1
|
Ambrose JM, Veeraraghavan VP, Vennila R, Rupert S, Sathyanesan J, Meenakshisundaram R, Selvaraj S, Malayaperumal S, Kullappan M, Dorairaj S, Gujarathi JR, Gandhamaneni SH, Surapaneni KM. Comparison of mammosphere formation from stem-like cells of normal breast, malignant primary breast tumors, and MCF-7 cell line. J Egypt Natl Canc Inst 2022; 34:51. [PMID: 36504339 DOI: 10.1186/s43046-022-00152-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 09/14/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Mammosphere formation assay has become a versatile tool to quantify the activity of putative breast cancer stem cells in non-adherent in vitro cultures. However, optimizing the suspension culture system is crucial to establish mammosphere cultures from primary breast tumors. METHODS This study aimed at determining the self-renewal and sphere-forming potential of breast cancer stem-like cells derived from human primary invasive ductal carcinoma and normal breast tissue samples, and MCF-7 breast cancer cell line using an optimal suspension culture system. Mammosphere-forming efficiency of the mammospheres generated from the tissue samples and cell line were compared. We evaluated the expression of CD44+/CD24-/low and CD49f+/EpCAM-/low phenotypes in the stem-like cells by flow cytometry. CK-18, CK-19, α-SMA, and EpCAM marker expression was assessed using immunohistochemical staining. RESULTS Breast epithelial cells isolated from the three samples formed two-dimensional spheroids in suspension cultures. Interestingly, mammospheres formed from patient-derived primary breast tumors were enriched in breast cancer stem-like cells with the phenotype CD44+/CD24-/low and exhibited a relatively more number of large spheres when compared to the normal breast stem cells. MCF-7-derived SCs were more aggressive and resulted in the formation of a significantly higher number of spheroids. The expression of CK-18/CK-19 and α-SMA/EpCAM proteins was confirmed in breast cancer tissues. CONCLUSIONS Thus, the use of primary tumor specimens and breast cancer cell lines as suitable models for elucidating the breast cancer stem cell activity was validated using mammosphere culture system.
Collapse
Affiliation(s)
- Jenifer Mallavarpu Ambrose
- Department of Research, Panimalar Medical College Hospital & Research Institute, Varadharajapuram, Poonamallee, Chennai, Tamil Nadu, 600 123, India
| | - Vishnu Priya Veeraraghavan
- Department of Biochemistry, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Velappanchavadi, Chennai, Tamil Nadu, 600 077, India
| | - Rosy Vennila
- Stem Cell Research Centre, Government Stanley Medical College & Hospital, Chennai, Tamil Nadu, 600 001, India
| | - Secunda Rupert
- Stem Cell Research Centre, Government Stanley Medical College & Hospital, Chennai, Tamil Nadu, 600 001, India
| | - Jeswanth Sathyanesan
- Stem Cell Research Centre, Government Stanley Medical College & Hospital, Chennai, Tamil Nadu, 600 001, India
| | | | - Sakthivel Selvaraj
- Stem Cell Research Centre, Government Stanley Medical College & Hospital, Chennai, Tamil Nadu, 600 001, India
| | - Sarubala Malayaperumal
- Stem Cell Research Centre, Government Stanley Medical College & Hospital, Chennai, Tamil Nadu, 600 001, India
| | - Malathi Kullappan
- Department of Research, Panimalar Medical College Hospital & Research Institute, Varadharajapuram, Poonamallee, Chennai, Tamil Nadu, 600 123, India
| | - Sudarsanam Dorairaj
- PG Research Department of Advanced Zoology and Biotechnology, Loyola College, Chennai, Tamil Nadu, 600 034, India
| | - Jayesh R Gujarathi
- Department of Chemistry, School of Chemical Sciences, KES's Pratap College, Amalner, Maharashtra, 425 401, India
| | - Sri Harshini Gandhamaneni
- Department of General Medicine, Panimalar Medical College Hospital & Research Institute, Varadharajapuram, Poonamallee, Chennai, Tamil Nadu, 600 123, India
| | - Krishna Mohan Surapaneni
- Departments of Biochemistry, Molecular Virology, Research, Clinical Skills & Simulation, Panimalar Medical College Hospital & Research Institute, Varadharajapuram, Poonamallee, Chennai, Tamil Nadu, 600 123, India.
| |
Collapse
|
2
|
Mahmoud R, Ordóñez-Morán P, Allegrucci C. Challenges for Triple Negative Breast Cancer Treatment: Defeating Heterogeneity and Cancer Stemness. Cancers (Basel) 2022; 14:cancers14174280. [PMID: 36077812 PMCID: PMC9454775 DOI: 10.3390/cancers14174280] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/12/2022] [Accepted: 08/26/2022] [Indexed: 11/25/2022] Open
Abstract
The Triple Negative Breast Cancer (TNBC) subtype is known to have a more aggressive clinical course compared to other breast cancer subtypes. Targeted therapies for this type of breast cancer are limited and patients are mostly treated with conventional chemo- and radio-therapies which are not specific and do not target resistant cells. Therefore, one of the major clinical challenges is to find compounds that target the drug-resistant cell populations which are responsible for reforming secondary tumours. The molecular profiling of the different TNBC subtypes holds a promise for better defining these resistant cells specific to each tumour. To this end, a better understanding of TNBC heterogeneity and cancer stemness is required, and extensive genomic analysis can help to understand the disease complexity and distinguish new molecular drivers that can be targeted in the clinics. The use of persister cancer cell-targeting therapies combined with other therapies may provide a big advance to improve TNBC patients' survival.
Collapse
Affiliation(s)
- Rinad Mahmoud
- Centre for Cancer Sciences, Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK
- Translational Medical Sciences Unit, School of Medicine, University of Nottingham, Nottingham NG7 2RD, UK
| | - Paloma Ordóñez-Morán
- Centre for Cancer Sciences, Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK
- Translational Medical Sciences Unit, School of Medicine, University of Nottingham, Nottingham NG7 2RD, UK
- Correspondence: (P.O.-M.); (C.A.)
| | - Cinzia Allegrucci
- Centre for Cancer Sciences, Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK
- Nottingham Breast Cancer Research Centre, Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK
- SVMS, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
- Correspondence: (P.O.-M.); (C.A.)
| |
Collapse
|
3
|
Luo L, Santos A, Konganti K, Hillhouse A, Lambertz IU, Zheng Y, Gunaratna RT, Threadgill DW, Fuchs-Young RS. Overexpression of IGF-1 During Early Development Expands the Number of Mammary Stem Cells and Primes them for Transformation. Stem Cells 2022; 40:273-289. [DOI: 10.1093/stmcls/sxab018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Indexed: 11/13/2022]
Abstract
Abstract
Insulin-like growth factor I (IGF-1) has been implicated in breast cancer due to its mitogenic and anti-apoptotic effects. Despite substantial research on the role of IGF-1 in tumor progression, the relationship of IGF-1 to tissue stem cells, particularly in mammary tissue, and the resulting tumor susceptibility has not been elucidated. Previous studies with the BK5.IGF-1 transgenic (Tg) mouse model reveals that IGF-1 does not act as a classical, post-carcinogen tumor promoter in the mammary gland. Pre-pubertal Tg mammary glands display increased numbers and enlarged sizes of terminal end buds, a niche for mammary stem cells (MaSCs). Here we show that MaSCs from both wild type (WT) and Tg mice expressed IGF-1R and that overexpression of Tg IGF-1 increased numbers of MaSCs by undergoing symmetric division, resulting in an expansion of the MaSC and luminal progenitor (LP) compartments in pre-pubertal female mice. This expansion was maintained post-pubertally and validated by mammosphere assays in vitro and transplantation assays in vivo. The addition of recombinant IGF-1 promoted, and IGF-1R downstream inhibitors decreased mammosphere formation. Single-cell transcriptomic profiles generated from two related platforms reveal that IGF-1 stimulated quiescent MaSCs to enter the cell cycle and increased their expression of genes involved in proliferation, plasticity, tumorigenesis, invasion, and metastasis. This study identifies a novel, pro-tumorigenic mechanism, where IGF-1 increases the number of transformation-susceptible carcinogen targets during the early stages of mammary tissue development, and “primes” their gene expression profiles for transformation.
Collapse
Affiliation(s)
- Linjie Luo
- Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, Bryan, TX, USA
- Department of Experimental Radiation Oncology, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Andres Santos
- Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, Bryan, TX, USA
- Department of Anatomic Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Kranti Konganti
- Texas A&M Institute for Genome Sciences & Society, Texas A&M University, College Station, TX, USA
| | - Andrew Hillhouse
- Texas A&M Institute for Genome Sciences & Society, Texas A&M University, College Station, TX, USA
| | - Isabel U Lambertz
- Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, Bryan, TX, USA
| | - Yuanning Zheng
- Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, Bryan, TX, USA
| | - Ramesh T Gunaratna
- Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, Bryan, TX, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - David W Threadgill
- Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, Bryan, TX, USA
- Texas A&M Institute for Genome Sciences & Society, Texas A&M University, College Station, TX, USA
| | - Robin S Fuchs-Young
- Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, Bryan, TX, USA
| |
Collapse
|
4
|
Hayakawa T, Fujita F, Okada F, Sekiguchi K. Establishment and characterization of immortalized sweat gland myoepithelial cells. Sci Rep 2022; 12:7. [PMID: 34997030 PMCID: PMC8741770 DOI: 10.1038/s41598-021-03991-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 12/08/2021] [Indexed: 11/16/2022] Open
Abstract
Sweat glands play an important role in thermoregulation via sweating, and protect human vitals. The reduction in sweating may increase the incidence of hyperthermia. Myoepithelial cells in sweat glands exhibit stemness characteristics and play a major role in sweat gland homeostasis and sweating processes. Previously, we successfully passaged primary myoepithelial cells in spheroid culture systems; however, they could not be maintained for long under in vitro conditions. No myoepithelial cell line has been established to date. In this study, we transduced two immortalizing genes into primary myoepithelial cells and developed a myoepithelial cell line. When compared with primary sweat gland cells, the immortalized myoepithelial cells (designated "iEM") continued to form spheroids after the 4th passage and expressed α-smooth muscle actin and other proteins that characterize myoepithelial cells. Furthermore, treatment with small compounds targeting the Wnt signaling pathways induced differentiation of iEM cells into luminal cells. Thus, we successfully developed an immortalized myoepithelial cell line having differentiation potential. As animal models are not useful for studying human sweat glands, our cell line will be helpful for studying the mechanisms underlying the pathophysiology of sweating disorders.
Collapse
Affiliation(s)
- Tomohisa Hayakawa
- Laboratory of Advanced Cosmetic Science, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Fumitaka Fujita
- Laboratory of Advanced Cosmetic Science, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan. .,Fundamental Research Institute, Mandom Corporation, Osaka, Japan.
| | - Fumihiro Okada
- Laboratory of Advanced Cosmetic Science, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Fundamental Research Institute, Mandom Corporation, Osaka, Japan
| | - Kiyotoshi Sekiguchi
- Division of Matrixome Research and Application, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
5
|
Patel JR, Gallegos KM, Walker RR, Davidson AM, Davenport I, Tilghman SL. Mammospheres of letrozole-resistant breast cancer cells enhance breast cancer aggressiveness. Oncol Lett 2021; 22:620. [PMID: 34267813 PMCID: PMC8258623 DOI: 10.3892/ol.2021.12881] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 05/11/2021] [Indexed: 12/30/2022] Open
Abstract
Aromatase inhibitors (AIs), such as letrozole, are considered as first-line treatment for estrogen receptor-positive breast cancer in postmenopausal women. Despite the successful use of letrozole, resistance to therapy, tumor relapse and metastasis remain principal causes of patient mortality. Although there is no therapy currently available for AI-resistant breast cancer, previous reports have demonstrated that AI resistance is associated with hormone independence, increased growth factor signaling, enhanced cellular motility and epithelial to mesenchymal transition (EMT). This suggests a convergence of EMT and cancer stem cells (CSCs) in endocrine resistance. The present study evaluated the contribution of mammospheres in letrozole-resistant breast cancer by characterizing mammospheres and their potential impact on cellular motility. Ovariectomized immunocompromised female mice were inoculated in the mammary fat pad with either letrozole-resistant MCF-7 cells (LTLT-Ca) or letrozole-sensitive MCF-7 cells (AC-1). Subsequently, intratumoral CSC marker expression was assessed by immunohistochemistry. The results indicated that LTLT-Ca tumors were CD44+/CD24+, while AC-1 tumors presented low CD44/CD24 expression. Since mammosphere formation depends on CSCs, both cell lines were cultured either adherently (2D) or as mammospheres (3D) to assess the CD44/CD24 protein expression profile. When 3D culturing both cell lines, higher expression levels of CD44 and CD24 were observed when compared with their adherent counterparts, with the most robust change observed in the LTLT-Ca cell line. To quantitate the breast cancer stem cell activity, mammosphere formation assays were performed, and the LTLT-Ca cells formed mammospheres at a 3.4-fold higher index compared with AC-1 cells. Additionally, targeted gene expression arrays were conducted to compare the LTLT-Ca 3D and 2D cells, revealing that LTLT-Ca 3D cells displayed decreased expression levels of genes involved in cell adhesion and tumor suppression (e. g., E-cadherin, caveolin 1 and β-catenin). To validate this finding, wound healing assays were performed, and LTLT-Ca mammospheres exhibited a 70% wound closure, whereas AC-1 mammospheres exhibited a 39% wound closure. Collectively, the present findings demonstrated a strong association between AI-resistant mammospheres and an increased propensity for migration, which may be indicative of a poor prognosis.
