1
|
King B, Larsen M, Ikenga A, Sim C. Suppression of the gene encoding PDZ domain-containing protein decreases cold tolerance and overwintering survival of the mosquito, Culex pipiens (Culicidae: Diptera). JOURNAL OF MEDICAL ENTOMOLOGY 2023; 60:690-697. [PMID: 37235642 PMCID: PMC10653151 DOI: 10.1093/jme/tjad059] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 04/14/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023]
Abstract
In diapausing mosquitoes, cold tolerance and prolonged lifespan are important features that are crucial for overwintering success. In the mosquito Culex pipiens, we suggest that PDZ domain-containing protein (PDZ) (post synaptic density protein [PSD95], drosophila disc large tumor suppressor [Dlg1], and zonula occludens-1 protein [zo-1]) domain-containing protein is involved with these diapause features for overwintering survival in Culex mosquitoes. The expression level of pdz was significantly higher in diapausing adult females in the early stage in comparison to their nondiapausing counterparts. Suppression of the gene that encodes PDZ by RNA interference significantly decreased actin accumulation in the midgut of early-stage adult diapausing females. Inhibition of pdz also significantly reduced the survivability of diapausing females which indicates that this protein could play a key role in preserving the midgut tissues during early diapause.
Collapse
Affiliation(s)
- Bryan King
- Department of Biology, Baylor University, Waco, TX 76798, USA
| | - Mazie Larsen
- Department of Biology, Baylor University, Waco, TX 76798, USA
| | - Arinze Ikenga
- Department of Biology, Baylor University, Waco, TX 76798, USA
| | - Cheolho Sim
- Department of Biology, Baylor University, Waco, TX 76798, USA
| |
Collapse
|
2
|
Short CA, Hahn DA. Fat enough for the winter? Does nutritional status affect diapause? JOURNAL OF INSECT PHYSIOLOGY 2023; 145:104488. [PMID: 36717056 DOI: 10.1016/j.jinsphys.2023.104488] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
Many insects enter a dormant state termed diapause in anticipation of seasonal inhospitable conditions. Insects drastically reduce their feeding during diapause. Their reduced nutrient intake is paired with substantial nutrient costs: maintaining basal metabolism during diapause, repairing tissues damaged by adverse conditions, and resuming development after diapause. Many investigators have asked "Does nutrition affect diapause?" In this review, we survey the studies that have attempted to address this question. We propose the term nutritional status, a holistic view of nutrition that explicitly includes the perception, intake, and storage of the great breadth of nutrients. We examine the studies that have sought to test if nutrition affects diapause, trying to identify specific facets of nutritional status that affect diapause phenotypes. Curiously, low quality host plants during the diapause induction phase generally induce diapause, but food deprivation during the same phase generally averts diapause. Using the geometric framework of nutrition to identify specific dietary components that affect diapause may reconcile these contrasting findings. This framework can establish nutritionally permissive space, distinguishing nutrient changes that affect diapause from changes that induce other dormancies. Refeeding is another important experimental technique that distinguishes between diapause and quiescence, a non-diapause dormancy. We also find insufficient evidence for the hypothesis that nutrient stores regulate diapause length and suggest manipulations to investigate the role of nutrient stores in diapause termination. Finally, we propose mechanisms that could interface nutritional status with the diapause program, focusing on combined action of the nutritional axis between the gut, fat body, and brain.
Collapse
Affiliation(s)
- Clancy A Short
- Department of Entomology and Nematology, The University of Florida, Gainesville, FL, United States.
| | - Daniel A Hahn
- Department of Entomology and Nematology, The University of Florida, Gainesville, FL, United States
| |
Collapse
|
3
|
Saraiva NB, Auad AM, Barros E, Coutinho FS, Pereira JF, Barros RA, Ramos HJO, Oliveira MGA. Proteins from eggs of the spittlebug Mahanarva spectabilis (Hemiptera: Cercopidae) reveal clues about its diapause regulation. BULLETIN OF ENTOMOLOGICAL RESEARCH 2022; 112:219-227. [PMID: 35301960 DOI: 10.1017/s0007485321000754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Embryo development in eggs of the spittlebug Mahanarva spectabilis (Distant) (Hemiptera: Cercopidae) passes through four phases (known as S1 to S4) being stopped at S2 during diapause. Studies about the molecular basis of diapause in spittlebugs are nonexistent. Here, we analyzed proteins from non-diapausing (ND), diapausing (D) and post-diapausing (PD) eggs of the spittlebug M. spectabilis. In total, we identified 87 proteins where 12 were in common among the developmental and diapause phases and 19 remained as uncharacterized. Non-diapausing eggs (S2ND and S4ND) showed more proteins involved in information storage and processing than the diapausing ones (S2D). Eggs in post-diapausing (S4PD) had a higher number of proteins associated with metabolism than S2D. The network of protein interactions and metabolic processes allowed the identification of different sets of molecular interactions for each developmental and diapause phases. Two heat shock proteins (Hsp65 and Hsp70) along with two proteins associated with intracellular signaling (MAP4K and a serine/threonine-protein phosphatase) were found only in diapausing and/or post-diapausing eggs and are interesting targets to be explored in future experiments. These results shine a light on one key biological process for spittlebug survival and represent the first search for proteins linked to diapause in this important group of insects.
Collapse
Affiliation(s)
- Nayara B Saraiva
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, CEP 36570-900, Viçosa, MG, Brazil
| | | | - Edvaldo Barros
- Núcleo de Análise de Biomoléculas, Universidade Federal de Viçosa, CEP 36570-900, Viçosa, MG, Brazil
| | - Flaviane S Coutinho
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, CEP 36570-900, Viçosa, MG, Brazil
| | - Jorge F Pereira
- Embrapa Gado de Leite, CEP 36038-330, Juiz de Fora, MG, Brazil
| | - Rafael A Barros
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, CEP 36570-900, Viçosa, MG, Brazil
| | - Humberto J O Ramos
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, CEP 36570-900, Viçosa, MG, Brazil
- Núcleo de Análise de Biomoléculas, Universidade Federal de Viçosa, CEP 36570-900, Viçosa, MG, Brazil
| | - Maria G A Oliveira
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, CEP 36570-900, Viçosa, MG, Brazil
| |
Collapse
|
4
|
Tilikj N, Novo M. How to resist soil desiccation: Transcriptional changes in a Mediterranean earthworm during aestivation. Comp Biochem Physiol A Mol Integr Physiol 2021; 264:111112. [PMID: 34748936 DOI: 10.1016/j.cbpa.2021.111112] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/01/2021] [Accepted: 11/01/2021] [Indexed: 11/27/2022]
Abstract
Earthworms have a central role in ministering the terrestrial ecosystems and are proving to have an important role in modulating the effects climate change has on soil. Aestivation is a form of dormancy employed by the organisms living in deserts and arid environments, when confronted with prolonged periods of drought. Understanding global metabolic adjustments required for withstanding the harsh conditions of the ever more severe Iberian drought, we performed a global transcriptomic exploration of the endogeic earthworm Carpetania matritensis during aestivation. There were a total of 6352 differentially expressed transcripts in the aestivating group, with 65% being downregulated. Based on GO and KEGG enrichment analyses, downregulated genes seem to be indicative of an overall metabolic depression during aestivation. Indeed we noted a reduction of protein turnover and macromolecule metabolism coupled with suppression of genes involved in digestion. Upregulated genes, namely antioxidant genes and DNA repair genes showed clear signs of abiotic stress caused by ROS generation. Abiotic stress led to transcriptomic changes of genes involved in immune response, mostly affecting the NF-kb signaling pathway as well as changes in apoptotic genes indicating the necessity of investigating these processes in a tissue specific manner. Lastly we uncovered a possible mechanism for water retention by nitrogenous waste accumulation. This study provides the first ever transcriptomic investigation done on aestivating earthworms and as such serves as a general framework for investigation on other earthworm species and other soil invertebrates, which is becoming increasingly important with the current scenario of climate change.
