1
|
Aboul-Ella H, Gohar A, Ali AA, Ismail LM, Mahmoud AEER, Elkhatib WF, Aboul-Ella H. Monoclonal antibodies: From magic bullet to precision weapon. MOLECULAR BIOMEDICINE 2024; 5:47. [PMID: 39390211 PMCID: PMC11467159 DOI: 10.1186/s43556-024-00210-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 09/19/2024] [Indexed: 10/12/2024] Open
Abstract
Monoclonal antibodies (mAbs) are used to prevent, detect, and treat a broad spectrum of non-communicable and communicable diseases. Over the past few years, the market for mAbs has grown exponentially with an expected compound annual growth rate (CAGR) of 11.07% from 2024 (237.64 billion USD estimated at the end of 2023) to 2033 (679.03 billion USD expected by the end of 2033). Ever since the advent of hybridoma technology introduced in 1975, antibody-based therapeutics were realized using murine antibodies which further progressed into humanized and fully human antibodies, reducing the risk of immunogenicity. Some benefits of using mAbs over conventional drugs include a drastic reduction in the chances of adverse reactions, interactions between drugs, and targeting specific proteins. While antibodies are very efficient, their higher production costs impede the process of commercialization. However, their cost factor has been improved by developing biosimilar antibodies as affordable versions of therapeutic antibodies. Along with the recent advancements and innovations in antibody engineering have helped and will furtherly help to design bio-better antibodies with improved efficacy than the conventional ones. These novel mAb-based therapeutics are set to revolutionize existing drug therapies targeting a wide spectrum of diseases, thereby meeting several unmet medical needs. This review provides comprehensive insights into the current fundamental landscape of mAbs development and applications and the key factors influencing the future projections, advancement, and incorporation of such promising immunotherapeutic candidates as a confrontation approach against a wide list of diseases, with a rationalistic mentioning of any limitations facing this field.
Collapse
Affiliation(s)
- Hassan Aboul-Ella
- Department of Microbiology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.
| | - Asmaa Gohar
- Department of Microbiology and Immunology, Faculty of Pharmacy, Galala University, Suez, Egypt
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ahram Canadian University (ACU), Giza, Egypt
- Egyptian Drug Authority (EDA), Giza, Egypt
| | - Aya Ahmed Ali
- Department of Microbiology and Immunology, Faculty of Pharmacy, Sinai University, Sinai, Egypt
| | - Lina M Ismail
- Department of Biotechnology and Molecular Chemistry, Faculty of Science, Cairo University, Giza, Egypt
- Creative Egyptian Biotechnologists (CEB), Giza, Egypt
| | | | - Walid F Elkhatib
- Department of Microbiology and Immunology, Faculty of Pharmacy, Galala University, Suez, Egypt
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Heba Aboul-Ella
- Department of Pharmacognosy, Faculty of Pharmacy and Drug Technology, Egyptian Chinese University (ECU), Cairo, Egypt
- Scientific Research Group in Egypt (SRGE), Cairo, Egypt
| |
Collapse
|
2
|
Kaur G, Chawla S, Kumar P, Singh R. Advancing Vaccine Strategies against Candida Infections: Exploring New Frontiers. Vaccines (Basel) 2023; 11:1658. [PMID: 38005990 PMCID: PMC10674196 DOI: 10.3390/vaccines11111658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/22/2023] [Accepted: 10/25/2023] [Indexed: 11/26/2023] Open
Abstract
Candida albicans, along with several non-albicans Candida species, comprise a prominent fungal pathogen in humans, leading to candidiasis in various organs. The global impact of candidiasis in terms of disease burden, suffering, and fatalities is alarmingly high, making it a pressing global healthcare concern. Current treatment options rely on antifungal drugs such as azoles, polyenes, and echinocandins but are delimited due to the emergence of drug-resistant strains and associated adverse effects. The current review highlights the striking absence of a licensed antifungal vaccine for human use and the urgent need to shift our focus toward developing an anti-Candida vaccine. A number of factors affect the development of vaccines against fungal infections, including the host, intraspecies and interspecies antigenic variations, and hence, a lack of commercial interest. In addition, individuals with a high risk of fungal infection tend to be immunocompromised, so they are less likely to respond to inactivated or subunit whole organisms. Therefore, it is pertinent to discover newer and novel alternative strategies to develop safe and effective vaccines against fungal infections. This review article provides an overview of current vaccination strategies (live attenuated, whole-cell killed, subunit, conjugate, and oral vaccine), including their preclinical and clinical data on efficacy and safety. We also discuss the mechanisms of immune protection against candidiasis, including the role of innate and adaptive immunity and potential biomarkers of protection. Challenges, solutions, and future directions in vaccine development, namely, exploring novel adjuvants, harnessing the trained immunity, and utilizing immunoinformatics approaches for vaccine design and development, are also discussed. This review concludes with a summary of key findings, their implications for clinical practice and public health, and a call to action for continued investment in candidiasis vaccine research.
Collapse
Affiliation(s)
- Gurpreet Kaur
- Department of Biotechnology, Chandigarh College of Technology (CCT), Chandigarh Group of Colleges (CGC), Landran, Mohali 140307, India
| | - Sonam Chawla
- Department of Biotechnology, Jaypee Institute of Information Technology, Sector 62, Noida 201309, India; (S.C.)
| | - Piyush Kumar
- Department of Biotechnology, Jaypee Institute of Information Technology, Sector 62, Noida 201309, India; (S.C.)
| | - Ritu Singh
- Department of Biotechnology, Jaypee Institute of Information Technology, Sector 62, Noida 201309, India; (S.C.)
| |
Collapse
|
3
|
Dellière S, Aimanianda V. Humoral Immunity Against Aspergillus fumigatus. Mycopathologia 2023; 188:603-621. [PMID: 37289362 PMCID: PMC10249576 DOI: 10.1007/s11046-023-00742-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 04/27/2023] [Indexed: 06/09/2023]
Abstract
Aspergillus fumigatus is one the most ubiquitous airborne opportunistic human fungal pathogens. Understanding its interaction with host immune system, composed of cellular and humoral arm, is essential to explain the pathobiology of aspergillosis disease spectrum. While cellular immunity has been well studied, humoral immunity has been poorly acknowledge, although it plays a crucial role in bridging the fungus and immune cells. In this review, we have summarized available data on major players of humoral immunity against A. fumigatus and discussed how they may help to identify at-risk individuals, be used as diagnostic tools or promote alternative therapeutic strategies. Remaining challenges are highlighted and leads are given to guide future research to better grasp the complexity of humoral immune interaction with A. fumigatus.
Collapse
Affiliation(s)
- Sarah Dellière
- Institut Pasteur, Immunobiology of Aspergillus, Université de Paris Cité, 75015, Paris, France.
- Laboratoire de Parasitologie-Mycologie, AP-HP, Hôpital Saint-Louis, 75010, Paris, France.
| | - Vishukumar Aimanianda
- Institut Pasteur, Immunobiology of Aspergillus, Université de Paris Cité, 75015, Paris, France.
| |
Collapse
|
4
|
Kumar R, Srivastava V. Application of anti-fungal vaccines as a tool against emerging anti-fungal resistance. FRONTIERS IN FUNGAL BIOLOGY 2023; 4:1241539. [PMID: 37746132 PMCID: PMC10512234 DOI: 10.3389/ffunb.2023.1241539] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 07/31/2023] [Indexed: 09/26/2023]
Abstract
After viruses and bacteria, fungal infections remain a serious threat to the survival and well-being of society. The continuous emergence of resistance against commonly used anti-fungal drugs is a serious concern. The eukaryotic nature of fungal cells makes the identification of novel anti-fungal agents slow and difficult. Increasing global temperature and a humid environment conducive to fungal growth may lead to a fungal endemic or a pandemic. The continuous increase in the population of immunocompromised individuals and falling immunity forced pharmaceutical companies to look for alternative strategies for better managing the global fungal burden. Prevention of infectious diseases by vaccines can be the right choice. Recent success and safe application of mRNA-based vaccines can play a crucial role in our quest to overcome anti-fungal resistance. Expressing fungal cell surface proteins in human subjects using mRNA technology may be sufficient to raise immune response to protect against future fungal infection. The success of mRNA-based anti-fungal vaccines will heavily depend on the identification of fungal surface proteins which are highly immunogenic and have no or least side effects in human subjects. The present review discusses why it is essential to look for anti-fungal vaccines and how vaccines, in general, and mRNA-based vaccines, in particular, can be the right choice in tackling the problem of rising anti-fungal resistance.
Collapse
Affiliation(s)
- Ravinder Kumar
- Department of Pathology, Collage of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Vartika Srivastava
- Department of Clinical Microbiology and Infectious Diseases, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Gauteng, South Africa
| |
Collapse
|
5
|
Kakoschke TK, Kleinemeier C, Knösel T, Kakoschke SC, Ebel F. The Novel Monoclonal IgG 1-Antibody AB90-E8 as a Diagnostic Tool to Rapidly Distinguish Aspergillus fumigatus from Other Human Pathogenic Aspergillus Species. J Fungi (Basel) 2023; 9:622. [PMID: 37367559 DOI: 10.3390/jof9060622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/28/2023] Open
Abstract
In most cases, invasive aspergillosis (IA) is caused by A. fumigatus, though infections with other Aspergillus spp. with lower susceptibilities to amphotericin B (AmB) gain ground. A. terreus, for instance, is the second leading cause of IA in humans and of serious concern because of its high propensity to disseminate and its in vitro and in vivo resistance to AmB. An early differentiation between A. fumigatus and non-A. fumigatus infections could swiftly recognize a potentially ineffective treatment with AmB and lead to the lifesaving change to a more appropriate drug regime in high-risk patients. In this study, we present the characteristics of the monoclonal IgG1-antibody AB90-E8 that specifically recognizes a surface antigen of A. fumigatus and the closely related, but not human pathogenic A. fischeri. We show immunostainings on fresh frozen sections as well as on incipient mycelium picked from agar plates with tweezers or by using the expeditious tape mount technique. All three methods have a time advantage over the common procedures currently used in the routine diagnosis of IA and outline the potential of AB90-E8 as a rapid diagnostic tool.
Collapse
Affiliation(s)
- Tamara Katharina Kakoschke
- Department of Oral and Maxillofacial Surgery and Facial Plastic Surgery, University Hospital, Ludwig-Maximilians-University Munich, Lindwurmstrasse 2a, 80337 Munich, Germany
- Institute for Infectious Diseases and Zoonoses, Ludwig-Maximilians-University Munich, 85764 Oberschleissheim, Germany
| | - Christoph Kleinemeier
- Institute for Infectious Diseases and Zoonoses, Ludwig-Maximilians-University Munich, 85764 Oberschleissheim, Germany
| | - Thomas Knösel
- Institute of Pathology, Ludwig-Maximilians-University Munich, 81377 Munich, Germany
| | - Sara Carina Kakoschke
- Department of General, Visceral and Transplant Surgery, University Hospital, Ludwig-Maximilians-University Munich, Marchioninistrasse 15, 81337 Munich, Germany
| | - Frank Ebel
- Institute for Infectious Diseases and Zoonoses, Ludwig-Maximilians-University Munich, 85764 Oberschleissheim, Germany
| |
Collapse
|
6
|
Doron I, Kusakabe T, Iliev ID. Immunoglobulins at the interface of the gut mycobiota and anti-fungal immunity. Semin Immunol 2023; 67:101757. [PMID: 37003056 PMCID: PMC10192079 DOI: 10.1016/j.smim.2023.101757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
The dynamic and complex community of microbes that colonizes the intestines is composed of bacteria, fungi, and viruses. At the mucosal surfaces, immunoglobulins play a key role in protection against bacterial and fungal pathogens, and their toxins. Secretory immunoglobulin A (sIgA) is the most abundantly produced antibody at the mucosal surfaces, while Immunoglobulin G (IgG) isotypes play a critical role in systemic protection. IgA and IgG antibodies with reactivity to commensal fungi play an important role in shaping the mycobiota and host antifungal immunity. In this article, we review the latest evidence that establishes a connection between commensal fungi and B cell-mediated antifungal immunity as an additional layer of protection against fungal infections and inflammation.
Collapse
Affiliation(s)
- Itai Doron
- Gastroenterology and Hepatology Division, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA; The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, New York, NY 10021, USA
| | - Takato Kusakabe
- Gastroenterology and Hepatology Division, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA; The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, New York, NY 10021, USA
| | - Iliyan D Iliev
- Gastroenterology and Hepatology Division, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA; The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, New York, NY 10021, USA; Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY 10065, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA.
| |
Collapse
|
7
|
Rabaan AA, Alfaraj AH, Alshengeti A, Alawfi A, Alwarthan S, Alhajri M, Al-Najjar AH, Al Fares MA, Najim MA, Almuthree SA, AlShurbaji ST, Alofi FS, AlShehail BM, AlYuosof B, Alynbiawi A, Alzayer SA, Al Kaabi N, Abduljabbar WA, Bukhary ZA, Bueid AS. Antibodies to Combat Fungal Infections: Development Strategies and Progress. Microorganisms 2023; 11:microorganisms11030671. [PMID: 36985244 PMCID: PMC10051215 DOI: 10.3390/microorganisms11030671] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 03/09/2023] Open
Abstract
The finding that some mAbs are antifungal suggests that antibody immunity may play a key role in the defense of the host against mycotic infections. The discovery of antibodies that guard against fungi is a significant advancement because it gives rise to the possibility of developing vaccinations that trigger protective antibody immunity. These vaccines might work by inducing antibody opsonins that improve the function of non-specific (such as neutrophils, macrophages, and NK cells) and specific (such as lymphocyte) cell-mediated immunity and stop or aid in eradicating fungus infections. The ability of antibodies to defend against fungi has been demonstrated by using monoclonal antibody technology to reconsider the function of antibody immunity. The next step is to develop vaccines that induce protective antibody immunity and to comprehend the mechanisms through which antibodies mediate protective effects against fungus.
