1
|
Tang Y, Liu F, Lu L, Liu A, Ye H. Identification of ETH receptor and its possible roles in the mud crab Scylla paramamosain. Comp Biochem Physiol A Mol Integr Physiol 2024; 297:111692. [PMID: 38977174 DOI: 10.1016/j.cbpa.2024.111692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 07/01/2024] [Accepted: 07/01/2024] [Indexed: 07/10/2024]
Abstract
Ecdysis-triggering hormone (ETH) is a neuropeptide hormone characterized by a conserved KxxKxxPRx amide structure widely identified in arthropods. While its involvement in the regulation of molting and reproduction in insects is well-established, its role in crustaceans has been overlooked. This study aimed to de-orphanise a receptor for ETH in the mud crab Scylla paramamosain and explore its potential impact on ovarian development. A 513-amino-acid G protein-coupled receptor for ETH (SpETHR) was identified in S. paramamosain, exhibiting a dose-dependent activation by SpETH with an EC50 value of 75.18 nM. Tissue distribution analysis revealed SpETH was in the cerebral ganglion and thoracic ganglion, while SpETHR was specifically expressed in the ovary, hepatopancreas, and Y-organ of female crabs. In vitro experiments demonstrated that synthetic SpETH (at a concentration of 10-8 M) significantly increased the expression of SpVgR in the ovary and induced ecdysone biosynthesis in the Y-organ. In vivo experiments showed a significant upregulation of SpEcR in the ovary and Disembodied and Shadow in the Y-organ after 12 h of SpETH injection. Furthermore, a 16-day administration of SpETH significantly increased 20E titers in hemolymph, gonadosomatic index (GSI) and oocyte size of S. paramamosain. In conclusion, our findings suggest that SpETH may play stimulatory roles in ovarian development and ecdysone biosynthesis by the Y-organ.
Collapse
Affiliation(s)
- Yiwei Tang
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Xiamen 361021, China
| | - Fang Liu
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Xiamen 361021, China
| | - Li Lu
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Xiamen 361021, China
| | - An Liu
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Xiamen 361021, China.
| | - Haihui Ye
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Xiamen 361021, China.
| |
Collapse
|
2
|
Lee SH, Kim MA, Sohn YC. Allatotropin (AT) related peptides L-ATRP and D2-ATRP diastereomers activate an endogenous receptor and suppress heart rate in the Pacific abalone Haliotis discus hannai. Peptides 2024; 181:171284. [PMID: 39147283 DOI: 10.1016/j.peptides.2024.171284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/12/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024]
Abstract
Allatotropin (AT) has been identified in many insects and plays important roles in the regulation of their intestinal contraction, heart rate, ion transport, and digestive enzyme secretion. However, information on AT-related bioinformatics in other animal phyla is scarce. In this study, we cloned a full-length cDNA encoding the AT-related peptide receptor (ATRPR) of the abalone Haliotis discus hannai (Hdh) and further characterized Hdh-ATRPR with its potential ligands, Hdh-ATRPs. In luciferase reporter and Ca2+ mobilization assays, Hdh-ATRPs, including a D-type Phe at the second amino acid position, Hdh-D2-ATRP, activated Hdh-ATRPR in a dose-dependent manner, whereas all-L-type Hdh-ATRP was a more potent ligand than Hdh-D2-ATRP. Furthermore, Hdh-ATRPs induced ERK1/2 phosphorylation in Hdh-ATRPR-expressing HEK293 cells, which was dose-dependently abolished by the PKC inhibitor Gö6983. The heart rate decreased significantly within 10 min when Hdh-D2-ATRP was injected into the adduct muscle sinus of abalone (0.2 or 1.0 µg/g body weight), while the abalone injected with a high concentration of Hdh-D2-ATRP (1.5 μg/g body weight) were sublethal within 5 h. Thus, Hdh-ATRP signaling is primarily linked to the Gαq/PKC and is possibly associated with heart rate regulation in abalone.
Collapse
Affiliation(s)
- Sang Hyuck Lee
- Department of Marine Bioscience, Gangneung-Wonju National University, Gangneung, Gangwon-do, Republic of Korea
| | - Mi Ae Kim
- Department of Marine Bioscience, Gangneung-Wonju National University, Gangneung, Gangwon-do, Republic of Korea; East Coast Life Sciences Institute, Gangneung-Wonju National University, Gangneung, Gangwon-do, Republic of Korea
| | - Young Chang Sohn
- Department of Marine Bioscience, Gangneung-Wonju National University, Gangneung, Gangwon-do, Republic of Korea; East Coast Life Sciences Institute, Gangneung-Wonju National University, Gangneung, Gangwon-do, Republic of Korea.
| |
Collapse
|
3
|
Vetkama W, Tinikul R, Sobhon P, Tinikul Y. Differential expression of neuropeptide F in the digestive organs of female freshwater prawn, Macrobrachium rosenbergii, during the ovarian cycle. Cell Tissue Res 2024; 397:13-36. [PMID: 38592496 PMCID: PMC11231001 DOI: 10.1007/s00441-024-03893-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 03/19/2024] [Indexed: 04/10/2024]
Abstract
Neuropeptide F is a key hormone that controls feeding in invertebrates, including decapod crustaceans. We investigated the differential expression of Macrobrachium rosenbergii neuropeptide F (MrNPF) in the digestive organs of female prawns, M. rosenbergii, during the ovarian cycle. By using RT-qPCR, the expression of MrNPF mRNA in the esophagus (ESO), cardia (CD), and pylorus (PY) of the foregut (FG) gradually increased from stage II and peaked at stage III. In the midgut (MG), hindgut (HG), and hepatopancreas (HP), MrNPF mRNA increased from stage I, reaching a maximal level at stage II, and declined by about half at stages III and IV (P < 0.05). In the ESO, CD, and PY, strong MrNPF-immunoreactivities were seen in the epithelium, muscle, and lamina propria. Intense MrNPF-ir was found in the MG cells and the muscular layer. In the HG, MrNPF-ir was detected in the epithelium of the villi and gland regions, while MrNPF-ir was also more intense in the F-, R-, and B-cells in the HP. However, we found little colocalization between the MrNPF and PGP9.5/ChAT in digestive tissues, implying that most of the positive cells might not be neurons but could be digestive tract-associated endocrine cells that produce and secrete MrNPF to control digestive organ functions in feeding and utilizing feed. Taken together, our first findings indicated that MrNPF was differentially expressed in digestive organs in correlation with the ovarian cycle, suggesting an important link between MrNPF, the physiology of various digestive organs in feeding, and possibly ovarian maturation in female M. rosenbergii.
Collapse
Affiliation(s)
- Warinthip Vetkama
- Department of Anatomy, Faculty of Science, Mahidol University, 272 Rama VI Road, Ratchathewi District, Bangkok 10400, Thailand
| | - Ruchanok Tinikul
- Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Prasert Sobhon
- Department of Anatomy, Faculty of Science, Mahidol University, 272 Rama VI Road, Ratchathewi District, Bangkok 10400, Thailand
| | - Yotsawan Tinikul
- Department of Anatomy, Faculty of Science, Mahidol University, 272 Rama VI Road, Ratchathewi District, Bangkok 10400, Thailand.
| |
Collapse
|
4
|
Lan J, Wu Q, Huang N, Zhang H, Yang Y, Chen L, Zhou N, He X. Identification of sulfakinin receptor regulating feeding behavior and hemolymph trehalose homeostasis in the silkworm, Bombyx mori. Sci Rep 2024; 14:14191. [PMID: 38902334 PMCID: PMC11190223 DOI: 10.1038/s41598-024-65177-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/18/2024] [Indexed: 06/22/2024] Open
Abstract
Feeding behavior, the most fundamental physiological activity, is controlled by two opposing groups of factors, orexigenic and anorexigenic factors. The sulfakinin family, an insect analogue of the mammalian satiety factor cholecystokinin (CCK), has been shown to suppress food intake in various insects. Nevertheless, the mechanisms through which sulfakinin regulates feeding behavior remain a biological question. This study aimed to elucidate the signaling pathway mediated by the anorexigenic peptide sulfakinin in Bombyx mori. We identified the Bombyx mori neuropeptide G protein-coupled receptor A9 (BNGR-A9) as the receptor for sulfakinin through functional assays. Stimulation with sulfakinin triggered a swift increase in intracellular IP3, Ca2+, and a notable enhancement of ERK1/2 phosphorylation, in a manner sensitive to a Gαq-specific inhibitor. Treatment with synthetic sulfakinin resulted in decreased food consumption and average body weight. Additionally, administering synthetic sulfakinin to silkworms significantly elevated hemolymph trehalose levels, an effect markedly reduced by pre-treatment with BNGR-A9 dsRNA. Consequently, our findings establish the sulfakinin/BNGR-A9 signaling pathway as a critical regulator of feeding behavior and hemolymph trehalose homeostasis in Bombyx mori, highlighting its roles in the negative control of food intake and the positive regulation of energy balance.
Collapse
Affiliation(s)
- Jiajing Lan
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, 311399, China
| | - Qi Wu
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212018, Jiangsu, China
| | - Nan Huang
- Department of Clinical Laboratory, The First People's Hospital of Lin'an District, Hangzhou, 311399, Zhejiang, China
| | - Hong Zhang
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, 311399, China
| | - Yuanfei Yang
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, 311399, China
| | - Linjie Chen
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, 311399, China
| | - Naiming Zhou
- Institute of Biochemistry, College of Life Sciences, Zijingang Campus, Zhejiang University, Hangzhou, 310058, Zhejiang, China.
| | - Xiaobai He
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, 311399, China.
| |
Collapse
|
5
|
Leyria J. Endocrine factors modulating vitellogenesis and oogenesis in insects: An update. Mol Cell Endocrinol 2024; 587:112211. [PMID: 38494046 DOI: 10.1016/j.mce.2024.112211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 02/26/2024] [Accepted: 03/14/2024] [Indexed: 03/19/2024]
Abstract
The endocrine system plays a pivotal role in shaping the mechanisms that ensure successful reproduction. With over a million known insect species, understanding the endocrine control of reproduction has become increasingly complex. Some of the key players include the classic insect lipid hormones juvenile hormone (JH) and ecdysteroids, and neuropeptides such as insulin-like peptides (ILPs). Individual endocrine factors not only modulate their own target tissue but also play crucial roles in crosstalk among themselves, ensuring successful vitellogenesis and oogenesis. Recent advances in omics, gene silencing, and genome editing approaches have accelerated research, offering both fundamental insights and practical applications for studying in-depth endocrine signaling pathways. This review provides an updated and integrated view of endocrine factors modulating vitellogenesis and oogenesis in insect females.
Collapse
Affiliation(s)
- Jimena Leyria
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada.
| |
Collapse
|
6
|
Cholewiński M, Chowański S, Lubawy J, Urbański A, Walkowiak-Nowicka K, Marciniak P. Short neuropeptide F in integrated insect physiology. J Zhejiang Univ Sci B 2024; 25:389-409. [PMID: 38725339 PMCID: PMC11087187 DOI: 10.1631/jzus.b2300355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/03/2023] [Indexed: 05/13/2024]
Abstract
The short neuropeptide F (sNPF) family of peptides is a multifunctional group of neurohormones involved in the regulation of various physiological processes in insects. They have been found in a broad spectrum of species, but the number of isoforms in the precursor molecule varies from one to four. The receptor for sNPF (sNPFR), which belongs to the G protein-coupled receptor family, has been characterized in various insect orders and was shown to be an ortholog of the mammalian prolactin-releasing peptide receptor (PrPR). The sNPF signaling pathway interacts with other neurohormones such as insulin-like peptides, SIFamide, and pigment-dispersing factors (PDFs) to regulate various processes. The main physiological function of sNPF seems to be involved in the regulation of feeding, but the observed effects are species-specific. sNPF is also connected with the regulation of foraging behavior and the olfactory system. The influence of sNPF on feeding and thus energy metabolism may also indirectly affect other vital processes, such as reproduction and development. In addition, these neurohormones are involved in the regulation of locomotor activity and circadian rhythm in insects. This review summarizes the current state of knowledge about the sNPF system in insects.
Collapse
Affiliation(s)
| | | | | | | | | | - Paweł Marciniak
- Department of Animal Physiology and Developmental Biology, Adam Mickiewicz University, Poznań 61-614, Poland.
| |
Collapse
|
7
|
Kaur G, Quilici DR, Woolsey RJ, Petereit J, Nuss AB. Starvation-Induced Changes to the Midgut Proteome and Neuropeptides in Manduca sexta. INSECTS 2024; 15:325. [PMID: 38786882 PMCID: PMC11121805 DOI: 10.3390/insects15050325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 04/27/2024] [Accepted: 05/01/2024] [Indexed: 05/25/2024]
Abstract
Starvation is a complex physiological state that induces changes in protein expression to ensure survival. The insect midgut is sensitive to changes in dietary content as it is at the forefront of communicating information about incoming nutrients to the body via hormones. Therefore, a DIA proteomics approach was used to examine starvation physiology and, specifically, the role of midgut neuropeptide hormones in a representative lepidopteran, Manduca sexta. Proteomes were generated from midguts of M. sexta fourth-instar caterpillars, starved for 24 h and 48 h, and compared to fed controls. A total of 3047 proteins were identified, and 854 of these were significantly different in abundance. KEGG analysis revealed that metabolism pathways were less abundant in starved caterpillars, but oxidative phosphorylation proteins were more abundant. In addition, six neuropeptides or related signaling cascade proteins were detected. Particularly, neuropeptide F1 (NPF1) was significantly higher in abundance in starved larvae. A change in juvenile hormone-degrading enzymes was also detected during starvation. Overall, our results provide an exploration of the midgut response to starvation in M. sexta and validate DIA proteomics as a useful tool for quantifying insect midgut neuropeptide hormones.
