1
|
Fusaro A, Pu J, Zhou Y, Lu L, Tassoni L, Lan Y, Lam TTY, Song Z, Bahl J, Chen J, Gao GF, Monne I, Liu J. Proposal for a Global Classification and Nomenclature System for A/H9 Influenza Viruses. Emerg Infect Dis 2024; 30:1-13. [PMID: 39043566 PMCID: PMC11286050 DOI: 10.3201/eid3008.231176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024] Open
Abstract
Influenza A/H9 viruses circulate worldwide in wild and domestic avian species, continuing to evolve and posing a zoonotic risk. A substantial increase in human infections with A/H9N2 subtype avian influenza viruses (AIVs) and the emergence of novel reassortants carrying A/H9N2-origin internal genes has occurred in recent years. Different names have been used to describe the circulating and emerging A/H9 lineages. To address this issue, an international group of experts from animal and public health laboratories, endorsed by the WOAH/FAO Network of Expertise on Animal Influenza, has created a practical lineage classification and nomenclature system based on the analysis of 10,638 hemagglutinin sequences from A/H9 AIVs sampled worldwide. This system incorporates phylogenetic relationships and epidemiologic characteristics designed to trace emerging and circulating lineages and clades. To aid in lineage and clade assignment, an online tool has been created. This proposed classification enables rapid comprehension of the global spread and evolution of A/H9 AIVs.
Collapse
|
2
|
Yu J, Yao Q, Liu J, Zhou Y, Huo M, Ge Y. Concern regarding H3-subtype avian influenza virus. Front Microbiol 2023; 14:1327470. [PMID: 38143863 PMCID: PMC10740181 DOI: 10.3389/fmicb.2023.1327470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 11/15/2023] [Indexed: 12/26/2023] Open
Abstract
The H3-subtype of avian influenza virus (AIV) is one of the most frequently detected low pathogenic avian influenza virus (LPAIV) subtypes in birds and fowls, causing substantial economic loss to the poultry industry. Most importantly, besides poultry, mammals could also be infected with it, such as swines, canines, equines, felines, and humans, posing a serious public health threat. This allows the virus to persist widely in poultry and wild birds for a long time, where it may mix with other subtypes, providing conditions for viral recombination or reassortment. Currently, the monitoring of H3-subtype AIV is inadequate, and there is a lack of effective prevention and control measures for H3-subtype AIV. Here, the epidemiology, phylogeny, and genetic variation of H3-subtype AIV were analyzed, and nonsynonymous and synonymous substitution rates (dN/dS) were calculated. Through these steps, we aimed to clarify the current epidemiological feature and evolutionary characteristics of H3-subtype AIV, and provide an operative reference for future scientific control of H3-subtype AIV.
Collapse
|
3
|
Zhang N, Quan K, Chen Z, Hu Q, Nie M, Xu N, Gao R, Wang X, Qin T, Chen S, Peng D, Liu X. The emergence of new antigen branches of H9N2 avian influenza virus in China due to antigenic drift on hemagglutinin through antibody escape at immunodominant sites. Emerg Microbes Infect 2023; 12:2246582. [PMID: 37550992 PMCID: PMC10444018 DOI: 10.1080/22221751.2023.2246582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/13/2023] [Accepted: 08/06/2023] [Indexed: 08/09/2023]
Abstract
Vaccination is a crucial prevention and control measure against H9N2 avian influenza viruses (AIVs) that threaten poultry production and public health. However, H9N2 AIVs in China undergo continuous antigenic drift of hemagglutinin (HA) under antibody pressure, leading to the emergence of immune escape variants. In this study, we investigated the molecular basis of the current widespread antigenic drift of H9N2 AIVs. Specifically, the most prevalent h9.4.2.5-lineage in China was divided into two antigenic branches based on monoclonal antibody (mAb) hemagglutination inhibition (HI) profiling analysis, and 12 antibody escape residues were identified as molecular markers of these two branches. The 12 escape residues were mapped to antigenic sites A, B, and E (H3 was used as the reference). Among these, eight residues primarily increased 3`SLN preference and contributed to antigenicity drift, and four of the eight residues at sites A and B were positively selected. Moreover, the analysis of H9N2 strains over time and space has revealed the emergence of a new antigenic branch in China since 2015, which has replaced the previous branch. However, the old antigenic branch recirculated to several regions after 2018. Collectively, this study provides a theoretical basis for understanding the molecular mechanisms of antigenic drift and for developing vaccine candidates that contest with the current antigenicity of H9N2 AIVs.
Collapse
Affiliation(s)
- Nan Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, People’s Republic of China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, People’s Republic of China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
| | - Keji Quan
- College of Veterinary Medicine, Yangzhou University, Yangzhou, People’s Republic of China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
| | - Zixuan Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, People’s Republic of China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
| | - Qun Hu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, People’s Republic of China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
| | - Maoshun Nie
- College of Veterinary Medicine, Yangzhou University, Yangzhou, People’s Republic of China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
| | - Nuo Xu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, People’s Republic of China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
| | - Ruyi Gao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, People’s Republic of China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
| | - Xiaoquan Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, People’s Republic of China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
| | - Tao Qin
- College of Veterinary Medicine, Yangzhou University, Yangzhou, People’s Republic of China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
| | - Sujuan Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, People’s Republic of China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
| | - Daxin Peng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, People’s Republic of China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, People’s Republic of China
- The International Joint Laboratory for Cooperation in Agriculture and Agricultural Product Safety, Ministry of Education, Yangzhou University, Yangzhou, People’s Republic of China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
- Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, People’s Republic of China
| | - Xiufan Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, People’s Republic of China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, People’s Republic of China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
| |
Collapse
|
4
|
Yang J, Gong Y, Zhang C, Sun J, Wong G, Shi W, Liu W, Gao GF, Bi Y. Co-existence and co-infection of influenza A viruses and coronaviruses: Public health challenges. Innovation (N Y) 2022; 3:100306. [PMID: 35992368 PMCID: PMC9384331 DOI: 10.1016/j.xinn.2022.100306] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/14/2022] [Indexed: 02/08/2023] Open
Abstract
Since the 20th century, humans have lived through five pandemics caused by influenza A viruses (IAVs) (H1N1/1918, H2N2/1957, H3N2/1968, and H1N1/2009) and the coronavirus (CoV) severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). IAVs and CoVs both have broad host ranges and share multiple hosts. Virus co-circulation and even co-infections facilitate genetic reassortment among IAVs and recombination among CoVs, further altering virus evolution dynamics and generating novel variants with increased cross-species transmission risk. Moreover, SARS-CoV-2 may maintain long-term circulation in humans as seasonal IAVs. Co-existence and co-infection of both viruses in humans could alter disease transmission patterns and aggravate disease burden. Herein, we demonstrate how virus-host ecology correlates with the co-existence and co-infection of IAVs and/or CoVs, further affecting virus evolution and disease dynamics and burden, calling for active virus surveillance and countermeasures for future public health challenges.
Collapse
Affiliation(s)
- Jing Yang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), Chinese Academy of Sciences, Beijing 100101, China
| | - Yuhuan Gong
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunge Zhang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ju Sun
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), Chinese Academy of Sciences, Beijing 100101, China
| | - Gary Wong
- University of Chinese Academy of Sciences, Beijing 100049, China
- Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Weifeng Shi
- Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases in Universities of Shandong, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271016, China
| | - Wenjun Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - George F. Gao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuhai Bi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Strohmeier S, Amanat F, Carreño JM, Krammer F. Monoclonal antibodies targeting the influenza virus N6 neuraminidase. Front Immunol 2022; 13:944907. [PMID: 35967389 PMCID: PMC9363587 DOI: 10.3389/fimmu.2022.944907] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
Influenza A viruses are a diverse species that include 16 true hemagglutinin (HA) subtypes and 9 true neuraminidase (NA) subtypes. While the antigenicity of many HA subtypes is reasonably well studied, less is known about NA antigenicity, especially when it comes to non-human subtypes that only circulate in animal reservoirs. The N6 subtype NAs are mostly found in viruses infecting birds. However, they have also been identified in viruses that infect mammals, such as swine and seals. More recently, highly pathogenic H5N6 subtype viruses have caused rare infections and mortality in humans. Here, we generated murine mAbs to the N6 NA, characterized their breadth and antiviral properties in vitro and in vivo and mapped their epitopes by generating escape mutant viruses. We found that the antibodies had broad reactivity across the American and Eurasian N6 lineages, but relatively little binding to the H5N6 NA. Several of the antibodies exhibited strong NA inhibition activity and some also showed activity in the antibody dependent cellular cytotoxicity reporter assay and neutralization assay. In addition, we generated escape mutant viruses for six monoclonal antibodies and found mutations on the lateral ridge of the NA. Lastly, we observed variable protection in H4N6 mouse challenge models when the antibodies were given prophylactically.
Collapse
Affiliation(s)
- Shirin Strohmeier
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Fatima Amanat
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Juan Manuel Carreño
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Center for Vaccine Research and Pandemic Preparedness (C-VARPP), Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Center for Vaccine Research and Pandemic Preparedness (C-VARPP), Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Pathology, Molecular and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- *Correspondence: Florian Krammer,
| |
Collapse
|
6
|
Miranda MNS, Pingarilho M, Pimentel V, Torneri A, Seabra SG, Libin PJK, Abecasis AB. A Tale of Three Recent Pandemics: Influenza, HIV and SARS-CoV-2. Front Microbiol 2022; 13:889643. [PMID: 35722303 PMCID: PMC9201468 DOI: 10.3389/fmicb.2022.889643] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/06/2022] [Indexed: 11/13/2022] Open
Abstract
Emerging infectious diseases are one of the main threats to public health, with the potential to cause a pandemic when the infectious agent manages to spread globally. The first major pandemic to appear in the 20th century was the influenza pandemic of 1918, caused by the influenza A H1N1 strain that is characterized by a high fatality rate. Another major pandemic was caused by the human immunodeficiency virus (HIV), that started early in the 20th century and remained undetected until 1981. The ongoing HIV pandemic demonstrated a high mortality and morbidity rate, with discrepant impacts in different regions around the globe. The most recent major pandemic event, is the ongoing pandemic of COVID-19, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which has caused over 5.7 million deaths since its emergence, 2 years ago. The aim of this work is to highlight the main determinants of the emergence, epidemic response and available countermeasures of these three pandemics, as we argue that such knowledge is paramount to prepare for the next pandemic. We analyse these pandemics’ historical and epidemiological contexts and the determinants of their emergence. Furthermore, we compare pharmaceutical and non-pharmaceutical interventions that have been used to slow down these three pandemics and zoom in on the technological advances that were made in the progress. Finally, we discuss the evolution of epidemiological modelling, that has become an essential tool to support public health policy making and discuss it in the context of these three pandemics. While these pandemics are caused by distinct viruses, that ignited in different time periods and in different regions of the globe, our work shows that many of the determinants of their emergence and countermeasures used to halt transmission were common. Therefore, it is important to further improve and optimize such approaches and adapt it to future threatening emerging infectious diseases.