Collapse
Affiliation(s)
- Jankiben R. Patel
- Division of Basic Sciences, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - Karen M. Gallegos
- Division of Basic Sciences, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - Rashidra R. Walker
- Division of Basic Sciences, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - A. Michael Davidson
- Division of Basic Sciences, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - Ian Davenport
- Division of Biological and Public Health Sciences, Department of Biology, College of Arts and Sciences, Xavier University of Louisiana, New Orleans, LA 70125, USA
| | - Syreeta L. Tilghman
- Division of Basic Sciences, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| |
Collapse
|
6
|
Understanding of tumourigenesis in canine mammary tumours based on cancer stem cell research. Vet J 2020; 265:105560. [PMID: 33129557 DOI: 10.1016/j.tvjl.2020.105560] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 09/25/2020] [Accepted: 09/29/2020] [Indexed: 11/21/2022]
Abstract
Mammary tumours occur frequently in female dogs, where such tumours exhibit complexity when examined histologically. These tumours are composed not only of proliferative luminal epithelial cells, but also of myoepithelial cells and/or mesenchymal cells with cartilage and osseous tissues in a solitary mass. The origin of this complexed histogenesis remains speculative, but cancer stem cells (CSCs) are likely involved. CSCs possess self-renewing capacity, differentiation potential, high tumourigenicity in immunodeficient mice, and resistance to chemotherapy and radiation. These cells are at the apex of a hierarchy in cancer tissues and are involved in tumour initiation, recurrence, and metastasis. For these reasons, understanding the properties of CSCs is of paramount importance. Analysis of the characteristics of CSCs may contribute to the elucidation of the histogenesis underlying canine mammary tumours, formulation of novel CSC-targeted therapeutic strategies, and development of biomarkers for early diagnostic and prognostic applications. Here, we review research on CSCs in canine mammary tumours, focusing on: (1) identification and properties of CSCs; (2) hypotheses regarding hierarchal structures in simple type, complex type and mixed tumours of the canine mammary gland; and (3) current and prospective studies of CSC metabolism.
Collapse
|
7
|
Nayak B, Balachander GM, Manjunath S, Rangarajan A, Chatterjee K. Tissue mimetic 3D scaffold for breast tumor-derived organoid culture toward personalized chemotherapy. Colloids Surf B Biointerfaces 2019; 180:334-343. [DOI: 10.1016/j.colsurfb.2019.04.056] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/26/2019] [Accepted: 04/27/2019] [Indexed: 01/10/2023]
|
8
|
Mariya S, Dewi FN, Suparto IH, Wilkerson GK, Cline MJ, Iskandriati D, Budiarsa NI, Sajuthi D. Mammosphere Culture of Mammary Cells from Cynomolgus Macaques ( Macaca fascicularis). Comp Med 2019; 69:144-150. [PMID: 30732675 DOI: 10.30802/aalas-cm-18-000030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The mammary gland contains adult stem cells that are capable of self-renewal. Although these cells hold an important role in the biology and pathology of the breast, the studies of mammary stem cells are few due to the difficulty of acquiring and expanding undifferentiated adult stem cell populations. In this study, we developed mammosphere cultures from frozen mammary cells of nulliparous cynomolgus macaques (Macaca fascicularis) as a culture system to enrich mammary stem cells. Small samples of mammary tissues were collected by surgical biopsy; cells were cultured in epithelial cell growth medium and cryopreserved. Cryopreserved cells were cultured into mammospheres, and the expression of markers for stemness was evaluated by using quantitative PCR analysis. Cells were further differentiated by using 2D and 3D approaches to evaluate morphology and organoid budding, respectively. The study showed that mammosphere culture resulted in an increase in the expression of mammary stem cell markers with each passage. In contrast, markers for epithelial cells and pluripotency decreased across multiple passages. The 2D differentiation of the cells showed heterogeneous morphology, whereas 3D differentiation allowed for organoid formation. The results indicate that mammospheres can be successfully developed from frozen mammary cells derived from breast tissue collected from nulliparous cynomolgus macaques through surgical biopsy. Because mammosphere cultures allow for the enrichment of a mammary stem cell population, this refined method provides a model for the in vitro or ex vivo study of mammary stem cells.
Collapse
Affiliation(s)
- Silmi Mariya
- Primate Research Center, Bogor Agricultural University, Bogor, Indonesia;,
| | - Fitriya N Dewi
- Primate Research Center, Bogor Agricultural University, Bogor, Indonesia
| | - Irma H Suparto
- Primate Research Center, Bogor Agricultural University, Bogor, Indonesia; Faculty of Mathematic and Nature Science, Bogor Agricultural University, Bogor, Indonesia
| | - Gregory K Wilkerson
- Michale E Keeling Center for Comparative Medicine and Research, MD Anderson Cancer Center, Bastrop, Texas
| | - Mark J Cline
- Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Diah Iskandriati
- Primate Research Center, Bogor Agricultural University, Bogor, Indonesia
| | - Nengah I Budiarsa
- Primate Research Center, Bogor Agricultural University, Bogor, Indonesia
| | - Dondin Sajuthi
- Primate Research Center, Bogor Agricultural University, Bogor, Indonesia; Faculty of Veterinary Medicine, Bogor Agricultural University, Bogor, Indonesia
| |
Collapse
|
9
|
Fathi E, Farahzadi R, Sheikhzadeh N. Immunophenotypic characterization, multi-lineage differentiation and aging of zebrafish heart and liver tissue-derived mesenchymal stem cells as a novel approach in stem cell-based therapy. Tissue Cell 2019; 57:15-21. [PMID: 30947959 DOI: 10.1016/j.tice.2019.01.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 01/24/2019] [Accepted: 01/26/2019] [Indexed: 02/07/2023]
Abstract
Mesenchymal stem cells (MSCs) are a good model for preclinical and clinical investigations, and alternative sources of MSCs are subject to intensive experiments. In this study, mesenchymal stem cells (MSCs) were isolated from heart and liver tissue of Zebrafish (Danio rerio). The flow-cytometry as well as RT-PCR were used to analyze the expression of a panel of cell surface markers CD44, CD90, CD31 and CD34. In the following, alizarin red, oil red-O and toluidine blue staining were carried out to evaluate the multi-lineage differentiation of zebrafish heart and liver tissue-derived MSCs. Subsequently, the gene and protein expression of Oct4, Sox2 and Nanog as pluri-potent markers were analyzed by RT-PCR and western blotting, respectively. In addition, MTT assay was used for cell proliferation potential and population doubling time (PDT) assessment. Also, the aging of cells was investigated by β-galactosidase activity assay. The results showed that, like other MSCs, zebrafish heart and liver tissue-derived MSCs were positive for mesenchymal, negative for hematopoietic markers and expressed pluripotent markers Oct4, Sox2 and Nanog. Moreover, these cells were differentiated to osteocyte, adipocyte, and chondrocyte lineages following directed differentiation. It was found that PDT of zebrafish heart and liver tissue-derived MSCs were 50.67 and 46.61 h, respectively. These cells had significantly more rapid growth on day 4. Our results show that zebrafish heart and liver tissue-derived MSCs exhibited typical MSC characteristics including fibroblast morphology, multi-lineage differentiation capacity, pluripotency potential and expression of a typical set of classic MSC surface markers.
Collapse
Affiliation(s)
- Ezzatollah Fathi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran.
| | - Raheleh Farahzadi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Najmeh Sheikhzadeh
- Department of Food Hygiene and Aquatic Animals, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| |
Collapse
|
10
|
Wu CH, Chuang HY, Wang CL, Hsu CY, Long CY, Hsieh TH, Tsai EM. Estradiol induces cell proliferation in MCF‑7 mammospheres through HER2/COX‑2. Mol Med Rep 2019; 19:2341-2349. [PMID: 30664162 DOI: 10.3892/mmr.2019.9879] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 10/02/2018] [Indexed: 11/06/2022] Open
Abstract
Cluster of differentiation (CD)44+/CD24- breast cancer cells have stem cell‑like characteristics and are potent initiators of tumorigenesis. Mammosphere cells can partially initiate breast tumorigenesis by inducing estradiol (E2)‑dependent breast cancer cells. However, the mechanisms by which E2 mediates cancer formation in MCF‑7 mammosphere (MS) cells have remained elusive. In the present study, MS cells were isolated by sphere culture. It was possible to maintain these MS cells in culture for long periods of time, while retaining the CD44+/CD24- stem cell marker status. The CD44+/CD24- status was confirmed by flow cytometry. Furthermore, the stem‑cell markers Musashi‑1, cytokeratin (CK)7 and CK19 were identified by immunofluorescence microscopy. It was revealed that treatment of MS cells with E2 increased the expression of CD44, whereas decreased the expression of CD24 on MS cells. In addition, treatment with E2 increased colony formation by MS cells. E2 also induced cyclooxygenase‑2 (COX‑2) expression in MS cells, which promoted their proliferation through the estrogen receptor/human epidermal growth factor receptor 2 (HER2)/mitogen‑activated protein kinase/phosphoinositide‑3 kinase signaling pathway. The results suggested a tumorigenic mechanism by which E2 promotes tumor cell proliferation via HER2/COX‑2 signaling. The present study provided evidence for the molecular impact of E2 on breast tumorigenesis, and suggested possible strategies for preventing and treating human breast cancer.
Collapse
Affiliation(s)
- Chin-Hu Wu
- Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Sanmin, Kaohsiung 807, Taiwan R.O.C
| | - Hui-Yu Chuang
- Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Sanmin, Kaohsiung 807, Taiwan R.O.C
| | - Chiu-Lin Wang
- Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Sanmin, Kaohsiung 807, Taiwan R.O.C
| | - Chia-Yi Hsu
- Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Sanmin, Kaohsiung 807, Taiwan R.O.C
| | - Cheng-Yu Long
- Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Sanmin, Kaohsiung 807, Taiwan R.O.C
| | - Tsung-Hua Hsieh
- Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Sanmin, Kaohsiung 807, Taiwan R.O.C
| | - Eing-Mei Tsai
- Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Sanmin, Kaohsiung 807, Taiwan R.O.C
| |
Collapse
|
11
|
Xiao T, Xu Z, Zhou Y, Zhang H, Geng J, Liang Y, Qiao H, Suo G. Loss of TP53I11 Enhances the Extracellular Matrix-independent Survival by Promoting Activation of AMPK. IUBMB Life 2018; 71:183-191. [DOI: 10.1002/iub.1949] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 08/25/2018] [Accepted: 09/03/2018] [Indexed: 01/13/2023]
Affiliation(s)
- Tongqian Xiao
- CAS Key Laboratory of Nano-Bio Interface; Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences; Jiangsu China
- University of Chinese Academy of Sciences; Beijing China
| | - Zhongjuan Xu
- CAS Key Laboratory of Nano-Bio Interface; Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences; Jiangsu China
| | - Yuanshuai Zhou
- CAS Key Laboratory of Nano-Bio Interface; Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences; Jiangsu China
- University of Chinese Academy of Sciences; Beijing China
| | - Hai Zhang
- CAS Key Laboratory of Nano-Bio Interface; Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences; Jiangsu China
| | - Junsa Geng
- CAS Key Laboratory of Nano-Bio Interface; Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences; Jiangsu China
- A School of Nano Technology and Nano Bionics; University of Science and Technology of China; Anhui China
| | - Yu Liang
- CAS Key Laboratory of Nano-Bio Interface; Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences; Jiangsu China
- Laboratory of Biosensing Technology; School of Life Sciences, Shanghai University; Shanghai China
| | - Hong Qiao
- Department of Molecular Biosciences; The University of Texas at Austin; Austin TX USA
| | - Guangli Suo
- CAS Key Laboratory of Nano-Bio Interface; Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences; Jiangsu China
| |
Collapse
|
12
|
Balachander GM, Talukdar PM, Debnath M, Rangarajan A, Chatterjee K. Inflammatory Role of Cancer-Associated Fibroblasts in Invasive Breast Tumors Revealed Using a Fibrous Polymer Scaffold. ACS APPLIED MATERIALS & INTERFACES 2018; 10:33814-33826. [PMID: 30207687 DOI: 10.1021/acsami.8b07609] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Inflammation in cancer fuels metastasis and worsens prognosis. Cancer-associated fibroblasts (CAFs) present in the tumor stroma play a vital role in mediating the cascade of cancer inflammation that drives metastasis by enhancing angiogenesis, tissue remodeling, and invasion. In vitro models that faithfully recapitulate CAF-mediated inflammation independent of coculturing with cancer cells are nonexistent. We have engineered fibrous matrices of poly(ε-caprolactone) (PCL) that can maintain the manifold tumor-promoting properties of patient-derived CAFs, which would otherwise require repetitive isolation and complex coculturing with cancer cells. On these fibrous matrices, CAFs proliferated and remodeled the extracellular matrix (ECM) in a parallel-patterned manner mimicking the ECM of high-grade breast tumors and induced stemness in breast cancer cells. The response of the fibroblasts was observed to be sensitive to the scaffold architecture and not the polymer composition. The CAFs cultured on fibrous matrices exhibited increased activation of the NF-κB pathway and downstream proinflammatory gene expression compared to CAFs cultured on conventional two-dimensional (2D) dishes and secreted higher levels of proinflammatory cytokines such as IL-6, GM-CSF, and MIP-3α. Consistent with this, we observed increased infiltration of inflammatory cells to the tumor site and enhanced invasiveness of the tumor in vivo when tumor cells were injected admixed with CAFs grown on fibrous matrices. These data suggest that CAFs better retain their tumor-promoting proinflammatory properties on fibrous polymeric matrices, which could serve as a unique model to investigate the mechanisms of stroma-induced inflammation in cancer progression.
Collapse
Affiliation(s)
| | - Pinku Mani Talukdar
- Department of Human Genetics , National Institute of Mental Health and Neurosciences , Bangalore 560029 , India
| | - Monojit Debnath
- Department of Human Genetics , National Institute of Mental Health and Neurosciences , Bangalore 560029 , India
| | | | | |
Collapse
|
13
|
Zhou Y, Xu Z, Quan D, Zhang F, Zhang H, Xiao T, Hou S, Qiao H, Harismendy O, Wang JYJ, Suo G. Nuclear respiratory factor 1 promotes spheroid survival and mesenchymal transition in mammary epithelial cells. Oncogene 2018; 37:6152-6165. [PMID: 29995872 DOI: 10.1038/s41388-018-0349-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 03/18/2018] [Accepted: 05/13/2018] [Indexed: 12/18/2022]
Abstract
Epithelial cells aggregate into spheroids when deprived of matrix, and the proclivity for spheroid formation and survival is a hallmark of normal and tumorigenic mammary stem cells. We show here that Nuclear Respiratory Factor 1 (NRF1) is a spheroid promoter by in silico identification of this transcription factor as highly connected to top shRNA-hits deduced from re-iterative selections for shRNAs enriched in MCF10A spheroids. NRF1-promoted spheroid survival is linked to its stimulation of mitochondrial OXPHOS, cell migration, invasion, and mesenchymal transition. Conversely, NRF1 knockdown in breast cancer MDA-MB-231 cells reduced spheroids, migration, invasion, and mesenchymal marker expression. NRF1 knockdown also reduced tumor burden in mammary fat pads and lungs of orthotopic- or tail vein-transplanted mice. With the Luminal A subtype of breast cancer, higher NRF1 expression is associated with lower survival. These results show that NRF1, an activator of mitochondrial metabolism, supports mammary spheroid survival and tumor development.