Collapse
Affiliation(s)
- Gurlaz Kaur
- Cell and Molecular Biology Graduate Program, University of Nevada, Reno, NV 89557, USA;
| | - David R. Quilici
- Mick Hitchcock, Ph.D. Nevada Proteomics Center, University of Nevada, Reno, NV 89557, USA; (D.R.Q.); (R.J.W.)
| | - Rebekah J. Woolsey
- Mick Hitchcock, Ph.D. Nevada Proteomics Center, University of Nevada, Reno, NV 89557, USA; (D.R.Q.); (R.J.W.)
| | - Juli Petereit
- Nevada Bioinformatics Center, University of Nevada, Reno, NV 89557, USA;
| | - Andrew B. Nuss
- Department of Agriculture, Veterinary & Rangeland Sciences, University of Nevada, Reno, NV 89557, USA
| |
Collapse
|
8
|
Rinne MK, Urvas L, Mandrika I, Fridmanis D, Riddy DM, Langmead CJ, Kukkonen JP, Xhaard H. Characterization of a putative orexin receptor in Ciona intestinalis sheds light on the evolution of the orexin/hypocretin system in chordates. Sci Rep 2024; 14:7690. [PMID: 38565870 PMCID: PMC10987541 DOI: 10.1038/s41598-024-56508-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 03/07/2024] [Indexed: 04/04/2024] Open
Abstract
Tunicates are evolutionary model organisms bridging the gap between vertebrates and invertebrates. A genomic sequence in Ciona intestinalis (CiOX) shows high similarity to vertebrate orexin receptors and protostome allatotropin receptors (ATR). Here, molecular phylogeny suggested that CiOX is divergent from ATRs and human orexin receptors (hOX1/2). However, CiOX appears closer to hOX1/2 than to ATR both in terms of sequence percent identity and in its modelled binding cavity, as suggested by molecular modelling. CiOX was heterologously expressed in a recombinant HEK293 cell system. Human orexins weakly but concentration-dependently activated its Gq signalling (Ca2+ elevation), and the responses were inhibited by the non-selective orexin receptor antagonists TCS 1102 and almorexant, but only weakly by the OX1-selective antagonist SB-334867. Furthermore, the 5-/6-carboxytetramethylrhodamine (TAMRA)-labelled human orexin-A was able to bind to CiOX. Database mining was used to predict a potential endogenous C. intestinalis orexin peptide (Ci-orexin-A). Ci-orexin-A was able to displace TAMRA-orexin-A, but not to induce any calcium response at the CiOX. Consequently, we suggested that the orexin signalling system is conserved in Ciona intestinalis, although the relevant peptide-receptor interaction was not fully elucidated.
Collapse
Affiliation(s)
- Maiju K Rinne
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, POB 56, 00014, Helsinki, Finland
- Biochemistry and Cell Biology, Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, POB 66, 00014, Helsinki, Finland
- Department of Pharmacology, Medicum, University of Helsinki, POB 63, 00014, Helsinki, Finland
| | - Lauri Urvas
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, POB 56, 00014, Helsinki, Finland
- Laboratoire d'Innovation Thérapeutique, Faculté de Pharmacie, Université de Strasbourg, Illkirch-Graffenstaden, France
| | - Ilona Mandrika
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | | | - Darren M Riddy
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Christopher J Langmead
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Jyrki P Kukkonen
- Biochemistry and Cell Biology, Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, POB 66, 00014, Helsinki, Finland.
- Department of Pharmacology, Medicum, University of Helsinki, POB 63, 00014, Helsinki, Finland.
| | - Henri Xhaard
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, POB 56, 00014, Helsinki, Finland.
| |
Collapse
|
9
|
Jiang M, Han Q, Xu L, Peng R, Zhang T, Jiang X. Comparative transcriptomic analysis of the different developmental stages of ovary in the cuttlefish Sepia pharaonis. BMC Genomics 2024; 25:94. [PMID: 38262950 PMCID: PMC10804787 DOI: 10.1186/s12864-024-09981-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/06/2024] [Indexed: 01/25/2024] Open
Abstract
The cuttlefish, Sepia pharaonis, is characterized by rapid growth and strong disease resistance, making it an important commercially farmed cephalopod species in the southeastern coastal regions of China. However, in the reproductive process of S. pharaonis, there are challenges such as a low output of eggs, poor quality, and low survival rates of newly hatched juveniles. Therefore, there is an urgent need to study the molecular mechanisms underlying ovarian development in this species. In this study, we conducted the first transcriptomic analysis of the ovary at four developmental stages: the undeveloped stage, developing stage, nearly-ripe stage, and ripe stage, and compared the transcriptomics among these four stages using Illumina sequencing technology. The total numbers of clean reads of the four stages ranged from 40,890,772 to 52,055,714 reads. A total of 136,829 DEGs were obtained, GC base ratios of raw data were between 38.44 and 44.59%, and the number of uniquely mapped reads spanned from 88.08 to 95.90%. The Pearson correlation coefficient demonstrated a strong correlation among different samples within the same group, PCA and Anosim analysis also revealed that the grouping of these four stages was feasible, and each stage could be distinguished from the others. GO enrichment analysis demonstrated that ovarian follicle growth, sex differentiation, and transforming growth factor beta receptor, played a foreshadowing role at the early ovarian development stage, and the terms of small molecule metabolic process, peptide metabolic process, and catalytic activity were prominent at the mature stage. Meanwhile, KEGG analysis showed that the early ovarian development of S. pharaonis was mainly associated with the cell cycle, DNA replication, and carbon metabolism, while the mid-late ovarian development was involved with the signal transduction, endocrine system, and reproduction pathway. RT-qPCR further confirmed the consistent expression patterns of genes such as 17β-HSD, GH, VGS, NFR, and NYR in the ovaries of S. pharaonis, exhibiting elevated levels of expression during the maturation stage. Conversely, ER and OM exhibited high expression levels during the early stages of ovarian development. These transcriptomic data provide insights into the molecular mechanisms of S. pharaonis ovarian development. The findings of this study will contribute to improving the reproduction and development of cuttlefish and enriching the bioinformatics knowledge of cephalopods.
Collapse
Affiliation(s)
- Maowang Jiang
- Key Laboratory of Applied Marine Biotechnology, School of Marine Sciences, Ningbo University, 818 Fenghua Road, Ningbo, 315832, Zhejiang Province, PR China
| | - Qingxi Han
- Key Laboratory of Applied Marine Biotechnology, School of Marine Sciences, Ningbo University, 818 Fenghua Road, Ningbo, 315832, Zhejiang Province, PR China
| | - Liting Xu
- Key Laboratory of Applied Marine Biotechnology, School of Marine Sciences, Ningbo University, 818 Fenghua Road, Ningbo, 315832, Zhejiang Province, PR China
| | - Ruibing Peng
- Key Laboratory of Applied Marine Biotechnology, School of Marine Sciences, Ningbo University, 818 Fenghua Road, Ningbo, 315832, Zhejiang Province, PR China
| | - Tao Zhang
- Marine Fisheries Research Institute of Zhejiang Province, Zhoushan, 316022, China
| | - Xiamin Jiang
- Key Laboratory of Applied Marine Biotechnology, School of Marine Sciences, Ningbo University, 818 Fenghua Road, Ningbo, 315832, Zhejiang Province, PR China.
| |
Collapse
|
10
|
Malhotra P, Basu S. The Intricate Role of Ecdysis Triggering Hormone Signaling in Insect Development and Reproductive Regulation. INSECTS 2023; 14:711. [PMID: 37623421 PMCID: PMC10455322 DOI: 10.3390/insects14080711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/10/2023] [Accepted: 08/12/2023] [Indexed: 08/26/2023]
Abstract
Insect growth is interrupted by molts, during which the insect develops a new exoskeleton. The exoskeleton confers protection and undergoes shedding between each developmental stage through an evolutionarily conserved and ordered sequence of behaviors, collectively referred to as ecdysis. Ecdysis is triggered by Ecdysis triggering hormone (ETH) synthesized and secreted from peripheral Inka cells on the tracheal surface and plays a vital role in the orchestration of ecdysis in insects and possibly in other arthropod species. ETH synthesized by Inka cells then binds to ETH receptor (ETHR) present on the peptidergic neurons in the central nervous system (CNS) to facilitate synthesis of various other neuropeptides involved in ecdysis. The mechanism of ETH function on ecdysis has been well investigated in holometabolous insects such as moths Manduca sexta and Bombyx mori, fruit fly Drosophila melanogaster, the yellow fever mosquito Aedes aegypti and beetle Tribolium castaneum etc. In contrast, very little information is available about the role of ETH in sequential and gradual growth and developmental changes associated with ecdysis in hemimetabolous insects. Recent studies have identified ETH precursors and characterized functional and biochemical features of ETH and ETHR in a hemimetabolous insect, desert locust, Schistocerca gregaria. Recently, the role of ETH in Juvenile hormone (JH) mediated courtship short-term memory (STM) retention and long-term courtship memory regulation and retention have also been investigated in adult male Drosophila. Our review provides a novel synthesis of ETH signaling cascades and responses in various insects triggering diverse functions in adults and juvenile insects including their development and reproductive regulation and might allow researchers to develop sustainable pest management strategies by identifying novel compounds and targets.
Collapse
Affiliation(s)
| | - Saumik Basu
- Department of Entomology, Washington State University, Pullman, WA 99164, USA;
| |
Collapse
|
11
|
Medla M, Daubnerová I, Koči J, Roller L, Slovák M, Žitňan D. Identification and expression of short neuropeptide F and its receptors in the tick Ixodes ricinus. JOURNAL OF INSECT PHYSIOLOGY 2023; 147:104524. [PMID: 37201579 DOI: 10.1016/j.jinsphys.2023.104524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/19/2023] [Accepted: 05/11/2023] [Indexed: 05/20/2023]
Abstract
In Europe, the tick Ixodes ricinus is the most important vector of numerous pathogens that are transmitted during blood feeding on their vertebrate hosts. To elucidate mechanisms controlling blood intake and associated transmission of pathogens we identified and described expression of short neuropeptide F (sNPF) and its receptors which are known to regulate feeding in insects. Using in situ hybridization (ISH) and immunohistochemistry (IHC) we stained numerous neurons producing sNPF in the central nervous system (CNS; synganglion), while a few peripheral neurons were detected anteriorly to the synganglion, and on the surface of the hindgut and leg muscles. Apparent sNPF expression was also found in enteroendocrine cells individually scattered in anterior lobes of the midgut. In silico analyses and BLAST search for sNPF receptors revealed two putative G protein-coupled receptors (sNPFR1 and sNPFR2) in the I. ricinus genome. Aequorin-based functional assay in CHO cells showed that both receptors were specific and sensitive to sNPF in nanomolar concentrations. Increased expression levels of these receptors in the gut during blood intake suggest that sNPF signaling may be involved in regulation of feeding and digestion processes of I. ricinus.
Collapse
Affiliation(s)
- Matej Medla
- Institute of Zoology, Slovak Academy of Sciences, Bratislava, Slovakia; Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - Ivana Daubnerová
- Institute of Zoology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Juraj Koči
- Institute of Zoology, Slovak Academy of Sciences, Bratislava, Slovakia; Institute of Virology, Biomedical Centre, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Ladislav Roller
- Institute of Zoology, Slovak Academy of Sciences, Bratislava, Slovakia; Institute of Molecular Physiology and Genetics, Centre of Biosciences SAS, Bratislava, Slovakia
| | - Mirko Slovák
- Institute of Zoology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Dušan Žitňan
- Institute of Zoology, Slovak Academy of Sciences, Bratislava, Slovakia.
| |
Collapse
|
12
|
Yang Q, Li MM, Li BL, Wu YT, Li YY, Xu XL, Wu JX. The ecdysis triggering hormone system is essential for reproductive success in Mythimna separata (Walker). INSECT MOLECULAR BIOLOGY 2023; 32:213-227. [PMID: 36533723 DOI: 10.1111/imb.12825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
Ecdysis triggering hormone (ETH) was originally discovered as a key hormone that regulates insect moulting via binding to its receptor, ETH receptor (ETHR). However, the precise role of ETH in moth reproduction remains to be explored in detail. ETH function was verified in vivo using Mythimna separata (Walker), an important cereal crop pest. RT-qPCR analysis revealed that transcriptional expression profiles of MsepETH showed evident sexual dimorphism in the adult stage. MsepETH expression increased in the females on day 3 and persisted thereafter till day 7, consistent with female ovarian maturation, and was merely detectable in males. Meanwhile, MsepETH expression levels were significantly higher in the trachea than in other tissues. MsepETHR-A and MsepETHR-B were expressed in both sexes and were significantly higher in the antennae than in other tissues. MsepETH and MsepETHR knockdown in females by RNA interference significantly reduced the expression of MsepETH, MsepETHR-A, MsepETHR-B, MsepJHAMT, and MsepVG, which delayed egg-laying and significantly reduced egg production. RNAi 20-hydroxyecdysone (20E) receptor (EcR) decreased MsepETH expression whereas injecting 20E restored egg production that had been disrupted by MsepETH interference. Meanwhile, RNAi juvenile hormone (JH) methoprene tolerant protein (Met) also decreased MsepETH expression and smearing JH analog methoprene (Meth) restored egg production. In conclusion, the reproduction roles of ETH, JH, and 20E were investigated in M. separata. These findings will lay the foundation for future research to develop an antagonist that reduces female reproduction and control strategies for pest insects.