Collapse
Affiliation(s)
- Ali A. Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
- Department of Public Health and Nutrition, The University of Haripur, Haripur 22610, Pakistan
- Correspondence:
| | - Amal H. Alfaraj
- Pediatric Department, Abqaiq General Hospital, First Eastern Health Cluster, Abqaiq 33261, Saudi Arabia
| | - Amer Alshengeti
- Department of Pediatrics, College of Medicine, Taibah University, Al-Madinah 41491, Saudi Arabia
- Department of Infection Prevention and Control, Prince Mohammad Bin Abdulaziz Hospital, National Guard Health Affairs, Al-Madinah 41491, Saudi Arabia
| | - Abdulsalam Alawfi
- Department of Pediatrics, College of Medicine, Taibah University, Al-Madinah 41491, Saudi Arabia
| | - Sara Alwarthan
- Department of Internal Medicine, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia
| | - Mashael Alhajri
- Department of Internal Medicine, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia
| | - Amal H. Al-Najjar
- Drug & Poison Information Center, Pharmacy Department, Security Forces Hospital Program, Riyadh 11481, Saudi Arabia
| | - Mona A. Al Fares
- Department of Internal Medicine, King Abdulaziz University Hospital, Jeddah 21589, Saudi Arabia
| | - Mustafa A. Najim
- Department of Medical Laboratories Technology, College of Applied Medical Sciences, Taibah University, Madinah 41411, Saudi Arabia
| | - Souad A. Almuthree
- Department of Infectious Disease, King Abdullah Medical City, Makkah 43442, Saudi Arabia
| | - Sultan T. AlShurbaji
- Outpatient Pharmacy, Dr. Sulaiman Alhabib Medical Group, Diplomatic Quarter, Riyadh 91877, Saudi Arabia
| | - Fadwa S. Alofi
- Department of Infectious Diseases, King Fahad Hospital, Madinah 42351, Saudi Arabia
| | - Bashayer M. AlShehail
- Pharmacy Practice Department, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Buthina AlYuosof
- Directorate of Public Health, Dammam Network, Eastern Health Cluster, Dammam 31444, Saudi Arabia
| | - Ahlam Alynbiawi
- Infectious Diseases Section, Medical Specialties Department, King Fahad Medical City, Riyadh 12231, Saudi Arabia
| | - Suha A. Alzayer
- Parasitology Laboratory Department, Qatif Comprehensive Inspection Center, Qatif 31911, Saudi Arabia
| | - Nawal Al Kaabi
- Department of Pediatric Infectious Disease, Sheikh Khalifa Medical City, Abu Dhabi 51900, United Arab Emirates
| | - Wesam A. Abduljabbar
- Department of Medical Laboratory Sciences, Fakeeh College for Medical Science, Jeddah 21134, Saudi Arabia
| | - Zakiyah A. Bukhary
- Department of Internal Medicine, King Fahad General Hospital, Jeddah 23325, Saudi Arabia
| | - Ahmed S. Bueid
- Microbiology Laboratory, King Faisal General Hospital, Al-Ahsa 31982, Saudi Arabia
| |
Collapse
|
8
|
Yoon H, Wake RM, Nakouzi AS, Wang T, Agalliu I, Tiemessen CT, Govender NP, Jarvis JN, Harrison TS, Pirofski LA. Association of Antibody Immunity With Cryptococcal Antigenemia and Mortality in a South African Cohort With Advanced Human Immunodeficiency Virus Disease. Clin Infect Dis 2023; 76:649-657. [PMID: 35915964 PMCID: PMC10226730 DOI: 10.1093/cid/ciac633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/06/2022] [Accepted: 07/29/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Asymptomatic cryptococcal antigenemia (positive blood cryptococcal antigen [CrAg]) is associated with increased mortality in individuals with human immunodeficiency virus (HIV) even after adjusting for CD4 count and despite receiving antifungal treatment. The association of antibody immunity with mortality in adults with HIV with cryptococcal antigenemia is unknown. METHODS Cryptococcal capsular glucuronoxylomannan (GXM)- and naturally occurring β-glucans (laminarin, curdlan)-binding antibodies were measured in blood samples of 197 South Africans with HIV who underwent CrAg screening and were followed up to 6 months. Associations between antibody titers, CrAg status, and all-cause mortality were sought using logistic and Cox regression, respectively. RESULTS Compared with CrAg-negative individuals (n = 130), CrAg-positive individuals (n = 67) had significantly higher IgG1 (median, 6672; interquartile range [IQR], 4696-10 414 vs 5343, 3808-7722 μg/mL; P = .007), IgG2 (1467, 813-2607 vs 1036, 519-2012 μg/mL; P = .01), and GXM-IgG (1:170, 61-412 vs 1:117, 47-176; P = .0009) and lower curdlan-IgG (1:47, 11-133 vs 1:93, 40-206; P = .01) titers. GXM-IgG was associated directly with cryptococcal antigenemia adjusted for CD4 count and antiretroviral therapy use (odds ratio, 1.64; 95% confidence interval [CI], 1.21 to 2.22). Among CrAg-positive individuals, GXM-IgG was inversely associated with mortality at 6 months adjusted for CD4 count and tuberculosis (hazard ratio, 0.50; 95% CI, .33 to .77). CONCLUSIONS The inverse association of GXM-IgG with mortality in CrAg-positive individuals suggests that GXM-IgG titer may have prognostic value in those individuals. Prospective longitudinal studies to investigate this hypothesis and identify mechanisms by which antibody may protect against mortality are warranted.
Collapse
Affiliation(s)
- Hyunah Yoon
- Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, New York, USA
| | - Rachel M Wake
- Institute for Infection and Immunity, St George’s University Hospital NHS Foundation Trust, London, United Kingdom
- Centre for Healthcare-Associated Infections, Antimicrobial Resistance and Mycoses, National Institute for Communicable Diseases, Division of the National Health Laboratory Service, Johannesburg, South Africa
- Clinical Academic Group in Infection and Immunity, St George’s University Hospital NHS Foundation Trust, London, United Kingdom
| | - Antonio S Nakouzi
- Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, New York, USA
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Tao Wang
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York, USA
| | - Ilir Agalliu
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York, USA
- Department of Urology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York, USA
| | - Caroline T Tiemessen
- Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Centre for HIV & STIs, National Institute for Communicable Diseases, Division of the National Health Laboratory Service, Johannesburg, South Africa
| | - Nelesh P Govender
- Institute for Infection and Immunity, St George’s University Hospital NHS Foundation Trust, London, United Kingdom
- Centre for Healthcare-Associated Infections, Antimicrobial Resistance and Mycoses, National Institute for Communicable Diseases, Division of the National Health Laboratory Service, Johannesburg, South Africa
- Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- MRC Center for Medical Mycology, University of Exeter, Exeter, United Kingdom
- Division of Medical Microbiology, University of Cape Town, Cape Town, South Africa
| | - Joseph N Jarvis
- Department of Clinical Research, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Botswana Harvard AIDS Institute Partnership, Botswana, Southern Africa
| | - Thomas S Harrison
- Institute for Infection and Immunity, St George’s University Hospital NHS Foundation Trust, London, United Kingdom
- Clinical Academic Group in Infection and Immunity, St George’s University Hospital NHS Foundation Trust, London, United Kingdom
- MRC Center for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Liise-anne Pirofski
- Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, New York, USA
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
9
|
Singh S, Barbarino A, Youssef EG, Coleman D, Gebremariam T, Ibrahim AS. Protective Efficacy of Anti-Hyr1p Monoclonal Antibody against Systemic Candidiasis Due to Multi-Drug-Resistant Candida auris. J Fungi (Basel) 2023; 9:103. [PMID: 36675924 PMCID: PMC9860579 DOI: 10.3390/jof9010103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
Candida auris is a multi-drug-resistant fungal pathogen that can survive outside the host and can easily spread and colonize the healthcare environment, medical devices, and human skin. C. auris causes serious life-threatening infections (up to 60% mortality) in immunosuppressed patients staying in such contaminated healthcare facilities. Some isolates of C. auris are resistant to virtually all clinically available antifungal drugs. Therefore, alternative therapeutic approaches are urgently needed. Using in silico protein modeling and analysis, we identified a highly immunogenic and surface-exposed epitope that is conserved between C. albicans hyphal-regulated protein (Cal-Hyr1p) and Hyr1p/Iff-like proteins in C. auris (Cau-HILp). We generated monoclonal antibodies (MAb) against this Cal-Hyr1p epitope, which recognized several clinical isolates of C. auris representing all four clades. An anti-Hyr1p MAb prevented biofilm formation and enhanced opsonophagocytic killing of C. auris by macrophages. When tested for in vivo efficacy, anti-Hyr1p MAb protected 55% of mice against lethal systemic C. auris infection and showed significantly less fungal burden. Our study is highly clinically relevant and provides an effective alternative therapeutic option to treat infections due to MDR C. auris.
Collapse
Affiliation(s)
- Shakti Singh
- Division of Infectious Diseases, The Lundquist Institute for Biomedical Innovation at Harbor-University of California at Los Angeles (UCLA) Medical Center, Torrance, CA 90502, USA
- David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Ashley Barbarino
- Division of Infectious Diseases, The Lundquist Institute for Biomedical Innovation at Harbor-University of California at Los Angeles (UCLA) Medical Center, Torrance, CA 90502, USA
| | - Eman G. Youssef
- Division of Infectious Diseases, The Lundquist Institute for Biomedical Innovation at Harbor-University of California at Los Angeles (UCLA) Medical Center, Torrance, CA 90502, USA
| | - Declan Coleman
- Division of Infectious Diseases, The Lundquist Institute for Biomedical Innovation at Harbor-University of California at Los Angeles (UCLA) Medical Center, Torrance, CA 90502, USA
- Biology Department, Pomona College, Pomona, CA 91711, USA
| | - Teclegiorgis Gebremariam
- Division of Infectious Diseases, The Lundquist Institute for Biomedical Innovation at Harbor-University of California at Los Angeles (UCLA) Medical Center, Torrance, CA 90502, USA
| | - Ashraf S. Ibrahim
- Division of Infectious Diseases, The Lundquist Institute for Biomedical Innovation at Harbor-University of California at Los Angeles (UCLA) Medical Center, Torrance, CA 90502, USA
- David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
10
|
Di Mambro T, Vanzolini T, Bianchi M, Crinelli R, Canonico B, Tasini F, Menotta M, Magnani M. Development and in vitro characterization of a humanized scFv against fungal infections. PLoS One 2022; 17:e0276786. [PMID: 36315567 PMCID: PMC9621433 DOI: 10.1371/journal.pone.0276786] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 10/14/2022] [Indexed: 01/24/2023] Open
Abstract
The resistance and the birth of new intrinsic and multidrug-resistant pathogenic species like C. auris is creating great concern in the antifungal world. Given the limited drug arsenal and the lack of effectiveness of the available compounds, there is an urgent need for innovative approaches. The murine mAb 2G8 was humanized and engineered in silico to develop a single-chain fragment variable (hscFv) antibody against β-1,3-glucans which was then expressed in E. coli. Among the recombinant proteins developed, a soluble candidate with high stability and affinity was obtained. This selected protein is VL-linker-VH oriented, and it is characterized by the presence of two ubiquitin monomers at the N-terminus and a His tag at the C-terminus. This construct, Ub2-hscFv-His, guaranteed stability, solubility, efficient purification and satisfactory recovery of the recombinant product. HscFv can bind β-1,3-glucans both as coated antigens and on C. auris and C. albicans cells similarly to its murine parental and showed long stability and retention of binding ability when stored at 4°, -20° and -80° C. Furthermore, it was efficient in enhancing the antifungal activity of drugs caspofungin and amphotericin B against C. auris. The use of biological drugs as antifungals is limited; here we present a promising hscFv which has the potential to be useful in combination with currently available antifungal drugs.
Collapse
Affiliation(s)
| | - Tania Vanzolini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
- * E-mail:
| | - Marzia Bianchi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Rita Crinelli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Barbara Canonico
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Filippo Tasini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Michele Menotta
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Mauro Magnani
- Diatheva s.r.l., Cartoceto, Italy
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| |
Collapse
|
11
|
Yang C, Huang Y, Zhou Y, Zang X, Deng H, Liu Y, Shen D, Xue X. Cryptococcus escapes host immunity: What do we know? Front Cell Infect Microbiol 2022; 12:1041036. [PMID: 36310879 PMCID: PMC9606624 DOI: 10.3389/fcimb.2022.1041036] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 09/30/2022] [Indexed: 11/13/2022] Open
Abstract
Cryptococcus is an invasive fungus that seriously endangers human life and health, with a complex and well-established immune-escaping mechanism that interferes with the function of the host immune system. Cryptococcus can attenuate the host’s correct recognition of the fungal antigen and escape the immune response mediated by host phagocytes, innate lymphoid cells, T lymphocytes, B lymphocytes with antibodies, and peripheral cytokines. In addition, the capsule, melanin, dormancy, Titan cells, biofilm, and other related structures of Cryptococcus are also involved in the process of escaping the host’s immunity, as well as enhancing the ability of Cryptococcus to infect the host.
Collapse
Affiliation(s)
- Chen Yang
- Department of Laboratory Medicine, the First Medical Centre, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Yemei Huang
- Department of Respiratory and Critical Care, Beijing Shijitan Hospital, Capital Medical University, Peking University Ninth School of Clinical Medicine, Beijing, China
| | - Yangyu Zhou
- Department of Respiratory and Critical Care, Beijing Shijitan Hospital, Capital Medical University, Peking University Ninth School of Clinical Medicine, Beijing, China
| | - Xuelei Zang
- Department of Respiratory and Critical Care, Beijing Shijitan Hospital, Capital Medical University, Peking University Ninth School of Clinical Medicine, Beijing, China
| | - Hengyu Deng
- School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Yitong Liu
- Department of Respiratory and Critical Care, Beijing Shijitan Hospital, Capital Medical University, Peking University Ninth School of Clinical Medicine, Beijing, China
| | - Dingxia Shen
- Department of Laboratory Medicine, the First Medical Centre, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
- *Correspondence: Dingxia Shen, ; Xinying Xue,
| | - Xinying Xue
- Department of Respiratory and Critical Care, Beijing Shijitan Hospital, Capital Medical University, Peking University Ninth School of Clinical Medicine, Beijing, China
- School of Clinical Medicine, Weifang Medical University, Weifang, China
- *Correspondence: Dingxia Shen, ; Xinying Xue,
| |
Collapse
|
12
|
Ha R, Keynan Y, Rueda ZV. Increased susceptibility to pneumonia due to tumour necrosis factor inhibition and prospective immune system rescue via immunotherapy. Front Cell Infect Microbiol 2022; 12:980868. [PMID: 36159650 PMCID: PMC9489861 DOI: 10.3389/fcimb.2022.980868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/15/2022] [Indexed: 11/22/2022] Open
Abstract
Immunomodulators such as tumour necrosis factor (TNF) inhibitors are used to treat autoimmune conditions by reducing the magnitude of the innate immune response. Dampened innate responses pose an increased risk of new infections by opportunistic pathogens and reactivation of pre-existing latent infections. The alteration in immune response predisposes to increased severity of infections. TNF inhibitors are used to treat autoimmune conditions such as rheumatoid arthritis, juvenile arthritis, psoriatic arthritis, transplant recipients, and inflammatory bowel disease. The efficacies of immunomodulators are shown to be varied, even among those that target the same pathways. Monoclonal antibody-based TNF inhibitors have been shown to induce stronger immunosuppression when compared to their receptor-based counterparts. The variability in activity also translates to differences in risk for infection, moreover, parallel, or sequential use of immunosuppressive drugs and corticosteroids makes it difficult to accurately attribute the risk of infection to a single immunomodulatory drug. Among recipients of TNF inhibitors, Mycobacterium tuberculosis has been shown to be responsible for 12.5-59% of all infections; Pneumocystis jirovecii has been responsible for 20% of all non-viral infections; and Legionella pneumophila infections occur at 13-21 times the rate of the general population. This review will outline the mechanism of immune modulation caused by TNF inhibitors and how they predispose to infection with a focus on Mycobacterium tuberculosis, Legionella pneumophila, and Pneumocystis jirovecii. This review will then explore and evaluate how other immunomodulators and host-directed treatments influence these infections and the severity of the resulting infection to mitigate or treat TNF inhibitor-associated infections alongside antibiotics.
