1
|
Thapliyal P, Sah V, Rautela I, Joshi M, Tyagi S, Verma R, Sharma MD. Next Generation Sequencing: Latent applications in clinical diagnostics with the advent of bioinformatic frameworks. Pathol Res Pract 2024; 263:155606. [PMID: 39357183 DOI: 10.1016/j.prp.2024.155606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/03/2024] [Accepted: 09/24/2024] [Indexed: 10/04/2024]
Abstract
For the past 3-4 decades, the discovery of Sanger's method of pyrosequencing was the only method unparalleled till 2005 being employed as a method of whole genome sequencing (WGS). Following this, a revolutionary extensive parallel sequencing method, Next Generation Sequencing (NGS), was engineered. NGS supported a substantial number of bases under a high throughput metagenomic interrogation. Bioinformatics contributed notably to this advancement. It provided alignment tools, assembly algorithms, and protocols such as Illumina and hybridization capture which have metamorphosed clinical and translational diagnostics. With the extension in precision medicine and targeted therapy under NGS sectors such as epigenetics, transcriptomics, mutation detection, prognosis, therapeutics, and patient management have been gaining progress. Using NGS in real-time clinical settings has been proven to produce positive outcomes. The most recent instrumental benefaction of NGS has been decoding the SARS-CoV-2 virus epidemiology with the assistance of multiplex PCR. So far, it had been employed to inspect different levels of viral loads from low to mid. This has been executed by amplification and phylogenetic examination of the load to raise a connective link with the evolutionary history leading up to the period of origin. The depletion in the consumed time and extensive genome size under analysis was further coupled by a cutback in the cost of sequencing while executing NGS. With the aid of this review paper, we aspire to manifest how the above-mentioned elements have boosted, tissue, microbial, and molecular data interrogation. Along with this, promoting, and stimulating an extensive evaluation and expansion in the paradigm of morphological and phenotypic study, via bioinformatics can facilitate further advancement in personalized and concise clinical research.
Collapse
Affiliation(s)
- Priya Thapliyal
- Department of Biochemistry, H.N.B. Garhwal (A Central) University, Srinagar, Uttarakhand 246174, India
| | - Vijayalaxmi Sah
- Department of Biotechnology, School of Applied and Life Sciences (SALS), Uttaranchal University, Dehradun, Uttarakhand 248001, India
| | - Indra Rautela
- Department of Biotechnology, School of Applied and Life Sciences (SALS), Uttaranchal University, Dehradun, Uttarakhand 248001, India
| | - Mallika Joshi
- Department of Biotechnology, Chandigarh University, Gharaun, Mohali, Punjab 140413, India
| | - Sheetal Tyagi
- Department of Chemistry, School of Basic and Applied Sciences, Shri Guru Ram Rai University, Patel Nagar, Dehradun, Uttarakhand 248001, India
| | - Rashmi Verma
- Department of Biotechnology, School of Basic and Applied Sciences, Shri Guru Ram Rai University, Patel Nagar, Dehradun, Uttarakhand 248001, India
| | - Manish Dev Sharma
- Department of Biotechnology, School of Basic and Applied Sciences, Shri Guru Ram Rai University, Patel Nagar, Dehradun, Uttarakhand 248001, India.
| |
Collapse
|
2
|
Downie DL, Rao P, David-Ferdon C, Courtney S, Lee JS, Quiner C, MacDonald PDM, Barnes K, Fisher S, Andreadis JL, Chaitram J, Mauldin MR, Salerno RM, Schiffer J, Gundlapalli AV. Surveillance for Emerging and Reemerging Pathogens Using Pathogen Agnostic Metagenomic Sequencing in the United States: A Critical Role for Federal Government Agencies. Health Secur 2024; 22:85-92. [PMID: 38574329 PMCID: PMC11044857 DOI: 10.1089/hs.2023.0099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/04/2023] [Accepted: 08/04/2023] [Indexed: 04/06/2024] Open
Abstract
The surveillance and identification of emerging, reemerging, and unknown infectious disease pathogens is essential to national public health preparedness and relies on fluidity, coordination, and interconnectivity between public and private pathogen surveillance systems and networks. Developing a national sentinel surveillance network with existing resources and infrastructure could increase efficiency, accelerate the identification of emerging public health threats, and support coordinated intervention strategies that reduce morbidity and mortality. However, implementing and sustaining programs to detect emerging and reemerging pathogens in humans using advanced molecular methods, such as metagenomic sequencing, requires making large investments in testing equipment and developing networks of clinicians, laboratory scientists, and bioinformaticians. In this study, we sought to gain an understanding of how federal government agencies currently support such pathogen agnostic testing of human specimens in the United States. We conducted a landscape analysis of federal agency websites for publicly accessible information on the availability and type of pathogen agnostic testing and details on flow of clinical specimens and data. The website analysis was supplemented by an expert review of results with representatives from the federal agencies. Operating divisions within the US Department of Health and Human Services and the US Department of Veterans Affairs have developed and sustained extensive clinical and research networks to obtain patient specimens and perform metagenomic sequencing. Metagenomic facilities supported by US agencies were not equally geographically distributed across the United States. Although many entities have work dedicated to metagenomics and/or support emerging infectious disease surveillance specimen collection, there was minimal formal collaboration across agencies.
Collapse
Affiliation(s)
- Diane L. Downie
- Diane L. Downie, PhD, MPH, is Deputy Associate Director for Science, Office of Readiness and Response, US Centers for Disease Control and Prevention, Atlanta, GA
| | - Preetika Rao
- Preetika Rao, MPH, is a Health Scientist, US Centers for Disease Control and Prevention, Atlanta, GA
| | - Corinne David-Ferdon
- Corinne David-Ferdon, PhD, is Associate Director of Science, Office of Public Health Data, Surveillance, and Technology, US Centers for Disease Control and Prevention, Atlanta, GA
| | - Sean Courtney
- Sean Courtney, PhD, is a Health Scientist, US Centers for Disease Control and Prevention, Atlanta, GA
| | - Justin S. Lee
- Justin S. Lee, DVM, PhD, is a Health Scientist, Division of Global Health Protection, US Centers for Disease Control and Prevention, Atlanta, GA
| | - Claire Quiner
- Claire Quiner, MPH, MCP, is a Research Public Health Analyst, Social, Statistical, and Environmental Sciences, RTI International, Research Triangle Park, NC
| | - Pia D. M. MacDonald
- Pia D. M. MacDonald, PhD, MPH, is a Senior Infectious Disease Epidemiologist, Social, Statistical, and Environmental Sciences, RTI International, Research Triangle Park, NC
| | - Keegan Barnes
- Keegan Barnes is a Public Health Analyst, Social, Statistical, and Environmental Sciences, RTI International, Research Triangle Park, NC
| | - Shelby Fisher
- Shelby Fisher, MPH, is an Epidemiologist, Social, Statistical, and Environmental Sciences, RTI International, Research Triangle Park, NC
| | - Joanne L. Andreadis
- Joanne L. Andreadis, PhD, is Associate Director for Science, US Centers for Disease Control and Prevention, Atlanta, GA
| | - Jasmine Chaitram
- Jasmine Chaitram, MPH, is Branch Chief, US Centers for Disease Control and Prevention, Atlanta, GA
| | - Matthew R. Mauldin
- Matthew R. Mauldin, PhD, is Health Scientists US Centers for Disease Control and Prevention, Atlanta, GA
| | - Reynolds M. Salerno
- Reynolds M. Salerno, PhD, is Director, Division of Laboratory Systems, US Centers for Disease Control and Prevention, Atlanta, GA
| | - Jarad Schiffer
- Jarad Schiffer, MS, is Health Scientists, Office of Readiness and Response, US Centers for Disease Control and Prevention, Atlanta, GA
| | - Adi V. Gundlapalli
- Adi V. Gundlapalli, MD, PhD, is a Senior Advisor, Data Readiness and Response, Office of Public Health Data, Surveillance, and Technology, US Centers for Disease Control and Prevention, Atlanta, GA
| |
Collapse
|
3
|
Arts PJ, Kelly JD, Midgley CM, Anglin K, Lu S, Abedi GR, Andino R, Bakker KM, Banman B, Boehm AB, Briggs-Hagen M, Brouwer AF, Davidson MC, Eisenberg MC, Garcia-Knight M, Knight S, Peluso MJ, Pineda-Ramirez J, Diaz Sanchez R, Saydah S, Tassetto M, Martin JN, Wigginton KR. Longitudinal and quantitative fecal shedding dynamics of SARS-CoV-2, pepper mild mottle virus, and crAssphage. mSphere 2023; 8:e0013223. [PMID: 37338211 PMCID: PMC10506459 DOI: 10.1128/msphere.00132-23] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/03/2023] [Indexed: 06/21/2023] Open
Abstract
Wastewater-based epidemiology (WBE) emerged during the coronavirus disease 2019 (COVID-19) pandemic as a scalable and broadly applicable method for community-level monitoring of infectious disease burden. The lack of high-resolution fecal shedding data for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) limits our ability to link WBE measurements to disease burden. In this study, we present longitudinal, quantitative fecal shedding data for SARS-CoV-2 RNA, as well as for the commonly used fecal indicators pepper mild mottle virus (PMMoV) RNA and crAss-like phage (crAssphage) DNA. The shedding trajectories from 48 SARS-CoV-2-infected individuals suggest a highly individualized, dynamic course of SARS-CoV-2 RNA fecal shedding. Of the individuals that provided at least three stool samples spanning more than 14 days, 77% had one or more samples that tested positive for SARS-CoV-2 RNA. We detected PMMoV RNA in at least one sample from all individuals and in 96% (352/367) of samples overall. CrAssphage DNA was detected in at least one sample from 80% (38/48) of individuals and was detected in 48% (179/371) of all samples. The geometric mean concentrations of PMMoV and crAssphage in stool across all individuals were 8.7 × 104 and 1.4 × 104 gene copies/milligram-dry weight, respectively, and crAssphage shedding was more consistent for individuals than PMMoV shedding. These results provide us with a missing link needed to connect laboratory WBE results with mechanistic models, and this will aid in more accurate estimates of COVID-19 burden in sewersheds. Additionally, the PMMoV and crAssphage data are critical for evaluating their utility as fecal strength normalizing measures and for source-tracking applications. IMPORTANCE This research represents a critical step in the advancement of wastewater monitoring for public health. To date, mechanistic materials balance modeling of wastewater-based epidemiology has relied on SARS-CoV-2 fecal shedding estimates from small-scale clinical reports or meta-analyses of research using a wide range of analytical methodologies. Additionally, previous SARS-CoV-2 fecal shedding data have not contained sufficient methodological information for building accurate materials balance models. Like SARS-CoV-2, fecal shedding of PMMoV and crAssphage has been understudied to date. The data presented here provide externally valid and longitudinal fecal shedding data for SARS-CoV-2, PMMoV, and crAssphage which can be directly applied to WBE models and ultimately increase the utility of WBE.
Collapse
Affiliation(s)
- Peter J. Arts
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - J. Daniel Kelly
- Department of Epidemiology and Biostatistics, University of California, San Francisco, California, USA
- Institute for Global Health Sciences, University of California, San Francisco, California, USA
- Division of Hospital Medicine, UCSF, San Francisco, California, USA
- F.I. Proctor Foundation, University of California, San Francisco, California, USA
| | - Claire M. Midgley
- National Center for Immunizations and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Khamal Anglin
- Department of Epidemiology and Biostatistics, University of California, San Francisco, California, USA
- Institute for Global Health Sciences, University of California, San Francisco, California, USA
| | - Scott Lu
- Department of Epidemiology and Biostatistics, University of California, San Francisco, California, USA
- Institute for Global Health Sciences, University of California, San Francisco, California, USA
| | - Glen R. Abedi
- National Center for Immunizations and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Raul Andino
- Department of Microbiology and Immunology, UCSF, San Francisco, California, USA
| | - Kevin M. Bakker
- Department of Epidemiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Bryon Banman
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Alexandria B. Boehm
- Department of Civil & Environmental Engineering, Stanford University, Stanford, California, USA
| | - Melissa Briggs-Hagen
- National Center for Immunizations and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Andrew F. Brouwer
- Department of Epidemiology, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Marisa C. Eisenberg
- Department of Epidemiology, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Sterling Knight
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Michael J. Peluso
- Division of HIV, Infectious Disease, and Global Medicine, UCSF, San Francisco, California, USA
| | - Jesus Pineda-Ramirez
- Department of Epidemiology and Biostatistics, University of California, San Francisco, California, USA
- Institute for Global Health Sciences, University of California, San Francisco, California, USA
| | - Ruth Diaz Sanchez
- Department of Epidemiology and Biostatistics, University of California, San Francisco, California, USA
- Institute for Global Health Sciences, University of California, San Francisco, California, USA
| | - Sharon Saydah
- National Center for Immunizations and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Michel Tassetto
- Department of Microbiology and Immunology, UCSF, San Francisco, California, USA
| | - Jeffrey N. Martin
- Department of Epidemiology and Biostatistics, University of California, San Francisco, California, USA
| | - Krista R. Wigginton
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
4
|
Liu S, Li Q, Jiang R, Liu P, Zhang XX. Shift of human pathogen community composition and their potential human health risk after supply suspension in tap water. Sci Rep 2023; 13:12419. [PMID: 37528119 PMCID: PMC10393962 DOI: 10.1038/s41598-023-39225-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 07/21/2023] [Indexed: 08/03/2023] Open
Abstract
Water supply suspension-restoration can occur frequently due to the overhauling of civil infrastructure in developing countries and the shutdown of commercial buildings during the pandemic. For comprehensive insights into the effects of water supply suspension-restoration, this study characterized the variations of the pathogen community composition of the tap water and their infection risk under different water supply scenarios. Metagenomic sequencing revealed a significant change of the human pathogen profiles, among which the most dominant pathogen changed from Pseudomonas aeruginosa (4.91%) to Acinetobacter johnsonii (0.59%). Furthermore, absolute quantification of pathogens by propidium-monoazide-qPCR revealed that the abundance of the three typical pathogens (Pseudomonas aeruginosa, Mycobacterium avium and Salmonella sp.) showed an increase of 2.44 log to 3.60 log immediately after water supply suspension-restoration and did not return to the normal level even after 2-h supply restoration, except for Pseudomonas aeruginosa. Quantitative microbial risk assessment suggested the infection risks of the three pathogens arising from direct utilization of tap water under stable water supply, including dermal exposure and oral intake, were all above the threshold of 10-4, and evidently increased after water supply suspension-restoration. This study warns us against the risk induced by the pathogens in tap water, especially after water supply suspension-restoration.
Collapse
Affiliation(s)
- Shengnan Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Road, Nanjing, 210023, China
| | - Qisheng Li
- China Three Gorges Construction Engineering Corporation, Beijing, 100048, China
| | - Ruiming Jiang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Road, Nanjing, 210023, China
| | - Peng Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Road, Nanjing, 210023, China.
| | - Xu-Xiang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Road, Nanjing, 210023, China.
| |
Collapse
|
5
|
Claro IM, Ramundo MS, Coletti TM, da Silva CAM, Valenca IN, Candido DS, Sales FCS, Manuli ER, de Jesus JG, de Paula A, Felix AC, Andrade PDS, Pinho MC, Souza WM, Amorim MR, Proenca-Modena JL, Kallas EG, Levi JE, Faria NR, Sabino EC, Loman NJ, Quick J. Rapid viral metagenomics using SMART-9N amplification and nanopore sequencing. Wellcome Open Res 2023; 6:241. [PMID: 37224315 PMCID: PMC10189296 DOI: 10.12688/wellcomeopenres.17170.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2023] [Indexed: 12/08/2023] Open
Abstract
Emerging and re-emerging viruses are a global health concern. Genome sequencing as an approach for monitoring circulating viruses is currently hampered by complex and expensive methods. Untargeted, metagenomic nanopore sequencing can provide genomic information to identify pathogens, prepare for or even prevent outbreaks. SMART (Switching Mechanism at the 5' end of RNA Template) is a popular approach for RNA-Seq but most current methods rely on oligo-dT priming to target polyadenylated mRNA molecules. We have developed two random primed SMART-Seq approaches, a sequencing agnostic approach 'SMART-9N' and a version compatible rapid adapters available from Oxford Nanopore Technologies 'Rapid SMART-9N'. The methods were developed using viral isolates, clinical samples, and compared to a gold-standard amplicon-based method. From a Zika virus isolate the SMART-9N approach recovered 10kb of the 10.8kb RNA genome in a single nanopore read. We also obtained full genome coverage at a high depth coverage using the Rapid SMART-9N, which takes only 10 minutes and costs up to 45% less than other methods. We found the limits of detection of these methods to be 6 focus forming units (FFU)/mL with 99.02% and 87.58% genome coverage for SMART-9N and Rapid SMART-9N respectively. Yellow fever virus plasma samples and SARS-CoV-2 nasopharyngeal samples previously confirmed by RT-qPCR with a broad range of Ct-values were selected for validation. Both methods produced greater genome coverage when compared to the multiplex PCR approach and we obtained the longest single read of this study (18.5 kb) with a SARS-CoV-2 clinical sample, 60% of the virus genome using the Rapid SMART-9N method. This work demonstrates that SMART-9N and Rapid SMART-9N are sensitive, low input, and long-read compatible alternatives for RNA virus detection and genome sequencing and Rapid SMART-9N improves the cost, time, and complexity of laboratory work.