Collapse
Affiliation(s)
- Qi Yang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Mei-Mei Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Bo-Liao Li
- College of Life Sciences, Yan'an University, Yan'an, Shaanxi, People's Republic of China
| | - Yu-Ting Wu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Yan-Ying Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Xiang-Li Xu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Jun-Xiang Wu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| |
Collapse
|
13
|
Patidar I, Palaka BK, Katike U, Velmurugan Ilavarasi A, Tulsi, Mohanty SS, Ampasala DR. Structural elucidation of ETHR-A and ETHR-B from Plutella xylostella and insight into non-conservative mutations in transmembrane helix-6. J Biomol Struct Dyn 2023; 41:12572-12585. [PMID: 36683288 DOI: 10.1080/07391102.2023.2167112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 01/05/2023] [Indexed: 01/24/2023]
Abstract
The development of Diamondback moth (DBM) depends on the ecdysis triggering hormone receptor (ETHR); a neuronal membrane G-protein coupled receptor (GPCR) connected to the metamorphosis cascade. Lepidopteran insect DBM is an infamous pest of cruciferous plants. This study examined the full-length coding sequences (CDS) of PxETHR-A and PxETHR-B from the DBM genome. The three-dimensional (3 D) models of both receptors were generated in an inactive state. The behaviour and stability of receptors were examined using molecular dynamics simulations in a lipid membrane system for 300 ns and established a GPCR family-based view. Secondary interactions within receptors were studied to know more about factors contributing to their stability. Multiple sequence alignment revealed conserved features of insect ETHRs those compared to the GPCR family proteins. These features were helpful during the evaluation of the molecular models of both receptors. Side-chain orientation of conserved residues, non-conserved and conserved hydrogen-bond networks (HBN) and hydrophobic clusters were examined in the structures of both receptors. The non-conserved residues L6.35, T6.39, C/S6.43, and L6.48, are present in a conserved position on the transmembrane helix-6 (TM6) of ETHRs. In TM6, PxETHR-A and PxETHR-B differ at positions C/S6.43 and Y/F6.51, both being part of the HBN.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ishwar Patidar
- Department of Bioinformatics, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Bhagath Kumar Palaka
- Department of Bioinformatics, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Umamahesh Katike
- Department of Bioinformatics, School of Life Sciences, Pondicherry University, Puducherry, India
| | | | - Tulsi
- Department of Bioinformatics, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Saswati Sarita Mohanty
- Department of Bioinformatics, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Dinakara Rao Ampasala
- Department of Bioinformatics, School of Life Sciences, Pondicherry University, Puducherry, India
| |
Collapse
|
14
|
Crosstalk between Nutrition, Insulin, Juvenile Hormone, and Ecdysteroid Signaling in the Classical Insect Model, Rhodnius prolixus. Int J Mol Sci 2022; 24:ijms24010007. [PMID: 36613451 PMCID: PMC9819625 DOI: 10.3390/ijms24010007] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/16/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
The rigorous balance of endocrine signals that control insect reproductive physiology is crucial for the success of egg production. Rhodnius prolixus, a blood-feeding insect and main vector of Chagas disease, has been used over the last century as a model to unravel aspects of insect metabolism and physiology. Our recent work has shown that nutrition, insulin signaling, and two main types of insect lipophilic hormones, juvenile hormone (JH) and ecdysteroids, are essential for successful reproduction in R. prolixus; however, the interplay behind these endocrine signals has not been established. We used a combination of hormone treatments, gene expression analyses, hormone measurements, and ex vivo experiments using the corpus allatum or the ovary, to investigate how the interaction of these endocrine signals might define the hormone environment for egg production. The results show that after a blood meal, circulating JH levels increase, a process mainly driven through insulin and allatoregulatory neuropeptides. In turn, JH feeds back to provide some control over its own biosynthesis by regulating the expression of critical biosynthetic enzymes in the corpus allatum. Interestingly, insulin also stimulates the synthesis and release of ecdysteroids from the ovary. This study highlights the complex network of endocrine signals that, together, coordinate a successful reproductive cycle.
Collapse
|
15
|
Zhang G, Guo SQ, Yin SY, Yuan WD, Chen P, Kim JI, Wang HY, Zhou HB, Susswein AJ, Kaang BK, Jing J. Exogenous expression of an allatotropin-related peptide receptor increased the membrane excitability in Aplysia neurons. Mol Brain 2022; 15:42. [PMID: 35534865 PMCID: PMC9082908 DOI: 10.1186/s13041-022-00929-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/01/2022] [Indexed: 02/04/2023] Open
Abstract
Neuropeptides act mostly on a class of G-protein coupled receptors, and play a fundamental role in the functions of neural circuits underlying behaviors. However, physiological functions of some neuropeptide receptors are poorly understood. Here, we used the molluscan model system Aplysia and microinjected the exogenous neuropeptide receptor apATRPR (Aplysia allatotropin-related peptide receptor) with an expression vector (pNEX3) into Aplysia neurons that did not express the receptor endogenously. Physiological experiments demonstrated that apATRPR could mediate the excitability increase induced by its ligand, apATRP (Aplysia allatotropin-related peptide), in the Aplysia neurons that now express the receptor. This study provides a definitive evidence for a physiological function of a neuropeptide receptor in molluscan animals.
Collapse
|
16
|
Mukai A, Mano G, Des Marteaux L, Shinada T, Goto SG. Juvenile hormone as a causal factor for maternal regulation of diapause in a wasp. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 144:103758. [PMID: 35276333 DOI: 10.1016/j.ibmb.2022.103758] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/25/2022] [Accepted: 03/05/2022] [Indexed: 06/14/2023]
Abstract
Most temperate multivoltine insects enter diapause, a hormonally controlled developmental suspension, in response to seasonal photoperiodic and/or thermal cues. Some insect species exhibit maternal regulation of diapause in which developmental trajectories of the offspring are determined by mothers in response to environmental cues that the mother received. Although maternally regulated diapause is common among insects, the maternal endocrinological mechanisms are largely veiled. To approach this issue, we used the jewel wasp Nasonia vitripennis, which produces non-diapause-destined offspring under long days and diapause-destined offspring under short days or low temperatures. Comparative transcriptomics of these wasps revealed possible involvement of the juvenile hormone (JH) biosynthetic cascade in maternal diapause regulation. The expression of juvenile hormone acid O-methyltransferase (jhamt) was typically downregulated in short-day wasps, and this was reflected by a reduction in haemolymph JH concentrations. RNAi targeted at jhamt reduced haemolymph JH concentration and induced wasps to produce diapause-destined offspring even under long days. In addition, topical application of JH suppressed the production of diapause-destined offspring under short days or low temperatures. These results indicate that diapause in N. vitripennis is determined by maternal jhamt expression and haemolymph JH concentration in response to day length. We therefore report a novel role for JH in insect seasonality.
Collapse
Affiliation(s)
- Ayumu Mukai
- Department of Life Science, Faculty of Science and Engineering, Setsunan University, 17-8 Ikeda-Nakamachi, Neyagawa, Osaka, 572-8508, Japan; Department of Biology and Geosciences, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto-Cho, Sumiyoshi-Ku, Osaka, 558-8585, Japan
| | - Genyu Mano
- Department of Biology and Geosciences, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto-Cho, Sumiyoshi-Ku, Osaka, 558-8585, Japan
| | - Lauren Des Marteaux
- Harrow Research and Development Centre, Agriculture and Agri-Food Canada, 2585 Essex County Rd 20, Harrow, Ontario, N0R 1G0, Canada
| | - Tetsuro Shinada
- Department of Material Science, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto-Cho, Sumiyoshi-Ku, Osaka, 558-8585, Japan
| | - Shin G Goto
- Department of Biology and Geosciences, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto-Cho, Sumiyoshi-Ku, Osaka, 558-8585, Japan.
| |
Collapse
|
17
|
Karunaraj P, Tidswell O, Duncan EJ, Lovegrove MR, Jefferies G, Johnson TK, Beck CW, Dearden PK. Noggin proteins are multifunctional extracellular regulators of cell signalling. Genetics 2022; 221:6561546. [PMID: 35357435 PMCID: PMC9071555 DOI: 10.1093/genetics/iyac049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/25/2022] [Indexed: 11/14/2022] Open
Abstract
Noggin is an extracellular cysteine knot protein that plays a crucial role in vertebrate dorsoventral patterning. Noggin binds and inhibits the activity of bone morphogenetic proteins via a conserved N-terminal clip domain. Noncanonical orthologs of Noggin that lack a clip domain (“Noggin-like” proteins) are encoded in many arthropod genomes and are thought to have evolved into receptor tyrosine kinase ligands that promote Torso/receptor tyrosine kinase signaling rather than inhibiting bone morphogenic protein signaling. Here, we examined the molecular function of noggin/noggin-like genes (ApNL1 and ApNL2) from the arthropod pea aphid using the dorso-ventral patterning of Xenopus and the terminal patterning system of Drosophila to identify whether these proteins function as bone morphogenic protein or receptor tyrosine kinase signaling regulators. Our findings reveal that ApNL1 from the pea aphid can regulate both bone morphogenic protein and receptor tyrosine kinase signaling pathways, and unexpectedly, that the clip domain is not essential for its antagonism of bone morphogenic protein signaling. Our findings indicate that ancestral noggin/noggin-like genes were multifunctional regulators of signaling that have specialized to regulate multiple cell signaling pathways during the evolution of animals.
Collapse
Affiliation(s)
- Prashath Karunaraj
- Laboratory for Development and Regeneration, Department of Zoology, University of Otago, Dunedin 9016, Aotearoa-New Zealand.,Genomics Aotearoa and Department of Biochemistry, University of Otago, Dunedin 9016, Aotearoa-New Zealand
| | - Olivia Tidswell
- Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745 Jena, Germany
| | - Elizabeth J Duncan
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | | | - Grace Jefferies
- School of Biological Sciences, Monash University, Melbourne VIC 3800, Australia
| | - Travis K Johnson
- School of Biological Sciences, Monash University, Melbourne VIC 3800, Australia
| | - Caroline W Beck
- Laboratory for Development and Regeneration, Department of Zoology, University of Otago, Dunedin 9016, Aotearoa-New Zealand
| | - Peter K Dearden
- Genomics Aotearoa and Department of Biochemistry, University of Otago, Dunedin 9016, Aotearoa-New Zealand
| |
Collapse
|
18
|
Cheng J, Yang X, Tian Z, Shen Z, Wang X, Zhu L, Liu X, Li Z, Liu X. Coordinated transcriptomics and peptidomics of central nervous system identify neuropeptides and their G protein-coupled receptors in the oriental fruit moth Grapholita molesta. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2021; 40:100882. [PMID: 34273641 DOI: 10.1016/j.cbd.2021.100882] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/28/2021] [Accepted: 07/07/2021] [Indexed: 01/01/2023]
Abstract
The oriental fruit moth Grapholita molesta is a cosmopolitan pest of orchard, which causes serious economic losses to the fruit production. Neuropeptides and their specific receptors (primarily G protein-coupled receptors, GPCRs) regulate multiple biological functions in insects and represent promising next-generation pest management strategy. Here, we generated a transcriptome of the central nervous system (CNS) of G. molesta. Overall, 57 neuropeptide precursor genes were identified and 128 various mature peptides were predicted from these precursors. Using peptidomic analysis of CNS of G. molesta, we identified total of 28 mature peptides and precursor-related peptides from 16 precursors. A total of 41 neuropeptide GPCR genes belonging to three classes were also identified. These GPCRs and their probable ligands were predicted. Additionally, expression patterns of these 98 genes in various larval tissues were evaluated using quantitative real-time PCR. Taken together, these results will benefit further investigations to determine physiological functions and pharmacological characterization of neuropeptides and their GPCRs in G. molesta; and to develop specific neuropeptide-based agents for this tortricid fruit pest control.
Collapse
Affiliation(s)
- Jie Cheng
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Xuelin Yang
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Zhiqiang Tian
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Zhongjian Shen
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Xueli Wang
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Lin Zhu
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Xiaoming Liu
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Zhen Li
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| | - Xiaoxia Liu
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
19
|
Liu B, Fu D, Gao H, Ning H, Sun Y, Chen H, Tang M. Cloning and Expression of the Neuropeptide F and Neuropeptide F Receptor Genes and Their Regulation of Food Intake in the Chinese White Pine Beetle Dendroctonus armandi. Front Physiol 2021; 12:662651. [PMID: 34220532 PMCID: PMC8249871 DOI: 10.3389/fphys.2021.662651] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 05/12/2021] [Indexed: 01/31/2023] Open
Abstract
Neuropeptide F (NPF) is an important signaling molecule that acts as a neuromodulator to regulate a diversity of physiological and behavioral processes from vertebrates to invertebrates by interaction with NPF receptors, which are G protein-coupled receptors (GPCR). However, nothing is known about NPF in Chinese white pine beetle, Dendroctonus armandi, a destructive pest of natural and coniferous forests in the middle Qinling Mountains of China. We have cloned and characterized cDNAs encoding one NPF precursor and two NPF receptors in D. armandi and made bioinformatics predictions according to the deduced amino acid sequences. They were highly similar to that of Dendroctonus ponderosa. The transcription levels of these genes were different between larvae and adults of sexes, and there were significant differences among the different developmental stages and tissues and between beetles under starvation and following re-feeding states. Additionally, downregulation of NPF and NPFR by injecting dsRNA into beetles reduced their food intake, caused increases of mortality and decreases of body weight, and also resulted in a decrease of glycogen and free fatty acid and an increase of trehalose. These results indicate that the NPF signaling pathway plays a significant positive role in the regulation of food intake and provides a potential target for the sustainable management of this pest.