Collapse
Affiliation(s)
- Mafalda N S Miranda
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical/Universidade Nova de Lisboa (IHMT/UNL), Lisboa, Portugal
| | - Marta Pingarilho
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical/Universidade Nova de Lisboa (IHMT/UNL), Lisboa, Portugal
| | - Victor Pimentel
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical/Universidade Nova de Lisboa (IHMT/UNL), Lisboa, Portugal
| | - Andrea Torneri
- Artificial Intelligence Lab, Department of Computer Science, Vrije Universiteit Brussel, Brussels, Belgium
| | - Sofia G Seabra
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical/Universidade Nova de Lisboa (IHMT/UNL), Lisboa, Portugal
| | - Pieter J K Libin
- Artificial Intelligence Lab, Department of Computer Science, Vrije Universiteit Brussel, Brussels, Belgium.,Interuniversity Institute of Biostatistics and Statistical Bioinformatics, Data Science Institute, Hasselt University, Hasselt, Belgium.,Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, University of Leuven, Leuven, Belgium
| | - Ana B Abecasis
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical/Universidade Nova de Lisboa (IHMT/UNL), Lisboa, Portugal
| |
Collapse
|
7
|
Antigenic Evolution Characteristics and Immunological Evaluation of H9N2 Avian Influenza Viruses from 1994–2019 in China. Viruses 2022; 14:v14040726. [DOI: 10.3390/v14040726] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/24/2022] [Accepted: 03/27/2022] [Indexed: 01/27/2023] Open
Abstract
The H9N2 subtype avian influenza viruses (AIVs) have been circulating in China for more than 20 years, attracting more and more attention due to the potential threat of them. At present, vaccination is a common prevention and control strategy in poultry farms, but as virus antigenicity evolves, the immune protection efficiency of vaccines has constantly been challenged. In this study, we downloaded the hemagglutinin (HA) protein sequences of the H9N2 subtype AIVs from 1994 to 2019 in China—with a total of 5138 sequences. The above sequences were analyzed in terms of time and space, and it was found that h9.4.2.5 was the most popular in various regions of China. Furthermore, the prevalence of H9N2 subtype AIVs in China around 2006 was different. The domestic epidemic branch was relatively diversified from 1994 to 2006. After 2006, the epidemic branch each year was h9.4.2.5. We compared the sequences around 2006 as a whole and screened out 15 different amino acid positions. Based on the HA protein of A/chicken/Guangxi/55/2005 (GX55), the abovementioned amino acid mutations were completed. According to the 12-plasmid reverse genetic system, the rescue of the mutant virus was completed using A/PuertoRico/8/1934 (H1N1) (PR8) as the backbone. The cross hemagglutination inhibition test showed that these mutant sites could transform the parental strain from the old to the new antigenic region. Animal experiments indicated that the mutant virus provided significant protection against the virus from the new antigenic region. This study revealed the antigenic evolution of H9N2 subtype AIVs in China. At the same time, it provided an experimental basis for the development of new vaccines.
Collapse
|
8
|
Hassan KE, Ahrens AK, Ali A, El-Kady MF, Hafez HM, Mettenleiter TC, Beer M, Harder T. Improved Subtyping of Avian Influenza Viruses Using an RT-qPCR-Based Low Density Array: 'Riems Influenza a Typing Array', Version 2 (RITA-2). Viruses 2022; 14:415. [PMID: 35216008 PMCID: PMC8879595 DOI: 10.3390/v14020415] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/08/2022] [Accepted: 02/15/2022] [Indexed: 12/10/2022] Open
Abstract
Avian influenza virus (AIV) variants emerge frequently, which challenges rapid diagnosis. Appropriate diagnosis reaching the sub- and pathotype level is the basis of combatting notifiable AIV infections. Real-time RT-PCR (RT-qPCR) has become a standard diagnostic tool. Here, a total of 24 arrayed RT-qPCRs is introduced for full subtyping of 16 hemagglutinin and nine neuraminidase subtypes of AIV. This array, designated Riems Influenza A Typing Array version 2 (RITA-2), represents an updated and economized version of the RITA-1 array previously published by Hoffmann et al. RITA-2 provides improved integration of assays (24 instead of 32 parallel reactions) and reduced assay volume (12.5 µL). The technique also adds RT-qPCRs to detect Newcastle Disease (NDV) and Infectious Bronchitis viruses (IBV). In addition, it maximizes inclusivity (all sequences within one subtype) and exclusivity (no intersubtypic cross-reactions) as shown in validation runs using a panel of 428 AIV reference isolates, 15 reference samples each of NDV and IBV, and 122 clinical samples. The open format of RITA-2 is particularly tailored to subtyping influenza A virus of avian hosts and Eurasian geographic origin. Decoupling and re-arranging selected RT-qPCRs to detect specific AIV variants causing epizootic outbreaks with a temporal and/or geographic restriction is possible.
Collapse
Affiliation(s)
- Kareem E. Hassan
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany; (K.E.H.); (A.K.A.); (M.B.)
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62511, Egypt; (A.A.); (M.F.E.-K.)
| | - Ann Kathrin Ahrens
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany; (K.E.H.); (A.K.A.); (M.B.)
| | - Ahmed Ali
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62511, Egypt; (A.A.); (M.F.E.-K.)
| | - Magdy F. El-Kady
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62511, Egypt; (A.A.); (M.F.E.-K.)
| | - Hafez M. Hafez
- Institute of Poultry Diseases, Free University Berlin, 14163 Berlin, Germany;
| | | | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany; (K.E.H.); (A.K.A.); (M.B.)
| | - Timm Harder
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany; (K.E.H.); (A.K.A.); (M.B.)
| |
Collapse
|
9
|
Abstract
Influenza A viruses (IAV) initiate infection by binding to glycans with terminal sialic acids on the cell surface. Hosts of IAV variably express two major forms of sialic acid, N-acetylneuraminic acid (NeuAc) and N-glycolylneuraminic acid (NeuGc). NeuGc is produced in most mammals including horses and pigs, but is absent in humans, ferrets, and birds. The only known naturally occurring IAVs that exclusively bind NeuGc are extinct highly pathogenic equine H7N7 viruses. We determined the crystal structure of a representative equine H7 hemagglutinin (HA) in complex with NeuGc and observed high similarity in the receptor-binding domain with an avian H7 HA. To determine the molecular basis for NeuAc and NeuGc specificity, we performed systematic mutational analyses, based on the structural insights, on two distant avian H7 HAs and an H15 HA. We found that mutation A135E is key for binding α2,3-linked NeuGc but does not abolish NeuAc binding. Additional mutations S128T, I130V, T189A, and K193R converted the specificity from NeuAc to NeuGc. We investigated the residues at positions 128, 130, 135, 189, and 193 in a phylogenetic analysis of avian and equine H7 HAs. This revealed a clear distinction between equine and avian residues. The highest variability was observed at key position 135, of which only the equine glutamic acid led to NeuGc binding. These results demonstrate that genetically distinct H7 and H15 HAs can be switched from NeuAc to NeuGc binding and vice versa after introduction of several mutations, providing insights into the adaptation of H7 viruses to NeuGc receptors. (250 words) Importance Influenza A viruses cause millions of cases of severe illness and deaths annually. To initiate infection and replicate, the virus first needs to bind to a structure on the cell surface, like a key fitting in a lock. For influenza A viruses, these 'keys' (receptors) on the cell surface are chains of sugar molecules (glycans). The terminal sugar on these glycans is often either N-acetylneuraminic acid (NeuAc) or N-glycolylneuraminic acid (NeuGc). Most influenza A viruses bind NeuAc, but a small minority binds NeuGc. NeuGc is present in species like horses, pigs, and mice, but not in humans, ferrets, and birds. Here, we investigated the molecular determinants of NeuGc specificity and the origin of viruses that bind NeuGc.
Collapse
|
10
|
Yang J, Yang L, Zhu W, Wang D, Shu Y. Epidemiological and Genetic Characteristics of the H3 Subtype Avian Influenza Viruses in China. China CDC Wkly 2021; 3:929-936. [PMID: 34745694 PMCID: PMC8563336 DOI: 10.46234/ccdcw2021.225] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 10/27/2021] [Indexed: 11/14/2022] Open
Affiliation(s)
- Jiaying Yang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China.,Chinese National Influenza Center, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Lei Yang
- Chinese National Influenza Center, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Wenfei Zhu
- Chinese National Influenza Center, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Dayan Wang
- Chinese National Influenza Center, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yuelong Shu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China.,Chinese National Influenza Center, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
11
|
Abstract
Avian influenza viruses pose a continuous threat to both poultry and human health, with significant economic impact. The ability of viruses to reassort and jump the species barrier into mammalian hosts generates a constant pandemic threat. H10Nx avian viruses have been shown to replicate in mammalian species without prior adaptation and have caused significant human infection and fatalities. They are able to rapidly reassort with circulating poultry strains and go undetected due to their low pathogenicity in chickens. Novel detections of both human reassortant strains and increasing endemicity of H10Nx poultry infections highlight the increasing need for heightened surveillance and greater understanding of the distribution, tropism, and infection capabilities of these viruses. In this minireview, we highlight the gap in the current understanding of this subtype and its prevalence across a vast range of host species and geographical locations.
Collapse
|
12
|
Universal Influenza Virus Neuraminidase Vaccine Elicits Protective Immune Responses against Human Seasonal and Pre-pandemic Strains. J Virol 2021; 95:e0075921. [PMID: 34160258 DOI: 10.1128/jvi.00759-21] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The hemagglutinin (HA) surface protein is the primary immune target for most influenza vaccines. The neuraminidase (NA) surface protein is often a secondary target for vaccine designs. In this study, computationally optimized broadly reactive antigen (COBRA) methodology was used to generate the N1-I NA vaccine antigen that was designed to cross-react with avian, swine, and human influenza viruses of the N1 NA subtype. The elicited antibodies bound to NA proteins derived from A/California/07/2009 (H1N1)pdm09, A/Brisbane/59/2007 (H1N1), A/Swine/North Carolina/154074/2015 (H1N1), and A/Viet Nam/1203/2004 (H5N1) influenza viruses, with NA-neutralizing activity against a broad panel of HXN1 influenza strains. Mice vaccinated with the N1-I COBRA NA vaccine were protected from mortality and viral lung titers were lower when challenged with four different viral challenges (A/California/07/2009, A/Brisbane/59/2007, A/Swine/North Carolina/154074/2015, and A/Viet Nam/1203/2004). Vaccinated mice had little to no weight loss against both homologous, but also cross-NA, genetic clade challenges. Lung viral titers were lower than the mock-vaccinated mice and, at times, equivalent to the homologous control. Thus, the N1-I COBRA NA antigen has the potential to be a complementary component in a multiantigen universal influenza virus vaccine formulation that also contains HA antigens. IMPORTANCE The development and distribution of a universal influenza vaccine would alleviate global economic and public health stress from annual influenza virus outbreaks. The influenza virus NA vaccine antigen allows for protection from multiple HA subtypes and virus host origins, but it has not been the focus of vaccine development. The N1-I NA antigen described here protected mice from direct challenge of four distinct influenza viruses and inhibited the enzymatic activity of an N1 influenza virus panel. The use of the NA antigen in combination with the HA antigen widens the breadth of protection against various virus strains. Therefore, this research opens the door to the development of a longer-lasting vaccine with increased protective breadth.