Collapse
Affiliation(s)
- Yuanshuai Zhou
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Jiangsu, 215123, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhongjuan Xu
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Jiangsu, 215123, China
| | - Daniel Quan
- Division of Hematology/Oncology, Department of Medicine, Moores Cancer Center, University of California, San Diego, School of Medicine, La Jolla, CA, 92093-0820, USA
| | - Fan Zhang
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Hai Zhang
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Jiangsu, 215123, China
| | - Tongqian Xiao
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Jiangsu, 215123, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shulan Hou
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Jiangsu, 215123, China
| | - Hong Qiao
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Olivier Harismendy
- Division of Hematology/Oncology, Department of Medicine, Moores Cancer Center, University of California, San Diego, School of Medicine, La Jolla, CA, 92093-0820, USA
| | - Jean Y J Wang
- Division of Hematology/Oncology, Department of Medicine, Moores Cancer Center, University of California, San Diego, School of Medicine, La Jolla, CA, 92093-0820, USA
| | - Guangli Suo
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Jiangsu, 215123, China.
| |
Collapse
|
14
|
Rajaee Z, Khoei S, Mahdavi SR, Ebrahimi M, Shirvalilou S, Mahdavian A. Evaluation of the effect of hyperthermia and electron radiation on prostate cancer stem cells. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2018; 57:133-142. [PMID: 29453555 DOI: 10.1007/s00411-018-0733-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 02/07/2018] [Indexed: 05/09/2023]
Abstract
The aim of this study was to investigate the effect of hyperthermia, 6 MeV electron radiation and combination of these treatments on cancer cell line DU145 in both monolayer culture and spheroids enriched for prostate cancer stem cells (CSCs). Flowcytometric analysis of the expression of molecular markers CD133+/CD44+ was carried out to determine the prostate CSCs in cell line DU145 grown as spheroids in serum-free medium. Following monolayer and spheroid culture, DU145 cells were treated with different doses of hyperthermia, electron beam and combination of them. The survival and self-renewing of the cells were evaluated by colony formation assay (CFA) and spheroid formation assay (SFA). Flowcytometry results indicated that the percentage of CD133+/CD44+ cells in spheroid culture was 13.9-fold higher than in the monolayer culture. The SFA showed significant difference between monolayer and spheroid culture for radiation treatment (6 Gy) and hyperthermia (60 and 90 min). The CFA showed significantly enhanced radiosensitivity in DU145 cells grown as monolayer as compared to spheroids, but no effect of hyperthermia. In contrast, for the combination of radiation and hyperthermia the results of CFA and SFA showed a reduced survival fraction in both cultures, with larger effects in monolayer than in spheroid culture. Thus, hyperthermia may be a promising approach in prostate cancer treatment that enhances the cytotoxic effect of electron radiation. Furthermore, determination and characterization of radioresistance and thermoresistance of CSCs in the prostate tumor is the key to develop more efficient therapeutic strategies.
Collapse
Affiliation(s)
- Zhila Rajaee
- Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, P.O. Box: 1449614525, Tehran, Iran
| | - Samideh Khoei
- Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, P.O. Box: 1449614525, Tehran, Iran.
| | - Seied Rabi Mahdavi
- Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, P.O. Box: 1449614525, Tehran, Iran
| | - Marzieh Ebrahimi
- Department of Stem Cells and Developmental Biology, Cell Science Research Centre, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Sakine Shirvalilou
- Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, P.O. Box: 1449614525, Tehran, Iran
| | - Alireza Mahdavian
- Polymer Science Department, Iran Polymer and Petrochemical Institute, Tehran, Iran
| |
Collapse
|
15
|
Laranjo M, Carvalho MJ, Costa T, Alves A, Oliveira RC, Casalta-Lopes J, Cordeiro P, Botas F, Abrantes AM, Paiva A, Oliveira C, Botelho MF. Mammospheres of hormonal receptor positive breast cancer diverge to triple-negative phenotype. Breast 2018; 38:22-29. [DOI: 10.1016/j.breast.2017.11.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 11/03/2017] [Accepted: 11/09/2017] [Indexed: 12/22/2022] Open
|
16
|
Saha M, Kumar S, Bukhari S, Balaji SA, Kumar P, Hindupur SK, Rangarajan A. AMPK-Akt Double-Negative Feedback Loop in Breast Cancer Cells Regulates Their Adaptation to Matrix Deprivation. Cancer Res 2018; 78:1497-1510. [PMID: 29339542 PMCID: PMC6033311 DOI: 10.1158/0008-5472.can-17-2090] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 11/17/2017] [Accepted: 01/10/2018] [Indexed: 12/11/2022]
Abstract
Cell detachment from the extracellular matrix triggers anoikis. Disseminated tumor cells must adapt to survive matrix deprivation, while still retaining the ability to attach at secondary sites and reinitiate cell division. In this study, we elucidate mechanisms that enable reversible matrix attachment by breast cancer cells. Matrix deprival triggered AMPK activity and concomitantly inhibited AKT activity by upregulating the Akt phosphatase PHLPP2. The resultant pAMPKhigh/pAktlow state was critical for cell survival in suspension, as PHLPP2 silencing also increased anoikis while impairing autophagy and metastasis. In contrast, matrix reattachment led to Akt-mediated AMPK inactivation via PP2C-α-mediated restoration of the pAkthigh/pAMPKlow state. Clinical specimens of primary and metastatic breast cancer displayed an Akt-associated gene expression signature, whereas circulating breast tumor cells displayed an elevated AMPK-dependent gene expression signature. Our work establishes a double-negative feedback loop between Akt and AMPK to control the switch between matrix-attached and matrix-detached states needed to coordinate cell growth and survival during metastasis.Significance: These findings reveal a molecular switch that regulates cancer cell survival during metastatic dissemination, with the potential to identify targets to prevent metastasis in breast cancer. Cancer Res; 78(6); 1497-510. ©2018 AACR.
Collapse
Affiliation(s)
- Manipa Saha
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India
| | - Saurav Kumar
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India
| | - Shoiab Bukhari
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India
| | - Sai A Balaji
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India
| | - Prashant Kumar
- Institute of Bioinformatics, International Technology Park, Whitefield, Bangalore, India
| | - Sravanth K Hindupur
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India
| | - Annapoorni Rangarajan
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India.
| |
Collapse
|
17
|
Mitra T, Prasad P, Mukherjee P, Chaudhuri SR, Chatterji U, Roy SS. Stemness and chemoresistance are imparted to the OC cells through TGFβ1 driven EMT. J Cell Biochem 2018. [PMID: 29537103 DOI: 10.1002/jcb.26753] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Ovarian cancer (OC) is the fourth most common gynecological malignancy due to its highly aggressive, recurrent, and drug-resistant nature. The last two features are rendered by the presence of cancer stem cells (CSCs). Factors like TGFβ1 and their downstream signaling pathways are upregulated in most cancers and are known to induce EMT and stemness, but the exact mechanisms underlying the process remain unelucidated. In our study, TGFβ1 induced enhanced stem-like properties like high expression of the pluripotent markers SOX2, OCT4a, and NANOG, along with CD44, and CD117 in the OC cells. In addition, increased activity of the aldehyde dehydrogenase enzyme, formation of compact spheroids, and a quiescent phenotype were observed. In deciphering the mechanism behind it, our data propose ZEB1 transcription factor to play a substantial role in inducing the EMT-mediated stemness and chemoresistance. Further, in our study, we elucidated the significant contribution of both Smad and non-Smad pathways like ERK, JNK, and P38 MAPK pathways in the induction of stem-like characteristics. The novelty of the study also resides with the fact in the expression of different lineage-specific markers, like CD31, CD45, and CD117 along with CD44 in the TGFβ1-induced epithelial ovarian cancer spheroids. This suggests a tendency of the spheroidal cells towards differentiating into heterogenic populations, which is a distinctive feature of a stem cell. Taken together, the present study provides an insight to the molecular cues involved in the acquisition of stemness and chemoresistance along with tumor heterogeneity in TGFβ1-induced OC cells.
Collapse
Affiliation(s)
- Tulika Mitra
- Division of Cell Biology and Physiology, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Parash Prasad
- Division of Cell Biology and Physiology, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Pritha Mukherjee
- Cancer Research Laboratory, Department of Zoology, University of Calcutta, Kolkata, India
| | - Susri Ray Chaudhuri
- Tata Translational Cancer Research Centre, Tata Medical Centre, Kolkata, India
| | - Urmi Chatterji
- Cancer Research Laboratory, Department of Zoology, University of Calcutta, Kolkata, India
| | - Sib S Roy
- Division of Cell Biology and Physiology, CSIR-Indian Institute of Chemical Biology, Kolkata, India.,Academy of Scientific & Innovative Research, CSIR-Indian Institute of Chemical Biology Campus, Kolkata, India
| |
Collapse
|
18
|
Ran Y, Hossain F, Pannuti A, Lessard CB, Ladd GZ, Jung JI, Minter LM, Osborne BA, Miele L, Golde TE. γ-Secretase inhibitors in cancer clinical trials are pharmacologically and functionally distinct. EMBO Mol Med 2018; 9:950-966. [PMID: 28539479 PMCID: PMC5494507 DOI: 10.15252/emmm.201607265] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
γ-Secretase inhibitors (GSIs) are being actively repurposed as cancer therapeutics based on the premise that inhibition of NOTCH1 signaling in select cancers is therapeutic. Using novel assays to probe effects of GSIs against a broader panel of substrates, we demonstrate that clinical GSIs are pharmacologically distinct. GSIs show differential profiles of inhibition of the various NOTCH substrates, with some enhancing cleavage of other NOTCH substrates at concentrations where NOTCH1 cleavage is inhibited. Several GSIs are also potent inhibitors of select signal peptide peptidase (SPP/SPPL) family members. Extending these findings to mammosphere inhibition assays in triple-negative breast cancer lines, we establish that these GSIs have different functional effects. We also demonstrate that the processive γ-secretase cleavage pattern established for amyloid precursor protein (APP) occurs in multiple substrates and that potentiation of γ-secretase cleavage is attributable to a direct action of low concentrations of GSIs on γ-secretase. Such data definitively demonstrate that the clinical GSIs are not biological equivalents, and provide an important framework to evaluate results from ongoing and completed human trials with these compounds.
Collapse
Affiliation(s)
- Yong Ran
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, and McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Fokhrul Hossain
- Department of Genetics and Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Antonio Pannuti
- Department of Genetics and Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Christian B Lessard
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, and McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Gabriela Z Ladd
- College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Joo In Jung
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, and McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Lisa M Minter
- Department of Veterinary and Animal Sciences and Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, MA, USA
| | - Barbara A Osborne
- Department of Veterinary and Animal Sciences and Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, MA, USA
| | - Lucio Miele
- Department of Genetics and Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Todd E Golde
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, and McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, USA
| |
Collapse
|
19
|
Luo YT, Cheng J, Feng X, He SJ, Wang YW, Huang Q. The viable circulating tumor cells with cancer stem cells feature, where is the way out? J Exp Clin Cancer Res 2018; 37:38. [PMID: 29482576 PMCID: PMC5828305 DOI: 10.1186/s13046-018-0685-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 01/19/2018] [Indexed: 02/07/2023] Open
Abstract
With cancer stem cells (CSCs) became the research hotspot, emerging studies attempt to reveal the functions of these special subsets in tumorigenesis. Although various approaches have been used in CSCs researches, only a few could really reflect or simulate the microenvironment in vivo. At present, CSCs theories are still difficult to apply for clinical remedy because CSCs subpopulations are always hard to identify and trace. Thus an ideal approach for clinicians and researchers is urgently needed. Circulating tumor cells (CTCs), as the method of noninvasive-liquid biopsy, could be detected in the peripheral blood (PB) from many tumors and even could be treated as procurators for CSCs deeper researches from patient-derived sample. However, CTCs, as a diagnostic marker, also raise much controversy over theirs clinical value. Mechanisms causing CTCs to shed from the tumor have not been fully characterized, thus it is unclear whether CTCs represent the entire makeup of cancer cells in the tumor or only a subset. The heterogeneity of CTCs also caused different clinical outcomes. To overcome these unsolved problems, recently, CTC researches are not just depend on enumerations, whereas those CTC subsets that could expand in vitro may play a pivotal role in the metastatic cascade. Here, we retrospect the CTC developmental history and discourse upon the enrichment of viable CTCs in functional assays, probe the further avenue at the crossroad.