Collapse
Affiliation(s)
- Natasha Tilikj
- Biodiversity, Ecology and Evolution Department, Faculty of Biology, Complutense University of Madrid, C/José Antonio Nováis 12, 28040 Madrid, Spain.
| | - Marta Novo
- Biodiversity, Ecology and Evolution Department, Faculty of Biology, Complutense University of Madrid, C/José Antonio Nováis 12, 28040 Madrid, Spain
| |
Collapse
|
5
|
Tian Y, Qu Y, Dong K, He S, Jie W, Huang J. Characterization and Developmental Expression Patterns of Four Hexamerin Genes in the Bumble Bee, Bombus terrestris (Hymenoptera: Apidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2021; 21:6391129. [PMID: 34636890 PMCID: PMC8507971 DOI: 10.1093/jisesa/ieab078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Indexed: 06/13/2023]
Abstract
Hexamerins are members of the hemocyanin superfamily and play essential roles in providing amino acids and energy for the nonfeeding stages of insects. In this study, we cloned and analyzed the expression patterns of four hexamerin genes (hex 70a, hex 70b, hex 70c, and hex 110) at different worker development stages and queen diapause statuses in the bumble bee, Bombus terrestris. The results of this study showed that hex 110 has the longest open reading frame (ORF; 3,297 bp) compared to the ORFs of hex 70a (2,034 bp), hex 70b (2,067 bp), and hex 70c (2,055 bp). The putative translation product of Hex 70a, Hex 70b, Hex70c, and Hex 110 has 677, 688, 684, and 1,098aa with predicted molecular mass of 81.13, 79.69, 81.58, and 119 kDa. In the development stages of workers, the expression levels of hex 70a, hex 70b, and hex 70c increased gradually from the larval stage and exhibited high expression levels at the pink eyed and brown eyed pupae stage, whereas hex 110 exhibited the highest expression level at the larval period. Four hexamerin genes were highly expressed at the prediapause status of queen (P < 0.05), and compared to the eclosion queen, the lowest upregulation was 3.7-fold, and the highest upregulation was 1,742-fold. The expression levels of hex 70b, hex 70c, and hex 110 at diapause were significantly higher than those at postdiapause (P < 0.05). In conclusion, hexamerins may play important roles in queen diapause and metamorphosis of larval and pupal stages.
Collapse
Affiliation(s)
- Yakai Tian
- Key Laboratory for Insect-Pollinator Biology of the Ministry of Agriculture and Rural Affairs, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650000, China
| | - Yingping Qu
- Key Laboratory for Insect-Pollinator Biology of the Ministry of Agriculture and Rural Affairs, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Kun Dong
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650000, China
| | - Shaoyu He
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650000, China
| | - Wu Jie
- Key Laboratory for Insect-Pollinator Biology of the Ministry of Agriculture and Rural Affairs, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Jiaxing Huang
- Key Laboratory for Insect-Pollinator Biology of the Ministry of Agriculture and Rural Affairs, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| |
Collapse
|
6
|
Chalar C, Clivio G, Montagne J, Costábile A, Lima A, Papa NG, Berois N, Arezo MJ. Embryonic developmental arrest in the annual killifish Austrolebias charrua: A proteomic approach to diapause III. PLoS One 2021; 16:e0251820. [PMID: 34086690 PMCID: PMC8177498 DOI: 10.1371/journal.pone.0251820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 05/03/2021] [Indexed: 11/18/2022] Open
Abstract
Diapause is a reversible developmental arrest faced by many organisms in harsh environments. Annual killifish present this mechanism in three possible stages of development. Killifish are freshwater teleosts from Africa and America that live in ephemeral ponds, which dry up in the dry season. The juvenile and adult populations die, and the embryos remain buried in the bottom mud until the next rainy season. Thus, species survival is entirely embryo-dependent, and they are perhaps the most remarkable extremophile organisms among vertebrates. The aim of the present study was to gather information about embryonic diapauses with the use of a "shotgun" proteomics approach in diapause III and prehatching Austrolebias charrua embryos. Our results provide insight into the molecular mechanisms of diapause III. Data are available via ProteomeXchange with identifier PXD025196. We detected a diapause-dependent change in a large group of proteins involved in different functions, such as metabolic pathways and stress tolerance, as well as proteins related to DNA repair and epigenetic modifications. Furthermore, we observed a diapause-associated switch in cytoskeletal proteins. This first glance into global protein expression differences between prehatching and diapause III could provide clues regarding the induction/maintenance of this developmental arrest in A. charrua embryos. There appears to be no single mechanism underlying diapause and the present data expand our knowledge of the molecular basis of diapause regulation. This information will be useful for future comparative approaches among different diapauses in annual killifish and/or other organisms that experience developmental arrest.
Collapse
Affiliation(s)
- Cora Chalar
- Sección Bioquímica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Graciela Clivio
- Sección Biología Celular, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Jimena Montagne
- Sección Biología Celular, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Alicia Costábile
- Sección Bioquímica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Analía Lima
- Unidad de Bioquímica y Proteómica Analíticas, Institut Pasteur Montevideo, Montevideo, Uruguay
- Instituto de Investigaciones Biológicas Clemente Estable, Ministerio de Educación y Cultura, Montevideo, Uruguay
| | - Nicolás G. Papa
- Laboratorio de Biología Molecular de Organismos Acuáticos, Sección Biología Celular, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Nibia Berois
- Laboratorio de Biología Molecular de Organismos Acuáticos, Sección Biología Celular, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - María José Arezo
- Laboratorio de Biología Molecular de Organismos Acuáticos, Sección Biología Celular, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
- * E-mail:
| |
Collapse
|
7
|
Dittmer J, Brucker RM. When your host shuts down: larval diapause impacts host-microbiome interactions in Nasonia vitripennis. MICROBIOME 2021; 9:85. [PMID: 33836829 PMCID: PMC8035746 DOI: 10.1186/s40168-021-01037-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 02/12/2021] [Indexed: 05/03/2023]
Abstract
BACKGROUND The life cycles of many insect species include an obligatory or facultative diapause stage with arrested development and low metabolic activity as an overwintering strategy. Diapause is characterised by profound physiological changes in endocrine activity, cell proliferation and nutrient metabolism. However, little is known regarding host-microbiome interactions during diapause, despite the importance of bacterial symbionts for host nutrition and development. In this work, we investigated (i) the role of the microbiome for host nutrient allocation during diapause and (ii) the impact of larval diapause on microbiome dynamics in the parasitoid wasp Nasonia vitripennis, a model organism for host-microbiome interactions. RESULTS Our results demonstrate that the microbiome is essential for host nutrient allocation during diapause in N. vitripennis, as axenic diapausing larvae had consistently lower glucose and glycerol levels than conventional diapausing larvae, especially when exposed to cold temperature. In turn, microbiome composition was altered in diapausing larvae, potentially due to changes in the surrounding temperature, host nutrient levels and a downregulation of host immune genes. Importantly, prolonged larval diapause had a transstadial effect on the adult microbiome, with unknown consequences for host fitness. Notably, the most dominant microbiome member, Providencia sp., was drastically reduced in adults after more than 4 months of larval diapause, while potential bacterial pathogens increased in abundance. CONCLUSION This work investigates host-microbiome interactions during a crucial developmental stage, which challenges both the insect host and its microbial associates. The impact of diapause on the microbiome is likely due to several factors, including altered host regulatory mechanisms and changes in the host environment. Video Abstract.
Collapse
Affiliation(s)
- Jessica Dittmer
- The Rowland Institute at Harvard, Harvard University, 100 Edwin H. Land Boulevard, Cambridge, MA, 02142, USA.
- Present Address: Dipartimento di Scienze agrarie e ambientali (DISAA), Università degli Studi di Milano, Via Celoria 2, 20133, Milano, Italy.
| | - Robert M Brucker
- The Rowland Institute at Harvard, Harvard University, 100 Edwin H. Land Boulevard, Cambridge, MA, 02142, USA.
| |
Collapse
|
8
|
Wang J, Ran LL, Li Y, Liu YH. Comparative proteomics provides insights into diapause program of Bactrocera minax (Diptera: Tephritidae). PLoS One 2021; 15:e0244493. [PMID: 33382763 PMCID: PMC7774860 DOI: 10.1371/journal.pone.0244493] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 12/10/2020] [Indexed: 12/20/2022] Open
Abstract
The Chinese citrus fly, Bactrocera minax, is a notorious univoltine pest that causes damage to citrus. B. minax enters obligatory pupal diapause in each generation to resist harsh environmental conditions in winter. Despite the enormous efforts that have been made in the past decade, the understanding of pupal diapause of B. minax is currently still fragmentary. In this study, the 20-hydroxyecdysone solution and ethanol solvent was injected into newly-formed pupae to obtain non-diapause- (ND) and diapause-destined (D) pupae, respectively, and a comparative proteomics analysis between ND and D pupae was performed 1 and 15 d after injection. A total of 3,255 proteins were identified, of which 190 and 463 were found to be differentially abundant proteins (DAPs) in ND1 vs D1 and ND15 vs D15 comparisons, respectively. The reliability and accuracy of LFQ method was validated by qRT-PCR. Functional analyses of DAPs, including Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment, and protein-protein interaction (PPI) network construction, were conducted. The results revealed that the diapause program of B. minax is closely associated with several physiological activities, such as phosphorylation, chitin biosynthesis, autophagy, signaling pathways, endocytosis, skeletal muscle formation, protein metabolism, and core metabolic pathways of carbohydrate, amino acid, and lipid conversion. The findings of this study provide insights into diapause program of B. minax and lay a basis for further investigation into its underlying molecular mechanisms.