Collapse
Affiliation(s)
- Bin Liu
- College of Forestry, Northwest A&F University, Xianyang, China
| | - Danyang Fu
- College of Forestry, Northwest A&F University, Xianyang, China
| | - Haiming Gao
- College of Forestry, Northwest A&F University, Xianyang, China
| | - Hang Ning
- College of Forestry, Northwest A&F University, Xianyang, China
| | - Yaya Sun
- College of Forestry, Northwest A&F University, Xianyang, China
| | - Hui Chen
- College of Forestry, Northwest A&F University, Xianyang, China.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Ming Tang
- College of Forestry, Northwest A&F University, Xianyang, China.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
20
|
Identification and function of ETH receptor networks in the silkworm Bombyx mori. Sci Rep 2021; 11:11693. [PMID: 34083562 PMCID: PMC8175484 DOI: 10.1038/s41598-021-91022-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/19/2021] [Indexed: 11/25/2022] Open
Abstract
Insect ecdysis triggering hormones (ETHs) released from endocrine Inka cells act on specific neurons in the central nervous system (CNS) to activate the ecdysis sequence. These primary target neurons express distinct splicing variants of ETH receptor (ETHR-A or ETHR-B). Here, we characterized both ETHR subtypes in the moth Bombyx mori in vitro and mapped spatial and temporal distribution of their expression within the CNS and peripheral organs. In the CNS, we detected non-overlapping expression patterns of each receptor isoform which showed dramatic changes during metamorphosis. Most ETHR-A and a few ETHR-B neurons produce multiple neuropeptides which are downstream signals for the initiation or termination of various phases during the ecdysis sequence. We also described novel roles of different neuropeptides during these processes. Careful examination of peripheral organs revealed ETHRs expression in specific cells of the frontal ganglion (FG), corpora allata (CA), H-organ and Malpighian tubules prior to each ecdysis. These data indicate that PETH and ETH are multifunctional hormones that act via ETHR-A and ETHR-B to control various functions during the entire development—the ecdysis sequence and associated behaviors by the CNS and FG, JH synthesis by the CA, and possible activity of the H-organ and Malpighian tubules.
Collapse
|
21
|
Shen CH, Xu QY, Fu KY, Guo WC, Jin L, Li GQ. Ecdysis triggering hormone is essential for larva-pupa-adult transformation in Leptinotarsa decemlineata. INSECT MOLECULAR BIOLOGY 2021; 30:241-252. [PMID: 33368728 DOI: 10.1111/imb.12691] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 11/12/2020] [Accepted: 12/23/2020] [Indexed: 06/12/2023]
Abstract
In Drosophila melanogaster, ecdysis triggering hormone (ETH) is the key factor triggering ecdysis behaviour and promoting trachea clearance. However, whether ETH plays the dual roles in non-dipteran insects is unknown. In this survey, we found that Ldeth mRNA levels were positively correlated with circulating 20-hydroxyecdysone (20E) titers in Leptinotarsa decemlineata. Ingestion of an ecdysteroid agonist halofenozide or 20E stimulated the transcription of Ldeth, whereas RNA interference (RNAi) of ecdysteroidogenesis (LdPTTH or LdSHD) or 20E signalling (LdEcR, LdUSP or LdFTZ-F1) genes inhibited the expression, indicating ETH acts downstream of 20E. RNAi of Ldeth at the final instar stage impaired pupation. More than 80% of the Ldeth-depleted beetles remained as prepupae, completely wrapped in the old larval cuticles. These prepupae became withered, dried and darkened gradually, and finally died in soil. The remaining Ldeth hypomorphs pupated and emerged as abnormal adults, bearing smaller and wrinkle elytrum and hindwing. Moreover, the tracheae in the Ldeth hypomorphs were full of liquid. We accordingly proposed that the failure of trachea clearance disenabled air-swallowing after pupa-adult ecdysis and impacted wing expansion. Our results suggest that ETH plays the dual roles, initiation of ecdysis and motivation of trachea clearance, in a coleopteran.
Collapse
Affiliation(s)
- C-H Shen
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Q-Y Xu
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - K-Y Fu
- Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - W-C Guo
- Institute of Microbiological Application, Xinjiang Academy of Agricultural Science, Urumqi, China
| | - L Jin
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - G-Q Li
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
22
|
Liu N, Li T, Wang Y, Liu S. G-Protein Coupled Receptors (GPCRs) in Insects-A Potential Target for New Insecticide Development. Molecules 2021; 26:2993. [PMID: 34069969 PMCID: PMC8157829 DOI: 10.3390/molecules26102993] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/10/2021] [Accepted: 05/12/2021] [Indexed: 02/07/2023] Open
Abstract
G-protein coupled receptors (GPCRs) play important roles in cell biology and insects' physiological processes, toxicological response and the development of insecticide resistance. New information on genome sequences, proteomic and transcriptome analysis and expression patterns of GPCRs in organs such as the central nervous system in different organisms has shown the importance of these signaling regulatory GPCRs and their impact on vital cell functions. Our growing understanding of the role played by GPCRs at the cellular, genome, transcriptome and tissue levels is now being utilized to develop new targets that will sidestep many of the problems currently hindering human disease control and insect pest management. This article reviews recent work on the expression and function of GPCRs in insects, focusing on the molecular complexes governing the insect physiology and development of insecticide resistance and examining the genome information for GPCRs in two medically important insects, mosquitoes and house flies, and their orthologs in the model insect species Drosophila melanogaster. The tissue specific distribution and expression of the insect GPCRs is discussed, along with fresh insights into practical aspects of insect physiology and toxicology that could be fundamental for efforts to develop new, more effective, strategies for pest control and resistance management.
Collapse
Affiliation(s)
- Nannan Liu
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, USA; (T.L.); (Y.W.)
| | - Ting Li
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, USA; (T.L.); (Y.W.)
| | - Yifan Wang
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, USA; (T.L.); (Y.W.)
| | - Shikai Liu
- College of Fisheries, Ocean University of China, Qingdao 266100, China;
| |
Collapse
|
23
|
Liu N, Wang Y, Li T, Feng X. G-Protein Coupled Receptors (GPCRs): Signaling Pathways, Characterization, and Functions in Insect Physiology and Toxicology. Int J Mol Sci 2021; 22:ijms22105260. [PMID: 34067660 PMCID: PMC8156084 DOI: 10.3390/ijms22105260] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 02/06/2023] Open
Abstract
G-protein-coupled receptors (GPCRs) are known to play central roles in the physiology of many organisms. Members of this seven α-helical transmembrane protein family transduce the extracellular signals and regulate intracellular second messengers through coupling to heterotrimeric G-proteins, adenylate cyclase, cAMPs, and protein kinases. As a result of the critical function of GPCRs in cell physiology and biochemistry, they not only play important roles in cell biology and the medicines used to treat a wide range of human diseases but also in insects’ physiological functions. Recent studies have revealed the expression and function of GPCRs in insecticide resistance, improving our understanding of the molecular complexes governing the development of insecticide resistance. This article focuses on the review of G-protein coupled receptor (GPCR) signaling pathways in insect physiology, including insects’ reproduction, growth and development, stress responses, feeding, behaviors, and other physiological processes. Hormones and polypeptides that are involved in insect GPCR regulatory pathways are reviewed. The review also gives a brief introduction of GPCR pathways in organisms in general. At the end of the review, it provides the recent studies on the function of GPCRs in the development of insecticide resistance, focusing in particular on our current knowledge of the expression and function of GPCRs and their downstream regulation pathways and their roles in insecticide resistance and the regulation of resistance P450 gene expression. The latest insights into the exciting technological advances and new techniques for gene expression and functional characterization of the GPCRs in insects are provided.
Collapse
Affiliation(s)
- Nannan Liu
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, USA; (Y.W.); (T.L.)
- Correspondence: ; Tel.: +1-334-844-5076
| | - Yifan Wang
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, USA; (Y.W.); (T.L.)
| | - Ting Li
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, USA; (Y.W.); (T.L.)
| | - Xuechun Feng
- Department of Biology Sciences, University of California, San Diego, CA 92093, USA;
| |
Collapse
|
24
|
Tian Y, Jiang C, Pan Y, Guo Z, Wang W, Luo X, Cao Z, Zhang B, Yang J, Shi Y, Zhou N, He X. Bombyx neuropeptide G protein-coupled receptor A14 and A15 are two functional G protein-coupled receptors for CCHamide neuropeptides. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2021; 131:103553. [PMID: 33582278 DOI: 10.1016/j.ibmb.2021.103553] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 06/12/2023]
Abstract
CCHamides are newly identified insect neuropeptides, which are widely occurring in most insects. However, our knowledge about their signaling characteristics and physiological roles is still limited. Here, we cloned two full-length cDNAs encoding putative CCHamide receptors, Bombyx neuropeptide GPCR A14 (BNGR-A14) and -A15 (BNGR-A15), from the brain of B. mori larvae. Characterization of signaling indicated that Bombyx CCHamide-1 and CCHamide-2 are specific endogenous ligands for BNGR-A15 and BNGR-A14, respectively. Further functional assays combined with specific inhibitors demonstrated that upon activation by CCHamide-2, BNGR-A14 elicited significant increases in CRE-driven luciferase activity, intracellular Ca2+ mobilization and ERK1/2 phosphorylation in a Gq inhibitor-sensitive manner, while BNGR-A15 was activated by CCHamide-1, thus leading to intracellular accumulation of cAMP, Ca2+ mobilization, and ERK1/2 phosphorylation in a Gs and Gq inhibitor-sensitive manner. Based on these findings, we designated the receptors BNGR-A15 and -A14 as Bommo-CCHaR-1 and -2, respectively. In addition, our results showed that CCHamides are considered to require intrachain disulfide bonds to activate their respective receptor in the physiological concentration range. Moreover, quantitative RT-PCR analysis revealed that CCHamide-1 is more likely to serve as a brain-gut peptide to regulate feeding behavior and growth through BNGR-A15, whereas the CCHamide-2 signaling system might play an important role in the control of multiple physiological processes. Our findings provide in-depth information on CCHamide-1 and -2-mediated signaling, facilitating further elucidation of their endocrinological roles in the regulation of fundamental physiological processes.
Collapse
Affiliation(s)
- Yanan Tian
- Institute of Biochemistry, College of Life Sciences, Zijingang Campus, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Chaohui Jiang
- Institute of Biochemistry, College of Life Sciences, Zijingang Campus, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Yi Pan
- Institute of Biochemistry, College of Life Sciences, Zijingang Campus, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Zhiqiang Guo
- Institute of Biochemistry, College of Life Sciences, Zijingang Campus, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Weiwei Wang
- Institute of Biochemistry, College of Life Sciences, Zijingang Campus, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Xumei Luo
- Institute of Biochemistry, College of Life Sciences, Zijingang Campus, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Zheng Cao
- Institute of Biochemistry, College of Life Sciences, Zijingang Campus, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Bing Zhang
- National Engineering Research Center of Marine Facilities Aquaculture, College of Marine Science, Zhejiang Ocean University, Zhoushan, Zhejiang, 316022, China
| | - Jingwen Yang
- National Engineering Research Center of Marine Facilities Aquaculture, College of Marine Science, Zhejiang Ocean University, Zhoushan, Zhejiang, 316022, China
| | - Ying Shi
- Institute of Biochemistry, College of Life Sciences, Zijingang Campus, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Naiming Zhou
- Institute of Biochemistry, College of Life Sciences, Zijingang Campus, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| | - Xiaobai He
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212018, China.
| |
Collapse
|
25
|
Birgül Iyison N, Shahraki A, Kahveci K, Düzgün MB, Gün G. Are insect GPCRs ideal next‐generation pesticides: opportunities and challenges. FEBS J 2021; 288:2727-2745. [DOI: 10.1111/febs.15708] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 12/27/2020] [Accepted: 01/06/2021] [Indexed: 12/22/2022]
Affiliation(s)
- Necla Birgül Iyison
- Department of Molecular Biology and Genetics Institute of Graduate Studies in Science and Engineering Boğaziçi University Istanbul Turkey
| | - Aida Shahraki
- Department of Molecular Biology and Genetics Institute of Graduate Studies in Science and Engineering Boğaziçi University Istanbul Turkey
| | - Kübra Kahveci
- Department of Molecular Biology and Genetics Institute of Graduate Studies in Science and Engineering Boğaziçi University Istanbul Turkey
| | - Mustafa Barbaros Düzgün
- Department of Molecular Biology and Genetics Institute of Graduate Studies in Science and Engineering Boğaziçi University Istanbul Turkey
| | - Gökhan Gün
- Department of Molecular Biology and Genetics Institute of Graduate Studies in Science and Engineering Boğaziçi University Istanbul Turkey
| |
Collapse
|
26
|
Guo Z, He X, Jiang C, Shi Y, Zhou N. Activation of Bombyx mori neuropeptide G protein-coupled receptor A19 by neuropeptide RYamides couples to G q protein-dependent signaling pathways. J Cell Biochem 2021; 122:456-471. [PMID: 33399233 DOI: 10.1002/jcb.29874] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 11/02/2020] [Accepted: 11/09/2020] [Indexed: 12/13/2022]
Abstract
RYamides constitute a novel family of neuropeptides newly identified in insects, and play important roles in regulating a variety of physiological processes. However, the signaling characteristics and physiological actions of RYamide signaling system remain largely unknown. In the present study, we cloned the full-length complementary DNA of the RYamide receptor BNGR-A19 from Bombyx mori larvae. After expression in mammalian HEK293T and insect Sf9 cells, functional assays revealed that BNGR-A19 was activated by synthetic RYamide peptides, triggering a significant increase in cAMP-response element controlled luciferase activity and Ca2+ mobilization in a Gq inhibitor-sensitive manner. Upon activation by RYamide peptides, BNGR-A19 elicited ERK1/2 phosphorylation via a Gq -PLC-PKC pathway, and also underwent a rapid internalization from the cell surface to the cytoplasm. Further cross-activity analysis indicated that BNGR-A19 exhibited very weak response upon stimulation by high concentration (1 μM) of Bombyx sulfakinin-1, neuropeptide F-1, and short neuropeptide F-1, and vice versa, Bombyx RYamides also showed slight potency for activating Bombyx NPF receptor (BNGR-A4) and sNPF receptor (BNGR-A11). In addition, the quantitative reverse-transcription polymerase chain reaction results showed that the high-level expression of BNGR-A19 was detected in the hindgut and testis, suggesting that the RYamide signaling is likely involved in the regulation of feeding, water homeostasis and testis development. This study provides the first in-depth information on the insect RYamide signaling system, facilitating the further clarification of its endocrinological roles in insect physiology.
