1
|
Junaid MD, Chaudhry UK, Şanlı BA, Gökçe AF, Öztürk ZN. A review of the potential involvement of small RNAs in transgenerational abiotic stress memory in plants. Funct Integr Genomics 2024; 24:74. [PMID: 38600306 DOI: 10.1007/s10142-024-01354-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/12/2024]
Abstract
Crop production is increasingly threatened by the escalating weather events and rising temperatures associated with global climate change. Plants have evolved adaptive mechanisms, including stress memory, to cope with abiotic stresses such as heat, drought, and salinity. Stress memory involves priming, where plants remember prior stress exposures, providing enhanced responses to subsequent stress events. Stress memory can manifest as somatic, intergenerational, or transgenerational memory, persisting for different durations. The chromatin, a central regulator of gene expression, undergoes modifications like DNA acetylation, methylation, and histone variations in response to abiotic stress. Histone modifications, such as H3K4me3 and acetylation, play crucial roles in regulating gene expression. Abiotic stresses like drought and salinity are significant challenges to crop production, leading to yield reductions. Plant responses to stress involve strategies like escape, avoidance, and tolerance, each influencing growth stages differently. Soil salinity affects plant growth by disrupting water potential, causing ion toxicity, and inhibiting nutrient uptake. Understanding plant responses to these stresses requires insights into histone-mediated modifications, chromatin remodeling, and the role of small RNAs in stress memory. Histone-mediated modifications, including acetylation and methylation, contribute to epigenetic stress memory, influencing plant adaptation to environmental stressors. Chromatin remodeling play a crucial role in abiotic stress responses, affecting the expression of stress-related genes. Small RNAs; miRNAs and siRNAs, participate in stress memory pathways by guiding DNA methylation and histone modifications. The interplay of these epigenetic mechanisms helps plants adapt to recurring stress events and enhance their resilience. In conclusion, unraveling the epigenetic mechanisms in plant responses to abiotic stresses provides valuable insights for developing resilient agricultural techniques. Understanding how plants utilize stress memory, histone modifications, chromatin remodeling, and small RNAs is crucial for designing strategies to mitigate the impact of climate change on crop production and global food security.
Collapse
Affiliation(s)
- Muhammad Daniyal Junaid
- Department of Agricultural Genetic Engineering, Ayhan Şahenk Faculty of Agricultural Sciences and Technologies, Niğde Ömer Halisdemir University, Niğde, Türkiye, Turkey.
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan.
| | - Usman Khalid Chaudhry
- Department of Agricultural Genetic Engineering, Ayhan Şahenk Faculty of Agricultural Sciences and Technologies, Niğde Ömer Halisdemir University, Niğde, Türkiye, Turkey
- Pakistan Environmental Protection Agency, Ministry of Climate Change & Environmental Coordination, Islamabad, Pakistan
| | - Beyazıt Abdurrahman Şanlı
- Department of Agricultural Genetic Engineering, Ayhan Şahenk Faculty of Agricultural Sciences and Technologies, Niğde Ömer Halisdemir University, Niğde, Türkiye, Turkey
| | - Ali Fuat Gökçe
- Department of Agricultural Genetic Engineering, Ayhan Şahenk Faculty of Agricultural Sciences and Technologies, Niğde Ömer Halisdemir University, Niğde, Türkiye, Turkey
| | - Zahide Neslihan Öztürk
- Department of Agricultural Genetic Engineering, Ayhan Şahenk Faculty of Agricultural Sciences and Technologies, Niğde Ömer Halisdemir University, Niğde, Türkiye, Turkey
| |
Collapse
|
2
|
Rahman A, Yadav NS, Byeon B, Ilnytskyy Y, Kovalchuk I. Genomic and Epigenomic Changes in the Progeny of Cold-Stressed Arabidopsis thaliana Plants. Int J Mol Sci 2024; 25:2795. [PMID: 38474042 DOI: 10.3390/ijms25052795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/20/2024] [Accepted: 02/25/2024] [Indexed: 03/14/2024] Open
Abstract
Plants are continuously exposed to various environmental stresses. Because they can not escape stress, they have to develop mechanisms of remembering stress exposures somatically and passing it to the progeny. We studied the Arabidopsis thaliana ecotype Columbia plants exposed to cold stress for 25 continuous generations. Our study revealed that multigenerational exposure to cold stress resulted in the changes in the genome and epigenome (DNA methylation) across generations. Main changes in the progeny were due to the high frequency of genetic mutations rather than epigenetic changes; the difference was primarily in single nucleotide substitutions and deletions. The progeny of cold-stressed plants exhibited the higher rate of missense non-synonymous mutations as compared to the progeny of control plants. At the same time, epigenetic changes were more common in the CHG (C = cytosine, H = cytosine, adenine or thymine, G = guanine) and CHH contexts and favored hypomethylation. There was an increase in the frequency of C to T (thymine) transitions at the CHH positions in the progeny of cold stressed plants; because this type of mutations is often due to the deamination of the methylated cytosines, it can be hypothesized that environment-induced changes in methylation contribute to mutagenesis and may be to microevolution processes and that RNA-dependent DNA methylation plays a crucial role. Our work supports the existence of heritable stress response in plants and demonstrates that genetic changes prevail.
Collapse
Affiliation(s)
- Ashif Rahman
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Narendra Singh Yadav
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Boseon Byeon
- Biomedical and Health Informatics, Computer Science Department, State University of New York, 2 S Clinton St, Syracuse, NY 13202, USA
| | - Yaroslav Ilnytskyy
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Igor Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| |
Collapse
|
3
|
Tian Z, Li K, Sun Y, Chen B, Pan Z, Wang Z, Pang B, He S, Miao Y, Du X. Physiological and transcriptional analyses reveal formation of memory under recurring drought stresses in seedlings of cotton (Gossypium hirsutum). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 338:111920. [PMID: 37944705 DOI: 10.1016/j.plantsci.2023.111920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/03/2023] [Accepted: 11/06/2023] [Indexed: 11/12/2023]
Abstract
Plants are frequently subjected to a range of environmental stresses, including drought, salinity, cold, pathogens, and herbivore attacks. To survive in such conditions, plants have evolved a novel adaptive mechanism known as 'stress memory'. The formation of stress memories necessitates coordinated responses at the cellular, genetic/genomic, and epigenetic levels, involving altered physiological responses, gene activation, hyper-induction and chromatin modification. Cotton (Gossypium spp.) is an important economic crop with numerous applications and high economic value. In this study, we establish G. hirsutum drought memory following cycles of mild drought and re-watering treatments and analyzed memory gene expression patterns. Our findings reveal the physiological, biochemical, and molecular mechanisms underlying drought stress memory formation in G. hirsutum. Specifically, H3K4me3, a histone modification, plays a crucial role in regulating [+ /+ ] transcriptional memory. Moreover, we investigated the intergenerational inheritance of drought stress memory in G. hirsutum. Collectively, our data provides theoretical guidance for cotton breeding.
Collapse
Affiliation(s)
- Zailong Tian
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; State Key Laboratory of Cotton Biology, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Jinming Road, Kaifeng 475004, China; National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, Hainan 572024, China
| | - Kun Li
- State Key Laboratory of Cotton Biology, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Jinming Road, Kaifeng 475004, China
| | - Yaru Sun
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; State Key Laboratory of Cotton Biology, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Jinming Road, Kaifeng 475004, China
| | - Baojun Chen
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Zhaoe Pan
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Zhenzhen Wang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Baoyin Pang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Shoupu He
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China.
| | - Yuchen Miao
- State Key Laboratory of Cotton Biology, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Jinming Road, Kaifeng 475004, China.
| | - Xiongming Du
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, Hainan 572024, China.
| |
Collapse
|
4
|
Wang B, Wang Y, He W, Huang M, Yu L, Cheng D, Du J, Song B, Chen H. StMLP1, as a Kunitz trypsin inhibitor, enhances potato resistance and specifically expresses in vascular bundles during Ralstonia solanacearum infection. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:1342-1354. [PMID: 37614094 DOI: 10.1111/tpj.16428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/29/2023] [Accepted: 08/10/2023] [Indexed: 08/25/2023]
Abstract
Miraculin-like proteins (MLPs), members of the Kunitz trypsin inhibitor (KTI) family that are present in various plants, have been discovered to have a role in defending plants against pathogens. In this study, we identified a gene StMLP1 in potato that belongs to the KTI family. We found that the expression of StMLP1 gradually increases during Ralstonia solanacearum (R. solanacearum) infection. We characterized the promoter of StMLP1 as an inducible promoter that can be triggered by R. solanacearum and as a tissue-specific promoter with specificity for vascular bundle expression. Our findings demonstrate that StMLP1 exhibits trypsin inhibitor activity, and that its signal peptide is essential for proper localization and function. Overexpression of StMLP1 in potato can enhance the resistance to R. solanacearum. Inhibiting the expression of StMLP1 during infection accelerated the infection by R. solanacearum to a certain extent. In addition, the RNA-seq results of the overexpression-StMLP1 lines indicated that StMLP1 was involved in potato immunity. All these findings in our study reveal that StMLP1 functions as a positive regulator that is induced and specifically expressed in vascular bundles in response to R. solanacearum infection.
Collapse
Affiliation(s)
- Bingsen Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan, 430070, China
- Potato Engineering and Technology Research Center of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China
- College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yuqi Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan, 430070, China
- Potato Engineering and Technology Research Center of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China
- College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wenfeng He
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan, 430070, China
- Potato Engineering and Technology Research Center of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China
- College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Mengshu Huang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan, 430070, China
- Potato Engineering and Technology Research Center of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China
- College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Liu Yu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan, 430070, China
- Potato Engineering and Technology Research Center of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China
- College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Dong Cheng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan, 430070, China
- Potato Engineering and Technology Research Center of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China
- College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Juan Du
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan, 430070, China
- Potato Engineering and Technology Research Center of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China
- College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Botao Song
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan, 430070, China
- Potato Engineering and Technology Research Center of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China
- College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Huilan Chen
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan, 430070, China
- Potato Engineering and Technology Research Center of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China
- College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
5
|
Bhushan S, Singh AK, Thakur Y, Baskar R. Persistence of parental age effect on somatic mutation rates across generations in Arabidopsis. BMC PLANT BIOLOGY 2023; 23:152. [PMID: 36944916 PMCID: PMC10031922 DOI: 10.1186/s12870-023-04150-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
In the model plant Arabidopsis thaliana, parental age is known to affect somatic mutation rates in their immediate progeny and here we show that this age dependent effect persists across successive generations. Using a set of detector lines carrying the mutated uidA gene, we examined if a particular parental age maintained across five consecutive generations affected the rates of base substitution (BSR), intrachromosomal recombination (ICR), frameshift mutation (FS), and transposition. The frequency of functional GUS reversions were assessed in seedlings as a function of identical/different parental ages across generations. In the context of a fixed parental age, BSR/ICR rates were unaffected in the first three generations, then dropped significantly in the 4th and increased in most instances in the 5th generation (e.g. BSR (F1 38 = 0.9, F2 38 = 1.14, F3 38 = 1.02, F4 38 = 0.5, F5 38 = 0.76)). On the other hand, with advancing parental ages, BSR/ICR rates remained high in the first two/three generations, with a striking resemblance in the pattern of mutation rates (BSR (F1 38 = 0.9, F1 43 = 0.53, F1 48 = 0.79, F1 53 = 0.83 and F2 38 = 1.14, F2 43 = 0.57, F2 48 = 0.64, F2 53 = 0.94). We adopted a novel approach of identifying and tagging flowers pollinated on a particular day, thereby avoiding biases due to potential emasculation induced stress responses. Our results suggest a time component in counting the number of generations a plant has passed through self-fertilization at a particular age in determining the somatic mutation rates.
Collapse
Affiliation(s)
- Shashi Bhushan
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology-Madras, Chennai, 600 036, India
| | - Amit Kumar Singh
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
- Institut de Biologie Moléculaire des Plantes, UPR2357 CNRS, Université de Strasbourg, 12 rue du Général Zimmer, Strasbourg Cédex, 67084, France
| | - Yogendra Thakur
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology-Madras, Chennai, 600 036, India
| | - Ramamurthy Baskar
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology-Madras, Chennai, 600 036, India.
| |
Collapse
|
6
|
Louis N, Dhankher OP, Puthur JT. Seed priming can enhance and retain stress tolerance in ensuing generations by inducing epigenetic changes and trans-generational memory. PHYSIOLOGIA PLANTARUM 2023; 175:e13881. [PMID: 36840678 DOI: 10.1111/ppl.13881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 02/07/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
The significance of priming in enhancing abiotic stress tolerance is well-established in several important crops. Priming positively impacts plant growth and improves stress tolerance at multiple developmental stages, and seed priming is one of the most used methods. Seed priming influences the pre-germinative metabolism that ensures proper germination, early seedling establishment, enhanced stress tolerance and yield, even under unfavourable environmental conditions. Seed priming involves pre-exposure of seeds to mild stress, and this pre-treatment induces specific changes at the physiological and molecular levels. Interestingly, priming can improve the efficiency of the DNA repair mechanism, along with activation of specific signalling proteins and transcription factors for rapid and efficient stress tolerance. Notably, such acquired stress tolerance may be retained for longer duration, namely, later developmental stages or even subsequent generations. Epigenetic and chromatin-based mechanisms such as DNA methylation, histone modifications, and nucleosome positioning are some of the key molecular changes involved in priming/stress memory. Further, the retention of induced epigenetic changes may influence the priming-induced trans-generational stress memory. This review discusses known and plausible seed priming-induced molecular mechanisms that govern germination and stress memory within and across generations, highlighting their role in regulating the plant response to abiotic stresses. Understanding the molecular mechanism for activation of stress-responsive genes and the epigenetic changes resulting from seed priming will help to improve the resiliency of the crops for enhanced productivity under extreme environments.