Collapse
Affiliation(s)
- Jia Wang
- College of Plant Protection, Institute of Entomology, Southwest University, Chongqing, China
- * E-mail:
| | - Li-Lin Ran
- College of Plant Protection, Institute of Entomology, Southwest University, Chongqing, China
| | - Ying Li
- College of Plant Protection, Institute of Entomology, Southwest University, Chongqing, China
| | - Ying-Hong Liu
- College of Plant Protection, Institute of Entomology, Southwest University, Chongqing, China
| |
Collapse
|
9
|
Zhang C, Wei D, Shi G, Huang X, Cheng P, Liu G, Guo X, Liu L, Wang H, Miao F, Gong M. Understanding the regulation of overwintering diapause molecular mechanisms in Culex pipiens pallens through comparative proteomics. Sci Rep 2019; 9:6485. [PMID: 31019237 PMCID: PMC6482188 DOI: 10.1038/s41598-019-42961-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 04/12/2019] [Indexed: 12/23/2022] Open
Abstract
To reveal overwintering dormancy (diapause) mechanisms of Culex pipiens pallens (L.), global protein expression differences at three separate time points represent nondiapause, diapause preparation and overwintering diapause phases of Cx. pipiens pallens were compared using iTRAQ. Cx. pipiens pallens females accumulate more lipid droplets during diapause preparation and overwintering diapause maintenance than during the nondiapause phase. A total of 1030 proteins were identified, among which 1020 were quantified and compared. Gene Ontology, Kyoto Encyclopedia of Genes and Genomes (KEGG), Domain and Clusters of Orthologous Groups (COG) analyses revealed key groups of proteins, pathways and domains differentially regulated during diapause preparation and overwintering diapause maintenance phases in this mosquito, including major shifts in energy production and conversion, fatty acid metabolism, the citrate (TCA) cycle, and the cytoskeletal reorganization pathway. Our results provide novel insight into the molecular bases of diapause in mosquitoes and corroborate previously reported diapause-associated features in invertebrates. More interestingly, the phototransduction pathway exists in Cx. pipiens pallens, in particular, actin, rather than other proteins, appears to have substantial role in diapause regulation. In addition, the differential changes in calmodulin protein expression in each stage implicate its important regulatory role of the Cx. pipiens pallens biological clock. Finally, 24 proteins were selected for verification of differential expression using a parallel reaction monitoring strategy. The findings of this study provide a unique opportunity to explore the molecular modifications underlying diapause in mosquitoes and might therefore enable the future design and development of novel genetic tools for improving management strategies in mosquitoes.
Collapse
Affiliation(s)
- Chongxing Zhang
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, Shandong, 272033, P.R. China.
- Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, Taishan Medical University, Taian, Shandong, 271000, P.R. China.
| | - Dongdong Wei
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, Shandong, 272033, P.R. China
| | - Guihong Shi
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, Shandong, 272033, P.R. China
| | - Xiaoli Huang
- Shanghai MHelix BioTech Co., Ltd., 271000, Shanghai, P.R. China
| | - Peng Cheng
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, Shandong, 272033, P.R. China
| | - Gongzhen Liu
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, Shandong, 272033, P.R. China
| | - Xiuxia Guo
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, Shandong, 272033, P.R. China
| | - Lijuan Liu
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, Shandong, 272033, P.R. China
| | - Huaiwei Wang
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, Shandong, 272033, P.R. China
| | - Feng Miao
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, Shandong, 272033, P.R. China
| | - Maoqing Gong
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, Shandong, 272033, P.R. China.
| |
Collapse
|
10
|
Proteomic analysis of adult Galeruca daurica (Coleoptera: Chrysomelidae) at different stages during summer diapause. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2019; 29:351-357. [DOI: 10.1016/j.cbd.2019.01.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/06/2019] [Accepted: 01/12/2019] [Indexed: 01/25/2023]
|
11
|
Santos PKF, de Souza Araujo N, Françoso E, Zuntini AR, Arias MC. Diapause in a tropical oil-collecting bee: molecular basis unveiled by RNA-Seq. BMC Genomics 2018; 19:305. [PMID: 29703143 PMCID: PMC5923013 DOI: 10.1186/s12864-018-4694-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 04/18/2018] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Diapause is a natural phenomenon characterized by an arrest in development that ensures the survival of organisms under extreme environmental conditions. The process has been well documented in arthropods. However, its molecular basis has been mainly studied in species from temperate zones, leaving a knowledge gap of this phenomenon in tropical species. In the present study, the Neotropical and solitary bee Tetrapedia diversipes was employed as a model for investigating diapause in species from tropical zones. Being a bivoltine insect, Tetrapedia diversipes produce two generations of offspring per year. The first generation, normally born during the wet season, develops faster than individuals from the second generation, born after the dry season. Furthermore, it has been shown that the development of the progeny, of the second generation, is halted at the 5th larval instar, and remains in larval diapause during the dry season. Towards the goal of gaining a better understanding of the diapause phenomenon we compared the global gene expression pattern, in larvae, from both reproductive generations and during diapause. The results demonstrate that there are similarities in the observed gene expression patterns to those already described for temperate climate models, and also identify diapause-related genes that have not been previously reported in the literature. RESULTS The RNA-Seq analysis identified 2275 differentially expressed transcripts, of which 1167 were annotated. Of these genes, during diapause, 352 were upregulated and 815 were downregulated. According to their biological functions, these genes were categorized into the following groups: cellular detoxification, cytoskeleton, cuticle, sterol and lipid metabolism, cell cycle, heat shock proteins, immune response, circadian clock, and epigenetic control. CONCLUSION Many of the identified genes have already been described as being related to diapause; however, new genes were discovered, for the first time, in this study. Among those, we highlight: Niemann-Pick type C1, NPC2 and Acyl-CoA binding protein homolog (all involved in ecdysteroid synthesis); RhoBTB2 and SASH1 (associated with cell cycle regulation) and Histone acetyltransferase KAT7 (related to epigenetic transcriptional regulation). The results presented here add important findings to the understanding of diapause in tropical species, thus increasing the comprehension of diapause-related molecular mechanisms.
Collapse
Affiliation(s)
- Priscila Karla F. Santos
- 0000 0004 1937 0722grid.11899.38Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, 277, Room 320, São Paulo, SP CEP 05508-090 Brazil
| | - Natalia de Souza Araujo
- 0000 0001 0805 7253grid.4861.bCurrent address: GIGA – Medical Genomics, Unit of Animal Genomics, University of Liege, Quartier Hopital, Avenue de I’Hopital, 11, 4000 Liege, Belgium
| | - Elaine Françoso
- 0000 0004 1937 0722grid.11899.38Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, 277, Room 320, São Paulo, SP CEP 05508-090 Brazil
| | - Alexandre Rizzo Zuntini
- 0000 0001 0723 2494grid.411087.bDepartamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas, Rua Monteiro Lobato 255, Barão Geraldo, Campinas, SP CEP 13083-970 Brazil
| | - Maria Cristina Arias
- 0000 0004 1937 0722grid.11899.38Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, 277, Room 320, São Paulo, SP CEP 05508-090 Brazil
| |
Collapse
|
12
|
Shimizu Y, Mukai A, Goto SG. Cell cycle arrest in the jewel wasp Nasonia vitripennis in larval diapause. JOURNAL OF INSECT PHYSIOLOGY 2018; 106:147-152. [PMID: 27894937 DOI: 10.1016/j.jinsphys.2016.11.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 11/19/2016] [Accepted: 11/24/2016] [Indexed: 05/20/2023]
Abstract
Insects enter diapause to synchronise their life cycle with biotic and abiotic environmental conditions favourable for their development, reproduction, and survival. One of the most noticeable characteristics of diapause is the blockage of ontogeny. Although this blockage should occur with the cessation of cellular proliferation, i.e. cell cycle arrest, it was confirmed only in a few insect species and information on the molecular pathways involved in cell cycle arrest is limited. In the present study, we investigated developmental and cell cycle arrest in diapause larvae of the jewel wasp Nasonia vitripennis. Developmental and cell cycle arrest occur in the early fourth instar larval stage of N. vitripennis under short days. By entering diapause, the S fraction of the cell cycle disappears and approximately 80% and 20% of cells arrest their cell cycle in the G0/G1 and G2 phases, respectively. We further investigated expression of cell cycle regulatory genes and some housekeeping genes to dissect molecular mechanisms underlying the cell cycle arrest.
