio-Rad, 19.4 % for Millipore and 26.7 % for Ozyme. Although the different kits gave cytokine concentrations that were generally compatible, there were discrepancies for particular cytokines. Finally, evaluation of precision and reproducibility of a 15-plex Millipore kit using a "home-made" internal control showed a mean intra-assay CV <13 % and an inter-assay CV <18 % for each cytokine concentration. CONCLUSIONS A protocol with a single round of stimulation but with two time points gave the best results for assaying different cytokines. Millipore kits appear to be slightly more sensitive than those from Bio-Rad and Ozyme. However, we conclude that the panel of analytes that need to be quantified should be the main determinant of kit selection. Using an internal control we demonstrated that a 15-plex magnetic Milliplex kit displayed good precision and reproducibility. Our findings should help optimize assays for evaluating immune responses during the course of disease or infection, or in response to vaccine or therapy.
Collapse
Affiliation(s)
- Mathieu Surenaud
- INSERM, U955, Equipe 16, Créteil, F-94010, France.,Université Paris Est, Faculté de médecine, Créteil, F-94010, France.,Vaccine Research Institute (VRI), Créteil, F-94010, France
| | - Céline Manier
- INSERM, U955, Equipe 16, Créteil, F-94010, France.,Université Paris Est, Faculté de médecine, Créteil, F-94010, France.,Vaccine Research Institute (VRI), Créteil, F-94010, France
| | - Laura Richert
- Vaccine Research Institute (VRI), Créteil, F-94010, France.,Université Bordeaux, ISPED, Centre INSERM U1219, F-33000, Bordeaux, France.,CHU de Bordeaux, pôle de santé publique, F-33000, Bordeaux, France.,INRIA SISTM, F-33405, Talence, France
| | - Rodolphe Thiébaut
- Vaccine Research Institute (VRI), Créteil, F-94010, France.,Université Bordeaux, ISPED, Centre INSERM U1219, F-33000, Bordeaux, France.,CHU de Bordeaux, pôle de santé publique, F-33000, Bordeaux, France.,INRIA SISTM, F-33405, Talence, France
| | - Yves Levy
- INSERM, U955, Equipe 16, Créteil, F-94010, France.,Université Paris Est, Faculté de médecine, Créteil, F-94010, France.,Vaccine Research Institute (VRI), Créteil, F-94010, France.,AP-HP, Hôpital H. Mondor - A. Chenevier, Service d'Immunologie Clinique et Maladies Infectieuses, F-94010, Créteil, France
| | - Sophie Hue
- INSERM, U955, Equipe 16, Créteil, F-94010, France.,Université Paris Est, Faculté de médecine, Créteil, F-94010, France.,Vaccine Research Institute (VRI), Créteil, F-94010, France.,AP-HP, Hôpital H. Mondor - A. Chenevier, Service d'Immunologie Biologique, F-94010, Créteil, France
| | - Christine Lacabaratz
- INSERM, U955, Equipe 16, Créteil, F-94010, France. .,Université Paris Est, Faculté de médecine, Créteil, F-94010, France. .,Vaccine Research Institute (VRI), Créteil, F-94010, France.