Collapse
Affiliation(s)
- Noble Louis
- Plant Physiology and Biochemistry Division, Department of Botany, University of Calicut, Malapuram, Kerala, India
| | - Om Parkash Dhankher
- Stockbridge School of Agriculture, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - Jos T Puthur
- Plant Physiology and Biochemistry Division, Department of Botany, University of Calicut, Malapuram, Kerala, India
| |
Collapse
|
7
|
Van Antro M, Prelovsek S, Ivanovic S, Gawehns F, Wagemaker NCAM, Mysara M, Horemans N, Vergeer P, Verhoeven KJF. DNA methylation in clonal duckweed (Lemna minor L.) lineages reflects current and historical environmental exposures. Mol Ecol 2023; 32:428-443. [PMID: 36324253 PMCID: PMC10100429 DOI: 10.1111/mec.16757] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 09/16/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022]
Abstract
Environmentally induced DNA methylation variants may mediate gene expression responses to environmental changes. If such induced variants are transgenerationally stable, there is potential for expression responses to persist over multiple generations. Our current knowledge in plants, however, is almost exclusively based on studies conducted in sexually reproducing species where the majority of DNA methylation changes are subject to resetting in germlines, limiting the potential for transgenerational epigenetics stress memory. Asexual reproduction circumvents germlines, and may therefore be more conducive to long-term inheritance of epigenetic marks. Taking advantage of the rapid clonal reproduction of the common duckweed Lemna minor, we hypothesize that long-term, transgenerational stress memory from exposure to high temperature can be detected in DNA methylation profiles. Using a reduced representation bisulphite sequencing approach (epiGBS), we show that temperature stress induces DNA hypermethylation at many CG and CHG cytosine contexts but not CHH. Additionally, differential methylation in CHG context that was observed was still detected in a subset of cytosines, even after 3-12 generations of culturing in a common environment. This demonstrates a memory effect of stress reflected in the methylome and that persists over multiple clonal generations. Structural annotation revealed that this memory effect in CHG methylation was enriched in transposable elements. The observed epigenetic stress memory is probably caused by stable transgenerational persistence of temperature-induced DNA methylation variants across clonal generations. To the extent that such epigenetic memory has functional consequences for gene expression and phenotypes, this result suggests potential for long-term modulation of stress responses in asexual plants.
Collapse
Affiliation(s)
- Morgane Van Antro
- Department of Terrestrial EcologyNetherlands Institute of Ecology (NIOO‐KNAW)WageningenThe Netherlands
| | - Stella Prelovsek
- Department of Terrestrial EcologyNetherlands Institute of Ecology (NIOO‐KNAW)WageningenThe Netherlands
| | - Slavica Ivanovic
- Department of Terrestrial EcologyNetherlands Institute of Ecology (NIOO‐KNAW)WageningenThe Netherlands
| | - Fleur Gawehns
- Department of Terrestrial EcologyNetherlands Institute of Ecology (NIOO‐KNAW)WageningenThe Netherlands
| | | | - Mohamed Mysara
- Biosphere Impact StudiesBelgian Nuclear Research Centre (SCK CEN)MolBelgium
| | - Nele Horemans
- Biosphere Impact StudiesBelgian Nuclear Research Centre (SCK CEN)MolBelgium
| | - Philippine Vergeer
- Plant Ecology and PhysiologyRadboud UniversityNijmegenThe Netherlands
- Wageningen University and Research (WUR)Plant Ecology and Nature Conservation GroupWageningenThe Netherlands
| | - Koen J. F. Verhoeven
- Department of Terrestrial EcologyNetherlands Institute of Ecology (NIOO‐KNAW)WageningenThe Netherlands
| |
Collapse
|
8
|
Yang Z, Tian S, Li X, Dai Z, Yan A, Chen Z, Chen J, Tang Q, Cheng C, Xu Y, Deng C, Liu C, Kang L, Xie D, Zhao J, Chen X, Zhang X, Wu Y, Li A, Su J. Multi-omics provides new insights into the domestication and improvement of dark jute (Corchorus olitorius). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:812-829. [PMID: 36129373 DOI: 10.1111/tpj.15983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 08/31/2022] [Accepted: 09/15/2022] [Indexed: 06/15/2023]
Abstract
Jute (Corchorus sp.) is the most important bast fiber crop worldwide; however, the mechanisms underlying domestication and improvement remain largely unknown. We performed multi-omics analysis by integrating de novo sequencing, resequencing, and transcriptomic and epigenetic sequencing to clarify the domestication and improvement of dark jute Corchorus olitorius. We demonstrated that dark jute underwent early domestication and a relatively moderate genetic bottleneck during improvement breeding. A genome-wide association study of 11 important agronomic traits identified abundant candidate loci. We characterized the selective sweeps in the two breeding stages of jute, prominently, soil salinity differences played an important role in environmental adaptation during domestication, and the strongly selected genes for improvement had an increased frequency of favorable haplotypes. Furthermore, we speculated that an encoding auxin/indole-3-acetic acid protein COS07g_00652 could enhance the flexibility and strength of the stem to improve fiber yield. Our study not only provides valuable genetic resources for future fiber breeding in jute, but also is of great significance for reviewing the genetic basis of early crop breeding.
Collapse
Affiliation(s)
- Zemao Yang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, China
| | - Shilin Tian
- Novogene Bioinformatics Institute, Beijing, 100015, China
- Department of Ecology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Xiangkong Li
- Novogene Bioinformatics Institute, Beijing, 100015, China
| | - Zhigang Dai
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, China
| | - An Yan
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, 637616, Singapore
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, 117543, Singapore
| | - Zhong Chen
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, 637616, Singapore
| | - Jiquan Chen
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, China
| | - Qing Tang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, China
| | - Chaohua Cheng
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, China
| | - Ying Xu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, China
| | - Canhui Deng
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, China
| | - Chan Liu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, China
| | - Ling Kang
- Novogene Bioinformatics Institute, Beijing, 100015, China
| | - Dongwei Xie
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, China
| | - Jian Zhao
- Novogene Bioinformatics Institute, Beijing, 100015, China
| | - Xiaojun Chen
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, China
| | - Xiaoyu Zhang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, China
| | - Yupeng Wu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, China
| | - Alei Li
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, China
| | - Jianguang Su
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, China
| |
Collapse
|
9
|
Sharma M, Kumar P, Verma V, Sharma R, Bhargava B, Irfan M. Understanding plant stress memory response for abiotic stress resilience: Molecular insights and prospects. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 179:10-24. [PMID: 35305363 DOI: 10.1016/j.plaphy.2022.03.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 02/02/2022] [Accepted: 03/05/2022] [Indexed: 05/25/2023]
Abstract
As sessile species and without the possibility of escape, plants constantly face numerous environmental stresses. To adapt in the external environmental cues, plants adjust themselves against such stresses by regulating their physiological, metabolic and developmental responses to external environmental cues. Certain environmental stresses rarely occur during plant life, while others, such as heat, drought, salinity, and cold are repetitive. Abiotic stresses are among the foremost environmental variables that have hindered agricultural production globally. Through distinct mechanisms, these stresses induce various morphological, biochemical, physiological, and metabolic changes in plants, directly impacting their growth, development, and productivity. Subsequently, plant's physiological, metabolic, and genetic adjustments to the stress occurrence provide necessary competencies to adapt, survive and nurture a condition known as "memory." This review emphasizes the advancements in various epigenetic-related chromatin modifications, DNA methylation, histone modifications, chromatin remodeling, phytohormones, and microRNAs associated with abiotic stress memory. Plants have the ability to respond quickly to stressful situations and can also improve their defense systems by retaining and sustaining stressful memories, allowing for stronger or faster responses to repeated stressful situations. Although there are relatively few examples of such memories, and no clear understanding of their duration, taking into consideration plenty of stresses in nature. Understanding these mechanisms in depth could aid in the development of genetic tools to improve breeding techniques, resulting in higher agricultural yield and quality under changing environmental conditions.
Collapse
Affiliation(s)
- Megha Sharma
- Department of Biotechnology, Dr. Y.S. Parmar University of Horticulture and Forestry, Solan, Himachal Pradesh, India
| | - Pankaj Kumar
- Department of Biotechnology, Dr. Y.S. Parmar University of Horticulture and Forestry, Solan, Himachal Pradesh, India.
| | - Vipasha Verma
- Agrotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, Himachal Pradesh, India
| | - Rajnish Sharma
- Department of Biotechnology, Dr. Y.S. Parmar University of Horticulture and Forestry, Solan, Himachal Pradesh, India
| | - Bhavya Bhargava
- Agrotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, Himachal Pradesh, India
| | - Mohammad Irfan
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
10
|
Yadav NS, Titov V, Ayemere I, Byeon B, Ilnytskyy Y, Kovalchuk I. Multigenerational Exposure to Heat Stress Induces Phenotypic Resilience, and Genetic and Epigenetic Variations in Arabidopsis thaliana Offspring. FRONTIERS IN PLANT SCIENCE 2022; 13:728167. [PMID: 35419019 PMCID: PMC8996174 DOI: 10.3389/fpls.2022.728167] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
Plants are sedentary organisms that constantly sense changes in their environment and react to various environmental cues. On a short-time scale, plants respond through alterations in their physiology, and on a long-time scale, plants alter their development and pass on the memory of stress to the progeny. The latter is controlled genetically and epigenetically and allows the progeny to be primed for future stress encounters, thus increasing the likelihood of survival. The current study intended to explore the effects of multigenerational heat stress in Arabidopsis thaliana. Twenty-five generations of Arabidopsis thaliana were propagated in the presence of heat stress. The multigenerational stressed lineage F25H exhibited a higher tolerance to heat stress and elevated frequency of homologous recombination, as compared to the parallel control progeny F25C. A comparison of genomic sequences revealed that the F25H lineage had a three-fold higher number of mutations [single nucleotide polymorphisms (SNPs) and insertions and deletions (INDELs)] as compared control lineages, suggesting that heat stress induced genetic variations in the heat-stressed progeny. The F25H stressed progeny showed a 7-fold higher number of non-synonymous mutations than the F25C line. Methylome analysis revealed that the F25H stressed progeny showed a lower global methylation level in the CHH context than the control progeny. The F25H and F25C lineages were different from the parental control lineage F2C by 66,491 and 80,464 differentially methylated positions (DMPs), respectively. F25H stressed progeny displayed higher frequency of methylation changes in the gene body and lower in the body of transposable elements (TEs). Gene Ontology analysis revealed that CG-DMRs were enriched in processes such as response to abiotic and biotic stimulus, cell organizations and biogenesis, and DNA or RNA metabolism. Hierarchical clustering of these epimutations separated the heat stressed and control parental progenies into distinct groups which revealed the non-random nature of epimutations. We observed an overall higher number of epigenetic variations than genetic variations in all comparison groups, indicating that epigenetic variations are more prevalent than genetic variations. The largest difference in epigenetic and genetic variations was observed between control plants comparison (F25C vs. F2C), which clearly indicated that the spontaneous nature of epigenetic variations and heat-inducible nature of genetic variations. Overall, our study showed that progenies derived from multigenerational heat stress displayed a notable adaption in context of phenotypic, genotypic and epigenotypic resilience.
Collapse
|
11
|
Martins ACQ, Mota APZ, Carvalho PASV, Passos MAS, Gimenes MA, Guimaraes PM, Brasileiro ACM. Transcriptome Responses of Wild Arachis to UV-C Exposure Reveal Genes Involved in General Plant Defense and Priming. PLANTS 2022; 11:plants11030408. [PMID: 35161389 PMCID: PMC8838480 DOI: 10.3390/plants11030408] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/26/2022] [Accepted: 01/28/2022] [Indexed: 11/18/2022]
Abstract
Stress priming is an important strategy for enhancing plant defense capacity to deal with environmental challenges and involves reprogrammed transcriptional responses. Although ultraviolet (UV) light exposure is a widely adopted approach to elicit stress memory and tolerance in plants, the molecular mechanisms underlying UV-mediated plant priming tolerance are not fully understood. Here, we investigated the changes in the global transcriptome profile of wild Arachis stenosperma leaves in response to UV-C exposure. A total of 5751 differentially expressed genes (DEGs) were identified, with the majority associated with cell signaling, protein dynamics, hormonal and transcriptional regulation, and secondary metabolic pathways. The expression profiles of DEGs known as indicators of priming state, such as transcription factors, transcriptional regulators and protein kinases, were further characterized. A meta-analysis, followed by qRT-PCR validation, identified 18 metaDEGs as being commonly regulated in response to UV and other primary stresses. These genes are involved in secondary metabolism, basal immunity, cell wall structure and integrity, and may constitute important players in the general defense processes and establishment of a priming state in A. stenosperma. Our findings contribute to a better understanding of transcriptional dynamics involved in wild Arachis adaptation to stressful conditions of their natural habitats.