Collapse
Affiliation(s)
- Ingra M. Claro
- Faculdade de Medicina da Universidade de São Paulo, Sao Paulo, 05403-000, Brazil
- MRC Centre for Global Infectious Disease Analysis, J-IDEA, Imperial College London, London, SW7 2AZ, UK
- Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, Sao Paulo, 05403-000, Brazil
- School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Mariana S. Ramundo
- Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, Sao Paulo, 05403-000, Brazil
| | - Thais M. Coletti
- Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, Sao Paulo, 05403-000, Brazil
| | - Camila A. M. da Silva
- Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, Sao Paulo, 05403-000, Brazil
| | - Ian N. Valenca
- Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, Sao Paulo, 05403-000, Brazil
| | - Darlan S. Candido
- MRC Centre for Global Infectious Disease Analysis, J-IDEA, Imperial College London, London, SW7 2AZ, UK
- Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, Sao Paulo, 05403-000, Brazil
- Department of Zoology, University of Oxford, Oxford, OX1 3SZ, UK
| | - Flavia C. S. Sales
- Faculdade de Medicina da Universidade de São Paulo, Sao Paulo, 05403-000, Brazil
- Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, Sao Paulo, 05403-000, Brazil
| | - Erika R. Manuli
- Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, Sao Paulo, 05403-000, Brazil
| | - Jaqueline G. de Jesus
- MRC Centre for Global Infectious Disease Analysis, J-IDEA, Imperial College London, London, SW7 2AZ, UK
- Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, Sao Paulo, 05403-000, Brazil
| | - Anderson de Paula
- Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, Sao Paulo, 05403-000, Brazil
| | - Alvina Clara Felix
- Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, Sao Paulo, 05403-000, Brazil
| | - Pamela dos Santos Andrade
- Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, Sao Paulo, 05403-000, Brazil
- Faculdade de Saúde Pública da Universidade de São Paulo, Sao Paulo, 01246-904, Brazil
| | - Mariana C. Pinho
- Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, Sao Paulo, 05403-000, Brazil
| | - William M. Souza
- World Reference Center for Emerging Viruses and Arboviruses and Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Mariene R. Amorim
- Laboratory of Emerging Viruses, Department of Genetics, Microbiology, and Immunology, Institute of Biology, University of Campinas, Campinas, 13083-862, Brazil
| | - José Luiz Proenca-Modena
- Laboratory of Emerging Viruses, Department of Genetics, Microbiology, and Immunology, Institute of Biology, University of Campinas, Campinas, 13083-862, Brazil
- Experimental Medicine Research Cluster, University of Campinas, Campinas, 13083-862, Brazil
| | - Esper G. Kallas
- Faculdade de Medicina da Universidade de São Paulo, Sao Paulo, 05403-000, Brazil
| | - José Eduardo Levi
- Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, Sao Paulo, 05403-000, Brazil
- DASA, Sao Paulo, 06455-010, Brazil
| | - Nuno Rodrigues Faria
- MRC Centre for Global Infectious Disease Analysis, J-IDEA, Imperial College London, London, SW7 2AZ, UK
- Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, Sao Paulo, 05403-000, Brazil
- Department of Zoology, University of Oxford, Oxford, OX1 3SZ, UK
| | - Ester C. Sabino
- Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, Sao Paulo, 05403-000, Brazil
| | - Nicholas J. Loman
- School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Joshua Quick
- School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| |
Collapse
|
6
|
Claro IM, Ramundo MS, Coletti TM, da Silva CAM, Valenca IN, Candido DS, Sales FCS, Manuli ER, de Jesus JG, de Paula A, Felix AC, Andrade PDS, Pinho MC, Souza WM, Amorim MR, Proenca-Modena JL, Kallas EG, Levi JE, Faria NR, Sabino EC, Loman NJ, Quick J. Rapid viral metagenomics using SMART-9N amplification and nanopore sequencing. Wellcome Open Res 2023; 6:241. [PMID: 37224315 PMCID: PMC10189296 DOI: 10.12688/wellcomeopenres.17170.2] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2023] [Indexed: 05/26/2023] Open
Abstract
Emerging and re-emerging viruses are a global health concern. Genome sequencing as an approach for monitoring circulating viruses is currently hampered by complex and expensive methods. Untargeted, metagenomic nanopore sequencing can provide genomic information to identify pathogens, prepare for or even prevent outbreaks. SMART (Switching Mechanism at the 5' end of RNA Template) is a popular approach for RNA-Seq but most current methods rely on oligo-dT priming to target polyadenylated mRNA molecules. We have developed two random primed SMART-Seq approaches, a sequencing agnostic approach 'SMART-9N' and a version compatible rapid adapters available from Oxford Nanopore Technologies 'Rapid SMART-9N'. The methods were developed using viral isolates, clinical samples, and compared to a gold-standard amplicon-based method. From a Zika virus isolate the SMART-9N approach recovered 10kb of the 10.8kb RNA genome in a single nanopore read. We also obtained full genome coverage at a high depth coverage using the Rapid SMART-9N, which takes only 10 minutes and costs up to 45% less than other methods. We found the limits of detection of these methods to be 6 focus forming units (FFU)/mL with 99.02% and 87.58% genome coverage for SMART-9N and Rapid SMART-9N respectively. Yellow fever virus plasma samples and SARS-CoV-2 nasopharyngeal samples previously confirmed by RT-qPCR with a broad range of Ct-values were selected for validation. Both methods produced greater genome coverage when compared to the multiplex PCR approach and we obtained the longest single read of this study (18.5 kb) with a SARS-CoV-2 clinical sample, 60% of the virus genome using the Rapid SMART-9N method. This work demonstrates that SMART-9N and Rapid SMART-9N are sensitive, low input, and long-read compatible alternatives for RNA virus detection and genome sequencing and Rapid SMART-9N improves the cost, time, and complexity of laboratory work.
Collapse
Affiliation(s)
- Ingra M. Claro
- Faculdade de Medicina da Universidade de São Paulo, Sao Paulo, 05403-000, Brazil
- MRC Centre for Global Infectious Disease Analysis, J-IDEA, Imperial College London, London, SW7 2AZ, UK
- Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, Sao Paulo, 05403-000, Brazil
- School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Mariana S. Ramundo
- Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, Sao Paulo, 05403-000, Brazil
| | - Thais M. Coletti
- Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, Sao Paulo, 05403-000, Brazil
| | - Camila A. M. da Silva
- Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, Sao Paulo, 05403-000, Brazil
| | - Ian N. Valenca
- Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, Sao Paulo, 05403-000, Brazil
| | - Darlan S. Candido
- MRC Centre for Global Infectious Disease Analysis, J-IDEA, Imperial College London, London, SW7 2AZ, UK
- Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, Sao Paulo, 05403-000, Brazil
- Department of Zoology, University of Oxford, Oxford, OX1 3SZ, UK
| | - Flavia C. S. Sales
- Faculdade de Medicina da Universidade de São Paulo, Sao Paulo, 05403-000, Brazil
- Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, Sao Paulo, 05403-000, Brazil
| | - Erika R. Manuli
- Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, Sao Paulo, 05403-000, Brazil
| | - Jaqueline G. de Jesus
- MRC Centre for Global Infectious Disease Analysis, J-IDEA, Imperial College London, London, SW7 2AZ, UK
- Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, Sao Paulo, 05403-000, Brazil
| | - Anderson de Paula
- Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, Sao Paulo, 05403-000, Brazil
| | - Alvina Clara Felix
- Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, Sao Paulo, 05403-000, Brazil
| | - Pamela dos Santos Andrade
- Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, Sao Paulo, 05403-000, Brazil
- Faculdade de Saúde Pública da Universidade de São Paulo, Sao Paulo, 01246-904, Brazil
| | - Mariana C. Pinho
- Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, Sao Paulo, 05403-000, Brazil
| | - William M. Souza
- World Reference Center for Emerging Viruses and Arboviruses and Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Mariene R. Amorim
- Laboratory of Emerging Viruses, Department of Genetics, Microbiology, and Immunology, Institute of Biology, University of Campinas, Campinas, 13083-862, Brazil
| | - José Luiz Proenca-Modena
- Laboratory of Emerging Viruses, Department of Genetics, Microbiology, and Immunology, Institute of Biology, University of Campinas, Campinas, 13083-862, Brazil
- Experimental Medicine Research Cluster, University of Campinas, Campinas, 13083-862, Brazil
| | - Esper G. Kallas
- Faculdade de Medicina da Universidade de São Paulo, Sao Paulo, 05403-000, Brazil
| | - José Eduardo Levi
- Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, Sao Paulo, 05403-000, Brazil
- DASA, Sao Paulo, 06455-010, Brazil
| | - Nuno Rodrigues Faria
- MRC Centre for Global Infectious Disease Analysis, J-IDEA, Imperial College London, London, SW7 2AZ, UK
- Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, Sao Paulo, 05403-000, Brazil
- Department of Zoology, University of Oxford, Oxford, OX1 3SZ, UK
| | - Ester C. Sabino
- Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, Sao Paulo, 05403-000, Brazil
| | - Nicholas J. Loman
- School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Joshua Quick
- School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| |
Collapse
|
7
|
Ong'era EM, Mohammed KS, Makori TO, Bejon P, Ocholla-Oyier LI, Nokes DJ, Agoti CN, Githinji G. High-throughput sequencing approaches applied to SARS-CoV-2. Wellcome Open Res 2023. [DOI: 10.12688/wellcomeopenres.18701.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023] Open
Abstract
High-throughput sequencing is crucial for surveillance and control of viral outbreaks. During the ongoing coronavirus disease 2019 (COVID-19) pandemic, advances in the high-throughput sequencing technology resources have enhanced diagnosis, surveillance, and vaccine discovery. From the onset of the pandemic in December 2019, several genome-sequencing approaches have been developed and supported across the major sequencing platforms such as Illumina, Oxford Nanopore, PacBio, MGI DNBSEQTM and Ion Torrent. Here, we share insights from the sequencing approaches developed for sequencing of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) between December 2019 and October 2022.
Collapse
|
8
|
Khan MA, Amin A, Farid A, Ullah A, Waris A, Shinwari K, Hussain Y, Alsharif KF, Alzahrani KJ, Khan H. Recent Advances in Genomics-Based Approaches for the Development of Intracellular Bacterial Pathogen Vaccines. Pharmaceutics 2022; 15:pharmaceutics15010152. [PMID: 36678781 PMCID: PMC9863128 DOI: 10.3390/pharmaceutics15010152] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/12/2022] [Accepted: 12/19/2022] [Indexed: 01/04/2023] Open
Abstract
Infectious diseases continue to be a leading cause of morbidity and mortality worldwide. The majority of infectious diseases are caused by intracellular pathogenic bacteria (IPB). Historically, conventional vaccination drives have helped control the pathogenesis of intracellular bacteria and the emergence of antimicrobial resistance, saving millions of lives. However, in light of various limitations, many diseases that involve IPB still do not have adequate vaccines. In response to increasing demand for novel vaccine development strategies, a new area of vaccine research emerged following the advent of genomics technology, which changed the paradigm of vaccine development by utilizing the complete genomic data of microorganisms against them. It became possible to identify genes related to disease virulence, genetic patterns linked to disease virulence, as well as the genetic components that supported immunity and favorable vaccine responses. Complete genomic databases, and advancements in transcriptomics, metabolomics, structural genomics, proteomics, immunomics, pan-genomics, synthetic genomics, and population biology have allowed researchers to identify potential vaccine candidates and predict their effects in patients. New vaccines have been created against diseases for which previously there were no vaccines available, and existing vaccines have been improved. This review highlights the key issues and explores the evolution of vaccines. The increasing volume of IPB genomic data, and their application in novel genome-based techniques for vaccine development, were also examined, along with their characteristics, and the opportunities and obstacles involved. Critically, the application of genomics technology has helped researchers rapidly select and evaluate candidate antigens. Novel vaccines capable of addressing the limitations associated with conventional vaccines have been developed and pressing healthcare issues are being addressed.
Collapse
Affiliation(s)
- Muhammad Ajmal Khan
- Division of Life Science, Center for Cancer Research, and State Key Lab of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China
- Correspondence: (M.A.K.); or (H.K.)
| | - Aftab Amin
- Division of Life Science, Center for Cancer Research, and State Key Lab of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China
| | - Awais Farid
- Division of Environment and Sustainability, Hong Kong University of Science and Technology, Hong Kong, China
| | - Amin Ullah
- Molecular Virology Laboratory, Department of Microbiology and Biotechnology, Abasyn University, Peshawar 25000, Pakistan
| | - Abdul Waris
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Khyber Shinwari
- Institute of Chemical Engineering, Department Immuno-Chemistry, Ural Federal University, Yekaterinbiurg 620002, Russia
| | - Yaseen Hussain
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Khalaf F. Alsharif
- Department of Clinical Laboratory, College of Applied Medical Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Khalid J. Alzahrani
- Department of Clinical Laboratory, College of Applied Medical Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Haroon Khan
- Department of Clinical Laboratory, College of Applied Medical Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
- Correspondence: (M.A.K.); or (H.K.)
| |
Collapse
|
9
|
Yadana S, Cheun-Arom T, Li H, Hagan E, Mendelsohn E, Latinne A, Martinez S, Putcharoen O, Homvijitkul J, Sathaporntheera O, Rattanapreeda N, Chartpituck P, Yamsakul S, Sutham K, Komolsiri S, Pornphatthananikhom S, Petcharat S, Ampoot W, Francisco L, Hemachudha T, Daszak P, Olival KJ, Wacharapluesadee S. Behavioral-biological surveillance of emerging infectious diseases among a dynamic cohort in Thailand. BMC Infect Dis 2022; 22:472. [PMID: 35578171 PMCID: PMC9109443 DOI: 10.1186/s12879-022-07439-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 04/27/2022] [Indexed: 11/10/2022] Open
Abstract
Background Interactions between humans and animals are the key elements of zoonotic spillover leading to zoonotic disease emergence. Research to understand the high-risk behaviors associated with disease transmission at the human-animal interface is limited, and few consider regional and local contexts. Objective This study employed an integrated behavioral–biological surveillance approach for the early detection of novel and known zoonotic viruses in potentially high-risk populations, in an effort to identify risk factors for spillover and to determine potential foci for risk-mitigation measures. Method Participants were enrolled at two community-based sites (n = 472) in eastern and western Thailand and two hospital (clinical) sites (n = 206) in northeastern and central Thailand. A behavioral questionnaire was administered to understand participants’ demographics, living conditions, health history, and animal-contact behaviors and attitudes. Biological specimens were tested for coronaviruses, filoviruses, flaviviruses, influenza viruses, and paramyxoviruses using pan (consensus) RNA Virus assays. Results Overall 61/678 (9%) of participants tested positive for the viral families screened which included influenza viruses (75%), paramyxoviruses (15%), human coronaviruses (3%), flaviviruses (3%), and enteroviruses (3%). The most salient predictors of reporting unusual symptoms (i.e., any illness or sickness that is not known or recognized in the community or diagnosed by medical providers) in the past year were having other household members who had unusual symptoms and being scratched or bitten by animals in the same year. Many participants reported raising and handling poultry (10.3% and 24.2%), swine (2%, 14.6%), and cattle (4.9%, 7.8%) and several participants also reported eating raw or undercooked meat of these animals (2.2%, 5.5%, 10.3% respectively). Twenty four participants (3.5%) reported handling bats or having bats in the house roof. Gender, age, and livelihood activities were shown to be significantly associated with participants’ interactions with animals. Participants’ knowledge of risks influenced their health-seeking behavior. Conclusion The results suggest that there is a high level of interaction between humans, livestock, and wild animals in communities at sites we investigated in Thailand. This study highlights important differences among demographic and occupational risk factors as they relate to animal contact and zoonotic disease risk, which can be used by policymakers and local public health programs to build more effective surveillance strategies and behavior-focused interventions. Supplementary Information The online version contains supplementary material available at 10.1186/s12879-022-07439-7.