Collapse
Affiliation(s)
- Ryan Ha
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
| | - Yoav Keynan
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
- Department of Community-Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Facultad de Medicina, Universidad Pontificia Bolivariana, Medellin, Colombia
| | - Zulma Vanessa Rueda
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
- Facultad de Medicina, Universidad Pontificia Bolivariana, Medellin, Colombia
| |
Collapse
|
13
|
Wang X, Liu P, Jiang Y, Han B, Yan L. The prophylactic effects of monoclonal antibodies targeting the cell wall Pmt4 protein epitopes of Candida albicans in a murine model of invasive candidiasis. Front Microbiol 2022; 13:992275. [PMID: 36081783 PMCID: PMC9446456 DOI: 10.3389/fmicb.2022.992275] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/04/2022] [Indexed: 11/13/2022] Open
Abstract
Candida albicans (C. albicans) is the most prevalent opportunistic human pathogen, accounting for approximately half of all clinical cases of candidemia. Resistance to the existing antifungal drugs is a major challenge in clinical therapy, necessitating the development and identification of novel therapeutic agents and potential treatment strategies. Monoclonal antibody-based immunotherapy represents a promising therapeutic strategy against disseminated candidiasis. Protein mannosyltransferase (Pmt4) encodes mannosyltransferases initiating O-mannosylation of secretory proteins and is essential for cell wall composition and virulence of C. albicans. Therefore, the Pmt4 protein of C. albicans is an attractive target for the discovery of alternative antibody agents against invasive C. albicans infections. In the present study, we found that monoclonal antibodies (mAbs) C12 and C346 specifically targeted the recombinant protein mannosyltransferase 4 (rPmt4p) of C. albicans. These mAbs were produced and secreted by hybridoma cells isolated from the spleen of mice that were initially immunized with the purified rPmt4p to generate IgG antibodies. The mAbs C12 and C346 exhibited high affinity to C. albicans whole cells. Remarkably, these mAbs reduced the fungal burden, alleviated inflammation in the kidneys, and prolonged the survival rate significantly in the murine model of systemic candidiasis. Moreover, they could activate macrophage opsonophagocytic killing and neutrophil killing of C. albicans strain in vitro. These results suggested that anti-rPmt4p mAbs may provide immunotherapeutic interventions against disseminated candidiasis via opsonophagocytosis and opsonic killing activity. Our findings provide evidence for mAbs as a therapeutic option for the treatment of invasive candidiasis.
Collapse
Affiliation(s)
- Xiaojuan Wang
- School of Pharmacy, Naval Medical University, Shanghai, China
- Department of Pharmacy, Minhang Hospital, Fudan University, Shanghai, China
| | - Peng Liu
- Department of Gastroenterology, Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yuanying Jiang
- Department of Pharmacology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Bing Han
- Department of Pharmacy, Minhang Hospital, Fudan University, Shanghai, China
- *Correspondence: Bing Han,
| | - Lan Yan
- School of Pharmacy, Naval Medical University, Shanghai, China
- Lan Yan,
| |
Collapse
|
14
|
Kabir KL, Ma B, Nussinov R, Shehu A. Fewer Dimensions, More Structures for Improved Discrete Models of Dynamics of Free versus Antigen-Bound Antibody. Biomolecules 2022; 12:biom12071011. [PMID: 35883567 PMCID: PMC9313177 DOI: 10.3390/biom12071011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/12/2022] [Accepted: 07/19/2022] [Indexed: 12/10/2022] Open
Abstract
Over the past decade, Markov State Models (MSM) have emerged as powerful methodologies to build discrete models of dynamics over structures obtained from Molecular Dynamics trajectories. The identification of macrostates for the MSM is a central decision that impacts the quality of the MSM but depends on both the selected representation of a structure and the clustering algorithm utilized over the featurized structures. Motivated by a large molecular system in its free and bound state, this paper investigates two directions of research, further reducing the representation dimensionality in a non-parametric, data-driven manner and including more structures in the computation. Rigorous evaluation of the quality of obtained MSMs via various statistical tests in a comparative setting firmly shows that fewer dimensions and more structures result in a better MSM. Many interesting findings emerge from the best MSM, advancing our understanding of the relationship between antibody dynamics and antibody–antigen recognition.
Collapse
Affiliation(s)
- Kazi Lutful Kabir
- Department of Computer Science, George Mason University, Fairfax, VA 22030, USA;
- Correspondence: ; Tel.: +1-571-201-5070
| | - Buyong Ma
- Engineering Research Center of Cell & Therapeutic Antibody School of Pharmacy, Shanghai Jiaotong University, Shanghai 200240, China;
| | - Ruth Nussinov
- Computational Structural Biology Section, Cancer Innovation Laboratory, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA;
| | - Amarda Shehu
- Department of Computer Science, George Mason University, Fairfax, VA 22030, USA;
| |
Collapse
|
15
|
Henß I, Kleinemeier C, Strobel L, Brock M, Löffler J, Ebel F. Characterization of Aspergillus terreus Accessory Conidia and Their Interactions With Murine Macrophages. Front Microbiol 2022; 13:896145. [PMID: 35783442 PMCID: PMC9245049 DOI: 10.3389/fmicb.2022.896145] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/27/2022] [Indexed: 11/13/2022] Open
Abstract
All Aspergillus species form phialidic conidia (PC) when the mycelium is in contact with the air. These small, asexual spores are ideally suited for an airborne dissemination in the environment. Aspergillus terreus and a few closely related species from section Terrei can additionally generate accessory conidia (AC) that directly emerge from the hyphal surface. In this study, we have identified galactomannan as a major surface antigen on AC that is largely absent from the surface of PC. Galactomannan is homogeneously distributed over the entire surface of AC and even detectable on nascent AC present on the hyphal surface. In contrast, β-glucans are only accessible in distinct structures that occur after separation of the conidia from the hyphal surface. During germination, AC show a very limited isotropic growth that has no detectable impact on the distribution of galactomannan. The AC of the strain used in this study germinate much faster than the corresponding PC, and they are more sensitive to desiccation than PC. During infection of murine J774 macrophages, AC are readily engulfed and trigger a strong tumor necrosis factor-alpha (TNFα) response. Both processes are not hampered by the presence of laminarin, which indicates that β-glucans only play a minor role in these interactions. In the phagosome, we observed that galactomannan, but not β-glucan, is released from the conidial surface and translocates to the host cell cytoplasm. AC persist in phagolysosomes, and many of them initiate germination within 24 h. In conclusion, we have identified galactomannan as a novel and major antigen on AC that clearly distinguishes them from PC. The role of this fungal-specific carbohydrate in the interactions with the immune system remains an open issue that needs to be addressed in future research.
Collapse
Affiliation(s)
- Isabell Henß
- Institute for Infectious Diseases and Zoonoses, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Christoph Kleinemeier
- Institute for Infectious Diseases and Zoonoses, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Lea Strobel
- Department of Internal Medicine II, University Hospital of Wuerzburg, Wuerzburg, Germany
| | - Matthias Brock
- Fungal Genetics and Biology, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Jürgen Löffler
- Department of Internal Medicine II, University Hospital of Wuerzburg, Wuerzburg, Germany
| | - Frank Ebel
- Institute for Infectious Diseases and Zoonoses, Ludwig-Maximilians-University Munich, Munich, Germany
- *Correspondence: Frank Ebel
| |
Collapse
|
16
|
Lian X, Scott-Thomas A, Lewis JG, Bhatia M, MacPherson SA, Zeng Y, Chambers ST. Monoclonal Antibodies and Invasive Aspergillosis: Diagnostic and Therapeutic Perspectives. Int J Mol Sci 2022; 23:ijms23105563. [PMID: 35628374 PMCID: PMC9146623 DOI: 10.3390/ijms23105563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 12/13/2022] Open
Abstract
Invasive aspergillosis (IA) is a life-threatening fungal disease that causes high morbidity and mortality in immunosuppressed patients. Early and accurate diagnosis and treatment of IA remain challenging. Given the broad range of non-specific clinical symptoms and the shortcomings of current diagnostic techniques, most patients are either diagnosed as “possible” or “probable” cases but not “proven”. Moreover, because of the lack of sensitive and specific tests, many high-risk patients receive an empirical therapy or a prolonged treatment of high-priced antifungal agents, leading to unnecessary adverse effects and a high risk of drug resistance. More precise diagnostic techniques alongside a targeted antifungal treatment are fundamental requirements for reducing the morbidity and mortality of IA. Monoclonal antibodies (mAbs) with high specificity in targeting the corresponding antigen(s) may have the potential to improve diagnostic tests and form the basis for novel IA treatments. This review summarizes the up-to-date application of mAb-based approaches in assisting IA diagnosis and therapy.
Collapse
Affiliation(s)
- Xihua Lian
- Department of Pathology and Biomedical Science, University of Otago, Christchurch 8140, New Zealand; (X.L.); (A.S.-T.); (J.G.L.); (M.B.); (S.A.M.)
- Department of Medical Imaging, The Second Clinical Medical School of Fujian Medical University, Quanzhou 362000, China
| | - Amy Scott-Thomas
- Department of Pathology and Biomedical Science, University of Otago, Christchurch 8140, New Zealand; (X.L.); (A.S.-T.); (J.G.L.); (M.B.); (S.A.M.)
| | - John G. Lewis
- Department of Pathology and Biomedical Science, University of Otago, Christchurch 8140, New Zealand; (X.L.); (A.S.-T.); (J.G.L.); (M.B.); (S.A.M.)
- Steroid and Immunobiochemistry Laboratory, Canterbury Health Laboratories, Christchurch 8140, New Zealand
| | - Madhav Bhatia
- Department of Pathology and Biomedical Science, University of Otago, Christchurch 8140, New Zealand; (X.L.); (A.S.-T.); (J.G.L.); (M.B.); (S.A.M.)
| | - Sean A. MacPherson
- Department of Pathology and Biomedical Science, University of Otago, Christchurch 8140, New Zealand; (X.L.); (A.S.-T.); (J.G.L.); (M.B.); (S.A.M.)
- Haematology Department, Christchurch Hospital, Christchurch 8011, New Zealand
| | - Yiming Zeng
- Department of Internal Medicine (Pulmonary and Critical Care Medicine), The Second Clinical Medical School of Fujian Medical University, Quanzhou 362000, China;
| | - Stephen T. Chambers
- Department of Pathology and Biomedical Science, University of Otago, Christchurch 8140, New Zealand; (X.L.); (A.S.-T.); (J.G.L.); (M.B.); (S.A.M.)
- Correspondence: ; Tel.: +64-3-364-0649
| |
Collapse
|
17
|
Portuondo Fuentes DL, Batista-Duharte A, Carvajal CC, de Oliveira CS, Borges JC, Téllez-Martínez D, Santana PA, Gauna A, Mercado L, Soleder BC, Inácio da Costa P, Quimbayo FG, Carlos IZ. A Sporothrix spp enolase derived multi-epitope vaccine confers protective response in BALB/c mice challenged with Sporothrix brasiliensis. Microb Pathog 2022; 166:105539. [PMID: 35447314 DOI: 10.1016/j.micpath.2022.105539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 04/01/2022] [Accepted: 04/11/2022] [Indexed: 10/18/2022]
Abstract
Sporotrichosis is a cosmopolitan mycosis caused by pathogenic species of Sporothrix genus, that in Brazil is often acquired by zoonotic transmission involved infected cats with S. brasiliensis. Previous studies showed that the Sporothrix spp. recombinant enolase (rSsEno), a multifunctional protein with immunogenic properties, could be a promising target for vaccination against sporotrichosis in cats. Nevertheless, the considerable sequence identity (62%) of SsEno with its feline counterpart is a great concern. Here, we report the identification in silico, chemical synthesis and biological validation of six peptides of SsEno with low sequence identity to its cat orthologue. All synthesized peptides exhibit B-cell epitopes on the molecular surface of SsEno and proved to be highly reactive with the serum of infected mice with S. brasiliensis and sera of cats with sporotrichosis. Interestingly, our study revealed that anti-peptide sera did not react with the recombinant enolase from Felis catus (cats, rFcEno), thus, may not trigger autoimmune response in these felines if used as a vaccine antigen. The immunization with peptide mixture (PeptMix) formulated with Freund adjuvant (FA), induced high levels of antigen-specific IgG, IgG1 and IgG2b antibodies that conferred protection upon passive transference in infected BALB/c mice with S. brasiliensis. We also observed, that the FA + PeptMix formulation induced a Th1/Th2/Th17 cytokine profile ex vivo, associated with protecting effect against the experimental sporotrichosis. Our results suggest that the six SsEno-derived peptides here evaluated, could be used as safe antigens for the development of vaccine strategies against feline sporotrichosis, whether prophylactic or therapeutic.
Collapse
Affiliation(s)
| | - Alexander Batista-Duharte
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Department of Clinical Analysis, Araraquara, SP, Brazil; GC01 Immunology and Allergy Group. Maimonides Biomedical Research Institute of Cordoba (IMIBIC). Reina Sofía University Hospital, IMIBIC Building, Córdoba, Spain.
| | - Constanza Cardenas Carvajal
- Nucleo Biotecnologıa Curauma (NBC), Pontificia Universidad Católica de Valparaíso, Campus Curauma, Valparaíso, Chile.
| | - Carlos S de Oliveira
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, SP, P.O. Box 780, 13560-970, Brazil.
| | - Júlio César Borges
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, SP, P.O. Box 780, 13560-970, Brazil.
| | - Damiana Téllez-Martínez
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Department of Clinical Analysis, Araraquara, SP, Brazil.
| | - Paula Andrea Santana
- Facultad de Ingeniería, Instituto de Ciencias Químicas Aplicadas, Universidad Autónoma de Chile, el Llano Subercaseaux 2801, San Miguel, Santiago, Chile.
| | - Adriana Gauna
- Nucleo Biotecnologıa Curauma (NBC), Pontificia Universidad Católica de Valparaíso, Campus Curauma, Valparaíso, Chile.
| | - Luis Mercado
- Grupo de Marcadores Inmunológicos, Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Avenida Universidad #330, 2373223, Valparaíso, Chile.
| | - Bruna Castilho Soleder
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Department of Clinical Analysis, Araraquara, SP, Brazil.
| | - Paulo Inácio da Costa
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Department of Clinical Analysis, Araraquara, SP, Brazil.
| | - Fanny Guzmán Quimbayo
- Nucleo Biotecnologıa Curauma (NBC), Pontificia Universidad Católica de Valparaíso, Campus Curauma, Valparaíso, Chile.
| | - Iracilda Zeppone Carlos
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Department of Clinical Analysis, Araraquara, SP, Brazil.
| |
Collapse
|
18
|
Luberto L, Neroni B, Gandini O, Fiscarelli EV, Salvatori G, Roscilli G, Marra E. Genetic Vaccination as a Flexible Tool to Overcome the Immunological Complexity of Invasive Fungal Infections. Front Microbiol 2021; 12:789774. [PMID: 34975811 PMCID: PMC8715041 DOI: 10.3389/fmicb.2021.789774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 11/25/2021] [Indexed: 11/13/2022] Open
Abstract
The COVID-19 pandemic has highlighted genetic vaccination as a powerful and cost-effective tool to counteract infectious diseases. Invasive fungal infections (IFI) remain a major challenge among immune compromised patients, particularly those undergoing allogeneic hematopoietic bone marrow transplantation (HSCT) or solid organ transplant (SOT) both presenting high morbidity and mortality rates. Candidiasis and Aspergillosis are the major fungal infections among these patients and the failure of current antifungal therapies call for new therapeutic aids. Vaccination represents a valid alternative, and proof of concept of the efficacy of this approach has been provided at clinical level. This review will analyze current understanding of antifungal immunology, with a particular focus on genetic vaccination as a suitable strategy to counteract these diseases.