Collapse
|
13
|
Yu YN, Zheng Y, Hao SS, Zhang Z, Cai JX, Zong MM, Feng XL, Liu QT. The molecular evolutionary characteristics of new isolated H9N2 AIV from East China and the function of vimentin on virus replication in MDCK cells. Virol J 2020; 17:78. [PMID: 32552884 PMCID: PMC7302367 DOI: 10.1186/s12985-020-01351-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 06/08/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The low pathogenic H9N2 AIV caused the serious impact on the poultry industry and public safety. Our purpose was to investigate the molecular evolutionary characteristics of the new isolated H9N2 virus and investigate the intracellular target protein of H9N2 AIV replication in sensitive cells. METHODS AIV A/chicken/Shandong/LY1/2017 (H9N2) was isolated from the cloaca of the healthy chicken in Shandong, and the full-length eight gene segments of this isolated H9N2 AIV were amplified by RT-PCR and analyzed. MDCK cells were used as the target cell model, and VOPBA assay and LC-MS/MS were carried out to identify the virus-binding protein of H9N2 AIV. MDCK cells were pre-treated with the special antibody and siRNA, and treated with H9N2 AIV to detect the virus replication. Additionally, Vimentin-pcDNA3.0 was successfully constructed, and transinfected into MDCK cells, and then H9N2 AIV mRNA was detected with RT-PCR. RESULTS Phylogenetic analysis revealed that HA, NA, PB2, PB1, PA, NP and M seven genes of the isolated H9N2 AIV were derived from A/Chicken/Shanghai/F/98, while NS gene was derived from A/Duck/Hong Kong/Y439/97. The cleavage site sequence of HA gene of the isolated H9N2 AIV was a PARSSR G pattern, and the left side sequence (224 ~ 229) of receptor binding site was NGQQGR pattern, which were similar to that of A/Chicken/Shanghai/F/98. Following VOPBA assay, we found one protein of about 50KDa binding to H9N2 AIV, and the results of LC-MS/MS analysis proved that vimentin was the vital protein binding to H9N2 AIV. The pre-incubation of the specific antibody and siRNA decreased the viral RNA level in MDCK cells treated with H9N2 AIV. Furthermore, we found that over-expressed vimentin increased H9N2 AIV replication in MDCK cells. CONCLUSIONS These findings suggested that the isolated H9N2 AIV might be a recent clinical common H9N2 strain, and vimentin protein might be one vital factor for H9N2 AIV replication in MDCK cells, which might be a novel target for design and development of antiviral drug.
Collapse
Affiliation(s)
- Yuan Nan Yu
- Key Laboratory of Animal Microbiology of China's Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.,Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.,MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yang Zheng
- Key Laboratory of Animal Microbiology of China's Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.,MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shan Shan Hao
- Key Laboratory of Animal Microbiology of China's Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.,MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ze Zhang
- Key Laboratory of Animal Microbiology of China's Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.,MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jia Xi Cai
- Key Laboratory of Animal Microbiology of China's Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.,MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Man Man Zong
- Key Laboratory of Animal Microbiology of China's Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.,MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiu Li Feng
- Key Laboratory of Animal Microbiology of China's Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China. .,MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Qing Tao Liu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.
| |
Collapse
|
14
|
Abstract
Influenza A viruses (IAVs) of the H9 subtype are enzootic in Asia, the Middle East, and parts of North and Central Africa, where they cause significant economic losses to the poultry industry. Of note, some strains of H9N2 viruses have been linked to zoonotic episodes of mild respiratory diseases. Because of the threat posed by H9N2 viruses to poultry and human health, these viruses are considered of pandemic concern by the World Health Organization (WHO). H9N2 IAVs continue to diversify into multiple antigenically and phylogenetically distinct lineages that can further promote the emergence of strains with pandemic potential. Somewhat neglected compared with the H5 and H7 subtypes, there are numerous indicators that H9N2 viruses could be involved directly or indirectly in the emergence of the next influenza pandemic. The goal of this work is to discuss the state of knowledge on H9N2 IAVs and to provide an update on the contemporary global situation.
Collapse
Affiliation(s)
- Silvia Carnaccini
- Department of Population Health, Poultry Diagnostic and Research Center, University of Georgia, Athens, Georgia 30602, USA
| | - Daniel R Perez
- Department of Population Health, Poultry Diagnostic and Research Center, University of Georgia, Athens, Georgia 30602, USA
| |
Collapse
|
15
|
Bhatta TR, Chamings A, Vibin J, Klaassen M, Alexandersen S. Detection of a Reassortant H9N2 Avian Influenza Virus with Intercontinental Gene Segments in a Resident Australian Chestnut Teal. Viruses 2020; 12:E88. [PMID: 31940999 PMCID: PMC7019556 DOI: 10.3390/v12010088] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/07/2020] [Accepted: 01/09/2020] [Indexed: 12/16/2022] Open
Abstract
The present study reports the genetic characterization of a low-pathogenicity H9N2 avian influenza virus, initially from a pool and subsequently from individual faecal samples collected from Chestnut teals (Anas castanea) in southeastern Australia. Phylogenetic analyses of six full gene segments and two partial gene segments obtained from next-generation sequencing showed that this avian influenza virus, A/Chestnut teal/Australia/CT08.18/12952/2018 (H9N2), was a typical, low-pathogenicity, Eurasian aquatic bird lineage H9N2 virus, albeit containing the North American lineage nucleoprotein (NP) gene segment detected previously in Australian wild birds. This is the first report of a H9N2 avian influenza virus in resident wild birds in Australia, and although not in itself a cause of concern, is a clear indication of spillover and likely reassortment of influenza viruses between migratory and resident birds, and an indication that any lineage could potentially be introduced in this way.
Collapse
Affiliation(s)
- Tarka Raj Bhatta
- Geelong Centre for Emerging Infectious Diseases, Geelong, Victoria 3220, Australia
- School of Medicine, Deakin University, Geelong, Victoria 3220, Australia
| | - Anthony Chamings
- Geelong Centre for Emerging Infectious Diseases, Geelong, Victoria 3220, Australia
- School of Medicine, Deakin University, Geelong, Victoria 3220, Australia
| | - Jessy Vibin
- Geelong Centre for Emerging Infectious Diseases, Geelong, Victoria 3220, Australia
- School of Medicine, Deakin University, Geelong, Victoria 3220, Australia
| | - Marcel Klaassen
- Geelong Centre for Emerging Infectious Diseases, Geelong, Victoria 3220, Australia
- Centre for Integrative Ecology, Deakin University, Victoria 3220, Australia
| | - Soren Alexandersen
- Geelong Centre for Emerging Infectious Diseases, Geelong, Victoria 3220, Australia
- School of Medicine, Deakin University, Geelong, Victoria 3220, Australia
- Barwon Health, University Hospital Geelong, Geelong, Victoria 3220, Australia
| |
Collapse
|
16
|
Paploski IAD, Corzo C, Rovira A, Murtaugh MP, Sanhueza JM, Vilalta C, Schroeder DC, VanderWaal K. Temporal Dynamics of Co-circulating Lineages of Porcine Reproductive and Respiratory Syndrome Virus. Front Microbiol 2019; 10:2486. [PMID: 31736919 PMCID: PMC6839445 DOI: 10.3389/fmicb.2019.02486] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 10/15/2019] [Indexed: 02/05/2023] Open
Abstract
Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) is the most important endemic pathogen in the U.S. swine industry. Despite control efforts involving improved biosecurity and different vaccination protocols, the virus continues to circulate and evolve. One of the foremost challenges in its control is high levels of genetic and antigenic diversity. Here, we quantify the co-circulation, emergence and sequential turnover of multiple PRRSV lineages in a single swine-producing region in the United States over a span of 9 years (2009-2017). By classifying over 4,000 PRRSV sequences (open-reading frame 5) into phylogenetic lineages and sub-lineages, we document the ongoing diversification and temporal dynamics of the PRRSV population, including the rapid emergence of a novel sub-lineage that appeared to be absent globally pre-2008. In addition, lineage 9 was the most prevalent lineage from 2009 to 2010, but its occurrence fell to 0.5% of all sequences identified per year after 2014, coinciding with the emergence or re-emergence of lineage 1 as the dominant lineage. The sequential dominance of different lineages, as well as three different sub-lineages within lineage 1, is consistent with the immune-mediated selection hypothesis for the sequential turnover in the dominant lineage. As host populations build immunity through natural infection or vaccination toward the most common variant, this dominant (sub-) lineage may be replaced by an emerging variant to which the population is more susceptible. An analysis of patterns of non- synonymous and synonymous mutations revealed evidence of positive selection on immunologically important regions of the genome, further supporting the potential that immune-mediated selection shapes the evolutionary and epidemiological dynamics for this virus. This has important implications for patterns of emergence and re-emergence of genetic variants of PRRSV that have negative impacts on the swine industry. Constant surveillance on PRRSV occurrence is crucial to a better understanding of the epidemiological and evolutionary dynamics of co-circulating viral lineages. Further studies utilizing whole genome sequencing and exploring the extent of cross-immunity between heterologous PRRS viruses could shed further light on PRRSV immunological response and aid in developing strategies that might be able to diminish disease impact.
Collapse
Affiliation(s)
| | - Cesar Corzo
- Department of Veterinary Population Medicine, University of Minnesota, Saint Paul, MN, United States
| | - Albert Rovira
- Department of Veterinary Population Medicine, University of Minnesota, Saint Paul, MN, United States
| | - Michael P. Murtaugh
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, MN, United States
| | - Juan Manuel Sanhueza
- Department of Veterinary Population Medicine, University of Minnesota, Saint Paul, MN, United States
| | - Carles Vilalta
- Department of Veterinary Population Medicine, University of Minnesota, Saint Paul, MN, United States
| | - Declan C. Schroeder
- Department of Veterinary Population Medicine, University of Minnesota, Saint Paul, MN, United States
- School of Biological Sciences, University of Reading, Reading, United Kingdom
| | - Kimberly VanderWaal
- Department of Veterinary Population Medicine, University of Minnesota, Saint Paul, MN, United States
| |
Collapse
|
17
|
Gultyaev AP, Richard M, Spronken MI, Olsthoorn RCL, Fouchier RAM. Conserved structural RNA domains in regions coding for cleavage site motifs in hemagglutinin genes of influenza viruses. Virus Evol 2019; 5:vez034. [PMID: 31456885 PMCID: PMC6704317 DOI: 10.1093/ve/vez034] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The acquisition of a multibasic cleavage site (MBCS) in the hemagglutinin (HA) glycoprotein is the main determinant of the conversion of low pathogenic avian influenza viruses into highly pathogenic strains, facilitating HA cleavage and virus replication in a broader range of host cells. In nature, substitutions or insertions in HA RNA genomic segments that code for multiple basic amino acids have been observed only in the HA genes of two out of sixteen subtypes circulating in birds, H5 and H7. Given the compatibility of MBCS motifs with HA proteins of numerous subtypes, this selectivity was hypothesized to be determined by the existence of specific motifs in HA RNA, in particular structured domains. In H5 and H7 HA RNAs, predictions of such domains have yielded alternative conserved stem-loop structures with the cleavage site codons in the hairpin loops. Here, potential RNA secondary structures were analyzed in the cleavage site regions of HA segments of influenza viruses of different types and subtypes. H5- and H7-like stem-loop structures were found in all known influenza A virus subtypes and in influenza B and C viruses with homology modeling. Nucleotide covariations supported this conservation to be determined by RNA structural constraints that are stronger in the domain-closing bottom stems as compared to apical parts. The structured character of this region in (sub-)types other than H5 and H7 indicates its functional importance beyond the ability to evolve toward an MBCS responsible for a highly pathogenic phenotype.