| |
Collapse
|
47
|
Lee Y, Jeong J, Lee G, Moon JH, Lee MK. Covalent and Oriented Surface Immobilization of Antibody Using Photoactivatable Antibody Fc-Binding Protein Expressed in Escherichia coli. Anal Chem 2016; 88:9503-9509. [DOI: 10.1021/acs.analchem.6b02071] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Yeolin Lee
- Hazards Monitoring Bionano Research
Center, ‡Disease Target Structure Research
Center, Korea Research Institute of Bioscience and Biotechnology, and §Department of
Nanobiotechnology, University of Science and Technology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Jiyun Jeong
- Hazards Monitoring Bionano Research
Center, ‡Disease Target Structure Research
Center, Korea Research Institute of Bioscience and Biotechnology, and §Department of
Nanobiotechnology, University of Science and Technology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Gabi Lee
- Hazards Monitoring Bionano Research
Center, ‡Disease Target Structure Research
Center, Korea Research Institute of Bioscience and Biotechnology, and §Department of
Nanobiotechnology, University of Science and Technology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Jeong Hee Moon
- Hazards Monitoring Bionano Research
Center, ‡Disease Target Structure Research
Center, Korea Research Institute of Bioscience and Biotechnology, and §Department of
Nanobiotechnology, University of Science and Technology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Myung Kyu Lee
- Hazards Monitoring Bionano Research
Center, ‡Disease Target Structure Research
Center, Korea Research Institute of Bioscience and Biotechnology, and §Department of
Nanobiotechnology, University of Science and Technology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| |
Collapse
|
48
|
Lin S, He B, Yang C, Leung CH, Mergny JL, Ma DL. Luminescence switch-on assay of interferon-gamma using a G-quadruplex-selective iridium(III) complex. Chem Commun (Camb) 2016; 51:16033-6. [PMID: 26399215 DOI: 10.1039/c5cc06655g] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In this study, we synthesized a series of 9 luminescent iridium(III) complexes and studied their ability to function as luminescent probes for G-quadruplex DNA. The iridium(III) complex 8 [Ir(pbtz)2(dtbpy)]PF6 (where pbtz = 2-phenylbenzo[d]thiazole; dtbpy = 4,4'-di-tert-butyl-2,2'-bipyridine) showed high selectivity for G-quadruplex DNA over single-stranded and double-stranded DNA, and was subsequently utilized for the development of a label-free oligonucleotide-based assay for interferon-gamma (IFN-γ), an important biomarker for a range of immune and infectious diseases, in aqueous solution. We further demonstrated that this assay could monitor IFN-γ levels even in the presence of cellular debris. This assay represents the first G-quadruplex-based assay for IFN-γ detection described in the literature.
Collapse
Affiliation(s)
- Sheng Lin
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China.
| | - Bingyong He
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China.
| | - Chao Yang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| | - Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| | - Jean-Louis Mergny
- University of Bordeaux, ARNA laboratory, Bordeaux, France. and INSERM, U869, IECB, Pessac, France
| | - Dik-Lung Ma
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China. and Partner State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| |
Collapse
|
49
|
Liu C, Xiang G, Jiang D, Liu L, Liu F, Luo F, Pu X. An electrochemical aptasensor for detection of IFN-γ using graphene and a dual signal amplification strategy based on the exonuclease-mediated surface-initiated enzymatic polymerization. Analyst 2016; 140:7784-91. [PMID: 26460269 DOI: 10.1039/c5an01591j] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Tuberculosis is one of the major health problems in the world. The cytokine interferon γ (IFN-γ) is associated with the disease-specific immune responses and is used as a tuberculosis diagnosis marker. In this study, a novel electrochemical aptasensor was developed for IFN-γ detection based on the exonuclease-catalyzed target recycling and the TdT-mediated cascade signal amplification. To construct the aptasensor, a previously hybridized double-stranded DNA (capture probe hybridization with a complementary IFN-γ binding aptamer) was immobilized on a gold nanoparticle-graphene (Au-Gra) nanohybrid film-modified electrode. In the presence of IFN-γ, the formation of an aptamer-IFN-γ complex leads to the liberation of the aptamer from the double-stranded DNA (dsDNA). Using exonuclease, the aptamer was selectively digested, and IFN-γ was released for the target recycling. A large amount of single-stranded capture probes formed and led to the hybridization with signal probe-labelled Au@Fe3O4. Then, the labelled signal probe sequences were catalyzed at the 3'-OH group by terminal deoxynucleotidyl transferase (TdT) to form a long single-stranded DNA structure. As a result, the electron mediator hexaammineruthenium(III) chloride ([Ru(NH3)6](3+)) electrostatically adsorbed onto DNA producing a strong electrochemical signal which can be used to quantitatively measure the IFN-γ levels. With the conducting nanomaterial Au-Gra as a substrate and the target recycling-based surface-initiated enzymatic polymerization-mediated signal amplification strategy, the proposed aptasensor displayed a broad linearity with a low detection limit of 0.003 ng mL(-1). Moreover, the resulting aptasensor exhibited good specificity, acceptable reproducibility and stability, which makes this method versatile and suitable for detecting IFN-γ and other biomolecules.