Collapse
Affiliation(s)
- Y T Luo
- Molecular Diagnostic Laboratory of Cancer Center, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 201620, China
| | - J Cheng
- Molecular Diagnostic Laboratory of Cancer Center, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 201620, China
| | - X Feng
- Molecular Diagnostic Laboratory of Cancer Center, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 201620, China
| | - S J He
- Molecular Diagnostic Laboratory of Cancer Center, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 201620, China
| | - Y W Wang
- Molecular Diagnostic Laboratory of Cancer Center, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 201620, China
| | - Q Huang
- Molecular Diagnostic Laboratory of Cancer Center, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 201620, China.
| |
Collapse
|
20
|
Gallardo-Pérez JC, Adán-Ladrón de Guevara A, Marín-Hernández A, Moreno-Sánchez R, Rodríguez-Enríquez S. HPI/AMF inhibition halts the development of the aggressive phenotype of breast cancer stem cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017. [DOI: 10.1016/j.bbamcr.2017.06.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
21
|
Parodi DA, Greenfield M, Evans C, Chichura A, Alpaugh A, Williams J, Cyrus KC, Martin MB. Alteration of Mammary Gland Development and Gene Expression by In Utero Exposure to Cadmium. Int J Mol Sci 2017; 18:E1939. [PMID: 28891935 PMCID: PMC5618588 DOI: 10.3390/ijms18091939] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 09/01/2017] [Accepted: 09/05/2017] [Indexed: 01/31/2023] Open
Abstract
Environmental exposure to estrogens and estrogen like contaminants during early development is thought to contribute to the risk of developing breast cancer primarily due to an early onset of puberty; however, exposure during key developing windows may also influence the risk of developing the disease. The goal of this study was to ask whether in utero exposure to the metalloestrogen cadmium alters mammary gland development due to acceleration of puberty onset or to an effect on early development of the mammary gland. The results show that, in addition to advancing the onset of puberty, in utero exposure to the metalloestrogen cadmium altered mammary gland development prior to its effect on puberty onset. In utero exposure resulted in an expansion of the number of mammosphere-forming cells in the neonatal mammary gland and an increase in branching, epithelial cells, and density in the prepubertal mammary gland. In the postpubertal mammary gland, there was a further expansion of the mammary stem/progenitor cell population and overexpression of estrogen receptor-alpha (ERα) that was due to the overexpression and altered regulation of the ERα transcripts derived from exons O and OT in response to estradiol. These results suggest that in utero exposure to cadmium increases stem/progenitor cells, cell density, and expression of estrogen receptor-alpha that may contribute to the risk of developing breast cancer.
Collapse
Affiliation(s)
- Daniela A Parodi
- Departments of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC 20007, USA.
| | - Morgan Greenfield
- Department of Oncology, Georgetown University, Washington, DC 20007, USA.
| | - Claire Evans
- Departments of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC 20007, USA.
| | - Anna Chichura
- Department of Oncology, Georgetown University, Washington, DC 20007, USA.
| | - Alexandra Alpaugh
- Department of Oncology, Georgetown University, Washington, DC 20007, USA.
| | - James Williams
- Department of Oncology, Georgetown University, Washington, DC 20007, USA.
| | - Kedra C Cyrus
- Department of Oncology, Georgetown University, Washington, DC 20007, USA.
| | - Mary Beth Martin
- Departments of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC 20007, USA.
- Department of Oncology, Georgetown University, Washington, DC 20007, USA.
- Lombardi Comprehensive Cancer Center, Research Building, 3970 Reservoir Road NW, Washington, DC 20007, USA.
| |
Collapse
|
22
|
Tyagi A, Vishnoi K, Kaur H, Srivastava Y, Roy BG, Das BC, Bharti AC. Cervical cancer stem cells manifest radioresistance: Association with upregulated AP-1 activity. Sci Rep 2017; 7:4781. [PMID: 28684765 PMCID: PMC5500478 DOI: 10.1038/s41598-017-05162-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 05/25/2017] [Indexed: 12/16/2022] Open
Abstract
Transcription factor AP-1 plays a central role in HPV-mediated cervical carcinogenesis. AP-1 has also been implicated in chemo-radio-resistance but the mechanism(s) remained unexplored. In the present study, cervical cancer stem-like cells (CaCxSLCs) isolated and enriched from cervical cancer cell lines SiHa and C33a demonstrated an elevated AP-1 DNA-binding activity in comparison to non-stem cervical cancer cells. Upon UV-irradiation, CaCxSLCs showed a UV exposure duration-dependent higher proliferation and highly increased AP-1 activity whereas it was completely abolished in non-stem cancer cells. CaCxSLCs also showed differential overexpression of c-Fos and c-Jun at transcript as well as in protein level. The loss of AP-1 activity and expression was accompanied by decrease in cell viability and proliferation in UV-irradiated non-stem cancer cells. Interestingly, CaCxSLCs treated with curcumin prior to UV-irradiation abolished AP-1 activity and a concomitant reduction in SP cells leading to abrogation of sphere forming ability, loss of proliferation, induction of apoptosis and the cells were poorly tumorigenic. The curcumin pre-treatment abolished the expression of c-Fos and c-Jun but upregulated Fra-1 expression in UV-irradiated CaCxSLCs. Thus, the study suggests a critical role of AP-1 protein in the manifestation of radioresistance but targeting with curcumin helps in radiosensitizing CaCxSLCs through upregulation of Fra-1.
Collapse
Affiliation(s)
- Abhishek Tyagi
- Molecular Oncology Laboratory, B.R. Ambedkar Centre for Biomedical Research (ACBR), University of Delhi, Delhi, 110007, India.,Division of Molecular Oncology, National Institute of Cancer Prevention and Research (NICPR), Noida, 201301, Uttar Pradesh, India.,Stem Cell and Cancer Research Lab, Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University, Noida, Uttar Pradesh, 201313, India
| | - Kanchan Vishnoi
- Division of Molecular Oncology, National Institute of Cancer Prevention and Research (NICPR), Noida, 201301, Uttar Pradesh, India
| | - Harsimrut Kaur
- Molecular Oncology Laboratory, B.R. Ambedkar Centre for Biomedical Research (ACBR), University of Delhi, Delhi, 110007, India
| | - Yogesh Srivastava
- Division of Molecular Oncology, National Institute of Cancer Prevention and Research (NICPR), Noida, 201301, Uttar Pradesh, India
| | - Bal Gangadhar Roy
- Institute of Nuclear Medicine and Allied Sciences, Defence Research Development Organization, Delhi, 110 054, India
| | - Bhudev C Das
- Molecular Oncology Laboratory, B.R. Ambedkar Centre for Biomedical Research (ACBR), University of Delhi, Delhi, 110007, India. .,Stem Cell and Cancer Research Lab, Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University, Noida, Uttar Pradesh, 201313, India.
| | - Alok C Bharti
- Division of Molecular Oncology, National Institute of Cancer Prevention and Research (NICPR), Noida, 201301, Uttar Pradesh, India. .,Molecular Oncology Laboratory, Department of Zoology, University of Delhi, Delhi, 110007, India.
| |
Collapse
|
23
|
Mammary Gland Cell Culture of Macaca fascicularis as a Reservoir for Stem Cells. HAYATI JOURNAL OF BIOSCIENCES 2017. [DOI: 10.1016/j.hjb.2017.09.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
24
|
Different Phases of Breast Cancer Cells: Raman Study of Immortalized, Transformed, and Invasive Cells. BIOSENSORS-BASEL 2016; 6:bios6040057. [PMID: 27916791 PMCID: PMC5192377 DOI: 10.3390/bios6040057] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Revised: 10/26/2016] [Accepted: 11/01/2016] [Indexed: 12/21/2022]
Abstract
Breast cancer is the most prevalent cause of cancer-associated death in women the world over, but if detected early it can be treated successfully. Therefore, it is important to diagnose this disease at an early stage and to understand the biochemical changes associated with cellular transformation and cancer progression. Deregulated lipid metabolism has been shown to contribute to cell transformation as well as cancer progression. In this study, we monitored the biomolecular changes associated with the transformation of a normal cell into an invasive cell associated with breast cancer using Raman microspectroscopy. We have utilized primary normal breast cells, and immortalized, transformed, non-invasive, and invasive breast cancer cells. The Raman spectra were acquired from all these cell lines under physiological conditions. The higher wavenumber (2800–3000 cm−1) and lower wavenumber (700–1800 cm−1) range of the Raman spectrum were analyzed and we observed increased lipid levels for invasive cells. The Raman spectral data were analyzed by principal component–linear discriminant analysis (PC-LDA), which resulted in the formation of distinct clusters for different cell types with a high degree of sensitivity. The subsequent testing of the PC-LDA analysis via the leave-one-out cross validation approach (LOOCV) yielded relatively high identification sensitivity. Additionally, the Raman spectroscopic results were confirmed through fluorescence staining tests with BODIPY and Nile Red biochemical assays. Furthermore, Raman maps from the above mentioned cells under fixed conditions were also acquired to visualize the distribution of biomolecules throughout the cell. The present study shows the suitability of Raman spectroscopy as a non-invasive, label-free, microspectroscopic technique, having the potential of probing changes in the biomolecular composition of living cells as well as fixed cells.
Collapse
|
25
|
Shao J, Fan W, Ma B, Wu Y. Breast cancer stem cells expressing different stem cell markers exhibit distinct biological characteristics. Mol Med Rep 2016; 14:4991-4998. [PMID: 27840965 PMCID: PMC5355694 DOI: 10.3892/mmr.2016.5899] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 09/12/2016] [Indexed: 01/11/2023] Open
Abstract
Identification and isolation of breast cancer stem cells (CSCs) based on CD44/CD24 expression and/or enzymatic activity of aldehyde dehydrogenase 1 (ALDH1). However, the differences among the CD44+/CD24‑/low cells, ALDH1+ cells and the overlap between the sub‑populations have not been frequently investigated. Thus, it is imperative to improve the understanding of breast CSC with different stem markers. CD44+/CD24‑/low, ALDH1+ and ALDH1+CD44+/CD24‑/low cell populations were isolated from fresh breast cancer tissues and analyzed by flow cytometry and immunofluorescence. Mammosphere formation, cell proliferation assay and Transwell experiments, were used to analyze self‑renewal, proliferation and invasion, respectively, for each sub‑population. Finally, in vivo experimentation in mice was performed to evaluate the tumorigenic abilities of the sub‑populations. The sub‑populations of CD44+/CD24‑/low, ALDH1+ and ALDH1+CD44+/CD24‑/low in human breast cancer cells, represented the 7.2, 4.6 and 1.5% of the total tumor cell population, respectively. ALDH1+CD44+/CD24‑/low cells had the strongest ability of self‑renewal, invasion, proliferation and tumorigenicity compared with the other sub‑populations (P<0.05). In conclusion, different phenotypes of CD44+/CD24‑/low, ALDH1+ and ALDH1+CD44+/CD24‑/low were isolated and demonstrated that breast CSCs are heterogeneous, and they exhibit distinct biological characteristics. As ALDH1+CD44+/CD24‑/low cells demonstrated the strongest stem‑like properties, it may be a useful specific stem cell marker. The utilization of more reliable biomarkers to distinguish the breast CSC pool will be important for the development of specific target therapies for breast cancer.
Collapse
Affiliation(s)
- Jun Shao
- Department of Plastic Surgery, Wuhan Tongji Hospital, Wuhan, Hubei 430030, P.R. China
| | - Wei Fan
- Department of Breast Cancer, Hubei Cancer Hospital, Wuhan, Hubei 430079, P.R. China
| | - Biao Ma
- Department of Breast Cancer, Hubei Cancer Hospital, Wuhan, Hubei 430079, P.R. China
| | - Yiping Wu
- Department of Plastic Surgery, Wuhan Tongji Hospital, Wuhan, Hubei 430030, P.R. China
| |
Collapse
|
26
|
Bussche L, Rauner G, Antonyak M, Syracuse B, McDowell M, Brown AMC, Cerione RA, Van de Walle GR. Microvesicle-mediated Wnt/β-Catenin Signaling Promotes Interspecies Mammary Stem/Progenitor Cell Growth. J Biol Chem 2016; 291:24390-24405. [PMID: 27733685 DOI: 10.1074/jbc.m116.726117] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 10/02/2016] [Indexed: 01/08/2023] Open
Abstract
Signaling mechanisms that regulate mammary stem/progenitor cell (MaSC) self-renewal are essential for developmental changes that occur in the mammary gland during pregnancy, lactation, and involution. We observed that equine MaSCs (eMaSCs) maintain their growth potential in culture for an indefinite period, whereas canine MaSCs (cMaSCs) lose their growth potential in long term cultures. We then used this system to investigate the role of microvesicles (MVs) in promoting self-renewal properties. We found that Wnt3a and Wnt1 were expressed at higher levels in MVs isolated from eMaSCs compared with those from cMaSCs. Furthermore, eMaSC-MVs were able to induce Wnt/β-catenin signaling in different target cells, including cMaSCs. Interestingly, the induction of Wnt/β-catenin signaling in cMaSCs was prolonged when using eMaSC-MVs compared with recombinant Wnt proteins, indicating that MVs are not only important for transport of Wnt proteins, but they also enhance their signaling activity. Finally, we demonstrate that the eMaSC-MVs-mediated activation of the Wnt/β-catenin signaling pathway in cMaSCs significantly improves the ability of cMaSCs to grow as mammospheres and, importantly, that this effect is abolished when eMaSC-MVs are treated with Wnt ligand inhibitors. This suggests that this novel form of intercellular communication plays an important role in self-renewal.
Collapse
Affiliation(s)
| | - Gat Rauner
- From the Baker Institute for Animal Health and
| | - Marc Antonyak
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853 and
| | | | | | - Anthony M C Brown
- the Department of Cell & Developmental Biology, Weill Cornell Medical College, New York, New York 10065
| | - Richard A Cerione
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853 and
| | | |
Collapse
|
27
|
Chai YW, Lee EH, Gubbe JD, Brekke JH. 3D Cell Culture in a Self-Assembled Nanofiber Environment. PLoS One 2016; 11:e0162853. [PMID: 27632425 PMCID: PMC5025053 DOI: 10.1371/journal.pone.0162853] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 08/28/2016] [Indexed: 01/31/2023] Open
Abstract
The development and utilization of three-dimensional cell culture platforms has been gaining more traction. Three-dimensional culture platforms are capable of mimicking in vivo microenvironments, which provide greater physiological relevance in comparison to conventional two-dimensional cultures. The majority of three-dimensional culture platforms are challenged by the lack of cell attachment, long polymerization times, and inclusion of undefined xenobiotics, and cytotoxic cross-linkers. In this study, we review the use of a highly defined material composed of naturally occurring compounds, hyaluronic acid and chitosan, known as Cell-Mate3DTM. Moreover, we provide an original measurement of Young's modulus using a uniaxial unconfined compression method to elucidate the difference in microenvironment rigidity for acellular and cellular conditions. When hydrated into a tissue-like hybrid hydrocolloid/hydrogel, Cell-Mate3DTM is a highly versatile three-dimensional culture platform that enables downstream applications such as flow cytometry, immunostaining, histological staining, and functional studies to be applied with relative ease.
