1
|
Bécret J, Gomez-Bravo C, Michaud C, Assali A, Chenais NAL, Kankadze I, Roche F, Couvet S, Fassier C, Nicol X. Point contact-restricted cAMP signaling controls ephrin-A5-induced axon repulsion. J Cell Sci 2025; 138:JCS263480. [PMID: 39775847 DOI: 10.1242/jcs.263480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 12/23/2024] [Indexed: 01/11/2025] Open
Abstract
Signal transduction downstream of axon guidance molecules is essential for steering developing axons. Second messengers including cAMP are key molecules shared by a multitude of signaling pathways and are required for a wide range of cellular processes including axon pathfinding. Yet, how these signaling molecules achieve specificity for each of their downstream pathways remains elusive. Subcellular compartmentation has emerged as a flexible strategy to reach such a specificity. Here, we show that point contact-restricted cAMP signals control ephrin-A5-evoked axon repulsion in vitro by modulating focal adhesion kinase (FAK; also known as PTK2) phosphorylation and the assembly and disassembly rate of point contacts. Consistent with this, preventing point contact-specific cAMP signals in developing retinal ganglion cells in vivo alters the refinement of their terminal axonal arbor in the brain. Altogether, our study identifies point contacts as a compartment containing a local cAMP signal required for ephrin-A5-dependent axon guidance and highlights the crucial role of such subcellularly restricted second messenger signals in the wiring of neuronal circuits.
Collapse
Affiliation(s)
- Johann Bécret
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012 Paris, France
| | - Claudia Gomez-Bravo
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012 Paris, France
| | - Camille Michaud
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012 Paris, France
| | - Ahlem Assali
- Sorbonne Université, Inserm, Institut du Fer à Moulin, 17 rue du Fer à Moulin, F-75005 Paris, France
| | - Naïg A L Chenais
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012 Paris, France
| | - Izeta Kankadze
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012 Paris, France
| | - Fiona Roche
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012 Paris, France
| | - Sandrine Couvet
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012 Paris, France
| | - Coralie Fassier
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012 Paris, France
| | - Xavier Nicol
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012 Paris, France
| |
Collapse
|
2
|
Cameron EG, Nahmou M, Toth AB, Heo L, Tanasa B, Dalal R, Yan W, Nallagatla P, Xia X, Hay S, Knasel C, Stiles TL, Douglas C, Atkins M, Sun C, Ashouri M, Bian M, Chang KC, Russano K, Shah S, Woodworth MB, Galvao J, Nair RV, Kapiloff MS, Goldberg JL. A molecular switch for neuroprotective astrocyte reactivity. Nature 2024; 626:574-582. [PMID: 38086421 PMCID: PMC11384621 DOI: 10.1038/s41586-023-06935-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/05/2023] [Indexed: 01/27/2024]
Abstract
The intrinsic mechanisms that regulate neurotoxic versus neuroprotective astrocyte phenotypes and their effects on central nervous system degeneration and repair remain poorly understood. Here we show that injured white matter astrocytes differentiate into two distinct C3-positive and C3-negative reactive populations, previously simplified as neurotoxic (A1) and neuroprotective (A2)1,2, which can be further subdivided into unique subpopulations defined by proliferation and differential gene expression signatures. We find the balance of neurotoxic versus neuroprotective astrocytes is regulated by discrete pools of compartmented cyclic adenosine monophosphate derived from soluble adenylyl cyclase and show that proliferating neuroprotective astrocytes inhibit microglial activation and downstream neurotoxic astrocyte differentiation to promote retinal ganglion cell survival. Finally, we report a new, therapeutically tractable viral vector to specifically target optic nerve head astrocytes and show that raising nuclear or depleting cytoplasmic cyclic AMP in reactive astrocytes inhibits deleterious microglial or macrophage cell activation and promotes retinal ganglion cell survival after optic nerve injury. Thus, soluble adenylyl cyclase and compartmented, nuclear- and cytoplasmic-localized cyclic adenosine monophosphate in reactive astrocytes act as a molecular switch for neuroprotective astrocyte reactivity that can be targeted to inhibit microglial activation and neurotoxic astrocyte differentiation to therapeutic effect. These data expand on and define new reactive astrocyte subtypes and represent a step towards the development of gliotherapeutics for the treatment of glaucoma and other optic neuropathies.
