1
|
Bradshaw SN, Allison WT. Hagfish to Illuminate the Developmental and Evolutionary Origins of the Vertebrate Retina. Front Cell Dev Biol 2022; 10:822358. [PMID: 35155434 PMCID: PMC8826474 DOI: 10.3389/fcell.2022.822358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/07/2022] [Indexed: 11/13/2022] Open
Abstract
The vertebrate eye is a vital sensory organ that has long fascinated scientists, but the details of how this organ evolved are still unclear. The vertebrate eye is distinct from the simple photoreceptive organs of other non-vertebrate chordates and there are no clear transitional forms of the eye in the fossil record. To investigate the evolution of the eye we can examine the eyes of the most ancient extant vertebrates, the hagfish and lamprey. These jawless vertebrates are in an ideal phylogenetic position to study the origin of the vertebrate eye but data on eye/retina development in these organisms is limited. New genomic and gene expression data from hagfish and lamprey suggest they have many of the same genes for eye development and retinal neurogenesis as jawed vertebrates, but functional work to determine if these genes operate in retinogenesis similarly to other vertebrates is missing. In addition, hagfish express a marker of proliferative retinal cells (Pax6) near the margin of the retina, and adult retinal growth is apparent in some species. This finding of eye growth late into hagfish ontogeny is unexpected given the degenerate eye phenotype. Further studies dissecting retinal neurogenesis in jawless vertebrates would allow for comparison of the mechanisms of retinal development between cyclostome and gnathostome eyes and provide insight into the evolutionary origins of the vertebrate eye.
Collapse
Affiliation(s)
| | - W. Ted Allison
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
2
|
Coppola U, Waxman JS. Origin and evolutionary landscape of Nr2f transcription factors across Metazoa. PLoS One 2021; 16:e0254282. [PMID: 34807940 PMCID: PMC8608329 DOI: 10.1371/journal.pone.0254282] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 11/07/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Nuclear Receptor Subfamily 2 Group F (Nr2f) orphan nuclear hormone transcription factors (TFs) are fundamental regulators of many developmental processes in invertebrates and vertebrates. Despite the importance of these TFs throughout metazoan development, previous work has not clearly outlined their evolutionary history. RESULTS We integrated molecular phylogeny with comparisons of intron/exon structure, domain architecture, and syntenic conservation to define critical evolutionary events that distinguish the Nr2f gene family in Metazoa. Our data indicate that a single ancestral eumetazoan Nr2f gene predated six main Bilateria subfamilies, which include single Nr2f homologs, here referred to as Nr2f1/2/5/6, that are present in invertebrate protostomes and deuterostomes, Nr2f1/2 homologs in agnathans, and Nr2f1, Nr2f2, Nr2f5, and Nr2f6 orthologs that are found in gnathostomes. Four cnidarian Nr2f1/2/5/6 and three agnathan Nr2f1/2 members are each due to independent expansions, while the vertebrate Nr2f1/Nr2f2 and Nr2f5/Nr2f6 members each form paralogous groups that arose from the established series of whole-genome duplications (WGDs). Nr2f6 members are the most divergent Nr2f subfamily in gnathostomes. Interestingly, in contrast to the other gnathostome Nr2f subfamilies, Nr2f5 has been independently lost in numerous vertebrate lineages. Furthermore, our analysis shows there are differential expansions and losses of Nr2f genes in teleosts following their additional rounds of WGDs. CONCLUSION Overall, our analysis of Nr2f gene evolution helps to reveal the origins and previously unrecognized relationships of this ancient TF family, which may allow for greater insights into the conservation of Nr2f functions that shape Metazoan body plans.
Collapse
Affiliation(s)
- Ugo Coppola
- Molecular Cardiovascular Biology Division and Heart Institute, Cincinnati Children’s Research Foundation, Cincinnati, Ohio, United States of America
| | - Joshua S. Waxman
- Molecular Cardiovascular Biology Division and Heart Institute, Cincinnati Children’s Research Foundation, Cincinnati, Ohio, United States of America
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| |
Collapse
|
3
|
Sugahara F, Murakami Y, Pascual-Anaya J, Kuratani S. Forebrain Architecture and Development in Cyclostomes, with Reference to the Early Morphology and Evolution of the Vertebrate Head. BRAIN, BEHAVIOR AND EVOLUTION 2021; 96:305-317. [PMID: 34537767 DOI: 10.1159/000519026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 08/12/2021] [Indexed: 11/19/2022]
Abstract
The vertebrate head and brain are characterized by highly complex morphological patterns. The forebrain, the most anterior division of the brain, is subdivided into the diencephalon, hypothalamus, and telencephalon from the neuromeric subdivision into prosomeres. Importantly, the telencephalon contains the cerebral cortex, which plays a key role in higher order cognitive functions in humans. To elucidate the evolution of the forebrain regionalization, comparative analyses of the brain development between extant jawed and jawless vertebrates are crucial. Cyclostomes - lampreys and hagfishes - are the only extant jawless vertebrates, and diverged from jawed vertebrates (gnathostomes) over 500 million years ago. Previous developmental studies on the cyclostome brain were conducted mainly in lampreys because hagfish embryos were rarely available. Although still scarce, the recent availability of hagfish embryos has propelled comparative studies of brain development and gene expression. By integrating findings with those of cyclostomes and fossil jawless vertebrates, we can depict the morphology, developmental mechanism, and even the evolutionary path of the brain of the last common ancestor of vertebrates. In this review, we summarize the development of the forebrain in cyclostomes and suggest what evolutionary changes each cyclostome lineage underwent during brain evolution. In addition, together with recent advances in the head morphology in fossil vertebrates revealed by CT scanning technology, we discuss how the evolution of craniofacial morphology and the changes of the developmental mechanism of the forebrain towards crown gnathostomes are causally related.
Collapse
Affiliation(s)
- Fumiaki Sugahara
- Division of Biology, Hyogo College of Medicine, Nishinomiya, Japan.,Evolutionary Morphology Laboratory, RIKEN Cluster for Pioneering Research (CPR), Kobe, Japan
| | - Yasunori Murakami
- Graduate School of Science and Engineering, Ehime University, Matsuyama, Japan
| | - Juan Pascual-Anaya
- Evolutionary Morphology Laboratory, RIKEN Cluster for Pioneering Research (CPR), Kobe, Japan.,Department of Animal Biology, Faculty of Science, University of Málaga, Málaga, Spain.,Andalusian Centre for Nanomedicine and Biotechnology (BIONAND), Málaga, Spain
| | - Shigeru Kuratani
- Evolutionary Morphology Laboratory, RIKEN Cluster for Pioneering Research (CPR), Kobe, Japan.,Laboratory for Evolutionary Morphology, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
| |
Collapse
|
4
|
Kraus A, Buckley KM, Salinas I. Sensing the world and its dangers: An evolutionary perspective in neuroimmunology. eLife 2021; 10:66706. [PMID: 33900197 PMCID: PMC8075586 DOI: 10.7554/elife.66706] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/09/2021] [Indexed: 12/14/2022] Open
Abstract
Detecting danger is key to the survival and success of all species. Animal nervous and immune systems cooperate to optimize danger detection. Preceding studies have highlighted the benefits of bringing neurons into the defense game, including regulation of immune responses, wound healing, pathogen control, and survival. Here, we summarize the body of knowledge in neuroimmune communication and assert that neuronal participation in the immune response is deeply beneficial in each step of combating infection, from inception to resolution. Despite the documented tight association between the immune and nervous systems in mammals or invertebrate model organisms, interdependence of these two systems is largely unexplored across metazoans. This review brings a phylogenetic perspective of the nervous and immune systems in the context of danger detection and advocates for the use of non-model organisms to diversify the field of neuroimmunology. We identify key taxa that are ripe for investigation due to the emergence of key evolutionary innovations in their immune and nervous systems. This novel perspective will help define the primordial principles that govern neuroimmune communication across taxa.