Collapse
Affiliation(s)
- Yuta Shimizu
- Department of Biology and Geosciences, Graduate School of Science, Osaka City University, Osaka, Japan
| | - Ayumu Mukai
- Department of Biology and Geosciences, Graduate School of Science, Osaka City University, Osaka, Japan
| | - Shin G Goto
- Department of Biology and Geosciences, Graduate School of Science, Osaka City University, Osaka, Japan.
| |
Collapse
|
13
|
Wu YK, Zou C, Fu DM, Zhang WN, Xiao HJ. Molecular characterization of three Hsp90 from Pieris and expression patterns in response to cold and thermal stress in summer and winter diapause of Pieris melete. INSECT SCIENCE 2018; 25:273-283. [PMID: 27791340 DOI: 10.1111/1744-7917.12414] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Revised: 09/13/2016] [Accepted: 10/07/2016] [Indexed: 06/06/2023]
Abstract
Heat shock proteins (Hsps) have been linked to stresses and winter diapause in insects, but whether they are components of summer diapause is still unknown. In this study, complementary DNAs of Hsp90 from Pieris melete, Pieris rapae and Pieris canidia named PmHsp90, PrHsp90 and PcHsp90, respectively, were cloned and sequenced. The deduced amino acid sequence consisted of 718 amino acid residues with a putative molecular mass of 82.6, 82.6 and 82.7 kDa, respectively. The amino acid sequences contained all of the five conserved signature motifs in the Hsp90 family and a bHLH protein folding activity region. The differential expression pattern of PmHsp90 in response to summer diapause and winter diapause, which are related to heat/cold stress, was investigated. Cold stress induced Hsp90 up-regulation in summer and winter diapause pupae, but not in non-diapause individuals. Heat shock up-regulated PmHsp90 gradually with an increase in temperature in summer diapause, and PmHsp90 was rapidly up-regulated in winter diapause. After 30 min heat shock at 39°C, substantial up-regulation of PmHsp90 transcript levels were observed both in summer and winter diapause. However, in non-diapause a relatively stable expression was found under different durations of 39°C heat shock. Compared to the optimal treatment of 18°C for diapause development, a high temperature acclimation of 31°C induced PmHsp90 up-regulation in summer diapause, whereas a low temperature acclimation of 4°C induced up-regulation in winter diapause. The current results indicate that Hsp90 may play an important role in response to heat/cold stress both in summer and winter diapause.
Collapse
Affiliation(s)
- Yue-Kun Wu
- Institute of Entomology, Jiangxi Agricultural University, Nanchang, China
| | - Chao Zou
- Institute of Entomology, Jiangxi Agricultural University, Nanchang, China
| | - Dao-Meng Fu
- Institute of Entomology, Jiangxi Agricultural University, Nanchang, China
| | - Wan-Na Zhang
- Institute of Entomology, Jiangxi Agricultural University, Nanchang, China
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hai-Jun Xiao
- Institute of Entomology, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
14
|
Global Transcriptome Sequencing Reveals Molecular Profiles of Summer Diapause Induction Stage of Onion Maggot, Delia antiqua (Diptera: Anthomyiidae). G3-GENES GENOMES GENETICS 2018; 8:207-217. [PMID: 29158334 PMCID: PMC5765349 DOI: 10.1534/g3.117.300393] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The onion maggot, Delia antiqua, is a worldwide subterranean pest and can enter diapause during the summer and winter seasons. The molecular regulation of the ontogenesis transition remains largely unknown. Here we used high-throughput RNA sequencing to identify candidate genes and processes linked to summer diapause (SD) induction by comparing the transcriptome differences between the most sensitive larval developmental stage of SD and nondiapause (ND). Nine pairwise comparisons were performed, and significantly differentially regulated transcripts were identified. Several functional terms related to lipid, carbohydrate, and energy metabolism, environmental adaption, immune response, and aging were enriched during the most sensitive SD induction period. A subset of genes, including circadian clock genes, were expressed differentially under diapause induction conditions, and there was much more variation in the most sensitive period of ND- than SD-destined larvae. These expression variations probably resulted in a deep restructuring of metabolic pathways. Potential regulatory elements of SD induction including genes related to lipid, carbohydrate, energy metabolism, and environmental adaption. Collectively, our results suggest the circadian clock is one of the key drivers for integrating environmental signals into the SD induction. Our transcriptome analysis provides insight into the fundamental role of the circadian clock in SD induction in this important model insect species, and contributes to the in-depth elucidation of the molecular regulation mechanism of insect diapause induction.
Collapse
|
15
|
Transcriptome sequencing reveals potential mechanisms of diapause preparation in bivoltine silkworm Bombyx mori (Lepidoptera: Bombycidae). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2017; 24:68-78. [DOI: 10.1016/j.cbd.2017.07.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Revised: 07/09/2017] [Accepted: 07/28/2017] [Indexed: 11/17/2022]
|
16
|
Liu W, Tan QQ, Zhu L, Li Y, Zhu F, Lei CL, Wang XP. Absence of juvenile hormone signalling regulates the dynamic expression profiles of nutritional metabolism genes during diapause preparation in the cabbage beetle Colaphellus bowringi. INSECT MOLECULAR BIOLOGY 2017; 26:530-542. [PMID: 28544235 DOI: 10.1111/imb.12316] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Temperate insects have evolved diapause, a period of programmed developmental arrest during specific life stages, to survive unfavourable conditions. During the diapause preparation phase (DPP), diapause-destined individuals generally store large amounts of fat by regulating nutrition distribution for the energy requirement during diapause maintenance and postdiapause development. Although nutritional patterns during the DPP have been investigated at physiological and biochemical levels in many insects, it remains largely unknown how nutritional metabolism is regulated during the DPP at molecular levels. We used RNA sequencing to compare gene expression profiles of adult female cabbage beetles Colaphellus bowringi during the preoviposition phase (POP) and the DPP. Most differentially expressed genes were involved in specific metabolic pathways during the DPP. Genes related to lipid and carbohydrate metabolic pathways were clearly highly expressed during the DPP, whereas genes related to protein metabolic pathways were highly expressed during the POP. Hormone challenge and RNA interference experiments revealed that juvenile hormone via its nuclear receptor methoprene-tolerant mediated the expression of genes associated with nutritional metabolism during the DPP. This work not only sheds light on the mechanisms of diapause preparation, but also provides new insights into the molecular basis of environmental plasticity in insects.
Collapse
Affiliation(s)
- W Liu
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Q-Q Tan
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - L Zhu
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Y Li
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - F Zhu
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - C-L Lei
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - X-P Wang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, China
| |
Collapse
|
17
|
Ziv T, Chalifa-Caspi V, Denekamp N, Plaschkes I, Kierszniowska S, Blais I, Admon A, Lubzens E. Dormancy in Embryos: Insight from Hydrated Encysted Embryos of an Aquatic Invertebrate. Mol Cell Proteomics 2017; 16:1746-1769. [PMID: 28729386 DOI: 10.1074/mcp.ra117.000109] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Indexed: 11/06/2022] Open
Abstract
Numerous aquatic invertebrates remain dormant for decades in a hydrated state as encysted embryos. In search for functional pathways associated with this form of dormancy, we used label-free quantitative proteomics to compare the proteomes of hydrated encysted dormant embryos (resting eggs; RE) with nondormant embryos (amictic eggs; AM) of the rotifer Brachionus plicatilisA total of 2631 proteins were identified in rotifer eggs. About 62% proteins showed higher abundance in AM relative to RE (Fold Change>3; p = 0.05). Proteins belonging to numerous putative functional pathways showed dramatic changes during dormancy. Most striking were changes in the mitochondria indicating an impeded metabolism. A comparison between the abundance of proteins and their corresponding transcript levels, revealed higher concordance for RE than for AM. Surprisingly, numerous highly abundant dormancy related proteins show corresponding high mRNA levels in metabolically inactive RE. As these mRNAs and proteins degrade at the time of exit from dormancy they may serve as a source of nucleotides and amino acids during the exit from dormancy. Because proteome analyses point to a similarity in functional pathways of hydrated RE and desiccated life forms, REs were dried. Similar hatching and reproductive rates were found for wet and dried REs, suggesting analogous pathways for long-term survival in wet or dry forms. Analysis by KEGG pathways revealed a few general strategies for dormancy, proposing an explanation for the low transcriptional similarity among dormancies across species, despite the resemblance in physiological phenotypes.