Collapse
Affiliation(s)
- Alexander P Gultyaev
- Department of Viroscience, Erasmus Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands.,Group Imaging and Bioinformatics, Leiden Institute of Advanced Computer Science (LIACS), Leiden University, PO Box 9512, 2300 RA Leiden, The Netherlands
| | - Mathilde Richard
- Department of Viroscience, Erasmus Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Monique I Spronken
- Department of Viroscience, Erasmus Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - René C L Olsthoorn
- Leiden Institute of Chemistry, Leiden University, PO Box 9502, 2300 RA Leiden, The Netherlands
| | - Ron A M Fouchier
- Department of Viroscience, Erasmus Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| |
Collapse
|
18
|
Diversity and distribution of type A influenza viruses: an updated panorama analysis based on protein sequences. Virol J 2019; 16:85. [PMID: 31242907 PMCID: PMC6595669 DOI: 10.1186/s12985-019-1188-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 05/31/2019] [Indexed: 01/09/2023] Open
Abstract
Background Type A influenza viruses (IAVs) cause significant infections in humans and multiple species of animals including pigs, horses, birds, dogs and some marine animals. They are of complicated phylogenetic diversity and distribution, and analysis of their phylogenetic diversity and distribution from a panorama view has not been updated for multiple years. Methods 139,872 protein sequences of IAVs from GenBank were selected, and they were aligned and phylogenetically analyzed using the software tool MEGA 7.0. Lineages and subordinate lineages were classified according to the topology of the phylogenetic trees and the host, temporal and spatial distribution of the viruses, and designated using a novel universal nomenclature system. Results Large phylogenetic trees of the two external viral genes (HA and NA) and six internal genes (PB2, PB1, PA, NP, MP and NS) were constructed, and the diversity and the host, temporal and spatial distribution of these genes were calculated and statistically analyzed. Various features regarding the diversity and distribution of IAVs were confirmed, revised or added through this study, as compared with previous reports. Lineages and subordinate lineages were classified and designated for each of the genes based on the updated panorama views. Conclusions The panorama views of phylogenetic diversity and distribution of IAVs and their nomenclature system were updated and assumed to be of significance for studies and communication of IAVs. Electronic supplementary material The online version of this article (10.1186/s12985-019-1188-7) contains supplementary material, which is available to authorized users.
Collapse
|
19
|
Haach V, Gava D, Mauricio EC, Franco AC, Schaefer R. One-step multiplex RT-qPCR for the detection and subtyping of influenza A virus in swine in Brazil. J Virol Methods 2019; 269:43-48. [PMID: 30959063 DOI: 10.1016/j.jviromet.2019.04.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 04/02/2019] [Accepted: 04/03/2019] [Indexed: 11/19/2022]
Abstract
Pandemic H1N1, human-like H1N2 and H3N2 influenza A (IAV) viruses are co-circulating in swine herds in Brazil. The genetic analysis of the Brazilian IAVs has shown that they are genetically distinct from viruses found in swine in other countries; therefore, an update of the diagnostic assays for IAV detection and subtyping is needed. This study describes the development and validation of a TaqMan based - one-step multiplex RT-qPCR to discriminate the hemagglutinin and neuraminidase genes of the three major IAV subtypes circulating in pigs in Brazil. The RT-qPCR assays presented 100% (95.7-100, CI 95%) of diagnostic sensitivity in the analysis of 85 IAVs, previously characterized by sequencing. The limits of detection ranged from 5.09 × 101 to 5.09 × 103 viral RNA copies/μL. For the analytical specificity, 73 pig samples collected during 2017 and 2018 were analyzed, resulting in the identification of the subtype in 74.0% (62.9-82.7, CI 95%) of samples. From these, 46.3% were H3N2, 33.3% were H1N1, 11.1% were H1N2 and 3.7% were HxN1. Mixed viral infections (3.7%) and reassortant viruses (1.9%) were also detected by the test. This multiplex RT-qPCR assay provides a fast and specific diagnostic tool for identification of different subtypes and lineages of IAV in pigs, contributing to the monitoring of influenza in swine.
Collapse
Affiliation(s)
- Vanessa Haach
- Laboratório de Virologia, Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, Porto Alegre, CEP 90050-170, Rio Grande do Sul, Brazil
| | - Danielle Gava
- Embrapa Suínos e Aves, BR-153, Km 110, Distrito de Tamanduá, Concórdia, CEP 89715-899, Santa Catarina, Brazil
| | - Egídio Cantão Mauricio
- Embrapa Suínos e Aves, BR-153, Km 110, Distrito de Tamanduá, Concórdia, CEP 89715-899, Santa Catarina, Brazil
| | - Ana Cláudia Franco
- Laboratório de Virologia, Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, Porto Alegre, CEP 90050-170, Rio Grande do Sul, Brazil
| | - Rejane Schaefer
- Embrapa Suínos e Aves, BR-153, Km 110, Distrito de Tamanduá, Concórdia, CEP 89715-899, Santa Catarina, Brazil.
| |
Collapse
|
20
|
The development of a multiplex serological assay for avian influenza based on Luminex technology. Methods 2019; 158:54-60. [DOI: 10.1016/j.ymeth.2019.01.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 01/09/2019] [Accepted: 01/23/2019] [Indexed: 01/23/2023] Open
|
21
|
Streltsov VA, Schmidt PM, McKimm-Breschkin JL. Structure of an Influenza A virus N9 neuraminidase with a tetrabrachion-domain stalk. Acta Crystallogr F Struct Biol Commun 2019; 75:89-97. [PMID: 30713159 PMCID: PMC6360442 DOI: 10.1107/s2053230x18017892] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 12/18/2018] [Indexed: 12/26/2022] Open
Abstract
The influenza neuraminidase (NA) is a homotetramer with head, stalk, transmembrane and cytoplasmic regions. The structure of the NA head with a stalk has never been determined. The NA head from an N9 subtype influenza A virus, A/tern/Australia/G70C/1975 (H1N9), was expressed with an artificial stalk derived from the tetrabrachion (TB) tetramerization domain from Staphylothermus marinus. The NA was successfully crystallized both with and without the TB stalk, and the structures were determined to 2.6 and 2.3 Å resolution, respectively. Comparisons of the two NAs with the native N9 NA structure from egg-grown virus showed that the artificial TB stalk maintained the native NA head structure, supporting previous biological observations.
Collapse
Affiliation(s)
- Victor A. Streltsov
- CSIRO Manufacturing, 343 Royal Parade, Parkville, Victoria 3052, Australia
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, 30 Royal Parade, Parkville, Victoria 3052, Australia
| | - Peter M. Schmidt
- CSIRO Manufacturing, 343 Royal Parade, Parkville, Victoria 3052, Australia
- R&D, CSL Behring GmbH, Emil-von-Behring Strasse 76, 35041 Marburg, Germany
| | - Jennifer L. McKimm-Breschkin
- CSIRO Manufacturing, 343 Royal Parade, Parkville, Victoria 3052, Australia
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, 792 Elizabeth Street, Melbourne, Victoria 3000, Australia
| |
Collapse
|
22
|
Amanat F, Meade P, Strohmeier S, Krammer F. Cross-reactive antibodies binding to H4 hemagglutinin protect against a lethal H4N6 influenza virus challenge in the mouse model. Emerg Microbes Infect 2019; 8:155-168. [PMID: 30866770 PMCID: PMC6455122 DOI: 10.1080/22221751.2018.1564369] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 12/01/2018] [Accepted: 12/12/2018] [Indexed: 12/16/2022]
Abstract
Influenza viruses of the H4 subtype are widespread in wild birds, circulate in domestic poultry, readily infect mammals, and tolerate the insertion of a polybasic cleavage site. In addition, serological evidence suggests that humans working with poultry are exposed to these viruses. While H4 viruses are not of immediate pandemic concern, there is a lack of knowledge regarding their antigenicity. In order to study viruses of the H4 subtype, we generated and characterized a panel of antibodies that bind a wide variety of H4 hemagglutinins from avian and swine isolates of both the Eurasian and North American lineage. We further characterized these antibodies using novel recombinant H4N6 viruses that were found to be lethal in DBA/2J mice. Non-neutralizing antibodies, which had activity in an antibody dependent cell-mediated cytotoxicity reporter assay in vitro, protected mice against challenge in vivo, highlighting the importance of effector functions. Our data suggest a high degree of antigenic conservation of the H4 hemagglutinin.
Collapse
Affiliation(s)
- Fatima Amanat
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Graduate School of Biological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Philip Meade
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Graduate School of Biological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Shirin Strohmeier
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
23
|
El-Shesheny R, Franks J, Marathe BM, Hasan MK, Feeroz MM, Krauss S, Vogel P, McKenzie P, Webby RJ, Webster RG. Genetic characterization and pathogenic potential of H10 avian influenza viruses isolated from live poultry markets in Bangladesh. Sci Rep 2018; 8:10693. [PMID: 30013138 PMCID: PMC6048039 DOI: 10.1038/s41598-018-29079-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 07/05/2018] [Indexed: 12/25/2022] Open
Abstract
Fatal human cases of avian-origin H10N8 influenza virus infections have raised concern about their potential for human-to-human transmission. H10 subtype avian influenza viruses (AIVs) have been isolated from wild and domestic aquatic birds across Eurasia and North America. We isolated eight H10 AIVs (four H10N7, two H10N9, one H10N1, and one H10N6) from live poultry markets in Bangladesh. Genetic analyses demonstrated that all eight isolates belong to the Eurasian lineage. HA phylogenetic and antigenic analyses indicated that two antigenically distinct groups of H10 AIVs are circulating in Bangladeshi live poultry markets. We evaluated the virulence of four representative H10 AIV strains in DBA/2J mice and found that they replicated efficiently in mice without prior adaptation. Moreover, H10N6 and H10N1 AIVs caused high mortality with systemic dissemination. These results indicate that H10 AIVs pose a potential threat to human health and the mechanisms of their transmissibility should be elucidated.