Collapse
Affiliation(s)
- Andressa Cunha Quintana Martins
- Embrapa Genetic Resources and Biotechnology, Brasília 70770-917, DF, Brazil; (A.C.Q.M.); (A.P.Z.M.); (P.A.S.V.C.); (M.A.S.P.); (M.A.G.); (P.M.G.)
- National Institute of Science and Technology—INCT PlantStress Biotech—EMBRAPA, Brasília 70770-917, DF, Brazil
| | - Ana Paula Zotta Mota
- Embrapa Genetic Resources and Biotechnology, Brasília 70770-917, DF, Brazil; (A.C.Q.M.); (A.P.Z.M.); (P.A.S.V.C.); (M.A.S.P.); (M.A.G.); (P.M.G.)
- National Institute of Science and Technology—INCT PlantStress Biotech—EMBRAPA, Brasília 70770-917, DF, Brazil
- CIRAD, UMR AGAP, F-34398 Montpellier, France
| | - Paula Andrea Sampaio Vasconcelos Carvalho
- Embrapa Genetic Resources and Biotechnology, Brasília 70770-917, DF, Brazil; (A.C.Q.M.); (A.P.Z.M.); (P.A.S.V.C.); (M.A.S.P.); (M.A.G.); (P.M.G.)
- Instituto de Biociências, Department de Genética, Universidade Estadual Paulista (UNESP), Botucatu 70770-917, SP, Brazil
| | - Mario Alfredo Saraiva Passos
- Embrapa Genetic Resources and Biotechnology, Brasília 70770-917, DF, Brazil; (A.C.Q.M.); (A.P.Z.M.); (P.A.S.V.C.); (M.A.S.P.); (M.A.G.); (P.M.G.)
- National Institute of Science and Technology—INCT PlantStress Biotech—EMBRAPA, Brasília 70770-917, DF, Brazil
| | - Marcos Aparecido Gimenes
- Embrapa Genetic Resources and Biotechnology, Brasília 70770-917, DF, Brazil; (A.C.Q.M.); (A.P.Z.M.); (P.A.S.V.C.); (M.A.S.P.); (M.A.G.); (P.M.G.)
| | - Patricia Messenberg Guimaraes
- Embrapa Genetic Resources and Biotechnology, Brasília 70770-917, DF, Brazil; (A.C.Q.M.); (A.P.Z.M.); (P.A.S.V.C.); (M.A.S.P.); (M.A.G.); (P.M.G.)
- National Institute of Science and Technology—INCT PlantStress Biotech—EMBRAPA, Brasília 70770-917, DF, Brazil
| | - Ana Cristina Miranda Brasileiro
- Embrapa Genetic Resources and Biotechnology, Brasília 70770-917, DF, Brazil; (A.C.Q.M.); (A.P.Z.M.); (P.A.S.V.C.); (M.A.S.P.); (M.A.G.); (P.M.G.)
- National Institute of Science and Technology—INCT PlantStress Biotech—EMBRAPA, Brasília 70770-917, DF, Brazil
- Correspondence:
| |
Collapse
|
12
|
Mladenov V, Fotopoulos V, Kaiserli E, Karalija E, Maury S, Baranek M, Segal N, Testillano PS, Vassileva V, Pinto G, Nagel M, Hoenicka H, Miladinović D, Gallusci P, Vergata C, Kapazoglou A, Abraham E, Tani E, Gerakari M, Sarri E, Avramidou E, Gašparović M, Martinelli F. Deciphering the Epigenetic Alphabet Involved in Transgenerational Stress Memory in Crops. Int J Mol Sci 2021; 22:7118. [PMID: 34281171 PMCID: PMC8268041 DOI: 10.3390/ijms22137118] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/16/2021] [Accepted: 06/27/2021] [Indexed: 12/11/2022] Open
Abstract
Although epigenetic modifications have been intensely investigated over the last decade due to their role in crop adaptation to rapid climate change, it is unclear which epigenetic changes are heritable and therefore transmitted to their progeny. The identification of epigenetic marks that are transmitted to the next generations is of primary importance for their use in breeding and for the development of new cultivars with a broad-spectrum of tolerance/resistance to abiotic and biotic stresses. In this review, we discuss general aspects of plant responses to environmental stresses and provide an overview of recent findings on the role of transgenerational epigenetic modifications in crops. In addition, we take the opportunity to describe the aims of EPI-CATCH, an international COST action consortium composed by researchers from 28 countries. The aim of this COST action launched in 2020 is: (1) to define standardized pipelines and methods used in the study of epigenetic mechanisms in plants, (2) update, share, and exchange findings in epigenetic responses to environmental stresses in plants, (3) develop new concepts and frontiers in plant epigenetics and epigenomics, (4) enhance dissemination, communication, and transfer of knowledge in plant epigenetics and epigenomics.
Collapse
Affiliation(s)
- Velimir Mladenov
- Faculty of Agriculture, University of Novi Sad, Sq. Dositeja Obradovića 8, 21000 Novi Sad, Serbia;
| | - Vasileios Fotopoulos
- Department of Agricultural Sciences, Biotechnology & Food Science, Cyprus University of Technology, Lemesos 3036, Cyprus;
| | - Eirini Kaiserli
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK;
| | - Erna Karalija
- Laboratory for Plant Physiology, Department for Biology, Faculty of Science, University of Sarajevo, 71000 Sarajevo, Bosnia and Herzegovina;
| | - Stephane Maury
- INRAe, EA1207 USC1328 Laboratoire de Biologie des Ligneux et des Grandes Cultures, Université d’Orléans, 45067 Orléans, France;
| | - Miroslav Baranek
- Mendeleum—Insitute of Genetics, Faculty of Horticulture, Mendel University in Brno, Valtická 334, 69144 Lednice, Czech Republic;
| | - Naama Segal
- Israel Oceanographic and Limnological Research, The National Center for Mariculture (NCM), P.O.B. 1212, Eilat 88112, Israel;
| | - Pilar S. Testillano
- Center of Biological Research Margarita Salas, CIB-CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain;
| | - Valya Vassileva
- Department of Molecular Biology and Genetics, Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str., Bldg. 21, 1113 Sofia, Bulgaria;
| | - Glória Pinto
- Centre for Environmental and Marine Studies (CESAM), Biology Department, Campus de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Manuela Nagel
- Genebank Department, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, 06466 Seeland, Germany;
| | - Hans Hoenicka
- Genomic Research Department, Thünen Institute of Forest Genetics, 22927 Grosshansdorf, Germany;
| | - Dragana Miladinović
- Laboratory for Biotechnology, Institute of Field and Vegetable Crops, Maksima Gorkog 30, 21000 Novi Sad, Serbia;
| | - Philippe Gallusci
- UMR Ecophysiologie et Génomique Fonctionnelle de la Vigne, Université de Bordeaux, INRAE, Bordeaux Science Agro, 210 Chemin de Leysotte—CS5000833882 Villenave d’Ornon, 33076 Bordeaux, France;
| | - Chiara Vergata
- Department of Biology, University of Florence, 50019 Sesto Fiorentino, Italy;
| | - Aliki Kapazoglou
- Department of Vitis, Institute of Olive Tree, Subtropical Crops and Viticulture (IOSV), Hellenic Agricultural Organization-Dimitra (HAO-Dimitra), Sofokli Venizelou 1, Lykovrysi, 14123 Athens, Greece;
| | - Eleni Abraham
- Laboratory of Range Science, School of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Eleni Tani
- Laboratory of Plant Breeding and Biometry, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (E.T.); (M.G.); (E.S.); (E.A.)
| | - Maria Gerakari
- Laboratory of Plant Breeding and Biometry, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (E.T.); (M.G.); (E.S.); (E.A.)
| | - Efi Sarri
- Laboratory of Plant Breeding and Biometry, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (E.T.); (M.G.); (E.S.); (E.A.)
| | - Evaggelia Avramidou
- Laboratory of Plant Breeding and Biometry, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (E.T.); (M.G.); (E.S.); (E.A.)
| | - Mateo Gašparović
- Chair of Photogrammetry and Remote Sensing, Faculty of Geodesy, University of Zagreb, 10000 Zagreb, Croatia;
| | - Federico Martinelli
- Department of Biology, University of Florence, 50019 Sesto Fiorentino, Italy;
| |
Collapse
|
13
|
McGuigan K, Hoffmann AA, Sgrò CM. How is epigenetics predicted to contribute to climate change adaptation? What evidence do we need? Philos Trans R Soc Lond B Biol Sci 2021; 376:20200119. [PMID: 33866811 PMCID: PMC8059617 DOI: 10.1098/rstb.2020.0119] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2020] [Indexed: 12/13/2022] Open
Abstract
Transgenerational effects that are interpreted in terms of epigenetics have become an important research focus at a time when rapid environmental changes are occurring. These effects are usually interpreted as enhancing fitness extremely rapidly, without depending on the slower process of natural selection changing DNA-encoded (fixed) genetic variants in populations. Supporting evidence comes from a variety of sources, including environmental associations with epialleles, cross-generation responses of clonal material exposed to different environmental conditions, and altered patterns of methylation or frequency changes in epialleles across time. Transgenerational environmental effects have been postulated to be larger than those associated with DNA-encoded genetic changes, based on (for instance) stronger associations between epialleles and environmental conditions. Yet environmental associations for fixed genetic differences may always be weak under polygenic models where multiple combinations of alleles can lead to the same evolutionary outcome. The ultimate currency of adaptation is fitness, and few transgenerational studies have robustly determined fitness effects, particularly when compared to fixed genetic variants. Not all transgenerational modifications triggered by climate change will increase fitness: stressful conditions often trigger negative fitness effects across generations that can eliminate benefits. Epigenetic responses and other transgenerational effects will undoubtedly play a role in climate change adaptation, but further, well-designed, studies are required to test their importance relative to DNA-encoded changes. This article is part of the theme issue 'How does epigenetics influence the course of evolution?'
Collapse
Affiliation(s)
- Katrina McGuigan
- School of Biological Science, The University of Queensland, Brisbane 4072, Queensland, Australia
| | - Ary A. Hoffmann
- School of Biosciences and Bio21 Institute, The University of Melbourne, Melbourne 3010, Australia
| | - Carla M. Sgrò
- School of Biological Sciences, Monash University, Melbourne 3800, Australia
| |
Collapse
|
14
|
Wang B, He T, Zheng X, Song B, Chen H. Proteomic Analysis of Potato Responding to the Invasion of Ralstonia solanacearum UW551 and Its Type III Secretion System Mutant. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:337-350. [PMID: 33332146 DOI: 10.1094/mpmi-06-20-0144-r] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The infection of potato with Ralstonia solanacearum UW551 gives rise to bacterial wilt disease via colonization of roots. The type III secretion system (T3SS) is a determinant factor for the pathogenicity of R. solanacearum. To fully understand perturbations in potato by R. solanacearum type III effectors(T3Es), we used proteomics to measure differences in potato root protein abundance after inoculation with R. solanacearum UW551 and the T3SS mutant (UW551△HrcV). We identified 21 differentially accumulated proteins. Compared with inoculation with UW551△HrcV, 10 proteins showed significantly lower abundance in potato roots after inoculation with UW551, indicating that those proteins were significantly downregulated by T3Es during the invasion. To identify their functions in immunity, we silenced those genes in Nicotiana benthamiana and tested the resistance of the silenced plants to the pathogen. Results showed that miraculin, HBP2, and TOM20 contribute to immunity to R. solanacearum. In contrast, PP1 contributes to susceptibility. Notably, none of four downregulated proteins (HBP2, PP1, HSP22, and TOM20) were downregulated at the transcriptional level, suggesting that they were significantly downregulated at the posttranscriptional level. We further coexpressed those four proteins with 33 core T3Es. To our surprise, multiple effectors were able to significantly decrease the studied protein abundances. In conclusion, our data showed that T3Es of R. solanacearum could subvert potato root immune-related proteins in a redundant manner.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Bingsen Wang
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Tianjiu He
- Guizhou Institute of Biotechnology, Guizhou Academy of Agricultural Sciences, Guizhou Province, Guiyang 550006, China
| | - Xueao Zheng
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Botao Song
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Huilan Chen
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
15
|
Bhadouriya SL, Mehrotra S, Basantani MK, Loake GJ, Mehrotra R. Role of Chromatin Architecture in Plant Stress Responses: An Update. FRONTIERS IN PLANT SCIENCE 2021; 11:603380. [PMID: 33510748 PMCID: PMC7835326 DOI: 10.3389/fpls.2020.603380] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 12/07/2020] [Indexed: 05/08/2023]
Abstract
Sessile plants possess an assembly of signaling pathways that perceive and transmit environmental signals, ultimately resulting in transcriptional reprogramming. Histone is a key feature of chromatin structure. Numerous histone-modifying proteins act under different environmental stress conditions to help modulate gene expression. DNA methylation and histone modification are crucial for genome reprogramming for tissue-specific gene expression and global gene silencing. Different classes of chromatin remodelers including SWI/SNF, ISWI, INO80, and CHD are reported to act upon chromatin in different organisms, under diverse stresses, to convert chromatin from a transcriptionally inactive to a transcriptionally active state. The architecture of chromatin at a given promoter is crucial for determining the transcriptional readout. Further, the connection between somatic memory and chromatin modifications may suggest a mechanistic basis for a stress memory. Studies have suggested that there is a functional connection between changes in nuclear organization and stress conditions. In this review, we discuss the role of chromatin architecture in different stress responses and the current evidence on somatic, intergenerational, and transgenerational stress memory.