Collapse
Affiliation(s)
- Tamar Ziv
- From the ‡Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Vered Chalifa-Caspi
- §National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Nadav Denekamp
- ¶Israel Oceanographic and Limnological Research, Haifa, Israel
| | - Inbar Plaschkes
- §National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | | | - Idit Blais
- **Division of Reproductive Endocrinology and IVF, Department of Obstetrics and Gynecology, Carmel Medical Center, Haifa, Israel
| | - Arie Admon
- From the ‡Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Esther Lubzens
- From the ‡Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel;
| |
Collapse
|
18
|
Jandt JM, Suryanarayanan S, Hermanson JC, Jeanne RL, Toth AL. Maternal and nourishment factors interact to influence offspring developmental trajectories in social wasps. Proc Biol Sci 2017; 284:20170651. [PMID: 28637858 PMCID: PMC5489728 DOI: 10.1098/rspb.2017.0651] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 05/19/2017] [Indexed: 12/31/2022] Open
Abstract
The social and nutritional environments during early development have the potential to affect offspring traits, but the mechanisms and molecular underpinnings of these effects remain elusive. We used Polistes fuscatus paper wasps to dissect how maternally controlled factors (vibrational signals and nourishment) interact to induce different caste developmental trajectories in female offspring, leading to worker or reproductive (gyne) traits. We established a set of caste phenotype biomarkers in P. fuscatus females, finding that gyne-destined individuals had high expression of three caste-related genes hypothesized to have roles in diapause and mitochondrial metabolism. We then experimentally manipulated maternal vibrational signals (via artificial 'antennal drumming') and nourishment levels (via restricted foraging). We found that these caste-related biomarker genes were responsive to drumming, nourishment level or their interaction. Our results provide a striking example of the potent influence of maternal and nutritional effects in influencing transcriptional activity and developmental outcomes in offspring.
Collapse
Affiliation(s)
- Jennifer M Jandt
- Department of Zoology, University of Otago, Dunedin, New Zealand
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
| | | | - John C Hermanson
- Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, WI, USA
- USDA Forest Service, Madison, WI, USA
| | - Robert L Jeanne
- Department of Zoology, University of Wisconsin-Madison, Madison, WI, USA
- Department of Entomology, University of Wisconsin-Madison, Madison, WI, USA
| | - Amy L Toth
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
- Department of Entomology, Iowa State University, Ames, IA, USA
| |
Collapse
|
19
|
Hao YJ, Zhang YJ, Si FL, Fu DY, He ZB, Chen B. Insight into the possible mechanism of the summer diapause of Delia antiqua (Diptera: Anthomyiidae) through digital gene expression analysis. INSECT SCIENCE 2016; 23:438-51. [PMID: 26826557 DOI: 10.1111/1744-7917.12323] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 01/12/2016] [Accepted: 01/24/2016] [Indexed: 05/20/2023]
Abstract
The onion fly, Delia antiqua, is a major underground agricultural pest that can enter pupal diapause in the summer and winter seasons. However, little is known about its molecular regulation due to the lack of genomic resources. To gain insight into the possible mechanism of summer diapause (SD), high-throughput RNA-Seq data were generated from non-diapause (ND) and SD (initial, maintenance and quiescence phase) pupae. Three pair-wise comparisons were performed and identified, 1380, 1471 and 435, and were significantly regulated transcripts. Further analysis revealed that the enrichment of several functional terms related to juvenile hormone regulation, cell cycle, carbon hydrate and lipid metabolism, innate immune and stress responses, various signalling transductions, ubiquitin-dependent proteosome, and variation in cuticular and cytoskeleton components were found between ND and SD and between different phases of SD. Global characterization of transcriptome profiling between SD and ND contributes to the in-depth elucidation of the molecular mechanism of SD. Our results also offer insights into the evolution of insect diapause and support the importance of using the onion fly as a model to compare the molecular regulation events of summer and winter diapauses.
Collapse
Affiliation(s)
| | | | - Feng-Ling Si
- Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Dan-Ying Fu
- Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Zheng-Bo He
- Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Bin Chen
- Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing, China
| |
Collapse
|
20
|
Li Y, Zhang L, Chen H, Koštál V, Simek P, Moos M, Denlinger DL. Shifts in metabolomic profiles of the parasitoid Nasonia vitripennis associated with elevated cold tolerance induced by the parasitoid's diapause, host diapause and host diet augmented with proline. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2015; 63:34-46. [PMID: 26005120 DOI: 10.1016/j.ibmb.2015.05.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 05/13/2015] [Accepted: 05/16/2015] [Indexed: 05/23/2023]
Abstract
The ectoparasitoid wasp, Nasonia vitripennis can enhance its cold tolerance by exploiting a maternally-induced larval diapause. A simple manipulation of the fly host diapause status and supplementation of the host diet with proline also dramatically increase cold tolerance in the parasitoid. In this study, we used a metabolomics approach to define alterations in metabolite profiles of N. vitripennis caused by diapause in the parasitoid, diapause of the host, and augmentation of the host's diet with proline. Metabolic profiles of diapausing and nondiapausing parasitoid were significantly differentiated, with pronounced distinctions in levels of multiple cryoprotectants, amino acids, and carbohydrates. The dynamic nature of diapause was underscored by a shift in the wasp's metabolomic profile as the duration of diapause increased, a feature especially evident for increased concentrations of a suite of cryoprotectants. Metabolic pathways involved in amino acid and carbohydrate metabolism were distinctly enriched during diapause in the parasitoid. Host diapause status also elicited a pronounced effect on metabolic signatures of the parasitoid, noted by higher cryoprotectants and elevated compounds derived from glycolysis. Proline supplementation of the host diet did not translate directly into elevated proline in the parasitoid but resulted in an alteration in the abundance of many other metabolites, including elevated concentrations of essential amino acids, and reduction in metabolites linked to energy utilization, lipid and amino acid metabolism. Thus, the enhanced cold tolerance of N. vitripennis associated with proline augmentation of the host diet appears to be an indirect effect caused by the metabolic perturbations associated with diet supplementation.
Collapse
Affiliation(s)
- Yuyan Li
- Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China; Departments of Entomology and Evolution, Ecology, and Organismal Biology, Ohio State University, Columbus, OH 43210, USA
| | - Lisheng Zhang
- Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Hongyin Chen
- Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China.
| | - Vladimir Koštál
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - Petr Simek
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - Martin Moos
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - David L Denlinger
- Departments of Entomology and Evolution, Ecology, and Organismal Biology, Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
21
|
Salminen TS, Vesala L, Laiho A, Merisalo M, Hoikkala A, Kankare M. Seasonal gene expression kinetics between diapause phases in Drosophila virilis group species and overwintering differences between diapausing and non-diapausing females. Sci Rep 2015; 5:11197. [PMID: 26063442 PMCID: PMC4463020 DOI: 10.1038/srep11197] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 05/07/2015] [Indexed: 11/08/2022] Open
Abstract
Most northern insect species experience a period of developmental arrest, diapause, which enables them to survive over the winter and postpone reproduction until favorable conditions. We studied the timing of reproductive diapause and its long-term effects on the cold tolerance of Drosophila montana, D. littoralis and D. ezoana females in seasonally varying environmental conditions. At the same time we traced expression levels of 219 genes in D. montana using a custom-made microarray. We show that the seasonal switch to reproductive diapause occurs over a short time period, and that overwintering in reproductive diapause has long-lasting effects on cold tolerance. Some genes, such as Hsc70, Jon25Bi and period, were upregulated throughout the diapause, while others, including regucalcin, couch potato and Thor, were upregulated only at its specific phases. Some of the expression patterns induced during the sensitive stage, when the females either enter diapause or not, remained induced regardless of the later conditions. qPCR analyses confirmed the findings of the microarray analysis in D. montana and revealed similar gene expression changes in D. littoralis and D. ezoana. The present study helps to achieve a better understanding of the genetic regulation of diapause and of the plasticity of seasonal responses in general.
Collapse
Affiliation(s)
- Tiina S. Salminen
- University of Jyvaskyla, Department of Biological and Environmental Science, P.O. Box 35, FI-40014, University of Jyväskylä, Finland
- BioMediTech, University of Tampere, Biokatu 6, F1-33014 Finland
| | - Laura Vesala
- University of Jyvaskyla, Department of Biological and Environmental Science, P.O. Box 35, FI-40014, University of Jyväskylä, Finland
- BioMediTech, University of Tampere, Biokatu 6, F1-33014 Finland
| | - Asta Laiho
- Finnish DNA Microarray Centre, Bioinformatics team, Turku Centre for Biotechnology, Tykistökatu 6, FI-20521 Turku, Finland
| | - Mikko Merisalo
- University of Jyvaskyla, Department of Biological and Environmental Science, P.O. Box 35, FI-40014, University of Jyväskylä, Finland
| | - Anneli Hoikkala
- University of Jyvaskyla, Department of Biological and Environmental Science, P.O. Box 35, FI-40014, University of Jyväskylä, Finland
| | - Maaria Kankare
- University of Jyvaskyla, Department of Biological and Environmental Science, P.O. Box 35, FI-40014, University of Jyväskylä, Finland
| |
Collapse
|
22
|
Abstract
Insect heat shock proteins include ATP-independent small heat shock proteins and the larger ATP-dependent proteins, Hsp70, Hsp90, and Hsp60. In concert with cochaperones and accessory proteins, heat shock proteins mediate essential activities such as protein folding, localization, and degradation. Heat shock proteins are synthesized constitutively in insects and induced by stressors such as heat, cold, crowding, and anoxia. Synthesis depends on the physiological state of the insect, but the common function of heat shock proteins, often working in networks, is to maintain cell homeostasis through interaction with substrate proteins. Stress-induced expression of heat shock protein genes occurs in a background of protein synthesis inhibition, but in the course of diapause, a state of dormancy and increased stress tolerance, these genes undergo differential regulation without the general disruption of protein production. During diapause, when ATP concentrations are low, heat shock proteins may sequester rather than fold proteins.