Collapse
Affiliation(s)
- Chang Liu
- Department of Clinical Laboratory, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P. R. China.
| | - Guiming Xiang
- Department of Clinical Laboratory, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P. R. China.
| | - Dongneng Jiang
- Department of Clinical Laboratory, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P. R. China.
| | - Linlin Liu
- Department of Clinical Laboratory, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P. R. China.
| | - Fei Liu
- Department of Clinical Laboratory, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P. R. China.
| | - Fukang Luo
- Department of Clinical Laboratory, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P. R. China.
| | - Xiaoyun Pu
- Department of Clinical Laboratory, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P. R. China.
| |
Collapse
|
50
|
Yeaman GR, Paul S, Nahirna I, Wang Y, Deffenbaugh AE, Liu ZL, Glenn KC. Development and Validation of a Fluorescent Multiplexed Immunoassay for Measurement of Transgenic Proteins in Cotton (Gossypium hirsutum). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:5117-5127. [PMID: 27177195 DOI: 10.1021/acs.jafc.6b01441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In order to provide farmers with better and more customized alternatives to improve yields, combining multiple genetically modified (GM) traits into a single product (called stacked trait crops) is becoming prevalent. Trait protein expression levels are used to characterize new GM products and establish exposure limits, two important components of safety assessment. Developing a multiplexed immunoassay capable of measuring all trait proteins in the same sample allows for higher sample throughput and savings in both time and expense. Fluorescent (bead-based) multiplexed immunoassays (FMI) have gained wide acceptance in mammalian research and in clinical applications. In order to facilitate the measurement of stacked GM traits, we have developed and validated an FMI assay that can measure five different proteins (β-glucuronidase, neomycin phosphotransferase II, Cry1Ac, Cry2Ab2, and CP4 5-enolpyruvyl-shikimate-3-phosphate synthase) present in cotton leaf from a stacked trait product. Expression levels of the five proteins determined by FMI in cotton leaf tissues have been evaluated relative to expression levels determined by enzyme-linked immunosorbent assays (ELISAs) of the individual proteins and shown to be comparable. The FMI met characterization requirements similar to those used for ELISA. Therefore, it is reasonable to conclude that FMI results are equivalent to those determined by conventional individual ELISAs to measure GM protein expression levels in stacked trait products but with significantly higher throughput, reduced time, and more efficient use of resources.
Collapse
Affiliation(s)
- Grant R Yeaman
- Monsanto Company , 800 North Lindbergh Boulevard, St. Louis, Missouri 63167, United States
| | - Sudakshina Paul
- Monsanto Company , 800 North Lindbergh Boulevard, St. Louis, Missouri 63167, United States
| | - Iryna Nahirna
- Monsanto Company , 800 North Lindbergh Boulevard, St. Louis, Missouri 63167, United States
| | - Yongcheng Wang
- Monsanto Company , 800 North Lindbergh Boulevard, St. Louis, Missouri 63167, United States
| | - Andrew E Deffenbaugh
- Monsanto Company , 800 North Lindbergh Boulevard, St. Louis, Missouri 63167, United States
| | - Zi Lucy Liu
- Monsanto Company , 800 North Lindbergh Boulevard, St. Louis, Missouri 63167, United States
| | - Kevin C Glenn
- Monsanto Company , 800 North Lindbergh Boulevard, St. Louis, Missouri 63167, United States
| |
Collapse
|