Collapse
Affiliation(s)
- Evan G Cameron
- Mary M. and Sash A. Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA.
| | - Michael Nahmou
- Mary M. and Sash A. Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Anna B Toth
- Mary M. and Sash A. Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Lyong Heo
- Stanford Center for Genomics and Personalized Medicine, Stanford University, Palo Alto, CA, USA
| | - Bogdan Tanasa
- Mary M. and Sash A. Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Roopa Dalal
- Mary M. and Sash A. Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Wenjun Yan
- Mary M. and Sash A. Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Pratima Nallagatla
- Stanford Center for Genomics and Personalized Medicine, Stanford University, Palo Alto, CA, USA
| | - Xin Xia
- Mary M. and Sash A. Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Sarah Hay
- Mary M. and Sash A. Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Cara Knasel
- Mary M. and Sash A. Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | | | | | - Melissa Atkins
- Mary M. and Sash A. Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Catalina Sun
- Mary M. and Sash A. Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Masoumeh Ashouri
- Mary M. and Sash A. Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Minjuan Bian
- Mary M. and Sash A. Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Kun-Che Chang
- Mary M. and Sash A. Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Kristina Russano
- Mary M. and Sash A. Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Sahil Shah
- Mary M. and Sash A. Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
- University of California, San Diego, La Jolla, CA, USA
| | - Mollie B Woodworth
- Mary M. and Sash A. Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Joana Galvao
- Mary M. and Sash A. Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Ramesh V Nair
- Stanford Center for Genomics and Personalized Medicine, Stanford University, Palo Alto, CA, USA
| | - Michael S Kapiloff
- Mary M. and Sash A. Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
- Department of Medicine and Stanford Cardiovascular Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Jeffrey L Goldberg
- Mary M. and Sash A. Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA.
| |
Collapse
|
3
|
Atkins M, Wurmser M, Darmon M, Roche F, Nicol X, Métin C. CXCL12 targets the primary cilium cAMP/cGMP ratio to regulate cell polarity during migration. Nat Commun 2023; 14:8003. [PMID: 38049397 PMCID: PMC10695954 DOI: 10.1038/s41467-023-43645-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 11/15/2023] [Indexed: 12/06/2023] Open
Abstract
Directed cell migration requires sustained cell polarisation. In migrating cortical interneurons, nuclear movements are directed towards the centrosome that organises the primary cilium signalling hub. Primary cilium-elicited signalling, and how it affects migration, remain however ill characterised. Here, we show that altering cAMP/cGMP levels in the primary cilium by buffering cAMP, cGMP or by locally increasing cAMP, influences the polarity and directionality of migrating interneurons, whereas buffering cAMP or cGMP in the apposed centrosome compartment alters their motility. Remarkably, we identify CXCL12 as a trigger that targets the ciliary cAMP/cGMP ratio to promote sustained polarity and directed migration. We thereby uncover cAMP/cGMP levels in the primary cilium as a major target of extrinsic cues and as the steering wheel of neuronal migration.
Collapse
Affiliation(s)
- Melody Atkins
- INSERM UMR-S 1270; Institut du Fer à Moulin, Sorbonne Université, F-75005, Paris, France.
| | - Maud Wurmser
- Institut de la Vision, Sorbonne Université, INSERM CNRS, F-75012, Paris, France
| | - Michèle Darmon
- INSERM UMR-S 1270; Institut du Fer à Moulin, Sorbonne Université, F-75005, Paris, France
| | - Fiona Roche
- Institut de la Vision, Sorbonne Université, INSERM CNRS, F-75012, Paris, France
| | - Xavier Nicol
- Institut de la Vision, Sorbonne Université, INSERM CNRS, F-75012, Paris, France
| | - Christine Métin
- INSERM UMR-S 1270; Institut du Fer à Moulin, Sorbonne Université, F-75005, Paris, France.