Collapse
Affiliation(s)
- Su Yadana
- EcoHealth Alliance, New York, NY, USA
| | - Thaniwan Cheun-Arom
- Department of Biology, Faculty of Science, Ramkhamhaeng University, Bangkok, Thailand
| | | | | | | | - Alice Latinne
- Wildlife Conservation Society, Viet Nam Country Program, Ha Noi, Viet Nam.,Wildlife Conservation Society, Health Program, Bronx, NY, USA
| | | | - Opass Putcharoen
- Division of Infectious Diseases, Faculty of Medicine, Thai Red Cross Emerging Infectious Diseases Clinical Centre, King Chulalongkorn Memorial Hospital, Chulalongkorn University, Bangkok, Thailand
| | | | | | | | | | - Supalak Yamsakul
- The Office of Disease Prevention and Control 5, Ratchaburi, Thailand
| | - Krairoek Sutham
- The Office of Disease Prevention and Control 5, Ratchaburi, Thailand
| | | | | | - Sininat Petcharat
- Thai Red Cross Emerging Infectious Diseases-Health Science Centre, Faculty of Medicine, World Health Organization Collaborating Centre for Research and Training On Viral Zoonoses, Chulalongkorn Hospital, Chulalongkorn University, Bangkok, Thailand
| | - Weenassarin Ampoot
- Thai Red Cross Emerging Infectious Diseases-Health Science Centre, Faculty of Medicine, World Health Organization Collaborating Centre for Research and Training On Viral Zoonoses, Chulalongkorn Hospital, Chulalongkorn University, Bangkok, Thailand
| | - Leilani Francisco
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Thiravat Hemachudha
- Thai Red Cross Emerging Infectious Diseases-Health Science Centre, Faculty of Medicine, World Health Organization Collaborating Centre for Research and Training On Viral Zoonoses, Chulalongkorn Hospital, Chulalongkorn University, Bangkok, Thailand
| | | | | | - Supaporn Wacharapluesadee
- Thai Red Cross Emerging Infectious Diseases Clinical Centre, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| |
Collapse
|
10
|
Jurasz H, Pawłowski T, Perlejewski K. Contamination Issue in Viral Metagenomics: Problems, Solutions, and Clinical Perspectives. Front Microbiol 2021; 12:745076. [PMID: 34745046 PMCID: PMC8564396 DOI: 10.3389/fmicb.2021.745076] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/17/2021] [Indexed: 12/16/2022] Open
Abstract
We describe the most common internal and external sources and types of contamination encountered in viral metagenomic studies and discuss their negative impact on sequencing results, particularly for low-biomass samples and clinical applications. We also propose some basic recommendations for reducing the background noise in viral shotgun metagenomic (SM) studies, which would limit the bias introduced by various classes of contaminants. Regardless of the specific viral SM protocol, contamination cannot be totally avoided; in particular, the issue of reagent contamination should always be addressed with high priority. There is an urgent need for the development and validation of standards for viral metagenomic studies especially if viral SM protocols will be more widely applied in diagnostics.
Collapse
Affiliation(s)
- Henryk Jurasz
- Department of Immunopathology of Infectious and Parasitic Diseases, Medical University of Warsaw, Warsaw, Poland
| | - Tomasz Pawłowski
- Division of Psychotherapy and Psychosomatic Medicine, Department of Psychiatry, Wrocław Medical University, Wrocław, Poland
| | - Karol Perlejewski
- Department of Immunopathology of Infectious and Parasitic Diseases, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
11
|
Rajagopala SV, Bakhoum NG, Pakala SB, Shilts MH, Rosas-Salazar C, Mai A, Boone HH, McHenry R, Yooseph S, Halasa N, Das SR. Metatranscriptomics to characterize respiratory virome, microbiome, and host response directly from clinical samples. CELL REPORTS METHODS 2021; 1:100091. [PMID: 34790908 PMCID: PMC8594859 DOI: 10.1016/j.crmeth.2021.100091] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 05/18/2021] [Accepted: 09/10/2021] [Indexed: 12/23/2022]
Abstract
We developed a metatranscriptomics method that can simultaneously capture the respiratory virome, microbiome, and host response directly from low biomass samples. Using nasal swab samples, we capture RNA virome with sufficient sequencing depth required to assemble complete genomes. We find a surprisingly high frequency of respiratory syncytial virus (RSV) and coronavirus (CoV) in healthy children, and a high frequency of RSV-A and RSV-B co-detections in children with symptomatic RSV. In addition, we have identified commensal and pathogenic bacteria and fungi at the species level. Functional analysis revealed that H. influenzae was highly active in symptomatic RSV subjects. The host nasal transcriptome reveled upregulation of the innate immune system, anti-viral response and inflammasome pathway, and downregulation of fatty acid pathways in children with symptomatic RSV. Overall, we demonstrate that our method is broadly applicable to infer the transcriptome landscape of an infected system, surveil respiratory infections, and to sequence RNA viruses directly from clinical samples.
Collapse
Affiliation(s)
- Seesandra V. Rajagopala
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Nicole G. Bakhoum
- Division of Infectious Diseases, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Suman B. Pakala
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Meghan H. Shilts
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Christian Rosas-Salazar
- Division of Infectious Diseases, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Annie Mai
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Helen H. Boone
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Rendie McHenry
- Division of Infectious Diseases, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Shibu Yooseph
- Department of Computer Science, Genomics and Bioinformatics Cluster, University of Central Florida, Orlando, FL 32816, USA
| | - Natasha Halasa
- Division of Infectious Diseases, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Suman R. Das
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Department of Otolaryngology and Head and Neck Surgery, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| |
Collapse
|
12
|
Xiao W, Ma Z(S. Inter-Individual Diversity Scaling Analysis of the Human Virome With Classic Diversity-Area Relationship (DAR) Modeling. Front Genet 2021; 12:627128. [PMID: 33959147 PMCID: PMC8095712 DOI: 10.3389/fgene.2021.627128] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 03/30/2021] [Indexed: 11/13/2022] Open
Abstract
The human virome is a critical component of the human microbiome, and it is believed to hold the richest diversity within human microbiomes. Yet, the inter-individual scaling (changes) of the human virome has not been formally investigated to the best of our knowledge. Here we fill the gap by applying diversity-area relationship (DAR) modeling (a recent extension to the classic species-area law in biodiversity and biogeography research) for analyzing four large datasets of the human virome with three DAR profiles: DAR scaling (z)-measuring the inter-individual heterogeneity in virome diversity, MAD (maximal accrual diversity: D max ) and LGD ratio (ratio of local diversity to global diversity)-measuring the percentage of individual to population level diversity. Our analyses suggest: (i) The diversity scaling parameter (z) is rather resilient against the diseases as indicated by the lack of significant differences between the healthy and diseased treatments. (ii) The potential maximal accrual diversity (D max ) is less resilient and may vary between the healthy and diseased groups or between different body sites. (iii) The LGD ratio of bacterial communities is much smaller than for viral communities, and relates to the comparatively greater heterogeneity between local vs. global diversity levels found for bacterial-biomes.
Collapse
Affiliation(s)
- Wanmeng Xiao
- Computational Biology and Medical Ecology Laboratory, State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Kunming College of Life Sciences, University of Chinese Academy of Sciences, Kunming, China
| | - Zhanshan (Sam) Ma
- Computational Biology and Medical Ecology Laboratory, State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
13
|
Faizuloev E, Mintaev R, Petrusha O, Marova A, Smirnova D, Ammour Y, Meskina E, Sergeev O, Zhavoronok S, Karaulov A, Svitich O, Zverev V. New approach of genetic characterization of group A rotaviruses by the nanopore sequencing method. J Virol Methods 2021; 292:114114. [PMID: 33662411 DOI: 10.1016/j.jviromet.2021.114114] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 02/17/2021] [Accepted: 02/25/2021] [Indexed: 02/07/2023]
Abstract
Nanopore sequencing of virus genomes represented by segmented RNA (e.g. rotaviruses) requires the development of specific approaches. Due to the massive use of rotavirus vaccines, the relevance of monitoring the genetic diversity of circulating strains of group A rotaviruses (RVA) increased. The WHO recommended method of multiplex type-specific PCR does not allow genotyping of all clinically significant strains of RVA and identifying inter-strain differences within the genotype. We have described a new principle of amplification of RVA gene segments using six primers for reverse transcription and one universal primer for PCR for nanopore sequencing. The amplification of RVA genome was tested on clinical samples and three phylogenetically distant laboratory RVA strains, Wa (G1P[8]), DS-1 (G2P[4]) and 568 (G3P[3]). The developed protocol of sample preparation and nanopore sequencing allowed obtaining full-length sequences for gene segments of RVA, including the diagnostically significant segments 9 (VP7), 4 (VP4) and 6 (VP6) with high accuracy and coverage. The accuracy of sequencing of the rotavirus genome exceeded 99.5 %, and the genome coverage varied for different strains from 59.0 to 99.6 % (on average 86 %). The developed approach of nanopore sequencing of RVA genome could be a prospective tool for epidemiological studies and surveillance of rotavirus infection.
Collapse
Affiliation(s)
- Evgeny Faizuloev
- I. Mechnikov Research Institute of Vaccines and Sera, Department of Virology, Moscow, Russia.
| | - Ramil Mintaev
- I. Mechnikov Research Institute of Vaccines and Sera, Department of Virology, Moscow, Russia; FSBI «Center for Strategic Planning and Management of Medical and Biological Health Risks», Laboratory of Gene Therapy, Moscow, Russia
| | - Olga Petrusha
- I. Mechnikov Research Institute of Vaccines and Sera, Department of Virology, Moscow, Russia
| | - Anna Marova
- I. Mechnikov Research Institute of Vaccines and Sera, Department of Virology, Moscow, Russia
| | - Daria Smirnova
- I. Mechnikov Research Institute of Vaccines and Sera, Department of Virology, Moscow, Russia
| | - Yulia Ammour
- I. Mechnikov Research Institute of Vaccines and Sera, Department of Virology, Moscow, Russia
| | - Elena Meskina
- M. Vladimirsky Moscow Regional Research Clinical Institute (MONIKI), Department of Children's Infections, Moscow, Russia
| | - Oleg Sergeev
- Sechenov First Moscow State Medical University, Faculty of Preventive Medicine, Moscow, Russia
| | - Sergey Zhavoronok
- Belarusian State Medical University, Department of Infectious Diseases, Minsk, Belarus
| | - Alexander Karaulov
- Sechenov First Moscow State Medical University, Department of Clinical Immunology and Allergy, Moscow, Russia
| | - Oxana Svitich
- I. Mechnikov Research Institute of Vaccines and Sera, Department of Virology, Moscow, Russia; Sechenov First Moscow State Medical University, Faculty of Preventive Medicine, Moscow, Russia
| | - Vitaly Zverev
- I. Mechnikov Research Institute of Vaccines and Sera, Department of Virology, Moscow, Russia; Sechenov First Moscow State Medical University, Faculty of Preventive Medicine, Moscow, Russia
| |
Collapse
|
14
|
Kelly D, Jere KC, Darby AC, Allen DJ, Iturriza-Gómara M. Complete genome characterization of human noroviruses allows comparison of minor alleles during acute and chronic infections. Access Microbiol 2021; 3:000203. [PMID: 34151158 PMCID: PMC8209700 DOI: 10.1099/acmi.0.000203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 01/24/2021] [Indexed: 11/18/2022] Open
Abstract
Human noroviruses (HuNoVs) circulate globally, affect all age groups and place a substantial burden upon health services. High genetic diversity leading to antigenic variation plays a significant role in HuNoV epidemiology, driving periodic global emergence of epidemic variants. Studies have suggested that immunocompromised individuals may be a reservoir for such epidemic variants, but studies investigating the diversity and emergence of HuNoV variants in immunocompetent individuals are underrepresented. To address this, we sequenced the genomes of HuNoVs present in samples collected longitudinally from one immunocompetent (acute infection) and one immunocompromised (chronic infection) patient. A broadly reactive HuNoV capture-based method was used to concentrate the virus present in these specimens prior to massively parallel sequencing to recover near complete viral genomes. Using a novel bioinformatics pipeline, we demonstrated that persistent minor alleles were present in both acute and chronic infections, and that minor allele frequencies represented a larger proportion of the population during chronic infection. In acute infection, minor alleles were more evenly spread across the genome, although present at much lower frequencies, and therefore difficult to discern from error. By contrast, in the chronic infection, more minor alleles were present in the minor structural protein. No non-synonymous minor alleles were detected in the major structural protein over the short sampling period of the HuNoV chronic infection, suggesting where immune pressure is variable or non-existent, epidemic variants could emerge over longer periods of infection by random chance.
Collapse
Affiliation(s)
- Daniel Kelly
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK.,Present address: Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Khuzwayo C Jere
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK.,Malawi-Liverpool Wellcome Trust - Clinical Research Programme, College of Medicine, University of Malawi, Blantyre, Malawi
| | - Alistair C Darby
- Centre of Genomic Research, Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - David J Allen
- Department of Pathogen Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK.,Virus Reference Department, National Infections Service, Public Health England, Colindale, London, UK.,NIHR Health Protection Research Unit Gastrointestinal Infections, Liverpool, UK
| | - Miren Iturriza-Gómara
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK.,NIHR Health Protection Research Unit Gastrointestinal Infections, Liverpool, UK
| |
Collapse
|
15
|
Bharucha T, Oeser C, Balloux F, Brown JR, Carbo EC, Charlett A, Chiu CY, Claas ECJ, de Goffau MC, de Vries JJC, Eloit M, Hopkins S, Huggett JF, MacCannell D, Morfopoulou S, Nath A, O'Sullivan DM, Reoma LB, Shaw LP, Sidorov I, Simner PJ, Van Tan L, Thomson EC, van Dorp L, Wilson MR, Breuer J, Field N. STROBE-metagenomics: a STROBE extension statement to guide the reporting of metagenomics studies. THE LANCET. INFECTIOUS DISEASES 2020; 20:e251-e260. [PMID: 32768390 PMCID: PMC7406238 DOI: 10.1016/s1473-3099(20)30199-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 03/09/2020] [Accepted: 03/12/2020] [Indexed: 02/07/2023]
Abstract
The term metagenomics refers to the use of sequencing methods to simultaneously identify genomic material from all organisms present in a sample, with the advantage of greater taxonomic resolution than culture or other methods. Applications include pathogen detection and discovery, species characterisation, antimicrobial resistance detection, virulence profiling, and study of the microbiome and microecological factors affecting health. However, metagenomics involves complex and multistep processes and there are important technical and methodological challenges that require careful consideration to support valid inference. We co-ordinated a multidisciplinary, international expert group to establish reporting guidelines that address specimen processing, nucleic acid extraction, sequencing platforms, bioinformatics considerations, quality assurance, limits of detection, power and sample size, confirmatory testing, causality criteria, cost, and ethical issues. The guidance recognises that metagenomics research requires pragmatism and caution in interpretation, and that this field is rapidly evolving.