Collapse
Affiliation(s)
- Sneha Lata Bhadouriya
- Department of Biological Sciences, Birla Institute of Technology and Sciences, Sancoale, India
| | - Sandhya Mehrotra
- Department of Biological Sciences, Birla Institute of Technology and Sciences, Sancoale, India
| | - Mahesh K. Basantani
- Institute of Bioscience and Technology, Shri Ramswaroop Memorial University, Lucknow, India
| | - Gary J. Loake
- School of Biological Sciences, Institute of Molecular Plant Sciences, University of Edinburg, Edinburg, United Kingdom
| | - Rajesh Mehrotra
- Department of Biological Sciences, Birla Institute of Technology and Sciences, Sancoale, India
| |
Collapse
|
16
|
Laanen P, Saenen E, Mysara M, Van de Walle J, Van Hees M, Nauts R, Van Nieuwerburgh F, Voorspoels S, Jacobs G, Cuypers A, Horemans N. Changes in DNA Methylation in Arabidopsis thaliana Plants Exposed Over Multiple Generations to Gamma Radiation. FRONTIERS IN PLANT SCIENCE 2021; 12:611783. [PMID: 33868326 PMCID: PMC8044457 DOI: 10.3389/fpls.2021.611783] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 03/09/2021] [Indexed: 05/05/2023]
Abstract
Previous studies have found indications that exposure to ionising radiation (IR) results in DNA methylation changes in plants. However, this phenomenon is yet to be studied across multiple generations. Furthermore, the exact role of these changes in the IR-induced plant response is still far from understood. Here, we study the effect of gamma radiation on DNA methylation and its effect across generations in young Arabidopsis plants. A multigenerational set-up was used in which three generations (Parent, generation 1, and generation 2) of 7-day old Arabidopsis thaliana plants were exposed to either of the different radiation treatments (30, 60, 110, or 430 mGy/h) or to natural background radiation (control condition) for 14 days. The parental generation consisted of previously non-exposed plants, whereas generation 1 and generation 2 plants had already received a similar irradiation in the previous one or two generations, respectively. Directly after exposure the entire methylomes were analysed with UPLC-MS/MS to measure whole genome methylation levels. Whole genome bisulfite sequencing was used to identify differentially methylated regions (DMRs), including their methylation context in the three generations and this for three different radiation conditions (control, 30 mGy/h, and 110 mGy/h). Both intra- and intergenerational comparisons of the genes and transposable elements associated with the DMRs were made. Taking the methylation context into account, the highest number of changes were found for cytosines followed directly by guanine (CG methylation), whereas only limited changes in CHG methylation occurred and no changes in CHH methylation were observed. A clear increase in IR-induced DMRs was seen over the three generations that were exposed to the lowest dose rate, where generation 2 had a markedly higher number of DMRs than the previous two generations (Parent and generation 1). Counterintuitively, we did not see significant differences in the plants exposed to the highest dose rate. A large number of DMRs associated with transposable elements were found, the majority of them being hypermethylated, likely leading to more genetic stability. Next to that, a significant number of DMRs were associated with genes (either in their promoter-associated region or gene body). A functional analysis of these genes showed an enrichment for genes related to development as well as various stress responses, including DNA repair, RNA splicing, and (a)biotic stress responses. These observations indicate a role of DNA methylation in the regulation of these genes in response to IR exposure and shows a possible role for epigenetics in plant adaptation to IR over multiple generations.
Collapse
Affiliation(s)
- Pol Laanen
- Biosphere Impact Studies, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
- Centre for Environmental Research, Hasselt University, Diepenbeek, Belgium
| | - Eline Saenen
- Biosphere Impact Studies, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | - Mohamed Mysara
- Biosphere Impact Studies, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | - Jorden Van de Walle
- Biosphere Impact Studies, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
- Centre for Environmental Research, Hasselt University, Diepenbeek, Belgium
| | - May Van Hees
- Biosphere Impact Studies, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | - Robin Nauts
- Biosphere Impact Studies, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | - Filip Van Nieuwerburgh
- Laboratory of Pharmaceutical Biotechnology, Ghent University, Ghent, Belgium
- NXTGNT, Ghent University, Ghent, Belgium
| | | | - Griet Jacobs
- Vlaamse Instelling voor Technologisch Onderzoek, VITO, Mol, Belgium
| | - Ann Cuypers
- Centre for Environmental Research, Hasselt University, Diepenbeek, Belgium
| | - Nele Horemans
- Biosphere Impact Studies, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
- Centre for Environmental Research, Hasselt University, Diepenbeek, Belgium
- *Correspondence: Nele Horemans,
| |
Collapse
|
17
|
Yakura H. Cognitive and Memory Functions in Plant Immunity. Vaccines (Basel) 2020; 8:vaccines8030541. [PMID: 32957664 PMCID: PMC7563390 DOI: 10.3390/vaccines8030541] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 12/22/2022] Open
Abstract
From the time of Thucydides in the 5th century BC, it has been known that specific recognition of pathogens and memory formation are critical components of immune functions. In contrast to the immune system of jawed vertebrates, such as humans and mice, plants lack a circulatory system with mobile immune cells and a repertoire of clonally distributed antigen receptors with almost unlimited specificities. However, without these systems and mechanisms, plants can live and survive in the same hostile environment faced by other organisms. In fact, they achieve specific pathogen recognition and elimination, with limited self-reactivity, and generate immunological memory, sometimes with transgenerational characteristics. Thus, the plant immune system satisfies minimal conditions for constituting an immune system, namely, the recognition of signals in the milieu, integration of that information, subsequent efficient reaction based on the integrated information, and memorization of the experience. In the previous report, this set of elements was proposed as an example of minimal cognitive functions. In this essay, I will first review current understanding of plant immunity and then discuss the unique features of cognitive activities, including recognition of signals from external as well as internal environments, autoimmunity, and memory formation. In doing so, I hope to reach a deeper understanding of the significance of immunity omnipresent in the realm of living organisms.
Collapse
Affiliation(s)
- Hidetaka Yakura
- Institute for Science and Human Existence, Tokyo 163-8001, Japan
| |
Collapse
|
18
|
Nowicka A, Tokarz B, Zwyrtková J, Dvořák Tomaštíková E, Procházková K, Ercan U, Finke A, Rozhon W, Poppenberger B, Otmar M, Niezgodzki I, Krečmerová M, Schubert I, Pecinka A. Comparative analysis of epigenetic inhibitors reveals different degrees of interference with transcriptional gene silencing and induction of DNA damage. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 102:68-84. [PMID: 31733119 DOI: 10.1111/tpj.14612] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/25/2019] [Accepted: 10/29/2019] [Indexed: 06/10/2023]
Abstract
Repetitive DNA sequences and some genes are epigenetically repressed by transcriptional gene silencing (TGS). When genetic mutants are not available or problematic to use, TGS can be suppressed by chemical inhibitors. However, informed use of epigenetic inhibitors is partially hampered by the absence of any systematic comparison. In addition, there is emerging evidence that epigenetic inhibitors cause genomic instability, but the nature of this damage and its repair remain unclear. To bridge these gaps, we compared the effects of 5-azacytidine (AC), 2'-deoxy-5-azacytidine (DAC), zebularine and 3-deazaneplanocin A (DZNep) on TGS and DNA damage repair. The most effective inhibitor of TGS was DAC, followed by DZNep, zebularine and AC. We confirmed that all inhibitors induce DNA damage and suggest that this damage is repaired by multiple pathways with a critical role of homologous recombination and of the SMC5/6 complex. A strong positive link between the degree of cytidine analog-induced DNA demethylation and the amount of DNA damage suggests that DNA damage is an integral part of cytidine analog-induced DNA demethylation. This helps us to understand the function of DNA methylation in plants and opens the possibility of using epigenetic inhibitors in biotechnology.
Collapse
Affiliation(s)
- Anna Nowicka
- Institute of Experimental Botany (IEB), Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research (CRH), CZ-779 00, Olomouc, Czech Republic
- Max Planck Institute for Plant Breeding Research (MPIPZ), DE-50829, Cologne, Germany
- The Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, Niezapominajek 21, PL-30 239, Krakow, Poland
| | - Barbara Tokarz
- Institute of Experimental Botany (IEB), Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research (CRH), CZ-779 00, Olomouc, Czech Republic
- Unit of Botany and Plant Physiology, Institute of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Al. 29 Listopada 54, PL-31 425, Krakow, Poland
| | - Jana Zwyrtková
- Institute of Experimental Botany (IEB), Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research (CRH), CZ-779 00, Olomouc, Czech Republic
| | - Eva Dvořák Tomaštíková
- Institute of Experimental Botany (IEB), Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research (CRH), CZ-779 00, Olomouc, Czech Republic
| | - Klára Procházková
- Institute of Experimental Botany (IEB), Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research (CRH), CZ-779 00, Olomouc, Czech Republic
| | - Ugur Ercan
- Max Planck Institute for Plant Breeding Research (MPIPZ), DE-50829, Cologne, Germany
| | - Andreas Finke
- Max Planck Institute for Plant Breeding Research (MPIPZ), DE-50829, Cologne, Germany
| | - Wilfried Rozhon
- Biotechnology of Horticultural Crops, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Liesel-Beckmann-Straße 1, DE-85354, Freising, Germany
| | - Brigitte Poppenberger
- Biotechnology of Horticultural Crops, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Liesel-Beckmann-Straße 1, DE-85354, Freising, Germany
| | - Miroslav Otmar
- Institute of Organic Chemistry and Biochemistry, CZ-166 10, Praha 6, Czech Republic
| | - Igor Niezgodzki
- Biogeosystem Modelling Group, ING PAN - Institute of Geological Sciences Polish Academy of Sciences, Research Center in Krakow, Senacka 1, PL-31 002, Krakow, Poland
| | - Marcela Krečmerová
- Institute of Organic Chemistry and Biochemistry, CZ-166 10, Praha 6, Czech Republic
| | - Ingo Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research, Stadt Seeland, DE-06466, Gatersleben, OT, Germany
| | - Ales Pecinka
- Institute of Experimental Botany (IEB), Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research (CRH), CZ-779 00, Olomouc, Czech Republic
- Max Planck Institute for Plant Breeding Research (MPIPZ), DE-50829, Cologne, Germany
| |
Collapse
|
19
|
Hacker L, Dorn A, Puchta H. WITHDRAWN: DNA-protein crosslink repair in plants. DNA Repair (Amst) 2020; 88:102786. [PMID: 32057665 DOI: 10.1016/j.dnarep.2020.102786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 01/06/2020] [Indexed: 10/25/2022]
Affiliation(s)
- Leonie Hacker
- Botanical Institute, Molecular Biology and Biochemistry, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Annika Dorn
- Botanical Institute, Molecular Biology and Biochemistry, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Holger Puchta
- Botanical Institute, Molecular Biology and Biochemistry, Karlsruhe Institute of Technology, Karlsruhe, Germany.
| |
Collapse
|
20
|
Abstract
DNA-protein crosslinks represent a severe kind of DNA damage as they disturb essential processes, such as transcription and DNA replication, due to their bulkiness. To ensure the maintenance of genome integrity, it is necessary for all living organisms to repair these lesions in a timely manner. Over recent years, much knowledge has been obtained regarding the repair of DNA-protein crosslinks (DPC), but it was only recently that the first insights into the mechanisms of DPC repair in plants were obtained. The plant DPC repair network consists of at least three parallel pathways that resolve DPC by distinct biochemical mechanisms. The endonuclease MUS81 resolves the DPC by cleaving the DNA part of the crosslink, the protease WSS1A is able to degrade the protein part and the tyrosyl-DNA-phosphodiesterase TDP1 can hydrolyse the crosslink between a protein and the DNA. However, due to the variety of different DPC types and the evolutionary conservation of pathways between eukaryotes, we expect that future research will reveal additional factors involved in DPC repair in plants.
Collapse
|
21
|
Abstract
When first asked to write a review of my life as a scientist, I doubted anyone would be interested in reading it. In addition, I did not really want to compose my own memorial. However, after discussing the idea with other scientists who have written autobiographies, I realized that it might be fun to dig into my past and to reflect on what has been important for me, my life, my family, my friends and colleagues, and my career. My life and research has taken me from bacteriophage to Agrobacterium tumefaciens-mediated DNA transfer to plants to the plant genome and its environmentally induced changes. I went from being a naïve, young student to a postdoc and married mother of two to the leader of an ever-changing group of fantastic coworkers-a journey made rich by many interesting scientific milestones, fascinating exploration of all corners of the world, and marvelous friendships.