Collapse
Affiliation(s)
- Allison M King
- Department of Biology, Dalhousie University, Halifax, NS, B3H 4R2, Canada; ,
| | | |
Collapse
|
23
|
Li Y, Zhang L, Zhang Q, Chen H, Denlinger DL. Host diapause status and host diets augmented with cryoprotectants enhance cold hardiness in the parasitoid Nasonia vitripennis. JOURNAL OF INSECT PHYSIOLOGY 2014; 70:8-14. [PMID: 25158026 DOI: 10.1016/j.jinsphys.2014.08.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 08/13/2014] [Accepted: 08/15/2014] [Indexed: 06/03/2023]
Abstract
Boosting cold hardiness in parasitoids is a goal that is particularly attractive for increasing shelf life and shipment of biological control agents. In the experiments reported here we use the parasitoid Nasonia vitripennis as a model to evaluate manipulations that may be capable of enhancing the wasp's cold tolerance. We altered the parasitoid's cold tolerance by manipulating the wasp's diapause status, the diapause status of the host fly (Sarcophaga crassipalpis), and the diet of the host. Larval diapause in N. vitripennis dramatically increased cold tolerance and the diapause status of the host also exerted a positive, although less dramatic, effect. Augmenting the host fly's diet with supplements of putative cryoprotectants (alanine, proline and glycerol) enhanced cold tolerance in parasitoids that fed on the flies, thus indicating a tri-trophic effect on parasitoid cold tolerance. The most pronounced improvement in cold tolerance was noted in parasitoids fed on fly hosts that had received a diet augmented with proline. These results suggest mechanisms that could be exploited for enhancement of cold tolerance in parasitoids of commercial interest.
Collapse
Affiliation(s)
- Yuyan Li
- Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China; USDA-ARS Sino-American Biological Control Laboratory, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China; Departments of Entomology and Evolution, Ecology, and Organismal Biology, Ohio State University, Columbus, OH 43210, USA.
| | - Lisheng Zhang
- Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China; USDA-ARS Sino-American Biological Control Laboratory, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Qirui Zhang
- Departments of Entomology and Evolution, Ecology, and Organismal Biology, Ohio State University, Columbus, OH 43210, USA
| | - Hongyin Chen
- Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China; USDA-ARS Sino-American Biological Control Laboratory, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - David L Denlinger
- Departments of Entomology and Evolution, Ecology, and Organismal Biology, Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
24
|
van de Zande L, Ferber S, de Haan A, Beukeboom LW, van Heerwaarden J, Pannebakker BA. Development of a Nasonia vitripennis outbred laboratory population for genetic analysis. Mol Ecol Resour 2013; 14:578-87. [PMID: 24215457 PMCID: PMC4260118 DOI: 10.1111/1755-0998.12201] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 10/30/2013] [Accepted: 11/06/2013] [Indexed: 11/29/2022]
Abstract
The parasitoid wasp genus Nasonia has rapidly become a genetic model system for developmental and evolutionary biology. The release of its genome sequence led to the development of high-resolution genomic tools, for both interspecific and intraspecific research, which has resulted in great advances in understanding Nasonia biology. To further advance the utility of Nasonia vitripennis as a genetic model system and to be able to fully exploit the advantages of its fully sequenced and annotated genome, we developed a genetically variable and well-characterized experimental population. In this study, we describe the establishment of the genetically diverse HVRx laboratory population from strains collected from the field in the Netherlands. We established a maintenance method that retains genetic variation over generations of culturing in the laboratory. As a characterization of its genetic composition, we provide data on the standing genetic variation and estimate the effective population size (N(e)) by microsatellite analysis. A genome-wide description of polymorphism is provided through pooled resequencing, which yielded 417,331 high-quality SNPs spanning all five Nasonia chromosomes. The HVRx population and its characterization are freely available as a community resource for investigators seeking to elucidate the genetic basis of complex trait variation using the Nasonia model system.
Collapse
Affiliation(s)
- Louis van de Zande
- Evolutionary Genetics, Centre for Ecological and Evolutionary Studies, University of Groningen, 9700 CC, Groningen, the Netherlands
| | | | | | | | | | | |
Collapse
|
25
|
Lu MX, Cao SS, Du YZ, Liu ZX, Liu P, Li J. Diapause, signal and molecular characteristics of overwintering Chilo suppressalis (Insecta: Lepidoptera: Pyralidae). Sci Rep 2013; 3:3211. [PMID: 24226906 PMCID: PMC3827604 DOI: 10.1038/srep03211] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 10/24/2013] [Indexed: 11/24/2022] Open
Abstract
Diapause is a complex and dynamic process. Chilo suppressalis, an important rice pest in Asia enters facultative diapause as larvae. Our results demonstrated in Yangzhou, China, diapause was initiated between September 4 and 12, 2010. After diapause termination, C. suppressalis remained in quiescence in the field for as long as three months. The average time between collection of field larvae of C. suppressalis and their pupation decreased as the season progressed from fall to next spring. Unexpectedly, the pupated ratio of female to male in the initiation of diapause was 0.22. The abundance of hsp90, hsp70, hsp60 and CsAQP1 all peaked on January 8 or 15, 2011. Nitric oxide (NO) is a secondary messenger that is positively correlated with the diapause of C. suppressalis. Among several geographically separated populations of C. suppressalis, there are no significant differences in the mRNA levels of hsp70, hsp60 or CsAQP1.
Collapse
Affiliation(s)
- Ming-Xing Lu
- 1] College of Horticulture and Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou, China [2] Department of Biochemistry, Virginia Tech, Blacksburg, VA, United States
| | | | | | | | | | | |
Collapse
|
26
|
Proteomic and metabolomic profiles of larval hemolymph associated with diapause in the cotton bollworm, Helicoverpa armigera. BMC Genomics 2013; 14:751. [PMID: 24180224 PMCID: PMC4046812 DOI: 10.1186/1471-2164-14-751] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Accepted: 10/21/2013] [Indexed: 12/24/2022] Open
Abstract
Background Diapause is programmed developmental arrest coupled with the depression of metabolic activity and the enhancement of stress resistance. Pupal diapause is induced by environmental signals and is prepared during the prediapause phase. In the cotton bollworm, Helicoverpa armigera, the prediapause phase, which contains two sub-phases, diapause induction and preparation, occurs in the larval stage. Here, we performed parallel proteomic and metabolomic analyses on H. armigera larval hemolymph during the prediapause phase. Results By two-dimensional electrophoresis, 37 proteins were shown to be differentially expressed in diapause-destined larvae. Of these proteins, 28 were successfully identified by MALDI-TOF/TOF mass spectrometry. Moreover, a total of 22 altered metabolites were found in diapause-destined larval hemolymph by GC-MS analysis, and the levels of 17 metabolites were elevated and 5 were decreased. Conclusions The proteins and metabolites with significantly altered levels play different roles in diapause-destined larvae, including diapause induction, metabolic storage, immune response, stress tolerance, and others. Because hemolymph circulates through the whole body of an insect, these differences found in diapause-destined larvae most likely correspond to upstream endocrine signals and would further influence other organ/tissue activities to determine the insect’s fact: diapause or development. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-14-751) contains supplementary material, which is available to authorized users.