Collapse
Affiliation(s)
- Aurora Kraus
- Department of Biology, University of New Mexico, Albuquerque, United States
| | | | - Irene Salinas
- Department of Biology, University of New Mexico, Albuquerque, United States
| |
Collapse
|
5
|
Regulation of Neurogenesis in Mouse Brain by HMGB1. Cells 2020; 9:cells9071714. [PMID: 32708917 PMCID: PMC7407245 DOI: 10.3390/cells9071714] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/11/2020] [Accepted: 07/15/2020] [Indexed: 12/11/2022] Open
Abstract
The High Mobility Group Box 1 (HMGB1) is the most abundant nuclear nonhistone protein that is involved in transcription regulation. In addition, HMGB1 has previously been found as an extracellularly acting protein enhancing neurite outgrowth in cultured neurons. Although HMGB1 is widely expressed in the developing central nervous system of vertebrates and invertebrates, its function in the developing mouse brain is poorly understood. Here, we have analyzed developmental defects of the HMGB1 null mouse forebrain, and further examined our findings in ex vivo brain cell cultures. We find that HMGB1 is required for the proliferation and differentiation of neuronal stem cells/progenitor cells. Enhanced apoptosis is also found in the neuronal cells lacking HMGB1. Moreover, HMGB1 depletion disrupts Wnt/β-catenin signaling and the expression of transcription factors in the developing cortex, including Foxg1, Tbr2, Emx2, and Lhx6. Finally, HMGB1 null mice display aberrant expression of CXCL12/CXCR4 and reduced RAGE signaling. In conclusion, HMGB1 plays a critical role in mammalian neurogenesis and brain development.
Collapse
|
6
|
Yuan T, York JR, McCauley DW. Neural crest and placode roles in formation and patterning of cranial sensory ganglia in lamprey. Genesis 2020; 58:e23356. [PMID: 32049434 DOI: 10.1002/dvg.23356] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/30/2020] [Accepted: 01/31/2020] [Indexed: 11/07/2022]
Abstract
Vertebrates possess paired cranial sensory ganglia derived from two embryonic cell populations, neural crest and placodes. Cranial sensory ganglia arose prior to the divergence of jawed and jawless vertebrates, but the developmental mechanisms that facilitated their evolution are unknown. Using gene expression and cell lineage tracing experiments in embryos of the sea lamprey, Petromyzon marinus, we find that in the cranial ganglia we targeted, development consists of placode-derived neuron clusters in the core of ganglia, with neural crest cells mostly surrounding these neuronal clusters. To dissect functional roles of neural crest and placode cell associations in these developing cranial ganglia, we used CRISPR/Cas9 gene editing experiments to target genes critical for the development of each population. Genetic ablation of SoxE2 and FoxD-A in neural crest cells resulted in differentiated cranial sensory neurons with abnormal morphologies, whereas deletion of DlxB in cranial placodes resulted in near-total loss of cranial sensory neurons. Taken together, our cell-lineage, gene expression, and gene editing results suggest that cranial neural crest cells may not be required for cranial ganglia specification but are essential for shaping the morphology of these sensory structures. We propose that the association of neural crest and placodes in the head of early vertebrates was a key step in the organization of neurons and glia into paired sensory ganglia.
Collapse
Affiliation(s)
- Tian Yuan
- Department of Biology, University of Oklahoma, Norman, Oklahoma
| | - Joshua R York
- Department of Biology, University of Oklahoma, Norman, Oklahoma
| | | |
Collapse
|
7
|
The expression of FoxG1 in the early development of the European river lamprey Lampetra fluviatilis demonstrates significant heterochrony with that in other vertebrates. Gene Expr Patterns 2019; 34:119073. [PMID: 31574305 DOI: 10.1016/j.gep.2019.119073] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/24/2019] [Accepted: 09/25/2019] [Indexed: 01/11/2023]
Abstract
FoxG1, a member of the Fox/Forkhead family of winged helix transcription factors, plays key roles in the induction and spatial compartmentalization of the telencephalon in vertebrates. Loss- and gain-of-function experiments have established FoxG1 as a maintenance factor for neural progenitors and a crucial player in the specification of the ventral telencephalon (subpallium). For the first time in evolution, the telencephalon appeared in the ancestors of vertebrates, including cyclostomes. However, although FoxG1 homologues are present in cyclostomes (i.e., in lampreys and hagfishes), no systematic study of the spatial-temporal expression of FoxG1 during the embryonic development of these animals has been carried out. Given these findings, we have now studied FoxG1 spatial-temporal expression patterns in the early development of the European river lamprey Lampetra fluviatilis. We show that in contrast to other vertebrates, in which the expression of FoxG1 begins during neurulation, the expression of this gene in L. fluviatilis starts after neurulation, first at stage 21 (early head protrusion) in the area of the otic placodes and then, beginning from stage 22, in the telencephalon. Such heterochrony of FoxG1 expression in the lamprey may reflect the fact that in this basally divergent representative of vertebrates, telencephalon specification occurs relatively late. This heterochrony could be related to the evolutionary history of the telencephalon, with a recent appearance in vertebrates as an extension to more ancient anterior brain regions. Another peculiarity of FoxG1 expression in lamprey, compared to other vertebrates, is that it is not expressed in the lamprey optic structures.
Collapse
|
8
|
Leung B, Shimeld SM. Evolution of vertebrate spinal cord patterning. Dev Dyn 2019; 248:1028-1043. [PMID: 31291046 DOI: 10.1002/dvdy.77] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/14/2019] [Accepted: 06/15/2019] [Indexed: 12/17/2022] Open
Abstract
The vertebrate spinal cord is organized across three developmental axes, anterior-posterior (AP), dorsal-ventral (DV), and medial-lateral (ML). Patterning of these axes is regulated by canonical intercellular signaling pathways: the AP axis by Wnt, fibroblast growth factor, and retinoic acid (RA), the DV axis by Hedgehog, Tgfβ, and Wnt, and the ML axis where proliferation is controlled by Notch. Developmental time plays an important role in which signal does what and when. Patterning across the three axes is not independent, but linked by interactions between signaling pathway components and their transcriptional targets. Combined this builds a sophisticated organ with many different types of cell in specific AP, DV, and ML positions. Two living lineages share phylum Chordata with vertebrates, amphioxus, and tunicates, while the jawless fish such as lampreys, survive as the most basally divergent vertebrate lineage. Genes and mechanisms shared between lampreys and other vertebrates tell us what predated vertebrates, while those also shared with other chordates tell us what evolved early in chordate evolution. Between these lie vertebrate innovations: genetic and developmental changes linked to evolution of new morphology. These include gene duplications, differences in how signals are received, and new regulatory connections between signaling pathways and their target genes.
Collapse
Affiliation(s)
- Brigid Leung
- Department of Zoology, University of Oxford, Oxford, UK
| | | |
Collapse
|
9
|
Lara-Ramirez R, Pérez-González C, Anselmi C, Patthey C, Shimeld SM. A Notch-regulated proliferative stem cell zone in the developing spinal cord is an ancestral vertebrate trait. Development 2019; 146:dev.166595. [PMID: 30552127 DOI: 10.1242/dev.166595] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 11/26/2018] [Indexed: 01/01/2023]
Abstract
Vertebrates have evolved the most sophisticated nervous systems we know. These differ from the nervous systems of invertebrates in several ways, including the evolution of new cell types, and the emergence and elaboration of patterning mechanisms to organise cells in time and space. Vertebrates also generally have many more cells in their central nervous systems than invertebrates, and an increase in neural cell number may have contributed to the sophisticated anatomy of the brain and spinal cord. Here, we study how increased cell number evolved in the vertebrate central nervous system, investigating the regulation of cell proliferation in the lamprey spinal cord. Markers of proliferation show that a ventricular progenitor zone is found throughout the lamprey spinal cord. We show that inhibition of Notch signalling disrupts the maintenance of this zone. When Notch is blocked, progenitor cells differentiate precociously, the proliferative ventricular zone is lost and differentiation markers become expressed throughout the spinal cord. Comparison with other chordates suggests that the emergence of a persistent Notch-regulated proliferative progenitor zone was a crucial step for the evolution of vertebrate spinal cord complexity.