Collapse
Affiliation(s)
- Barbara Hohn
- Friedrich Miescher Institute for Biomedical Research, CH-4058 Basel, Switzerland;
| |
Collapse
|
22
|
Wang T, Wu J, Xu S, Deng C, Wu L, Wu Y, Bian P. A potential involvement of plant systemic response in initiating genotoxicity of Ag-nanoparticles in Arabidopsis thaliana. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 170:324-330. [PMID: 30544092 DOI: 10.1016/j.ecoenv.2018.12.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 11/22/2018] [Accepted: 12/01/2018] [Indexed: 06/09/2023]
Abstract
The extensive availability of engineered nanomaterials in global markets has led to the release of substantial amounts of nanoparticles (NP) into atmosphere, water body and soil, yielding both beneficial and harmful effects in plant systems. The NP are mainly aggregated onto the surface of plant roots and leaves exposed and only slightly transported into other tissues with a low rate of internalization. This raises a question of whether plant systemic response is involved in the induction of biological effects of NP. To address this, model plant Arabidopsis thaliana were root exposed to low concentrations of Ag-NP of two particle sizes (10-nm and 60-nm), and expressions of homologous recombination (HR)-related genes and the alleviation of transcriptional gene silencing (TGS) in aerial leafy tissues were examined as genotoxic endpoints. Results showed that exposure of roots to two sizes of Ag-NP up-regulated expressions of HR genes, and reactivated TGS-silenced repetitive elements in aerial tissues. These effects were blocked by the impairment in the salicylic acid signal pathway, indicating a potential involvement of plant systemic response in the induction of Ag-NP genotoxicity. This is further supported by ICP-MS analysis, in which the Ag content in aerial tissues was not significantly changed by root exposure to 10-nm Ag-NP. Although a significant increase in the Ag content in aerial tissues was observed after root exposure to 60-nm Ag-NP, its genotoxic effects had no obvious difference from that by 10-nm Ag-NP exposure, also suggesting that the genotoxicity might be mainly induced via plant systemic response, at least in the experiments of root exposure to Ag-NP.
Collapse
Affiliation(s)
- Ting Wang
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, PR China
| | - Jingjing Wu
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, PR China
| | - Shaoxin Xu
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, PR China
| | - Chenguang Deng
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, PR China
| | - Lijun Wu
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, PR China
| | - Yuejin Wu
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, PR China
| | - Po Bian
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, PR China.
| |
Collapse
|
23
|
Joseph JT, Poolakkalody NJ, Shah JM. Screening internal controls for expression analyses involving numerous treatments by combining statistical methods with reference gene selection tools. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2019; 25:289-301. [PMID: 30804650 PMCID: PMC6352529 DOI: 10.1007/s12298-018-0608-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 09/06/2018] [Accepted: 09/24/2018] [Indexed: 06/09/2023]
Abstract
Real-time PCR is always the method of choice for expression analyses involving comparison of a large number of treatments. It is also the favored method for final confirmation of transcript levels followed by high throughput methods such as RNA sequencing and microarray. Our analysis comprised 16 different permutation and combinations of treatments involving four different Agrobacterium strains and three time intervals in the model plant Arabidopsis thaliana. The routinely used reference genes for biotic stress analyses in plants showed variations in expression across some of our treatments. In this report, we describe how we narrowed down to the best reference gene out of 17 candidate genes. Though we initiated our reference gene selection process using common tools such as geNorm, Normfinder and BestKeeper, we faced situations where these software-selected candidate genes did not completely satisfy all the criteria of a stable reference gene. With our novel approach of combining simple statistical methods such as t test, ANOVA and post hoc analyses, along with the routine software-based analyses, we could perform precise evaluation and we identified two genes, UBQ10 and PPR as the best reference genes for normalizing mRNA levels in the context of 16 different conditions of Agrobacterium infection. Our study emphasizes the usefulness of applying statistical analyses along with the reference gene selection software for reference gene identification in experiments involving the comparison of a large number of treatments.
Collapse
Affiliation(s)
- Joyous T. Joseph
- Department of Plant Science, Central University of Kerala, Periye, Kasaragod, 671316 India
| | | | - Jasmine M. Shah
- Department of Plant Science, Central University of Kerala, Periye, Kasaragod, 671316 India
| |
Collapse
|
24
|
Kuźnicki D, Meller B, Arasimowicz-Jelonek M, Braszewska-Zalewska A, Drozda A, Floryszak-Wieczorek J. BABA-Induced DNA Methylome Adjustment to Intergenerational Defense Priming in Potato to Phytophthora infestans. FRONTIERS IN PLANT SCIENCE 2019; 10:650. [PMID: 31214209 PMCID: PMC6554679 DOI: 10.3389/fpls.2019.00650] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Accepted: 04/30/2019] [Indexed: 05/21/2023]
Abstract
We provide evidence that alterations in DNA methylation patterns contribute to the regulation of stress-responsive gene expression for an intergenerational resistance of β-aminobutyric acid (BABA)-primed potato to Phytophthora infestans. Plants exposed to BABA rapidly modified their methylation capacity toward genome-wide DNA hypermethylation. De novo induced DNA methylation (5-mC) correlated with the up-regulation of Chromomethylase 3 (CMT3), Domains rearranged methyltransferase 2 (DRM2), and Repressor of silencing 1 (ROS1) genes in potato. BABA transiently activated DNA hypermethylation in the promoter region of the R3a resistance gene triggering its downregulation in the absence of the oomycete pathogen. However, in the successive stages of priming, an excessive DNA methylation state changed into demethylation with the active involvement of potato DNA glycosylases. Interestingly, the 5-mC-mediated changes were transmitted into the next generation in the form of intergenerational stress memory. Descendants of the primed potato, which derived from tubers or seeds carrying the less methylated R3a promoter, showed a higher transcription of R3a that associated with an augmented intergenerational resistance to virulent P. infestans when compared to the inoculated progeny of unprimed plants. Furthermore, our study revealed that enhanced transcription of some SA-dependent genes (NPR1, StWRKY1, and PR1) was not directly linked with DNA methylation changes in the promoter region of these genes, but was a consequence of methylation-dependent alterations in the transcriptional network.
Collapse
Affiliation(s)
- Daniel Kuźnicki
- Department of Plant Physiology, Poznań University of Life Sciences, Poznań, Poland
| | - Barbara Meller
- Department of Plant Physiology, Poznań University of Life Sciences, Poznań, Poland
| | | | - Agnieszka Braszewska-Zalewska
- Department of Plant Anatomy and Cytology, Faculty of Biology and Environmental Protection, The University of Silesia in Katowice, Katowice, Poland
| | - Andżelika Drozda
- Department of Plant Physiology, Poznań University of Life Sciences, Poznań, Poland
| | - Jolanta Floryszak-Wieczorek
- Department of Plant Physiology, Poznań University of Life Sciences, Poznań, Poland
- *Correspondence: Jolanta Floryszak-Wieczorek,
| |
Collapse
|
25
|
Liu HC, Lämke J, Lin SY, Hung MJ, Liu KM, Charng YY, Bäurle I. Distinct heat shock factors and chromatin modifications mediate the organ-autonomous transcriptional memory of heat stress. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 95:401-413. [PMID: 29752744 DOI: 10.1111/tpj.13958] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 03/21/2018] [Accepted: 04/25/2018] [Indexed: 05/26/2023]
Abstract
Plants can be primed by a stress cue to mount a faster or stronger activation of defense mechanisms upon subsequent stress. A crucial component of such stress priming is the modified reactivation of genes upon recurring stress; however, the underlying mechanisms of this are poorly understood. Here, we report that dozens of Arabidopsis thaliana genes display transcriptional memory, i.e. stronger upregulation after a recurring heat stress, that lasts for at least 3 days. We define a set of transcription factors involved in this memory response and show that the transcriptional memory results in enhanced transcriptional activation within minutes of the onset of a heat stress cue. Further, we show that the transcriptional memory is active in all tissues. It may last for up to a week, and is associated during this time with histone H3 lysine 4 hypermethylation. This transcriptional memory is cis-encoded, as we identify a promoter fragment that confers memory onto a heterologous gene. In summary, heat-induced transcriptional memory is a widespread and sustained response, and our study provides a framework for future mechanistic studies of somatic stress memory in higher plants.
Collapse
Affiliation(s)
- Hsiang-Chin Liu
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Jörn Lämke
- University of Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht-Str. 24-25, D-14476, Potsdam, Germany
| | - Siou-Ying Lin
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 11529, Taiwan
- Department of Biochemical Sciences and Technology, National Taiwan University, Taipei, 10617, Taiwan
| | - Meng-Ju Hung
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Kuan-Ming Liu
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Yee-Yung Charng
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 11529, Taiwan
- Department of Biochemical Sciences and Technology, National Taiwan University, Taipei, 10617, Taiwan
| | - Isabel Bäurle
- University of Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht-Str. 24-25, D-14476, Potsdam, Germany
| |
Collapse
|
26
|
Abstract
Environmental factors, particularly during early life, are important for the later metabolic health of the individual. In our obesogenic environment, it is of major socio-economic importance to investigate the mechanisms that contribute to the risk of metabolic ill health. Increasing evidence from a variety of model organisms suggests that non-genetically determined phenotypes, including metabolic effects such as glucose intolerance and obesity, can be passed between generations, which encourages us to revisit heredity. Inheritance of altered epigenetic information through the germ line has been proposed as one plausible mechanism. Whether the germline epigenome can be altered by environmental conditions such as diet and the extent to which this occurs in humans are the subject of intense current interest and debate, especially given that extensive germline epigenetic reprogramming is known to occur. As epigenetic mechanisms are often highly conserved between organisms, studying epigenetic inheritance in plants and lower metazoans has the potential to inform our investigation in mammals. This Review explores the extent to which epigenetic inheritance contributes to heredity in these different organisms, whether the environment can affect epigenetic inheritance and whether there is any evidence for the inheritance of acquired phenotypes.
Collapse
Affiliation(s)
- Elizabeth J Radford
- Department of Paediatrics, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK.
| |
Collapse
|
27
|
Finnegan EJ, Ford B, Wallace X, Pettolino F, Griffin PT, Schmitz RJ, Zhang P, Barrero JM, Hayden MJ, Boden SA, Cavanagh CA, Swain SM, Trevaskis B. Zebularine treatment is associated with deletion of FT-B1 leading to an increase in spikelet number in bread wheat. PLANT, CELL & ENVIRONMENT 2018; 41:1346-1360. [PMID: 29430678 DOI: 10.1111/pce.13164] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 01/16/2018] [Accepted: 01/21/2018] [Indexed: 05/09/2023]
Abstract
The number of rachis nodes (spikelets) on a wheat spike is a component of grain yield that correlates with flowering time. The genetic basis regulating flowering in cereals is well understood, but there are reports that flowering time can be modified at a high frequency by selective breeding, suggesting that it may be regulated by both epigenetic and genetic mechanisms. We investigated the role of DNA methylation in regulating spikelet number and flowering time by treating a semi-spring wheat with the demethylating agent, Zebularine. Three lines with a heritable increase in spikelet number were identified. The molecular basis for increased spikelet number was not determined in 2 lines, but the phenotype showed non-Mendelian inheritance, suggesting that it could have an epigenetic basis. In the remaining line, the increased spikelet phenotype behaved as a Mendelian recessive trait and late flowering was associated with a deletion encompassing the floral promoter, FT-B1. Deletion of FT-B1 delayed the transition to reproductive growth, extended the duration of spike development, and increased spikelet number under different temperature regimes and photoperiod. Transiently disrupting DNA methylation can generate novel flowering behaviour in wheat, but these changes may not be sufficiently stable for use in breeding programs.