Collapse
Affiliation(s)
- Tehmina Bharucha
- Department of Biochemistry, University of Oxford, Oxford, UK; Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Microbiology Laboratory, Mahosot Hospital, Vientiane, Laos.
| | - Clarissa Oeser
- Centre for Molecular Epidemiology and Translational Research, University College London, London, UK
| | | | - Julianne R Brown
- Microbiology, Virology and Infection Prevention and Control, Great Ormond Street Hospital for Children, London, UK
| | - Ellen C Carbo
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, Netherlands
| | - Andre Charlett
- Statistics, Modelling and Economics Department, Public Health England, London, UK
| | - Charles Y Chiu
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Eric C J Claas
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, Netherlands
| | - Marcus C de Goffau
- Wellcome Sanger Institute, Hinxton, UK; Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Jutte J C de Vries
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, Netherlands
| | - Marc Eloit
- Pathogen Discovery Laboratory, Institut Pasteur, Paris, France
| | - Susan Hopkins
- Healthcare-Associated Infection and Antimicrobial Resistance, Public Health England, London, UK; Infectious Diseases Unit, Royal Free Hospital, London, UK
| | - Jim F Huggett
- National Measurement Laboratory, LGC, Teddington, UK; School of Biosciences & Medicine, Faculty of Health & Medical Sciences, University of Surrey, Guildford, UK
| | - Duncan MacCannell
- Office of Advanced Molecular Detection, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Sofia Morfopoulou
- Division of Infection and Immunity, University College London, London, UK
| | - Avindra Nath
- Section of Infections of the Nervous System, National Institutes of Health, Bethesda, MD, USA
| | | | - Lauren B Reoma
- Section of Infections of the Nervous System, National Institutes of Health, Bethesda, MD, USA
| | - Liam P Shaw
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Igor Sidorov
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, Netherlands
| | - Patricia J Simner
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Le Van Tan
- Emerging Infections Group, Oxford University Clinical Research Unit, Ho Chi Minh city, Vietnam
| | - Emma C Thomson
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK
| | - Lucy van Dorp
- UCL Genetics Institute, University College London, London, UK
| | - Michael R Wilson
- Weill Institute for Neurosciences and Department of Neurology, University of California, San Francisco, CA, USA
| | - Judith Breuer
- Division of Infection and Immunity, University College London, London, UK; Great Ormond Street Hospital for Children, London, UK
| | - Nigel Field
- Centre for Molecular Epidemiology and Translational Research, University College London, London, UK
| |
Collapse
|
16
|
Ko S, Kim NK, Lee HJ, Ryu TH, Hong JS, Jeong RD. Detection of Plant Pathogenic Viruses in Commercial Gochujang (Fermented Red Pepper Paste) from Korea. THE PLANT PATHOLOGY JOURNAL 2020; 36:503-508. [PMID: 33082735 PMCID: PMC7542032 DOI: 10.5423/ppj.nt.06.2020.0093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 01/01/2020] [Accepted: 01/01/2020] [Indexed: 06/11/2023]
Abstract
The potential transmission of plant pathogenic viruses through processed foods could be a source of concern for global crop production; however, there is a lack of supporting evidence. The present study was conducted to investigate the presence of plant pathogenic viruses in five samples of gochujang (fermented red pepper paste) manufactured in Korea. Several viruses infecting pepper were detected by reverse transcriptionpolymerase chain reaction, among which the pepper mild mottle virus (PMMoV) was detected in all five samples, at concentrations ranging from 2.8 to 7.0 (log10 copies/ml). In addition, PMMoV was observed by transmission electron microscopy in all five samples. The samples exhibited viral pathogenicity to Nicotiana benthamiana plants, indicating that global trade of processed products could be a possible source of the transmission of plant viruses.
Collapse
Affiliation(s)
- Seoyeon Ko
- Department of Applied Biology, Institute of Environmentally Friendly Agriculture, Chonnam National University, Gwangju 685, Korea
| | - Na-Kyeong Kim
- Department of Applied Biology, Institute of Environmentally Friendly Agriculture, Chonnam National University, Gwangju 685, Korea
| | - Hyo-Jeong Lee
- Department of Applied Biology, Institute of Environmentally Friendly Agriculture, Chonnam National University, Gwangju 685, Korea
| | - Tae-Ho Ryu
- Department of Applied Biology, Institute of Environmentally Friendly Agriculture, Chonnam National University, Gwangju 685, Korea
| | - Jin-Sung Hong
- Department of Applied Biology, College of Agriculture and Life Science, Kangwon National University, Chuncheon 4341, Korea
| | - Rae-Dong Jeong
- Department of Applied Biology, Institute of Environmentally Friendly Agriculture, Chonnam National University, Gwangju 685, Korea
| |
Collapse
|
17
|
Perlejewski K, Bukowska-Ośko I, Rydzanicz M, Pawełczyk A, Caraballo Cortѐs K, Osuch S, Paciorek M, Dzieciątkowski T, Radkowski M, Laskus T. Next-generation sequencing in the diagnosis of viral encephalitis: sensitivity and clinical limitations. Sci Rep 2020; 10:16173. [PMID: 32999423 PMCID: PMC7528011 DOI: 10.1038/s41598-020-73156-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 09/07/2020] [Indexed: 12/12/2022] Open
Abstract
Identification of pathogens causing viral encephalitis remains challenging, and in over 50% of cases the etiologic factor remains undetermined. Next-generation sequencing (NGS) based metagenomics has been successfully used to detect novel and rare infections, but its value for routine diagnosis of encephalitis remains unclear. The aim of the present study was to determine the sensitivity of shotgun metagenomic sequencing protocols, which include preamplification, and testing it against cerebrospinal fluid (CSF) samples from encephalitis patients. For sensitivity testing HIV and HBV positive sera were serially diluted in CSF from an uninfected patient. NGS repeatedly detected HIV and HBV sequences present at concentrations from 105 to 102 and from 105 to 10 viral copies/reaction, respectively. However, when the same protocols were applied to RT-PCR/PCR positive CSF samples from 6 patients with enteroviral encephalitis (median viral load 47 copies/ml) and 15 patients with HSV, CMV or VZV encephalitis (median viral load 148 copies/ml), only 7 (28.6%) were identified as positive. In conclusions, while NGS has the advantage of being able to identify a wide range of potential pathogens it seems to be less sensitive compared to the standard amplification-based assays in the diagnosis of encephalitis, where low viral loads are common.
Collapse
Affiliation(s)
- Karol Perlejewski
- Department of Immunopathology of Infectious and Parasitic Diseases, Medical University of Warsaw, Warsaw, Poland.
| | - Iwona Bukowska-Ośko
- Department of Immunopathology of Infectious and Parasitic Diseases, Medical University of Warsaw, Warsaw, Poland
| | - Małgorzata Rydzanicz
- Department of the Medical Genetics, Medical University of Warsaw, Warsaw, Poland
| | - Agnieszka Pawełczyk
- Department of Immunopathology of Infectious and Parasitic Diseases, Medical University of Warsaw, Warsaw, Poland
| | - Kamila Caraballo Cortѐs
- Department of Immunopathology of Infectious and Parasitic Diseases, Medical University of Warsaw, Warsaw, Poland
| | - Sylwia Osuch
- Department of Immunopathology of Infectious and Parasitic Diseases, Medical University of Warsaw, Warsaw, Poland
| | - Marcin Paciorek
- Department of Adult Infectious Diseases, Medical University of Warsaw, Warsaw, Poland
| | | | - Marek Radkowski
- Department of Immunopathology of Infectious and Parasitic Diseases, Medical University of Warsaw, Warsaw, Poland
| | - Tomasz Laskus
- Department of Adult Infectious Diseases, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
18
|
Aguado-García Y, Taboada B, Morán P, Rivera-Gutiérrez X, Serrano-Vázquez A, Iša P, Rojas-Velázquez L, Pérez-Juárez H, López S, Torres J, Ximénez C, Arias CF. Tobamoviruses can be frequently present in the oropharynx and gut of infants during their first year of life. Sci Rep 2020; 10:13595. [PMID: 32788688 PMCID: PMC7423923 DOI: 10.1038/s41598-020-70684-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 07/29/2020] [Indexed: 11/09/2022] Open
Abstract
Plant viruses have been reported to be common in the gut of human adults, presumably as result of food ingestion. In this work, we report that plant viruses can also be found frequently in the gut and oropharynx of children during their first year of life, even when they are exclusively breast-fed. Fecal and oropharynx samples were collected monthly, from birth to 1 year of age, from three apparently healthy children in a semi-rural community and analyzed by next generation sequencing. In 100% of the fecal samples and 65% of the oropharynx samples at least one plant virus was identified. Tobamoviruses in the Virgaviridae family were by far the most frequently detected, with tropical soda apple mosaic virus, pepper mild mottle virus, and opuntia tobamovirus 2 being the most common species. Seventeen complete virus genomes could be assembled, and phylogenetic analyses showed a large diversity of virus strains circulating in the population. These results suggest that children are continuously exposed to an extensive and highly diverse collection of tobamoviruses. Whether the common presence of plant viruses at an early age influences the infant's immune system, either directly or through interaction with other members of the microbiota, remains to be investigated.
Collapse
Affiliation(s)
- Yarenci Aguado-García
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, 62210, Cuernavaca, Morelos, Mexico
| | - Blanca Taboada
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, 62210, Cuernavaca, Morelos, Mexico
| | - Patricia Morán
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Dr. Balmis Num. 148 Doctores, 06726, Ciudad de México, Mexico
| | - Xaira Rivera-Gutiérrez
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, 62210, Cuernavaca, Morelos, Mexico
| | - Angélica Serrano-Vázquez
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Dr. Balmis Num. 148 Doctores, 06726, Ciudad de México, Mexico
| | - Pavel Iša
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, 62210, Cuernavaca, Morelos, Mexico
| | - Liliana Rojas-Velázquez
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Dr. Balmis Num. 148 Doctores, 06726, Ciudad de México, Mexico
| | - Horacio Pérez-Juárez
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Dr. Balmis Num. 148 Doctores, 06726, Ciudad de México, Mexico
| | - Susana López
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, 62210, Cuernavaca, Morelos, Mexico
| | - Javier Torres
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, 06726, Cuauhtémoc, Ciudad de México, Mexico.
| | - Cecilia Ximénez
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Dr. Balmis Num. 148 Doctores, 06726, Ciudad de México, Mexico.
| | - Carlos F Arias
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, 62210, Cuernavaca, Morelos, Mexico.
| |
Collapse
|
19
|
Sanabria A, Hjerde E, Johannessen M, Sollid JE, Simonsen GS, Hanssen AM. Shotgun-Metagenomics on Positive Blood Culture Bottles Inoculated With Prosthetic Joint Tissue: A Proof of Concept Study. Front Microbiol 2020; 11:1687. [PMID: 32765476 PMCID: PMC7380264 DOI: 10.3389/fmicb.2020.01687] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 06/29/2020] [Indexed: 01/19/2023] Open
Abstract
Clinical metagenomics is actively moving from research to clinical laboratories. It has the potential to change the microbial diagnosis of infectious diseases, especially when detection and identification of pathogens can be challenging, such as in prosthetic joint infection (PJI). The application of metagenomic sequencing to periprosthetic joint tissue (PJT) specimens is often challenged by low bacterial load in addition to high level of inhibitor and contaminant host DNA, limiting pathogen recovery. Shotgun-metagenomics (SMg) performed directly on positive blood culture bottles (BCBs) inoculated with PJT may be a convenient approach to overcome these obstacles. The aim was to test if it is possible to perform SMg on PJT inoculated into BCBs for pathogen identification in PJI diagnosis. Our study was conducted as a laboratory method development. For this purpose, spiked samples (positive controls), negative control and clinical tissue samples (positive BCBs) were included to get a comprehensive overview. We developed a method for preparation of bacterial DNA directly from PJT inoculated in BCBs. Samples were processed using MolYsis5 kit for removal of human DNA and DNA extracted with BiOstic kit. High DNA quantity/quality was obtained, and no inhibition was observed during the library preparation, allowing further sequencing process. DNA sequencing reads obtained from the BCBs, presented a low proportion of human reads (<1%) improving the sensitivity of bacterial detection. We detected a 19-fold increase in the number of reads mapping to human in a sample untreated with MolYsis5. Taxonomic classification of clinical samples identified a median of 96.08% (IQR, 93.85-97.07%; range 85.7-98.6%) bacterial reads. Shotgun-metagenomics results were consistent with the results from a conventional BCB culture method, validating our approach. Overall, we demonstrated a proof of concept that it is possible to perform SMg directly on BCBs inoculated with PJT, with potential of pathogen identification in PJI diagnosis. We consider this a first step in research efforts needed to face the challenges presented in PJI diagnoses.
Collapse
Affiliation(s)
- Adriana Sanabria
- Research Group for Host-Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, UiT – The Arctic University of Norway, Tromsø, Norway
| | - Erik Hjerde
- Department of Chemistry, Centre for Bioinformatics, UiT – The Arctic University of Norway, Tromsø, Norway
| | - Mona Johannessen
- Research Group for Host-Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, UiT – The Arctic University of Norway, Tromsø, Norway
| | - Johanna Ericson Sollid
- Research Group for Host-Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, UiT – The Arctic University of Norway, Tromsø, Norway
| | - Gunnar Skov Simonsen
- Research Group for Host-Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, UiT – The Arctic University of Norway, Tromsø, Norway
- Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway
| | - Anne-Merethe Hanssen
- Research Group for Host-Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, UiT – The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
20
|
Hasan MR, Sundararaju S, Tang P, Tsui KM, Lopez AP, Janahi M, Tan R, Tilley P. A metagenomics-based diagnostic approach for central nervous system infections in hospital acute care setting. Sci Rep 2020; 10:11194. [PMID: 32641704 PMCID: PMC7343800 DOI: 10.1038/s41598-020-68159-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 06/16/2020] [Indexed: 01/22/2023] Open
Abstract
The etiology of central nervous system (CNS) infections such as meningitis and encephalitis remains unknown in a large proportion of cases partly because the diversity of pathogens that may cause CNS infections greatly outnumber available test methods. We developed a metagenomic next generation sequencing (mNGS)-based approach for broad-range detection of pathogens associated with CNS infections suitable for application in the acute care hospital setting. The analytical sensitivity of mNGS performed on an Illumina MiSeq was assessed using simulated cerebrospinal fluid (CSF) specimens (n = 9). mNGS data were then used as a training dataset to optimize a bioinformatics workflow based on the IDseq pipeline. For clinical validation, residual CSF specimens (n = 74) from patients with suspected CNS infections previously tested by culture and/or PCR, were analyzed by mNGS. In simulated specimens, the NGS reads aligned to pathogen genomes in IDseq were correlated to qPCR CT values for the respective pathogens (R = 0.96; p < 0.0001), and the results were highly specific for the spiked pathogens. In clinical samples, the diagnostic accuracy, sensitivity and specificity of the mNGS with reference to conventional methods were 100%, 95% and 96%, respectively. The clinical application of mNGS holds promise to benefit patients with CNS infections of unknown etiology.