Collapse
Affiliation(s)
- Ricardo Lara-Ramirez
- Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford OX1 3SZ, UK
| | | | - Chiara Anselmi
- Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford OX1 3SZ, UK
| | - Cedric Patthey
- Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford OX1 3SZ, UK
| | - Sebastian M Shimeld
- Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford OX1 3SZ, UK
| |
Collapse
|
10
|
Santos-Durán GN, Ferreiro-Galve S, Menuet A, Mazan S, Rodríguez-Moldes I, Candal E. The Shark Basal Hypothalamus: Molecular Prosomeric Subdivisions and Evolutionary Trends. Front Neuroanat 2018; 12:17. [PMID: 29593505 PMCID: PMC5861214 DOI: 10.3389/fnana.2018.00017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Accepted: 02/21/2018] [Indexed: 11/30/2022] Open
Abstract
The hypothalamus is a key integrative center of the vertebrate brain. To better understand its ancestral morphological organization and evolution, we previously analyzed the segmental organization of alar subdivisions in the catshark Scyliorhinus canicula, a cartilaginous fish and thus a basal representative of gnathostomes (jawed vertebrates). With the same aim, we deepen here in the segmental organization of the catshark basal hypothalamus by revisiting previous data on ScOtp, ScDlx2/5, ScNkx2.1, ScShh expression and Shh immunoreactivity jointly with new data on ScLhx5, ScEmx2, ScLmx1b, ScPitx2, ScPitx3a, ScFoxa1, ScFoxa2 and ScNeurog2 expression and proliferating cell nuclear antigen (PCNA) immunoreactivity. Our study reveals a complex genoarchitecture for chondrichthyan basal hypothalamus on which a total of 21 microdomains were identified. Six belong to the basal acroterminal region, the rostral-most point of the basal neural tube; seven are described in the tuberal region (Tu/RTu); four in the perimamillar region (PM/PRM) and four in the mamillar one (MM/RM). Interestingly, the same set of genes does not necessarily describe the same microdomains in mice, which in part contributes to explain how forebrain diversity is achieved. This study stresses the importance of analyzing data from basal vertebrates to better understand forebrain diversity and hypothalamic evolution.
Collapse
Affiliation(s)
- Gabriel N Santos-Durán
- Grupo BRAINSHARK, Departamento de Bioloxía Funcional, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Susana Ferreiro-Galve
- Grupo BRAINSHARK, Departamento de Bioloxía Funcional, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Arnaud Menuet
- UMR7355, CNRS, University of Orleans, Orleans, France
| | - Sylvie Mazan
- CNRS, Sorbonne Université, Biologie Intégrative des Organismes Marins, UMR7232, Banyuls-sur-Mer, France
| | - Isabel Rodríguez-Moldes
- Grupo BRAINSHARK, Departamento de Bioloxía Funcional, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Eva Candal
- Grupo BRAINSHARK, Departamento de Bioloxía Funcional, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
11
|
Bayramov AV, Ermakova GV, Eroshkin FM, Kucheryavyy AV, Martynova NY, Zaraisky AG. The presence of Anf/Hesx1 homeobox gene in lampreys suggests that it could play an important role in emergence of telencephalon. Sci Rep 2016; 6:39849. [PMID: 28008996 PMCID: PMC5180219 DOI: 10.1038/srep39849] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 11/28/2016] [Indexed: 12/18/2022] Open
Abstract
Accumulated evidence indicates that the core genetic mechanisms regulating early patterning of the brain rudiment in vertebrates are very similar to those operating during development of the anterior region of invertebrate embryos. However, the mechanisms underlying the morphological differences between the elaborate vertebrate brain and its simpler invertebrate counterpart remain poorly understood. Recently, we hypothesized that the emergence of the most anterior unit of the vertebrate brain, the telencephalon, could be related to the appearance in vertebrates’ ancestors of a unique homeobox gene, Anf/Hesx1(further Anf), which is absent from all invertebrates and regulates the earliest steps of telencephalon development in vertebrates. However, the failure of Anf to be detected in one of the most basal extant vertebrate species, the lamprey, seriously compromises this hypothesis. Here, we report the cloning of Anf in three lamprey species and demonstrate that this gene is indeed expressed in embryos in the same pattern as in other vertebrates and executes the same functions by inhibiting the expression of the anterior general regulator Otx2 in favour of the telencephalic regulator FoxG1. These results are consistent with the hypothesis that the Anf homeobox gene may have been important in the evolution of the telencephalon.
Collapse
Affiliation(s)
- Andrey V Bayramov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Galina V Ermakova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Fedor M Eroshkin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Alexandr V Kucheryavyy
- Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, 119071, Russia
| | - Natalia Y Martynova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Andrey G Zaraisky
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| |
Collapse
|
12
|
Santos-Durán GN, Ferreiro-Galve S, Menuet A, Quintana-Urzainqui I, Mazan S, Rodríguez-Moldes I, Candal E. The Shark Alar Hypothalamus: Molecular Characterization of Prosomeric Subdivisions and Evolutionary Trends. Front Neuroanat 2016; 10:113. [PMID: 27932958 PMCID: PMC5121248 DOI: 10.3389/fnana.2016.00113] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 11/08/2016] [Indexed: 12/31/2022] Open
Abstract
The hypothalamus is an important physiologic center of the vertebrate brain involved in the elaboration of individual and species survival responses. To better understand the ancestral organization of the alar hypothalamus we revisit previous data on ScOtp, ScDlx2/5, ScTbr1, ScNkx2.1 expression and Pax6 immunoreactivity jointly with new data on ScNeurog2, ScLhx9, ScLhx5, and ScNkx2.8 expression, in addition to immunoreactivity to serotonin (5-HT) and doublecortin (DCX) in the catshark Scyliorhinus canicula, a key species for this purpose since cartilaginous fishes are basal representatives of gnathostomes (jawed vertebrates). Our study revealed a complex genoarchitecture for the chondrichthyan alar hypothalamus. We identified terminal (rostral) and peduncular (caudal) subdivisions in the prosomeric paraventricular and subparaventricular areas (TPa/PPa and TSPa/PSPa, respectively) evidenced by the expression pattern of developmental genes like ScLhx5 (TPa) and immunoreactivity against Pax6 (PSPa) and 5-HT (PPa and PSPa). Dorso-ventral subdivisions were only evidenced in the SPa (SPaD, SPaV; respectively) by means of Pax6 and ScNkx2.8 (respectively). Interestingly, ScNkx2.8 expression overlaps over the alar-basal boundary, as Nkx2.2 does in other vertebrates. Our results reveal evidences for the existence of different groups of tangentially migrated cells expressing ScOtp, Pax6, and ScDlx2. The genoarchitectonic comparative analysis suggests alternative interpretations of the rostral-most alar plate in prosomeric terms and reveals a conserved molecular background for the vertebrate alar hypothalamus likely acquired before/during the agnathan-gnathostome transition, on which Otp, Pax6, Lhx5, and Neurog2 are expressed in the Pa while Dlx and Nkx2.2/Nkx2.8 are expressed in the SPa.
Collapse
Affiliation(s)
- Gabriel N Santos-Durán
- Grupo BRAINSHARK, Departamento de Biología Funcional, Universidade de Santiago de Compostela Santiago de Compostela, Spain
| | - Susana Ferreiro-Galve
- Grupo BRAINSHARK, Departamento de Biología Funcional, Universidade de Santiago de Compostela Santiago de Compostela, Spain
| | - Arnaud Menuet
- CNRS, UMR 7355, University of Orleans Orleans, France
| | - Idoia Quintana-Urzainqui
- Grupo BRAINSHARK, Departamento de Biología Funcional, Universidade de Santiago de CompostelaSantiago de Compostela, Spain; Centre for Integrative Physiology, University of EdinburghEdinburgh, UK
| | - Sylvie Mazan
- Sorbonne Universités, UPMC, CNRS UMR7232 Biologie Intégrative des Organismes Marins, Observatoire Océanologique Banyuls sur Mer, France
| | - Isabel Rodríguez-Moldes
- Grupo BRAINSHARK, Departamento de Biología Funcional, Universidade de Santiago de Compostela Santiago de Compostela, Spain
| | - Eva Candal
- Grupo BRAINSHARK, Departamento de Biología Funcional, Universidade de Santiago de Compostela Santiago de Compostela, Spain
| |
Collapse
|
13
|
Tostivint H, Dettaï A, Quan FB, Ravi V, Tay BH, Rodicio MC, Mazan S, Venkatesh B, Kenigfest NB. Identification of three somatostatin genes in lampreys. Gen Comp Endocrinol 2016; 237:89-97. [PMID: 27524287 DOI: 10.1016/j.ygcen.2016.08.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 07/29/2016] [Accepted: 08/11/2016] [Indexed: 12/17/2022]
Abstract
Somatostatins (SSs) are a structurally diverse family of neuropeptides that play important roles in the regulation of growth, development and metabolism in vertebrates. It has been recently proposed that the common ancestor of gnathostomes possessed three SS genes, namely SS1, SS2 and SS5. SS1 and SS2 are still present in most extant gnathostome species investigated so far while SS5 primarily occurs in chondrichthyes, actinopterygians and actinistia but not in tetrapods. Very little is known about the repertoire of SSs in cyclostomes, which are extant jawless vertebrates. In the present study, we report the cloning of the cDNAs encoding three distinct lamprey SS variants that we call SSa, SSb and SSc. SSa and SSb correspond to the two SS variants previously characterized in lamprey, while SSc appears to be a totally novel one. SSa exhibits the same sequence as gnathostome SS1. SSb differs from SSa by only one substitution (Thr12→Ser). SSc exhibits a totally unique structure (ANCRMFYWKTMAAC) that shares only 50% identity with SSa and SSb. SSa, SSb and SSc precursors do not exhibit any appreciable sequence similarity outside the C-terminal region containing the SS sequence. Phylogenetic analyses failed to clearly assign orthology relationships between lamprey and gnathostome SS genes. Synteny analysis suggests that the SSc gene arose before the split of the three gnathostome genes SS1, SS2 and SS5.