Collapse
Affiliation(s)
| | - Brett Ford
- CSIRO Agriculture and Food, Canberra, ACT, 2601, Australia
| | | | | | - Patrick T Griffin
- Department of Genetics, University of Georgia, Athens, GA, 30602, USA
| | - Robert J Schmitz
- Department of Genetics, University of Georgia, Athens, GA, 30602, USA
| | - Peng Zhang
- Plant Breeding Institute, School of Life and Environmental Sciences, University of Sydney, Cobbitty, New South Wales, 2570, Australia
| | - Jose M Barrero
- CSIRO Agriculture and Food, Canberra, ACT, 2601, Australia
| | - Matthew J Hayden
- Agriculture Victoria Research, Agribio Center, Bundoora, Victoria, 3083, Australia
| | - Scott A Boden
- CSIRO Agriculture and Food, Canberra, ACT, 2601, Australia
| | | | - Steve M Swain
- CSIRO Agriculture and Food, Canberra, ACT, 2601, Australia
| | - Ben Trevaskis
- CSIRO Agriculture and Food, Canberra, ACT, 2601, Australia
| |
Collapse
|
28
|
Modliszewski JL, Wang H, Albright AR, Lewis SM, Bennett AR, Huang J, Ma H, Wang Y, Copenhaver GP. Elevated temperature increases meiotic crossover frequency via the interfering (Type I) pathway in Arabidopsis thaliana. PLoS Genet 2018; 14:e1007384. [PMID: 29771908 PMCID: PMC5976207 DOI: 10.1371/journal.pgen.1007384] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 05/30/2018] [Accepted: 04/27/2018] [Indexed: 11/29/2022] Open
Abstract
For most eukaryotes, sexual reproduction is a fundamental process that requires meiosis. In turn, meiosis typically depends on a reciprocal exchange of DNA between each pair of homologous chromosomes, known as a crossover (CO), to ensure proper chromosome segregation. The frequency and distribution of COs are regulated by intrinsic and extrinsic environmental factors, but much more is known about the molecular mechanisms governing the former compared to the latter. Here we show that elevated temperature induces meiotic hyper-recombination in Arabidopsis thaliana and we use genetic analysis with mutants in different recombination pathways to demonstrate that the extra COs are derived from the major Type I interference sensitive pathway. We also show that heat-induced COs are not the result of an increase in DNA double-strand breaks and that the hyper-recombinant phenotype is likely specific to thermal stress rather than a more generalized stress response. Taken together, these findings provide initial mechanistic insight into how environmental cues modulate plant meiotic recombination and may also offer practical applications. Meiosis is the cell division used by sexually reproducing species to produce sperm and egg cells. During meiosis, programmed Double Strand Breaks (DSBs) occur on each chromosome, which allows DNA to be exchanged between chromosome pairs, resulting in crossovers (COs). COs are necessary to ensure faithful chromosome segregation during meiosis, and thus fertility, but are also an important source of genetic variation. As such, CO formation is tightly regulated. Despite this, CO frequency can be altered by external factors, such as temperature. In Arabidopsis thaliana, COs are formed through two pathways: interference-sensitive (Type I) and interference-insensitive (Type II). An increase in temperature results in an increase in CO frequency. Using a pollen based assay, we show that COs are formed in the Type I pathway, which accounts for approximately 85% of the COs in Arabidopsis. To investigate whether temperature-dependent COs are the result of additional DSBs, we used immunological staining to examine protein foci, which mark the sites of DSBs. We discovered that temperature likely increases CO frequency by shifting alternative repair outcomes, called non-crossovers, to favor additional COs, rather than by increasing DSBs. Lastly, we found that temperature is not a general stress response, as plants subject to salt stress did not exhibit an increase in CO frequency. Our results may prove valuable in aiding plant breeding by enhancing our ability to rapidly introgress suites of elite traits from wild-plants into their crop relatives, a method that is particularly attractive as it does not require genetic modifications.
Collapse
Affiliation(s)
- Jennifer L. Modliszewski
- Department of Biology and the Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Hongkuan Wang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Ashley R. Albright
- Department of Biology and the Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Scott M. Lewis
- Department of Biology and the Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Alexander R. Bennett
- Department of Biology and the Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Jiyue Huang
- Department of Biology and the Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Hong Ma
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Yingxiang Wang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Gregory P. Copenhaver
- Department of Biology and the Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
29
|
Wang X, Zhang X, Chen J, Wang X, Cai J, Zhou Q, Dai T, Cao W, Jiang D. Parental Drought-Priming Enhances Tolerance to Post-anthesis Drought in Offspring of Wheat. FRONTIERS IN PLANT SCIENCE 2018; 9:261. [PMID: 29545817 PMCID: PMC5838469 DOI: 10.3389/fpls.2018.00261] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 02/14/2018] [Indexed: 05/18/2023]
Abstract
Drought is the major abiotic stress that decreases plant water status, inhibits photosynthesis, induces oxidative stress, restricts growth and finally lead to the reduction of wheat yield. It has been proven that drought priming during vegetative growth stage could enhance tolerance to drought stress at grain filling in wheat. However, whether drought priming imposed at grain filling in parental plants could induce drought tolerance in the offspring is not known. In this study, drought priming was successively applied in the first, the second and the third generation of wheat to obtain the plants of T1 (primed for one generation), T2 (primed for two generations), T3 (primed for three generations). The differently primed plants were then subjected to drought stress during grain filling in the fourth generation. Under drought stress, the parentally primed (T1D, T2D, T3D) plants, disregarding the number of generations, showed higher grain yield, leaf photosynthetic rate and antioxidant capacity as well as lower [Formula: see text] release rate and contents of H2O2 and MDA than the non-primed (T0D) plants, suggesting that drought priming induced the transgenerational stress tolerance to drought stress. Moreover, the parentally primed plants showed higher leaf water status, which may result from the higher contents of proline and glycine betaine, and higher activities of Δ1-pyrroline-5-carboxylate synthetase (P5CS) and betaine aldehyde dehydrogenase (BADH), compared with the non-primed plants under drought stress. In addition, there was no significant difference among three generations under drought, and the drought priming in parental generations did not affect the grain yield of the offspring plants under control condition. Collectively, the enhanced accumulation of proline and glycine betaine in the parentally primed plants could have played critical roles in parental priming induced tolerance to drought stress. This research provided a potential approach to improve drought tolerance of offspring plants by priming parental plants.
Collapse
Affiliation(s)
| | | | | | - Xiao Wang
- National Technique Innovation Center for Regional Wheat Production, Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture, National Engineering and Technology Center for Information Agriculture, Nanjing Agricultural University, Nanjing, China
| | | | | | | | | | - Dong Jiang
- National Technique Innovation Center for Regional Wheat Production, Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture, National Engineering and Technology Center for Information Agriculture, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
30
|
Sudan J, Raina M, Singh R. Plant epigenetic mechanisms: role in abiotic stress and their generational heritability. 3 Biotech 2018; 8:172. [PMID: 29556426 PMCID: PMC5845050 DOI: 10.1007/s13205-018-1202-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 03/07/2018] [Indexed: 10/17/2022] Open
Abstract
Plants have evolved various defense mechanisms including morphological adaptations, cellular pathways, specific signalling molecules and inherent immunity to endure various abiotic stresses during different growth stages. Most of the defense mechanisms are controlled by stress-responsive genes by transcribing and translating specific genes. However, certain modifications of DNA and chromatin along with small RNA-based mechanisms have also been reported to regulate the expression of stress-responsive genes and constitute another line of defense for plants in their struggle against stresses. More recently, studies have suggested that these modifications are heritable to the future generations as well, thereby indicating their possible role in the evolutionary mechanisms related to abiotic stresses.
Collapse
Affiliation(s)
- Jebi Sudan
- School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Chatha, Jammu and Kashmir India
| | - Meenakshi Raina
- School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Chatha, Jammu and Kashmir India
| | - Ravinder Singh
- School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Chatha, Jammu and Kashmir India
| |
Collapse
|
31
|
Joseph JT, Poolakkalody NJ, Shah JM. Plant reference genes for development and stress response studies. J Biosci 2018; 43:173-187. [PMID: 29485125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Many reference genes are used by different laboratories for gene expression analyses to indicate the relative amount of input RNA/DNA in the experiment. These reference genes are supposed to show least variation among the treatments and with the control sets in a given experiment. However, expression of reference genes varies significantly from one set of experiment to the other. Thus, selection of reference genes depends on the experimental conditions. Sometimes the average expression of two or three reference genes is taken as standard. This review consolidated the details of about 120 genes attempted for normalization during comparative expression analysis in 16 different plants. Plant species included in this review are Arabidopsis thaliana, cotton (Gossypium hirsutum), tobacco (Nicotiana benthamiana and N. tabacum), soybean (Glycine max), rice (Oryza sativa), blueberry (Vaccinium corymbosum), tomato (Solanum lycopersicum), wheat (Triticum aestivum), potato (Solanum tuberosum), sugar cane (Saccharum sp.), carrot (Daucus carota), coffee (Coffea arabica), cucumber (Cucumis sativus), kiwi (Actinidia deliciosa) and grape (Vitis vinifera). The list includes model and cultivated crop plants from both monocot and dicot classes. We have categorized plant-wise the reference genes that have been used for expression analyses in any or all of the four different conditions such as biotic stress, abiotic stress, developmental stages and various organs and tissues, reported till date. This review serves as a guide during the reference gene hunt for gene expression analysis studies.
Collapse
Affiliation(s)
- Joyous T Joseph
- Department of Plant Science, Central University of Kerala, Padannakkad, Kasaragod 671 314, India
| | | | | |
Collapse
|
32
|
|
33
|
Annacondia ML, Magerøy MH, Martinez G. Stress response regulation by epigenetic mechanisms: changing of the guards. PHYSIOLOGIA PLANTARUM 2018; 162:239-250. [PMID: 29080251 DOI: 10.1111/ppl.12662] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 09/25/2017] [Accepted: 10/25/2017] [Indexed: 05/23/2023]
Abstract
Plants are sessile organisms that lack a specialized immune system to cope with biotic and abiotic stress. Instead, plants have complex regulatory networks that determine the appropriate distribution of resources between the developmental and the defense programs. In the last years, epigenetic regulation of repeats and gene expression has evolved as an important player in the transcriptional regulation of stress-related genes. Here, we review the current knowledge about how different stresses interact with different levels of epigenetic control of the genome. Moreover, we analyze the different examples of transgenerational epigenetic inheritance and connect them with the known features of genome epigenetic regulation. Although yet to be explored, the interplay between epigenetics and stress resistance seems to be a relevant and dynamic player of the interaction of plants with their environments.
Collapse
Affiliation(s)
- Maria Luz Annacondia
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden
| | | | - German Martinez
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden
| |
Collapse
|
34
|
Yao Y, Kovalchuk I. Exposure to zebularine and 5-azaC triggers microsatellite instability in the exposed Arabidopsis thaliana plants and their progeny. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2018. [DOI: 10.1016/j.bcab.2017.11.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
35
|
Ganguly DR, Crisp PA, Eichten SR, Pogson BJ. The Arabidopsis DNA Methylome Is Stable under Transgenerational Drought Stress. PLANT PHYSIOLOGY 2017; 175:1893-1912. [PMID: 28986422 PMCID: PMC5717726 DOI: 10.1104/pp.17.00744] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 10/03/2017] [Indexed: 05/08/2023]
Abstract
Improving the responsiveness, acclimation, and memory of plants to abiotic stress holds substantive potential for improving agriculture. An unresolved question is the involvement of chromatin marks in the memory of agriculturally relevant stresses. Such potential has spurred numerous investigations yielding both promising and conflicting results. Consequently, it remains unclear to what extent robust stress-induced DNA methylation variation can underpin stress memory. Using a slow-onset water deprivation treatment in Arabidopsis (Arabidopsis thaliana), we investigated the malleability of the DNA methylome to drought stress within a generation and under repeated drought stress over five successive generations. While drought-associated epi-alleles in the methylome were detected within a generation, they did not correlate with drought-responsive gene expression. Six traits were analyzed for transgenerational stress memory, and the descendants of drought-stressed lineages showed one case of memory in the form of increased seed dormancy, and that persisted one generation removed from stress. With respect to transgenerational drought stress, there were negligible conserved differentially methylated regions in drought-exposed lineages compared with unstressed lineages. Instead, the majority of observed variation was tied to stochastic or preexisting differences in the epigenome occurring at repetitive regions of the Arabidopsis genome. Furthermore, the experience of repeated drought stress was not observed to influence transgenerational epi-allele accumulation. Our findings demonstrate that, while transgenerational memory is observed in one of six traits examined, they are not associated with causative changes in the DNA methylome, which appears relatively impervious to drought stress.
Collapse
Affiliation(s)
- Diep R Ganguly
- Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, Australian National University, Acton, Australian Capital Territory 2601, Australia
| | - Peter A Crisp
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, Minnesota 55108
| | - Steven R Eichten
- Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, Australian National University, Acton, Australian Capital Territory 2601, Australia
| | - Barry J Pogson
- Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, Australian National University, Acton, Australian Capital Territory 2601, Australia
| |
Collapse
|
36
|
Molinier J. Genome and Epigenome Surveillance Processes Underlying UV Exposure in Plants. Genes (Basel) 2017; 8:genes8110316. [PMID: 29120372 PMCID: PMC5704229 DOI: 10.3390/genes8110316] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 11/03/2017] [Accepted: 11/03/2017] [Indexed: 02/07/2023] Open
Abstract
Land plants and other photosynthetic organisms (algae, bacteria) use the beneficial effect of sunlight as a source of energy for the photosynthesis and as a major source of information from the environment. However, the ultraviolet component of sunlight also produces several types of damage, which can affect cellular and integrity, interfering with growth and development. In order to reduce the deleterious effects of UV, photosynthetic organisms combine physiological adaptation and several types of DNA repair pathways to avoid dramatic changes in the structure. Therefore, plants may have obtained an evolutionary benefit from combining genome and surveillance processes, to efficiently deal with the deleterious effects of UV radiation. This review will present the different mechanisms activated upon UV exposure that contribute to maintain genome and integrity.