Collapse
Affiliation(s)
- Zhiqiang Guo
- Institute of Biochemistry, College of Life Sciences, Zhejiang University, Zhejiang, Hangzhou, China
| | - Xiaobai He
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
| | - Chaohui Jiang
- Institute of Biochemistry, College of Life Sciences, Zhejiang University, Zhejiang, Hangzhou, China
| | - Ying Shi
- Institute of Biochemistry, College of Life Sciences, Zhejiang University, Zhejiang, Hangzhou, China
| | - Naiming Zhou
- Institute of Biochemistry, College of Life Sciences, Zhejiang University, Zhejiang, Hangzhou, China
| |
Collapse
|
27
|
Alzugaray ME, Gavazzi MV, Ronderos JR. G protein-coupled receptor signal transduction and Ca 2+ signaling pathways of the allatotropin/orexin system in Hydra. Gen Comp Endocrinol 2021; 300:113637. [PMID: 33017583 DOI: 10.1016/j.ygcen.2020.113637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 09/16/2020] [Accepted: 09/28/2020] [Indexed: 11/24/2022]
Abstract
Allatotropin is a pleiotropic peptide originally characterized in insects. The existence of AT neuropeptide signaling was proposed in other invertebrates. In fact, we previously proposed the presence of an AT-like system regulating feeding behavior in Hydra sp. Even in insects, the information about the AT signaling pathway is incomplete. The aim of this study is to analyze the signaling cascade activated by AT in Hydra plagiodesmica using a pharmacological approach. The results show the involvement of Ca2+ and IP3 signaling in the transduction pathway of the peptide. Furthermore, we confirm the existence of a GPCR system involved in this pathway, that would be coupled to a Gq subfamily of Gα protein, which activates a PLC, inducing an increase in IP3 and cytosolic Ca2+. To the best of our knowledge, this work represents the first in vivo approach to study the overall signaling pathway and intracellular events involved in the myoregulatory effect of AT in Hydra sp.
Collapse
Affiliation(s)
- María Eugenia Alzugaray
- Cátedra de Histología y Embriología Animal. Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata (FCNyM-UNLP), Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - María Victoria Gavazzi
- Cátedra de Histología y Embriología Animal. Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata (FCNyM-UNLP), Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Jorge Rafael Ronderos
- Cátedra de Histología y Embriología Animal. Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata (FCNyM-UNLP), Argentina.
| |
Collapse
|
28
|
Functional Analysis of Adipokinetic Hormone Signaling in Bombyx mori. Cells 2020; 9:cells9122667. [PMID: 33322530 PMCID: PMC7764666 DOI: 10.3390/cells9122667] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/09/2020] [Accepted: 12/09/2020] [Indexed: 11/17/2022] Open
Abstract
Insect adipokinetic hormones (AKHs) are short peptides produced in the corpora cardiaca and are responsible for mobilizing energy stores from the fat body to the hemolymph. Three related peptides, AKH1, AKH2, and AKH/corazonin-related peptide (ACP) as well as three AKH receptors have been reported in Bombyx mori. AKH1 and AKH2 are specific for the AKHR1 receptor, whereas ACP interacts with the other two AKHRs. To assess the effect of the two silkworm AKHs and ACP in the regulation of energy homeostasis we examined the expression pattern of the three peptides and their receptors as well as their effect on the level of carbohydrates and lipids in the hemolymph. Our results support the hypothesis that only AKH1 and AKH2 peptides together with the AKHR1 receptor are involved in the maintenance of energy homeostasis. Because Bombyx AKHR1 (BmAKHR1) seems to be a true AKHR we generated its mutation. The BmAKHR1 mutant larvae display significantly lower carbohydrate and lipid levels in the hemolymph and reduced sensitivity to starvation. Our study clarifies the role of BmAKHR1 in energy homeostasis.
Collapse
|
29
|
Nässel DR, Zandawala M. Hormonal axes in Drosophila: regulation of hormone release and multiplicity of actions. Cell Tissue Res 2020; 382:233-266. [PMID: 32827072 PMCID: PMC7584566 DOI: 10.1007/s00441-020-03264-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 07/20/2020] [Indexed: 12/16/2022]
Abstract
Hormones regulate development, as well as many vital processes in the daily life of an animal. Many of these hormones are peptides that act at a higher hierarchical level in the animal with roles as organizers that globally orchestrate metabolism, physiology and behavior. Peptide hormones can act on multiple peripheral targets and simultaneously convey basal states, such as metabolic status and sleep-awake or arousal across many central neuronal circuits. Thereby, they coordinate responses to changing internal and external environments. The activity of neurosecretory cells is controlled either by (1) cell autonomous sensors, or (2) by other neurons that relay signals from sensors in peripheral tissues and (3) by feedback from target cells. Thus, a hormonal signaling axis commonly comprises several components. In mammals and other vertebrates, several hormonal axes are known, such as the hypothalamic-pituitary-gonad axis or the hypothalamic-pituitary-thyroid axis that regulate reproduction and metabolism, respectively. It has been proposed that the basic organization of such hormonal axes is evolutionarily old and that cellular homologs of the hypothalamic-pituitary system can be found for instance in insects. To obtain an appreciation of the similarities between insect and vertebrate neurosecretory axes, we review the organization of neurosecretory cell systems in Drosophila. Our review outlines the major peptidergic hormonal pathways known in Drosophila and presents a set of schemes of hormonal axes and orchestrating peptidergic systems. The detailed organization of the larval and adult Drosophila neurosecretory systems displays only very basic similarities to those in other arthropods and vertebrates.
Collapse
Affiliation(s)
- Dick R. Nässel
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Meet Zandawala
- Department of Neuroscience, Brown University, Providence, RI USA
| |
Collapse
|
30
|
Bendena WG, Hui JHL, Chin-Sang I, Tobe SS. Neuropeptide and microRNA regulators of juvenile hormone production. Gen Comp Endocrinol 2020; 295:113507. [PMID: 32413346 DOI: 10.1016/j.ygcen.2020.113507] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 05/06/2020] [Accepted: 05/08/2020] [Indexed: 11/17/2022]
Abstract
The sesquiterpenoid juvenile hormone(s) (JHs) of insects are the primary regulators of growth, metamorphosis, and reproduction in most insect species. As a consequence, it is essential that JH production be precisely regulated so that it is present only during appropriate periods necessary for the control of these processes. The presence of JH at inappropriate times results in disruption to metamorphosis and development and, in some cases, to disturbances in female reproduction. Neuropeptides regulate the timing and production of JH by the corpora allata. Allatostatin and allatotropin were the names coined for neuropeptides that serve as inhibitors or stimulators of JH biosynthesis, respectively. Three different allatostatin neuropeptide families are capable of inhibiting juvenile hormone but only one family is utilized for that purpose dependent on the insect studied. The function of allatotropin also varies in different insects. These neuropeptides are pleiotropic in function acting on diverse physiological processes in different insects such as muscle contraction, sleep and neuromodulation. Genome projects and expression studies have assigned individual neuropeptide families to their respective receptors. An understanding of the localization of these receptors is providing clues as to how numerous peptide families might be integrated in regulating physiological functions. In recent years microRNAs have been identified that down-regulate enzymes and transcription factors that are involved in the biosynthesis and action of juvenile hormone.
Collapse
Affiliation(s)
- William G Bendena
- Department of Biology and Centre for Neuroscience, Queen's University, Kingston, Ontario K7L 3N6, Canada.
| | - Jerome H L Hui
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, Partner State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong
| | - Ian Chin-Sang
- Department of Biology, Queen's University, Kingston, Ontario K7L3N6, Canada
| | - Stephen S Tobe
- Department of Cell and Systems Biology, University of Toronto, Ramsey-Wright Bldg., 25 Harbord Street, Toronto, Ontario M5S 3G5, Canada
| |
Collapse
|
31
|
Corzo FL, Traverso L, Sterkel M, Benavente A, Ajmat MT, Ons S. Plodia interpunctella (Lepidoptera: Pyralidae): Intoxication with essential oils isolated from Lippia turbinata (Griseb.) and analysis of neuropeptides and neuropeptide receptors, putative targets for pest control. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2020; 104:e21684. [PMID: 32329117 DOI: 10.1002/arch.21684] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/06/2020] [Accepted: 04/09/2020] [Indexed: 06/11/2023]
Abstract
The Indian meal moth Plodia interpunctella is a pest of stored products worldwide. Plant-derived essential oils with insecticidal activity could be safe products to control this species. The scarce information about the mode of action of most plant-derived products limits their use for the control of insect pests. Here, we demonstrate that an essential oil distilled from Lippia turbinata ("poleo") has insecticidal activity on P. interpunctella larvae. Furthermore, we performed a comprehensive characterization of P. interpunctella neuroendocrine system, in comparison with other lepidopteran species.
Collapse
Affiliation(s)
- Fernando Livio Corzo
- Instituto de Ambiente de Montaña y Regiones Áridas Universidad Nacional de Chilecito (IAMRA-UNdeC), La Rioja, Argentina
| | - Lucila Traverso
- Laboratorio de Neurobiología de Insectos, Facultad de Ciencias Exactas, Centro Regional de Estudios Genómicos, Universidad Nacional de La Plata, La Plata, Argentina
| | - Marcos Sterkel
- Laboratorio de Neurobiología de Insectos, Facultad de Ciencias Exactas, Centro Regional de Estudios Genómicos, Universidad Nacional de La Plata, La Plata, Argentina
| | - Alba Benavente
- Instituto de Ambiente de Montaña y Regiones Áridas Universidad Nacional de Chilecito (IAMRA-UNdeC), La Rioja, Argentina
| | - María Teresa Ajmat
- Instituto de Ambiente de Montaña y Regiones Áridas Universidad Nacional de Chilecito (IAMRA-UNdeC), La Rioja, Argentina
| | - Sheila Ons
- Laboratorio de Neurobiología de Insectos, Facultad de Ciencias Exactas, Centro Regional de Estudios Genómicos, Universidad Nacional de La Plata, La Plata, Argentina
| |
Collapse
|
32
|
Yañez-Guerra LA, Zhong X, Moghul I, Butts T, Zampronio CG, Jones AM, Mirabeau O, Elphick MR. Echinoderms provide missing link in the evolution of PrRP/sNPF-type neuropeptide signalling. eLife 2020; 9:57640. [PMID: 32579512 PMCID: PMC7314547 DOI: 10.7554/elife.57640] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 06/12/2020] [Indexed: 12/22/2022] Open
Abstract
Neuropeptide signalling systems comprising peptide ligands and cognate receptors are evolutionarily ancient regulators of physiology and behaviour. However, there are challenges associated with determination of orthology between neuropeptides in different taxa. Orthologs of vertebrate neuropeptide-Y (NPY) known as neuropeptide-F (NPF) have been identified in protostome invertebrates, whilst prolactin-releasing peptide (PrRP) and short neuropeptide-F (sNPF) have been identified as paralogs of NPY/NPF in vertebrates and protostomes, respectively. Here we investigated the occurrence of NPY/NPF/PrRP/sNPF-related signalling systems in a deuterostome invertebrate phylum - the Echinodermata. Analysis of transcriptome/genome sequence data revealed loss of NPY/NPF-type signalling, but orthologs of PrRP-type neuropeptides and sNPF/PrRP-type receptors were identified in echinoderms. Furthermore, experimental studies revealed that the PrRP-type neuropeptide pQDRSKAMQAERTGQLRRLNPRF-NH2 is a potent ligand for a sNPF/PrRP-type receptor in the starfish Asterias rubens. Our findings indicate that PrRP-type and sNPF-type signalling systems are orthologous and originated as a paralog of NPY/NPF-type signalling in Urbilateria.