Collapse
Affiliation(s)
- Hervé Tostivint
- Evolution des Régulations Endocriniennes, UMR 7221 CNRS, Muséum National d'Histoire Naturelle, Sorbonne Université, Paris, France.
| | - Agnès Dettaï
- Institut de systématique et Evolution, UMR 7205 CNRS, UMPC, EPHE, Muséum National d'Histoire Naturelle, Sorbonne Université, Paris, France
| | - Feng B Quan
- Evolution des Régulations Endocriniennes, UMR 7221 CNRS, Muséum National d'Histoire Naturelle, Sorbonne Université, Paris, France
| | - Vydianathan Ravi
- Institute of Molecular and Cell Biology, A(∗)STAR, Biopolis, Singapore
| | - Boon-Hui Tay
- Institute of Molecular and Cell Biology, A(∗)STAR, Biopolis, Singapore
| | - Maria Celina Rodicio
- Department of Cell Biology and Ecology, CIBUS, Faculty of Biology, University of Santiago de Compostela, Spain
| | - Sylvie Mazan
- Biologie Intégrative des Organismes Marins, UMR 7232 CNRS, Observatoire Océanologique, Université Pierre et Marie Curie, Sorbonne Université, Banyuls-sur-Mer, France
| | - Byrappa Venkatesh
- Institute of Molecular and Cell Biology, A(∗)STAR, Biopolis, Singapore
| | - Natalia B Kenigfest
- Evolution des Régulations Endocriniennes, UMR 7221 CNRS, Muséum National d'Histoire Naturelle, Sorbonne Université, Paris, France; Laboratory of Molecular Mechanisms of Neuronal Interactions, Sechenov Insitute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| |
Collapse
|
14
|
Salas CA, Yopak KE, Warrington RE, Hart NS, Potter IC, Collin SP. Ontogenetic shifts in brain scaling reflect behavioral changes in the life cycle of the pouched lamprey Geotria australis. Front Neurosci 2015; 9:251. [PMID: 26283894 PMCID: PMC4517384 DOI: 10.3389/fnins.2015.00251] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 07/03/2015] [Indexed: 12/11/2022] Open
Abstract
Very few studies have described brain scaling in vertebrates throughout ontogeny and none in lampreys, one of the two surviving groups of the early agnathan (jawless) stage in vertebrate evolution. The life cycle of anadromous parasitic lampreys comprises two divergent trophic phases, firstly filter-feeding as larvae in freshwater and secondly parasitism as adults in the sea, with the transition marked by a radical metamorphosis. We characterized the growth of the brain during the life cycle of the pouched lamprey Geotria australis, an anadromous parasitic lamprey, focusing on the scaling between brain and body during ontogeny and testing the hypothesis that the vast transitions in behavior and environment are reflected in differences in the scaling and relative size of the major brain subdivisions throughout life. The body and brain mass and the volume of six brain structures of G. australis, representing six points of the life cycle, were recorded, ranging from the early larval stage to the final stage of spawning and death. Brain mass does not increase linearly with body mass during the ontogeny of G. australis. During metamorphosis, brain mass increases markedly, even though the body mass does not increase, reflecting an overall growth of the brain, with particularly large increases in the volume of the optic tectum and other visual areas of the brain and, to a lesser extent, the olfactory bulbs. These results are consistent with the conclusions that ammocoetes rely predominantly on non-visual and chemosensory signals, while adults rely on both visual and olfactory cues.
Collapse
Affiliation(s)
- Carlos A Salas
- Neuroecology Group, School of Animal Biology and UWA Oceans Institute, The University of Western Australia Crawley, WA, Australia
| | - Kara E Yopak
- Neuroecology Group, School of Animal Biology and UWA Oceans Institute, The University of Western Australia Crawley, WA, Australia
| | - Rachael E Warrington
- Neuroecology Group, School of Animal Biology and UWA Oceans Institute, The University of Western Australia Crawley, WA, Australia
| | - Nathan S Hart
- Neuroecology Group, School of Animal Biology and UWA Oceans Institute, The University of Western Australia Crawley, WA, Australia
| | - Ian C Potter
- Centre for Fish and Fisheries Research, School of Veterinary and Life Sciences, Murdoch University Murdoch, WA, Australia
| | - Shaun P Collin
- Neuroecology Group, School of Animal Biology and UWA Oceans Institute, The University of Western Australia Crawley, WA, Australia
| |
Collapse
|
15
|
Noro M, Sugahara F, Kuraku S. Reevaluating Emx gene phylogeny: homopolymeric amino acid tracts as a potential factor obscuring orthology signals in cyclostome genes. BMC Evol Biol 2015; 15:78. [PMID: 25935411 PMCID: PMC4464114 DOI: 10.1186/s12862-015-0351-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 04/15/2015] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Vertebrate Emx genes, retained as multiple copies, are expressed in a nested pattern in the early embryonic forebrain and required for its regionalization. This pattern seems to have originated in a vertebrate common ancestor; however, a previous analysis, reporting two lamprey Emx genes, claimed independent Emx gene duplications in both cyclostome (extant jawless fish) and gnathostome (jawed vertebrate) lineages after their divergence. This scenario is neither parsimonious nor consistent with the hypothesis that genome expansion occurred before the cyclostome-gnathostome split, which is supported by recent genome-wide analyses. RESULTS We isolated and sequenced cDNA of two hagfish Emx genes and performed intensive molecular phylogenetic analyses, including the hagfish and/or lamprey Emx genes. The lamprey genes tended to attract each other in inferred phylogenetic trees, an effect that tended to be relaxed on inclusion of the hagfish genes. The results of these analyses suggest that cyclostome EmxB is orthologous to gnathostome Emx2, which was also supported by conserved synteny. Homopolymeric amino acid (HPAA) tracts represent a remarkable feature of the lamprey Emx sequences, and a comparative genome-wide scan revealed that lamprey proteins exhibit a unique pattern of HPAA tract accumulation. CONCLUSIONS Our analysis, including hagfish Emx genes, suggests that gene duplications gave rise to Emx1, -2 and -3 before the cyclostome-gnathostome split. We propose that independent HPAA tract accumulations in multiple ancient duplicates, as identified in lamprey Emx gene products, may have led to erroneous identification of gene duplication in the lamprey lineage. Overall, our reanalysis favors the scenario that the nested Emx expression pattern in mouse and lamprey shares a common origin.