Collapse
MESH Headings
- A549 Cells
- Animals
- Antigens, Viral/genetics
- Antigens, Viral/immunology
- Bangladesh
- Disease Models, Animal
- Hemagglutination, Viral/immunology
- Humans
- Influenza A Virus, H10N7 Subtype/genetics
- Influenza A Virus, H10N7 Subtype/immunology
- Influenza A Virus, H10N7 Subtype/isolation & purification
- Influenza A Virus, H10N7 Subtype/pathogenicity
- Mice
- Mice, Inbred DBA
- Orthomyxoviridae Infections/immunology
- Orthomyxoviridae Infections/mortality
- Orthomyxoviridae Infections/transmission
- Orthomyxoviridae Infections/virology
- Phylogeny
- Poultry/virology
- Poultry Diseases/immunology
- Poultry Diseases/mortality
- Poultry Diseases/transmission
- Poultry Diseases/virology
- RNA, Viral/genetics
- RNA, Viral/isolation & purification
- Virus Replication
Collapse
Affiliation(s)
- Rabeh El-Shesheny
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, Egypt
| | - John Franks
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Bindumadhav M Marathe
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - M Kamrul Hasan
- Department of Zoology, Jahangirnagar University, Dhaka, 1342, Bangladesh
| | - Mohammed M Feeroz
- Department of Zoology, Jahangirnagar University, Dhaka, 1342, Bangladesh
| | - Scott Krauss
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Peter Vogel
- Department of Pathology, St Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Pamela McKenzie
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Richard J Webby
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Robert G Webster
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
| |
Collapse
|
24
|
Chrysostomou C, Partaourides H, Seker H. Prediction of Influenza A virus infections in humans using an Artificial Neural Network learning approach. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2018; 2017:1186-1189. [PMID: 29060087 DOI: 10.1109/embc.2017.8037042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The Influenza type A virus can be considered as one of the most severe viruses that can infect multiple species with often fatal consequences to the hosts. The Haemagglutinin (HA) gene of the virus has the potential to be a target for antiviral drug development realised through accurate identification of its sub-types and possible the targeted hosts. In this paper, to accurately predict if an Influenza type A virus has the capability to infect human hosts, by using only the HA gene, is therefore developed and tested. The predictive model follows three main steps; (i) decoding the protein sequences into numerical signals using EIIP amino acid scale, (ii) analysing these sequences by using Discrete Fourier Transform (DFT) and extracting DFT-based features, (iii) using a predictive model, based on Artificial Neural Networks and using the features generated by DFT. In this analysis, from the Influenza Research Database, 30724, 18236 and 8157 HA protein sequences were collected for Human, Avian and Swine respectively. Given this set of the proteins, the proposed method yielded 97.36% (± 0.04%), 97.26% (± 0.26%), 0.978 (± 0.004), 0.963 (± 0.005) and 0.945 (±0.005) for the training accuracy validation accuracy, precision, recall and Mathews Correlation Coefficient (MCC) respectively, based on a 10-fold cross-validation. The classification model generated by using one of the largest dataset, if not the largest, yields promising results that could lead to early detection of such species and help develop precautionary measurements for possible human infections.
Collapse
|
25
|
Lin TN, Nonthabenjawan N, Chaiyawong S, Bunpapong N, Boonyapisitsopa S, Janetanakit T, Mon PP, Mon HH, Oo KN, Oo SM, Mar Win M, Amonsin A. Influenza A(H9N2) Virus, Myanmar, 2014-2015. Emerg Infect Dis 2018; 23:1041-1043. [PMID: 28518029 PMCID: PMC5443444 DOI: 10.3201/eid2306.161902] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Routine surveillance of influenza A virus was conducted in Myanmar during 2014-2015. Influenza A(H9N2) virus was isolated in Shan State, upper Myanmar. Whole-genome sequencing showed that H9N2 virus from Myanmar was closely related to H9N2 virus of clade 4.2.5 from China.
Collapse
|
26
|
Schneider EK, Li J, Velkov T. A Portrait of the Sialyl Glycan Receptor Specificity of the H10 Influenza Virus Hemagglutinin-A Picture of an Avian Virus on the Verge of Becoming a Pandemic? Vaccines (Basel) 2017; 5:vaccines5040051. [PMID: 29236069 PMCID: PMC5748617 DOI: 10.3390/vaccines5040051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 12/11/2017] [Accepted: 12/12/2017] [Indexed: 11/26/2022] Open
Abstract
Pandemic influenza is a constant global threat to human health. In particular, the pandemic potential of novel avian influenza viruses such as the H10N7 and H10N8 avian strains, which recently managed to cross the species barrier from birds to humans, are always of great concern as we are unlikely to have any prior immunity. Human and avian isolates of H10 influenza display the ability to rapidly adapt to replication in mammalian hosts. Fortunately, so far there is no evidence of efficient human-to-human transmission of any avian influenza virus. This review examines all of the available clinical and biological data for H10 influenza viruses with an emphasis on hemagglutinin as it is a major viral antigen that determines host range and immunity. The available glycan binding data on the influenza H10 hemagglutinin are discussed in a structure-recognition perspective. Importantly, this review raises the question of whether the emerging novel avian H10 influenza viruses truly represents a threat to global health that warrants close monitoring.
Collapse
Affiliation(s)
- Elena K Schneider
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia.
- Department of Pharmacology & Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC 3010, Australia.
| | - Jian Li
- Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, VIC 3800, Australia.
| | - Tony Velkov
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia.
- Department of Pharmacology & Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
27
|
Niu X, Wang H, Wei L, Zhang M, Yang J, Chen H, Tang Y, Diao Y. Epidemiological investigation of H9 avian influenza virus, Newcastle disease virus, Tembusu virus, goose parvovirus and goose circovirus infection of geese in China. Transbound Emerg Dis 2017; 65:e304-e316. [PMID: 29134777 DOI: 10.1111/tbed.12755] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Indexed: 01/27/2023]
Abstract
To deepen the knowledge about epidemic prevalence in the goose breeding field, a triplex PCR assay was established, and 478 samples were collected from scaled goose farms in 11 provinces in China. The results of this epidemiological investigation showed that incidence rates of H9 avian influenza and goose circovirus were the highest among five infectious diseases that were evaluated. In addition, the triplex PCR assay established remarkable sensitivity, rapidity and versatility compared to other diagnostic methods. Dual infection comprised a large proportion of the co-infections in the field, of which the combinations of H9/Tembusu, H9/goose circovirus and goose circovirus/Tembusu co-infected cases were more common. Epidemics were more severe in winter and spring. Additionally, significant differences in the prevalence of these infectious diseases were observed in association with different age groups. In addition, phylogenetic analysis, determined by the neighbour-joining method, was carried out to investigate the evolution of these viruses during the study period. For the most part, virus strains isolated during the study were consistent with most goose-origin strains isolated from the Chinese mainland over the past few years. However, mutations were observed between isolated H9 avian influenza virus strains and sequences available from GenBank, which should draw much attention.
Collapse
Affiliation(s)
- X Niu
- College of Animal Science and Veterinary Medicine, Shandong Agriculture University, Tai'an, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agriculture University, Tai'an, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agriculture University, Tai'an, China
| | - H Wang
- College of Animal Science and Veterinary Medicine, Shandong Agriculture University, Tai'an, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agriculture University, Tai'an, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agriculture University, Tai'an, China
| | - L Wei
- Taian City Central Hospital, Tai'an, China
| | - M Zhang
- College of Animal Science and Veterinary Medicine, Shandong Agriculture University, Tai'an, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agriculture University, Tai'an, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agriculture University, Tai'an, China
| | - J Yang
- College of Animal Science and Veterinary Medicine, Shandong Agriculture University, Tai'an, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agriculture University, Tai'an, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agriculture University, Tai'an, China
| | - H Chen
- College of Life Sciences, Qufu Normal University, Qufu, China
| | - Y Tang
- College of Animal Science and Veterinary Medicine, Shandong Agriculture University, Tai'an, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agriculture University, Tai'an, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agriculture University, Tai'an, China
| | - Y Diao
- College of Animal Science and Veterinary Medicine, Shandong Agriculture University, Tai'an, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agriculture University, Tai'an, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agriculture University, Tai'an, China
| |
Collapse
|
28
|
Sun Z, Qin T, Meng F, Chen S, Peng D, Liu X. Development of a multiplex probe combination-based one-step real-time reverse transcription-PCR for NA subtype typing of avian influenza virus. Sci Rep 2017; 7:13455. [PMID: 29044197 PMCID: PMC5647442 DOI: 10.1038/s41598-017-13768-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 09/29/2017] [Indexed: 12/31/2022] Open
Abstract
Nine influenza virus neuraminidase (NA) subtypes have been identified in poultry and wild birds. Few methods are available for rapid and simple NA subtyping. Here we developed a multiplex probe combination-based one-step real-time reverse transcriptase PCR (rRT-PCR) to detect nine avian influenza virus NA subtypes. Nine primer-probe pairs were assigned to three groups based on the different fluorescent dyes of the probes (FAM, HEX, or Texas Red). Each probe detected only one NA subtype, without cross reactivity. The detection limit was less than 100 EID50 or 100 copies of cDNA per reaction. Data obtained using this method with allantoic fluid samples isolated from live bird markets and H9N2-infected chickens correlated well with data obtained using virus isolation and sequencing, but was more sensitive. This new method provides a specific and sensitive alternative to conventional NA-subtyping methods.
Collapse
Affiliation(s)
- Zhihao Sun
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, 225009, PR China.,Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, Jiangsu, 225009, PR China
| | - Tao Qin
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, 225009, PR China.,Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, Jiangsu, 225009, PR China
| | - Feifei Meng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, 225009, PR China.,Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, Jiangsu, 225009, PR China
| | - Sujuan Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, 225009, PR China.,Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, Jiangsu, 225009, PR China
| | - Daxin Peng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China. .,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, 225009, PR China. .,Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, Jiangsu, 225009, PR China.
| | - Xiufan Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, 225009, PR China.,Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, Jiangsu, 225009, PR China
| |
Collapse
|
29
|
Chen W, Xu Q, Zhong Y, Yu H, Shu J, Ma T, Li Z. Genetic variation and co-evolutionary relationship of RNA polymerase complex segments in influenza A viruses. Virology 2017; 511:193-206. [PMID: 28866238 DOI: 10.1016/j.virol.2017.07.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 07/18/2017] [Accepted: 07/20/2017] [Indexed: 11/19/2022]
Abstract
The RNA polymerase complex (RNApc) in influenza A viruses (IVs) is composed of the PB2, PB1 and PA subunits, which are encoded by the three longest genome segments (Seg1-3) and are responsible for the replication of vRNAs and transcription of viral mRNAs. However, the co-evolutionary relationships of the three segments from the known 126 subtypes IVs are unclear. In this study, we performed a detailed analysis based on a total number of 121,191 nucleotide sequences. Three segment sequences were aligned before the repeated, incomplete and mixed sequences were removed for homologous and phylogenetic analyses. Subsequently, the estimated substitution rates and TMRCAs (Times for Most Recent Common Ancestor) were calculated by 175 representative IVs. Tracing the cladistic distribution of three segments from these IVs, co-evolutionary patterns and trajectories could be inferred. The further correlation analysis of six internal protein coding segments reflect the RNApc segments have the closer correlation than others during continuous reassortments. This global approach facilitates the establishment of a fast antiviral strategy and monitoring of viral variation.
Collapse
Affiliation(s)
- Wentian Chen
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an 710069, PR China
| | - Qi Xu
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an 710069, PR China
| | - Yaogang Zhong
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an 710069, PR China
| | - Hanjie Yu
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an 710069, PR China
| | - Jian Shu
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an 710069, PR China
| | - Tianran Ma
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an 710069, PR China
| | - Zheng Li
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an 710069, PR China.
| |
Collapse
|
30
|
Serologic Detection of Subtype-specific Antibodies to Influenza A Viruses in Southern Sea Otters (Enhydra lutris nereis). J Wildl Dis 2017; 53:906-910. [PMID: 28513329 DOI: 10.7589/2017-01-011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
There are approximately 3,000 southern sea otters (Enhydra lutris nereis) in the nearshore environment along the California coast, US, and the species is classified as Threatened under the Endangered Species Act. We tested sera from 661 necropsied southern sea otters sampled from 1997 to 2015 to determine overall exposure to influenza A viruses (IAVs) and to identify subtype-specific antibody responses. Using an enzyme-linked immunosorbent assay (ELISA), antibodies to IAV nucleoproteins were detected in 160 (24.2%) otters, with seropositive animals found in every year except 2008. When the ELISA-positive samples were tested by virus microneutralization, antibody responses were detected to avian-origin hemagglutinin subtypes H1, H3, H4, H5, H6, H7, H9, and H11. Strong antibody responses to pandemic H1N1 (pdmH1N1) were also detected, indicating that epizootic transmission of pdmH1N1 occurred among the southern sea otter population after the emergence of this human-origin virus in 2009. We conclude that southern sea otters are susceptible to infection with avian and human-origin IAV and that exposure to a wide array of subtypes likely occurs during a given otter's 10- to 15-yr life span. Important unanswered questions include what effect, if any, IAV infection has on sea otter health, and how these animals become infected in their nearshore environment.