Collapse
Affiliation(s)
- Jean Molinier
- Institut de Biologie Moléculaire des Plantes, UPR2357-CNRS, 12 rue du Général Zimmer, 67000 Strasbourg, France.
| |
Collapse
|
37
|
Puy J, Dvořáková H, Carmona CP, de Bello F, Hiiesalu I, Latzel V. Improved demethylation in ecological epigenetic experiments: Testing a simple and harmless foliar demethylation application. Methods Ecol Evol 2017. [DOI: 10.1111/2041-210x.12903] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Javier Puy
- Department of BotanyFaculty of ScienceUniversity of South Bohemia České Budějovice Czech Republic
| | - Hana Dvořáková
- Department of BotanyFaculty of ScienceUniversity of South Bohemia České Budějovice Czech Republic
| | - Carlos P. Carmona
- Department of BotanyFaculty of ScienceUniversity of South Bohemia České Budějovice Czech Republic
- Institute of Ecology and Earth SciencesDepartment of BotanyUniversity of Tartu Tartu Estonia
| | - Francesco de Bello
- Department of BotanyFaculty of ScienceUniversity of South Bohemia České Budějovice Czech Republic
- Institute of BotanyCzech Academy of Science Třeboň Czech Republic
| | - Inga Hiiesalu
- Institute of Ecology and Earth SciencesDepartment of BotanyUniversity of Tartu Tartu Estonia
| | - Vít Latzel
- Institute of BotanyCzech Academy of Sciences Průhonice Czech Republic
| |
Collapse
|
38
|
Shaw JLA, Judy JD, Kumar A, Bertsch P, Wang MB, Kirby JK. Incorporating Transgenerational Epigenetic Inheritance into Ecological Risk Assessment Frameworks. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:9433-9445. [PMID: 28745897 DOI: 10.1021/acs.est.7b01094] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Chronic exposure to environmental contaminants can induce heritable "transgenerational" modifications to organisms, potentially affecting future ecosystem health and functionality. Incorporating transgenerational epigenetic heritability into risk assessment procedures has been previously suggested. However, a critical review of existing literature yielded numerous studies claiming transgenerational impacts, with little compelling evidence. Therefore, contaminant-induced epigenetic inheritance may be less common than is reported in the literature. We identified a need for multigeneration epigenetic studies that extend beyond what could be deemed "direct exposure" to F1 and F2 gametes and also include subsequent multiple nonexposed generations to adequately evaluate transgenerational recovery times. Also, increased experimental replication is required to account for the highly variable nature of epigenetic responses and apparent irreproducibility of current studies. Further, epigenetic end points need to be correlated with observable detrimental organism changes before a need for risk management can be properly determined. We suggest that epigenetic-based contaminant studies include concentrations lower than current "EC10-20" or "Lowest Observable Effect Concentrations" for the organism's most sensitive phenotypic end point, as higher concentrations are likely already regulated. Finally, we propose a regulatory framework and optimal experimental design that enables transgenerational epigenetic effects to be assessed and incorporated into conventional ecotoxicological testing.
Collapse
Affiliation(s)
- Jennifer L A Shaw
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) , Land and Water, Environmental Contaminant Mitigation and Technologies Research Program, Waite Road, Urrbrae, Adelaide Australia , 5064
| | - Jonathan D Judy
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) , Land and Water, Environmental Contaminant Mitigation and Technologies Research Program, Waite Road, Urrbrae, Adelaide Australia , 5064
- University of Florida , Soil and Water Sciences Department, 1692 McCarthy Drive, Gainesville, Florida 32611, United States
| | - Anupama Kumar
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) , Land and Water, Environmental Contaminant Mitigation and Technologies Research Program, Waite Road, Urrbrae, Adelaide Australia , 5064
| | - Paul Bertsch
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Land and Water , Brisbane, Queensland Australia , 4001
| | - Ming-Bo Wang
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) , Agriculture and Food Unit, Black Mountain, Canberra, Australian Capital Territory, Australia , 2601
| | - Jason K Kirby
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) , Land and Water, Environmental Contaminant Mitigation and Technologies Research Program, Waite Road, Urrbrae, Adelaide Australia , 5064
| |
Collapse
|
39
|
Liu Z, Wang W, Zhang CG, Zhao JF, Chen YL. GUS Staining of Guard Cells to Identify Localised Guard Cell Gene Expression. Bio Protoc 2017; 7:e2446. [PMID: 34541146 DOI: 10.21769/bioprotoc.2446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 06/05/2017] [Accepted: 06/12/2017] [Indexed: 11/02/2022] Open
Abstract
Determination of a gene expression in guard cells is essential for studying stomatal movements. GUS staining is one means of detecting the localization of a gene expression in guard cells. If a gene is specially expressed in guard cells, the whole cotyledons or rosette leaf can be used for GUS staining. However, if a gene is expressed in both mesophyll and guard cells, it is hard to exhibit a clear expression of the gene in guard cells by a GUS staining image from leaf. To gain a clear guard cell GUS image of small G protein ROP7, a gene expressed in both mesophyll and guard cells, we peeled the epidermal strips from the leaf of 3-4 week-old plants. After removing the mesophyll cells, the epidermal strips were used for GUS staining. We compared the GUS staining images from epidermal strips or leaf of small G protein ROP7 and RopGEF4, a gene specifically expressed in guard cells, and found that GUS staining of epidermal strips provided a good method to show the guard cell expression of a gene expressed in both mesophyll and guard cells. This protocol is applicable for any genes that are expressed in guard cells of Arabidopsis, or other plants that epidermal strips can be easily peeled from the leaf.
Collapse
Affiliation(s)
- Zhao Liu
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Collaboration Innovation Center for Cell Signaling, College of Life Science, Hebei Normal University, Shijiazhuang, China
| | - Wei Wang
- Basic Forestry and Proteomics Research Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chun-Guang Zhang
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Collaboration Innovation Center for Cell Signaling, College of Life Science, Hebei Normal University, Shijiazhuang, China
| | - Jun-Feng Zhao
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Collaboration Innovation Center for Cell Signaling, College of Life Science, Hebei Normal University, Shijiazhuang, China
| | - Yu-Ling Chen
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Collaboration Innovation Center for Cell Signaling, College of Life Science, Hebei Normal University, Shijiazhuang, China
| |
Collapse
|
40
|
Lämke J, Bäurle I. Epigenetic and chromatin-based mechanisms in environmental stress adaptation and stress memory in plants. Genome Biol 2017; 18:124. [PMID: 28655328 PMCID: PMC5488299 DOI: 10.1186/s13059-017-1263-6] [Citation(s) in RCA: 365] [Impact Index Per Article: 52.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Plants frequently have to weather both biotic and abiotic stressors, and have evolved sophisticated adaptation and defense mechanisms. In recent years, chromatin modifications, nucleosome positioning, and DNA methylation have been recognized as important components in these adaptations. Given their potential epigenetic nature, such modifications may provide a mechanistic basis for a stress memory, enabling plants to respond more efficiently to recurring stress or even to prepare their offspring for potential future assaults. In this review, we discuss both the involvement of chromatin in stress responses and the current evidence on somatic, intergenerational, and transgenerational stress memory.
Collapse
Affiliation(s)
- Jörn Lämke
- University of Potsdam, Institute for Biochemistry and Biology, Karl-Liebknecht-Strasse 24-25, 14476, Potsdam, Germany
| | - Isabel Bäurle
- University of Potsdam, Institute for Biochemistry and Biology, Karl-Liebknecht-Strasse 24-25, 14476, Potsdam, Germany.
| |
Collapse
|
41
|
Saini R, Singh AK, Dhanapal S, Saeed TH, Hyde GJ, Baskar R. Brief temperature stress during reproductive stages alters meiotic recombination and somatic mutation rates in the progeny of Arabidopsis. BMC PLANT BIOLOGY 2017; 17:103. [PMID: 28615006 PMCID: PMC5471674 DOI: 10.1186/s12870-017-1051-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 06/01/2017] [Indexed: 05/02/2023]
Abstract
BACKGROUND Plants exposed to environmental stresses draw upon many genetic and epigenetic strategies, with the former sometimes modulated by the latter. This can help the plant, and its immediate progeny, at least, to better endure the stress. Some evidence has led to proposals that (epi) genetic changes can be both selective and sustainably heritable, while other evidence suggests that changes are effectively stochastic, and important only because they induce genetic variation. One type of stress with an arguably high level of stochasticity in its effects is temperature stress. Studies of how heat and cold affect the rates of meiotic recombination (MR) and somatic mutations (SMs, which are potentially heritable in plants) report increases, decreases, or no effect. Collectively, they do not point to any consistent patterns. Some of this variability, however, might arise from the stress being applied for such an extended time, typically days or weeks. Here, we adopted a targeted approach by (1) limiting exposure to one hour; and (2) timing it to coincide with (a) gamete, and early gametophyte, development, a period of high stress sensitivity; and (b) a late stage of vegetative development. RESULTS For plants (Arabidopsis thaliana) otherwise grown at 22 °C, we measured the effects of a 1 h exposure to cold (12 °C) or heat (32 °C) on the rates of MR, and four types of SMs (frameshift mutations; intrachromosomal recombination; base substitutions; transpositions) in the F1 progeny. One parent (wild type) was stressed, the other (unstressed) carried a genetic event detector. When rates were compared to those in progeny of control (both parents unstressed) two patterns emerged. In the progeny of younger plants (stressed at 36 days; pollinated at 40 days) heat and cold either had no effect (on MR) or (for SMs) had effects that were rare and stochastic. In the progeny of older plants (stressed at 41 days; pollinated at 45 days), while effects were also infrequent, those that were seen followed a consistent pattern: rates of all five genetic events were lowest at 12 °C and highest at 32 °C, i.e. they varied in a "dose-response" manner. This pattern was strongest (or, in the case of MR, only apparent) in progeny whose stressed parent was female. CONCLUSION While the infrequency of effects suggests the need for cautious inference, the consistency of responses in the progeny of older plants, indicate that in some circumstances the level of stochasticity in inherited genetic responses to heat or cold stress can be context-dependent, possibly reflecting life-cycle stages in the parental generation that are variably stress sensitive.
Collapse
Affiliation(s)
- Ramswaroop Saini
- Department of Biotechnology, Indian Institute of Technology–Madras, Bhupat and Jyoti Mehta School of Biosciences, Chennai, 600 036 India
| | - Amit Kumar Singh
- Department of Biotechnology, Indian Institute of Technology–Madras, Bhupat and Jyoti Mehta School of Biosciences, Chennai, 600 036 India
| | - Shanmuhapreya Dhanapal
- Department of Biotechnology, Indian Institute of Technology–Madras, Bhupat and Jyoti Mehta School of Biosciences, Chennai, 600 036 India
| | - Thoufeequl Hakeem Saeed
- Department of Biotechnology, Indian Institute of Technology–Madras, Bhupat and Jyoti Mehta School of Biosciences, Chennai, 600 036 India
| | - Geoffrey J. Hyde
- Write about Research, 14 Randwick Street, Randwick, Sydney, 2031 Australia
| | - Ramamurthy Baskar
- Department of Biotechnology, Indian Institute of Technology–Madras, Bhupat and Jyoti Mehta School of Biosciences, Chennai, 600 036 India
| |
Collapse
|
42
|
Modliszewski JL, Copenhaver GP. Meiotic recombination gets stressed out: CO frequency is plastic under pressure. CURRENT OPINION IN PLANT BIOLOGY 2017; 36:95-102. [PMID: 28258986 DOI: 10.1016/j.pbi.2016.11.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 11/13/2016] [Indexed: 05/02/2023]
Abstract
Meiotic recombination ensures the fertility of gametes and creates novel genetic combinations. Although meiotic crossover (CO) frequency is under homeostatic control, CO frequency is also plastic in nature and can respond to environmental conditions. Most investigations have focused on temperature and recombination, but other external and internal stimuli also have important roles in modulating CO frequency. Even less is understood about the molecular mechanisms that underly these phenomenon, but recent work has begun to advance our knowledge in this field. In this review, we identify and explore potential mechanisms including changes in: the synaptonemal complex, chromatin state, DNA methylation, and RNA splicing.
Collapse
Affiliation(s)
- Jennifer L Modliszewski
- Department of Biology and the Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, United States.
| | - Gregory P Copenhaver
- Department of Biology and the Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, United States; Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, United States
| |
Collapse
|
43
|
Dolgikh YI, Solov’yova AI, Tereshonok DV. Variability of DNA markers in Arabidopsis thaliana cultured cells under standard growing conditions and under the influence of stressors. BIOL BULL+ 2017. [DOI: 10.1134/s1062359017020042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
44
|
UVR2 ensures transgenerational genome stability under simulated natural UV-B in Arabidopsis thaliana. Nat Commun 2016; 7:13522. [PMID: 27905394 PMCID: PMC5146273 DOI: 10.1038/ncomms13522] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 10/11/2016] [Indexed: 11/24/2022] Open
Abstract
Ground levels of solar UV-B radiation induce DNA damage. Sessile phototrophic organisms such as vascular plants are recurrently exposed to sunlight and require UV-B photoreception, flavonols shielding, direct reversal of pyrimidine dimers and nucleotide excision repair for resistance against UV-B radiation. However, the frequency of UV-B-induced mutations is unknown in plants. Here we quantify the amount and types of mutations in the offspring of Arabidopsis thaliana wild-type and UV-B-hypersensitive mutants exposed to simulated natural UV-B over their entire life cycle. We show that reversal of pyrimidine dimers by UVR2 photolyase is the major mechanism required for sustaining plant genome stability across generations under UV-B. In addition to widespread somatic expression, germline-specific UVR2 activity occurs during late flower development, and is important for ensuring low mutation rates in male and female cell lineages. This allows plants to maintain genome integrity in the germline despite exposure to UV-B. As sessile organisms, plants are exposed to recurrent solar UV-B radiation that can induce DNA damage. Here, the authors characterize mutations that occur in Arabidopsis under light regimes simulating natural UV-B exposure and find that the UVR2 photolyase is the major component required to maintain genome stability.