Collapse
|
27
|
Sun J, Mu H, Zhang H, Chandramouli KH, Qian PY, Wong CKC, Qiu JW. Understanding the Regulation of Estivation in a Freshwater Snail through iTRAQ-Based Comparative Proteomics. J Proteome Res 2013; 12:5271-80. [DOI: 10.1021/pr400570a] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Jin Sun
- Department
of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Huawei Mu
- Department
of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Huoming Zhang
- Biosciences
Core Laboratory, King Abdullah University of Science and Technology, 23955-6900 Thuwal, Saudi Arabia
| | | | - Pei-Yuan Qian
- Division
of Life Science, the Hong Kong University of Science and Technology, Hong Kong, China
| | | | - Jian-Wen Qiu
- Department
of Biology, Hong Kong Baptist University, Hong Kong, China
| |
Collapse
|
28
|
Khodayari S, Moharramipour S, Larvor V, Hidalgo K, Renault D. Deciphering the metabolic changes associated with diapause syndrome and cold acclimation in the two-spotted spider mite Tetranychus urticae. PLoS One 2013; 8:e54025. [PMID: 23349779 PMCID: PMC3547965 DOI: 10.1371/journal.pone.0054025] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 12/07/2012] [Indexed: 11/18/2022] Open
Abstract
Diapause is a common feature in several arthropod species that are subject to unfavorable growing seasons. The range of environmental cues that trigger the onset and termination of diapause, in addition to associated hormonal, biochemical, and molecular changes, have been studied extensively in recent years; however, such information is only available for a few insect species. Diapause and cold hardening usually occur together in overwintering arthropods, and can be characterized by recording changes to the wealth of molecules present in the tissue, hemolymph, or whole body of organisms. Recent technological advances, such as high throughput screening and quantification of metabolites via chromatographic analyses, are able to identify such molecules. In the present work, we examined the survival ability of diapausing and non-diapausing females of the two-spotted spider mite, Tetranychus urticae, in the presence (0 or 5°C) or absence of cold acclimation. Furthermore, we examined the metabolic fingerprints of these specimens via gas chromatography-mass spectrophotometry (GC-MS). Partial Least Square Discriminant Analysis (PLS-DA) of metabolites revealed that major metabolic variations were related to diapause, indicating in a clear cut-off between diapausing and non-diapausing females, regardless of acclimation state. Signs of metabolic depression were evident in diapausing females, with most amino acids and TCA cycle intermediates being significantly reduced. Out of the 40 accurately quantified metabolites, seven metabolites remained elevated or were accumulated in diapausing mites, i.e. cadaverine, gluconolactone, glucose, inositol, maltose, mannitol and sorbitol. The capacity to accumulate winter polyols during cold-acclimation was restricted to diapausing females. We conclude that the induction of increased cold hardiness in this species is associated with the diapause syndrome, rather than being a direct effect of low temperature. Our results provide novel information about biochemical events related to the cold hardening process in the two-spotted spider mite.
Collapse
Affiliation(s)
- Samira Khodayari
- Department of Entomology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | | | | | | | | |
Collapse
|
29
|
Hao YJ, Li WS, He ZB, Si FL, Ishikawa Y, Chen B. Differential gene expression between summer and winter diapause pupae of the onion maggot Delia antiqua, detected by suppressive subtractive hybridization. JOURNAL OF INSECT PHYSIOLOGY 2012; 58:1444-1449. [PMID: 22985860 DOI: 10.1016/j.jinsphys.2012.08.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Revised: 08/13/2012] [Accepted: 08/16/2012] [Indexed: 06/01/2023]
Abstract
To gain a better understanding of the molecular mechanisms regulating pupal diapause of the onion maggot Delia antiqua, PCR-based suppressive subtractive hybridization was performed to identify genes involved in summer and/or winter diapause. A total of 209 unique sequences were obtained including 89 in forward library for winter diapausing pupae and 120 in the reverse library for summer diapausing pupae. 76.4% (68/89) and 68.3% (82/120) unique sequences had significant hits to non-redundant proteins database. Gene functional annotation showed these non-redundant sequences are involved in stress response and innate immunity, metabolism and energy, information processing and regulation, binding, food storage, morphogenesis and development, cell skeleton and cycle, protein synthesis and folding. Approximately 28.2% (59/209) transcripts showed no significant similarity to any other sequence in the public databases, probably representing unique genes of the onion maggot. Semi-quantitative RT-PCR revealed that the relative expression levels of 18 genes were comparable between summer and winter diapause. This study elucidates the temporal expression of diapause-related genes in onion maggot, also provides new insights into the differences in the physiological changes in summer and winter pupae. Functional characterization of some candidate genes will further enhance the understanding of the generating, maintaining, and breaking mechanism of diapause.
Collapse
Affiliation(s)
- You-Jin Hao
- Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | | | | | | | | | | |
Collapse
|
30
|
Colinet H, Renault D, Charoy-Guével B, Com E. Metabolic and proteomic profiling of diapause in the aphid parasitoid Praon volucre. PLoS One 2012; 7:e32606. [PMID: 22389713 PMCID: PMC3289662 DOI: 10.1371/journal.pone.0032606] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 01/28/2012] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Diapause, a condition of developmental arrest and metabolic depression exhibited by a wide range of animals is accompanied by complex physiological and biochemical changes that generally enhance environmental stress tolerance and synchronize reproduction. Even though some aspects of diapause have been well characterized, very little is known about the full range of molecular and biochemical modifications underlying diapause in non-model organisms. METHODOLOGY/PRINCIPAL FINDINGS In this study we focused on the parasitic wasp, Praon volucre that exhibits a pupal diapause in response to environmental signals. System-wide metabolic changes occurring during diapause were investigated using GC-MS metabolic fingerprinting. Moreover, proteomic changes were studied in diapausing versus non-diapausing phenotypes using a combination of two-dimensional differential gel electrophoresis (2D-DIGE) and mass spectrometry. We found a reduction of Krebs cycle intermediates which most likely resulted from the metabolic depression. Glycolysis was galvanized, probably to favor polyols biosynthesis. Diapausing parasitoids accumulated high levels of cryoprotective polyols, especially sorbitol. A large set of proteins were modulated during diapause and these were involved in various functions such as remodeling of cytoskeleton and cuticle, stress tolerance, protein turnover, lipid metabolism and various metabolic enzymes. CONCLUSIONS/SIGNIFICANCE The results presented here provide some first clues about the molecular and biochemical events that characterize the diapause syndrome in aphid parasitoids. These data are useful for probing potential commonality of parasitoids diapause with other taxa and they will help creating a general understanding of diapause underpinnings and a background for future interpretations.
Collapse
Affiliation(s)
- Hervé Colinet
- Earth and Life Institute ELI, Biodiversity Research Centre BDIV, Catholic University of Louvain, Louvain-la-Neuve, Belgium.
| | | | | | | |
Collapse
|
31
|
Zhang Q, Lu YX, Xu WH. Integrated Proteomic and Metabolomic Analysis of Larval Brain Associated with Diapause Induction and Preparation in the Cotton Bollworm, Helicoverpa armigera. J Proteome Res 2012; 11:1042-53. [DOI: 10.1021/pr200796a] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Qi Zhang
- State Key
Laboratory of Biocontrol, School of Life
Sciences, Sun Yat-Sen (Zhongshan) University, Guangzhou, China
| | - Yu-Xuan Lu
- State Key
Laboratory of Biocontrol, School of Life
Sciences, Sun Yat-Sen (Zhongshan) University, Guangzhou, China
| | - Wei-Hua Xu
- State Key
Laboratory of Biocontrol, School of Life
Sciences, Sun Yat-Sen (Zhongshan) University, Guangzhou, China
| |
Collapse
|
32
|
Bao B, Xu WH. Identification of gene expression changes associated with the initiation of diapause in the brain of the cotton bollworm, Helicoverpa armigera. BMC Genomics 2011; 12:224. [PMID: 21569297 PMCID: PMC3277317 DOI: 10.1186/1471-2164-12-224] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Accepted: 05/11/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Diapause, a state of arrested development accompanied by a marked decrease of metabolic rate, helps insects to overcome unfavorable seasons. Helicoverpa armigera (Har) undergoes pupal diapause, but the molecular mechanism of diapause initiation is unclear. Using suppression subtractive hybridization (SSH), we investigated differentially expressed genes in diapause- and nondiapause-destined pupal brains at diapause initiation. RESULTS We constructed two SSH libraries (forward, F and reverse, R) to isolate genes that are up-regulated or down-regulated at diapause initiation. We obtained 194 unique sequences in the F library and 115 unique sequences in the R library. Further, genes expression at the mRNA and protein level in diapause- and nondiapause-destined pupal brains were confirmed by RT-PCR, Northern blot or Western blot analysis. Finally, we classified the genes and predicted their possible roles at diapause initiation. CONCLUSION Differentially expressed genes at pupal diapause initiation are possibly involved in the regulation of metabolism, energy, stress resistance, signaling pathways, cell cycle, transcription and translation.