Collapse
Affiliation(s)
| | - Xingxing Zhong
- Queen Mary University of London, School of Biological and Chemical Sciences, London, United Kingdom
| | - Ismail Moghul
- Queen Mary University of London, School of Biological and Chemical Sciences, London, United Kingdom
| | - Thomas Butts
- Queen Mary University of London, School of Biological and Chemical Sciences, London, United Kingdom
| | - Cleidiane G Zampronio
- School of Life Sciences and Proteomics Research Technology Platform, University of Warwick, Coventry, United Kingdom
| | - Alexandra M Jones
- School of Life Sciences and Proteomics Research Technology Platform, University of Warwick, Coventry, United Kingdom
| | | | - Maurice R Elphick
- Queen Mary University of London, School of Biological and Chemical Sciences, London, United Kingdom
| |
Collapse
|
33
|
Xu Z, Wei Y, Guo S, Lin D, Ye H. Short neuropeptide F enhances the immune response in the hepatopancreas of mud crab (Scylla paramamosain). FISH & SHELLFISH IMMUNOLOGY 2020; 101:244-251. [PMID: 32272259 DOI: 10.1016/j.fsi.2020.04.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 03/31/2020] [Accepted: 04/03/2020] [Indexed: 06/11/2023]
Abstract
Short neuropeptide F (sNPF), a highly conserved neuropeptide, displays pleiotropic functions on multiple aspects of physiological processes, such as feeding, metabolic stress, locomotion, circadian clock and reproduction. However, to date there has no any report on the possible immunoregulation of sNPF in crustaceans. In the present study, we found that the Sp-sNPF was mainly expressed in the nervous tissue in the mud crab Scylla paramamosain, while the sNPF receptor gene (Sp-sNPF-R) was expressed in a wide variety of tissues, including the hepatopancreas. In situ hybridization further showed that the Sp-sNPF-R positive signal mainly localized in the F-cells of the hepatopancreas. Moreover, the Sp-sNPF-R transcription could be significantly up-regulated after the challenge of bacteria-analog LPS or virus-analog Poly (I:C). Both in vitro and in vivo experiments showed that the synthetic sNPF peptide significantly increased the gene expressions of sNPF-R, nuclear factor-κB (NF-κB) signaling genes and antimicrobial peptides (AMPs) in the hepatopancreas. Simultaneously, the administration of sNPF peptide in vitro also increased the concentration of nitric oxide (NO) and the bacteriostasis of the culture medium of hepatopancreas. These results indicated that sNPF up-regulated hepatopancreas immune responses, which may bring new insight into the neuroendocrine-immune regulatory system in crustacean species, and could potentially provide a new strategy for disease prevention and control for mud crab aquaculture.
Collapse
Affiliation(s)
- Zhanning Xu
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Yujie Wei
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Songlin Guo
- Fisheries College, Jimei University, Xiamen, 361021, China
| | - Dongdong Lin
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Haihui Ye
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China.
| |
Collapse
|
34
|
Toprak U. The Role of Peptide Hormones in Insect Lipid Metabolism. Front Physiol 2020; 11:434. [PMID: 32457651 PMCID: PMC7221030 DOI: 10.3389/fphys.2020.00434] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 04/08/2020] [Indexed: 12/21/2022] Open
Abstract
Lipids are the primary storage molecules and an essential source of energy in insects during reproduction, prolonged periods of flight, starvation, and diapause. The coordination center for insect lipid metabolism is the fat body, which is analogous to the vertebrate adipose tissue and liver. The fat body is primarily composed of adipocytes, which accumulate triacylglycerols in intracellular lipid droplets. Genomics and proteomics, together with functional analyses, such as RNA interference and CRISPR/Cas9-targeted genome editing, identified various genes involved in lipid metabolism and elucidated their functions. However, the endocrine control of insect lipid metabolism, in particular the roles of peptide hormones in lipogenesis and lipolysis are relatively less-known topics. In the current review, the neuropeptides that directly or indirectly affect insect lipid metabolism are introduced. The primary lipolytic and lipogenic peptide hormones are adipokinetic hormone and the brain insulin-like peptides (ILP2, ILP3, ILP5). Other neuropeptides, such as insulin-growth factor ILP6, neuropeptide F, allatostatin-A, corazonin, leucokinin, tachykinins and limostatin, might stimulate lipolysis, while diapause hormone-pheromone biosynthesis activating neuropeptide, short neuropeptide F, CCHamide-2, and the cytokines Unpaired 1 and Unpaired 2 might induce lipogenesis. Most of these peptides interact with one another, but mostly with insulin signaling, and therefore affect lipid metabolism indirectly. Peptide hormones are also involved in lipid metabolism during reproduction, flight, diapause, starvation, infections and immunity; these are also highlighted. The review concludes with a discussion of the potential of lipid metabolism-related peptide hormones in pest management.
Collapse
Affiliation(s)
- Umut Toprak
- Molecular Entomology Lab., Department of Plant Protection Ankara, Faculty of Agriculture, Ankara University, Ankara, Turkey
| |
Collapse
|
35
|
Cao Z, Yan L, Shen Z, Chen Y, Shi Y, He X, Zhou N. A novel splice variant of Gαq-coupled Bombyx CAPA-PVK receptor 1 functions as a specific Gαi/o-linked receptor for CAPA-PK. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118718. [PMID: 32289337 DOI: 10.1016/j.bbamcr.2020.118718] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/05/2020] [Accepted: 04/07/2020] [Indexed: 01/04/2023]
Abstract
Alternative splicing enables G protein-coupled receptor (GPCR) genes to greatly increase the number of structurally and functionally distinct receptor isoforms. However, the functional role and relevance of the individual GPCR splice variants in regulating physiological processes are still to be assessed. A naturally occurring alternative splice variant of Bombyx CAPA-PVK receptor, BomCAPA-PVK-R1-Δ341, has been shown to act as a dominant-negative protein to regulate cell surface expression and function of the canonical CAPA-PVK receptor. Herein, using functional assays, we identify the splice variant Δ341 as a specific receptor for neuropeptide CAPA-PK, and upon activation, Δ341 signals to ERK1/2 pathway. Further characterization demonstrates that Δ341 couples to Gαi/o, distinct from the Gαq-coupled canonical CAPA-PVK receptor, triggering ERK1/2 phosphorylation through Gβγ-PI3K-PKCζ signaling cascade. Moreover, our ELISA data show that the ligand-dependent internalization of the splice variant Δ341 is significantly impaired due to lack of GRKs-mediated phosphorylation sites. Our findings highlight the potential of this knowledge for molecular, pharmacological and physiological studies on GPCR splice variants in the future.
Collapse
Affiliation(s)
- Zheng Cao
- Institute of Biochemistry, College of Life Sciences, Zijingang Campus, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Lili Yan
- Institute of Biochemistry, College of Life Sciences, Zijingang Campus, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Zhangfei Shen
- Department of Economic Zoology, College of Animal Sciences, Zijingang Campus, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yu Chen
- Institute of Biochemistry, College of Life Sciences, Zijingang Campus, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Ying Shi
- Institute of Biochemistry, College of Life Sciences, Zijingang Campus, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xiaobai He
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212018, China
| | - Naiming Zhou
- Institute of Biochemistry, College of Life Sciences, Zijingang Campus, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
36
|
Identification of neuropeptides from eyestalk transcriptome profiling analysis of female oriental river prawn (Macrobrachium nipponense) under hypoxia and reoxygenation conditions. Comp Biochem Physiol B Biochem Mol Biol 2020; 241:110392. [DOI: 10.1016/j.cbpb.2019.110392] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 12/05/2019] [Accepted: 12/12/2019] [Indexed: 02/06/2023]
|
37
|
Kamruzzaman ASM, Mikani A, Mohamed AA, Elgendy AM, Takeda M. Crosstalk among Indoleamines, Neuropeptides and JH/20E in Regulation of Reproduction in the American Cockroach, Periplaneta americana. INSECTS 2020; 11:insects11030155. [PMID: 32121505 PMCID: PMC7143859 DOI: 10.3390/insects11030155] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 01/29/2023]
Abstract
Although the regulation of vitellogenesis in insects has been mainly discussed in terms of ‘classical’ lipid hormones, juvenile hormone (JH), and 20-hydroxyecdysone (20E), recent data support the notion that this process must be adjusted in harmony with a nutritional input/reservoir and involvement of certain indoleamines and neuropeptides in regulation of such process. This study focuses on crosstalks among these axes, lipid hormones, monoamines, and neuropeptides in regulation of vitellogenesis in the American cockroach Periplaneta americana with novel aspects in the roles of arylalkylamine N-acetyltransferase (aaNAT), a key enzyme in indoleamine metabolism, and the enteroendocrine peptides; crustacean cardioactive peptide (CCAP) and short neuropeptide F (sNPF). Double-stranded RNA against aaNAT (dsRNAaaNAT) was injected into designated-aged females and the effects were monitored including the expressions of aaNAT itself, vitellogenin 1 and 2 (Vg1 and Vg2) and the vitellogenin receptor (VgR) mRNAs, oocyte maturation and changes in the hemolymph peptide concentrations. Effects of peptides application and 20E were also investigated. Injection of dsRNAaaNAT strongly suppressed oocyte maturation, transcription of Vg1, Vg2, VgR, and genes encoding JH acid- and farnesoate O-methyltransferases (JHAMT and FAMeT, respectively) acting in the JH biosynthetic pathway. However, it did not affect hemolymph concentrations of CCAP and sNPF. Injection of CCAP stimulated, while sNPF suppressed oocyte maturation and Vgs/VgR transcription, i.e., acting as allatomedins. Injection of CCAP promoted, while sNPF repressed ecdysteroid (20E) synthesis, particularly at the second step of Vg uptake. 20E also affected the JH biosynthetic pathway and Vg/VgR synthesis. The results revealed that on the course of vitellogenesis, JH- and 20E-mediated regulation occurs downstream to indoleamines- and peptides-mediated regulations. Intricate mutual interactions of these regulatory routes must orchestrate reproduction in this species at the highest potency.
Collapse
Affiliation(s)
- A. S. M. Kamruzzaman
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan;
| | - Azam Mikani
- Department of Entomology, Faculty of Agriculture, Tarbiat Modares University, Tehran 14115-336, Iran;
| | - Amr A. Mohamed
- Department of Entomology, Faculty of Science, Cairo University, Giza 12613, Egypt;
- Correspondence: (A.A.M.); (M.T.); Tel.: +2-0106-943-1998 (A.A.M.); +81-78-982-2531/070-4425-68319 (M.T.)
| | - Azza M. Elgendy
- Department of Entomology, Faculty of Science, Cairo University, Giza 12613, Egypt;
| | - Makio Takeda
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan;
- Correspondence: (A.A.M.); (M.T.); Tel.: +2-0106-943-1998 (A.A.M.); +81-78-982-2531/070-4425-68319 (M.T.)
| |
Collapse
|
38
|
Zhang F, Wang J, Thakur K, Hu F, Zhang JG, Jiang XF, An SH, Jiang H, Jiang L, Wei ZJ. Isolation functional characterization of allatotropin receptor from the cotton bollworm, Helicoverpa armigera. Peptides 2019; 122:169874. [PMID: 29198647 DOI: 10.1016/j.peptides.2017.11.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 11/24/2017] [Accepted: 11/27/2017] [Indexed: 12/31/2022]
Abstract
Insect allatotropin (AT) plays multi-functions including regulation of juvenile hormone synthesis, growth, development and reproduction. In the present study, the full-length cDNA encoding the AT receptor was cloned from the brain of Helicoverpa armigera (Helar-ATR). The ORF of Helar-ATR exhibited the characteristic seven transmembrane domains of the G protein-coupled receptor (GPCR) and was close to the ATR of Manduca sexta in the phylogenetic tree. The Helar-ATR expressed in vertebrate cell lines can be activated by Helar-AT and each Helar-ATL in a dose-responsive manner, in the following order: Helar-ATLI > Helar-ATLII > Helar-AT > Helar-ATLIII. Helar-ATLI and Helar-ATLII represented the functional ligands to Helar-ATR in vitro, while Helar-AT and Helar-ATLIII behaved as partial agonists. The in vitro functional analysis suggested that the Helar-ATR signal was mainly coupled with elevated levels of Ca2+ and independent of cAMP levels. Helar-ATR mRNA in larvae showed the highest level in the brain, followed by the thorax ganglion, abdomen ganglion, fat body and midgut. Helar-ATR mRNA levels in the complex of the brain-thoracic-abdomen ganglion on the 2nd day of the larval stage and during later pupal stages were observed to be relatively higher than in the wandering and early pupal stages.