Collapse
Affiliation(s)
- Mohammad Rubayet Hasan
- Department of Pathology, Sidra Medicine, Level 2M, Office H2M-24093, PO BOX 26999, Doha, Qatar. .,Weill Cornell Medical College in Qatar, Doha, Qatar. .,Sidra Medicine, Doha, Qatar.
| | | | - Patrick Tang
- Weill Cornell Medical College in Qatar, Doha, Qatar.,Sidra Medicine, Doha, Qatar
| | - Kin-Ming Tsui
- Weill Cornell Medical College in Qatar, Doha, Qatar.,Sidra Medicine, Doha, Qatar
| | - Andres Perez Lopez
- Weill Cornell Medical College in Qatar, Doha, Qatar.,Sidra Medicine, Doha, Qatar
| | - Mohammad Janahi
- Weill Cornell Medical College in Qatar, Doha, Qatar.,Sidra Medicine, Doha, Qatar
| | - Rusung Tan
- Weill Cornell Medical College in Qatar, Doha, Qatar.,Sidra Medicine, Doha, Qatar
| | - Peter Tilley
- British Columbia Children's Hospital, Vancouver, BC, Canada.,University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
21
|
Cornejo Castro EM, Marshall V, Lack J, Lurain K, Immonen T, Labo N, Fisher NC, Ramaswami R, Polizzotto MN, Keele BF, Yarchoan R, Uldrick TS, Whitby D. Dual infection and recombination of Kaposi sarcoma herpesvirus revealed by whole-genome sequence analysis of effusion samples. Virus Evol 2020; 6:veaa047. [PMID: 34211736 PMCID: PMC7474928 DOI: 10.1093/ve/veaa047] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Kaposi sarcoma herpesvirus (KSHV) is the etiological agent of three malignancies, Kaposi sarcoma (KS), primary effusion lymphoma (PEL) and KSHV-associated multicentric Castelman disease. KSHV infected patients may also have an interleukin six-related KSHV-associated inflammatory cytokine syndrome. KSHV-associated diseases occur in only a minority of chronically KSHV-infected individuals and often in the setting of immunosuppression. Mechanisms by which KSHV genomic variations and systemic co-infections may affect the pathogenic pathways potentially leading to these diseases have not been well characterized in vivo. To date, the majority of comparative genetic analyses of KSHV have been focused on a few regions scattered across the viral genome. We used next-generation sequencing techniques to investigate the taxonomic groupings of viruses from malignant effusion samples from fourteen participants with advanced KSHV-related malignancies, including twelve with PEL and two with KS and elevated KSHV viral load in effusions. The genomic diversity and evolutionary characteristics of nine isolated, near full-length KSHV genomes revealed extensive evidence of mosaic patterns across all these genomes. Further, our comprehensive NGS analysis allowed the identification of two distinct KSHV genome sequences in one individual, consistent with a dual infection. Overall, our results provide significant evidence for the contribution of KSHV phylogenomics to the origin of KSHV subtypes. This report points to a wider scope of studies to establish genome-wide patterns of sequence diversity and define the possible pathogenic role of sequence variations in KSHV-infected individuals.
Collapse
Affiliation(s)
- Elena M Cornejo Castro
- Viral Oncology Section, AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, P.O. Box B, Frederick, MD 21702, USA
| | - Vickie Marshall
- Viral Oncology Section, AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, P.O. Box B, Frederick, MD 21702, USA
| | - Justin Lack
- Advanced Biomedical Computing Center, Leidos Biomedical Research, Inc., Frederick, MD 21702, USA
| | - Kathryn Lurain
- HIV and AIDS Malignancy Branch, National Cancer Institute, 10 Center Dr, Bethesda, MD 20814, USA
| | - Taina Immonen
- Retroviral Evolution Section, AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, P.O. Box B, Frederick, MD 21702, USA
| | - Nazzarena Labo
- Viral Oncology Section, AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, P.O. Box B, Frederick, MD 21702, USA
| | - Nicholas C Fisher
- Viral Oncology Section, AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, P.O. Box B, Frederick, MD 21702, USA
| | - Ramya Ramaswami
- HIV and AIDS Malignancy Branch, National Cancer Institute, 10 Center Dr, Bethesda, MD 20814, USA
| | - Mark N Polizzotto
- HIV and AIDS Malignancy Branch, National Cancer Institute, 10 Center Dr, Bethesda, MD 20814, USA
| | - Brandon F Keele
- Retroviral Evolution Section, AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, P.O. Box B, Frederick, MD 21702, USA
| | - Robert Yarchoan
- HIV and AIDS Malignancy Branch, National Cancer Institute, 10 Center Dr, Bethesda, MD 20814, USA
| | - Thomas S Uldrick
- HIV and AIDS Malignancy Branch, National Cancer Institute, 10 Center Dr, Bethesda, MD 20814, USA
| | - Denise Whitby
- Viral Oncology Section, AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, P.O. Box B, Frederick, MD 21702, USA
| |
Collapse
|
22
|
Coding-Complete Genome Sequence of a Recombinant Human Norovirus Strain Identified as Subtype GII.p12_GII.3. Microbiol Resour Announc 2020; 9:9/5/e01385-19. [PMID: 32001565 PMCID: PMC6992869 DOI: 10.1128/mra.01385-19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
A human norovirus (HuNoV) strain was obtained from a patient with acute gastroenteritis, and its complete coding sequence was determined. The coding-complete viral genome, with three open reading frames, was 7,565 bp long, with a GC content of 49.9%. The genotype of the HuNoV strain obtained in this study was identified as GII.p12_GII.3. A human norovirus (HuNoV) strain was obtained from a patient with acute gastroenteritis, and its complete coding sequence was determined. The coding-complete viral genome, with three open reading frames, was 7,565 bp long, with a GC content of 49.9%. The genotype of the HuNoV strain obtained in this study was identified as GII.p12_GII.3.
Collapse
|
23
|
Anh NT, Hong NTT, Nhu LNT, Thanh TT, Lau CY, Limmathurotsakul D, Deng X, Rahman M, Chau NVV, van Doorn HR, Thwaites G, Delwart E, Tan LV. Viruses in Vietnamese Patients Presenting with Community-Acquired Sepsis of Unknown Cause. J Clin Microbiol 2019; 57:e00386-19. [PMID: 31217274 PMCID: PMC6711913 DOI: 10.1128/jcm.00386-19] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 06/12/2019] [Indexed: 12/28/2022] Open
Abstract
Community-acquired (CA) sepsis is a major public health problem worldwide, yet the etiology remains unknown for >50% of the patients. Here we applied metagenomic next-generation sequencing (mNGS) to characterize the human virome in 492 clinical samples (384 sera, 92 pooled nasal and throat swabs, 10 stools, and 6 cerebrospinal fluid samples) from 386 patients (213 adults and 173 children) presenting with CA sepsis who were recruited from 6 hospitals across Vietnam between 2013 and 2015. Specific monoplex PCRs were used subsequently to confirm the presence of viral sequences detected by mNGS. We found sequences related to 47 viral species belonging to 21 families in 358 of 386 (93%) patients, including viruses known to cause human infections. After PCR confirmation, human viruses were found in 52 of 386 patients (13.4%); picornavirus (enteroviruses [n = 14], rhinovirus [n = 5], and parechovirus [n = 2]), hepatitis B virus (n = 10), cytomegalovirus (n = 9), Epstein-Barr virus (n = 5), and rotavirus A (n = 3) were the most common viruses detected. Recently discovered viruses were also found (gemycircularvirus [n = 5] and WU polyomavirus, Saffold virus, salivirus, cyclovirus-VN, and human pegivirus 2 [HPgV2] [n, 1 each]), adding to the growing literature about the geographic distribution of these novel viruses. Notably, sequences related to numerous viruses not previously reported in human tissues were also detected. To summarize, we identified 21 viral species known to be infectious to humans in 52 of 386 (13.4%) patients presenting with CA sepsis of unknown cause. The study, however, cannot directly impute sepsis causation to the viruses identified. The results highlight the fact that it remains a challenge to establish the causative agents in CA sepsis patients, especially in tropical settings such as Vietnam.
Collapse
Affiliation(s)
- Nguyen To Anh
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | | | | | - Tran Tan Thanh
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Chuen-Yen Lau
- Collaborative Clinical Research Branch, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Direk Limmathurotsakul
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Mahidol Oxford Tropical Research Unit, Bangkok, Thailand
| | - Xutao Deng
- Blood Systems Research Institute, San Francisco, California, USA
- Department of Laboratory Medicine, University of California, San Francisco, California, USA
| | - Motiur Rahman
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | | | - H Rogier van Doorn
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Guy Thwaites
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Eric Delwart
- Blood Systems Research Institute, San Francisco, California, USA
- Department of Laboratory Medicine, University of California, San Francisco, California, USA
| | - Le Van Tan
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| |
Collapse
|
24
|
A method to identify respiratory virus infections in clinical samples using next-generation sequencing. Sci Rep 2019; 9:2606. [PMID: 30796243 PMCID: PMC6384955 DOI: 10.1038/s41598-018-37483-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 11/26/2018] [Indexed: 12/30/2022] Open
Abstract
Respiratory virus infections are very common. Such infections impose an enormous economic burden and occasionally lead to death. Furthermore, every few decades, respiratory virus pandemics emerge, putting the entire world population at risk. Thus, there is an urgent need to quickly and precisely identify the infecting agent in a clinical setting. However, in many patients with influenza-like symptoms (ILS) the identity of the underlying pathogen remains unknown. In addition, it takes time and effort to individually identify the virus responsible for the ILS. Here, we present a new next-generation sequencing (NGS)-based method that enables rapid and robust identification of pathogens in a pool of clinical samples without the need for specific primers. The method is aimed at rapidly uncovering a potentially common pathogen affecting many samples with an unidentified source of disease.
Collapse
|
25
|
Application of Support Vector Machines in Viral Biology. GLOBAL VIROLOGY III: VIROLOGY IN THE 21ST CENTURY 2019. [PMCID: PMC7114997 DOI: 10.1007/978-3-030-29022-1_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Novel experimental and sequencing techniques have led to an exponential explosion and spiraling of data in viral genomics. To analyse such data, rapidly gain information, and transform this information to knowledge, interdisciplinary approaches involving several different types of expertise are necessary. Machine learning has been in the forefront of providing models with increasing accuracy due to development of newer paradigms with strong fundamental bases. Support Vector Machines (SVM) is one such robust tool, based rigorously on statistical learning theory. SVM provides very high quality and robust solutions to classification and regression problems. Several studies in virology employ high performance tools including SVM for identification of potentially important gene and protein functions. This is mainly due to the highly beneficial aspects of SVM. In this chapter we briefly provide lucid and easy to understand details of SVM algorithms along with applications in virology.
Collapse
|
26
|
Dickey AM, Schuller G, Loy JD, Clawson ML. Whole genome sequencing of Moraxella bovoculi reveals high genetic diversity and evidence for interspecies recombination at multiple loci. PLoS One 2018; 13:e0209113. [PMID: 30557405 PMCID: PMC6296526 DOI: 10.1371/journal.pone.0209113] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 11/29/2018] [Indexed: 12/04/2022] Open
Abstract
Moraxella bovoculi is frequently cultured from the ocular secretions and conjunctiva of cattle with Infectious Bovine Keratoconjunctivitis (IBK). Previous work has shown that single nucleotide polymorphism (SNP) diversity in this species is quite high with 81,284 SNPs identified in eight genomes representing two distinct genotypes isolated from IBK affected eyes (genotype 1) and the nasopharynx of cattle without clinical IBK signs (genotype 2), respectively. The goals of this study were to identify SNPs from a collection of geographically diverse and epidemiologically unlinked M. bovoculi strains from the eyes of IBK positive cattle (n = 183) and another from the eyes of cattle (most from a single population at a single time-point) without signs of IBK (n = 63) and to characterize the genetic diversity. Strains of both genotypes were identified from the eyes of cattle without IBK signs. Only genotype 1 strains were identified from IBK affected eyes, however, these strains were isolated before the discovery of genotype 2, and the protocol for their isolation would have preferentially selected genotype 1 M. bovoculi. The core genome comprised ~74% of the whole and contained >127,000 filtered SNPs. More than 80% of these characterize diversity within genotype 1 while 23,611 SNPs (~18%) delimit the two major genotypes. Genotype 2 strains lacked a repeats-in-toxin (RTX) putative pathogenesis factor and any of ten putative antibiotic resistance genes carried within a genomic island. Within genotype 1, prevalence of these elements was 0.85 and 0.12 respectively in strains from eyes that were IBK positive. Recombination appears to be an important source of genetic diversity for genotype 1 and undermines the utility of ribosomal-locus-based species identification. The extremely high genetic diversity in genotype 1 presents a challenge to the development of an efficacious vaccine directed against them, however, several low-diversity pilin-like genes were identified. Finally, the genotype-defining SNPs described in this study are a resource that can facilitate the development of more accurate M. bovoculi diagnostic tests.
Collapse
Affiliation(s)
- Aaron M. Dickey
- Genetics, Breeding, and Animal Health Research Unit, U.S. Meat Animal Research Center, Agricultural Research Service, United States Department of Agriculture, Clay Center, Nebraska, United States of America
| | - Gennie Schuller
- Genetics, Breeding, and Animal Health Research Unit, U.S. Meat Animal Research Center, Agricultural Research Service, United States Department of Agriculture, Clay Center, Nebraska, United States of America
| | - J. Dustin Loy
- Veterinary Diagnostic Center, School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Michael L. Clawson
- Genetics, Breeding, and Animal Health Research Unit, U.S. Meat Animal Research Center, Agricultural Research Service, United States Department of Agriculture, Clay Center, Nebraska, United States of America
- * E-mail:
| |
Collapse
|
27
|
Abstract
This chapter is the first one to introduce the detection of viral RNA splicing as a new tool for clinical diagnosis of virus infections. These include various infections caused by influenza viruses, human immunodeficiency viruses (HIV), human T-cell leukemia viruses (HTLV), Torque teno viruses (TTV), parvoviruses, adenoviruses, hepatitis B virus, polyomaviruses, herpesviruses, and papillomaviruses. Detection of viral RNA splicing for active viral gene expression in a clinical sample is a nucleic acid-based detection. The interpretation of the detected viral RNA splicing results is straightforward without concern for carry-over DNA contamination, because the spliced RNA is smaller than its corresponding DNA template. Although many methods can be used, a simple method to detect viral RNA splicing is reverse transcription-polymerase chain reaction (RT-PCR). In principle, the detection of spliced RNA transcripts by RT-PCR depends on amplicon selection and primer design. The most common approach is the amplification over the intron regions by a set of primers in flanking exons. A larger product than the predicted size of smaller, spliced RNA is in general an unspliced RNA or contaminating viral genomic DNA. A spliced mRNA always gives a smaller RT-PCR product than its unspliced RNA due to removal of intron sequences by RNA splicing. The contaminating viral DNA can be determined by a minus RT amplification (PCR). Alternatively, specific amplification of a spliced RNA can be obtained by using an exon-exon junction primer because the sequence at exon-exon junction is not present in the unspliced RNA nor in viral genomic DNA.
Collapse
|
28
|
Pou C, Barrientos-Somarribas M, Marin-Juan S, Bogdanovic G, Bjerkner A, Allander T, Gustafsson B, Andersson B. Virome definition in cerebrospinal fluid of patients with neurological complications after hematopoietic stem cell transplantation. J Clin Virol 2018; 108:112-120. [DOI: 10.1016/j.jcv.2018.09.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 09/06/2018] [Accepted: 09/18/2018] [Indexed: 01/16/2023]
|
29
|
Symonds EM, Nguyen KH, Harwood VJ, Breitbart M. Pepper mild mottle virus: A plant pathogen with a greater purpose in (waste)water treatment development and public health management. WATER RESEARCH 2018; 144:1-12. [PMID: 30005176 PMCID: PMC6162155 DOI: 10.1016/j.watres.2018.06.066] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 06/26/2018] [Accepted: 06/28/2018] [Indexed: 05/06/2023]
Abstract
An enteric virus surrogate and reliable domestic wastewater tracer is needed to manage microbial quality of food and water as (waste)water reuse becomes more prevalent in response to population growth, urbanization, and climate change. Pepper mild mottle virus (PMMoV), a plant pathogen found at high concentrations in domestic wastewater, is a promising surrogate for enteric viruses that has been incorporated into over 29 water- and food-related microbial quality and technology investigations around the world. This review consolidates the available literature from across disciplines to provide guidance on the utility of PMMoV as either an enteric virus surrogate and/or domestic wastewater marker in various situations. Synthesis of the available research supports PMMoV as a useful enteric virus process indicator since its high concentrations in source water allow for identifying the extent of virus log-reductions in field, pilot, and full-scale (waste)water treatment systems. PMMoV reduction levels during many forms of wastewater treatment were less than or equal to the reduction of other viruses, suggesting this virus can serve as an enteric virus surrogate when evaluating new treatment technologies. PMMoV excels as an index virus for enteric viruses in environmental waters exposed to untreated domestic wastewater because it was detected more frequently and in higher concentrations than other human viruses in groundwater (72.2%) and surface waters (freshwater, 94.5% and coastal, 72.2%), with pathogen co-detection rates as high as 72.3%. Additionally, PMMoV is an important microbial source tracking marker, most appropriately associated with untreated domestic wastewater, where its pooled-specificity is 90% and pooled-sensitivity is 100%, as opposed to human feces where its pooled-sensitivity is only 11.3%. A limited number of studies have also suggested that PMMoV may be a useful index virus for enteric viruses in monitoring the microbial quality of fresh produce and shellfish, but further research is needed on these topics. Finally, future work is needed to fill in knowledge gaps regarding PMMoV's global specificity and sensitivity.