Collapse
Affiliation(s)
- Bin Bao
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen (Zhongshan) University, Guangzhou 510275, China
| | - Wei-Hua Xu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen (Zhongshan) University, Guangzhou 510275, China
| |
Collapse
|
33
|
Bertossa RC, van Dijk J, Beersma DG, Beukeboom LW. Circadian rhythms of adult emergence and activity but not eclosion in males of the parasitic wasp Nasonia vitripennis. JOURNAL OF INSECT PHYSIOLOGY 2010; 56:805-812. [PMID: 20226192 DOI: 10.1016/j.jinsphys.2010.02.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2009] [Revised: 02/10/2010] [Accepted: 02/11/2010] [Indexed: 05/28/2023]
Abstract
An endogenous circadian system is responsible for the rhythms observed in many physiological and behavioural traits in most organisms. In insects, the circadian system controls the periodicity of eclosion, egg-laying, locomotor and mating activity. The parasitoid wasp Nasonia vitripennis has been extensively used to study the role of the circadian system in photoperiodism. In this study, behavioural activities expected to be under the control of the endogenous circadian system were characterized in Nasonia. Male emergence from the host puparium is rhythmic under light-darkness conditions while eclosion from the own pupal integument is not rhythmic but continuous. Following entrainment in light-dark conditions, males show robust free-running circadian activity rhythms with a period (tau, tau) of approximately 25.6h in constant darkness. While the endogenous circadian system is enough to trigger male emergence in Nasonia, light seems to have a modulatory effect: when present it induces more males to emerge. Our results add to the understanding of chronobiological phenotypes in insects and provide a basis towards the molecular characterization of the endogenous circadian system in Nasonia.
Collapse
Affiliation(s)
- Rinaldo C Bertossa
- Chronobiology, Center for Behavior and Neurosciences, University of Groningen, P.O. Box 14, 9750 AA Haren, The Netherlands.
| | | | | | | |
Collapse
|
34
|
MacRae TH. Gene expression, metabolic regulation and stress tolerance during diapause. Cell Mol Life Sci 2010; 67:2405-24. [PMID: 20213274 PMCID: PMC11115916 DOI: 10.1007/s00018-010-0311-0] [Citation(s) in RCA: 156] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2010] [Revised: 01/31/2010] [Accepted: 02/10/2010] [Indexed: 12/31/2022]
Abstract
Diapause entails molecular, physiological and morphological remodeling of living animals, culminating in a dormant state characterized by enhanced stress tolerance. Molecular mechanisms driving diapause resemble those responsible for biochemical processes in proliferating cells and include transcriptional, post-transcriptional and post-translational processes. The results are directed gene expression, differential mRNA and protein accumulation and protein modifications, including those that occur in response to changes in cellular redox potential. Biochemical pathways switch, metabolic products change and energy production is adjusted. Changes to biosynthetic activities result for example in the synthesis of molecular chaperones, late embryogenesis abundant (LEA) proteins and protective coverings, all contributing to stress tolerance. The purpose of this review is to consider regulatory and mechanistic strategies that are potentially key to metabolic control and stress tolerance during diapause, while remembering that organisms undergoing diapause are as diverse as the processes itself. Some of the parameters described have well-established roles in diapause, whereas the evidence for others is cursory.
Collapse
Affiliation(s)
- Thomas H MacRae
- Department of Biology, Dalhousie University, Halifax, NS, Canada.
| |
Collapse
|
35
|
Hunt JH, Wolschin F, Henshaw MT, Newman TC, Toth AL, Amdam GV. Differential gene expression and protein abundance evince ontogenetic bias toward castes in a primitively eusocial wasp. PLoS One 2010; 5:e10674. [PMID: 20498859 PMCID: PMC2871793 DOI: 10.1371/journal.pone.0010674] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2009] [Accepted: 04/16/2010] [Indexed: 01/23/2023] Open
Abstract
Polistes paper wasps are models for understanding conditions that may have characterized the origin of worker and queen castes and, therefore, the origin of paper wasp sociality. Polistes is “primitively eusocial” by virtue of having context-dependent caste determination and no morphological differences between castes. Even so, Polistes colonies have a temporal pattern in which most female larvae reared by the foundress become workers, and most reared by workers become future-reproductive gynes. This pattern is hypothesized to reflect development onto two pathways, which may utilize mechanisms that regulate diapause in other insects. Using expressed sequence tags (ESTs) for Polistes metricus we selected candidate genes differentially expressed in other insects in three categories: 1) diapause vs. non-diapause phenotypes and/or worker vs. queen differentiation, 2) behavioral subcastes of worker honey bees, and 3) no a priori expectation of a role in worker/gyne development. We also used a non-targeted proteomics screen to test for peptide/protein abundance differences that could reflect larval developmental divergence. We found that foundress-reared larvae (putative worker-destined) and worker-reared larvae (putative gyne-destined) differed in quantitative expression of sixteen genes, twelve of which were associated with caste and/or diapause in other insects, and they also differed in abundance of nine peptides/proteins. Some differentially-expressed genes are involved in diapause regulation in other insects, and other differentially-expressed genes and proteins are involved in the insulin signaling pathway, nutrient metabolism, and caste determination in highly social bees. Differential expression of a gene and a peptide encoding hexameric storage proteins is especially noteworthy. Although not conclusive, our results support hypotheses of 1) larval developmental pathway divergence that can lead to caste bias in adults and 2) nutritional differences as the foundation of the pathway divergence. Finally, the differential expression in Polistes larvae of genes and proteins also differentially expressed during queen vs. worker caste development in honey bees may indicate that regulatory mechanisms of caste outcomes share similarities between primitively eusocial and advanced eusocial Hymenoptera.
Collapse
Affiliation(s)
- James H Hunt
- Department of Biology and W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, North Carolina, United States of America.
| | | | | | | | | | | |
Collapse
|
36
|
Loehlin DW, Oliveira DCSG, Edwards R, Giebel JD, Clark ME, Cattani MV, van de Zande L, Verhulst EC, Beukeboom LW, Muñoz-Torres M, Werren JH. Non-coding changes cause sex-specific wing size differences between closely related species of Nasonia. PLoS Genet 2010; 6:e1000821. [PMID: 20090834 PMCID: PMC2799512 DOI: 10.1371/journal.pgen.1000821] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Accepted: 12/18/2009] [Indexed: 11/19/2022] Open
Abstract
The genetic basis of morphological differences among species is still poorly understood. We investigated the genetic basis of sex-specific differences in wing size between two closely related species of Nasonia by positional cloning a major male-specific locus, wing-size1 (ws1). Male wing size increases by 45% through cell size and cell number changes when the ws1 allele from N. giraulti is backcrossed into a N. vitripennis genetic background. A positional cloning approach was used to fine-scale map the ws1 locus to a 13.5 kilobase region. This region falls between prospero (a transcription factor involved in neurogenesis) and the master sex-determining gene doublesex. It contains the 5′-UTR and cis-regulatory domain of doublesex, and no coding sequence. Wing size reduction correlates with an increase in doublesex expression level that is specific to developing male wings. Our results indicate that non-coding changes are responsible for recent divergence in sex-specific morphology between two closely related species. We have not yet resolved whether wing size evolution at the ws1 locus is caused by regulatory alterations of dsx or prospero, or by another mechanism. This study demonstrates the feasibility of efficient positional cloning of quantitative trait loci (QTL) involved in a broad array of phenotypic differences among Nasonia species. The regulation of cell size and cell numbers is an important part of determining the size of organs in development, as well as of controlling cell over-proliferation in diseases such as cancer and diabetes. How the regulation of cell size and number can change to produce different organ sizes is not well understood. Here, we investigate the recent evolution of sex-specific wing size differences between two species that involve changes to cell size and number regulation. Males of the emerging genetic model wasp Nasonia vitripennis have small wings and do not fly, while males of the closely related species N. giraulti have large wings and do fly. We isolated a locus that contributes substantially to this wing size difference by increasing cell size and cell number. Surprisingly, we found that the determinant for this wing size difference is located in the non-coding region between two known transcription factors, the master sex determining gene doublesex and neurogenesis regulator prospero. The mechanism by which ws1 regulates sex specific wing growth has yet to be determined, although differences in dsx expression level in developing male wings may indicate a role for this sex determination locus.
Collapse
Affiliation(s)
- David W. Loehlin
- Department of Biology, University of Rochester, Rochester, New York, United States of America
| | | | - Rachel Edwards
- Department of Biology, University of Rochester, Rochester, New York, United States of America
| | - Jonathan D. Giebel
- Department of Biology, University of Rochester, Rochester, New York, United States of America
| | - Michael E. Clark
- Department of Biology, University of Rochester, Rochester, New York, United States of America
| | - M. Victoria Cattani
- Department of Biology, University of Rochester, Rochester, New York, United States of America
| | - Louis van de Zande
- Evolutionary Genetics, Centre for Ecological and Evolutionary Studies, University of Groningen, Haren, The Netherlands
| | - Eveline C. Verhulst
- Evolutionary Genetics, Centre for Ecological and Evolutionary Studies, University of Groningen, Haren, The Netherlands
| | - Leo W. Beukeboom
- Evolutionary Genetics, Centre for Ecological and Evolutionary Studies, University of Groningen, Haren, The Netherlands
| | - Monica Muñoz-Torres
- Clemson University Genomics Institute, Clemson University, Clemson, South Carolina, United States of America
| | - John H. Werren
- Department of Biology, University of Rochester, Rochester, New York, United States of America
- * E-mail:
| |
Collapse
|