Collapse
Affiliation(s)
- Fang Zhang
- School of Food Science and Engineering, Hefei University of Technology, Hefei 230009, China
| | - Jun Wang
- School of Food Science and Engineering, Hefei University of Technology, Hefei 230009, China
| | - Kiran Thakur
- School of Food Science and Engineering, Hefei University of Technology, Hefei 230009, China
| | - Fei Hu
- School of Food Science and Engineering, Hefei University of Technology, Hefei 230009, China
| | - Jian-Guo Zhang
- School of Food Science and Engineering, Hefei University of Technology, Hefei 230009, China
| | - Xing-Fu Jiang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shi-Hen An
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Hongbo Jiang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Li Jiang
- School of Food Science and Engineering, Hefei University of Technology, Hefei 230009, China.
| | - Zhao-Jun Wei
- School of Food Science and Engineering, Hefei University of Technology, Hefei 230009, China.
| |
Collapse
|
39
|
Liu A, Liu F, Shi W, Huang H, Wang G, Ye H. C-Type allatostatin and its putative receptor from the mud crab serve an inhibitory role in ovarian development. ACTA ACUST UNITED AC 2019; 222:jeb.207985. [PMID: 31558587 DOI: 10.1242/jeb.207985] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 09/23/2019] [Indexed: 01/02/2023]
Abstract
C-Type allatostatins are a family of peptides that characterized by a conserved unblocked PISCF motif at the C-terminus. In insects, it is well known that C-type allatostatin has a potent inhibitory effect on juvenile hormone biosynthesis by the corpora allata. C-Type allatostatin has been widely identified from crustacean species but little is known about its roles. Therefore, this study investigated the tissue distribution patterns of C-type allatostatin and its putative receptor in the mud crab Scylla paramamosain, and further explored its potential effect on vitellogenesis. Firstly, cDNAs encoding C-type allatostatin (Sp-AST-C) precursor and its putative receptor (Sp-AST-CR) were isolated. Subsequently, RT-PCR revealed that Sp-AST-C was mainly expressed in the nervous tissue, middle gut and heart, whereas Sp-AST-CR had extensive expression in all tissues tested except the eyestalk ganglion and hepatopancreas. In addition, in situ hybridization in the cerebral ganglion showed that Sp-AST-C was localized in clusters 6 and 8 of the protocerebrum, clusters 9, 10 and 11 of the deutocerebrum, and clusters 14 and 15 of the tritocerebrum. Whole-mount immunofluorescence revealed a similar distribution pattern. Synthetic Sp-AST-C had no effect on the abundance of S. paramamosain vitellogenin (Sp-Vg) in the hepatopancreas and ovary in vitro but significantly reduced the expression of its receptor (Sp-VgR) in the ovary in a dose-dependent manner. Furthermore, Sp-VgR expression, vitellin content and oocyte diameter in the ovary were reduced 16 days after the first injection of Sp-AST-C. Finally, in situ hybridization showed that Sp-AST-CR transcript was specifically localized in the oocytes, which further indicated that the oocytes are the target cells for Sp-AST-C. In conclusion, our results suggested that the Sp-AST-C signaling system is involved in the regulation of ovarian development, possibly by directly inhibiting the uptake of yolk by oocytes and obstructing oocyte growth.
Collapse
Affiliation(s)
- An Liu
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Fang Liu
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Wenyuan Shi
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Huiyang Huang
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Guizhong Wang
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Haihui Ye
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| |
Collapse
|
40
|
Sawadro MK, Bednarek AW, Molenda AE, Babczyńska AI. Expression profile of genes encoding allatoregulatory neuropeptides in females of the spider Parasteatoda tepidariorum (Araneae, Theridiidae). PLoS One 2019; 14:e0222274. [PMID: 31504071 PMCID: PMC6736302 DOI: 10.1371/journal.pone.0222274] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 08/26/2019] [Indexed: 12/23/2022] Open
Abstract
Allatoregulatory neuropeptides are multifunctional proteins that take part in the synthesis and secretion of juvenile hormones. In insects, allatostatins are inhibitors of juvenile hormone biosynthesis in the corpora allata while allatotropins, act as stimulators. By quantitative real-time PCR, we analyzed the gene expression of allatostatin A (PtASTA), allatostatin B (PtASTB), allatostatin C (PtASTC), allatotropin (PtAT) and their receptors (PtASTA-R, PtASTB-R, PtASTC-R, PtAT-R) in various tissues in different age groups of female spiders. In the presented manuscript, the presence of allatostatin A, allatostatin C, and allatotropin are reported in females of the spider P. tepidariorum. The obtained results indicated substantial differences in gene expression levels for allatoregulatory neuropeptides and their receptors in the different tissues. Additionally, the gene expression levels also varied depending on the female age. Strong expression was observed coinciding with sexual maturation in the neuroendocrine and nervous system, and to a lower extent in the digestive tissues and ovaries. Reverse trends were observed for the expression of genes encoding the receptors of these neuropeptides. In conclusion, our study is the first hint that the site of synthesis and secretion is fulfilled by similar structures as observed in other arthropods. In addition, the results of the analysis of spider physiology give evidence that the general functions like regulation of the juvenile hormone synthesis, regulation of the digestive tract and ovaries action, control of vitellogenesis process by the neuropeptides seem to be conserved among arthropods and are the milestone to future functional studies.
Collapse
Affiliation(s)
- Marta Katarzyna Sawadro
- Department of Animal Physiology and Ecotoxicology, University of Silesia in Katowice, Bankowa, Katowice, Poland
| | - Agata Wanda Bednarek
- Department of Animal Physiology and Ecotoxicology, University of Silesia in Katowice, Bankowa, Katowice, Poland
| | - Agnieszka Ewa Molenda
- Department of Animal Physiology and Ecotoxicology, University of Silesia in Katowice, Bankowa, Katowice, Poland
| | | |
Collapse
|
41
|
Zhou YJ, Seike H, Nagata S. Function of myosuppressin in regulating digestive function in the two-spotted cricket, Gryllus bimaculatus. Gen Comp Endocrinol 2019; 280:185-191. [PMID: 31054903 DOI: 10.1016/j.ygcen.2019.05.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 04/22/2019] [Accepted: 05/01/2019] [Indexed: 01/28/2023]
Abstract
Myosuppressin is one of essential peptides controlling biological processes including feeding behavior. Here we identified and characterized the cDNAs that encode myosuppressin precursor and its receptor in the two-spotted cricket Gryllus bimaculatus. The presence of the mature peptide (Grybi-MS) was confirmed by direct measurement of adult brain. RT-PCR revealed the tissue distribution of these transcripts; myosuppressin is expressed predominantly in the brain and central nervous system, whereas its receptor is ubiquitously expressed in the cricket body. To address the function of Grybi-MS, we performed several bioassays to test concerning feeding behavior and digestive function upon exposure to Grybi-MS. Administration of synthetic Grybi-MS resulted in increased feeding motivation, accompanied by an increase in food intake. Meanwhile, the hemolymph lipid and carbohydrate titers were both elevated after Grybi-MS injection. As the intestinal contraction is significantly inhibited by the exposure to Grybi-MS, the upregulating feeding index might be complicated in the cricket body. The current data indicate that Grybi-MS modulates feeding behavior to control the physiological processes in the cricket.
Collapse
Affiliation(s)
- Yi Jun Zhou
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwa no ha, Kashiwa City, Chiba #277-8562, Japan; Research Fellow of Japan Society for the Promotion of Science (JSPS), Kojimachi, Chiyoda-ku, Tokyo 102-0083, Japan
| | - Hitomi Seike
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwa no ha, Kashiwa City, Chiba #277-8562, Japan
| | - Shinji Nagata
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwa no ha, Kashiwa City, Chiba #277-8562, Japan.
| |
Collapse
|
42
|
Alzugaray ME, Bruno MC, Villalobos Sambucaro MJ, Ronderos JR. The Evolutionary History of The Orexin/Allatotropin GPCR Family: from Placozoa and Cnidaria to Vertebrata. Sci Rep 2019; 9:10217. [PMID: 31308431 PMCID: PMC6629687 DOI: 10.1038/s41598-019-46712-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 07/04/2019] [Indexed: 12/14/2022] Open
Abstract
Peptidic messengers constitute a highly diversified group of intercellular messengers widely distributed in nature that regulate a great number of physiological processes in Metazoa. Being crucial for life, it seem that they have appeared in the ancestral group from which Metazoa evolved, and were highly conserved along the evolutionary process. Peptides act mainly through G-protein coupled receptors (GPCRs), a family of transmembrane molecules. GPCRs are also widely distributed in nature being present in metazoan, but also in Choanoflagellata and Fungi. Among GPCRs, the Allatotropin/Orexin (AT/Ox) family is particularly characterized by the presence of the DRW motif in the second intracellular loop (IC Loop 2), and seems to be present in Cnidaria, Placozoa and in Bilateria, suggesting that it was present in the common ancestor of Metazoa. Looking for the evolutionary history of this GPCRs we searched for corresponding sequences in public databases. Our results suggest that AT/Ox receptors were highly conserved along evolutionary process, and that they are characterized by the presence of the E/DRWYAI motif at the IC Loop 2. Phylogenetic analyses show that AT/Ox family of receptors reflects evolutionary relationships that agree with current phylogenetic understanding in Actinopterygii and Sauropsida, including also the largely discussed position of Testudines.
Collapse
Affiliation(s)
- María Eugenia Alzugaray
- Cátedra de Histología y Embriología Animal, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata (FCNyM-UNLP), La Plata, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - María Cecilia Bruno
- Cátedra de Histología y Embriología Animal, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata (FCNyM-UNLP), La Plata, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - María José Villalobos Sambucaro
- Cátedra de Histología y Embriología Animal, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata (FCNyM-UNLP), La Plata, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Jorge Rafael Ronderos
- Cátedra de Histología y Embriología Animal, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata (FCNyM-UNLP), La Plata, Argentina.
| |
Collapse
|
43
|
Deshpande SA, Meiselman M, Hice RH, Arensburger P, Rivera-Perez C, Kim DH, Croft RL, Noriega FG, Adams ME. Ecdysis triggering hormone receptors regulate male courtship behavior via antennal lobe interneurons in Drosophila. Gen Comp Endocrinol 2019; 278:79-88. [PMID: 30543770 DOI: 10.1016/j.ygcen.2018.12.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 12/05/2018] [Accepted: 12/10/2018] [Indexed: 10/27/2022]
Abstract
Ecdysis triggering hormone receptors (ETHR) regulate the behavioral sequence necessary for cuticle shedding. Recent reports have documented functions for ETHR signaling in adult Drosophila melanogaster. In this study, we report that ETHR silencing in local interneurons of the antennal lobes and fruitless neurons leads to sharply increased rates of male-male courtship. RNAseq analysis of ETHR knockdown flies reveals differential expression of genes involved in axon guidance, courtship behavior and chemosensory functions. Our findings indicate an important role for ETHR in regulation of Drosophila courtship behavior through chemosensory processing in the antennal lobe.
Collapse
Affiliation(s)
- Sonali A Deshpande
- Department of Entomology, University of California, Riverside, CA 92521, United States
| | - Matthew Meiselman
- Graduate Program in Cell, Molecular, and Developmental Biology, University of California, Riverside, CA 92521, United States
| | - Robert H Hice
- Department of Entomology, University of California, Riverside, CA 92521, United States
| | - Peter Arensburger
- Department of Biological Sciences, California State Polytechnic University, Pomona, CA 917684, United States
| | - Crisalejandra Rivera-Perez
- Department of Biological Sciences, Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, United States
| | - Do-Hyoung Kim
- Department of Entomology, University of California, Riverside, CA 92521, United States
| | - Rachel L Croft
- Cell Biology and Neuroscience, University of California, Riverside, CA 92521, United States
| | - Fernando Gabriel Noriega
- Department of Biological Sciences, Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, United States
| | - Michael E Adams
- Department of Entomology, University of California, Riverside, CA 92521, United States; Cell Biology and Neuroscience, University of California, Riverside, CA 92521, United States.
| |
Collapse
|
44
|
Matsumoto S, Kutsuna N, Daubnerová I, Roller L, Žitňan D, Nagasawa H, Nagata S. Enteroendocrine peptides regulate feeding behavior via controlling intestinal contraction of the silkworm Bombyx mori. PLoS One 2019; 14:e0219050. [PMID: 31260470 PMCID: PMC6602202 DOI: 10.1371/journal.pone.0219050] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 06/16/2019] [Indexed: 11/24/2022] Open
Abstract
Our previous study demonstrated that predominant feeding inhibitory effects were found in the crude extracts of foregut and midgut of the silkworm Bombyx mori larvae. To address the entero-intestinal control crucial for the regulation of insect feeding behavior, the present study identified and functionally characterized feeding inhibitory peptides from the midgut of B. mori larvae. Purification and structural analyses revealed that the predominant inhibitory factors in the crude extracts were allatotropin (AT) and GSRYamide after its C-terminal sequence. In situ hybridization revealed that AT and GSRYamide were expressed in enteroendocrine cells in the posterior and anterior midgut, respectively. Receptor screening using Ca2+-imaging technique showed that the B. mori neuropeptide G protein-coupled receptor (BNGR)-A19 and -A22 acted as GSRYamide receptors and BNGR-A5 acted as an additional AT receptor. Expression analyses of these receptors and the results of the peristaltic motion assay indicated that these peptides participated in the regulation of intestinal contraction. Exposure of pharynx and ileum to AT and GSRYamide inhibited spontaneous contraction in ad libitum-fed larvae, while exposure of pharynx to GSRYamide did not inhibit contraction in non-fed larvae, indicating that the feeding state changed their sensitivity to inhibitory peptides. These different responses corresponded to different expression levels of their receptors in the pharynx. In addition, injection of AT and GSRYamide decreased esophageal contraction frequencies in the melamine-treated transparent larvae. These findings strongly suggest that these peptides exert feeding inhibitory effects by modulating intestinal contraction in response to their feeding state transition, eventually causing feeding termination.