Collapse
Affiliation(s)
- Miyuki Noro
- Genome Resource and Analysis Unit, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-minami, Kobe, 650-0047, Japan.
| | - Fumiaki Sugahara
- Division of Biology, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, 663-8501, Japan. .,Evolutionary Morphology Laboratory, RIKEN, 2-2-3 Minatojima-minami, Kobe, 650-0047, Japan.
| | - Shigehiro Kuraku
- Phyloinformatics Unit, RIKEN Center for Life Science Technologies, 2-2-3 Minatojima-minami, Kobe, 650-0047, Japan.
| |
Collapse
|
16
|
Lara-Ramírez R, Patthey C, Shimeld SM. Characterization of twoneurogeningenes from the brook lampreylampetra planeriand their expression in the lamprey nervous system. Dev Dyn 2015; 244:1096-1108. [DOI: 10.1002/dvdy.24273] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Revised: 01/29/2015] [Accepted: 02/16/2015] [Indexed: 11/10/2022] Open
Affiliation(s)
- Ricardo Lara-Ramírez
- Department of Zoology; The Tinbergen Building, University of Oxford; South Parks Road Oxford United Kingdom
| | - Cédric Patthey
- Department of Zoology; The Tinbergen Building, University of Oxford; South Parks Road Oxford United Kingdom
- Umeå Centre for Molecular Medicine, Umeå University; Umeå Sweden
| | - Sebastian M. Shimeld
- Department of Zoology; The Tinbergen Building, University of Oxford; South Parks Road Oxford United Kingdom
| |
Collapse
|
17
|
Parker HJ, Sauka-Spengler T, Bronner M, Elgar G. A reporter assay in lamprey embryos reveals both functional conservation and elaboration of vertebrate enhancers. PLoS One 2014; 9:e85492. [PMID: 24416417 PMCID: PMC3887057 DOI: 10.1371/journal.pone.0085492] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 12/05/2013] [Indexed: 11/27/2022] Open
Abstract
The sea lamprey is an important model organism for investigating the evolutionary origins of vertebrates. As more vertebrate genome sequences are obtained, evolutionary developmental biologists are becoming increasingly able to identify putative gene regulatory elements across the breadth of the vertebrate taxa. The identification of these regions makes it possible to address how changes at the genomic level have led to changes in developmental gene regulatory networks and ultimately to the evolution of morphological diversity. Comparative genomics approaches using sea lamprey have already predicted a number of such regulatory elements in the lamprey genome. Functional characterisation of these sequences and other similar elements requires efficient reporter assays in lamprey. In this report, we describe the development of a transient transgenesis method for lamprey embryos. Focusing on conserved non-coding elements (CNEs), we use this method to investigate their functional conservation across the vertebrate subphylum. We find instances of both functional conservation and lineage-specific functional evolution of CNEs across vertebrates, emphasising the utility of functionally testing homologous CNEs in their host species.
Collapse
Affiliation(s)
- Hugo J. Parker
- Division of Systems Biology, Medical Research Council National Institute for Medical Research, London, United Kingdom
| | - Tatjana Sauka-Spengler
- Division of Biology, California Institute of Technology, Pasadena, California, United States of America
| | - Marianne Bronner
- Division of Biology, California Institute of Technology, Pasadena, California, United States of America
| | - Greg Elgar
- Division of Systems Biology, Medical Research Council National Institute for Medical Research, London, United Kingdom
- * E-mail:
| |
Collapse
|
18
|
Lauter G, Söll I, Hauptmann G. Molecular characterization of prosomeric and intraprosomeric subdivisions of the embryonic zebrafish diencephalon. J Comp Neurol 2013; 521:1093-118. [PMID: 22949352 DOI: 10.1002/cne.23221] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 03/04/2012] [Accepted: 08/14/2012] [Indexed: 02/05/2023]
Abstract
During development of the early neural tube, positional information provided by signaling gradients is translated into a grid of transverse and longitudinal transcription factor expression domains. Transcription factor specification codes defining distinct histogenetic domains within this grid are evolutionarily conserved across vertebrates and may reflect an underlying common vertebrate bauplan. When compared to the rich body of comparative gene expression studies of tetrapods, there is considerably less comparative data available for teleost fish. We used sensitive multicolor fluorescent in situ hybridization to generate a detailed map of regulatory gene expression domains in the embryonic zebrafish diencephalon. The high resolution of this technique allowed us to resolve abutting and overlapping gene expression of different transcripts. We found that the relative topography of gene expression patterns in zebrafish was highly similar to those of orthologous genes in tetrapods and consistent with a three-prosomere organization of the alar and basal diencephalon. Our analysis further demonstrated a conservation of intraprosomeric subdivisions within prosomeres 1, 2, and 3 (p1, p2, and p3). A tripartition of zebrafish p1 was identified reminiscent of precommissural (PcP), juxtacommissural (JcP), and commissural (CoP) pretectal domains of tetrapods. The constructed detailed diencephalic transcription factor gene expression map further identified molecularly distinct thalamic and prethalamic rostral and caudal domains and a prethalamic eminence histogenetic domain in zebrafish. Our comparative gene expression analysis conformed with the idea of a common bauplan for the diencephalon of anamniote and amniote vertebrates from fish to mammals.
Collapse
Affiliation(s)
- Gilbert Lauter
- Department of Biosciences and Nutrition, Karolinska Institutet, SE-141 83 Huddinge, Sweden
| | | | | |
Collapse
|
19
|
Barreiro-Iglesias A, Laramore C, Shifman MI. The sea lamprey UNC5 receptors: cDNA cloning, phylogenetic analysis and expression in reticulospinal neurons at larval and adult stages of development. J Comp Neurol 2013; 520:4141-56. [PMID: 22592960 DOI: 10.1002/cne.23143] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
UNC5 receptors mediate repulsive signaling of netrin on neurons. Although only one UNC5 receptor has been identified in invertebrates, four members of the UNC5 family have been identified in gnathostomes. Lampreys, together with mixynes, belong to the oldest branch of extant vertebrates, and their phylogenetic position near to the vertebrate root makes them an interesting model for understanding molecular evolution. Here, we cloned three sea lamprey UNC5 (UNC5L) receptors, and phylogenetic analyses indicated that the first two duplications of the ancestral UNC5 gene occurred before the separation of jawless and jawed vertebrates. UNC5 receptors play important roles during early development, but expression studies have also suggested that UNC5 receptors play roles in the mature nervous system. Here, we report the expression of the different UNC5L receptor transcripts in identified reticulospinal neurons of mature larval or adult sea lampreys detected by in situ hybridization in wholemounted brain preparations. In addition, an extensive expression of the UNC5 receptors was also observed in most brain regions of the adult lamprey. An increase in the types of identifiable reticulospinal neurons expressing the UNC5L receptors was observed in adults compared with larvae. Expression of UNC5 receptors at late developmental stages appears to be a shared characteristic of lampreys and mammals. In larvae, expression of UNC5L receptors was observed in reticulospinal neurons that when axotomized are known to be "bad regenerators." Results in lampreys and mammals suggest that the UNC5-Netrin axonal guidance system may play a role in limiting axonal regeneration after spinal cord injury.
Collapse
Affiliation(s)
- Antón Barreiro-Iglesias
- Shriners Hospitals Pediatric Research Center (Center for Neural Repair and Rehabilitation), Temple University School of Medicine, Philadelphia, Pennsylvania 19140, USA.
| | | | | |
Collapse
|
20
|
Sugahara F, Murakami Y, Adachi N, Kuratani S. Evolution of the regionalization and patterning of the vertebrate telencephalon: what can we learn from cyclostomes? Curr Opin Genet Dev 2013; 23:475-83. [PMID: 23499411 DOI: 10.1016/j.gde.2013.02.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 02/08/2013] [Accepted: 02/13/2013] [Indexed: 11/26/2022]
Abstract
The telencephalon, the most anterior part of the vertebrate central nervous system (CNS), is a highly diversified region of the vertebrate body. Its evolutionary origin remains elusive, especially with regard to the ancestral state of its architecture as well as the origin of telencephalon-specific neuron subtypes. Cyclostomes (lampreys and hagfish), the sister group of the gnathostomes (jawed vertebrates), serve as valuable models for studying the evolution of the vertebrate CNS. Here, we summarize recent studies on the development of the telencephalon in the lamprey. By comparing detailed developmental studies in mammals, we illustrate a possible ancestral developmental plan underlying the diversification of the vertebrate telencephalon and propose possible approaches for understanding the early evolution of the telencephalon.