Collapse
Affiliation(s)
- Yi Wen Chai
- BRTI Life Sciences, Two Harbors, MN, United States of America
| | - Eu Han Lee
- BRTI Life Sciences, Two Harbors, MN, United States of America
| | - John D. Gubbe
- BRTI Life Sciences, Two Harbors, MN, United States of America
| | - John H. Brekke
- BRTI Life Sciences, Two Harbors, MN, United States of America
| |
Collapse
|
28
|
Perruchot MH, Arévalo-Turrubiarte M, Dufreneix F, Finot L, Lollivier V, Chanat E, Mayeur F, Dessauge F. Mammary Epithelial Cell Hierarchy in the Dairy Cow Throughout Lactation. Stem Cells Dev 2016; 25:1407-18. [PMID: 27520504 DOI: 10.1089/scd.2016.0098] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The plasticity of the mammary gland relies on adult mammary stem cells (MaSCs) and their progenitors, which give rise to various populations of mammary epithelial cells (MECs). To face global challenges, an in-depth characterization of milk-producing animal mammary gland plasticity is required, to select more sustainable and robust dairy cows. The identification and characterization of MaSC and their progenitors will also provide innovative tools in veterinary/human medicine regarding mammary tissue damage (carcinogenesis, bacterial infections). This study aimed to determine the dynamics of mammary cell populations throughout a lactation cycle. Using mammary biopsies from primiparous lactating dairy cows at 30, 90, 150, and 250 days of lactation, we phenotyped cell populations by flow cytometry. To investigate cell lineages, we used specific cell-surface markers, including CD49f, CD24, EpCAM (epithelial cell adhesion molecule), and CD10. Two cell populations linked to milk production were identified: CD49f(+)/EpCAM(-) (y = 0.88x + 4.42, R(2) = 0.36, P < 0.05) and CD49f(-)/EpCAM(-) (y = -1.15x + 92.44, R(2) = 0.51, P < 0.05) cells. Combining immunostaining analysis, flow cytometry, daily milk production data, and statistical approaches, we defined a stem cell population (CD24(+)/CD49f(+)) and four progenitor cell populations that include bipotent luminal progenitors (CD24(-)/CD49f(+)), lumino-alveolar progenitors (CD24(-)/EpCAM(+)), myoepithelial progenitors (CD24(+)/CD10(-)), and lumino-ductal progenitors (CD49f(-)/EpCAM(+)). Interestingly, we found that the bipotent luminal progenitors (CD24(-)/CD49f(+)) decreased significantly (P < 0.05) during lactation. This study provides the first results of mammary cell lineage, allowing insight into mammary cell plasticity during lactation.
Collapse
Affiliation(s)
| | | | | | - Laurence Finot
- UMR1348 PEGASE, Agrocampus Ouest, INRA , Saint-Gilles, France
| | | | - Eric Chanat
- UMR1348 PEGASE, Agrocampus Ouest, INRA , Saint-Gilles, France
| | | | | |
Collapse
|
29
|
Balaji SA, Udupa N, Chamallamudi MR, Gupta V, Rangarajan A. Role of the Drug Transporter ABCC3 in Breast Cancer Chemoresistance. PLoS One 2016; 11:e0155013. [PMID: 27171227 PMCID: PMC4865144 DOI: 10.1371/journal.pone.0155013] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 04/22/2016] [Indexed: 12/22/2022] Open
Abstract
Increased expression of ABC-family of transporters is associated with chemotherapy failure. Although the drug transporters ABCG2, ABCB1 and ABCC1 have been majorly implicated in cancer drug resistance, recent studies have associated ABCC3 with multi drug resistance and poor clinical response. In this study, we have examined the expression of ABCC3 in breast cancers and studied its role in drug resistance and stemness of breast cancer cells in comparison with the more studied ABCC1. We observed that similar to ABCC1, the transcripts levels of ABCC3 was significantly high in breast cancers compared to adjacent normal tissue. Importantly, expression of both transporters was further increased in chemotherapy treated patient samples. Consistent with this, we observed that treatment of breast cancer cell lines with anti-cancer agents increased their mRNA levels of both ABCC1 and ABCC3. Further, similar to knockdown of ABCC1, knockdown of ABCC3 also significantly increased the retention of chemotherapeutic drugs in breast cancer cells and rendered them more chemo-sensitive. Interestingly, ABCC1 and ABCC3 knockdown cells also showed reduction in the expression of stemness genes, while ABCC3 knockdown additionally led to a reduction in the CD44high/CD24low breast cancer stem-like subpopulation. Consistent with this, their ability to form primary tumours was compromised. Importantly, down-modulation of ABCC3 rendered these cells increasingly susceptible to doxorubicin in xenograft mice models in vivo. Thus, our study highlights the importance of ABCC3 transporters in drug resistance to chemotherapy in the context of breast cancer. Further, these results suggest that combinatorial inhibition of these transporters together with standard chemotherapy can reduce therapy-induced resistance in breast cancer.
Collapse
Affiliation(s)
- Sai A. Balaji
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science (IISc), Bangalore, 560012, India
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal, 576104, India
| | - Nayanabhirama Udupa
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal, 576104, India
| | | | | | - Annapoorni Rangarajan
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science (IISc), Bangalore, 560012, India
| |
Collapse
|
30
|
Caceres S, Peña L, Lacerda L, Illera MJ, de Andres PJ, Larson RA, Gao H, Debeb BG, Woodward WA, Reuben JM, Illera JC. Canine cell line, IPC-366, as a good model for the study of inflammatory breast cancer. Vet Comp Oncol 2016; 15:980-995. [DOI: 10.1111/vco.12238] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Revised: 02/29/2016] [Accepted: 03/29/2016] [Indexed: 12/20/2022]
Affiliation(s)
- S. Caceres
- Department of Animal Physiology; Complutense University of Madrid (UCM); Madrid Spain
| | - L. Peña
- Department of Animal Medicine, Surgery and Pathology, School of Veterinary Medicine; Complutense University of Madrid (UCM); Madrid Spain
| | - L. Lacerda
- Department of Radiation Oncology; The University of Texas MD Anderson Cancer Center; Houston TX USA
| | - M. J. Illera
- Department of Animal Physiology; Complutense University of Madrid (UCM); Madrid Spain
| | - P. J. de Andres
- Department of Animal Medicine, Surgery and Pathology, School of Veterinary Medicine; Complutense University of Madrid (UCM); Madrid Spain
| | - R. A. Larson
- Department of Radiation Oncology; The University of Texas MD Anderson Cancer Center; Houston TX USA
| | - H. Gao
- Department of Hematopathology; The University of Texas MD Anderson Cancer Center; Houston TX USA
| | - B. G. Debeb
- Department of Radiation Oncology; The University of Texas MD Anderson Cancer Center; Houston TX USA
| | - W. A. Woodward
- Department of Radiation Oncology; The University of Texas MD Anderson Cancer Center; Houston TX USA
| | - J. M. Reuben
- Department of Hematopathology; The University of Texas MD Anderson Cancer Center; Houston TX USA
| | - J. C. Illera
- Department of Animal Physiology; Complutense University of Madrid (UCM); Madrid Spain
| |
Collapse
|
31
|
Zhang Y, Huang Y, Jin Z, Li X, Li B, Xu P, Huang P, Liu C. A convenient and effective strategy for the enrichment of tumor-initiating cell properties in prostate cancer cells. Tumour Biol 2016; 37:11973-11981. [DOI: 10.1007/s13277-016-5046-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 04/01/2016] [Indexed: 01/06/2023] Open
|
32
|
Tyagi A, Vishnoi K, Mahata S, Verma G, Srivastava Y, Masaldan S, Roy BG, Bharti AC, Das BC. Cervical Cancer Stem Cells Selectively Overexpress HPV Oncoprotein E6 that Controls Stemness and Self-Renewal through Upregulation of HES1. Clin Cancer Res 2016; 22:4170-84. [PMID: 26988248 DOI: 10.1158/1078-0432.ccr-15-2574] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 02/19/2016] [Indexed: 11/16/2022]
Abstract
PURPOSE Perturbation of keratinocyte differentiation by E6/E7 oncoproteins of high-risk human papillomaviruses that drive oncogenic transformation of cells in squamocolumnar junction of the uterine cervix may confer "stem-cell like" characteristics. However, the crosstalk between E6/E7 and stem cell signaling during cervical carcinogenesis is not well understood. We therefore examined the role of viral oncoproteins in stem cell signaling and maintenance of stemness in cervical cancer. EXPERIMENTAL DESIGN Isolation and enrichment of cervical cancer stem-like cells (CaCxSLCs) was done from cervical primary tumors and cancer cell lines by novel sequential gating using a set of functional and phenotypic markers (ABCG2, CD49f, CD71, CD133) in defined conditioned media for assessing sphere formation and expression of self-renewal and stemness markers by FACS, confocal microscopy, and qRT-PCR. Differential expression level and DNA-binding activity of Notch1 and its downstream targets in CaCxSLCs as well as silencing of HPVE6/Hes1 by siRNA was evaluated by gel retardation assay, FACS, immunoblotting, and qRT-PCR followed by in silico and in vivo xenograft analysis. RESULTS CaCxSLCs showed spheroid-forming ability, expressed self-renewal and stemness markers Oct4, Sox2, Nanog, Lrig1, and CD133, and selectively overexpressed E6 and HES1 transcripts in both cervical primary tumors and cancer cell lines. The enriched CaCxSLCs were highly tumorigenic and did recapitulate primary tumor histology in nude mice. siRNA silencing of HPVE6 or Hes1 abolished sphere formation, downregulated AP-1-STAT3 signaling, and induced redifferentiation. CONCLUSIONS Our findings suggest the possible mechanism by which HPVE6 potentially regulate and maintain stem-like cancer cells through Hes1. Clin Cancer Res; 22(16); 4170-84. ©2016 AACR.
Collapse
Affiliation(s)
- Abhishek Tyagi
- Stem Cell and Cancer Research Laboratory, Amity Institute of Molecular Medicine and Stem Cell Research, Amity University Campus, Noida, Uttar Pradesh, India. Division of Molecular Oncology, Institute of Cytology & Preventive Oncology (ICMR), Noida, Uttar Pradesh, India. Molecular Oncology Laboratory, B.R. Ambedkar Centre for Biomedical Research (ACBR), University of Delhi, Delhi, India
| | - Kanchan Vishnoi
- Division of Molecular Oncology, Institute of Cytology & Preventive Oncology (ICMR), Noida, Uttar Pradesh, India
| | - Sutapa Mahata
- Division of Molecular Oncology, Institute of Cytology & Preventive Oncology (ICMR), Noida, Uttar Pradesh, India
| | - Gaurav Verma
- Division of Molecular Oncology, Institute of Cytology & Preventive Oncology (ICMR), Noida, Uttar Pradesh, India
| | - Yogesh Srivastava
- Division of Molecular Oncology, Institute of Cytology & Preventive Oncology (ICMR), Noida, Uttar Pradesh, India
| | - Shashank Masaldan
- Division of Molecular Oncology, Institute of Cytology & Preventive Oncology (ICMR), Noida, Uttar Pradesh, India
| | - Bal Gangadhar Roy
- Institute of Nuclear Medicine and Allied Sciences, DRDO, Delhi, India
| | - Alok C Bharti
- Division of Molecular Oncology, Institute of Cytology & Preventive Oncology (ICMR), Noida, Uttar Pradesh, India. Molecular Oncology Laboratory, Department of Zoology, University of Delhi, Delhi, India.
| | - Bhudev C Das
- Stem Cell and Cancer Research Laboratory, Amity Institute of Molecular Medicine and Stem Cell Research, Amity University Campus, Noida, Uttar Pradesh, India. Molecular Oncology Laboratory, B.R. Ambedkar Centre for Biomedical Research (ACBR), University of Delhi, Delhi, India.
| |
Collapse
|
33
|
Saric A, Andreau K, Armand AS, Møller IM, Petit PX. Barth Syndrome: From Mitochondrial Dysfunctions Associated with Aberrant Production of Reactive Oxygen Species to Pluripotent Stem Cell Studies. Front Genet 2016; 6:359. [PMID: 26834781 PMCID: PMC4719219 DOI: 10.3389/fgene.2015.00359] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 12/15/2015] [Indexed: 12/22/2022] Open
Abstract
Mutations in the gene encoding the enzyme tafazzin, TAZ, cause Barth syndrome (BTHS). Individuals with this X-linked multisystem disorder present cardiomyopathy (CM) (often dilated), skeletal muscle weakness, neutropenia, growth retardation, and 3-methylglutaconic aciduria. Biopsies of the heart, liver and skeletal muscle of patients have revealed mitochondrial malformations and dysfunctions. It is the purpose of this review to summarize recent results of studies on various animal or cell models of Barth syndrome, which have characterized biochemically the strong cellular defects associated with TAZ mutations. Tafazzin is a mitochondrial phospholipidlysophospholipid transacylase that shuttles acyl groups between phospholipids and regulates the remodeling of cardiolipin (CL), a unique inner mitochondrial membrane phospholipid dimer consisting of two phosphatidyl residues linked by a glycerol bridge. After their biosynthesis, the acyl chains of CLs may be modified in remodeling processes involving up to three different enzymes. Their characteristic acyl chain composition depends on the function of tafazzin, although the enzyme itself surprisingly lacks acyl specificity. CLs are crucial for correct mitochondrial structure and function. In addition to their function in the basic mitochondrial function of ATP production, CLs play essential roles in cardiac function, apoptosis, autophagy, cell cycle regulation and Fe-S cluster biosynthesis. Recent developments in tafazzin research have provided strong insights into the link between mitochondrial dysfunction and the production of reactive oxygen species (ROS). An important tool has been the generation of BTHS-specific induced pluripotent stem cells (iPSCs) from BTHS patients. In a complementary approach, disease-specific mutations have been introduced into wild-type iPSC lines enabling direct comparison with isogenic controls. iPSC-derived cardiomyocytes were then characterized using biochemical and classical bioenergetic approaches. The cells are tested in a "heart-on-chip" assay to model the pathophysiology in vitro, to characterize the underlying mechanism of BTHS deriving from TAZ mutations, mitochondrial deficiencies and ROS production and leading to tissue defects, and to evaluate potential therapies with the use of mitochondrially targeted antioxidants.