Collapse
Affiliation(s)
- Laura Luberto
- Takis s.r.l., Rome, Italy
- *Correspondence: Laura Luberto,
| | - Bruna Neroni
- Cystic Fibrosis Diagnostic Section, U.O. Microbiology and Immunology Diagnostic, Department of Immunology and Laboratory Medicine, Children’s Hospital Bambino Gesù Organization IRCCS, Rome, Italy
| | - Orietta Gandini
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Ersilia Vita Fiscarelli
- Cystic Fibrosis Diagnostic Section, U.O. Microbiology and Immunology Diagnostic, Department of Immunology and Laboratory Medicine, Children’s Hospital Bambino Gesù Organization IRCCS, Rome, Italy
| | | | | | | |
Collapse
|
19
|
Del Bino L, Romano MR. Role of carbohydrate antigens in antifungal glycoconjugate vaccines and immunotherapy. DRUG DISCOVERY TODAY. TECHNOLOGIES 2021; 38:45-55. [PMID: 34895640 DOI: 10.1016/j.ddtec.2021.02.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 02/06/2021] [Accepted: 02/20/2021] [Indexed: 11/17/2022]
Abstract
The emergence of fungal infection is a growing public health concern that in the latest years is becoming a serious threat to humans, particularly for immunocompromised individuals. Invasive fungal infections (IFIs), which are associated with significant morbidity and mortality, are on the rise due to the availability of only a few old antifungal agents. In addition to this, the growing use of antibiotics makes the population increasingly susceptible to these infections. Since carbohydrates are the main component of the fungal cell wall, the study of fungal glycans as potential targets for the fight against IFIs has aroused much interest in recent decades. In most fungal species the saccharides of the core are made up of chitin and β-glucans, while the outer layer carbohydrates vary according to the fungal species, such as mannans for Candida albicans, galactomannans for Aspergillus fumigatus hyphae, α-glucans for Aspergillus fumigatus and Cryptococcus neoformans, glucuronoxylomannans (GXM) and galactoxylomannans (GalXM) for Criptococcus neoformans. Being surface antigens, fungal carbohydrates are a logical target for the development of antifungal glycoconjugate vaccines and for immunotherapy with monoclonal antibodies. This review summarizes recent findings on active and passive immunization strategies based on fungal carbohydrates explored preclinically for three of the major fungal pathogens: Candida albicans, Cryptococcus neoformans and Aspergillus fumigatus.
Collapse
|
20
|
The Role of B-Cells and Antibodies against Candida Vaccine Antigens in Invasive Candidiasis. Vaccines (Basel) 2021; 9:vaccines9101159. [PMID: 34696267 PMCID: PMC8540628 DOI: 10.3390/vaccines9101159] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/04/2021] [Accepted: 10/07/2021] [Indexed: 01/08/2023] Open
Abstract
Systemic candidiasis is an invasive fungal infection caused by members of the genus Candida. The recent emergence of antifungal drug resistance and increased incidences of infections caused by non-albicans Candida species merit the need for developing immune therapies against Candida infections. Although the role of cellular immune responses in anti-Candida immunity is well established, less is known about the role of humoral immunity against systemic candidiasis. This review summarizes currently available information on humoral immune responses induced by several promising Candida vaccine candidates, which have been identified in the past few decades. The protective antibody and B-cell responses generated by polysaccharide antigens such as mannan, β-glucan, and laminarin, as well as protein antigens like agglutinin-like sequence gene (Als3), secreted aspartyl proteinase (Sap2), heat shock protein (Hsp90), hyphally-regulated protein (Hyr1), hyphal wall protein (Hwp1), enolase (Eno), phospholipase (PLB), pyruvate kinase (Pk), fructose bisphosphate aldolase (Fba1), superoxide dismutase gene (Sod5) and malate dehydrogenase (Mdh1), are outlined. As per studies reviewed, antibodies induced in response to leading Candida vaccine candidates contribute to protection against systemic candidiasis by utilizing a variety of mechanisms such as opsonization, complement fixation, neutralization, biofilm inhibition, direct candidacidal activity, etc. The contributions of B-cells in controlling fungal infections are also discussed. Promising results using anti-Candida monoclonal antibodies for passive antibody therapy reinforces the need for developing antibody-based therapeutics including anti-idiotypic antibodies, single-chain variable fragments, peptide mimotopes, and antibody-derived peptides. Future research involving combinatorial immunotherapies using humanized monoclonal antibodies along with antifungal drugs/cytokines may prove beneficial for treating invasive fungal infections.
Collapse
|
21
|
Di Mambro T, Vanzolini T, Bruscolini P, Perez-Gaviro S, Marra E, Roscilli G, Bianchi M, Fraternale A, Schiavano GF, Canonico B, Magnani M. A new humanized antibody is effective against pathogenic fungi in vitro. Sci Rep 2021; 11:19500. [PMID: 34593880 PMCID: PMC8484667 DOI: 10.1038/s41598-021-98659-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 09/09/2021] [Indexed: 02/08/2023] Open
Abstract
Invasive fungal infections mainly affect patients undergoing transplantation, surgery, neoplastic disease, immunocompromised subjects and premature infants, and cause over 1.5 million deaths every year. The most common fungi isolated in invasive diseases are Candida spp., Cryptococcus spp., and Aspergillus spp. and even if four classes of antifungals are available (Azoles, Echinocandins, Polyenes and Pyrimidine analogues), the side effects of drugs and fungal acquired and innate resistance represent the major hurdles to be overcome. Monoclonal antibodies are powerful tools currently used as diagnostic and therapeutic agents in different clinical contexts but not yet developed for the treatment of invasive fungal infections. In this paper we report the development of the first humanized monoclonal antibody specific for β-1,3 glucans, a vital component of several pathogenic fungi. H5K1 has been tested on C. auris, one of the most urgent threats and resulted efficient both alone and in combination with Caspofungin and Amphotericin B showing an enhancement effect. Our results support further preclinical and clinical developments for the use of H5K1 in the treatment of patients in need.
Collapse
Affiliation(s)
- Tomas Di Mambro
- grid.12711.340000 0001 2369 7670Department of Biomolecular Sciences, University of Urbino “Carlo Bo”, 61029 Urbino, Italy ,Diatheva S.R.L, Via Sant’Anna 131/135, 61030 Cartoceto, Italy
| | - Tania Vanzolini
- grid.12711.340000 0001 2369 7670Department of Biomolecular Sciences, University of Urbino “Carlo Bo”, 61029 Urbino, Italy
| | - Pierpaolo Bruscolini
- grid.11205.370000 0001 2152 8769Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, 50018 Zaragoza, Spain ,grid.11205.370000 0001 2152 8769Departamento de Física Teórica, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Sergio Perez-Gaviro
- grid.11205.370000 0001 2152 8769Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, 50018 Zaragoza, Spain ,grid.11205.370000 0001 2152 8769Departamento de Física Teórica, Universidad de Zaragoza, 50009 Zaragoza, Spain ,grid.467120.6Centro Universitario de la Defensa, 50090 Zaragoza, Spain
| | - Emanuele Marra
- Takis S.R.L, Via di Castel Romano 100, 00128 Rome, Italy
| | | | - Marzia Bianchi
- grid.12711.340000 0001 2369 7670Department of Biomolecular Sciences, University of Urbino “Carlo Bo”, 61029 Urbino, Italy
| | - Alessandra Fraternale
- grid.12711.340000 0001 2369 7670Department of Biomolecular Sciences, University of Urbino “Carlo Bo”, 61029 Urbino, Italy
| | - Giuditta Fiorella Schiavano
- grid.12711.340000 0001 2369 7670Department of Humanities, University of Urbino “Carlo Bo”, 61029 Urbino, Italy
| | - Barbara Canonico
- grid.12711.340000 0001 2369 7670Department of Biomolecular Sciences, University of Urbino “Carlo Bo”, 61029 Urbino, Italy
| | - Mauro Magnani
- grid.12711.340000 0001 2369 7670Department of Biomolecular Sciences, University of Urbino “Carlo Bo”, 61029 Urbino, Italy ,Diatheva S.R.L, Via Sant’Anna 131/135, 61030 Cartoceto, Italy
| |
Collapse
|
22
|
X-linked immunodeficient (XID) mice exhibit high susceptibility to Cryptococcus gattii infection. Sci Rep 2021; 11:18397. [PMID: 34526536 PMCID: PMC8443669 DOI: 10.1038/s41598-021-97041-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 08/19/2021] [Indexed: 12/12/2022] Open
Abstract
Cryptococcosis is an opportunistic disease caused by the fungus Cryptococcus neoformans and Cryptococcus gattii. It starts as a pulmonary infection that can spread to other organs, such as the brain, leading to the most serious occurrence of the disease, meningoencephalitis. The humoral response has already been described in limiting the progression of cryptococcosis where the B-1 cell seems to be responsible for producing natural IgM antibodies, crucial for combating fungal infections. The role of the B-1 cell in C. neoformans infection has been initially described, however the role of the humoral response of B-1 cells has not yet been evaluated during C. gattii infections. In the present study we tried to unravel this issue using XID mice, a murine model deficient in the Btk protein which compromises the development of B-1 lymphocytes. We use the XID mice compared to BALB/c mice that are sufficient for the B-1 population during C. gattii infection. Our model of chronic lung infection revealed that XID mice, unlike the sufficient group of B-1, had early mortality with significant weight loss, in addition to reduced levels of IgM and IgG specific to GXM isolated from the capsule of C. neoformans. In addition to this, we observed an increased fungal load in the blood and in the brain. We described an increase in the capsular size of C. gattii and the predominant presence of cytokines with a Th2 profile was also observed in these animals. Thus, the present study strongly points to a higher susceptibility of the XID mouse to C. gattii, which suggests that the presence of B-1 cells and anti-GXM antibodies is fundamental during the control of infection by C. gattii.
Collapse
|
23
|
Karavalakis G, Yannaki E, Papadopoulou A. Reinforcing the Immunocompromised Host Defense against Fungi: Progress beyond the Current State of the Art. J Fungi (Basel) 2021; 7:jof7060451. [PMID: 34204025 PMCID: PMC8228486 DOI: 10.3390/jof7060451] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 12/11/2022] Open
Abstract
Despite the availability of a variety of antifungal drugs, opportunistic fungal infections still remain life-threatening for immunocompromised patients, such as those undergoing allogeneic hematopoietic cell transplantation or solid organ transplantation. Suboptimal efficacy, toxicity, development of resistant variants and recurrent episodes are limitations associated with current antifungal drug therapy. Adjunctive immunotherapies reinforcing the host defense against fungi and aiding in clearance of opportunistic pathogens are continuously gaining ground in this battle. Here, we review alternative approaches for the management of fungal infections going beyond the state of the art and placing an emphasis on fungus-specific T cell immunotherapy. Harnessing the power of T cells in the form of adoptive immunotherapy represents the strenuous protagonist of the current immunotherapeutic approaches towards combating invasive fungal infections. The progress that has been made over the last years in this field and remaining challenges as well, will be discussed.
Collapse
Affiliation(s)
- Georgios Karavalakis
- Hematology Department-Hematopoietic Cell Transplantation Unit, Gene and Cell Therapy Center, “George Papanikolaou” Hospital, 57010 Thessaloniki, Greece; (G.K.); (E.Y.)
| | - Evangelia Yannaki
- Hematology Department-Hematopoietic Cell Transplantation Unit, Gene and Cell Therapy Center, “George Papanikolaou” Hospital, 57010 Thessaloniki, Greece; (G.K.); (E.Y.)
- Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Anastasia Papadopoulou
- Hematology Department-Hematopoietic Cell Transplantation Unit, Gene and Cell Therapy Center, “George Papanikolaou” Hospital, 57010 Thessaloniki, Greece; (G.K.); (E.Y.)
- Correspondence: ; Tel.: +30-2313-307-693; Fax: +30-2313-307-521
| |
Collapse
|
24
|
Anti-glycan antibodies: roles in human disease. Biochem J 2021; 478:1485-1509. [PMID: 33881487 DOI: 10.1042/bcj20200610] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/23/2021] [Accepted: 03/26/2021] [Indexed: 02/07/2023]
Abstract
Carbohydrate-binding antibodies play diverse and critical roles in human health. Endogenous carbohydrate-binding antibodies that recognize bacterial, fungal, and other microbial carbohydrates prevent systemic infections and help maintain microbiome homeostasis. Anti-glycan antibodies can have both beneficial and detrimental effects. For example, alloantibodies to ABO blood group carbohydrates can help reduce the spread of some infectious diseases, but they also impose limitations for blood transfusions. Antibodies that recognize self-glycans can contribute to autoimmune diseases, such as Guillain-Barre syndrome. In addition to endogenous antibodies that arise through natural processes, a variety of vaccines induce anti-glycan antibodies as a primary mechanism of protection. Some examples of approved carbohydrate-based vaccines that have had a major impact on human health are against pneumococcus, Haemophilus influeanza type b, and Neisseria meningitidis. Monoclonal antibodies specifically targeting pathogen associated or tumor associated carbohydrate antigens (TACAs) are used clinically for both diagnostic and therapeutic purposes. This review aims to highlight some of the well-studied and critically important applications of anti-carbohydrate antibodies.
Collapse
|
25
|
Rodriguez-de la Noval C, Ruiz Mendoza S, de Souza Gonçalves D, da Silva Ferreira M, Honorato L, Peralta JM, Nimrichter L, Guimarães AJ. Protective Efficacy of Lectin-Fc(IgG) Fusion Proteins In Vitro and in a Pulmonary Aspergillosis In Vivo Model. J Fungi (Basel) 2020; 6:jof6040250. [PMID: 33120893 PMCID: PMC7712007 DOI: 10.3390/jof6040250] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/21/2020] [Accepted: 10/23/2020] [Indexed: 12/14/2022] Open
Abstract
Aspergillosis cases by Aspergillus fumigatus have increased, along with fungal resistance to antifungals, urging the development of new therapies. Passive immunization targeting common fungal antigens, such as chitin and β-glucans, are promising and would eliminate the need of species-level diagnosis, thereby expediting the therapeutic intervention. However, these polysaccharides are poorly immunogenic. To overcome this drawback, we developed the lectin-Fc(IgG) fusion proteins, Dectin1-Fc(IgG2a), Dectin1-Fc(IgG2b) and wheat germ agglutinin (WGA)-Fc(IgG2a), based on their affinity to β-1,3-glucan and chitooligomers, respectively. The WGA-Fc(IgG2a) previously demonstrated antifungal activity against Histoplasma capsulatum, Cryptococcus neoformans and Candida albicans. In the present work, we evaluated the antifungal properties of these lectin-Fc(s) against A. fumigatus. Lectin-Fc(IgG)(s) bound in a dose-dependent manner to germinating conidia and this binding increased upon conidia germination. Both lectin-Fc(IgG)(s) displayed in vitro antifungal effects, such as inhibition of conidia germination, a reduced length of germ tubes and a diminished biofilm formation. Lectin-Fc(IgG)(s) also enhanced complement deposition on conidia and macrophage effector functions, such as increased phagocytosis and killing of fungi. Finally, administration of the Dectin-1-Fc(IgG2b) and WGA-Fc(IgG2a) protected mice infected with A. fumigatus, with a 20% survival and a doubled life-span of the infected mice, which was correlated to a fungal burden reduction in lungs and brains of treated animals. These results confirm the potential of lectin-Fc(IgGs)(s) as a broad-spectrum antifungal therapeutic.