Collapse
Affiliation(s)
- Fumiaki Sugahara
- Laboratory for Evolutionary Morphology, Center for Developmental Biology, RIKEN, 2-2-3 Minatojima-minami, Kobe 650-0047, Japan
| | | | | | | |
Collapse
|
21
|
Beccari L, Marco-Ferreres R, Bovolenta P. The logic of gene regulatory networks in early vertebrate forebrain patterning. Mech Dev 2012; 130:95-111. [PMID: 23111324 DOI: 10.1016/j.mod.2012.10.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 10/09/2012] [Indexed: 01/19/2023]
Abstract
The vertebrate forebrain or prosencephalon is patterned at the beginning of neurulation into four major domains: the telencephalic, hypothalamic, retinal and diencephalic anlagen. These domains will then give rise to the majority of the brain structures involved in sensory integration and the control of higher intellectual and homeostatic functions. Understanding how forebrain pattering arises has thus attracted the interest of developmental neurobiologists for decades. As a result, most of its regulators have been identified and their hierarchical relationship is now the object of active investigation. Here, we summarize the main morphogenetic pathways and transcription factors involved in forebrain specification and propose the backbone of a possible gene regulatory network (GRN) governing its specification, taking advantage of the GRN principles elaborated by pioneer studies in simpler organisms. We will also discuss this GRN and its operational logic in the context of the remarkable morphological and functional diversification that the forebrain has undergone during evolution.
Collapse
Affiliation(s)
- Leonardo Beccari
- Centro de Biología Molecular "Severo Ochoa", CSIC-UAM, c/Nicolas Cabrera, 1, Madrid 28049, Spain
| | | | | |
Collapse
|
22
|
Bilbo SD, Schwarz JM. The immune system and developmental programming of brain and behavior. Front Neuroendocrinol 2012; 33:267-86. [PMID: 22982535 PMCID: PMC3484177 DOI: 10.1016/j.yfrne.2012.08.006] [Citation(s) in RCA: 402] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Revised: 08/28/2012] [Accepted: 08/29/2012] [Indexed: 12/16/2022]
Abstract
The brain, endocrine, and immune systems are inextricably linked. Immune molecules have a powerful impact on neuroendocrine function, including hormone-behavior interactions, during health as well as sickness. Similarly, alterations in hormones, such as during stress, can powerfully impact immune function or reactivity. These functional shifts are evolved, adaptive responses that organize changes in behavior and mobilize immune resources, but can also lead to pathology or exacerbate disease if prolonged or exaggerated. The developing brain in particular is exquisitely sensitive to both endogenous and exogenous signals, and increasing evidence suggests the immune system has a critical role in brain development and associated behavioral outcomes for the life of the individual. Indeed, there are associations between many neuropsychiatric disorders and immune dysfunction, with a distinct etiology in neurodevelopment. The goal of this review is to describe the important role of the immune system during brain development, and to discuss some of the many ways in which immune activation during early brain development can affect the later-life outcomes of neural function, immune function, mood and cognition.
Collapse
Affiliation(s)
- Staci D Bilbo
- Department of Psychology and Neuroscience, Duke University, 572 Research Drive, Box 91050, Durham, NC 27708, USA.
| | | |
Collapse
|
23
|
Fang P, Schachner M, Shen YQ. HMGB1 in development and diseases of the central nervous system. Mol Neurobiol 2012; 45:499-506. [PMID: 22580958 DOI: 10.1007/s12035-012-8264-y] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 03/26/2012] [Indexed: 02/05/2023]
Abstract
High mobility group box 1 (HMGB1) is widely expressed in cells of vertebrates in two forms: a nuclear "architectural" factor and a secreted inflammatory factor. During early brain development, HMGB1 displays a complex temporal and spatial distribution pattern in the central nervous system. It facilitates neurite outgrowth and cell migration critical for processes, such as forebrain development. During adulthood, HMGB1 serves to induce neuroinflammation after injury, such as lesions in the spinal cord and brain. Receptor for advanced glycation end products and Toll-like receptors signal transduction pathways mediate HMGB1-induced neuroinflammation and necrosis. Increased levels of endogenous HMGB1 have also been detected in neurodegenerative diseases. However, in Huntington's disease, HMGB1 has been reported to protect neurons through activation of apurinic/apyrimidinic endonuclease and 5'-flap endonuclease-1, whereas in other neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, and multiple sclerosis, HMGB1 serves as a risk factor for memory impairment, chronic neurodegeneration, and progression of neuroinflammation. Thus, HMGB1 plays important and double-edged roles during neural development and neurodegeneration. The HMGB1-mediated pathological mechanisms have remained largely elusive. Knowledge of these mechanisms is likely to lead to therapeutic targets for neurological diseases.
Collapse
Affiliation(s)
- Ping Fang
- Center for Neuroscience, Shantou University Medical College, Shantou, 515041, China
| | | | | |
Collapse
|
24
|
Emergence and evolution of the glycoprotein hormone and neurotrophin gene families in vertebrates. BMC Evol Biol 2011; 11:332. [PMID: 22085792 PMCID: PMC3280201 DOI: 10.1186/1471-2148-11-332] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Accepted: 11/15/2011] [Indexed: 01/19/2023] Open
Abstract
Background The three vertebrate pituitary glycoprotein hormones (GPH) are heterodimers of a common α and a specific β subunit. In human, they are located on different chromosomes but in a similar genomic environment. We took advantage of the availability of genomic and EST data from two cartilaginous fish species as well as from two lamprey species to identify their repertoire of neurotrophin, lin7 and KCNA gene family members which are in the close environment of gphβ. Gphα and gphβ are absent outside vertebrates but are related to two genes present in both protostomes and deuterostomes that were named gpa2 and gpb5. Genomic organization and functional characteristics of their protein products suggested that gphα and gphβ might have been generated concomitantly by a duplication of gpa2 and gpb5 just prior to the radiation of vertebrates. To have a better insight into this process we used new genomic resources and tools to characterize the ancestral environment before the duplication occurred. Results An almost similar repertoire of genes was characterized in cartilaginous fishes as in tetrapods. Data in lampreys are either incomplete or the result of specific duplications and/or deletions but a scenario for the evolution of this genomic environment in vertebrates could be proposed. A number of genes were identified in the amphioxus genome that helped in reconstructing the ancestral environment of gpa2 and gpb5 and in describing the evolution of this environment in vertebrates. Conclusion Our model suggests that vertebrate gphα and gphβ were generated by a specific local duplication of the ancestral forms of gpa2 and gpb5, followed by a translocation of gphβ to a new environment whereas gphα was retained in the gpa2-gpb5 locus. The two rounds of whole genome duplication that occurred early in the evolution of vertebrates generated four paralogues of each gene but secondary gene losses or lineage specific duplications together with genomic rearrangements have resulted in the present organization of these genes, which differs between vertebrate lineages.
Collapse
|
25
|
Qiu H, Hildebrand F, Kuraku S, Meyer A. Unresolved orthology and peculiar coding sequence properties of lamprey genes: the KCNA gene family as test case. BMC Genomics 2011; 12:325. [PMID: 21699680 PMCID: PMC3141671 DOI: 10.1186/1471-2164-12-325] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Accepted: 06/23/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In understanding the evolutionary process of vertebrates, cyclostomes (hagfishes and lamprey) occupy crucial positions. Resolving molecular phylogenetic relationships of cyclostome genes with gnathostomes (jawed vertebrates) genes is indispensable in deciphering both the species tree and gene trees. However, molecular phylogenetic analyses, especially those including lamprey genes, have produced highly discordant results between gene families. To efficiently scrutinize this problem using partial genome assemblies of early vertebrates, we focused on the potassium voltage-gated channel, shaker-related (KCNA) family, whose members are mostly single-exon. RESULTS Seven sea lamprey KCNA genes as well as six elephant shark genes were identified, and their orthologies to bony vertebrate subgroups were assessed. In contrast to robustly supported orthology of the elephant shark genes to gnathostome subgroups, clear orthology of any sea lamprey gene could not be established. Notably, sea lamprey KCNA sequences displayed unique codon usage pattern and amino acid composition, probably associated with exceptionally high GC-content in their coding regions. This lamprey-specific property of coding sequences was also observed generally for genes outside this gene family. CONCLUSIONS Our results suggest that secondary modifications of sequence properties unique to the lamprey lineage may be one of the factors preventing robust orthology assessments of lamprey genes, which deserves further genome-wide validation. The lamprey lineage-specific alteration of protein-coding sequence properties needs to be taken into consideration in tackling the key questions about early vertebrate evolution.