Collapse
|
45
|
Pietzenuk B, Markus C, Gaubert H, Bagwan N, Merotto A, Bucher E, Pecinka A. Recurrent evolution of heat-responsiveness in Brassicaceae COPIA elements. Genome Biol 2016; 17:209. [PMID: 27729060 PMCID: PMC5059998 DOI: 10.1186/s13059-016-1072-3] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 09/23/2016] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND The mobilization of transposable elements (TEs) is suppressed by host genome defense mechanisms. Recent studies showed that the cis-regulatory region of Arabidopsis thaliana COPIA78/ONSEN retrotransposons contains heat-responsive elements (HREs), which cause their activation during heat stress. However, it remains unknown whether this is a common and potentially conserved trait and how it has evolved. RESULTS We show that ONSEN, COPIA37, TERESTRA, and ROMANIAT5 are the major families of heat-responsive TEs in A. lyrata and A. thaliana. Heat-responsiveness of COPIA families is correlated with the presence of putative high affinity heat shock factor binding HREs within their long terminal repeats in seven Brassicaceae species. The strong HRE of ONSEN is conserved over millions of years and has evolved by duplication of a proto-HRE sequence, which was already present early in the evolution of the Brassicaceae. However, HREs of most families are species-specific, and in Boechera stricta, the ONSEN HRE accumulated mutations and lost heat-responsiveness. CONCLUSIONS Gain of HREs does not always provide an ultimate selective advantage for TEs, but may increase the probability of their long-term survival during the co-evolution of hosts and genomic parasites.
Collapse
Affiliation(s)
- Björn Pietzenuk
- Department of Plant Breeding and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, 50829, Germany
- Present address: Department of Plant Physiology, Ruhr-University Bochum, Bochum, Germany
| | - Catarine Markus
- Department of Plant Breeding and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, 50829, Germany
- Department of Crop Science, Federal University of Rio Grande do Sul, Porto Alegre, RS, 91540000, Brazil
| | - Hervé Gaubert
- Department of Plant Biology, University of Geneva, Sciences III, 30 Quai Ernest-Ansermet, 1211, Geneva 4, Switzerland
- Present address: The Sainsbury Laboratory, University of Cambridge, Cambridge, UK
| | - Navratan Bagwan
- Department of Plant Breeding and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, 50829, Germany
- Present address: Cardiovascular proteomics, Centro Nacional de Investigaciones Cardiovasculares, Madrid, 28029, Spain
| | - Aldo Merotto
- Department of Crop Science, Federal University of Rio Grande do Sul, Porto Alegre, RS, 91540000, Brazil
| | - Etienne Bucher
- UMR1345 IRHS, Université d'Angers, INRA, Université Bretagne Loire, SFR4207 QUASAV, 49045, Angers, France
| | - Ales Pecinka
- Department of Plant Breeding and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, 50829, Germany.
| |
Collapse
|
46
|
Kissen R, Eberl F, Winge P, Uleberg E, Martinussen I, Bones AM. Effect of growth temperature on glucosinolate profiles in Arabidopsis thaliana accessions. PHYTOCHEMISTRY 2016; 130:106-118. [PMID: 27319377 DOI: 10.1016/j.phytochem.2016.06.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 05/23/2016] [Accepted: 06/05/2016] [Indexed: 06/06/2023]
Abstract
Glucosinolates are plant secondary metabolites with important roles in plant defence against pathogens and pests and are also known for their health benefits. Understanding how environmental factors affect the level and composition of glucosinolates is therefore of importance in the perspective of climate change. In this study we analysed glucosinolates in Arabidopsis thaliana accessions when grown at constant standard (21 °C), moderate (15 °C) and low (9 °C) temperatures during three generations. In most of the tested accessions moderate and pronounced chilling temperatures led to higher levels of glucosinolates, especially aliphatic glucosinolates. Which temperature yielded the highest glucosinolate levels was accession-dependent. Transcriptional profiling revealed also accession-specific gene responses, but only a limited correlation between changes in glucosinolate-related gene expression and glucosinolate levels. Different growth temperatures in one generation did not consistently affect glucosinolate composition in subsequent generations, hence a clear transgenerational effect of temperature on glucosinolates was not observed.
Collapse
Affiliation(s)
- Ralph Kissen
- Department of Biology, Norwegian University of Science and Technology, Høgskoleringen 5, NO-7491, Trondheim, Norway
| | - Franziska Eberl
- Department of Biology, Norwegian University of Science and Technology, Høgskoleringen 5, NO-7491, Trondheim, Norway
| | - Per Winge
- Department of Biology, Norwegian University of Science and Technology, Høgskoleringen 5, NO-7491, Trondheim, Norway
| | - Eivind Uleberg
- NIBIO, Norwegian Institute of Bioeconomy Research, Box 115, NO-1431, Ås, Norway
| | - Inger Martinussen
- NIBIO, Norwegian Institute of Bioeconomy Research, Box 115, NO-1431, Ås, Norway
| | - Atle M Bones
- Department of Biology, Norwegian University of Science and Technology, Høgskoleringen 5, NO-7491, Trondheim, Norway.
| |
Collapse
|
47
|
Groot MP, Kooke R, Knoben N, Vergeer P, Keurentjes JJB, Ouborg NJ, Verhoeven KJF. Effects of Multi-Generational Stress Exposure and Offspring Environment on the Expression and Persistence of Transgenerational Effects in Arabidopsis thaliana. PLoS One 2016; 11:e0151566. [PMID: 26982489 PMCID: PMC4794210 DOI: 10.1371/journal.pone.0151566] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 03/01/2016] [Indexed: 01/01/2023] Open
Abstract
Plant phenotypes can be affected by environments experienced by their parents. Parental environmental effects are reported for the first offspring generation and some studies showed persisting environmental effects in second and further offspring generations. However, the expression of these transgenerational effects proved context-dependent and their reproducibility can be low. Here we study the context-dependency of transgenerational effects by evaluating parental and transgenerational effects under a range of parental induction and offspring evaluation conditions. We systematically evaluated two factors that can influence the expression of transgenerational effects: single- versus multiple-generation exposure and offspring environment. For this purpose, we exposed a single homozygous Arabidopsis thaliana Col-0 line to salt stress for up to three generations and evaluated offspring performance under control and salt conditions in a climate chamber and in a natural environment. Parental as well as transgenerational effects were observed in almost all traits and all environments and traced back as far as great-grandparental environments. The length of exposure exerted strong effects; multiple-generation exposure often reduced the expression of the parental effect compared to single-generation exposure. Furthermore, the expression of transgenerational effects strongly depended on offspring environment for rosette diameter and flowering time, with opposite effects observed in field and greenhouse evaluation environments. Our results provide important new insights into the occurrence of transgenerational effects and contribute to a better understanding of the context-dependency of these effects.
Collapse
Affiliation(s)
- Maartje P. Groot
- Experimental Plant Ecology, Institute for Water and Wetland Research, Radboud University Nijmegen, Nijmegen, The Netherlands
- * E-mail:
| | - Rik Kooke
- Department of Plant Physiology, Wageningen University, Wageningen, The Netherlands
- Department of Genetics, Wageningen University, Wageningen, The Netherlands
- Centre for BioSystems Genomics, Wageningen, The Netherlands
| | - Nieke Knoben
- Experimental Plant Ecology, Institute for Water and Wetland Research, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Philippine Vergeer
- Plant Ecology and Nature Conservation Group, Wageningen, The Netherlands
| | - Joost J. B. Keurentjes
- Department of Genetics, Wageningen University, Wageningen, The Netherlands
- Centre for BioSystems Genomics, Wageningen, The Netherlands
| | - N. Joop Ouborg
- Experimental Plant Ecology, Institute for Water and Wetland Research, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Koen J. F. Verhoeven
- Netherlands Institute of Ecology (NIOO-KNAW), Department of Terrestrial Ecology, Wageningen, The Netherlands
| |
Collapse
|
48
|
Bilichak A, Kovalchuk I. Transgenerational response to stress in plants and its application for breeding. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:2081-92. [PMID: 26944635 DOI: 10.1093/jxb/erw066] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
A growing number of reports indicate that plants possess the ability to maintain a memory of stress exposure throughout their ontogenesis and even transmit it faithfully to the following generation. Some of the features of transgenerational memory include elevated genome instability, a higher tolerance to stress experienced by parents, and a cross-tolerance. Although the underlying molecular mechanisms of this phenomenon are not clear, a likely contributing factor is the absence of full-scale reprogramming of the epigenetic landscape during gametogenesis; therefore, epigenetic marks can occasionally escape the reprogramming process and can be passed on to the progeny. To date, it is not entirely clear which part of the epigenetic landscape is more likely to escape the reprogramming events, and whether such a process is random or directed and sequence specific. The identification of specific epigenetic marks associated with specific stressors would allow generation of stress-tolerant plants through the recently discovered techniques for precision epigenome engineering. The engineered DNA-binding domains (e.g. ZF, TALE, and dCas9) fused to particular chromatin modifiers would make it possible to target epigenetic modifications to the selected loci, probably allowing stress tolerance to be achieved in the progeny. This approach, termed epigenetic breeding, along with other methods has great potential to be used for both the assessment of the propagation of epigenetic marks across generations and trait improvement in plants. In this communication, we provide a short overview of recent reports demonstrating a transgenerational response to stress in plants, and discuss the underlying potential molecular mechanisms of this phenomenon and its use for plant biotechnology applications.
Collapse
Affiliation(s)
| | - Igor Kovalchuk
- Department of Biological Sciences, University of Lethbridge, University Drive 4401, Lethbridge, AB, T1K 3M4, Canada
| |
Collapse
|
49
|
Murgia I, Giacometti S, Balestrazzi A, Paparella S, Pagliano C, Morandini P. Analysis of the transgenerational iron deficiency stress memory in Arabidopsis thaliana plants. FRONTIERS IN PLANT SCIENCE 2015; 6:745. [PMID: 26442058 PMCID: PMC4585125 DOI: 10.3389/fpls.2015.00745] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 08/31/2015] [Indexed: 05/23/2023]
Abstract
We investigated the existence of the transgenerational memory of iron (Fe) deficiency stress, in Arabidopsis thaliana. Plants were grown under Fe deficiency/sufficiency, and so were their offspring. The frequency of somatic homologous recombination (SHR) events, of DNA strand breaks as well as the expression of the transcription elongation factor TFIIS-like gene increase when plants are grown under Fe deficiency. However, SHR frequency, DNA strand break events, and TFIIS-like gene expression do not increase further when plants are grown for more than one generation under the same stress, and furthermore, they decrease back to control values within two succeeding generations grown under control conditions, regardless of the Fe deficiency stress history of the mother plants. Seedlings produced from plants grown under Fe deficiency evolve more oxygen than control seedlings, when grown under Fe sufficiency: however, this trait is not associated with any change in the protein profile of the photosynthetic apparatus and is not transmitted to more than one generation. Lastly, plants grown for multiple generations under Fe deficiency produce seeds with greater longevity: however, this trait is not inherited in offspring generations unexposed to stress. These findings suggest the existence of multiple-step control of mechanisms to prevent a genuine and stable transgenerational transmission of Fe deficiency stress memory, with the tightest control on DNA integrity.
Collapse
Affiliation(s)
- Irene Murgia
- Department of Biosciences, University of MilanoMilano, Italy
| | | | - Alma Balestrazzi
- Department of Biology and Biotechnology ‘L. Spallanzani’, University of PaviaPavia, Italy
| | - Stefania Paparella
- Department of Biology and Biotechnology ‘L. Spallanzani’, University of PaviaPavia, Italy
| | - Cristina Pagliano
- Applied Science and Technology Department – BioSolar Lab, Polytechnic University of TurinAlessandria, Italy
| | - Piero Morandini
- Department of Biosciences, University of MilanoMilano, Italy
| |
Collapse
|
50
|
Piofczyk T, Jeena G, Pecinka A. Arabidopsis thaliana natural variation reveals connections between UV radiation stress and plant pathogen-like defense responses. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2015; 93:34-43. [PMID: 25656510 DOI: 10.1016/j.plaphy.2015.01.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 01/21/2015] [Indexed: 05/12/2023]
Abstract
UV radiation is a ubiquitous component of solar radiation that affects plant growth and development. Here we studied growth related traits of 345 Arabidopsis thaliana accessions in response to UV radiation stress. We analyzed the genetic basis of this natural variation by genome-wide association studies, which suggested a specific candidate genomic region. RNA-sequencing of three sensitive and three resistant accessions combined with mutant analysis revealed five large effect genes. Mutations in PHE ammonia lyase 1 (PAL1) and putative kinase At1g76360 rendered Arabidopsis hypersensitive to UV stress, while loss of function from putative methyltransferase At4g22530, novel plant snare 12 (NPSN12) and defense gene activated disease resistance 2 (ADR2) conferred higher UV stress resistance. Three sensitive accessions showed strong ADR2 transcriptional activation, accumulation of salicylic acid (SA) and dwarf growth upon UV stress, while these phenotypes were much less affected in resistant plants. The phenotype of sensitive accessions resembles autoimmune reactions due to overexpression of defense related genes, and suggests that natural variation in response to UV radiation stress is driven by pathogen-like responses in Arabidopsis.
Collapse
Affiliation(s)
- Thomas Piofczyk
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, D-50829 Cologne, Germany
| | - Ganga Jeena
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, D-50829 Cologne, Germany
| | - Ales Pecinka
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, D-50829 Cologne, Germany.
| |
Collapse
|