| |
Collapse
|
4
|
Figueroa NE, Franz P, Luzarowski M, Martinez-Seidel F, Moreno JC, Childs D, Ziemblicka A, Sampathkumar A, Andersen TG, Tsiavaliaris G, Chodasiewicz M, Skirycz A. Protein interactome of 3',5'-cAMP reveals its role in regulating the actin cytoskeleton. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 115:1214-1230. [PMID: 37219088 DOI: 10.1111/tpj.16313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 05/12/2023] [Accepted: 05/16/2023] [Indexed: 05/24/2023]
Abstract
Identification of protein interactors is ideally suited for the functional characterization of small molecules. 3',5'-cAMP is an evolutionary ancient signaling metabolite largely uncharacterized in plants. To tap into the physiological roles of 3',5'-cAMP, we used a chemo-proteomics approach, thermal proteome profiling (TPP), for the unbiased identification of 3',5'-cAMP protein targets. TPP measures shifts in the protein thermal stability upon ligand binding. Comprehensive proteomics analysis yielded a list of 51 proteins significantly altered in their thermal stability upon incubation with 3',5'-cAMP. The list contained metabolic enzymes, ribosomal subunits, translation initiation factors, and proteins associated with the regulation of plant growth such as CELL DIVISION CYCLE 48. To functionally validate obtained results, we focused on the role of 3',5'-cAMP in regulating the actin cytoskeleton suggested by the presence of actin among the 51 identified proteins. 3',5'-cAMP supplementation affected actin organization by inducing actin-bundling. Consistent with these results, the increase in 3',5'-cAMP levels, obtained either by feeding or by chemical modulation of 3',5'-cAMP metabolism, was sufficient to partially rescue the short hypocotyl phenotype of the actin2 actin7 mutant, severely compromised in actin level. The observed rescue was specific to 3',5'-cAMP, as demonstrated using a positional isomer 2',3'-cAMP, and true for the nanomolar 3',5'-cAMP concentrations reported for plant cells. In vitro characterization of the 3',5'-cAMP-actin pairing argues against a direct interaction between actin and 3',5'-cAMP. Alternative mechanisms by which 3',5'-cAMP would affect actin dynamics, such as by interfering with calcium signaling, are discussed. In summary, our work provides a specific resource, 3',5'-cAMP interactome, as well as functional insight into 3',5'-cAMP-mediated regulation in plants.
Collapse
Affiliation(s)
- Nicolás E Figueroa
- Center for Desert Agriculture, Biological and Environmental Science & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Peter Franz
- Institute for Biophysical Chemistry, Hannover Medical School, Carl-Neuberg-Straße 1, Hannover, 30625, Germany
| | - Marcin Luzarowski
- Max-Planck-Institute of Molecular Plant Physiology, Am Muhlenberg 1, Potsdam-Golm, 14476, Germany
- Core facility for Mass Spectrometry and Proteomics, Zentrum fur Molekulare Biologie der Universitat Heidelberg, Im Neuenheimer Feld 329, Heidelberg, 69120, Germany
| | - Federico Martinez-Seidel
- Max-Planck-Institute of Molecular Plant Physiology, Am Muhlenberg 1, Potsdam-Golm, 14476, Germany
- School of BioSciences, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Juan C Moreno
- Center for Desert Agriculture, Biological and Environmental Science & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Max-Planck-Institute of Molecular Plant Physiology, Am Muhlenberg 1, Potsdam-Golm, 14476, Germany
| | - Dorothee Childs
- European Molecular Biology Laboratory (EMBL) Heidelberg, Heidelberg, 69117, Germany
| | - Aleksandra Ziemblicka
- Max-Planck-Institute of Molecular Plant Physiology, Am Muhlenberg 1, Potsdam-Golm, 14476, Germany
| | - Arun Sampathkumar
- Max-Planck-Institute of Molecular Plant Physiology, Am Muhlenberg 1, Potsdam-Golm, 14476, Germany
| | - Tonni Grube Andersen
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