Collapse
Affiliation(s)
- Huan Qiu
- Department of Biology, University of Konstanz, Konstanz, Germany
| | | | | | | |
Collapse
|
26
|
Zhao X, Kuja-Panula J, Rouhiainen A, Chen YC, Panula P, Rauvala H. High mobility group box-1 (HMGB1; amphoterin) is required for zebrafish brain development. J Biol Chem 2011; 286:23200-13. [PMID: 21527633 DOI: 10.1074/jbc.m111.223834] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Hmgb1 (high mobility group box-1; amphoterin) is highly expressed in brain during early development of vertebrate and nonvertebrate species. However, its role in brain development remains elusive. Here we have cloned the zebrafish Hmgb1 and specifically manipulated Hmgb1 expression using injection of morpholino antisense oligonucleotides or Hmgb1 cRNA. The HMGB1 knockdown morphants produced by injection of three different morpholino oligonucleotides display a characteristic phenotype with smaller size, smaller brain width, and shorter distance between the eyes. Closer examination of the phenotype reveals severe defects in the development of the forebrain that largely lacks catecholaminergic neural networks. The HMGB1 morphant is deficient in survival and proliferation of neural progenitors and displays fewer cell groups expressing the transcription factor Pax6a in the forebrain and aberrant Wnt8 signaling. The mechanism of HMGB1-dependent progenitor survival involves the neuronal transmembrane protein AMIGO (amphoterin-induced gene and orf), the expression of which is regulated by HMGB1 in vivo. Our data demonstrate that HMGB1 is a critical factor for brain development, enabling survival and proliferation of neural progenitors that will form the forebrain structures.
Collapse
Affiliation(s)
- Xiang Zhao
- Neuroscience Center, University of Helsinki, Helsinki FIN-00014, Finland
| | | | | | | | | | | |
Collapse
|
27
|
Pombal MA, Alvarez-Otero R, Pérez-Fernández J, Solveira C, Megías M. Development and organization of the lamprey telencephalon with special reference to the GABAergic system. Front Neuroanat 2011; 5:20. [PMID: 21442003 PMCID: PMC3062466 DOI: 10.3389/fnana.2011.00020] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2010] [Accepted: 03/07/2011] [Indexed: 12/12/2022] Open
Abstract
Lampreys, together with hagfishes, represent the sister group of gnathostome vertebrates. There is an increasing interest for comparing the forebrain organization observed in lampreys and gnathostomes to shed light on vertebrate brain evolution. Within the prosencephalon, there is now a general agreement on the major subdivisions of the lamprey diencephalon; however, the organization of the telencephalon, and particularly its pallial subdivisions, is still a matter of controversy. In this study, recent progress on the development and organization of the lamprey telencephalon is reviewed, with particular emphasis on the GABA immunoreactive cell populations trying to understand their putative origin. First, we describe some early general cytoarchitectonic events by searching the classical literature as well as our collection of embryonic and prolarval series of hematoxylin-stained sections. Then, we comment on the cell proliferation activity throughout the larval period, followed by a detailed description of the early events on the development of the telencephalic GABAergic system. In this context, lampreys apparently do not possess the same molecularly distinct subdivisions of the gnathostome basal telencephalon because of the absence of a Nkx2.1-expressing domain in the developing subpallium; a fact that has been related to the absence of a medial ganglionic eminence as well as of its derived nucleus in gnathostomes, the pallidum. Therefore, these data raise interesting questions such as whether or not a different mechanism to specify telencephalic GABAergic neurons exists in lampreys or what are their migration pathways. Finally, we summarize the organization of the adult lamprey telencephalon by analyzing the main proposed conceptions, including the available data on the expression pattern of some developmental regulatory genes which are of importance for building its adult shape.
Collapse
Affiliation(s)
- Manuel A Pombal
- Neurolam Group, Department of Functional Biology and Health Sciences, Faculty of Biology, University of Vigo Vigo, Spain
| | | | | | | | | |
Collapse
|
28
|
Sugahara F, Aota SI, Kuraku S, Murakami Y, Takio-Ogawa Y, Hirano S, Kuratani S. Involvement of Hedgehog and FGF signalling in the lamprey telencephalon: evolution of regionalization and dorsoventral patterning of the vertebrate forebrain. Development 2011; 138:1217-26. [DOI: 10.1242/dev.059360] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Dorsoventral (DV) specification is a crucial step for the development of the vertebrate telencephalon. Clarifying the origin of this mechanism will lead to a better understanding of vertebrate central nervous system (CNS) evolution. Based on the lamprey, a sister group of the gnathostomes (jawed vertebrates), we identified three lamprey Hedgehog (Hh) homologues, which are thought to play central signalling roles in telencephalon patterning. However, unlike in gnathostomes, none of these genes, nor Lhx6/7/8, a marker for the migrating interneuron subtype, was expressed in the ventral telencephalon, consistent with the reported absence of the medial ganglionic eminence (MGE) in this animal. Homologues of Gsh2, Isl1/2 and Sp8, which are involved in the patterning of the lateral ganglionic eminence (LGE) of gnathostomes, were expressed in the lamprey subpallium, as in gnathostomes. Hh signalling is necessary for induction of the subpallium identity in the gnathostome telencephalon. When Hh signalling was inhibited, the ventral identity was disrupted in the lamprey, suggesting that prechordal mesoderm-derived Hh signalling might be involved in the DV patterning of the telencephalon. By blocking fibroblast growth factor (FGF) signalling, the ventral telencephalon was suppressed in the lamprey, as in gnathostomes. We conclude that Hh- and FGF-dependent DV patterning, together with the resultant LGE identity, are likely to have been established in a common ancestor before the divergence of cyclostomes and gnathostomes. Later, gnathostomes would have acquired a novel Hh expression domain corresponding to the MGE, leading to the obtainment of cortical interneurons.
Collapse
Affiliation(s)
- Fumiaki Sugahara
- Laboratory for Evolutionary Morphology, Center for Developmental Biology (CDB), RIKEN, 2-2-3 Minatojima-minami, Kobe 650-0047, Japan
- Graduate School of Science, Kobe University, Kobe 657-8501, Japan
| | - Shin-ichi Aota
- Laboratory for Evolutionary Morphology, Center for Developmental Biology (CDB), RIKEN, 2-2-3 Minatojima-minami, Kobe 650-0047, Japan
| | - Shigehiro Kuraku
- Laboratory for Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Universitätsstrasse 10, 78464 Konstanz, Germany
| | - Yasunori Murakami
- Graduate school of Science and Engineering, Ehime University, 2-5, Bunkyo-cho, Matsuyama, 790-8577, Japan
| | - Yoko Takio-Ogawa
- Laboratory for Evolutionary Morphology, Center for Developmental Biology (CDB), RIKEN, 2-2-3 Minatojima-minami, Kobe 650-0047, Japan
| | - Shigeki Hirano
- Department of Medical Technology, School of Health Sciences, Faculty of Medicine, Niigata University, Niigata 951-8518, Japan
| | - Shigeru Kuratani
- Laboratory for Evolutionary Morphology, Center for Developmental Biology (CDB), RIKEN, 2-2-3 Minatojima-minami, Kobe 650-0047, Japan
| |
Collapse
|
29
|
Kano S, Xiao JH, Osório J, Ekker M, Hadzhiev Y, Müller F, Casane D, Magdelenat G, Rétaux S. Two lamprey Hedgehog genes share non-coding regulatory sequences and expression patterns with gnathostome Hedgehogs. PLoS One 2010; 5:e13332. [PMID: 20967201 PMCID: PMC2954159 DOI: 10.1371/journal.pone.0013332] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Accepted: 09/17/2010] [Indexed: 11/23/2022] Open
Abstract
Hedgehog (Hh) genes play major roles in animal development and studies of their evolution, expression and function point to major differences among chordates. Here we focused on Hh genes in lampreys in order to characterize the evolution of Hh signalling at the emergence of vertebrates. Screening of a cosmid library of the river lamprey Lampetra fluviatilis and searching the preliminary genome assembly of the sea lamprey Petromyzon marinus indicate that lampreys have two Hh genes, named Hha and Hhb. Phylogenetic analyses suggest that Hha and Hhb are lamprey-specific paralogs closely related to Sonic/Indian Hh genes. Expression analysis indicates that Hha and Hhb are expressed in a Sonic Hh-like pattern. The two transcripts are expressed in largely overlapping but not identical domains in the lamprey embryonic brain, including a newly-described expression domain in the nasohypophyseal placode. Global alignments of genomic sequences and local alignment with known gnathostome regulatory motifs show that lamprey Hhs share conserved non-coding elements (CNE) with gnathostome Hhs albeit with sequences that have significantly diverged and dispersed. Functional assays using zebrafish embryos demonstrate gnathostome-like midline enhancer activity for CNEs contained in intron2. We conclude that lamprey Hh genes are gnathostome Shh-like in terms of expression and regulation. In addition, they show some lamprey-specific features, including duplication and structural (but not functional) changes in the intronic/regulatory sequences.