Collapse
Affiliation(s)
- E M Symonds
- University of South Florida, College of Marine Science, 140 7th Avenue South, St. Petersburg, FL, USA.
| | - Karena H Nguyen
- University of South Florida, Department of Integrative Biology, 4202 E. Fowler Avenue, Tampa, FL, USA.
| | - V J Harwood
- University of South Florida, Department of Integrative Biology, 4202 E. Fowler Avenue, Tampa, FL, USA.
| | - M Breitbart
- University of South Florida, College of Marine Science, 140 7th Avenue South, St. Petersburg, FL, USA.
| |
Collapse
|
30
|
Nasko DJ, Koren S, Phillippy AM, Treangen TJ. RefSeq database growth influences the accuracy of k-mer-based lowest common ancestor species identification. Genome Biol 2018; 19:165. [PMID: 30373669 PMCID: PMC6206640 DOI: 10.1186/s13059-018-1554-6] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 10/01/2018] [Indexed: 12/05/2022] Open
Abstract
In order to determine the role of the database in taxonomic sequence classification, we examine the influence of the database over time on k-mer-based lowest common ancestor taxonomic classification. We present three major findings: the number of new species added to the NCBI RefSeq database greatly outpaces the number of new genera; as a result, more reads are classified with newer database versions, but fewer are classified at the species level; and Bayesian-based re-estimation mitigates this effect but struggles with novel genomes. These results suggest a need for new classification approaches specially adapted for large databases.
Collapse
Affiliation(s)
- Daniel J Nasko
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, MD, USA
| | - Sergey Koren
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | - Adam M Phillippy
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | - Todd J Treangen
- Department of Computer Science, Rice University, Houston, TX, USA.
| |
Collapse
|
31
|
Bergner LM, Orton RJ, da Silva Filipe A, Shaw AE, Becker DJ, Tello C, Biek R, Streicker DG. Using noninvasive metagenomics to characterize viral communities from wildlife. Mol Ecol Resour 2018; 19:128-143. [PMID: 30240114 PMCID: PMC6378809 DOI: 10.1111/1755-0998.12946] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 08/22/2018] [Accepted: 09/07/2018] [Indexed: 12/31/2022]
Abstract
Microbial communities play an important role in organismal and ecosystem health. While high-throughput metabarcoding has revolutionized the study of bacterial communities, generating comparable viral communities has proven elusive, particularly in wildlife samples where the diversity of viruses and limited quantities of viral nucleic acid present distinctive challenges. Metagenomic sequencing is a promising solution for studying viral communities, but the lack of standardized methods currently precludes comparisons across host taxa or localities. Here, we developed an untargeted shotgun metagenomic sequencing protocol to generate comparable viral communities from noninvasively collected faecal and oropharyngeal swabs. Using samples from common vampire bats (Desmodus rotundus), a key species for virus transmission to humans and domestic animals, we tested how different storage media, nucleic acid extraction procedures and enrichment steps affect viral community detection. Based on finding viral contamination in foetal bovine serum, we recommend storing swabs in RNAlater or another nonbiological medium. We recommend extracting nucleic acid directly from swabs rather than from supernatant or pelleted material, which had undetectable levels of viral RNA. Results from a low-input RNA library preparation protocol suggest that ribosomal RNA depletion and light DNase treatment reduce host and bacterial nucleic acid, and improve virus detection. Finally, applying our approach to twelve pooled samples from seven localities in Peru, we showed that detected viral communities saturated at the attained sequencing depth, allowing unbiased comparisons of viral community composition. Future studies using the methods outlined here will elucidate the determinants of viral communities across host species, environments and time.
Collapse
Affiliation(s)
- Laura M Bergner
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK.,MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Richard J Orton
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK.,MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | | | - Andrew E Shaw
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Daniel J Becker
- Odum School of Ecology, University of Georgia, Athens, Georgia.,Center for the Ecology of Infectious Diseases, University of Georgia, Athens, Georgia.,Department of Microbiology and Immunology, Montana State University, Bozeman, Montana
| | - Carlos Tello
- Association for the Conservation, Development of Natural Resources, Lima, Peru.,Yunkawasi, Lima, Peru
| | - Roman Biek
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Daniel G Streicker
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK.,MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| |
Collapse
|
32
|
Xiao YL, Ren L, Zhang X, Qi L, Kash JC, Xiao Y, Wu F, Wang J, Taubenberger JK. Deep Sequencing of H7N9 Influenza A Viruses from 16 Infected Patients from 2013 to 2015 in Shanghai Reveals Genetic Diversity and Antigenic Drift. mSphere 2018; 3:e00462-18. [PMID: 30232169 PMCID: PMC6147129 DOI: 10.1128/mspheredirect.00462-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 08/28/2018] [Indexed: 11/20/2022] Open
Abstract
Influenza A virus (IAV) infections are a major public health concern, including annual epidemics, epizootic outbreaks, and pandemics. A significant IAV epizootic outbreak was the H7N9 avian influenza A outbreak in China, which was first detected in 2013 and which has spread over 5 waves from 2013 to 2017, causing human infections in many different Chinese provinces. Here, RNA from primary clinical throat swab samples from 20 H7N9-infected local patients with different clinical outcomes, who were admitted and treated at one hospital in Shanghai, China, from April 2013 to April 2015, was analyzed. Whole-transcriptome amplification, with positive enrichment of IAV RNA, was performed, all 20 samples were subjected to deep sequencing, and data from 16 samples were analyzed in detail. Many single-nucleotide polymorphisms, including ones not previously reported, and many nonsynonymous changes that could affect hemagglutinin head and stalk antibody binding epitopes were observed. Minor populations representing viral quasispecies, including nonsynonymous hemagglutinin changes shared by antigenically variant H7N9 clades identified in the most recent wave of H7N9 infections in 2016 to 2017, were also identified.IMPORTANCE H7N9 subtype avian influenza viruses caused infections in over 1,400 humans from 2013 to 2017 and resulted in almost 600 deaths. It is important to understand how avian influenza viruses infect and cause disease in humans and to assess their potential for efficient person-to-person transmission. In this study, we used deep sequencing of primary clinical material to assess the evolution and potential for human adaptation of H7N9 influenza viruses.
Collapse
Affiliation(s)
- Yong-Li Xiao
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Lili Ren
- MOH Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Xi Zhang
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, People's Republic of China
| | - Li Qi
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - John C Kash
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Yan Xiao
- MOH Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Fan Wu
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, People's Republic of China
| | - Jianwei Wang
- MOH Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Jeffery K Taubenberger
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
33
|
Xiao Y, Nolting JM, Sheng ZM, Bristol T, Qi L, Bowman AS, Taubenberger JK. Design and validation of a universal influenza virus enrichment probe set and its utility in deep sequence analysis of primary cloacal swab surveillance samples of wild birds. Virology 2018; 524:182-191. [PMID: 30212665 DOI: 10.1016/j.virol.2018.08.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 08/21/2018] [Accepted: 08/28/2018] [Indexed: 11/25/2022]
Abstract
Influenza virus infections in humans and animals are major public health concerns. In the current study, a set of universal influenza enrichment probes was developed to increase the sensitivity of sequence-based virus detection and characterization for all influenza viruses. This universal influenza enrichment probe set contains 46,953 120nt RNA biotin-labeled probes designed based on all available influenza viral sequences and it can be used to enrich for influenza sequences without prior knowledge of type or subtype. Marked enrichment was demonstrated in influenza A/H1N1, influenza B, and H1-to-H16 hemagglutinin plasmids spiked into human DNA and in cultured influenza A/H2N1 virus. Furthermore, enrichment effects and mixed influenza A virus infections were revealed in wild bird cloacal swab samples. Therefore, this universal influenza virus enrichment probe system can capture and enrich influenza viral sequences selectively and effectively in different samples, especially ones with degraded RNA or containing low amount of influenza RNA.
Collapse
Affiliation(s)
- Yongli Xiao
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, NIH/NIAID, 33 North Drive MSC 3203, Bethesda, MD 20892-3203, USA.
| | - Jacqueline M Nolting
- Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, OH, USA
| | - Zong-Mei Sheng
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, NIH/NIAID, 33 North Drive MSC 3203, Bethesda, MD 20892-3203, USA
| | - Tyler Bristol
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, NIH/NIAID, 33 North Drive MSC 3203, Bethesda, MD 20892-3203, USA
| | - Li Qi
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, NIH/NIAID, 33 North Drive MSC 3203, Bethesda, MD 20892-3203, USA
| | - Andrew S Bowman
- Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, OH, USA
| | - Jeffery K Taubenberger
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, NIH/NIAID, 33 North Drive MSC 3203, Bethesda, MD 20892-3203, USA
| |
Collapse
|
34
|
Wei HY, Huang S, Wang JY, Gao F, Jiang JZ. Comparison of methods for library construction and short read annotation of shellfish viral metagenomes. Genes Genomics 2018; 40:281-288. [PMID: 29892802 DOI: 10.1007/s13258-017-0629-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 11/03/2017] [Indexed: 12/20/2022]
Abstract
The emergence and widespread use of high-throughput sequencing technologies have promoted metagenomic studies on environmental or animal samples. Library construction for metagenome sequencing and annotation of the produced sequence reads are important steps in such studies and influence the quality of metagenomic data. In this study, we collected some marine mollusk samples, such as Crassostrea hongkongensis, Chlamys farreri, and Ruditapes philippinarum, from coastal areas in South China. These samples were divided into two batches to compare two library construction methods for shellfish viral metagenome. Our analysis showed that reverse-transcribing RNA into cDNA and then amplifying it simultaneously with DNA by whole genome amplification (WGA) yielded a larger amount of DNA compared to using only WGA or WTA (whole transcriptome amplification). Moreover, higher quality libraries were obtained by agarose gel extraction rather than with AMPure bead size selection. However, the latter can also provide good results if combined with the adjustment of the filter parameters. This, together with its simplicity, makes it a viable alternative. Finally, we compared three annotation tools (BLAST, DIAMOND, and Taxonomer) and two reference databases (NCBI's NR and Uniprot's Uniref). Considering the limitations of computing resources and data transfer speed, we propose the use of DIAMOND with Uniref for annotating metagenomic short reads as its running speed can guarantee a good annotation rate. This study may serve as a useful reference for selecting methods for Shellfish viral metagenome library construction and read annotation.
Collapse
Affiliation(s)
- Hong-Ying Wei
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China.,Shanghai Ocean University, Shanghai, 201306, China
| | - Sheng Huang
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China.,Shanghai Ocean University, Shanghai, 201306, China
| | - Jiang-Yong Wang
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China
| | - Fang Gao
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China.,Shanghai Ocean University, Shanghai, 201306, China
| | - Jing-Zhe Jiang
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China.
| |
Collapse
|
35
|
Abd El Ghany M, Alsomali M, Almasri M, Regalado EP, Naeem R, Tukestani A, Asiri A, Hill-Cawthorne GA, Pain A, Memish ZA. Enteric Infections Circulating during Hajj Seasons, 2011-2013. Emerg Infect Dis 2018; 23. [PMID: 28930004 PMCID: PMC5621540 DOI: 10.3201/eid2310.161642] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Foodborne-associated bacteria with increased incidence of antimicrobial drug resistance were the most common cause. Hajj, the annual Muslim pilgrimage to Mecca, Saudi Arabia, is a unique mass gathering event that raises public health concerns in the host country and globally. Although gastroenteritis and diarrhea are common among Hajj pilgrims, the microbial etiologies of these infections are unknown. We collected 544 fecal samples from pilgrims with medically attended diarrheal illness from 40 countries during the 2011–2013 Hajj seasons and screened the samples for 16 pathogens commonly associated with diarrheal infections. Bacteria were the main agents detected, in 82.9% of the 228 positive samples, followed by viral (6.1%) and parasitic (5.3%) agents. Salmonella spp., Shigella/enteroinvasive Escherichia coli, and enterotoxigenic E. coli were the main pathogens associated with severe symptoms. We identified genes associated with resistance to third-generation cephalosporins ≈40% of Salmonella- and E. coli–positive samples. Hajj-associated foodborne infections pose a major public health risk through the emergence and transmission of antimicrobial drug–resistant bacteria.
Collapse
|
36
|
Haramoto E, Kitajima M, Hata A, Torrey JR, Masago Y, Sano D, Katayama H. A review on recent progress in the detection methods and prevalence of human enteric viruses in water. WATER RESEARCH 2018; 135:168-186. [PMID: 29471200 DOI: 10.1016/j.watres.2018.02.004] [Citation(s) in RCA: 247] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 02/01/2018] [Accepted: 02/02/2018] [Indexed: 05/17/2023]
Abstract
Waterborne human enteric viruses, such as noroviruses and adenoviruses, are excreted in the feces of infected individuals and transmitted via the fecal-oral route including contaminated food and water. Since viruses are normally present at low concentrations in aquatic environments, they should be concentrated into smaller volumes prior to downstream molecular biological applications, such as quantitative polymerase chain reaction (qPCR). This review describes recent progress made in the development of concentration and detection methods of human enteric viruses in water, and discusses their applications for providing a better understanding of the prevalence of the viruses in various types of water worldwide. Maximum concentrations of human enteric viruses in water that have been reported in previous studies are summarized to assess viral abundances in aquatic environments. Some descriptions are also available on recent applications of sequencing analyses used to determine the genetic diversity of viral genomes in water samples, including those of novel viruses. Furthermore, the importance and significance of utilizing appropriate process controls during viral analyses are discussed, and three types of process controls are considered: whole process controls, molecular process controls, and (reverse transcription (RT)-)qPCR controls. Although no standards have been established for acceptable values of virus recovery and/or extraction-(RT-)qPCR efficiency, use of at least one of these appropriate control types is highly recommended for more accurate interpretation of observed data.
Collapse
Affiliation(s)
- Eiji Haramoto
- Interdisciplinary Center for River Basin Environment, Graduate Faculty of Interdisciplinary Research, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan.
| | - Masaaki Kitajima
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, North 13 West 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan.
| | - Akihiko Hata
- Integrated Research System for Sustainability Science, Institutes for Advanced Study, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan.
| | - Jason R Torrey
- School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland.
| | - Yoshifumi Masago
- Institute for the Advanced Study of Sustainability, United Nations University, 5-53-70 Jingumae, Shibuya-ku, Tokyo 150-8925, Japan.
| | - Daisuke Sano
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, Aoba 6-6-06, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan.
| | - Hiroyuki Katayama
- Department of Urban Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan; Vietnam Japan University, Luu Huu Phuoc Road, My Dinh 1 Ward, Nam Tu Liem District, Ha Noi, Vietnam.
| |
Collapse
|
37
|
Sheng Q, Vickers K, Zhao S, Wang J, Samuels DC, Koues O, Shyr Y, Guo Y. Multi-perspective quality control of Illumina RNA sequencing data analysis. Brief Funct Genomics 2018; 16:194-204. [PMID: 27687708 DOI: 10.1093/bfgp/elw035] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Quality control (QC) is a critical step in RNA sequencing (RNA-seq). Yet, it is often ignored or conducted on a limited basis. Here, we present a multi-perspective strategy for QC of RNA-seq experiments. The QC of RNA-seq can be divided into four related stages: (1) RNA quality, (2) raw read data (FASTQ), (3) alignment and (4) gene expression. We illustrate the importance of conducting QC at each stage of an RNA-seq experiment and demonstrate our recommended RNA-seq QC strategy. Furthermore, we discuss the major and often neglected quality issues associated with the three major types of RNA-seq: mRNA, total RNA and small RNA. This RNA-seq QC overview provides comprehensive guidance for researchers who conduct RNA-seq experiments.