Collapse
Affiliation(s)
- Claudia Rodriguez-de la Noval
- Laboratório de Bioquímica e Imunologia das Micoses, Departamento de Microbiologia e Parasitologia, Instituto Biomédico, Universidade Federal Fluminense, Niterói 24020-141, RJ, Brazil; (C.R.-d.l.N.); (S.R.M.); (D.d.S.G.); (M.d.S.F.)
- Laboratório de Glicobiologia de Eucariotos, Instituto de Microbiologia Professor Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (L.H.); (L.N.)
| | - Susana Ruiz Mendoza
- Laboratório de Bioquímica e Imunologia das Micoses, Departamento de Microbiologia e Parasitologia, Instituto Biomédico, Universidade Federal Fluminense, Niterói 24020-141, RJ, Brazil; (C.R.-d.l.N.); (S.R.M.); (D.d.S.G.); (M.d.S.F.)
- Departamento de Imunologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil;
| | - Diego de Souza Gonçalves
- Laboratório de Bioquímica e Imunologia das Micoses, Departamento de Microbiologia e Parasitologia, Instituto Biomédico, Universidade Federal Fluminense, Niterói 24020-141, RJ, Brazil; (C.R.-d.l.N.); (S.R.M.); (D.d.S.G.); (M.d.S.F.)
- Pós-Graduação em Doenças Infecciosas e Parasitárias, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-913, RJ, Brazil
| | - Marina da Silva Ferreira
- Laboratório de Bioquímica e Imunologia das Micoses, Departamento de Microbiologia e Parasitologia, Instituto Biomédico, Universidade Federal Fluminense, Niterói 24020-141, RJ, Brazil; (C.R.-d.l.N.); (S.R.M.); (D.d.S.G.); (M.d.S.F.)
- Departamento de Imunologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil;
| | - Leandro Honorato
- Laboratório de Glicobiologia de Eucariotos, Instituto de Microbiologia Professor Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (L.H.); (L.N.)
| | - José Mauro Peralta
- Departamento de Imunologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil;
- Pós-Graduação em Doenças Infecciosas e Parasitárias, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-913, RJ, Brazil
| | - Leonardo Nimrichter
- Laboratório de Glicobiologia de Eucariotos, Instituto de Microbiologia Professor Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (L.H.); (L.N.)
| | - Allan J. Guimarães
- Laboratório de Bioquímica e Imunologia das Micoses, Departamento de Microbiologia e Parasitologia, Instituto Biomédico, Universidade Federal Fluminense, Niterói 24020-141, RJ, Brazil; (C.R.-d.l.N.); (S.R.M.); (D.d.S.G.); (M.d.S.F.)
- Programa de Pós-Graduação em Microbiologia e Parasitologia Aplicadas (PPGMPA), Instituto Biomédico, Universidade Federal Fluminense, Rua Professor Hernani Pires de Melo 101, São Domingos, Niterói 24210-130, RJ, Brazil
- Correspondence: ; Tel.: +55-21-2629-2410
| |
Collapse
|
26
|
Immune defence to invasive fungal infections: A comprehensive review. Biomed Pharmacother 2020; 130:110550. [DOI: 10.1016/j.biopha.2020.110550] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/20/2020] [Accepted: 07/20/2020] [Indexed: 12/14/2022] Open
|
27
|
Vaccination with Secreted Aspartyl Proteinase 2 Protein from Candida parapsilosis Can Enhance Survival of Mice during C. tropicalis-Mediated Systemic Candidiasis. Infect Immun 2020; 88:IAI.00312-20. [PMID: 32661125 DOI: 10.1128/iai.00312-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 07/09/2020] [Indexed: 12/21/2022] Open
Abstract
The rising incidence of non-albicans Candida species globally, along with the emergence of drug resistance, is a cause for concern. This study investigated the protective efficacy of secreted aspartyl proteinase 2 (Sap2) in systemic C. tropicalis infection. Vaccination with recombinant Sap2 (rSap2) protein from C. parapsilosis enhanced survival of mice compared to rSap2 vaccinations from C. albicans (P = 0.02), C. tropicalis (P = 0.06), and sham immunization (P = 0.04). Compared to sham-immunized mice, the fungal CFU number was significantly reduced in organs of Sap2-parapsilosis-immunized mice. Histopathologically, increased neutrophilic recruitment was observed in Sap2-parapsilosis- and Sap2-tropicalis-immunized mice. Among different rSap2 proteins, Sap2-parapsilosis vaccination induced increased titers of Sap2-specific Ig, IgG, and IgM antibodies, which could bind whole fungus. Between different groups, sera from Sap2-parapsilosis-vaccinated mice exhibited increased C. tropicalis biofilm inhibition ability in vitro and enhanced neutrophil-mediated fungal killing. Passive transfer of anti-Sap2-parapsilosis immune serum in naive mice significantly reduced fungal burdens compared to those in mice receiving anti-sham immune serum. Higher numbers of plasma cells and Candida-binding B cells in Sap2-vaccinated mice suggest a role of B cells during early stages of Sap2-mediated immune response. Additionally, increased levels of Th1/Th2/Th17 cytokines observed in Sap2-parapsilosis-vaccinated mice indicate immunomodulatory properties of Sap2. Epitope analysis performed using identified B-cell epitopes provides a basis to understand differences in immunogenicity observed among Sap2-antigens and can aid the development of a multivalent or multiepitope anti-Candida vaccine(s). In summary, our results suggest that Sap2-parapsilosis vaccination can improve mouse survival during C. tropicalis infection by inducing both humoral and cellular immunity, and higher titers of Sap2-induced antibodies are beneficial during systemic candidiasis.
Collapse
|
28
|
Advances in Fungal Peptide Vaccines. J Fungi (Basel) 2020; 6:jof6030119. [PMID: 32722452 PMCID: PMC7558412 DOI: 10.3390/jof6030119] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/09/2020] [Accepted: 07/22/2020] [Indexed: 02/06/2023] Open
Abstract
Vaccination is one of the greatest public health achievements in the past century, protecting and improving the quality of life of the population worldwide. However, a safe and effective vaccine for therapeutic or prophylactic treatment of fungal infections is not yet available. The lack of a vaccine for fungi is a problem of increasing importance as the incidence of diverse species, including Paracoccidioides, Aspergillus, Candida, Sporothrix, and Coccidioides, has increased in recent decades and new drug-resistant pathogenic fungi are emerging. In fact, our antifungal armamentarium too frequently fails to effectively control or cure mycoses, leading to high rates of mortality and morbidity. With this in mind, many groups are working towards identifying effective and safe vaccines for fungal pathogens, with a particular focus of generating vaccines that will work in individuals with compromised immunity who bear the major burden of infections from these microbes. In this review, we detail advances in the development of vaccines for pathogenic fungi, and highlight new methodologies using immunoproteomic techniques and bioinformatic tools that have led to new vaccine formulations, like peptide-based vaccines.
Collapse
|
29
|
Xin H. Effects of immune suppression in murine models of disseminated Candida glabrata and Candida tropicalis infection and utility of a synthetic peptide vaccine. Med Mycol 2020; 57:745-756. [PMID: 30521033 DOI: 10.1093/mmy/myy122] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 09/05/2018] [Accepted: 11/20/2018] [Indexed: 12/14/2022] Open
Abstract
Candida species are the second most frequent cause of fungal infections worldwide. Current knowledge of immunity to Candida has been gleaned almost exclusively from studies on Candida albicans, the most common disease-causing species. Knowledge of immunity to non-albicans Candida (NAC) species is still at an early stage due to the lack of tractable animal models with which to study these important pathogens. This is partly because many NAC species are not usually pathogenic in mouse models of candidiasis. In this study, we established an immunosuppressed mouse model of disseminated candidiasis by the two clinically important NAC species, C. glabrata and C. tropicalis. The inbred mouse strains, A/J and BALB/c, show distinct susceptibilities to disseminated Candida infection. A/J mice, deficient for complement C5, are more susceptible to disseminated infection with both C. glabrata and C. tropicalis compared to BALB/c mice, the latter having functional C5. Here we show that peptide-pulsed dendritic cell (DC) vaccination with a peptide derived from a C. tropicalis cell surface protein, significantly improved survival and reduced the fungal burdens of disseminated candidiasis in these immunocompromised mice. Importantly, this study is the first report of protective efficacy conferred by a peptide vaccine against medically important NAC species in immunosuppressed hosts. Establishing this experimental mouse model provides an important tool to further understand pathogenesis and host resistance in Candida infection. Significantly, our findings also demonstrate how this model can be used to evaluate new control strategies against candidiasis, such as vaccines.
Collapse
Affiliation(s)
- Hong Xin
- Louisiana State University Health Sciences Center, Microbiology and Immunology
| |
Collapse
|
30
|
Posch W, Wilflingseder D, Lass-Flörl C. Immunotherapy as an Antifungal Strategy in Immune Compromised Hosts. CURRENT CLINICAL MICROBIOLOGY REPORTS 2020. [DOI: 10.1007/s40588-020-00141-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Abstract
Purpose of Review
IFIs cause high morbidity and mortality in the immunocompromised host worldwide. Although highly effective, conventional antifungal chemotherapy faces new challenges due to late diagnosis and increasing numbers of drug-resistant fungal strains. Thus, antifungal immunotherapy represents a viable treatment option, and recent advances in the field are summarized in this review.
Recent Findings
Antifungal immunotherapies include application of immune cells as well as the administration of cytokines, growth factors, and antibodies. Novel strategies to treat IFIs in the immunocompromised host target intracellular signaling pathways using SMTs such as checkpoint inhibitors.
Summary
Studies using cytokines or chemokines exerted a potential adjuvant role to conventional antifungal therapy, but issues on toxicity for some agents have to be resolved. Cell-based immunotherapies are very labor-intense and costly, but NK cell transfer and CAR T cell therapy provide exciting strategies to combat IFIs. Antibody-mediated protection and checkpoint inhibition are additional novel immunotherapeutic approaches.
Collapse
|
31
|
Catellani M, Lico C, Cerasi M, Massa S, Bromuro C, Torosantucci A, Benvenuto E, Capodicasa C. Optimised production of an anti-fungal antibody in Solanaceae hairy roots to develop new formulations against Candida albicans. BMC Biotechnol 2020; 20:15. [PMID: 32164664 PMCID: PMC7069033 DOI: 10.1186/s12896-020-00607-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 02/24/2020] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Infections caused by fungi are often refractory to conventional therapies and urgently require the development of novel options, such as immunotherapy. To produce therapeutic antibodies, a plant-based expression platform is an attractive biotechnological strategy compared to mammalian cell cultures. In addition to whole plants, hairy roots (HR) cultures can be used, representing an expression system easy to build up, with indefinite growth while handled under containment conditions. RESULTS In this study the production in HR of a recombinant antibody, proved to be a good candidate for human immunotherapy against fungal infections, is reported. Expression and secretion of this antibody, in an engineered single chain (scFvFc) format, by HR from Nicotiana benthamiana and Solanum lycopersicum have been evaluated with the aim of directly using the deriving extract or culture medium against pathogenic fungi. Although both Solanaceae HR showed good expression levels (up to 68 mg/kg), an optimization of rhizosecretion was only obtained for N. benthamiana HR. A preliminary assessment to explain this result highlighted the fact that not only the presence of proteases, but also the chemical characteristics of the growth medium, can influence antibody yield, with implications on recombinant protein production in HR. Finally, the antifungal activity of scFvFc 2G8 antibody produced in N. benthamiana HR was evaluated in Candida albicans growth inhibition assays, evidencing encouraging results. CONCLUSIONS Production of this anti-fungal antibody in HR of N. benthamiana and S. lycopersicum elucidated factors affecting pharming in this system and allowed to obtain promising ready-to-use immunotherapeutics against C. albicans.
Collapse
Affiliation(s)
- Marcello Catellani
- Department of Sustainability, Laboratory Biotechnologies, ENEA, Casaccia Research Center, Via Anguillarese 301, 00123 Rome, Italy
| | - Chiara Lico
- Department of Sustainability, Laboratory Biotechnologies, ENEA, Casaccia Research Center, Via Anguillarese 301, 00123 Rome, Italy
| | - Mauro Cerasi
- Department of Sustainability, Laboratory Biotechnologies, ENEA, Casaccia Research Center, Via Anguillarese 301, 00123 Rome, Italy
| | - Silvia Massa
- Department of Sustainability, Laboratory Biotechnologies, ENEA, Casaccia Research Center, Via Anguillarese 301, 00123 Rome, Italy
| | - Carla Bromuro
- Department of Infectious, Parasitic and Immune-Mediated Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Antonella Torosantucci
- Department of Infectious, Parasitic and Immune-Mediated Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Eugenio Benvenuto
- Department of Sustainability, Laboratory Biotechnologies, ENEA, Casaccia Research Center, Via Anguillarese 301, 00123 Rome, Italy
| | - Cristina Capodicasa
- Department of Sustainability, Laboratory Biotechnologies, ENEA, Casaccia Research Center, Via Anguillarese 301, 00123 Rome, Italy
| |
Collapse
|
32
|
Boniche C, Rossi SA, Kischkel B, Vieira Barbalho F, Nogueira D’Aurea Moura Á, Nosanchuk JD, Travassos LR, Pelleschi Taborda C. Immunotherapy against Systemic Fungal Infections Based on Monoclonal Antibodies. J Fungi (Basel) 2020; 6:jof6010031. [PMID: 32121415 PMCID: PMC7151209 DOI: 10.3390/jof6010031] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 02/22/2020] [Accepted: 02/25/2020] [Indexed: 12/17/2022] Open
Abstract
The increasing incidence in systemic fungal infections in humans has increased focus for the development of fungal vaccines and use of monoclonal antibodies. Invasive mycoses are generally difficult to treat, as most occur in vulnerable individuals, with compromised innate and adaptive immune responses. Mortality rates in the setting of our current antifungal drugs remain excessively high. Moreover, systemic mycoses require prolonged durations of antifungal treatment and side effects frequently occur, particularly drug-induced liver and/or kidney injury. The use of monoclonal antibodies with or without concomitant administration of antifungal drugs emerges as a potentially efficient treatment modality to improve outcomes and reduce chemotherapy toxicities. In this review, we focus on the use of monoclonal antibodies with experimental evidence on the reduction of fungal burden and prolongation of survival in in vivo disease models. Presently, there are no licensed monoclonal antibodies for use in the treatment of systemic mycoses, although the potential of such a vaccine is very high as indicated by the substantial promising results from several experimental models.