| | - Georgios Tsiavaliaris
- Institute for Biophysical Chemistry, Hannover Medical School, Carl-Neuberg-Straße 1, Hannover, 30625, Germany
| | - Monika Chodasiewicz
- Center for Desert Agriculture, Biological and Environmental Science & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Max-Planck-Institute of Molecular Plant Physiology, Am Muhlenberg 1, Potsdam-Golm, 14476, Germany
| | - Aleksandra Skirycz
- Max-Planck-Institute of Molecular Plant Physiology, Am Muhlenberg 1, Potsdam-Golm, 14476, Germany
- Boyce Thompson Institute (BTI), Cornell University, 533 Tower Rd., Ithaca, New York, 14853, USA
| |
Collapse
|
5
|
Domingo G, Marsoni M, Chiodaroli L, Fortunato S, Bracale M, De Pinto MC, Gehring C, Vannini C. Quantitative phosphoproteomics reveals novel roles of cAMP in plants. Proteomics 2023; 23:e2300165. [PMID: 37264754 DOI: 10.1002/pmic.202300165] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/05/2023] [Accepted: 05/23/2023] [Indexed: 06/03/2023]
Abstract
3',5'-cyclic adenosine monophosphate (cAMP) is finally recognized as an essential signaling molecule in plants where cAMP-dependent processes include responses to hormones and environmental stimuli. To better understand the role of 3',5'-cAMP at the systems level, we have undertaken a phosphoproteomic analysis to elucidate the cAMP-dependent response of tobacco BY-2 cells. These cells overexpress a molecular "sponge" that buffers free intracellular cAMP level. The results show that, firstly, in vivo cAMP dampening profoundly affects the plant kinome and notably mitogen-activated protein kinases, receptor-like kinases, and calcium-dependent protein kinases, thereby modulating the cellular responses at the systems level. Secondly, buffering cAMP levels also affects mRNA processing through the modulation of the phosphorylation status of several RNA-binding proteins with roles in splicing, including many serine and arginine-rich proteins. Thirdly, cAMP-dependent phosphorylation targets appear to be conserved among plant species. Taken together, these findings are consistent with an ancient role of cAMP in mRNA processing and cellular programming and suggest that unperturbed cellular cAMP levels are essential for cellular homeostasis and signaling in plant cells.
Collapse
Affiliation(s)
- Guido Domingo
- Biotechnology and Life Science Department, University of Insubria, Varese, Italy
| | - Milena Marsoni
- Biotechnology and Life Science Department, University of Insubria, Varese, Italy
| | | | | | - Marcella Bracale
- Biotechnology and Life Science Department, University of Insubria, Varese, Italy
| | | | - Chris Gehring
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Candida Vannini
- Biotechnology and Life Science Department, University of Insubria, Varese, Italy
| |
Collapse
|
6
|
Baudet S, Zagar Y, Roche F, Gomez-Bravo C, Couvet S, Bécret J, Belle M, Vougny J, Uthayasuthan S, Ros O, Nicol X. Subcellular second messenger networks drive distinct repellent-induced axon behaviors. Nat Commun 2023; 14:3809. [PMID: 37369692 PMCID: PMC10300027 DOI: 10.1038/s41467-023-39516-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Second messengers, including cAMP, cGMP and Ca2+ are often placed in an integrating position to combine the extracellular cues that orient growing axons in the developing brain. This view suggests that axon repellents share the same set of cellular messenger signals and that axon attractants evoke opposite cAMP, cGMP and Ca2+ changes. Investigating the confinement of these second messengers in cellular nanodomains, we instead demonstrate that two repellent cues, ephrin-A5 and Slit1, induce spatially segregated signals. These guidance molecules activate subcellular-specific second messenger crosstalk, each signaling network controlling distinct axonal morphology changes in vitro and pathfinding decisions in vivo.