Collapse
|
38
|
Forbes JD, Knox NC, Peterson CL, Reimer AR. Highlighting Clinical Metagenomics for Enhanced Diagnostic Decision-making: A Step Towards Wider Implementation. Comput Struct Biotechnol J 2018; 16:108-120. [PMID: 30026887 PMCID: PMC6050174 DOI: 10.1016/j.csbj.2018.02.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 02/19/2018] [Accepted: 02/25/2018] [Indexed: 12/14/2022] Open
Abstract
Clinical metagenomics (CMg) is the discipline that refers to the sequencing of all nucleic acid material present within a clinical specimen with the intent to recover clinically relevant microbial information. From a diagnostic perspective, next-generation sequencing (NGS) offers the ability to rapidly identify putative pathogens and predict their antimicrobial resistance profiles to optimize targeted treatment regimens. Since the introduction of metagenomics nearly a decade ago, numerous reports have described successful applications in an increasing variety of biological specimens, such as respiratory secretions, cerebrospinal fluid, stool, blood and tissue. Considerable advancements in sequencing and computational technologies in recent years have made CMg a promising tool in clinical microbiology laboratories. Moreover, costs per sample and turnaround time from specimen receipt to clinical management continue to decrease, making the prospect of CMg more feasible. Many difficulties, however, are associated with CMg and warrant further improvements such as the informatics infrastructure and analytical pipelines. Thus, the current review focuses on comprehensively assessing applications of CMg for diagnostic and subtyping purposes.
Collapse
Affiliation(s)
- Jessica D. Forbes
- Department of Internal Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
- University of Manitoba IBD Clinical and Research Centre, Winnipeg, Manitoba, Canada
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Natalie C. Knox
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Christy-Lynn Peterson
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Aleisha R. Reimer
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| |
Collapse
|
39
|
Romero-Espinoza JA, Moreno-Valencia Y, Coronel-Tellez RH, Castillejos-Lopez M, Hernandez A, Dominguez A, Miliar-Garcia A, Barbachano-Guerrero A, Perez-Padilla R, Alejandre-Garcia A, Vazquez-Perez JA. Virome and bacteriome characterization of children with pneumonia and asthma in Mexico City during winter seasons 2014 and 2015. PLoS One 2018; 13:e0192878. [PMID: 29447223 PMCID: PMC5813968 DOI: 10.1371/journal.pone.0192878] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 01/31/2018] [Indexed: 02/07/2023] Open
Abstract
Background Acute asthma exacerbations and pneumonia are important causes of morbidity and mortality in children and may coexist in the same children, although symptom overlap may lead to difficulties in diagnosis. Microbial and viral diversity and differential abundance of either may play an important role in infection susceptibility and the development of acute and chronic respiratory diseases. Objectives To describe the virome and bacteriome present in the upper respiratory tract of hospitalized children with a clinical diagnosis of asthma and pneumonia during an acute exacerbation and an acute respiratory illness ARI episode respectively. Methods During the winter seasons of 2013–2014 and 2014–2015, 134 nasopharyngeal swabs samples of children <15 years of age with ARI hospitalized at a referral hospital for respiratory diseases were selected based on clinical diagnosis of asthma or pneumonia. The virome and bacteriome were characterized using Whole Genome Sequencing (WGS) and in-house bioinformatics analysis pipeline. Results The Asthma group was represented mainly by RV-C, BoV-1 and RSV-B and the pneumonia group by Bacteriophage EJ-1 and TTMV. TTV was found in both groups with a similar amount of reads. About bacterial composition Moraxella catarrhalis, Propionibacterium acnes and Acinetobacter were present in asthma and Veillonella parvula and Mycoplasma pneumoniae in pneumonia. Streptococcus pneumoniae and Haemophilus influenzae were mostly found with both asthma and pneumonia. Conclusions Our results show a complex viral and bacterial composition in asthma and pneumonia groups with a strong association of RV-C presence in asthmatic children. We observed Streptococcus pneumoniae and Haemophilus influenzae concurrently in both groups.
Collapse
Affiliation(s)
- Jose A. Romero-Espinoza
- Departamento de Investigación en Virología, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City, Mexico
| | - Yazmin Moreno-Valencia
- Departamento de Investigación en Virología, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City, Mexico
| | - Rodrigo H. Coronel-Tellez
- Signalisation et Réseaux de Régulations Bactériens, Institut de Biologie Intégrative de la Cellule, Paris, France
| | - Manuel Castillejos-Lopez
- Vigilancia Epidemiológica, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City, Mexico
| | - Andres Hernandez
- Vigilancia Epidemiológica, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City, Mexico
| | - Aaron Dominguez
- Sección de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Angel Miliar-Garcia
- Sección de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Arturo Barbachano-Guerrero
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, NY, United States of America
| | - Rogelio Perez-Padilla
- Departamento de Investigación en Tabaquismo y EPOC, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City, Mexico
| | - Alejandro Alejandre-Garcia
- Unidad de Urgencias Pediátricas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City, Mexico
| | - Joel A. Vazquez-Perez
- Departamento de Investigación en Virología, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City, Mexico
- * E-mail:
| |
Collapse
|
40
|
Madi N, Al-Nakib W, Mustafa AS, Habibi N. Metagenomic analysis of viral diversity in respiratory samples from patients with respiratory tract infections in Kuwait. J Med Virol 2017; 90:412-420. [PMID: 29083040 PMCID: PMC7167075 DOI: 10.1002/jmv.24984] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 09/19/2017] [Accepted: 10/12/2017] [Indexed: 12/22/2022]
Abstract
A metagenomic approach based on target independent next‐generation sequencing has become a known method for the detection of both known and novel viruses in clinical samples. This study aimed to use the metagenomic sequencing approach to characterize the viral diversity in respiratory samples from patients with respiratory tract infections. We have investigated 86 respiratory samples received from various hospitals in Kuwait between 2015 and 2016 for the diagnosis of respiratory tract infections. A metagenomic approach using the next‐generation sequencer to characterize viruses was used. According to the metagenomic analysis, an average of 145, 019 reads were identified, and 2% of these reads were of viral origin. Also, metagenomic analysis of the viral sequences revealed many known respiratory viruses, which were detected in 30.2% of the clinical samples. Also, sequences of non‐respiratory viruses were detected in 14% of the clinical samples, while sequences of non‐human viruses were detected in 55.8% of the clinical samples. The average genome coverage of the viruses was 12% with the highest genome coverage of 99.2% for respiratory syncytial virus, and the lowest was 1% for torque teno midi virus 2. Our results showed 47.7% agreement between multiplex Real‐Time PCR and metagenomics sequencing in the detection of respiratory viruses in the clinical samples. Though there are some difficulties in using this method to clinical samples such as specimen quality, these observations are indicative of the promising utility of the metagenomic sequencing approach for the identification of respiratory viruses in patients with respiratory tract infections.
Collapse
Affiliation(s)
- Nada Madi
- Virology Unit, Department of Microbiology, Faculty of Medicine, Kuwait University, Safat, Kuwait
| | - Widad Al-Nakib
- Virology Unit, Department of Microbiology, Faculty of Medicine, Kuwait University, Safat, Kuwait
| | - Abu Salim Mustafa
- Virology Unit, Department of Microbiology, Faculty of Medicine, Kuwait University, Safat, Kuwait
| | - Nazima Habibi
- Research Core Facility and OMICS Research Unit, Faculty of Medicine, Kuwait University, Safat, Kuwait
| |
Collapse
|
41
|
Carding SR, Davis N, Hoyles L. Review article: the human intestinal virome in health and disease. Aliment Pharmacol Ther 2017; 46:800-815. [PMID: 28869283 PMCID: PMC5656937 DOI: 10.1111/apt.14280] [Citation(s) in RCA: 152] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Revised: 04/07/2017] [Accepted: 08/07/2017] [Indexed: 02/06/2023]
Abstract
BACKGROUND The human virome consists of animal-cell viruses causing transient infections, bacteriophage (phage) predators of bacteria and archaea, endogenous retroviruses and viruses causing persistent and latent infections. High-throughput, inexpensive, sensitive sequencing methods and metagenomics now make it possible to study the contribution dsDNA, ssDNA and RNA virus-like particles make to the human virome, and in particular the intestinal virome. AIM To review and evaluate the pioneering studies that have attempted to characterise the human virome and generated an increased interest in understanding how the intestinal virome might contribute to maintaining health, and the pathogenesis of chronic diseases. METHODS Relevant virome-related articles were selected for review following extensive language- and date-unrestricted, electronic searches of the literature. RESULTS The human intestinal virome is personalised and stable, and dominated by phages. It develops soon after birth in parallel with prokaryotic communities of the microbiota, becoming established during the first few years of life. By infecting specific populations of bacteria, phages can alter microbiota structure by killing host cells or altering their phenotype, enabling phages to contribute to maintaining intestinal homeostasis or microbial imbalance (dysbiosis), and the development of chronic infectious and autoimmune diseases including HIV infection and Crohn's disease, respectively. CONCLUSIONS Our understanding of the intestinal virome is fragmented and requires standardised methods for virus isolation and sequencing to provide a more complete picture of the virome, which is key to explaining the basis of virome-disease associations, and how enteric viruses can contribute to disease aetiologies and be rationalised as targets for interventions.
Collapse
Affiliation(s)
- S. R. Carding
- Norwich Medical SchoolUniversity of East AngliaNorwichUK,The Gut Health and Food Safety Research ProgrammeThe Quadram InstituteNorwich Research ParkNorwichUK
| | - N. Davis
- Norwich Medical SchoolUniversity of East AngliaNorwichUK
| | - L. Hoyles
- Department of Surgery and CancerImperial College LondonLondonUK
| |
Collapse
|
42
|
Xu L, Zhu Y, Ren L, Xu B, Liu C, Xie Z, Shen K. Characterization of the nasopharyngeal viral microbiome from children with community-acquired pneumonia but negative for Luminex xTAG respiratory viral panel assay detection. J Med Virol 2017; 89:2098-2107. [PMID: 28671295 PMCID: PMC7166964 DOI: 10.1002/jmv.24895] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 05/17/2017] [Indexed: 12/24/2022]
Abstract
In the present study, 50 nasopharyngeal swabs from children with community‐acquired pneumonia (CAP) but negative for 18 common respiratory viruses, as measured by the Luminex xTAG Respiratory Viral Panel Assay, were subjected to multiplex metagenomic analyses using a next‐generation sequencing platform. Taxonomic analysis showed that all sequence reads could be assigned to a specific species. An average of 95.13% were assigned to the Bacteria kingdom, whereas, only 0.72% were potentially virus derived. This snapshot of the respiratory tract virome revealed most viral reads to be respiratory tract related, classified into four known virus families: Paramyxoviridae, Herpesviridae, Anelloviridae, and Polyomaviridae. Importantly, we detected a novel human parainfluenza virus 3 (HPIV 3) strain with a 32‐bp insertion in the haemagglutinin‐neuraminidase (HN) gene that produced a negative result in the Luminex assay, highlighting the strength of virome metagenomic analysis to identify not only novel viruses but also viruses likely to be missed by ordinary clinical tests. Thus, virome metagenomic analysis could become a viable clinical diagnostic method.
Collapse
Affiliation(s)
- Lili Xu
- MOE Key Laboratory of Major Diseases in Children, National Key Discipline of Pediatrics, National Clinical Research Center for Respiratory Diseases, Beijing Key Laboratory of Pediatric Respiratory Infection diseases, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Yun Zhu
- MOE Key Laboratory of Major Diseases in Children, National Key Discipline of Pediatrics, National Clinical Research Center for Respiratory Diseases, Beijing Key Laboratory of Pediatric Respiratory Infection diseases, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Lili Ren
- Institute of Pathogen Biology (IPB), Chinese Academy of Medical Sciences (CAMS), Beijing, China
| | - Baoping Xu
- MOE Key Laboratory of Major Diseases in Children, National Key Discipline of Pediatrics, National Clinical Research Center for Respiratory Diseases, Beijing Key Laboratory of Pediatric Respiratory Infection diseases, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Chunyan Liu
- MOE Key Laboratory of Major Diseases in Children, National Key Discipline of Pediatrics, National Clinical Research Center for Respiratory Diseases, Beijing Key Laboratory of Pediatric Respiratory Infection diseases, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Zhengde Xie
- MOE Key Laboratory of Major Diseases in Children, National Key Discipline of Pediatrics, National Clinical Research Center for Respiratory Diseases, Beijing Key Laboratory of Pediatric Respiratory Infection diseases, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Kunling Shen
- MOE Key Laboratory of Major Diseases in Children, National Key Discipline of Pediatrics, National Clinical Research Center for Respiratory Diseases, Beijing Key Laboratory of Pediatric Respiratory Infection diseases, Beijing Children's Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
43
|
Quick J, Grubaugh ND, Pullan ST, Claro IM, Smith AD, Gangavarapu K, Oliveira G, Robles-Sikisaka R, Rogers TF, Beutler NA, Burton DR, Lewis-Ximenez LL, de Jesus JG, Giovanetti M, Hill SC, Black A, Bedford T, Carroll MW, Nunes M, Alcantara LC, Sabino EC, Baylis SA, Faria NR, Loose M, Simpson JT, Pybus OG, Andersen KG, Loman NJ. Multiplex PCR method for MinION and Illumina sequencing of Zika and other virus genomes directly from clinical samples. Nat Protoc 2017; 12:1261-1276. [PMID: 28538739 PMCID: PMC5902022 DOI: 10.1038/nprot.2017.066] [Citation(s) in RCA: 733] [Impact Index Per Article: 104.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Genome sequencing has become a powerful tool for studying emerging infectious diseases; however, genome sequencing directly from clinical samples (i.e., without isolation and culture) remains challenging for viruses such as Zika, for which metagenomic sequencing methods may generate insufficient numbers of viral reads. Here we present a protocol for generating coding-sequence-complete genomes, comprising an online primer design tool, a novel multiplex PCR enrichment protocol, optimized library preparation methods for the portable MinION sequencer (Oxford Nanopore Technologies) and the Illumina range of instruments, and a bioinformatics pipeline for generating consensus sequences. The MinION protocol does not require an Internet connection for analysis, making it suitable for field applications with limited connectivity. Our method relies on multiplex PCR for targeted enrichment of viral genomes from samples containing as few as 50 genome copies per reaction. Viral consensus sequences can be achieved in 1-2 d by starting with clinical samples and following a simple laboratory workflow. This method has been successfully used by several groups studying Zika virus evolution and is facilitating an understanding of the spread of the virus in the Americas. The protocol can be used to sequence other viral genomes using the online Primal Scheme primer designer software. It is suitable for sequencing either RNA or DNA viruses in the field during outbreaks or as an inexpensive, convenient method for use in the lab.
Collapse
Affiliation(s)
- Joshua Quick
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, UK
| | | | - Steven T Pullan
- Public Health England, National Infection Service, Porton Down, Salisbury, UK
| | - Ingra M Claro
- Department of Infectious Disease and Institute of Tropical Medicine, University of Saõ Paulo, Saõ Paulo, Brazil
| | - Andrew D Smith
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, UK
| | | | - Glenn Oliveira
- Scripps Translational Science Institute, La Jolla, California, USA
| | | | - Thomas F Rogers
- The Scripps Research Institute, La Jolla, California, USA
- Massachusetts General Hospital, Boston, Massachusetts, USA
| | | | | | | | | | - Marta Giovanetti
- Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil
- University of Rome, Tor Vergata, Italy
| | - Sarah C Hill
- Department of Zoology, University of Oxford, Oxford, UK
| | - Allison Black
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Department of Epidemiology, University of Washington, Seattle, Washington, USA
| | - Trevor Bedford
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Miles W Carroll
- Public Health England, National Infection Service, Porton Down, Salisbury, UK
- University of Southampton, South General Hospital, Southampton, UK
| | | | | | - Ester C Sabino
- Department of Infectious Disease and Institute of Tropical Medicine, University of Saõ Paulo, Saõ Paulo, Brazil
| | | | - Nuno R Faria
- Department of Zoology, University of Oxford, Oxford, UK
| | - Matthew Loose
- DeepSeq, School of Life Sciences, University of Nottingham, Nottingham, UK
| | | | | | - Kristian G Andersen
- The Scripps Research Institute, La Jolla, California, USA
- Scripps Translational Science Institute, La Jolla, California, USA
| | - Nicholas J Loman
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
44
|
Lima DA, Cibulski SP, Finkler F, Teixeira TF, Varela APM, Cerva C, Loiko MR, Scheffer CM, Dos Santos HF, Mayer FQ, Roehe PM. Faecal virome of healthy chickens reveals a large diversity of the eukaryote viral community, including novel circular ssDNA viruses. J Gen Virol 2017; 98:690-703. [PMID: 28100302 DOI: 10.1099/jgv.0.000711] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
This study is focused on the identification of the faecal virome of healthy chickens raised in high-density, export-driven poultry farms in Brazil. Following high-throughput sequencing, a total of 7743 de novo-assembled contigs were constructed and compared with known nucleotide/amino acid sequences from the GenBank database. Analyses with blastx revealed that 279 contigs (4 %) were related to sequences of eukaryotic viruses. Viral genome sequences (total or partial) indicative of members of recognized viral families, including Adenoviridae, Caliciviridae, Circoviridae, Parvoviridae, Picobirnaviridae, Picornaviridae and Reoviridae, were identified, some of those representing novel genotypes. In addition, a range of circular replication-associated protein encoding DNA viruses were also identified. The characterization of the faecal virome of healthy chickens described here not only provides a description of the viruses encountered in such niche but should also represent a baseline for future studies comparing viral populations in healthy and diseased chicken flocks. Moreover, it may also be relevant for human health, since chickens represent a significant proportion of the animal protein consumed worldwide.