Collapse
Affiliation(s)
- Camila Boniche
- Biomedical Sciences Institute, Department of Microbiology, University of São Paulo, Sao Paulo 05508-000, Brazil; (C.B.); (S.A.R.); (B.K.); (F.V.B.)
| | - Suélen Andreia Rossi
- Biomedical Sciences Institute, Department of Microbiology, University of São Paulo, Sao Paulo 05508-000, Brazil; (C.B.); (S.A.R.); (B.K.); (F.V.B.)
| | - Brenda Kischkel
- Biomedical Sciences Institute, Department of Microbiology, University of São Paulo, Sao Paulo 05508-000, Brazil; (C.B.); (S.A.R.); (B.K.); (F.V.B.)
| | - Filipe Vieira Barbalho
- Biomedical Sciences Institute, Department of Microbiology, University of São Paulo, Sao Paulo 05508-000, Brazil; (C.B.); (S.A.R.); (B.K.); (F.V.B.)
| | - Ágata Nogueira D’Aurea Moura
- Tropical Medicine Institute, Department of Dermatology, Faculty of Medicine, University of Sao Paulo, Sao Paulo 05403-000, Brazil;
| | - Joshua D. Nosanchuk
- Departments of Medicine (Division of Infectious Diseases) and Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY 10461, USA;
| | - Luiz R. Travassos
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo, Sao Paulo 04021-001, Brazil;
| | - Carlos Pelleschi Taborda
- Biomedical Sciences Institute, Department of Microbiology, University of São Paulo, Sao Paulo 05508-000, Brazil; (C.B.); (S.A.R.); (B.K.); (F.V.B.)
- Tropical Medicine Institute, Department of Dermatology, Faculty of Medicine, University of Sao Paulo, Sao Paulo 05403-000, Brazil;
- Correspondence:
| |
Collapse
|
33
|
Ulrich S, Ebel F. Monoclonal Antibodies as Tools to Combat Fungal Infections. J Fungi (Basel) 2020; 6:jof6010022. [PMID: 32033168 PMCID: PMC7151206 DOI: 10.3390/jof6010022] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/29/2020] [Accepted: 01/31/2020] [Indexed: 12/12/2022] Open
Abstract
Antibodies represent an important element in the adaptive immune response and a major tool to eliminate microbial pathogens. For many bacterial and viral infections, efficient vaccines exist, but not for fungal pathogens. For a long time, antibodies have been assumed to be of minor importance for a successful clearance of fungal infections; however this perception has been challenged by a large number of studies over the last three decades. In this review, we focus on the potential therapeutic and prophylactic use of monoclonal antibodies. Since systemic mycoses normally occur in severely immunocompromised patients, a passive immunization using monoclonal antibodies is a promising approach to directly attack the fungal pathogen and/or to activate and strengthen the residual antifungal immune response in these patients.
Collapse
|
34
|
Hooft van Huijsduijnen R, Kojima S, Carter D, Okabe H, Sato A, Akahata W, Wells TNC, Katsuno K. Reassessing therapeutic antibodies for neglected and tropical diseases. PLoS Negl Trop Dis 2020; 14:e0007860. [PMID: 31999695 PMCID: PMC6991954 DOI: 10.1371/journal.pntd.0007860] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
In the past two decades there has been a significant expansion in the number of new therapeutic monoclonal antibodies (mAbs) that are approved by regulators. The discovery of these new medicines has been driven primarily by new approaches in inflammatory diseases and oncology, especially in immuno-oncology. Other recent successes have included new antibodies for use in viral diseases, including HIV. The perception of very high costs associated with mAbs has led to the assumption that they play no role in prophylaxis for diseases of poverty. However, improvements in antibody-expression yields and manufacturing processes indicate this is a cost-effective option for providing protection from many types of infection that should be revisited. Recent technology developments also indicate that several months of protection could be achieved with a single dose. Moreover, new methods in B cell sorting now enable the systematic identification of high-quality antibodies from humanized mice, or patients. This Review discusses the potential for passive immunization against schistosomiasis, fungal infections, dengue, and other neglected diseases.
Collapse
Affiliation(s)
| | | | - Dee Carter
- School of Life and Environmental Sciences and The Marie Bashir Institute, University of Sydney, NSW, Australia
| | | | | | - Wataru Akahata
- VLP Therapeutics, Gaithersburg, Maryland, United States of America
| | | | - Kei Katsuno
- Global Health Innovative Technology Fund, Tokyo, Japan
- London School of Hygiene and Tropical Medicine, London, United Kingdom
- Nagasaki University School of Tropical Medicine and Global Health, Nagasaki, Japan
| |
Collapse
|
35
|
Schatzman SS, Peterson RL, Teka M, He B, Cabelli DE, Cormack BP, Culotta VC. Copper-only superoxide dismutase enzymes and iron starvation stress in Candida fungal pathogens. J Biol Chem 2019; 295:570-583. [PMID: 31806705 DOI: 10.1074/jbc.ra119.011084] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 11/27/2019] [Indexed: 12/11/2022] Open
Abstract
Copper (Cu)-only superoxide dismutases (SOD) represent a newly characterized class of extracellular SODs important for virulence of several fungal pathogens. Previous studies of the Cu-only enzyme SOD5 from the opportunistic fungal pathogen Candida albicans have revealed that the active-site structure and Cu binding of SOD5 strongly deviate from those of Cu/Zn-SODs in its animal hosts, making Cu-only SODs a possible target for future antifungal drug design. C. albicans also expresses a Cu-only SOD4 that is highly similar in sequence to SOD5, but is poorly characterized. Here, we compared the biochemical, biophysical, and cell biological properties of C. albicans SOD4 and SOD5. Analyzing the recombinant proteins, we found that, similar to SOD5, Cu-only SOD4 can react with superoxide at rates approaching diffusion limits. Both SODs were monomeric and they exhibited similar binding affinities for their Cu cofactor. In C. albicans cultures, SOD4 and SOD5 were predominantly cell wall proteins. Despite these similarities, the SOD4 and SOD5 genes strongly differed in transcriptional regulation. SOD5 was predominantly induced during hyphal morphogenesis, together with a fungal burst in reactive oxygen species. Conversely, SOD4 expression was specifically up-regulated by iron (Fe) starvation and controlled by the Fe-responsive transcription factor SEF1. Interestingly, Candida tropicalis and the emerging fungal pathogen Candida auris contain a single SOD5-like SOD rather than a pair, and in both fungi, this SOD was induced by Fe starvation. This unexpected link between Fe homeostasis and extracellular Cu-SODs may help many fungi adapt to Fe-limited conditions of their hosts.
Collapse
Affiliation(s)
- Sabrina S Schatzman
- Department of Biochemistry and Molecular Biology, The Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland 21205
| | - Ryan L Peterson
- Department of Biochemistry and Molecular Biology, The Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland 21205
| | - Mieraf Teka
- Department of Biochemistry and Molecular Biology, The Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland 21205
| | - Bixi He
- Department of Biochemistry and Molecular Biology, The Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland 21205
| | - Diane E Cabelli
- Chemistry Department, Brookhaven National Laboratories, Upton, New York 11973
| | - Brendan P Cormack
- Department of Molecular Biology and Genetics, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Valeria C Culotta
- Department of Biochemistry and Molecular Biology, The Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland 21205.
| |
Collapse
|
36
|
Niu L, Liu X, Ma Z, Yin Y, Sun L, Yang L, Zheng Y. Fungal keratitis: Pathogenesis, diagnosis and prevention. Microb Pathog 2019; 138:103802. [PMID: 31626916 DOI: 10.1016/j.micpath.2019.103802] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 10/12/2019] [Accepted: 10/12/2019] [Indexed: 02/08/2023]
Abstract
As a kind of serious, potentially sight-threatening corneal infections with poor prognosis, fungal keratitis can bring a heavy economic burden to patients and seriously affect the quality of life, especially those in developing countries where fungal keratitis is more prevalent. Typical clinical features include immune rings, satellite lesions, pseudopods, hypha moss, hypopyon and endothelial plaques. The ideal therapeutic effects could not be achieved by current treatments for many reasons. Therefore, under the current status, understanding the pathogenesis, early diagnosis and prevention strategies might be of great importance. Here, in this review, we discuss the recent progresses that may advance our understanding of pathogenesis, early diagnosis and prevention of fungal keratitis.
Collapse
Affiliation(s)
- Lingzhi Niu
- Eye Center, The Second Hospital of Jilin University, Changchun 130041, China
| | - Xin Liu
- Eye Center, The Second Hospital of Jilin University, Changchun 130041, China
| | - Zhiming Ma
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun 130041, China
| | - Yuan Yin
- Eye Center, The Second Hospital of Jilin University, Changchun 130041, China
| | - Lixia Sun
- Department of Ophthalmology, Yanbian University Affiliated Hospital, Yanbian University, Yanji, 133000, China
| | - Longfei Yang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun 130041, China.
| | - Yajuan Zheng
- Eye Center, The Second Hospital of Jilin University, Changchun 130041, China.
| |
Collapse
|
37
|
Schubert M, Xue S, Ebel F, Vaggelas A, Krylov VB, Nifantiev NE, Chudobová I, Schillberg S, Nölke G. Monoclonal Antibody AP3 Binds Galactomannan Antigens Displayed by the Pathogens Aspergillus flavus, A. fumigatus, and A. parasiticus. Front Cell Infect Microbiol 2019; 9:234. [PMID: 31380292 PMCID: PMC6646516 DOI: 10.3389/fcimb.2019.00234] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 06/14/2019] [Indexed: 12/16/2022] Open
Abstract
Aspergillus fumigatus and A. flavus are the fungal pathogens responsible for most cases of invasive aspergillosis (IA). Early detection of the circulating antigen galactomannan (GM) in serum allows the prompt application of effective antifungal therapy, thus improving the survival rate of IA patients. However, the use of monoclonal antibodies (mAbs) for the diagnosis of IA is often associated with false positives due to cross-reaction with bacterial polysaccharides. More specific antibodies are therefore needed. Here we describe the characterization of the Aspergillus-specific mAb AP3 (IgG1κ), including the precise identification of its corresponding antigen. The antibody was generated using A. parasiticus cell wall fragments and was shown to bind several Aspergillus species. Immunofluorescence microscopy revealed that AP3 binds a cell wall antigen, but immunoprecipitation and enzyme-linked immunosorbent assays showed that the antigen is also secreted into the culture medium. The inability of AP3 to bind the A. fumigatus galactofuranose (Galf )-deficient mutant ΔglfA confirmed that Galf residues are part of the epitope. Several lines of evidence strongly indicated that AP3 recognizes the Galf residues of O-linked glycans on Aspergillus proteins. Glycoarray analysis revealed that AP3 recognizes oligo-[β-D-Galf-1,5] sequences containing four or more residues with longer chains more efficiently. We also showed that AP3 captures GM in serum, suggesting it may be useful as a diagnostic tool for patients with IA.
Collapse
Affiliation(s)
- Max Schubert
- Department of Plant Biotechnology, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
| | - Sheng Xue
- Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, China
| | - Frank Ebel
- Faculty of Veterinary Medicine, Institute for Infectious Diseases and Zoonoses, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Annegret Vaggelas
- Faculty of Veterinary Medicine, Institute for Infectious Diseases and Zoonoses, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Vadim B Krylov
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Nikolay E Nifantiev
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Ivana Chudobová
- Department of Plant Biotechnology, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
| | - Stefan Schillberg
- Department of Plant Biotechnology, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany.,Institute for Phytopathology, Justus Liebig University Giessen, Giessen, Germany
| | - Greta Nölke
- Department of Plant Biotechnology, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
| |
Collapse
|
38
|
Gebremariam T, Alkhazraji S, Soliman SSM, Gu Y, Jeon HH, Zhang L, French SW, Stevens DA, Edwards JE, Filler SG, Uppuluri P, Ibrahim AS. Anti-CotH3 antibodies protect mice from mucormycosis by prevention of invasion and augmenting opsonophagocytosis. SCIENCE ADVANCES 2019; 5:eaaw1327. [PMID: 31206021 PMCID: PMC6561750 DOI: 10.1126/sciadv.aaw1327] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 05/03/2019] [Indexed: 05/06/2023]
Abstract
Mucorales are fungal pathogens that cause mucormycosis, a lethal angioinvasive disease. Previously, we demonstrated that Rhizopus, the most common cause of mucormycosis, invades endothelial cells by binding of its CotH proteins to the host receptor GRP78. Loss of CotH3 renders the fungus noninvasive and attenuates Rhizopus virulence in mice. Here, we demonstrate that polyclonal antibodies raised against peptides of CotH3 protected diabetic ketoacidotic (DKA) and neutropenic mice from mucormycosis compared to mice treated with control preimmune serum. Passive immunization with anti-CotH3 antibodies enhanced neutrophil inlfux and triggered Fc receptor-mediated enhanced opsonophagocytosis killing of Rhizopus delemar. Monoclonal antibodies raised against the CotH3 peptide also protected immunosuppressed mice from mucormycosis caused by R. delemar and other Mucorales and acted synergistically with antifungal drugs in protecting DKA mice from R. delemar infection. These data identify anti-CotH3 antibodies as a promising adjunctive immunotherapeutic option against a deadly disease that often poses a therapeutic challenge.