Collapse
Affiliation(s)
- Ana Saric
- INSERM U 1124 "Toxicologie, Pharmacologie et Signalisation Cellulaire" and "FR 3567" CNRS Chimie, Toxicologie, Signalisation Cellulaire et Cibles Thérapeutiques, Université Paris Descartes - Centre Universitaire des Saints-PèresParis, France; Division of Molecular Medicine, Ruđer Bošković InstituteZagreb, Croatia
| | - Karine Andreau
- INSERM U 1124 "Toxicologie, Pharmacologie et Signalisation Cellulaire" and "FR 3567" CNRS Chimie, Toxicologie, Signalisation Cellulaire et Cibles Thérapeutiques, Université Paris Descartes - Centre Universitaire des Saints-Pères Paris, France
| | - Anne-Sophie Armand
- INSERM U 1124 "Toxicologie, Pharmacologie et Signalisation Cellulaire" and "FR 3567" CNRS Chimie, Toxicologie, Signalisation Cellulaire et Cibles Thérapeutiques, Université Paris Descartes - Centre Universitaire des Saints-Pères Paris, France
| | - Ian M Møller
- Department of Molecular Biology and Genetics, Aarhus University Slagelse, Denmark
| | - Patrice X Petit
- INSERM U 1124 "Toxicologie, Pharmacologie et Signalisation Cellulaire" and "FR 3567" CNRS Chimie, Toxicologie, Signalisation Cellulaire et Cibles Thérapeutiques, Université Paris Descartes - Centre Universitaire des Saints-Pères Paris, France
| |
Collapse
|
34
|
Balachander GM, Balaji SA, Rangarajan A, Chatterjee K. Enhanced Metastatic Potential in a 3D Tissue Scaffold toward a Comprehensive in Vitro Model for Breast Cancer Metastasis. ACS APPLIED MATERIALS & INTERFACES 2015; 7:27810-27822. [PMID: 26599258 DOI: 10.1021/acsami.5b09064] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Metastasis is clinically the most challenging and lethal aspect of breast cancer. While animal-based xenograft models are expensive and time-consuming, conventional two-dimensional (2D) cell culture systems fail to mimic in vivo signaling. In this study we have developed a three-dimensional (3D) scaffold system that better mimics the topography and mechanical properties of the breast tumor, thus recreating the tumor microenvironment in vitro to study breast cancer metastasis. Porous poly(ε-caprolactone) (PCL) scaffolds of modulus 7.0 ± 0.5 kPa, comparable to that of breast tumor tissue were fabricated, on which MDA-MB-231 cells proliferated forming tumoroids. A comparative gene expression analysis revealed that cells growing in the scaffolds expressed increased levels of genes implicated in the three major events of metastasis, viz., initiation, progression, and the site-specific colonization compared to cells grown in conventional 2D tissue culture polystyrene (TCPS) dishes. The cells cultured in scaffolds showed increased invasiveness and sphere formation efficiency in vitro and increased lung metastasis in vivo. A global gene expression analysis revealed a significant increase in the expression of genes involved in cell-cell and cell-matrix interactions and tissue remodeling, cancer inflammation, and the PI3K/Akt, Wnt, NF-kappaB, and HIF1 signaling pathways-all of which are implicated in metastasis. Thus, culturing breast cancer cells in 3D scaffolds that mimic the in vivo tumor-like microenvironment enhances their metastatic potential. This system could serve as a comprehensive in vitro model to investigate the manifold mechanisms of breast cancer metastasis.
Collapse
Affiliation(s)
- Gowri Manohari Balachander
- Center for Biosystems Science and Engineering, ‡Department of Molecular Reproduction, Development and Genetics, and §Department of Materials Engineering, Indian Institute of Science , Bangalore 560012, India
| | - Sai A Balaji
- Center for Biosystems Science and Engineering, ‡Department of Molecular Reproduction, Development and Genetics, and §Department of Materials Engineering, Indian Institute of Science , Bangalore 560012, India
| | - Annapoorni Rangarajan
- Center for Biosystems Science and Engineering, ‡Department of Molecular Reproduction, Development and Genetics, and §Department of Materials Engineering, Indian Institute of Science , Bangalore 560012, India
| | - Kaushik Chatterjee
- Center for Biosystems Science and Engineering, ‡Department of Molecular Reproduction, Development and Genetics, and §Department of Materials Engineering, Indian Institute of Science , Bangalore 560012, India
| |
Collapse
|
35
|
Sharma A, Gadkari RA, Ramakanth SV, Padmanabhan K, Madhumathi DS, Devi L, Appaji L, Aster JC, Rangarajan A, Dighe RR. A novel Monoclonal Antibody against Notch1 Targets Leukemia-associated Mutant Notch1 and Depletes Therapy Resistant Cancer Stem Cells in Solid Tumors. Sci Rep 2015; 5:11012. [PMID: 26046801 PMCID: PMC4457015 DOI: 10.1038/srep11012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 05/07/2015] [Indexed: 01/08/2023] Open
Abstract
Higher Notch signaling is known to be associated with hematological and solid cancers. We developed a potential immunotherapeutic monoclonal antibody (MAb) specific for the Negative Regulatory Region of Notch1 (NRR). The MAb604.107 exhibited higher affinity for the "Gain-of-function" mutants of Notch1 NRR associated with T Acute lymphoblastic Leukemia (T-ALL). Modeling of the mutant NRR with 12 amino-acid insertion demonstrated "opening" resulting in exposure of the S2-cleavage site leading to activated Notch1 signaling. The MAb, at low concentrations (1-2 μg/ml), inhibited elevated ligand-independent Notch1 signaling of NRR mutants, augmented effect of Thapsigargin, an inhibitor of mutant Notch1, but had no effect on the wild-type Notch1. The antibody decreased proliferation of the primary T-ALL cells and depleted leukemia initiating CD34/CD44 high population. At relatively high concentrations, (10-20 μg/ml), the MAb affected Notch1 signaling in the breast and colon cancer cell lines. The Notch-high cells sorted from solid-tumor cell lines exhibited characteristics of cancer stem cells, which were inhibited by the MAb. The antibody also increased the sensitivity to Doxorubucinirubicin. Further, the MAb impeded the growth of xenografts from breast and colon cancer cells potentiated regression of the tumors along with Doxorubucin. Thus, this antibody is potential immunotherapeutic tool for different cancers.
Collapse
Affiliation(s)
- Ankur Sharma
- Department of Molecular Reproduction Development and Genetics, Indian Institute of Science Bangalore, Karnataka, India
| | - Rupali A Gadkari
- Molecular Biophysics Unit, Indian Institute of Science Bangalore, Karnataka, India
| | - Satthenapalli V Ramakanth
- Department of Molecular Reproduction Development and Genetics, Indian Institute of Science Bangalore, Karnataka, India
| | - Krishnanand Padmanabhan
- Department of Molecular Reproduction Development and Genetics, Indian Institute of Science Bangalore, Karnataka, India
| | - Davanam S Madhumathi
- Department of Pathology, Kidwai Memorial Institute of Oncology, Bangalore, Karnataka, India
| | - Lakshmi Devi
- Department of Pathology, Kidwai Memorial Institute of Oncology, Bangalore, Karnataka, India
| | - Lingappa Appaji
- Department of Pediatric Oncology, Kidwai Memorial Institute of Oncology, Bangalore, Karnataka, India
| | - Jon C Aster
- Department of Pathology, Brigham &Women's Hospital, Harvard Medical School, Boston, USA
| | - Annapoorni Rangarajan
- Department of Molecular Reproduction Development and Genetics, Indian Institute of Science Bangalore, Karnataka, India
| | - Rajan R Dighe
- Department of Molecular Reproduction Development and Genetics, Indian Institute of Science Bangalore, Karnataka, India
| |
Collapse
|
36
|
Zhang HH, Gu GL, Zhang XY, Li FZ, Ding L, Fan Q, Wu R, Shi W, Wang XY, Chen L, Wei XM, Yuan XY. Primary analysis and screening of microRNAs in gastric cancer side population cells. World J Gastroenterol 2015; 21:3519-3526. [PMID: 25834316 PMCID: PMC4375573 DOI: 10.3748/wjg.v21.i12.3519] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 01/16/2015] [Indexed: 02/06/2023] Open
Abstract
AIM: To explore the microRNA (miRNA) profiles and to determine the key miRNAs within the side population (SP) cells of the gastric cancer cell line MKN-45.
METHODS: We used fluorescence-activated cell sorting and Hoechst 33342 labeling to obtain SP cells from the human gastric carcinoma cell line MKN-45. The miRNA expression profiles of the SP and major population (MP) cells were examined using a miRNA gene chip, and key miRNAs were obtained according to aberrant expression and the miRNAs’ possible targets as predicted by bioinformatics.
RESULTS: Using a significance criterion of a 1.5-fold or greater difference in expression level, we observed an increase in the expression of 34 miRNAs and a decrease in the expression of 34 miRNAs when comparing SP to MP cells. Using quantitative real-time reverse transcription-polymerase chain reaction to test for differentially expressed miRNAs combined with bioinformatics results, we found that the downregulated miRNAs, such as hsa-miR-3175 and hsa-miR-203, and the upregulated miRNAs, including hsa-miR-130a, hsa-miR-324-5p, hsa-miR-34a, and hsa-miR-25-star, may be important in maintaining and regulating the characteristics of SP cells.
CONCLUSION: There are key miRNAs expressed within the SP cells of the gastric cancer cell line MKN-45, and include hsa-miR-3175, hsa-miR-203, hsa-miR-130a, hsa-miR-324-5p, hsa-miR-34a, and hsa-miR-25-star.
Collapse
|
37
|
Liu H, Lv L, Yang K. Chemotherapy targeting cancer stem cells. Am J Cancer Res 2015; 5:880-893. [PMID: 26045975 PMCID: PMC4449424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 02/15/2015] [Indexed: 06/04/2023] Open
Abstract
Conventional chemotherapy is the main treatment for cancer and benefits patients in the form of decreased relapse and metastasis and longer overall survival. However, as the target therapy drugs and delivery systems are not wholly precise, it also results in quite a few side effects, and is less efficient in many cancers due to the spared cancer stem cells, which are considered the reason for chemotherapy resistance, relapse, and metastasis. Conventional chemotherapy limitations and the cancer stem cell hypothesis inspired our search for a novel chemotherapy targeting cancer stem cells. In this review, we summarize cancer stem cell enrichment methods, the search for new efficient drugs, and the delivery of drugs targeting cancer stem cells. We also discuss cancer stem cell hierarchy complexity and the corresponding combination therapy for both cancer stem and non-stem cells. Learning from cancer stem cells may reveal novel strategies for chemotherapy in the future.
Collapse
Affiliation(s)
- Haiguang Liu
- Department of Surgical Oncology, The First Affiliated Hospital of Wenzhou Medical UniversityFuxue Road No. 2, Wenzhou, 325000, China
- Department of Pathology, Southern Hospital of Southern Medical UniversityGuangzhou Road No. 1838, Guangzhou, 510515, China
| | - Lin Lv
- Department of Surgical Oncology, The First Affiliated Hospital of Wenzhou Medical UniversityFuxue Road No. 2, Wenzhou, 325000, China
| | - Kai Yang
- Department of Surgical Oncology, The First Affiliated Hospital of Wenzhou Medical UniversityFuxue Road No. 2, Wenzhou, 325000, China
| |
Collapse
|
38
|
Ying J, Tsujii M, Kondo J, Hayashi Y, Kato M, Akasaka T, Inoue T, Shiraishi E, Inoue T, Hiyama S, Tsujii Y, Maekawa A, Kawai S, Fujinaga T, Araki M, Shinzaki S, Watabe K, Nishida T, Iijima H, Takehara T. The effectiveness of an anti-human IL-6 receptor monoclonal antibody combined with chemotherapy to target colon cancer stem-like cells. Int J Oncol 2015; 46:1551-9. [PMID: 25625841 DOI: 10.3892/ijo.2015.2851] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 11/19/2014] [Indexed: 11/06/2022] Open
Abstract
Recent studies have demonstrated that cancer stem cells (CSCs) can initiate and sustain tumor growth and exhibit resistance to clinical cytotoxic therapies. Therefore, CSCs represent the main target of anticancer therapy. Interleukin-6 (IL-6) promotes cellular proliferation and drug resistance in colorectal cancer, and its serum levels correlate with patient survival. Therefore, IL-6 and its downstream signaling molecule the signal transducer and activator of transcription-3 (STAT3) represent potential molecular targets. In the present study, we investigated the effects of IL-6 and its downstream signaling components on stem cell biology, particularly the chemoresistance of CSCs, to explore potential molecular targets for cancer therapy. The colon cancer cell line WiDr was cultured in serum-free, non-adherent, and three-dimensional spheroid-forming conditions to enrich the stem cell-like population. Spheroid-forming cells slowly proliferated and expressed high levels of Oct-4, Klf4, Bmi-1, Lgr5, IL-6, and Notch 3 compared with adherent cells. Treatment with an anti-human IL-6 receptor monoclonal antibody reduced spheroid formation, stem cell-related gene expression, and 5-fluorouracil (5-FU) resistance. In addition, IL-6 treatment enhanced the levels of p-STAT3 (Tyr705), the expression of Oct-4, Klf4, Lgr5, and Notch 3, and chemoresistance to 5-FU. siRNA targeting Notch 3 suppressed spheroid formation, Oct-4 and Lgr5 expression, and 5-FU chemoresistance, whereas STAT3 inhibition enhanced Oct-4, Klf4, Lgr5, and Notch 3 expression and 5-FU chemoresistance along with reduced spheroid growth. Taken together, these results indicate that IL-6 functions in dichotomous pathways involving Notch 3 induction and STAT3 activation. The former pathway is involved in cancer stem-like cell biology and enhanced chemoresistance, and the latter pathway leads to accelerated proliferation and reduced chemoresistance. Thus, an anti-human IL-6 receptor monoclonal antibody or Notch 3 inhibition may be superior to STAT3 inhibition for CSC-targeting therapies concomitant with anticancer drugs.