Collapse
|
31
|
Xia J, Cui JQ, He X, Liu YY, Yao KC, Cao SJ, Han XF, Huang Y. Genetic and antigenic evolution of H9N2 subtype avian influenza virus in domestic chickens in southwestern China, 2013-2016. PLoS One 2017; 12:e0171564. [PMID: 28158271 PMCID: PMC5291408 DOI: 10.1371/journal.pone.0171564] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 01/20/2017] [Indexed: 12/11/2022] Open
Abstract
H9N2 avian influenza virus (AIV) has caused significant losses in chicken flocks throughout china in recent years. There is a limited understanding of the genetic and antigenic characteristics of the H9N2 virus isolated in chickens in southwestern China. In this study a total of 12 field strains were isolated from tissue samples from diseased chickens between 2013 and 2016. Phylogenetic analysis of the Hemagglutinin (HA) and Neuraminidase (NA) nucleotide sequences from the 12 field isolates and other reference strains showed that most of the isolates in the past four years could be clustered into a major branch (HA-branch A and NA-branch I) in the Clade h9.4.2 lineages. These sequences are accompanied by nine and seven new amino acids mutations in the HA and NA proteins, respectively, when compared with those previous to 2013. In addition, four new isolates were grouped into a minor branch (HA-branch B) in the Clade h9.4.2 lineages and two potential N-glycosylation sites were observed due to amino acid mutations in the HA protein. Three antigenic groups (1-3), which had low antigenic relatedness with two commonly used vaccines in China, were identified among the 12 isolates by antigenMap analysis. Immunoprotection testing showed that those two vaccines could efficiently prevent the shedding of branch A viruses but not branch B viruses. In conclusion, these results indicate the genotype of branch B may become epidemic in the next few years and that a new vaccine should be developed for the prevention of H9N2 AIV.
Collapse
Affiliation(s)
- Jing Xia
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, P. R. CHINA
| | - Jia-Qi Cui
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, P. R. CHINA
| | - Xiao He
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, P. R. CHINA
| | - Yue-Yue Liu
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, P. R. CHINA
| | - Ke-Chang Yao
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, P. R. CHINA
| | - San-Jie Cao
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, P. R. CHINA
| | - Xin-Feng Han
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, P. R. CHINA
| | - Yong Huang
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, P. R. CHINA
- * E-mail:
| |
Collapse
|
32
|
Subtype-specific structural constraints in the evolution of influenza A virus hemagglutinin genes. Sci Rep 2016; 6:38892. [PMID: 27966593 PMCID: PMC5155281 DOI: 10.1038/srep38892] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 11/14/2016] [Indexed: 11/08/2022] Open
Abstract
The influenza A virus genome consists of eight RNA segments. RNA structures within these segments and complementary (cRNA) and protein-coding mRNAs may play a role in virus replication. Here, conserved putative secondary structures that impose significant evolutionary constraints on the gene segment encoding the surface glycoprotein hemagglutinin (HA) were investigated using available sequence data on tens of thousands of virus strains. Structural constraints were identified by analysis of covariations of nucleotides suggested to be paired by structure prediction algorithms. The significance of covariations was estimated by mutual information calculations and tracing multiple covariation events during virus evolution. Covariation patterns demonstrated that structured domains in HA RNAs were mostly subtype-specific, whereas some structures were conserved in several subtypes. The influence of RNA folding on virus replication was studied by plaque assays of mutant viruses with disrupted structures. The results suggest that over the whole length of the HA segment there are local structured domains which contribute to the virus fitness but individually are not essential for the virus. Existence of subtype-specific structured regions in the segments of the influenza A virus genome is apparently an important factor in virus evolution and reassortment of its genes.
Collapse
|
33
|
Phylogenetic Analysis of Hemagglutinin Genes of H9N2 Avian Influenza Viruses Isolated from Chickens in Shandong, China, between 1998 and 2013. BIOMED RESEARCH INTERNATIONAL 2015; 2015:267520. [PMID: 26609523 PMCID: PMC4644933 DOI: 10.1155/2015/267520] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 08/31/2015] [Indexed: 01/07/2023]
Abstract
Since H9N2 avian influenza virus (AIV) was first isolated in Guangdong province of China, the virus has been circulating in chicken flocks in mainland China. However, a systematic phylogenetic analysis of H9N2 AIV from chickens in Shandong of China has not been conducted. Based on hemagglutinin (HA) gene sequences of H9N2 AIVs isolated from chickens in Shandong of China between 1998 and 2013, genetic evolution of 35 HA gene sequences was systematically analyzed in this study. Our findings showed that the majority of H9N2 AIVs (21 out of 35) belonged to the lineage h9.4.2.5. Most of isolates (33 out of 35) had a PSRSSR↓GLF motif in HA cleavage site. Importantly, 29 out of these 35 isolates had an amino acid exchange (Q226L) in the receptor-binding site. The substitution showed that H9N2 AIVs had the potential affinity to bind to human-like receptor. The currently prevalent H9N2 AIVs in Shandong belonged to the lineage h9.4.2.5 which are different from the vaccine strain SS/94 clade h9.4.2.3. Therefore, the long-term surveillance of H9N2 AIVs is of significance to combat the possible H9N2 AIV outbreaks.
Collapse
|
34
|
Evolutionary Dynamics and Global Diversity of Influenza A Virus. J Virol 2015; 89:10993-1001. [PMID: 26311890 DOI: 10.1128/jvi.01573-15] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 08/17/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The increasing number of zoonotic infections caused by influenza A virus (IAV) subtypes of avian origin (e.g., H5N1 and H7N9) in recent years underscores the need to better understand the factors driving IAV evolution and diversity. To evaluate the current feasibility of global analyses to contribute to this aim, we evaluated information in the public domain to explore IAV evolutionary dynamics, including nucleotide substitution rates and selection pressures, using 14 IAV subtypes in 32 different countries over a 12-year period (2000 to 2011). Using geospatial information from 39,785 IAV strains, we examined associations between subtype diversity and socioeconomic, biodiversity, and agricultural indices. Our analyses showed that nucleotide substitution rates for 11 of the 14 evaluated subtypes tended to be higher in Asian countries, particularly in East Asia, than in Canada and the United States. Similarly, at a regional level, subtypes H5N1, H5N2, and H6N2 exhibited significantly higher substitution rates in East Asia than in North America. In contrast, the selection pressures (measured as ratios of nonsynonymous to synonymous evolutionary changes [dN/dS ratios]) acting on individual subtypes showed little geographic variation. We found that the strongest predictors for the detected subtype diversity at the country level were reporting effort (i.e., total number of strains reported) and health care spending (an indicator of economic development). Our analyses also identified major global gaps in IAV reporting (including a lack of sequences submitted from large portions of Africa and South America and a lack of geolocation information) and in broad subtype testing which, until addressed, will continue to hinder efforts to track the evolution and diversity of IAV around the world. IMPORTANCE In recent years, an increasing number of influenza A virus (IAV) subtypes, including H5N1, H7N9, and H10N8, have been detected in humans. High fatality rates have led to an increased urgency to better understand where and how novel pathogenic influenza virus strains emerge. Our findings showed that mutational rates of 11 commonly encountered subtypes were higher in East Asian countries than in North America, suggesting that there may be a greater risk for the emergence of novel pathogenic strains in East Asia. In assessing the potential drivers of IAV subtype diversity, our analyses confirmed that reporting effort and health care spending were the best predictors of the observed subtype diversity at the country level. These findings underscore the need to increase sampling and reporting efforts for all subtypes in many undersampled countries throughout the world.
Collapse
|
35
|
Zhang XC, Liu S, Hou GY, Zhuang QY, Wang KC, Jiang WM, Wang SC, Li JP, Yu JM, Du X, Huang BX, Chen JM. Comparison of three media for transport and storage of the samples collected for detection of avian influenza virus. J Virol Methods 2015; 222:202-5. [PMID: 26159628 DOI: 10.1016/j.jviromet.2015.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 03/25/2015] [Accepted: 07/02/2015] [Indexed: 10/23/2022]
Abstract
Detection of avian influenza viruses (AIVs) is important for diagnosis, surveillance and control of avian influenza which is of great economic and public health significance. Proper transport and storage of samples is critical for the detection when the samples cannot be detected immediately. As recommended by some international or national authoritative entities and some publications, phosphate buffered saline (PBS), PBS-glycerol and brain heart infusion broth (BHIB) are frequently used for transport and storage of the samples collected for detection of AIVs worldwide. In this study, we compared these three media for transport and storage of simulated and authentic swab and feces samples collected for detection of AIVs using virus isolation and reverse transcription-PCR. The results suggest that PBS-glycerol is superior to PBS and BHIB as the sample transport and storage media. The results also suggest that the samples collected for detection of AIVs should be detected as soon as possible because the virus concentration of the samples may decline rapidly during storage within days at 4 or -20°C.
Collapse
Affiliation(s)
- Xiao-Chun Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; China Animal Health & Epidemiology Center, Qingdao 266032, China
| | - Shuo Liu
- China Animal Health & Epidemiology Center, Qingdao 266032, China
| | - Guang-Yu Hou
- China Animal Health & Epidemiology Center, Qingdao 266032, China
| | - Qing-Ye Zhuang
- China Animal Health & Epidemiology Center, Qingdao 266032, China
| | - Kai-Cheng Wang
- China Animal Health & Epidemiology Center, Qingdao 266032, China
| | - Wen-Ming Jiang
- China Animal Health & Epidemiology Center, Qingdao 266032, China
| | - Su-Chun Wang
- China Animal Health & Epidemiology Center, Qingdao 266032, China
| | - Jin-Ping Li
- China Animal Health & Epidemiology Center, Qingdao 266032, China
| | - Jian-Min Yu
- China Animal Health & Epidemiology Center, Qingdao 266032, China
| | - Xiang Du
- China Animal Health & Epidemiology Center, Qingdao 266032, China
| | - Bao-Xu Huang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; China Animal Health & Epidemiology Center, Qingdao 266032, China
| | - Ji-Ming Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
36
|
Shehata AA, Parvin R, Sultan H, Halami MY, Talaat S, Abd Elrazek A, Ibrahim M, Heenemann K, Vahlenkamp T. Isolation and full genome characterization of avian influenza subtype H9N2 from poultry respiratory disease outbreak in Egypt. Virus Genes 2015; 50:389-400. [PMID: 25782728 DOI: 10.1007/s11262-015-1188-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Accepted: 03/04/2015] [Indexed: 11/25/2022]
Abstract
Low pathogenic avian influenza virus of subtype H9N2 is panzootic in multiple avian species causing respiratory manifestations and severe economic losses. H9N2 co-circulate simultaneously with high pathogenic avian influenza virus subtype H5N1 in Egyptian chicken farms suggesting the possibility of reassortment. The aim of the present study was to isolate and characterize H9N2 from the recent outbreaks in chicken farms. Also the diversity of amantadine-resistant mutants among these isolates was tested by in situ ELISA and sequence analysis. Three influenza H9N2 viruses, designated A/chicken/Egypt/SCU8/2014, A/chicken/Egypt/SCU9/2014 and A/chicken/Egypt/SCU20/2014 were isolated from commercial broiler and broiler breeder chickens in specific pathogen free embryonated chicken eggs. The eight gene segments were amplified by RT-PCR, cloned, and subjected to full length sequencing. Phylogenetic analysis of these viruses revealed a close relationship between Egyptian, Middle Eastern and Israel isolates with an average of 96-99 % nucleotide homology and identified an ancestor relationship to low pathogenic H9N2 Quail/HK/G1/1997 prototype. The internal segments of the currently isolated viruses were derived from the same sub-lineage with no new evidence of reassortment. The three isolates were sensitive to amantadine as suggested by absence of mutations of M2 and confirmed by a phenotypic assay. In conclusion, avian influenza H9N2 virus is circulating in Egyptian chicken farms causing respiratory manifestations. Continuous monitoring of the molecular epidemiology and its impact on the virulence as well as emergence of new strains are necessary.