Collapse
Affiliation(s)
- Sarah Baudet
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012, Paris, France
| | - Yvrick Zagar
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012, Paris, France
| | - Fiona Roche
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012, Paris, France
| | - Claudia Gomez-Bravo
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012, Paris, France
| | - Sandrine Couvet
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012, Paris, France
| | - Johann Bécret
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012, Paris, France
| | - Morgane Belle
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012, Paris, France
| | - Juliette Vougny
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012, Paris, France
| | | | - Oriol Ros
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012, Paris, France
- Department of Cell Biology, Physiology and Immunology, Universitat de Barcelona, 08028, Barcelona, Catalonia, Spain
| | - Xavier Nicol
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012, Paris, France.
| |
Collapse
|
7
|
Klein F, Machado MR, Pantano S. Hitting the Detection Limit in cAMP Signaling. FUNCTION 2022; 3:zqac038. [PMID: 38989037 PMCID: PMC11234644 DOI: 10.1093/function/zqac038] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/29/2022] [Accepted: 08/01/2022] [Indexed: 07/12/2024] Open
Affiliation(s)
- Florencia Klein
- Institut Pasteur de Montevideo, Mataojo 2020, Montevideo 11400, Uruguay
| | - Matías R Machado
- Institut Pasteur de Montevideo, Mataojo 2020, Montevideo 11400, Uruguay
| | - Sergio Pantano
- Institut Pasteur de Montevideo, Mataojo 2020, Montevideo 11400, Uruguay
| |
Collapse
|
8
|
Arena DT, Hofer AM. Imaging the cAMP Signaling Microdomain of the Primary Cilium Using Targeted FRET-Based Biosensors. Methods Mol Biol 2022; 2483:77-92. [PMID: 35286670 DOI: 10.1007/978-1-0716-2245-2_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Optical approaches have revolutionized our view of second messenger signaling in organelles, allowing precise time-resolved assessment of soluble signaling molecules in situ. Among the most challenging of subcellular signaling microdomains to assay is the primary cilium. A petite but visually arresting organelle, the primary cilium extends from the cell surface of most non-dividing cells. Recently, the concept of the primary cilium as an independent cAMP signaling organelle has attracted substantial interest. The cilium sequesters a very specific subset of ciliary cAMP-linked GPCRs in its membrane (e.g., 5-HT6, D1R, MCR4, FFAR4, TGR5), as well as other key components of the cAMP signaling machinery that include adenylyl cyclases, GNAS, phosphodiesterases, PKA holoenzyme, and biologically important PKA targets. Here we provide a practical guide to assessing ciliary cAMP signals in live cells using targeted genetically encoded FRET biosensors. Key experimental difficulties include gathering sufficient signal from such a small, photon-limited volume, and the susceptibility of cilia to movement artifacts. Other challenges are associated with the fidelity of sensor targeting and the difficulties in distinguishing between cAMP signals produced exclusively within the cilium vs. those that emanate from the cell body. Here we describe ratio imaging approaches used in our lab for time-resolved visualization of ciliary cAMP in cultured renal cells. These methods can be readily adapted to other cell types and microscopy platforms according to the needs of the user.
Collapse
Affiliation(s)
- Danielle T Arena
- VA Boston Healthcare System and the Department of Surgery, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Aldebaran M Hofer
- VA Boston Healthcare System and the Department of Surgery, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
9
|
cAMP-Dependent Co-stabilization of Axonal Arbors from Adjacent Developing Neurons. Cell Rep 2021; 33:108220. [PMID: 33027659 DOI: 10.1016/j.celrep.2020.108220] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 07/30/2020] [Accepted: 09/11/2020] [Indexed: 12/22/2022] Open
Abstract
Axonal arbors in many neuronal networks are exuberant early during development and become refined by activity-dependent competitive mechanisms. Theoretical work proposed non-competitive interactions between co-active axons to co-stabilize their connections, but the demonstration of such interactions is lacking. Here, we provide experimental evidence that reducing cyclic AMP (cAMP) signaling in a subset of retinal ganglion cells favors the elimination of thalamic projections from neighboring neurons, pointing to a cAMP-dependent interaction that promotes axon stabilization.