Collapse
Affiliation(s)
- Diane A Lima
- FEPAGRO Saúde Animal - Instituto de Pesquisas Veterinárias Desidério Finamor (IPVDF), Rio Grande do Sul, Brazil.,Laboratório de Virologia, Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Rio Grande do Sul, Brazil
| | - Samuel P Cibulski
- Laboratório de Virologia, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Rio Grande do Sul, Brazil
| | - Fabrine Finkler
- FEPAGRO Saúde Animal - Instituto de Pesquisas Veterinárias Desidério Finamor (IPVDF), Rio Grande do Sul, Brazil.,Laboratório de Virologia, Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Rio Grande do Sul, Brazil
| | - Thais F Teixeira
- FEPAGRO Saúde Animal - Instituto de Pesquisas Veterinárias Desidério Finamor (IPVDF), Rio Grande do Sul, Brazil.,Laboratório de Virologia, Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Rio Grande do Sul, Brazil
| | - Ana Paula M Varela
- FEPAGRO Saúde Animal - Instituto de Pesquisas Veterinárias Desidério Finamor (IPVDF), Rio Grande do Sul, Brazil.,Laboratório de Virologia, Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Rio Grande do Sul, Brazil
| | - Cristine Cerva
- FEPAGRO Saúde Animal - Instituto de Pesquisas Veterinárias Desidério Finamor (IPVDF), Rio Grande do Sul, Brazil.,Laboratório de Virologia, Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Rio Grande do Sul, Brazil
| | - Márcia R Loiko
- FEPAGRO Saúde Animal - Instituto de Pesquisas Veterinárias Desidério Finamor (IPVDF), Rio Grande do Sul, Brazil.,Laboratório de Virologia, Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Rio Grande do Sul, Brazil
| | - Camila M Scheffer
- FEPAGRO Saúde Animal - Instituto de Pesquisas Veterinárias Desidério Finamor (IPVDF), Rio Grande do Sul, Brazil.,Laboratório de Virologia, Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Rio Grande do Sul, Brazil
| | - Helton F Dos Santos
- FEPAGRO Saúde Animal - Instituto de Pesquisas Veterinárias Desidério Finamor (IPVDF), Rio Grande do Sul, Brazil.,Laboratório de Virologia, Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Rio Grande do Sul, Brazil
| | - Fabiana Q Mayer
- FEPAGRO Saúde Animal - Instituto de Pesquisas Veterinárias Desidério Finamor (IPVDF), Rio Grande do Sul, Brazil
| | - Paulo M Roehe
- FEPAGRO Saúde Animal - Instituto de Pesquisas Veterinárias Desidério Finamor (IPVDF), Rio Grande do Sul, Brazil.,Laboratório de Virologia, Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Rio Grande do Sul, Brazil
| |
Collapse
|
45
|
Fonager J, Stegger M, Rasmussen LD, Poulsen MW, Rønn J, Andersen PS, Fischer TK. A universal primer-independent next-generation sequencing approach for investigations of norovirus outbreaks and novel variants. Sci Rep 2017; 7:813. [PMID: 28400558 PMCID: PMC5429772 DOI: 10.1038/s41598-017-00926-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 03/21/2017] [Indexed: 12/16/2022] Open
Abstract
Norovirus (NoV) is the most common cause of non-bacterial gastroenteritis and is a major agent associated with outbreaks of gastroenteritis. Conventional molecular genotyping analysis of NoV, used for the identification of transmission routes, relies on standard typing methods (STM) by Sanger-sequencing of only a limited part of the NoV genome, which could lead to wrong conclusions. Here, we combined a NoV capture method with next generation sequencing (NGS), which increased the proportion of norovirus reads by ~40 fold compared to NGS without prior capture. Of 15 NoV samples from 6 single-genotype outbreaks, near full-genome coverage (>90%) was obtained from 9 samples. Fourteen polymerase (RdRp) and 15 capsid (cap) genotypes were identified compared to 12 and 13 for the STM, respectively. Analysis of 9 samples from two mixed-genotype outbreaks identified 6 RdRp and 6 cap genotypes (two at >90% NoV genome coverage) compared to 4 and 2 for the STM, respectively. Furthermore, complete or partial sequences from the P2 hypervariable region were obtained from 7 of 8 outbreaks and a new NoV recombinant was identified. This approach could therefore strengthen outbreak investigations and could be applied to other important viruses in stool samples such as hepatitis A and enterovirus.
Collapse
Affiliation(s)
- Jannik Fonager
- Virology Surveillance and Research Section, Department of Microbiological diagnostics and Virology, Statens Serum Institut, Copenhagen, Denmark.
| | - Marc Stegger
- Department of Microbiology and Infection Control, Statens Serum Institut, Copenhagen, Denmark
| | - Lasse Dam Rasmussen
- Virology Surveillance and Research Section, Department of Microbiological diagnostics and Virology, Statens Serum Institut, Copenhagen, Denmark
| | - Mille Weismann Poulsen
- Virology Surveillance and Research Section, Department of Microbiological diagnostics and Virology, Statens Serum Institut, Copenhagen, Denmark
| | - Jesper Rønn
- Virology Surveillance and Research Section, Department of Microbiological diagnostics and Virology, Statens Serum Institut, Copenhagen, Denmark
| | - Paal Skytt Andersen
- Department of Microbiology and Infection Control, Statens Serum Institut, Copenhagen, Denmark
- Department of Veterinary Disease Biology, University of Copenhagen, Copenhagen, Denmark
| | - Thea Kølsen Fischer
- Virology Surveillance and Research Section, Department of Microbiological diagnostics and Virology, Statens Serum Institut, Copenhagen, Denmark
- Department of Infectious Diseases and Centre for Global health, Clinical Unit, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
46
|
Brown JR, Roy S, Ruis C, Yara Romero E, Shah D, Williams R, Breuer J. Norovirus Whole-Genome Sequencing by SureSelect Target Enrichment: a Robust and Sensitive Method. J Clin Microbiol 2016; 54:2530-7. [PMID: 27487952 PMCID: PMC5035417 DOI: 10.1128/jcm.01052-16] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 07/21/2016] [Indexed: 01/11/2023] Open
Abstract
Norovirus full-genome sequencing is challenging due to sequence heterogeneity among genomes. Previous methods have relied on PCR amplification, which is problematic due to primer design, and transcriptome sequencing (RNA-Seq), which nonspecifically sequences all RNA, including host and bacterial RNA, in stool specimens. Target enrichment uses a panel of custom-designed 120-mer RNA baits that are complementary to all publicly available norovirus sequences, with multiple baits targeting each position of the genome, which overcomes the challenge of primer design. Norovirus genomes are enriched from stool RNA extracts to minimize the sequencing of nontarget RNA. SureSelect target enrichment and Illumina sequencing were used to sequence full genomes from 507 norovirus-positive stool samples with reverse transcription-real-time PCR cycle threshold (CT) values of 10 to 43. Sequencing on an Illumina MiSeq system in batches of 48 generated, on average, 81% on-target reads per sample and 100% genome coverage with >12,000-fold read depth. Samples included genotypes GI.1, GI.2, GI.3, GI.6, GI.7, GII.1, GII.2, GII.3, GII.4, GII.5, GII.6, GII.7, GII.13, GII.14, and GII.17. When outliers were accounted for, we generated >80% genome coverage for all positive samples, regardless of CT values. A total of 164 samples were tested in parallel with conventional PCR genotyping of the capsid shell domain; 164/164 samples were successfully sequenced, compared to 158/164 samples that were amplified by PCR. Four of the samples that failed capsid PCR analysis had low titers, which suggests that target enrichment is more sensitive than gel-based PCR. Two samples failed PCR due to primer mismatches; target enrichment uses multiple baits targeting each position, thus accommodating sequence heterogeneity among norovirus genomes.
Collapse
Affiliation(s)
- Julianne R Brown
- Microbiology, Virology, and Infection Control, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom NIHR Biomedical Research Centre at Great Ormond Street Hospital for Children NHS Foundation Trust and University College London, London, United Kingdom
| | - Sunando Roy
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Christopher Ruis
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Erika Yara Romero
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Divya Shah
- Microbiology, Virology, and Infection Control, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom NIHR Biomedical Research Centre at Great Ormond Street Hospital for Children NHS Foundation Trust and University College London, London, United Kingdom
| | - Rachel Williams
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Judy Breuer
- Microbiology, Virology, and Infection Control, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom Division of Infection and Immunity, University College London, London, United Kingdom
| |
Collapse
|
47
|
Ali R, Blackburn RM, Kozlakidis Z. Next-Generation Sequencing and Influenza Virus: A Short Review of the Published Implementation Attempts. HAYATI JOURNAL OF BIOSCIENCES 2016. [DOI: 10.1016/j.hjb.2016.12.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022] Open
|
48
|
Nikitin NA, Trifonova EA, Karpova OV, Atabekov JG. Biosafety of plant viruses for human and animals. ACTA ACUST UNITED AC 2016. [DOI: 10.3103/s0096392516030081] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
49
|
Virome characterisation from Guthrie cards in children who later developed acute lymphoblastic leukaemia. Br J Cancer 2016; 115:1008-1014. [PMID: 27552439 PMCID: PMC5061901 DOI: 10.1038/bjc.2016.261] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 07/22/2016] [Accepted: 07/29/2016] [Indexed: 12/17/2022] Open
Abstract
Background: Some childhood acute lymphoblastic leukaemias (ALL) can be traced back to a prenatal origin, where a virus infection could be involved in the first pre-leukaemic clone development. The DNA virome of 95 children who later developed ALL was characterised from neonatal blood spots (NBS) using unbiased next-generation sequencing (NGS) and compared with the virome of 95 non-ALL controls. Methods: DNA was individually extracted from the ALL-patients and controls, pooled, randomly amplified and sequenced using the Illumina MiSeq Sequencing System. Results: Virus-like sequences identified in both groups mapped to human endogenous retroviruses and propionibacterium phage, considered a part of the normal microbial flora. Potential pathogens human herpesvirus type 6 (HHV-6) and parvovirus B19 were also identified, but only few samples in both ALL and controls tested positive by PCR follow-up. Conclusions: Unbiased NGS was employed to search for DNA from potential infectious agents in neonatal samples of children who later developed ALL. Although several viral candidates were identified in the NBS samples, further investigation by PCR suggested that these viruses did not have a major role in ALL development.
Collapse
|
50
|
Bukowska-Ośko I, Perlejewski K, Nakamura S, Motooka D, Stokowy T, Kosińska J, Popiel M, Płoski R, Horban A, Lipowski D, Caraballo Cortés K, Pawełczyk A, Demkow U, Stępień A, Radkowski M, Laskus T. Sensitivity of Next-Generation Sequencing Metagenomic Analysis for Detection of RNA and DNA Viruses in Cerebrospinal Fluid: The Confounding Effect of Background Contamination. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016:53-62. [PMID: 27405447 DOI: 10.1007/5584_2016_42] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Next-generation sequencing (NGS) followed by metagenomic enables the detection and identification of known as well as novel pathogens. It could be potentially useful in the diagnosis of encephalitis, caused by a variety of microorganisms. The aim of the present study was to evaluate the sensitivity of isothermal RNA amplification (Ribo-SPIA) followed by NGS metagenomic analysis in the detection of human immunodeficiency virus (HIV) and herpes simplex virus (HSV) in cerebrospinal fluid (CSF). Moreover, we analyzed the contamination background. We detected 102 HIV copies and 103 HSV copies. The analysis of control samples (two water samples and one CSF sample from an uninfected patient) revealed the presence of human DNA in the CSF sample (91 % of all reads), while the dominating sequences in water were qualified as 'other', related to plants, plant viruses, and synthetic constructs, and constituted 31 % and 60 % of all reads. Bacterial sequences represented 5.9 % and 21.4 % of all reads in water samples and 2.3 % in the control CSF sample. The bacterial sequences corresponded mainly to Psychrobacter, Acinetobacter, and Corynebacterium genera. In conclusion, Ribo-SPIA amplification followed by NGS metagenomic analysis is sensitive for detection of RNA and DNA viruses. Contamination seems common and thus the results should be confirmed by other independent methods such as RT-PCR and PCR. Despite these reservations, NGS seems to be a promising method for the diagnosis of viral infections.
Collapse
Affiliation(s)
- Iwona Bukowska-Ośko
- Department of Immunopathology of Infectious and Parasitic Diseases, Warsaw Medical University, 3C Pawińskiego St, 02-106, Warsaw, Poland
| | - Karol Perlejewski
- Department of Immunopathology of Infectious and Parasitic Diseases, Warsaw Medical University, 3C Pawińskiego St, 02-106, Warsaw, Poland.
| | - Shota Nakamura
- Department of Infection Metagenomics, Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, Japan
| | - Daisuke Motooka
- Department of Infection Metagenomics, Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, Japan
| | - Tomasz Stokowy
- Department of Clinical Science, Bergen University, 5021, Bergen, Norway
| | - Joanna Kosińska
- Department of the Medical Genetics, Warsaw Medical University, 3C Pawińskiego St, 02-106, Warsaw, Poland
| | - Marta Popiel
- Department of Immunopathology of Infectious and Parasitic Diseases, Warsaw Medical University, 3C Pawińskiego St, 02-106, Warsaw, Poland
| | - Rafał Płoski
- Department of the Medical Genetics, Warsaw Medical University, 3C Pawińskiego St, 02-106, Warsaw, Poland
| | - Andrzej Horban
- Municipal Hospital for Infectious Diseases, 37 Wolska St, 01-201, Warsaw, Poland
| | - Dariusz Lipowski
- Municipal Hospital for Infectious Diseases, 37 Wolska St, 01-201, Warsaw, Poland
| | - Kamila Caraballo Cortés
- Department of Immunopathology of Infectious and Parasitic Diseases, Warsaw Medical University, 3C Pawińskiego St, 02-106, Warsaw, Poland
| | - Agnieszka Pawełczyk
- Department of Immunopathology of Infectious and Parasitic Diseases, Warsaw Medical University, 3C Pawińskiego St, 02-106, Warsaw, Poland
| | - Urszula Demkow
- Department of Laboratory Medicine and Clinical Immunology of Developmental Age, Warsaw Medical University, 24 Marszałkowska St, 00-576, Warsaw, Poland
| | - Adam Stępień
- Department of Neurology, Military Institute of Medicine, 128 Szaserów St, 04-141, Warsaw, Poland
| | - Marek Radkowski
- Department of Immunopathology of Infectious and Parasitic Diseases, Warsaw Medical University, 3C Pawińskiego St, 02-106, Warsaw, Poland
| | - Tomasz Laskus
- Department of Immunopathology of Infectious and Parasitic Diseases, Warsaw Medical University, 3C Pawińskiego St, 02-106, Warsaw, Poland
| |
Collapse
|