Collapse
Affiliation(s)
- Awad A Shehata
- Institute of Virology, Center for Infectious Diseases, Faculty of Veterinary Medicine, Leipzig University, An den Tierkliniken 29, 04103, Leipzig, Germany,
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Pappas C, Yang H, Carney PJ, Pearce MB, Katz JM, Stevens J, Tumpey TM. Assessment of transmission, pathogenesis and adaptation of H2 subtype influenza viruses in ferrets. Virology 2015; 477:61-71. [PMID: 25659818 DOI: 10.1016/j.virol.2015.01.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 12/02/2014] [Accepted: 01/04/2015] [Indexed: 12/12/2022]
Abstract
After their disappearance from the human population in 1968, influenza H2 viruses have continued to circulate in the natural avian reservoir. The isolation of this virus subtype from multiple bird species as well as swine highlights the need to better understand the potential of these viruses to spread and cause disease in humans. Here we analyzed the virulence, transmissibility and receptor-binding preference of two avian influenza H2 viruses (H2N2 and H2N3) and compared them to a swine H2N3 (A/swine/Missouri/2124514/2006 [swMO]), and a human H2N2 (A/England/10/1967 [Eng/67]) virus using the ferret model as a mammalian host. Both avian H2 viruses possessed the capacity to spread efficiently between cohoused ferrets, and the swine (swMO) and human (Eng/67) viruses transmitted to naïve ferrets by respiratory droplets. Further characterization of the swMO hemagglutinin (HA) by x-ray crystallography and glycan microarray array identified receptor-specific adaptive mutations. As influenza virus quasispecies dynamics during transmission have not been well characterized, we sequenced nasal washes collected during transmission studies to better understand experimental adaptation of H2 HA. The avian H2 viruses isolated from ferret nasal washes contained mutations in the HA1, including a Gln226Leu substitution, which is a mutation associated with α2,6 sialic acid (human-like) binding preference. These results suggest that the molecular structure of HA in viruses of the H2 subtype continue to have the potential to adapt to a mammalian host and become transmissible, after acquiring additional genetic markers.
Collapse
Affiliation(s)
- Claudia Pappas
- Influenza Division, NCIRD, Centers for Disease Control and Prevention, 1600 Clifton Road NE, Atlanta, GA 30333, USA
| | - Hua Yang
- Influenza Division, NCIRD, Centers for Disease Control and Prevention, 1600 Clifton Road NE, Atlanta, GA 30333, USA
| | - Paul J Carney
- Influenza Division, NCIRD, Centers for Disease Control and Prevention, 1600 Clifton Road NE, Atlanta, GA 30333, USA
| | - Melissa B Pearce
- Influenza Division, NCIRD, Centers for Disease Control and Prevention, 1600 Clifton Road NE, Atlanta, GA 30333, USA
| | - Jacqueline M Katz
- Influenza Division, NCIRD, Centers for Disease Control and Prevention, 1600 Clifton Road NE, Atlanta, GA 30333, USA
| | - James Stevens
- Influenza Division, NCIRD, Centers for Disease Control and Prevention, 1600 Clifton Road NE, Atlanta, GA 30333, USA
| | - Terrence M Tumpey
- Influenza Division, NCIRD, Centers for Disease Control and Prevention, 1600 Clifton Road NE, Atlanta, GA 30333, USA.
| |
Collapse
|
38
|
Jiang WM, Wang SC, Liu HL, Yu JM, Du X, Hou GY, Li JP, Liu S, Wang KC, Zhuang QY, Liu XM, Chen JM. Evaluation of avian influenza virus isolated from ducks as a potential live vaccine candidate against novel H7N9 viruses. Vaccine 2014; 32:6433-9. [DOI: 10.1016/j.vaccine.2014.09.050] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Revised: 09/10/2014] [Accepted: 09/22/2014] [Indexed: 11/25/2022]
|
39
|
Calistri P, Iannetti S, Danzetta ML, Narcisi V, Cito F, Sabatino DD, Bruno R, Sauro F, Atzeni M, Carvelli A, Giovannini A. The components of 'One World - One Health' approach. Transbound Emerg Dis 2014; 60 Suppl 2:4-13. [PMID: 24589096 DOI: 10.1111/tbed.12145] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Indexed: 12/01/2022]
Abstract
The interaction between living beings, including men, animals and pathogens, sharing the same environment, should be considered as a unique dynamic system, in which the health of each component is inextricably interconnected and dependent with the others. Nowadays, a new integrated One Health approach is reflecting this interdependence with a holistic view to the ecological system. The One Health approach can be defined as a collaborative and a multidisciplinary effort at local, national and global level to guarantee an optimal healthy status for humans, animals and environment. Strictly related to the One Health concept is to be considered the control of infectious diseases, which have influenced the course of human history. Four different components might be identified as key elements within the 'One World - One Health' (OWOH) approach: the geographical component, the ecological one, the human activities and the food-agricultural ones.
Collapse
Affiliation(s)
- P Calistri
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise G. Caporale, Campo Boario, Teramo, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Broad protection against avian influenza virus by using a modified vaccinia Ankara virus expressing a mosaic hemagglutinin gene. J Virol 2014; 88:13300-9. [PMID: 25210173 DOI: 10.1128/jvi.01532-14] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
UNLABELLED A critical failure in our preparedness for an influenza pandemic is the lack of a universal vaccine. Influenza virus strains diverge by 1 to 2% per year, and commercially available vaccines often do not elicit protection from one year to the next, necessitating frequent formulation changes. This represents a major challenge to the development of a cross-protective vaccine that can protect against circulating viral antigenic diversity. We have constructed a recombinant modified vaccinia virus Ankara (MVA) that expresses an H5N1 mosaic hemagglutinin (H5M) (MVA-H5M). This mosaic was generated in silico using 2,145 field-sourced H5N1 isolates. A single dose of MVA-H5M provided 100% protection in mice against clade 0, 1, and 2 avian influenza viruses and also protected against seasonal H1N1 virus (A/Puerto Rico/8/34). It also provided short-term (10 days) and long-term (6 months) protection postvaccination. Both neutralizing antibodies and antigen-specific CD4(+) and CD8(+) T cells were still detected at 5 months postvaccination, suggesting that MVA-H5M provides long-lasting immunity. IMPORTANCE Influenza viruses infect a billion people and cause up to 500,000 deaths every year. A major problem in combating influenza is the lack of broadly effective vaccines. One solution from the field of human immunodeficiency virus vaccinology involves a novel in silico mosaic approach that has been shown to provide broad and robust protection against highly variable viruses. Unlike a consensus algorithm which picks the most frequent residue at each position, the mosaic method chooses the most frequent T-cell epitopes and combines them to form a synthetic antigen. These studies demonstrated that a mosaic influenza virus H5 hemagglutinin expressed by a viral vector can elicit full protection against diverse H5N1 challenges as well as induce broader immunity than a wild-type hemagglutinin.
Collapse
|
41
|
Identification of a potential novel type of influenza virus in Bovine in China. Virus Genes 2014; 49:493-6. [PMID: 25142163 DOI: 10.1007/s11262-014-1107-3] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Accepted: 08/11/2014] [Indexed: 10/24/2022]
Abstract
Bovine influenza virus was first identified in the USA in 2013, and the virus represents a potential novel type of influenza viruses. However, the distribution and evolution of the virus remain unknown. We conducted a pilot survey of bovine influenza virus in China, and identified three bovine influenza viruses which are highly homogenous to the ones identified in the USA, suggesting that the bovine influenza virus likely circulates widely and evolves slowly in the world.
Collapse
|
42
|
Ramey AM, Poulson RL, González-Reiche AS, Perez DR, Stallknecht DE, Brown JD. Genomic characterization of H14 subtype Influenza A viruses in new world waterfowl and experimental infectivity in mallards (Anas platyrhynchos). PLoS One 2014; 9:e95620. [PMID: 24788792 PMCID: PMC4006863 DOI: 10.1371/journal.pone.0095620] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 03/28/2014] [Indexed: 11/18/2022] Open
Abstract
Recent repeated isolation of H14 hemagglutinin subtype influenza A viruses (IAVs) in the New World waterfowl provides evidence to suggest that host and/or geographic ranges for viruses of this subtype may be expanding. In this study, we used genomic analyses to gain inference on the origin and evolution of H14 viruses in New World waterfowl and conducted an experimental challenge study in mallards (Anas platyrhynchos) to evaluate pathogenicity, viral replication, and transmissibility of a representative viral strain in a natural host species. Genomic characterization of H14 subtype IAVs isolated from New World waterfowl, including three isolates sequenced specifically for this study, revealed high nucleotide identity among individual gene segments (e.g. ≥95% shared identity among H14 HA gene segments). In contrast, lower shared identity was observed among internal gene segments. Furthermore, multiple neuraminidase subtypes were observed for H14 IAVs isolated in the New World. Gene segments of H14 viruses isolated after 2010 shared ancestral genetic lineages with IAVs isolated from wild birds throughout North America. Thus, genomic characterization provided evidence for viral evolution in New World waterfowl through genetic drift and genetic shift since purported introduction from Eurasia. In the challenge study, no clinical disease or lesions were observed among mallards experimentally inoculated with A/blue-winged teal/Texas/AI13-1028/2013(H14N5) or exposed via contact with infected birds. Titers of viral shedding for mallards challenged with the H14N5 IAV were highest at two days post-inoculation (DPI); however shedding was detected up to nine DPI using cloacal swabs. The distribution of viral antigen among mallards infected with H14N5 IAV was largely restricted to enterocytes lining the villi in the lower intestinal tract and in the epithelium of the bursa of Fabricius. Characterization of the infectivity of A/blue-winged teal/Texas/AI13-1028/2013(H14N5) in mallards provides support for similarities in viral replication and shedding as compared to previously described waterfowl-adapted, low pathogenic IAV strains in ducks.