Collapse
Affiliation(s)
- Shungo Kano
- Laboratoire Neurobiologie et Développement UPR3294 Centre National de la Recherche Scientifique (CNRS), Institut Alfred Fessard, Gif-sur-Yvette, France
| | - Jin-Hua Xiao
- Laboratoire Neurobiologie et Développement UPR3294 Centre National de la Recherche Scientifique (CNRS), Institut Alfred Fessard, Gif-sur-Yvette, France
| | - Joana Osório
- Laboratoire Neurobiologie et Développement UPR3294 Centre National de la Recherche Scientifique (CNRS), Institut Alfred Fessard, Gif-sur-Yvette, France
| | - Marc Ekker
- Laboratoire Neurobiologie et Développement UPR3294 Centre National de la Recherche Scientifique (CNRS), Institut Alfred Fessard, Gif-sur-Yvette, France
- Department of Biology, Center for Advanced Research in Environmental Genomics, University of Ottawa, Ottawa, Canada
| | - Yavor Hadzhiev
- Laboratoire Neurobiologie et Développement UPR3294 Centre National de la Recherche Scientifique (CNRS), Institut Alfred Fessard, Gif-sur-Yvette, France
- Department of Medical and Molecular Genetics, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Ferenc Müller
- Laboratoire Neurobiologie et Développement UPR3294 Centre National de la Recherche Scientifique (CNRS), Institut Alfred Fessard, Gif-sur-Yvette, France
- Department of Medical and Molecular Genetics, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Didier Casane
- Laboratoire Neurobiologie et Développement UPR3294 Centre National de la Recherche Scientifique (CNRS), Institut Alfred Fessard, Gif-sur-Yvette, France
- Laboratoire Evolution, Génomes et Spéciation UPR9034 Centre National de la Recherche Scientifique (CNRS), Gif-sur-Yvette, and Université Paris 7, Paris, France
| | - Ghislaine Magdelenat
- Laboratoire Neurobiologie et Développement UPR3294 Centre National de la Recherche Scientifique (CNRS), Institut Alfred Fessard, Gif-sur-Yvette, France
- Génoscope, Institut de Génomique, Commissariat à l'Energie Atomique (CEA), Evry, France
| | - Sylvie Rétaux
- Laboratoire Neurobiologie et Développement UPR3294 Centre National de la Recherche Scientifique (CNRS), Institut Alfred Fessard, Gif-sur-Yvette, France
- * E-mail:
| |
Collapse
|
30
|
Moleri S, Cappellano G, Gaudenzi G, Cermenati S, Cotelli F, Horner DS, Beltrame M. The HMGB protein gene family in zebrafish: Evolution and embryonic expression patterns. Gene Expr Patterns 2010; 11:3-11. [PMID: 20804857 DOI: 10.1016/j.gep.2010.08.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Revised: 06/25/2010] [Accepted: 08/19/2010] [Indexed: 11/30/2022]
Abstract
The High-Mobility Group Box (HMGB) proteins are highly abundant proteins with both nuclear and extracellular roles in key biological processes. In mammals, three family members are present: HMGB1, HMGB2 and HMGB3. We characterized the HMGB family in zebrafish and report a detailed phylogenetic analysis of HMGB proteins. The B1, B2, and B3 subfamilies are present in cartilaginous fish, bony fish, and tetrapods, while jawless fish sequences emerge as basal to the gene family expansion. Two co-orthologs of each mammalian HMGB gene are present in zebrafish. All six zebrafish hmgb genes are maternally expressed, but huge differences in expression levels exist during embryonic development. The hmgb2a/hmgb2b genes are the most highly expressed, while hmgb3b is expressed at the lowest level. Remarkably, hmgb3 genes are not present in fugu, medaka, Tetraodon and stickleback. Our analysis highlights substantial overlaps, but also subtle differences and specificities in the expression patterns of the zebrafish hmgb genes.
Collapse
Affiliation(s)
- Silvia Moleri
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Universita' degli Studi di Milano, Milano, Italy
| | | | | | | | | | | | | |
Collapse
|
31
|
Scholpp S, Lumsden A. Building a bridal chamber: development of the thalamus. Trends Neurosci 2010; 33:373-80. [PMID: 20541814 PMCID: PMC2954313 DOI: 10.1016/j.tins.2010.05.003] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Revised: 05/19/2010] [Accepted: 05/20/2010] [Indexed: 12/26/2022]
Abstract
The thalamus is a central brain region that plays a crucial role in distributing incoming sensory information to appropriate regions of the cortex. The thalamus develops in the posterior part of the embryonic forebrain, where early cell fate decisions are controlled by a local signaling center – the mid-diencephalic organizer – which forms at the boundary between prospective prethalamus and thalamus. In this review we discuss recent observations of early thalamic development in zebrafish, chick, and mouse embryos, that reveal a conserved set of interactions between homeodomain transcription factors. These interactions position the organizer along the neuraxis. The most prominent of the organizer's signals, Sonic hedgehog, is necessary for conferring regional identity on the prethalamus and thalamus and for patterning their differentiation.
Collapse
Affiliation(s)
- Steffen Scholpp
- Karlsruhe Institute of Technology, Institute for Toxicology and Genetics, 76021 Karlsruhe, Germany
| | | |
Collapse
|
32
|
Rétaux S, Kano S. Midline signaling and evolution of the forebrain in chordates: a focus on the lamprey Hedgehog case. Integr Comp Biol 2010; 50:98-109. [PMID: 21558191 DOI: 10.1093/icb/icq032] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Lampreys are agnathans (vertebrates without jaws). They occupy a key phylogenetic position in the emergence of novelties and in the diversification of morphology at the dawn of vertebrates. We have used lampreys to investigate the possibility that embryonic midline signaling systems have been a driving force for the evolution of the forebrain in vertebrates. We have focused on Sonic Hedgehog/Hedgehog (Shh/Hh) signaling. In this article, we first review and summarize our recent work on the comparative analysis of embryonic expression patterns for Shh/Hh, together with Fgf8 (fibroblast growth factor 8) and Wnt (wingless-Int) pathway components, in the embryonic lamprey forebrain. Comparison with nonvertebrate chordates on one hand, and jawed vertebrates on the other hand, shows that these morphogens/growth factors acquired new expression domains in the most rostral part of the neural tube in lampreys compared to nonvertebrate chordates, and in jawed vertebrates compared to lampreys. These data are consistent with the idea that changes in Shh, Fgf8 or Wnt signaling in the course of evolution have been instrumental for the emergence and diversification of the telencephalon, a part of the forebrain that is unique to vertebrates. We have then used comparative genomics on Shh/Hh loci to identify commonalities and differences in noncoding regulatory sequences across species and phyla. Conserved noncoding elements (CNEs) can be detected in lamprey Hh introns, even though they display unique structural features and need adjustments of parameters used for in silico alignments to be detected, because of lamprey-specific properties of the genome. The data also show conservation of a ventral midline enhancer located in Shh/Hh intron 2 of all chordates, the very species which possess a notochord and a floor plate, but not in earlier emerged deuterostomes or protostomes. These findings exemplify how the Shh/Hh locus is one of the best loci to study genome evolution with regards to developmental events.
Collapse
Affiliation(s)
- Sylvie Rétaux
- NeD-UPR3294, CNRS, Institut Alfred Fessard, avenue de la Terrasse, 91198 Gif-sur-Yvette, France.
| | | |
Collapse
|