Collapse
Affiliation(s)
- Jin Ying
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Masahiko Tsujii
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Jumpei Kondo
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Yoshito Hayashi
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Motohiko Kato
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Tomofumi Akasaka
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Takuta Inoue
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Eri Shiraishi
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Tahahiro Inoue
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Satoshi Hiyama
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Yoshiki Tsujii
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Akira Maekawa
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Shoichiro Kawai
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Tetsuji Fujinaga
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Maekawa Araki
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Shinichiro Shinzaki
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Kenji Watabe
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Tsutomu Nishida
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Hideki Iijima
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Tetsuo Takehara
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| |
Collapse
|
39
|
Yu WY, Grierson I, Sheridan C, Lo ACY, Wong DSH. Bovine posterior limbus: an evaluation of an alternative source for corneal endothelial and trabecular meshwork stem/progenitor cells. Stem Cells Dev 2014; 24:624-39. [PMID: 25323922 DOI: 10.1089/scd.2014.0257] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
A growing body of evidence has revealed that stem-like cells in the posterior limbus of the eye between the corneal endothelium (CE) and trabecular meshwork (TM) may be able to rejuvenate these tissues in disease. However, these cells have not been clearly defined and we have named them PET cells (progenitor cells of the endothelium and trabeculum). A good and inexpensive animal model for PET cells is lacking, so we investigated bovine eyes as an effective large tissue source. We showed the presence of stem/progenitor cells in the bovine CE, transition zone, and TM in situ. Floating spheres cultured from the CE and TM showed similar stem cell marker expression patterns. Both the CE and TM spheres were bipotent and highly proliferative, but with limited secondary sphere-forming capability. They were highly prone to differentiate back into the cell type of their tissue of origin. It is speculated that the PET cells become more tissue-specific as they migrate away from their niche. Here, we showed that PET cells are present in the posterior limbus of bovine eyes and that they can be successfully cultured and expanded. PET cells represent an attractive target for developing new treatments to regenerate both the CE and TM, thereby reducing the requirement for donor tissue for corneal transplant and invasive treatments for glaucomatous patients.
Collapse
Affiliation(s)
- Wing Yan Yu
- 1 Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong , Hong Kong, China
| | | | | | | | | |
Collapse
|
40
|
Mittal S, Sharma A, Balaji SA, Gowda MC, Dighe RR, Kumar RV, Rangarajan A. Coordinate hyperactivation of Notch1 and Ras/MAPK pathways correlates with poor patient survival: novel therapeutic strategy for aggressive breast cancers. Mol Cancer Ther 2014; 13:3198-3209. [PMID: 25253780 PMCID: PMC4258404 DOI: 10.1158/1535-7163.mct-14-0280] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Aberrant activation of Notch and Ras pathways has been detected in breast cancers. A synergy between these two pathways has also been shown in breast cell transformation in culture. Yet, the clinical relevance of Notch-Ras cooperation in breast cancer progression remains unexplored. In this study, we show that coordinate hyperactivation of Notch1 and Ras/MAPK pathways in breast cancer patient specimens, as assessed by IHC for cleaved Notch1 and pErk1/2, respectively, correlated with early relapse to vital organs and poor overall survival. Interestingly, majority of such Notch1(high)Erk(high) cases encompassed the highly aggressive triple-negative breast cancers (TNBC), and were enriched in stem cell markers. We further show that combinatorial inhibition of Notch1 and Ras/MAPK pathways, using a novel mAb against Notch1 and a MEK inhibitor, respectively, led to a significant reduction in proliferation and survival of breast cancer cells compared with individual inhibition. Combined inhibition also abrogated sphere-forming potential, and depleted the putative cancer stem-like cell subpopulation. Most importantly, combinatorial inhibition of Notch1 and Ras/MAPK pathways completely blocked tumor growth in a panel of breast cancer xenografts, including the TNBCs. Thus, our study identifies coordinate hyperactivation of Notch1 and Ras/MAPK pathways as novel biomarkers for poor breast cancer outcome. Furthermore, based on our preclinical data, we propose combinatorial targeting of these two pathways as a treatment strategy for highly aggressive breast cancers, particularly the TNBCs that currently lack any targeted therapeutic module.
Collapse
Affiliation(s)
- Suruchi Mittal
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, Karnataka, India
- Department of Pathology, Kidwai Memorial Institute of Oncology, Bangalore, Karnataka, India
| | - Ankur Sharma
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, Karnataka, India
| | - Sai A. Balaji
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, Karnataka, India
| | - Manju C Gowda
- Department of Pathology, Kidwai Memorial Institute of Oncology, Bangalore, Karnataka, India
| | - Rajan R. Dighe
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, Karnataka, India
| | - Rekha V. Kumar
- Department of Pathology, Kidwai Memorial Institute of Oncology, Bangalore, Karnataka, India
| | - Annapoorni Rangarajan
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, Karnataka, India
| |
Collapse
|
41
|
Easter SL, Mitchell EH, Baxley SE, Desmond R, Frost AR, Serra R. Wnt5a suppresses tumor formation and redirects tumor phenotype in MMTV-Wnt1 tumors. PLoS One 2014; 9:e113247. [PMID: 25401739 PMCID: PMC4234660 DOI: 10.1371/journal.pone.0113247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 10/24/2014] [Indexed: 11/26/2022] Open
Abstract
Wnt5a is a non-canonical signaling Wnt that has been implicated in tumor suppression. We previously showed that loss of Wnt5a in MMTV-PyVmT tumors resulted in a switch in tumor phenotype resulting in tumors with increased basal phenotype and high Wnt/β-catenin signaling. The object of this study was to test the hypothesis that Wnt5a can act to inhibit tumors formed by activation of Wnt/β-catenin signaling. To this end, we characterized tumor and non-tumor mammary tissue from MMTV-Wnt1 and double transgenic MMTV-Wnt1;MMTV-Wnt5a mice. Wnt5a containing mice demonstrated fewer tumors with increased latency when compared to MMTV-Wnt1 controls. Expression of markers for basal-like tumors was down-regulated in the tumors that formed in the presence of Wnt5a indicating a phenotypic switch. Reduced canonical Wnt signaling was detected in double transgenic tumors as a decrease in active β-catenin protein and a decrease in Axin2 mRNA transcript levels. In non-tumor tissues, over-expression of Wnt5a in MMTV-Wnt1 mammary glands resulted in attenuation of phenotypes normally observed in MMTV-Wnt1 glands including hyperbranching and increased progenitor and basal cell populations. Even though Wnt5a could antagonize Wnt/β-catenin signaling in primary mammary epithelial cells in culture, reduced Wnt/β-catenin signaling was not detected in non-tumor MMTV-Wnt1;Wnt5a tissue in vivo. The data demonstrate that Wnt5a suppresses tumor formation and promotes a phenotypic shift in MMTV-Wnt1 tumors.
Collapse
MESH Headings
- Animals
- Blotting, Western
- Cells, Cultured
- Epithelial Cells/metabolism
- Epithelial Cells/pathology
- Female
- Fluorescent Antibody Technique
- Immunoenzyme Techniques
- Male
- Mammary Glands, Animal/metabolism
- Mammary Glands, Animal/pathology
- Mammary Neoplasms, Experimental/genetics
- Mammary Neoplasms, Experimental/metabolism
- Mammary Neoplasms, Experimental/pathology
- Mammary Tumor Virus, Mouse/genetics
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Phenotype
- RNA, Messenger/genetics
- Real-Time Polymerase Chain Reaction
- Reverse Transcriptase Polymerase Chain Reaction
- Wnt Proteins/genetics
- Wnt Proteins/metabolism
- Wnt-5a Protein
- Wnt1 Protein/physiology
- beta Catenin
Collapse
Affiliation(s)
- Stephanie L. Easter
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, 35294, United States of America
| | - Elizabeth H. Mitchell
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, 35294, United States of America
| | - Sarah E. Baxley
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, 35294, United States of America
| | - Renee Desmond
- Department of Medicine, Biostatistics and Bioinformatics Unit, Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, 35294, United States of America
| | - Andra R. Frost
- Department of Pathology, Division of Anatomic Pathology, University of Alabama at Birmingham, Birmingham, AL, 35294, United States of America
| | - Rosa Serra
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, 35294, United States of America
- * E-mail:
| |
Collapse
|
42
|
Abstract
Cancer stem cells (CSCs) have been identified in a growing list of malignancies and are believed to be responsible for cancer initiation, metastasis and relapse following certain therapies, even though they may only represent a small fraction of the cells in a given cancer. Like somatic stem cells and embryonic stem cells, CSCs are capable of self-renewal and differentiation into more mature, less tumorigenic cells that make up the bulk populations of cancer cells. Elimination of CSCs promises intriguing therapeutic potential and this concept has been adopted in preclinical drug discovery programs. Herein we will discuss the progress of these efforts, general considerations in practice, major challenges and possible solutions.
Collapse
|
43
|
Hindupur SK, Balaji SA, Saxena M, Pandey S, Sravan GS, Heda N, Kumar MV, Mukherjee G, Dey D, Rangarajan A. Identification of a novel AMPK-PEA15 axis in the anoikis-resistant growth of mammary cells. Breast Cancer Res 2014; 16:420. [PMID: 25096718 PMCID: PMC4303232 DOI: 10.1186/s13058-014-0420-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 07/25/2014] [Indexed: 02/08/2023] Open
Abstract
INTRODUCTION Matrix detachment triggers anoikis, a form of apoptosis, in most normal epithelial cells, while acquisition of anoikis resistance is a prime requisite for solid tumor growth. Of note, recent studies have revealed that a small population of normal human mammary epithelial cells (HMECs) survive in suspension and generate multicellular spheroids termed 'mammospheres'. Therefore, understanding how normal HMECs overcome anoikis may provide insights into breast cancer initiation and progression. METHODS Primary breast tissue-derived normal HMECs were grown as adherent monolayers or mammospheres. The status of AMP-activated protein kinase (AMPK) and PEA15 signaling was investigated by immunoblotting. Pharmacological agents and an RNA interference (RNAi) approach were employed to gauge their roles in mammosphere formation. Immunoprecipitation and in vitro kinase assays were undertaken to evaluate interactions between AMPK and PEA15. In vitro sphere formation and tumor xenograft assays were performed to understand their roles in tumorigenicity. RESULTS In this study, we show that mammosphere formation by normal HMECs is accompanied with an increase in AMPK activity. Inhibition or knockdown of AMPK impaired mammosphere formation. Concomitant with AMPK activation, we detected increased Ser116 phosphorylation of PEA15, which promotes its anti-apoptotic functions. Inhibition or knockdown of AMPK impaired PEA15 Ser116 phosphorylation and increased apoptosis. Knockdown of PEA15, or overexpression of the nonphosphorylatable S116A mutant of PEA15, also abrogated mammosphere formation. We further demonstrate that AMPK directly interacts with and phosphorylates PEA15 at Ser116 residue, thus identifying PEA15 as a novel AMPK substrate. Together, these data revealed that AMPK activation facilitates mammosphere formation by inhibition of apoptosis, at least in part, through Ser116 phosphorylation of PEA15. Since anoikis resistance plays a critical role in solid tumor growth, we investigated the relevance of these findings in the context of breast cancer. Significantly, we show that the AMPK-PEA15 axis plays an important role in the anchorage-independent growth of breast cancer cells both in vitro and in vivo. CONCLUSIONS Our study identifies a novel AMPK-PEA15 signaling axis in the anchorage-independent growth of both normal and cancerous mammary epithelial cells, suggesting that breast cancer cells may employ mechanisms of anoikis resistance already inherent within a subset of normal HMECs. Thus, targeting the AMPK-PEA15 axis might prevent breast cancer dissemination and metastasis.
Collapse
|
44
|
Both canonical and non-canonical Wnt signaling independently promote stem cell growth in mammospheres. PLoS One 2014; 9:e101800. [PMID: 25019931 PMCID: PMC4096729 DOI: 10.1371/journal.pone.0101800] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 06/11/2014] [Indexed: 02/06/2023] Open
Abstract
The characterization of mammary stem cells, and signals that regulate their behavior, is of central importance in understanding developmental changes in the mammary gland and possibly for targeting stem-like cells in breast cancer. The canonical Wnt/β-catenin pathway is a signaling mechanism associated with maintenance of self-renewing stem cells in many tissues, including mammary epithelium, and can be oncogenic when deregulated. Wnt1 and Wnt3a are examples of ligands that activate the canonical pathway. Other Wnt ligands, such as Wnt5a, typically signal via non-canonical, β-catenin-independent, pathways that in some cases can antagonize canonical signaling. Since the role of non-canonical Wnt signaling in stem cell regulation is not well characterized, we set out to investigate this using mammosphere formation assays that reflect and quantify stem cell properties. Ex vivo mammosphere cultures were established from both wild-type and Wnt1 transgenic mice and were analyzed in response to manipulation of both canonical and non-canonical Wnt signaling. An increased level of mammosphere formation was observed in cultures derived from MMTV-Wnt1 versus wild-type animals, and this was blocked by treatment with Dkk1, a selective inhibitor of canonical Wnt signaling. Consistent with this, we found that a single dose of recombinant Wnt3a was sufficient to increase mammosphere formation in wild-type cultures. Surprisingly, we found that Wnt5a also increased mammosphere formation in these assays. We confirmed that this was not caused by an increase in canonical Wnt/β-catenin signaling but was instead mediated by non-canonical Wnt signals requiring the receptor tyrosine kinase Ror2 and activity of the Jun N-terminal kinase, JNK. We conclude that both canonical and non-canonical Wnt signals have positive effects promoting stem cell activity in mammosphere assays and that they do so via independent signaling mechanisms.