Collapse
Affiliation(s)
- Andrew M. Ramey
- US Geological Survey, Alaska Science Center, Anchorage, Alaska, United States of America
- Southeastern Cooperative Wildlife Disease Study, College of Veterinary Medicine, Department of Population Health, The University of Georgia, Athens, Georgia, United States of America
| | - Rebecca L. Poulson
- Southeastern Cooperative Wildlife Disease Study, College of Veterinary Medicine, Department of Population Health, The University of Georgia, Athens, Georgia, United States of America
| | - Ana S. González-Reiche
- Department of Veterinary Medicine, University of Maryland College Park, Virginia-Maryland Regional College of Veterinary Medicine, College Park, Maryland, United States of America
- Centro de Estudios en Salud, Universidad del Valle de Guatemala, Guatemala City, Guatemala
| | - Daniel R. Perez
- Department of Veterinary Medicine, University of Maryland College Park, Virginia-Maryland Regional College of Veterinary Medicine, College Park, Maryland, United States of America
| | - David E. Stallknecht
- Southeastern Cooperative Wildlife Disease Study, College of Veterinary Medicine, Department of Population Health, The University of Georgia, Athens, Georgia, United States of America
| | - Justin D. Brown
- Southeastern Cooperative Wildlife Disease Study, College of Veterinary Medicine, Department of Population Health, The University of Georgia, Athens, Georgia, United States of America
| |
Collapse
|
43
|
Parvin R, Heenemann K, Halami MY, Chowdhury EH, Islam MR, Vahlenkamp TW. Full-genome analysis of avian influenza virus H9N2 from Bangladesh reveals internal gene reassortments with two distinct highly pathogenic avian influenza viruses. Arch Virol 2014; 159:1651-61. [DOI: 10.1007/s00705-014-1976-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 12/31/2013] [Indexed: 10/25/2022]
|
44
|
Inhibition of influenza A virus infection in vitro by peptides designed in silico. PLoS One 2013; 8:e76876. [PMID: 24146939 PMCID: PMC3795628 DOI: 10.1371/journal.pone.0076876] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 08/26/2013] [Indexed: 11/19/2022] Open
Abstract
Influenza A viruses are enveloped, segmented negative single-stranded RNA viruses, capable of causing severe human respiratory infections. Currently, only two types of drugs are used to treat influenza A infections, the M2 H+ ion channel blockers (amantadine and rimantadine) and the neuraminidase inhibitors (NAI) (oseltamivir and zanamivir). Moreover, the emergence of drug-resistant influenza A virus strains has emphasized the need to develop new antiviral agents to complement or replace the existing drugs. Influenza A virus has on the surface a glycoprotein named hemagglutinin (HA) which due to its important role in the initial stage of infection: receptor binding and fusion activities of viral and endosomal membranes, is a potential target for new antiviral drugs. In this work we designed nine peptides using several bioinformatics tools. These peptides were derived from the HA1 and HA2 subunits of influenza A HA with the aim to inhibit influenza A virus infection. The peptides were synthetized and their antiviral activity was tested in vitro against several influenza A viral strains: Puerto Rico/916/34 (H1N1), (H1N1)pdm09, swine (H1N1) and avian (H5N2). We found these peptides were able to inhibit the influenza A viral strains tested, without showing any cytotoxic effect. By docking studies we found evidence that all the peptides were capable to bind to the viral HA, principally to important regions on the viral HA stalk, thus could prevent the HA conformational changes required to carry out its membranes fusion activity.
Collapse
|
45
|
Chen Y, Chen YF. Evidence of selection pressures of neuraminidase gene (NA) of influenza A virus subtype H5N1 on different hosts in Guangxi Province of China. Saudi J Biol Sci 2013; 21:179-83. [PMID: 24600312 DOI: 10.1016/j.sjbs.2013.09.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2013] [Revised: 09/17/2013] [Accepted: 09/20/2013] [Indexed: 11/29/2022] Open
Abstract
In the present study, the possible evidence of positive selection was analyzed for the neuraminidase (NA) sequences of Guangxi H5N1 strains of China. Based on an overall site-specific positive selection analysis, it was found that NA gene of H5N1 Guangxi strains underwent purifying selection and no significant positively selected sites were identified. For the branch-specific positive selection analysis, there was no positive selection evidence for the branches leading to different poultry hosts (chicken, duck and goose). Conclusively, positive selection seems not possible (if not rare) for the NA gene in influenza H5N1 subtype, at least for the samples found in Guangxi Province of China.
Collapse
Affiliation(s)
- Youhua Chen
- Department of Zoology, University of British Columbia, Vancouver V6T 1Z4, Canada
| | - You-Fang Chen
- School of Software, Harbin Normal University, Heilongjiang Province, China
| |
Collapse
|
46
|
Zhu W, Yang S, Guo Y, Yang L, Bai T, Yu Z, Li X, Li M, Guo J, Wang D, Gao R, Dong L, Zou S, Li Z, Wang M, Shu Y. Imported pigs may have introduced the first classical swine influenza viruses into Mainland China. INFECTION GENETICS AND EVOLUTION 2013; 17:142-6. [DOI: 10.1016/j.meegid.2013.03.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 03/02/2013] [Accepted: 03/05/2013] [Indexed: 11/27/2022]
|
47
|
Complete genome sequence of a hemagglutination-negative avian paramyxovirus type 4 isolated from china. GENOME ANNOUNCEMENTS 2013; 1:e0004513. [PMID: 23516188 PMCID: PMC3622965 DOI: 10.1128/genomea.00045-13] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
We report here the complete genome sequence of a nonpathogenic and hemagglutination-negative avian paramyxovirus type 4 isolated from a duck in southern China. Phylogenetic analysis of the genome sequence indicated that the waterfowl virus possibly has evolved into the Eastern and Western Hemisphere lineages.
Collapse
|
48
|
Genetic Analysis of Avian Influenza Viruses: Cocirculation of Avian Influenza Viruses with Allele A and B Nonstructural Gene in Northern Pintail (Anas acuta) Ducks Wintering in Japan. INFLUENZA RESEARCH AND TREATMENT 2012; 2012:847505. [PMID: 23320157 PMCID: PMC3540751 DOI: 10.1155/2012/847505] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 12/02/2012] [Accepted: 12/06/2012] [Indexed: 11/18/2022]
Abstract
The pandemic influenza virus strains of 1918 (H1N1), 1957 (H2N2), 1968 (H3N2), and 2009 (H1N1) have genes related to avian influenza viruses (AIVs). The nonstructural (NS) gene of AIVs plays a significant role in host-viral interaction. However, little is known about the degree of diversity of this gene in Northern pintail (Anas acuta) ducks wintering in Japan. This study describes characteristics of pintail-originated H1N1, H1N2, H1N3, H5N2, H5N3, H5N9, and H7N7 viruses. Most of the viruses were revealed to be avian strains and not related to pandemic and seasonal flu strains. Nevertheless, the NP genes of 62.5% (5/8) viruses were found closely related to a A/swine/Korea/C12/08, indicating exchange of genetic material and ongoing mammalian-linked evolution of AIVs. Besides, all the viruses, except Aomori/422/07 H1N1, contain PSIQSR∗GLF motif usually found in avian, porcine, and human H1 strains. The Aomori/422/07 H1N1 has a PSVQSR∗GLF motif identical to a North American strain. This findings linked to an important intercontinental, Asian-American biogeographical interface. Phylogenetically all the viruses were clustered in Eurasian lineage. Cocirculation of allele A and B (NS gene) viruses was evident in the study implying the existence of a wide reservoir of influenza A viruses in pintail wintering in Japan.
Collapse
|
49
|
Jiang W, Liu S, Hou G, Li J, Zhuang Q, Wang S, Zhang P, Chen J. Chinese and global distribution of H9 subtype avian influenza viruses. PLoS One 2012; 7:e52671. [PMID: 23285143 PMCID: PMC3528714 DOI: 10.1371/journal.pone.0052671] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 11/19/2012] [Indexed: 11/29/2022] Open
Abstract
H9 subtype avian influenza viruses (AIVs) are of significance in poultry and public health, but epidemiological studies about the viruses are scarce. In this study, phylogenetic relationships of the viruses were analyzed based on 1233 previously reported sequences and 745 novel sequences of the viral hemagglutinin gene. The novel sequences were obtained through large-scale surveys conducted in 2008-2011 in China. The results revealed distinct distributions of H9 subtype AIVs in different hosts, sites and regions in China and in the world: (1) the dominant lineage of H9 subtype AIVs in China in recent years is lineage h9.4.2.5 represented by A/chicken/Guangxi/55/2005; (2) the newly emerging lineage h9.4.2.6, represented by A/chicken/Guangdong/FZH/2011, has also become prevalent in China; (3) lineages h9.3.3, h9.4.1 and h9.4.2, represented by A/duck/Hokkaido/26/99, A/quail/Hong Kong/G1/97 and A/chicken/Hong Kong/G9/97, respectively, have become globally dominant in recent years; (4) lineages h9.4.1 and h9.4.2 are likely of more risk to public health than others; (5) different lineages have different transmission features and host tropisms. This study also provided novel experimental data which indicated that the Leu-234 (H9 numbering) motif in the viral hemagglutinin gene is an important but not unique determinant in receptor-binding preference. This report provides a detailed and updated panoramic view of the epidemiological distributions of H9 subtype AIVs globally and in China, and sheds new insights for the prevention of infection in poultry and preparedness for a potential pandemic caused by the viruses.
Collapse
Affiliation(s)
- Wenming Jiang
- The Laboratory of Avian Disease Surveillance, China Animal Health and Epidemiology Center, Qingdao, China
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Piaggio AJ, Shriner SA, VanDalen KK, Franklin AB, Anderson TD, Kolokotronis SO. Molecular surveillance of low pathogenic avian influenza viruses in wild birds across the United States: inferences from the hemagglutinin gene. PLoS One 2012; 7:e50834. [PMID: 23226543 PMCID: PMC3514193 DOI: 10.1371/journal.pone.0050834] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 10/29/2012] [Indexed: 11/18/2022] Open
Abstract
A United States interagency avian influenza surveillance plan was initiated in 2006 for early detection of highly pathogenic avian influenza viruses (HPAIV) in wild birds. The plan included a variety of wild bird sampling strategies including the testing of fecal samples from aquatic areas throughout the United States from April 2006 through December 2007. Although HPAIV was not detected through this surveillance effort we were able to obtain 759 fecal samples that were positive for low pathogenic avian influenza virus (LPAIV). We used 136 DNA sequences obtained from these samples along with samples from a public influenza sequence database for a phylogenetic assessment of hemagglutinin (HA) diversity in the United States. We analyzed sequences from all HA subtypes except H5, H7, H14 and H15 to examine genetic variation, exchange between Eurasia and North America, and geographic distribution of LPAIV in wild birds in the United States. This study confirms intercontinental exchange of some HA subtypes (including a newly documented H9 exchange event), as well as identifies subtypes that do not regularly experience intercontinental gene flow but have been circulating and evolving in North America for at least the past 20 years. These HA subtypes have high levels of genetic diversity with many lineages co-circulating within the wild birds of North America. The surveillance effort that provided these samples demonstrates that such efforts, albeit labor-intensive, provide important information about the ecology of LPAIV circulating in North America.
Collapse
Affiliation(s)
- Antoinette J Piaggio
- National Wildlife Research Center, Wildlife Services, United States Department of Agriculture, Fort Collins, Colorado, United States of America.
| | | | | | | | | | | |
Collapse
|