Collapse
Affiliation(s)
- Teclegiorgis Gebremariam
- Los Angeles Biomedical Research Institute at Harbor–University of California at Los Angeles (UCLA) Medical Center, Torrance, CA, USA
| | - Sondus Alkhazraji
- Los Angeles Biomedical Research Institute at Harbor–University of California at Los Angeles (UCLA) Medical Center, Torrance, CA, USA
| | - Sameh S. M. Soliman
- Sharjah Institute for Medical Research, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Yiyou Gu
- Los Angeles Biomedical Research Institute at Harbor–University of California at Los Angeles (UCLA) Medical Center, Torrance, CA, USA
| | - Heewon H. Jeon
- Los Angeles Biomedical Research Institute at Harbor–University of California at Los Angeles (UCLA) Medical Center, Torrance, CA, USA
| | - Lina Zhang
- Los Angeles Biomedical Research Institute at Harbor–University of California at Los Angeles (UCLA) Medical Center, Torrance, CA, USA
- College of Wildlife Resources, Northeast Forestry University, Harbin, China
| | - Samuel W. French
- Los Angeles Biomedical Research Institute at Harbor–University of California at Los Angeles (UCLA) Medical Center, Torrance, CA, USA
- Department of Pathology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - David A. Stevens
- California Institute for Medical Research, San Jose, CA, USA
- The Division of Infectious Diseases and Geographic Medicine, Stanford University, Stanford, CA, USA
| | - John E. Edwards
- Los Angeles Biomedical Research Institute at Harbor–University of California at Los Angeles (UCLA) Medical Center, Torrance, CA, USA
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Scott G. Filler
- Los Angeles Biomedical Research Institute at Harbor–University of California at Los Angeles (UCLA) Medical Center, Torrance, CA, USA
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Priya Uppuluri
- Los Angeles Biomedical Research Institute at Harbor–University of California at Los Angeles (UCLA) Medical Center, Torrance, CA, USA
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Ashraf S. Ibrahim
- Los Angeles Biomedical Research Institute at Harbor–University of California at Los Angeles (UCLA) Medical Center, Torrance, CA, USA
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Corresponding author.
| |
Collapse
|
39
|
Nimrichter L, Rodrigues ML, Del Poeta M. Exploiting Lipids to Develop Anticryptococcal Vaccines. CURRENT TROPICAL MEDICINE REPORTS 2019. [DOI: 10.1007/s40475-019-00178-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
40
|
Matveev AL, Krylov VB, Khlusevich YA, Baykov IK, Yashunsky DV, Emelyanova LA, Tsvetkov YE, Karelin AA, Bardashova AV, Wong SSW, Aimanianda V, Latgé JP, Tikunova NV, Nifantiev NE. Novel mouse monoclonal antibodies specifically recognizing β-(1→3)-D-glucan antigen. PLoS One 2019; 14:e0215535. [PMID: 31022215 PMCID: PMC6483564 DOI: 10.1371/journal.pone.0215535] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 04/03/2019] [Indexed: 01/27/2023] Open
Abstract
β-(1→3)-D-Glucan is an essential component of the fungal cell wall. Mouse monoclonal antibodies (mAbs) against synthetic nona-β-(1→3)-D-glucoside conjugated with bovine serum albumin (BSA) were generated using hybridoma technology. The affinity constants of two selected mAbs, 3G11 and 5H5, measured by a surface plasmon resonance biosensor assay using biotinylated nona-β-(1→3)-D-glucan as the ligand, were approximately 11 nM and 1.9 nM, respectively. The glycoarray, which included a series of synthetic oligosaccharide derivatives representing β-glucans with different lengths of oligo-β-(1→3)-D-glucoside chains, demonstrated that linear tri-, penta- and nonaglucoside, as well as a β-(1→6)-branched octasaccharide, were recognized by mAb 5H5. By contrast, only linear oligo-β-(1→3)-D-glucoside chains that were not shorter than pentaglucosides (but not the branched octaglucoside) were ligands for mAb 3G11. Immunolabelling indicated that 3G11 and 5H5 interact with both yeasts and filamentous fungi, including species from Aspergillus, Candida, Penicillium genera and Saccharomyces cerevisiae, but not bacteria. Both mAbs could inhibit the germination of Aspergillus fumigatus conidia during the initial hours and demonstrated synergy with the antifungal fluconazole in killing C. albicans in vitro. In addition, mAbs 3G11 and 5H5 demonstrated protective activity in in vivo experiments, suggesting that these β-glucan-specific mAbs could be useful in combinatorial antifungal therapy.
Collapse
Affiliation(s)
- Andrey L. Matveev
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Vadim B. Krylov
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Yana A. Khlusevich
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Ivan K. Baykov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Dmitry V. Yashunsky
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Ljudmila A. Emelyanova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Yury E. Tsvetkov
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Alexander A. Karelin
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Alevtina V. Bardashova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Sarah S. W. Wong
- Aspergillus Unit, Institut Pasteur, Paris, France
- Molecular Mycology Unit, Institut Pasteur, Paris, France
| | - Vishukumar Aimanianda
- Aspergillus Unit, Institut Pasteur, Paris, France
- Molecular Mycology Unit, Institut Pasteur, Paris, France
| | - Jean-Paul Latgé
- Aspergillus Unit, Institut Pasteur, Paris, France
- * E-mail: (JPL); (NVT); (NEN)
| | - Nina V. Tikunova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
- * E-mail: (JPL); (NVT); (NEN)
| | - Nikolay E. Nifantiev
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
- * E-mail: (JPL); (NVT); (NEN)
| |
Collapse
|
41
|
Kakoschke TK, Kleinemeier C, Langenmayer MC, Ebel F. Tape mount immunostaining: a versatile method for immunofluorescence analysis of fungi. Future Microbiol 2019; 14:275-282. [PMID: 30757912 DOI: 10.2217/fmb-2018-0283] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM Immunofluorescence microscopy is a powerful technique to detect surface antigens and study their distribution. Analysis of fungi is often hampered by their weak adherence to glass. We therefore established a novel immunofluorescence staining method to overcome this problem. MATERIALS & METHODS Fungal material from colonies is bound to adhesive tape and stained with antibodies. RESULTS The obtained samples had very good optical quality, showing low unspecific background staining and allowing analysis by confocal laser scanning microscopy. We have exemplified applying the new method to study the distribution of galactomannan on conidiophores of Aspergillus fumigatus and of β-glucans on Malassezia pachydermatis. CONCLUSION Tape mount immunostaining facilitates analysis of fungal surface molecules and provides a base for expeditious diagnostic procedures.
Collapse
Affiliation(s)
- Tamara K Kakoschke
- Faculty of Medicine, Max-von-Pettenkofer-Institute, LMU Munich, Germany.,Department of Oral & Maxillofacial Surgery & Facial Plastic Surgery, University Hospital, LMU Munich, Germany
| | - Christoph Kleinemeier
- Department of Veterinary Sciences, Institute for Infectious Diseases & Zoonoses, Bacteriology & Mycology, LMU Munich, Germany
| | - Martin C Langenmayer
- Department of Veterinary Sciences, Institute for Infectious Diseases & Zoonoses, Bacteriology & Mycology, LMU Munich, Germany
| | - Frank Ebel
- Department of Veterinary Sciences, Institute for Infectious Diseases & Zoonoses, Bacteriology & Mycology, LMU Munich, Germany
| |
Collapse
|
42
|
Di Mambro T, Guerriero I, Aurisicchio L, Magnani M, Marra E. The Yin and Yang of Current Antifungal Therapeutic Strategies: How Can We Harness Our Natural Defenses? Front Pharmacol 2019; 10:80. [PMID: 30804788 PMCID: PMC6370704 DOI: 10.3389/fphar.2019.00080] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/21/2019] [Indexed: 12/19/2022] Open
Abstract
Fungal infections have aroused much interest over the last years because of their involvement in several human diseases. Immunocompromission due to transplant-related therapies and malignant cancer treatments are risk factors for invasive fungal infections, but also aggressive surgery, broad-spectrum antibiotics and prosthetic devices are frequently associated with infectious diseases. Current therapy is based on the administration of antifungal drugs, but the occurrence of resistant strains to the most common molecules has become a serious health-care problem. New antifungal agents are urgently needed and it is essential to identify fungal molecular targets that could offer alternatives for development of treatments. The fungal cell wall and plasma membrane are the most important structures that offer putative new targets which can be modulated in order to fight microbial infections. The development of monoclonal antibodies against new targets is a valid therapeutic strategy, both to solve resistance problems and to support the immune response, especially in immunocompromised hosts. In this review, we summarize currently used antifungal agents and propose novel therapeutic approaches, including new fungal molecular targets to be considered for drug development.
Collapse
Affiliation(s)
- Tomas Di Mambro
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Urbino, Italy.,Diatheva s.r.l., Cartoceto, Italy
| | - Ilaria Guerriero
- Takis s.r.l., Rome, Italy.,Veterinary Immunotherapy and Translational Research, Rome, Italy
| | - Luigi Aurisicchio
- Takis s.r.l., Rome, Italy.,Veterinary Immunotherapy and Translational Research, Rome, Italy
| | - Mauro Magnani
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Urbino, Italy.,Diatheva s.r.l., Cartoceto, Italy
| | - Emanuele Marra
- Takis s.r.l., Rome, Italy.,Veterinary Immunotherapy and Translational Research, Rome, Italy
| |
Collapse
|
43
|
Yoon HA, Nakouzi A, Chang CC, Kuniholm MH, Carreño LJ, Wang T, Ndung’u T, Lewin SR, French MA, Pirofski LA. Association Between Plasma Antibody Responses and Risk for Cryptococcus-Associated Immune Reconstitution Inflammatory Syndrome. J Infect Dis 2019; 219:420-428. [PMID: 30010905 PMCID: PMC6325352 DOI: 10.1093/infdis/jiy447] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 07/13/2018] [Indexed: 01/12/2023] Open
Abstract
Background Initiation of antiretroviral therapy (ART) in human immunodeficiency virus (HIV)-infected individuals with cryptococcal meningitis places them at risk for Cryptococcus-associated immune reconstitution inflammatory syndrome (C-IRIS). The relationship between antibody immunity and C-IRIS risk has not been investigated. Methods We compared plasma levels of immunoglobulins, C. neoformans glucuronoxylomannan (GXM) capsule-specific and laminarin (Lam)-binding IgM and IgG, and percentages of peripheral blood total and memory B cells between 27 HIV-infected patients with CM who developed C-IRIS and 63 who did not, and evaluated associations of these parameters with risk of C-IRIS. Results Prior to initiation of ART, plasma IgM, Lam-binding IgM (Lam-IgM), Lam-IgG, and GXM-IgM levels were significantly lower in patients who developed C-IRIS than those who did not. Multivariate analysis revealed significant inverse associations between C-IRIS and IgM (P = .0003), Lam-IgM (P = .0005), Lam-IgG (P = .002), and GXM-IgM (P = .002) independent of age, sex, HIV viral load, CD4+ T-cell count, and cerebrospinal fluid fungal burden. There were no associations between C-IRIS and total or memory B cells. Discussion Antibody profiles that include plasma IgM, Lam-IgM, Lam-IgG, and/or GXM-IgM may have value in furthering our understanding of C-IRIS pathogenesis and hold promise as candidate biomarkers of C-IRIS risk.
Collapse
Affiliation(s)
- Hyun Ah Yoon
- Department of Medicine, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York
| | - Antonio Nakouzi
- Department of Microbiology and Immunology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York
| | - Christina C Chang
- Department of Infectious Diseases, Alfred Hospital and Monash University, Melbourne, Australia
| | - Mark H Kuniholm
- Department of Epidemiology and Biostatistics, University at Albany, Rensselaer, New York
| | - Leandro J Carreño
- Millennium Institute on Immunology and Immunotherapy, Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Tao Wang
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York
| | - Thumbi Ndung’u
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R Mandela School of Medicine, University of KwaZulu-Natal
- Africa Health Research Institute, Durban, South Africa
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge
- Max Planck Institute for Infection Biology, Berlin, Germany
| | - Sharon R Lewin
- Department of Infectious Diseases, Alfred Hospital and Monash University, Melbourne, Australia
- The Peter Doherty Institute for Infection and Immunity, University of Melbourne and Royal Melbourne Hospital
| | - Martyn A French
- University of Western Australia Medical School and School of Biomedical Sciences, Perth, Australia
| | - Liise-anne Pirofski
- Department of Medicine, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York
| |
Collapse
|
44
|
Zhao J, Nussinov R, Ma B. Antigen binding allosterically promotes Fc receptor recognition. MAbs 2019; 11:58-74. [PMID: 30212263 PMCID: PMC6343797 DOI: 10.1080/19420862.2018.1522178] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 08/10/2018] [Accepted: 09/04/2018] [Indexed: 12/11/2022] Open
Abstract
A key question in immunology is whether antigen recognition and Fc receptor (FcR) binding are allosterically linked. This question is also relevant for therapeutic antibody design. Antibody Fab and Fc domains are connected by flexible unstructured hinge region. Fc chains have conserved glycosylation sites at Asn297, with each conjugated to a core heptasaccharide and forming biantennary Fc glycan. The glycans modulate the Fc conformations and functions. It is well known that the antibody Fab and Fc domains and glycan affect antibody activity, but whether these elements act independently or synergistically is still uncertain. We simulated four antibody complexes: free antibody, antigen-bound antibody, FcR-bound antibody, and an antigen-antibody-FcR complex. We found that, in the antibody's "T/Y" conformation, the glycans, and the Fc domain all respond to antigen binding, with the antibody population shifting to two dominant clusters, both with the Fc-receptor binding site open. The simulations reveal that the Fc-glycan-receptor complexes also segregate into two conformational clusters, one corresponding to the antigen-free antibody-FcR baseline binding, and the other with an antigen-enhanced antibody-FcR interaction. Our study confirmed allosteric communications in antibody-antigen recognition and following FcR activation. Even though we observed allosteric communications through the IgG domains, the most important mechanism that we observed is the communication via population shift, stimulated by antigen binding and propagating to influence FcR recognition.
Collapse
Affiliation(s)
- Jun Zhao
- Cancer and Inflammation Program, National Cancer Institute, Frederick, Maryland, USA
| | - Ruth Nussinov
- Basic Science Program, Leidos Biomedical Research, Inc., Cancer and Inflammation Program, National Cancer Institute, Frederick, Maryland, USA
- Sackler Inst. of Molecular Medicine, Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Buyong Ma
- Basic Science Program, Leidos Biomedical Research, Inc., Cancer and Inflammation Program, National Cancer Institute, Frederick, Maryland, USA
| |
Collapse
|
45
|
Pedraza-Sánchez S, Méndez-León JI, Gonzalez Y, Ventura-Ayala ML, Herrera MT, Lezana-Fernández JL, Bellanti JA, Torres M. Oral Administration of Human Polyvalent IgG by Mouthwash as an Adjunctive Treatment of Chronic Oral Candidiasis. Front Immunol 2018; 9:2956. [PMID: 30627128 PMCID: PMC6309162 DOI: 10.3389/fimmu.2018.02956] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 11/30/2018] [Indexed: 12/02/2022] Open
Abstract
Candida albicans is a commensal fungus that can cause disease ranging in severity from moderate to severe mucosal infections to more serious life-threating disseminated infections in severely immunocompromised hosts. Chronic mucocutaneous candidiasis (CMC) occurs in patients with mutations in genes affecting IL-17-mediated immunity, such as STAT3, AIRE, RORC, CARD9, IL12B, and IL12RB1, or gain of function (GOF) mutations in STAT1. New strategies for the treatment of candidiasis are needed because of the increased burden of infections and the emergence of drug-resistant strains. In this study, we investigated an aspect of the role of antibodies in the control of C. albicans infection. We tested in vitro the effects of C. albicans opsonization with commercial human polyvalent intravenous IgG (IV IgG) on NADPH oxidase activity and killing of the fungi by blood leukocytes from 11 healthy donors and found a significant enhancement in both phenomena that was improved by IV IgG opsonization. Then, we hypothesized that the opsonization of Candida in vivo could help its elimination by mucosal phagocytes in human patients with mucocutaneous candidiasis. We tested a novel adjunctive treatment for oral candidiasis in humans based on topical treatment with IV IgG. For this purpose, we choose two pediatric patients with well-characterized primary immunodeficiencies who are susceptible to CMC. Two 8-year-old female patients with an autosomal recessive mutation in the IL12RB1 gene (P1, with oral candidiasis) and a GOF mutation in STAT1 (P2, with severe CMC persistent since the age of 8 months and resistant to pharmacological treatments) were treated with IV IgG administered daily three times a day as a mouthwash over the course of 2 weeks. The treatment with the IV IgG mouthwash reduced C. albicans mouth infection by 98 and 70% in P1 and P2, respectively, after 13 days, and complete fungal clearance was observed after complementary nystatin and caspofungin treatments, respectively. Therefore, treatment of oral candidiasis with human polyvalent IgG administered as a mouthwash helps eliminate mucosal infection in humans, circumventing drug resistance, and opening its potential use in patients with primary or transient immunodeficiency.