Collapse
|
45
|
Choudhary RK. Mammary stem cells: expansion and animal productivity. J Anim Sci Biotechnol 2014; 5:36. [PMID: 25057352 PMCID: PMC4107933 DOI: 10.1186/2049-1891-5-36] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Accepted: 07/04/2014] [Indexed: 12/12/2022] Open
Abstract
Identification and characterization of mammary stem cells and progenitor cells from dairy animals is important in the understanding of mammogenesis, tissue turnover, lactation persistency and regenerative therapy. It has been realized by many investigators that altered lactation, long dry periods (non-milking period between two consecutive lactation cycles), abrupt cessation of lactation (common in water buffaloes) and disease conditions like mastitis, greatly reduce milk yield thus render huge financial losses within the dairy sector. Cellular manipulation of specialized cell types within the mammary gland, called mammary stem cells (MaSCs)/progenitor cells, might provide potential solutions to these problems and may improve milk production. In addition, MaSCs/progenitor cells could be used in regenerative therapy against tissue damage caused by mastitis. This review discusses methods of MaSC/progenitor cell manipulation and their mechanisms in bovine and caprine animals. Author believes that intervention of MaSCs/progenitor cells could lessen the huge financial losses to the dairy industry globally.
Collapse
Affiliation(s)
- Ratan K Choudhary
- School of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Science University, Ludhiana, Punjab 141004, India
| |
Collapse
|
46
|
Wang Y, Dong J, Li D, Lai L, Siwko S, Li Y, Liu M. Lgr4 regulates mammary gland development and stem cell activity through the pluripotency transcription factor Sox2. Stem Cells 2014; 31:1921-31. [PMID: 23712846 DOI: 10.1002/stem.1438] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 04/18/2013] [Accepted: 04/25/2013] [Indexed: 12/15/2022]
Abstract
The key signaling networks regulating mammary stem cells are poorly defined. The leucine-rich repeat containing G protein-coupled receptor (Lgr) family has been implicated in intestinal, gastric, and epidermal stem cell functions. We investigated whether Lgr4 functions in mammary gland development and mammary stem cells. We found that Lgr4(-/-) mice had delayed ductal development, fewer terminal end buds, and decreased side-branching. Crucially, the mammary stem cell repopulation capacity was severely impaired. Mammospheres from Lgr4(-/-) mice showed decreased Wnt signaling. Wnt3a treatment prevented the adverse effects of Lgr4 loss on organoid formation. Chromatin immunoprecipitation analysis indicated that Sox2 expression was controlled by the Lgr4/Wnt/β-catenin/Lef1 pathway. Importantly, Sox2 overexpression restored the in vivo mammary regeneration potential of Lgr4(-/-) mammary stem cells. Therefore, Lgr4 activates Sox2 to regulate mammary development and stem cell functions via Wnt/β-catenin/Lef1.
Collapse
Affiliation(s)
- Ying Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China; Center for Cancer and Stem Cell Biology, Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, Texas, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Bodakuntla S, Libi AV, Sural S, Trivedi P, Lahiri M. N-nitroso-N-ethylurea activates DNA damage surveillance pathways and induces transformation in mammalian cells. BMC Cancer 2014; 14:287. [PMID: 24758542 PMCID: PMC4021545 DOI: 10.1186/1471-2407-14-287] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 04/16/2014] [Indexed: 01/06/2023] Open
Abstract
Background The DNA damage checkpoint signalling cascade sense damaged DNA and coordinates cell cycle arrest, DNA repair, and/or apoptosis. However, it is still not well understood how the signalling system differentiates between different kinds of DNA damage. N-nitroso-N-ethylurea (NEU), a DNA ethylating agent induces both transversions and transition mutations. Methods Immunoblot and comet assays were performed to detect DNA breaks and activation of the canonical checkpoint signalling kinases following NEU damage upto 2 hours. To investigate whether mismatch repair played a role in checkpoint activation, knock-down studies were performed while flow cytometry analysis was done to understand whether the activation of the checkpoint kinases was cell cycle phase specific. Finally, breast epithelial cells were grown as 3-dimensional spheroid cultures to study whether NEU can induce upregulation of vimentin as well as disrupt cell polarity of the breast acini, thus causing transformation of epithelial cells in culture. Results We report a novel finding that NEU causes activation of major checkpoint signalling kinases, Chk1 and Chk2. This activation is temporally controlled with Chk2 activation preceding Chk1 phosphorylation, and absence of cross talk between the two parallel signalling pathways, ATM and ATR. Damage caused by NEU leads to the temporal formation of both double strand and single strand breaks. Activation of checkpoints following NEU damage is cell cycle phase dependent wherein Chk2 is primarily activated during G2-M phase whilst in S phase, there is immediate Chk1 phosphorylation and delayed Chk2 response. Surprisingly, the mismatch repair system does not play a role in checkpoint activation, at doses and duration of NEU used in the experiments. Interestingly, NEU caused disruption of the well-formed polarised spheroid archithecture and upregulation of vimentin in three-dimensional breast acini cultures of non-malignant breast epithelial cells upon NEU treatment indicating NEU to have the potential to cause early transformation in the cells. Conclusion NEU causes damage in mammalian cells in the form of double strand and single strand breaks that temporally activate the major checkpoint signalling kinases without the occurrence of cross-talk between the pathways. NEU also appear to cause transformation in three-dimensional spheroid cultures.
Collapse
Affiliation(s)
| | | | | | | | - Mayurika Lahiri
- Indian Institute of Science Education and Research, Pune, Maharashtra 411008, India.
| |
Collapse
|
48
|
Yoon KW, Park SY, Kim JY, Lee SM, Park CH, Cho SB, Lee WS, Joo YE, Lee JH, Kim HS, Choi SK, Rew JS. Leptin-induced adhesion and invasion in colorectal cancer cell lines. Oncol Rep 2014; 31:2493-8. [PMID: 24700392 DOI: 10.3892/or.2014.3128] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 03/13/2014] [Indexed: 11/05/2022] Open
Abstract
Leptin, which is encoded by the obese gene, is a multifunctional neuroendocrine peptide that regulates appetite, bone formation, reproductive function and angiogenesis. The aims of the present study were to investigate the expression of leptin in 80 patients with colorectal cancer (CRC) and to determine the effects of leptin on the malignant properties of CRC cells. We evaluated the expression of leptin in tissues of 80 patients with CRC. Suspension cultures were used to isolate CRC stem cells following pretreatment with leptin. We analyzed the effects of leptin on the adhesion and invasive capacities of CRC cell lines. The effects of leptin on JAK and ERK activation were examined using western blotting. Leptin expression was associated with CRC progression and increased the number and size of spheroid formation by CRC cell lines. Leptin enhanced cell invasion and adhesion and activated JAK and ERK signaling in the CRC cell lines. The present study demonstrated that leptin influences the growth and survival of CRC stem cells and regulates adhesion and invasion of colorectal carcinoma through activation of the JAK and ERK signaling pathways.
Collapse
Affiliation(s)
- Kyung-Won Yoon
- Department of Internal Medicine, Chonnam National University Medical School, Dong-ku, Gwangju 501-757, Republic of Korea
| | - Seon-Young Park
- Department of Internal Medicine, Chonnam National University Medical School, Dong-ku, Gwangju 501-757, Republic of Korea
| | - Ji-Young Kim
- Department of Internal Medicine, Chonnam National University Medical School, Dong-ku, Gwangju 501-757, Republic of Korea
| | - Su-Mi Lee
- Department of Internal Medicine, Chonnam National University Medical School, Dong-ku, Gwangju 501-757, Republic of Korea
| | - Chang-Hwan Park
- Department of Internal Medicine, Chonnam National University Medical School, Dong-ku, Gwangju 501-757, Republic of Korea
| | - Sung-Bum Cho
- Department of Internal Medicine, Chonnam National University Medical School, Dong-ku, Gwangju 501-757, Republic of Korea
| | - Wan-Sik Lee
- Department of Internal Medicine, Chonnam National University Medical School, Dong-ku, Gwangju 501-757, Republic of Korea
| | - Young-Eun Joo
- Department of Internal Medicine, Chonnam National University Medical School, Dong-ku, Gwangju 501-757, Republic of Korea
| | - Jae-Hyuk Lee
- Department of Internal Medicine, Chonnam National University Medical School, Dong-ku, Gwangju 501-757, Republic of Korea
| | - Hyun-Soo Kim
- Department of Internal Medicine, Chonnam National University Medical School, Dong-ku, Gwangju 501-757, Republic of Korea
| | - Sung-Kyu Choi
- Department of Internal Medicine, Chonnam National University Medical School, Dong-ku, Gwangju 501-757, Republic of Korea
| | - Jong-Sun Rew
- Department of Internal Medicine, Chonnam National University Medical School, Dong-ku, Gwangju 501-757, Republic of Korea
| |
Collapse
|
49
|
Donangelo I, Ren SG, Eigler T, Svendsen C, Melmed S. Sca1⁺ murine pituitary adenoma cells show tumor-growth advantage. Endocr Relat Cancer 2014; 21:203-16. [PMID: 24481638 PMCID: PMC3978815 DOI: 10.1530/erc-13-0229] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The role of tumor stem cells in benign tumors such as pituitary adenomas remains unclear. In this study, we investigated whether the cells within pituitary adenomas that spontaneously develop in Rb+/- mice are hierarchically distributed with a subset being responsible for tumor growth. Cells derived directly from such tumors grew as spheres in serum-free culture medium supplemented with epidermal growth factor and basic fibroblast growth factor. Some cells within growing pituitary tumor spheres (PTS) expressed common stem cell markers (Sca1, Sox2, Nestin, and CD133), but were devoid of hormone-positive differentiated cells. Under subsequent differentiating conditions (matrigel-coated growth surface), PTS expressed all six pituitary hormones. We next searched for specific markers of the stem cell population and isolated a Sca1(+) cell population that showed increased sphere formation potential, lower mRNA hormone expression, higher expression of stem cell markers (Notch1, Sox2, and Nestin), and increased proliferation rates. When transplanted into non-obese diabetic-severe combined immunodeficiency gamma mice brains, Sca1(+) pituitary tumor cells exhibited higher rates of tumor formation (brain tumors observed in 11/11 (100%) vs 7/12 (54%) of mice transplanted with Sca1(+) and Sca1(-) cells respectively). Magnetic resonance imaging and histological analysis of brain tumors showed that tumors derived from Sca1(+) pituitary tumor cells were also larger and plurihormonal. Our findings show that Sca1(+) cells derived from benign pituitary tumors exhibit an undifferentiated expression profile and tumor-proliferative advantages, and we propose that they could represent putative pituitary tumor stem/progenitor cells.
Collapse
Affiliation(s)
| | | | | | - Clive Svendsen
- Regenerative Medicine Institute, Cedars-Sinai Medical Center
| | | |
Collapse
|
50
|
Manuel Iglesias J, Beloqui I, Garcia-Garcia F, Leis O, Vazquez-Martin A, Eguiara A, Cufi S, Pavon A, Menendez JA, Dopazo J, Martin AG. Mammosphere formation in breast carcinoma cell lines depends upon expression of E-cadherin. PLoS One 2013; 8:e77281. [PMID: 24124614 PMCID: PMC3790762 DOI: 10.1371/journal.pone.0077281] [Citation(s) in RCA: 160] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 08/30/2013] [Indexed: 01/06/2023] Open
Abstract
Tumors are heterogeneous at the cellular level where the ability to maintain tumor growth resides in discrete cell populations. Floating sphere-forming assays are broadly used to test stem cell activity in tissues, tumors and cell lines. Spheroids are originated from a small population of cells with stem cell features able to grow in suspension culture and behaving as tumorigenic in mice. We tested the ability of eleven common breast cancer cell lines representing the major breast cancer subtypes to grow as mammospheres, measuring the ability to maintain cell viability upon serial non-adherent passage. Only MCF7, T47D, BT474, MDA-MB-436 and JIMT1 were successfully propagated as long-term mammosphere cultures, measured as the increase in the number of viable cells upon serial non-adherent passages. Other cell lines tested (SKBR3, MDA-MB-231, MDA-MB-468 and MDA-MB-435) formed cell clumps that can be disaggregated mechanically, but cell viability drops dramatically on their second passage. HCC1937 and HCC1569 cells formed typical mammospheres, although they could not be propagated as long-term mammosphere cultures. All the sphere forming lines but MDA-MB-436 express E-cadherin on their surface. Knock down of E-cadherin expression in MCF-7 cells abrogated its ability to grow as mammospheres, while re-expression of E-cadherin in SKBR3 cells allow them to form mammospheres. Therefore, the mammosphere assay is suitable to reveal stem like features in breast cancer cell lines that express E-cadherin.
Collapse
Affiliation(s)
- Juan Manuel Iglesias
- Regulation of Cell Growth Laboratory, Fundacion Inbiomed, San Sebastián, Gipuzkoa, Spain
| | - Izaskun Beloqui
- Regulation of Cell Growth Laboratory, Fundacion Inbiomed, San Sebastián, Gipuzkoa, Spain
| | - Francisco Garcia-Garcia
- Computational Genomics Institute, Centro de Investigación Principe Felipe (CIPF), Valencia, Spain
- Functional Genomics Node, INB, CIPF, Valencia, Spain
| | - Olatz Leis
- Regulation of Cell Growth Laboratory, Fundacion Inbiomed, San Sebastián, Gipuzkoa, Spain
| | - Alejandro Vazquez-Martin
- Translational Research Laboratory, Catalan Institute of Oncology (ICO), Girona, Spain
- Girona Biomedical Research Institute (IDIBGi), Girona, Spain
| | - Arrate Eguiara
- Regulation of Cell Growth Laboratory, Fundacion Inbiomed, San Sebastián, Gipuzkoa, Spain
| | - Silvia Cufi
- Translational Research Laboratory, Catalan Institute of Oncology (ICO), Girona, Spain
- Girona Biomedical Research Institute (IDIBGi), Girona, Spain
| | - Andres Pavon
- Regulation of Cell Growth Laboratory, Fundacion Inbiomed, San Sebastián, Gipuzkoa, Spain
| | - Javier A. Menendez
- Translational Research Laboratory, Catalan Institute of Oncology (ICO), Girona, Spain
- Girona Biomedical Research Institute (IDIBGi), Girona, Spain
| | - Joaquin Dopazo
- Computational Genomics Institute, Centro de Investigación Principe Felipe (CIPF), Valencia, Spain
- Functional Genomics Node, INB, CIPF, Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Valencia, Spain
| | - Angel G. Martin
- Regulation of Cell Growth Laboratory, Fundacion Inbiomed, San Sebastián, Gipuzkoa, Spain
- * E-mail:
| |
Collapse
|