Collapse
Affiliation(s)
- Sumihiro Matsumoto
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Natsumaro Kutsuna
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Ivana Daubnerová
- Institute of Zoology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Ladislav Roller
- Institute of Zoology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Dušan Žitňan
- Institute of Zoology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Hiromichi Nagasawa
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Shinji Nagata
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
- * E-mail:
| |
Collapse
|
45
|
Nässel DR, Zandawala M. Recent advances in neuropeptide signaling in Drosophila, from genes to physiology and behavior. Prog Neurobiol 2019; 179:101607. [PMID: 30905728 DOI: 10.1016/j.pneurobio.2019.02.003] [Citation(s) in RCA: 193] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 02/18/2019] [Accepted: 02/28/2019] [Indexed: 12/11/2022]
Abstract
This review focuses on neuropeptides and peptide hormones, the largest and most diverse class of neuroactive substances, known in Drosophila and other animals to play roles in almost all aspects of daily life, as w;1;ell as in developmental processes. We provide an update on novel neuropeptides and receptors identified in the last decade, and highlight progress in analysis of neuropeptide signaling in Drosophila. Especially exciting is the huge amount of work published on novel functions of neuropeptides and peptide hormones in Drosophila, largely due to the rapid developments of powerful genetic methods, imaging techniques and innovative assays. We critically discuss the roles of peptides in olfaction, taste, foraging, feeding, clock function/sleep, aggression, mating/reproduction, learning and other behaviors, as well as in regulation of development, growth, metabolic and water homeostasis, stress responses, fecundity, and lifespan. We furthermore provide novel information on neuropeptide distribution and organization of peptidergic systems, as well as the phylogenetic relations between Drosophila neuropeptides and those of other phyla, including mammals. As will be shown, neuropeptide signaling is phylogenetically ancient, and not only are the structures of the peptides, precursors and receptors conserved over evolution, but also many functions of neuropeptide signaling in physiology and behavior.
Collapse
Affiliation(s)
- Dick R Nässel
- Department of Zoology, Stockholm University, Stockholm, Sweden.
| | - Meet Zandawala
- Department of Zoology, Stockholm University, Stockholm, Sweden; Department of Neuroscience, Brown University, Providence, RI, USA.
| |
Collapse
|
46
|
Shi Y, Liu TY, Jiang HB, Liu XQ, Dou W, Park Y, Smagghe G, Wang JJ. The Ecdysis Triggering Hormone System, via ETH/ETHR-B, Is Essential for Successful Reproduction of a Major Pest Insect, Bactrocera dorsalis (Hendel). Front Physiol 2019; 10:151. [PMID: 30936833 PMCID: PMC6431669 DOI: 10.3389/fphys.2019.00151] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 02/08/2019] [Indexed: 01/07/2023] Open
Abstract
Ecdysis triggering hormone (ETH), released by the Inka cells, is a master hormone in regulating the ecdysis process in insect. Here we investigated the presence and role of the ETH signaling in the female adult of the oriental fruit fly, Bactrocera dorsalis (Hendel) that is one of the most important invasive pest insects in agriculture worldwide. In the female adult, ETH was confirmed in the Inka cells at the tracheae by immunostaining and also in vitro exposure to ETH stimulated the isolated corpora allata of adult in activity. Then we prepared cDNA of females at 0, 5, 10, 15, and 20 days after adult eclosion, and RT-qPCR showed that the expression pattern of ETH and its receptor ETHR-B started from a peak at the day of adult eclosion (day 0), then dropped to basal levels and increased again between day 10 and 15 which is also the period corresponding to ovary growth. In contrast, ETHR-A was absent with Ct values of >33. The expression patterns of the ecdysteroid-producing Halloween genes Spook and Shade, and the vitellogenin genes Vg1, Vg2, and Vg3 co-occurred with peak levels at days 10–15, and also juvenile hormone acid methyltransferase (JHAMT) showed increased levels on day 15. Further in RNAi assays to better understand the role of ETH and ETHR, dsRNA was injected to adult and this led to a respective decrease in expression of 62 and 56% for ETH and ETHR-B, while ETHR-A stayed absent with Ct values of 33. In these RNAi-females, there was an apparently decreased expression for JHAMT and Vg2, together with a significant decrease of the JH titer and egg production. Injection of the JH mimetic methoprene could rescue Vg2 expression and egg production. Upstream, in dsETH/dsETHR-injected females, 20-hydroxyecdysone (20E) injection rescued the transcriptions of ETH and ETHR and also egg production. In summary, our results shed more light on the pivotal role that the ETH peptide hormone and its receptor ETHR-B play an essential role in the reproduction of the female adult of B. dorsalis, via the regulation of JH and vitellogenin, which are controlled by a pulse of 20E.
Collapse
Affiliation(s)
- Yan Shi
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China.,Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Tian-Yuan Liu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China.,Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Hong-Bo Jiang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China.,Academy of Agricultural Sciences, Southwest University, Chongqing, China.,International Joint Laboratory on China-Belgium Sustainable Crop Pest Control Between Southwest University in China and Ghent University in Belgium, Chongqing, China
| | - Xiao-Qiang Liu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China.,Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Wei Dou
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China.,Academy of Agricultural Sciences, Southwest University, Chongqing, China.,International Joint Laboratory on China-Belgium Sustainable Crop Pest Control Between Southwest University in China and Ghent University in Belgium, Chongqing, China
| | - Yoonseong Park
- Department of Entomology, Kansas State University, Manhattan, KS, United States
| | - Guy Smagghe
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China.,Academy of Agricultural Sciences, Southwest University, Chongqing, China.,International Joint Laboratory on China-Belgium Sustainable Crop Pest Control Between Southwest University in China and Ghent University in Belgium, Chongqing, China.,Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China.,Academy of Agricultural Sciences, Southwest University, Chongqing, China.,International Joint Laboratory on China-Belgium Sustainable Crop Pest Control Between Southwest University in China and Ghent University in Belgium, Chongqing, China
| |
Collapse
|
47
|
To what extent may peptide receptor gene diversity/complement contribute to functional flexibility in a simple pattern-generating neural network? COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2019; 30:262-282. [PMID: 30974344 DOI: 10.1016/j.cbd.2019.03.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 03/01/2019] [Accepted: 03/02/2019] [Indexed: 12/11/2022]
Abstract
Peptides are known to contribute to central pattern generator (CPG) flexibility throughout the animal kingdom. However, the role played by receptor diversity/complement in determining this functional flexibility is not clear. The stomatogastric ganglion (STG) of the crab, Cancer borealis, contains CPGs that are models for investigating peptidergic control of rhythmic behavior. Although many Cancer peptides have been identified, their peptide receptors are largely unknown. Thus, the extent to which receptor diversity/complement contributes to modulatory flexibility in this system remains unresolved. Here, a Cancer mixed nervous system transcriptome was used to determine the peptide receptor complement for the crab nervous system as a whole. Receptors for 27 peptide families, including multiple receptors for some groups, were identified. To increase confidence in the predicted sequences, receptors for allatostatin-A, allatostatin-B, and allatostatin-C were cloned, sequenced, and expressed in an insect cell line; as expected, all three receptors trafficked to the cell membrane. RT-PCR was used to determine whether each receptor was expressed in the Cancer STG. Transcripts for 36 of the 46 identified receptors were amplified; these included at least one for each peptide family except RYamide. Finally, two peptides untested on the crab STG were assessed for their influence on its motor outputs. Myosuppressin, for which STG receptors were identified, exhibited clear modulatory effects on the motor patterns of the ganglion, while a native RYamide, for which no STG receptors were found, elicited no consistent modulatory effects. These data support receptor diversity/complement as a major contributor to the functional flexibility of CPGs.
Collapse
|
48
|
Čižmár D, Roller L, Pillerová M, Sláma K, Žitňan D. Multiple neuropeptides produced by sex-specific neurons control activity of the male accessory glands and gonoducts in the silkworm Bombyx mori. Sci Rep 2019; 9:2253. [PMID: 30783175 PMCID: PMC6381147 DOI: 10.1038/s41598-019-38761-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 12/10/2018] [Indexed: 12/20/2022] Open
Abstract
The male accessory glands (AG) and gonoducts of moths develop during metamorphosis and are essential for successful fertilization of females. We found that these reproductive organs are innervated by a sex-specific cluster of peptidergic neurons in the posterior 9th neuromere of the terminal abdominal ganglion (TAG). This cluster of ~20 neurons differentiate during metamorphosis to innervate the accessory glands and sperm ducts. Using immunohistochemistry and in situ hybridization (ISH) we showed that these neurons express four neuropeptide precursors encoding calcitonin-like diuretic hormone (CT-DH), allatotropin (AT) and AT-like peptides (ATLI-III), allatostatin C (AST-C), and myoinhibitory peptides (MIPs). We used contraction bioassay in vitro to determine roles of these neuropeptides in the gonoduct and accessory gland activity. Spontaneous contractions of the seminal vesicle and AG were stimulated in a dose depended manner by CT-DH and AT, whereas AST-C and MIP elicited dose dependent inhibition. Using quantitative RT-PCR we confirmed expression of receptors for these neuropeptides in organs innervated by the male specific cluster of neurons. Our results suggest a role of these neuropeptides in regulation of seminal fluid movements during copulation.
Collapse
Affiliation(s)
- Daniel Čižmár
- Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 84506, Bratislava, Slovakia
| | - Ladislav Roller
- Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 84506, Bratislava, Slovakia
| | - Miriam Pillerová
- Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 84506, Bratislava, Slovakia
| | - Karel Sláma
- Biology Centre of Czech Academy of Sciences, Institute of Entomology, Drnovská 507, 16100, Praha 6, Czech Republic
| | - Dušan Žitňan
- Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 84506, Bratislava, Slovakia.
| |
Collapse
|
49
|
Matsumoto S, Ohara A, Nagai-Okatani C, Zhou YJ, Fujinaga D, Seike H, Nagata S. Antagonistic Effect of Short Neuropeptide F on Allatotropin-Inhibited Feeding Motivation of the Silkworm Larva, Bombyx mori. Zoolog Sci 2019; 36:58-67. [PMID: 31116539 DOI: 10.2108/zs180119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 09/30/2018] [Indexed: 11/17/2022]
Abstract
Here, we demonstrated an antagonistic effect of short neuropeptide F (sNPF) in modulating feeding motivation in the silkworm Bombyx mori; sNPF reduced the feeding-delaying effects caused by administration of an inhibitory peptide, allatotropin (AT). In situ hybridization and MALDI-TOF MS analysis revealed the presence of three subtypes of sNPFs (sNPF-1, -2, and -3) in the midgut enteroendocrine cells. Ca2+-imaging analyses revealed that three subtypes of sNPF receptors (sNPFRs) (BNGR-A7, -A10, and -A11) showed different affinities with the three subtypes of sNPFs. In addition, sNPF activated its signaling via ERK phosphorylation in the midgut, while mixture of sNPF and AT reduced the phosphorylation level, agreeing with the results of behavioral assay. Together, our current findings suggest that intestinal sNPF positively modulates the feeding motivation by reducing the inhibitory effects by AT within the midgut.
Collapse
Affiliation(s)
- Sumihiro Matsumoto
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, the University of Tokyo, Kashiwa City, Chiba 277-8562, Japan
| | - Ayako Ohara
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, the University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Chiaki Nagai-Okatani
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, the University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan.,Current affiliation: Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8568, Japan
| | - Yi-Jun Zhou
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, the University of Tokyo, Kashiwa City, Chiba 277-8562, Japan.,Research Fellow of Japan Society for the Promotion of Science (JSPS), Kojimachi, Chiyoda-ku, Tokyo 102-0083, Japan
| | - Daiki Fujinaga
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, the University of Tokyo, Kashiwa City, Chiba 277-8562, Japan
| | - Hitomi Seike
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, the University of Tokyo, Kashiwa City, Chiba 277-8562, Japan
| | - Shinji Nagata
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, the University of Tokyo, Kashiwa City, Chiba 277-8562, Japan,
| |
Collapse
|
50
|
Bao C, Yang Y, Zeng C, Huang H, Ye H. Identifying neuropeptide GPCRs in the mud crab, Scylla paramamosain, by combinatorial bioinformatics analysis. Gen Comp Endocrinol 2018; 269:122-130. [PMID: 30189191 DOI: 10.1016/j.ygcen.2018.09.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 08/23/2018] [Accepted: 09/02/2018] [Indexed: 11/24/2022]
Abstract
Neuropeptides, ubiquitous signaling molecules, commonly achieve their signaling function via interaction with cell membrane-spanning G-protein coupled receptors (GPCRs). In recent years, in the midst of the rapid development of next-generation sequencing technology, the amount of available information on encoded neuropeptides and their GPCRs sequences have increased dramatically. The repertoire of neuropeptides has been determined in many crustaceans, including the commercially important mud crab, Scylla paramamosain; however, determination of GPCRs is known to be more difficult and usually requires in vitro binding tests. In this study, we adopted a combinatorial bioinformatics analysis to identify S. paramamosain neuropeptide GPCRs. A total of 65 assembled GPCR sequences were collected from the transcriptome database. Subsequently these GPCRs were identified by comparison to known neuropeptide GPCRs based on the sequence-similarity-based clustering and phylogenetic analysis, which showed that many of them are closely related to insect GPCR families. Of these GPCRs, most of them were detected in various tissues of the mud crab and some of them showed differential expression by gender, suggesting they are involved in different physiological processes, such as sex differentiation. By employing ligand-receptor binding tests, we demonstrated that the predicted crustacean cardioactive peptide (CCAP) receptor was activated by CCAP peptide in a dose-dependent manner. This is the first CCAP receptor that has been functionally defined in crustaceans. In summary, the present study shortlists candidate neuropeptide GPCRs for ligand-receptor binding tests, and provides information for subsequent future research on the neuropeptide/GPCR signaling pathway in S. paramamosain.
Collapse
Affiliation(s)
- Chenchang Bao
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Yanan Yang
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Chaoshu Zeng
- College of Science & Engineering, James Cook University, Townsville, Queensland 4811, Australia
| | - Huiyang Huang
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Haihui Ye
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen 361102, Fujian Province, China.
| |
Collapse
|