Collapse
Affiliation(s)
- Sigifredo Pedraza-Sánchez
- Unidad de Bioquímica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | | | - Yolanda Gonzalez
- Departamento de Investigación en Microbiología, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - María Laura Ventura-Ayala
- Unidad de Bioquímica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - María Teresa Herrera
- Departamento de Investigación en Microbiología, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | | | - Joseph A Bellanti
- Department of Pediatrics and Microbiology-Immunology, Georgetown University Medical Center, Washington, DC, United States
| | - Martha Torres
- Departamento de Investigación en Microbiología, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| |
Collapse
|
46
|
Lauruschkat CD, Einsele H, Loeffler J. Immunomodulation as a Therapy for Aspergillus Infection: Current Status and Future Perspectives. J Fungi (Basel) 2018; 4:jof4040137. [PMID: 30558125 PMCID: PMC6308942 DOI: 10.3390/jof4040137] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/09/2018] [Accepted: 12/10/2018] [Indexed: 12/30/2022] Open
Abstract
Invasive aspergillosis (IA) is the most serious life-threatening infectious complication of intensive remission induction chemotherapy and allogeneic stem cell transplantation in patients with a variety of hematological malignancies. Aspergillus fumigatus is the most commonly isolated species from cases of IA. Despite the various improvements that have been made with preventative strategies and the development of antifungal drugs, there is an urgent need for new therapeutic approaches that focus on strategies to boost the host’s immune response, since immunological recovery is recognized as being the major determinant of the outcome of IA. Here, we aim to summarize current knowledge about a broad variety of immunotherapeutic approaches against IA, including therapies based on the transfer of distinct immune cell populations, and the administration of cytokines and antibodies.
Collapse
Affiliation(s)
- Chris D Lauruschkat
- Department of Internal Medicine II, University Hospital Wuerzburg, WÜ4i, Building C11, 97080 Wuerzburg, Germany.
| | - Hermann Einsele
- Department of Internal Medicine II, University Hospital Wuerzburg, WÜ4i, Building C11, 97080 Wuerzburg, Germany.
| | - Juergen Loeffler
- Department of Internal Medicine II, University Hospital Wuerzburg, WÜ4i, Building C11, 97080 Wuerzburg, Germany.
| |
Collapse
|
47
|
Rudkin FM, Raziunaite I, Workman H, Essono S, Belmonte R, MacCallum DM, Johnson EM, Silva LM, Palma AS, Feizi T, Jensen A, Erwig LP, Gow NAR. Single human B cell-derived monoclonal anti-Candida antibodies enhance phagocytosis and protect against disseminated candidiasis. Nat Commun 2018; 9:5288. [PMID: 30538246 PMCID: PMC6290022 DOI: 10.1038/s41467-018-07738-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 11/13/2018] [Indexed: 01/10/2023] Open
Abstract
The high global burden of over one million annual lethal fungal infections reflects a lack of protective vaccines, late diagnosis and inadequate chemotherapy. Here, we have generated a unique set of fully human anti-Candida monoclonal antibodies (mAbs) with diagnostic and therapeutic potential by expressing recombinant antibodies from genes cloned from the B cells of patients suffering from candidiasis. Single class switched memory B cells isolated from donors serum-positive for anti-Candida IgG were differentiated in vitro and screened against recombinant Candida albicans Hyr1 cell wall protein and whole fungal cell wall preparations. Antibody genes from Candida-reactive B cell cultures were cloned and expressed in Expi293F human embryonic kidney cells to generate a panel of human recombinant anti-Candida mAbs that demonstrate morphology-specific, high avidity binding to the cell wall. The species-specific and pan-Candida mAbs generated through this technology display favourable properties for diagnostics, strong opsono-phagocytic activity of macrophages in vitro, and protection in a murine model of disseminated candidiasis. Late diagnosis and ineffective treatment of fungal infections lead to high mortality. Here, Rudkin et al. generate anti-Candida human monoclonal antibodies with diagnostic and therapeutic potential, by expressing recombinant antibodies from genes cloned from B cells of patients suffering candidiasis.
Collapse
Affiliation(s)
- Fiona M Rudkin
- Medical Research Council Centre for Medical Mycology at the University of Aberdeen, Aberdeen, AB25 2ZD, UK
| | - Ingrida Raziunaite
- Medical Research Council Centre for Medical Mycology at the University of Aberdeen, Aberdeen, AB25 2ZD, UK.,Division of Infection and Immunity, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, EH25 9RG, UK
| | - Hillary Workman
- Global Biotherapeutic Technologies, Pfizer Inc, Cambridge Kendall Square, Cambridge, MA, 02139, USA
| | - Sosthene Essono
- Global Biotherapeutic Technologies, Pfizer Inc, Cambridge Kendall Square, Cambridge, MA, 02139, USA.,HiFiBiO, 325 Vassar Street, Cambridge, MA, 02139, USA
| | - Rodrigo Belmonte
- Medical Research Council Centre for Medical Mycology at the University of Aberdeen, Aberdeen, AB25 2ZD, UK.,MSD Animal Health Innovation AS, Thormøhlensgate 55, N-5006, Bergen, Norway
| | - Donna M MacCallum
- Medical Research Council Centre for Medical Mycology at the University of Aberdeen, Aberdeen, AB25 2ZD, UK
| | - Elizabeth M Johnson
- National Infection Service, PHE South West Laboratory, Science Quarter, Southmead Hospital, Bristol, BS10 5NB, UK
| | - Lisete M Silva
- Glycosciences Laboratory, Department of Medicine, Imperial College London, Du Cane Road, W12 0NN, UK
| | - Angelina S Palma
- UCIBIO-REQUIMTE, Department of Chemistry, Faculty of Science and Technology, NOVA University of Lisbon, Lisbon, 1099-085, Portugal
| | - Ten Feizi
- Glycosciences Laboratory, Department of Medicine, Imperial College London, Du Cane Road, W12 0NN, UK
| | - Allan Jensen
- Global Biotherapeutic Technologies, Pfizer Inc, Cambridge Kendall Square, Cambridge, MA, 02139, USA.,H. Lundbeck, Ottiliavej 9, 2500, Valby, Denmark
| | - Lars P Erwig
- Medical Research Council Centre for Medical Mycology at the University of Aberdeen, Aberdeen, AB25 2ZD, UK.,Galvani Bioelectronics, 980 Great West Road, Brentford, TW8 9GS, UK
| | - Neil A R Gow
- Medical Research Council Centre for Medical Mycology at the University of Aberdeen, Aberdeen, AB25 2ZD, UK. .,School of Biosciences, University of Exeter, Geoffrey Pope Building, Exeter, EX4 4QD, UK.
| |
Collapse
|
48
|
Nami S, Mohammadi R, Vakili M, Khezripour K, Mirzaei H, Morovati H. Fungal vaccines, mechanism of actions and immunology: A comprehensive review. Biomed Pharmacother 2018; 109:333-344. [PMID: 30399567 DOI: 10.1016/j.biopha.2018.10.075] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 10/02/2018] [Accepted: 10/14/2018] [Indexed: 11/28/2022] Open
Abstract
Fungal infections include a wide range of opportunistic and invasive diseases. Two of four major fatal diseases in patients with human immunodeficiency virus (HIV) infection are related to the fungal infections, cryptococcosis, and pneumocystosis. Disseminated candidiasis and different clinical forms of aspergillosis annually impose expensive medical costs to governments and hospitalized patients and ultimately lead to high mortality rates. Therefore, urgent implementations are necessary to prevent the expansion of these diseases. Designing an effective vaccine is one of the most important approaches in this field. So far, numerous efforts have been carried out in developing an effective vaccine against fungal infections. Some of these challenges engaged in different stages of clinical trials but none of them could be approved by the United States Food and Drug Administration (FDA). Here, in addition to have a comprehensive overview on the data from studied vaccine programs, we will discuss the immunology response against fungal infections. Moreover, it will be attempted to clarify the underlying immune mechanisms of vaccines targeting different fungal infections that are crucial for designing an effective vaccination strategy.
Collapse
Affiliation(s)
- Sanam Nami
- Department of Medical Mycology and Parasitology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Rasoul Mohammadi
- Department of Medical Parasitology and Mycology, School of Medicine/Infectious Diseases and Tropical Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahshid Vakili
- Department of Medical Mycology and Parasitology/Invasive Fungi Research Center (IFRC), School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Kimia Khezripour
- Department of Pharmacotherapy, School of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamid Morovati
- Department of Medical Mycology and Parasitology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
49
|
Richard N, Marti L, Varrot A, Guillot L, Guitard J, Hennequin C, Imberty A, Corvol H, Chignard M, Balloy V. Human Bronchial Epithelial Cells Inhibit Aspergillus fumigatus Germination of Extracellular Conidia via FleA Recognition. Sci Rep 2018; 8:15699. [PMID: 30356167 PMCID: PMC6200801 DOI: 10.1038/s41598-018-33902-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 10/06/2018] [Indexed: 12/27/2022] Open
Abstract
Aspergillus fumigatus is an environmental filamentous fungus that may act as an opportunistic pathogen causing a variety of diseases, including asthma or allergic bronchopulmonary aspergillosis, and infection, ranging from asymptomatic colonization to invasive pulmonary form, especially in immunocompromised patients. This fungus is characterized by different morphotypes including conidia which are the infective propagules able to germinate into hyphae. Due to their small size (2–3 µm), conidia released in the air can reach the lower respiratory tract. The objective of this study was to characterize the interactions between conidia and bronchial epithelial cells. To this end, we studied the role of bronchial epithelial cells, i.e., the BEAS-2B cell line and human primary cells, in conidial germination of a laboratory strain and three clinical strains of A. fumigatus. Microscopic observations and galactomannan measurements demonstrated that contact between epithelial cells and conidia leads to the inhibition of conidia germination. We demonstrated that this fungistatic process is not associated with the release of any soluble components nor internalization by the epithelial cells. We highlight that this antifungal process involves the phosphoinositide 3-kinase pathway on the host cellular side and the lectin FleA on the fungal side. Collectively, our results show that bronchial epithelial cells attenuate fungal virulence by inhibiting germination of extracellular conidia, thus preventing the morphological change from conidia to filaments, which is responsible for tissue invasion.
Collapse
Affiliation(s)
- Nicolas Richard
- Sorbonne Université, UPMC Univ. Paris 06, Inserm, Centre de Recherche Saint-Antoine Paris, Paris, France
| | - Léa Marti
- Sorbonne Université, UPMC Univ. Paris 06, Inserm, Centre de Recherche Saint-Antoine Paris, Paris, France
| | - Annabelle Varrot
- Université Grenoble Alpes, CNRS, CERMAV, 38000, Grenoble, France
| | - Loïc Guillot
- Sorbonne Université, UPMC Univ. Paris 06, Inserm, Centre de Recherche Saint-Antoine Paris, Paris, France
| | - Juliette Guitard
- Sorbonne Université, UPMC Univ. Paris 06, Inserm, Centre de Recherche Saint-Antoine Paris, Paris, France.,Service de Parasitologie-Mycologie, Hôpital St Antoine, AP-HP, Paris, France
| | - Christophe Hennequin
- Sorbonne Université, UPMC Univ. Paris 06, Inserm, Centre de Recherche Saint-Antoine Paris, Paris, France.,Service de Parasitologie-Mycologie, Hôpital St Antoine, AP-HP, Paris, France
| | - Anne Imberty
- Université Grenoble Alpes, CNRS, CERMAV, 38000, Grenoble, France
| | - Harriet Corvol
- Sorbonne Université, UPMC Univ. Paris 06, Inserm, Centre de Recherche Saint-Antoine Paris, Paris, France.,Pneumologie Pédiatrique, AP-HP, Hôpital Trousseau, Paris, France
| | - Michel Chignard
- Sorbonne Université, UPMC Univ. Paris 06, Inserm, Centre de Recherche Saint-Antoine Paris, Paris, France
| | - Viviane Balloy
- Sorbonne Université, UPMC Univ. Paris 06, Inserm, Centre de Recherche Saint-Antoine Paris, Paris, France.
| |
Collapse
|
50
|
Chupácová J, Borghi E, Morace G, Los A, Bujdáková H. Anti-biofilm activity of antibody directed against surface antigen complement receptor 3-related protein-comparison of Candida albicans and Candida dubliniensis. Pathog Dis 2018; 76:4791528. [PMID: 29315379 DOI: 10.1093/femspd/ftx127] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 12/27/2017] [Indexed: 11/13/2022] Open
Abstract
Candida albicans and C. dubliniensis are related yeasts that differ in the expression of virulence-associated proteins involved in adherence and biofilm development. CR3-RP (complement receptor 3-related protein) is one of the surface antigens expressed by Candida species. The main objective of this research was to elucidate the effect of the polyclonal anti-CR3-RP antibody (Ab) on adherence and the biofilm formed by C. albicans SC5314 and C. dubliniensis CBS 7987 and two clinical isolates in vitro, ex vivo and in vivo. A comparison of species, and of treated vs. non-treated with the anti-CR3-RP Ab showed a reduction in adherence (22%-41%) that was dependent on the time point of evaluation (60, 90 or 120 min), but did not prove to be species-dependent. Confocal microscopy revealed a decreased thickness in biofilms formed by both species after pre-treatment with the anti-CR3-RP Ab. This observation was confirmed ex vivo by immunohistochemistry analysis of biofilms formed on mouse tongues. Moreover, anti-CR3-RP Ab administration, 1 h post-infection, has been shown to promote larval survival compared to the control group in a Galleria mellonella infection model. Our data suggest a potential activity of the anti-CR3-RP Ab relevant to immunotherapy or vaccine development against biofilm-associated Candida infections.
Collapse
Affiliation(s)
- Jaroslava Chupácová
- Department of Microbiology and Virology, Comenius University in Bratislava, Faculty of Natural Sciences, Ilkovicova 6, 84215 Bratislava, Slovakia
| | - Elisa Borghi
- Università degli Studi di Milano, Department of Health Sciences, San Paolo Medical School, Via A. di Rudini 8, 20142 Milan, Italy
| | - Giulia Morace
- Università degli Studi di Milano, Department of Health Sciences, San Paolo Medical School, Via A. di Rudini 8, 20142 Milan, Italy
| | - Agata Los
- Department of Microbiology and Virology, Comenius University in Bratislava, Faculty of Natural Sciences, Ilkovicova 6, 84215 Bratislava, Slovakia
| | - Helena Bujdáková
- Department of Microbiology and Virology, Comenius University in Bratislava, Faculty of Natural Sciences, Ilkovicova 6, 84215 Bratislava, Slovakia
| |
Collapse
|