Collapse
|
10
|
Ros O, Baudet S, Zagar Y, Loulier K, Roche F, Couvet S, Aghaie A, Atkins M, Louail A, Petit C, Metin C, Mechulam Y, Nicol X. SpiCee: A Genetic Tool for Subcellular and Cell-Specific Calcium Manipulation. Cell Rep 2021; 32:107934. [PMID: 32697983 DOI: 10.1016/j.celrep.2020.107934] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 05/21/2020] [Accepted: 06/29/2020] [Indexed: 12/14/2022] Open
Abstract
Calcium is a second messenger crucial to a myriad of cellular processes ranging from regulation of metabolism and cell survival to vesicle release and motility. Current strategies to directly manipulate endogenous calcium signals lack cellular and subcellular specificity. We introduce SpiCee, a versatile and genetically encoded chelator combining low- and high-affinity sites for calcium. This scavenger enables altering endogenous calcium signaling and functions in single cells in vitro and in vivo with biochemically controlled subcellular resolution. SpiCee paves the way to investigate local calcium signaling in vivo and directly manipulate this second messenger for therapeutic use.
Collapse
Affiliation(s)
- Oriol Ros
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, 75012 Paris, France
| | - Sarah Baudet
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, 75012 Paris, France
| | - Yvrick Zagar
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, 75012 Paris, France
| | - Karine Loulier
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, 75012 Paris, France
| | - Fiona Roche
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, 75012 Paris, France
| | - Sandrine Couvet
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, 75012 Paris, France
| | - Alain Aghaie
- INSERM, Sorbonne Université, Institut Pasteur, UMR_S 1120, 75012 Paris, France
| | - Melody Atkins
- INSERM, UMR-S839, Sorbonne Université, Institut du Fer à Moulin, 75005 Paris, France
| | - Alice Louail
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, 75012 Paris, France
| | - Christine Petit
- INSERM, Sorbonne Université, Institut Pasteur, UMR_S 1120, 75012 Paris, France; Collège de France, 75005 Paris, France
| | - Christine Metin
- INSERM, UMR-S839, Sorbonne Université, Institut du Fer à Moulin, 75005 Paris, France
| | - Yves Mechulam
- Laboratoire de Biochimie, Ecole Polytechnique, CNRS UMR 7654, 91128 Palaiseau, France
| | - Xavier Nicol
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, 75012 Paris, France.
| |
Collapse
|
11
|
Abstract
The field of cAMP signaling is witnessing exciting developments with the recognition that cAMP is compartmentalized and that spatial regulation of cAMP is critical for faithful signal coding. This realization has changed our understanding of cAMP signaling from a model in which cAMP connects a receptor at the plasma membrane to an intracellular effector in a linear pathway to a model in which cAMP signals propagate within a complex network of alternative branches and the specific functional outcome strictly depends on local regulation of cAMP levels and on selective activation of a limited number of branches within the network. In this review, we cover some of the early studies and summarize more recent evidence supporting the model of compartmentalized cAMP signaling, and we discuss how this knowledge is starting to provide original mechanistic insight into cell physiology and a novel framework for the identification of disease mechanisms that potentially opens new avenues for therapeutic interventions. SIGNIFICANCE STATEMENT: cAMP mediates the intracellular response to multiple hormones and neurotransmitters. Signal fidelity and accurate coordination of a plethora of different cellular functions is achieved via organization of multiprotein signalosomes and cAMP compartmentalization in subcellular nanodomains. Defining the organization and regulation of subcellular cAMP nanocompartments is necessary if we want to understand the complex functional ramifications of pharmacological treatments that target G protein-coupled receptors and for generating a blueprint that can be used to develop precision medicine interventions.
Collapse
Affiliation(s)
- Manuela Zaccolo
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Anna Zerio
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Miguel J Lobo
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
12
|
Paradiso A, Domingo G, Blanco E, Buscaglia A, Fortunato S, Marsoni M, Scarcia P, Caretto S, Vannini C, de Pinto MC. Cyclic AMP mediates heat stress response by the control of redox homeostasis and ubiquitin-proteasome system. PLANT, CELL & ENVIRONMENT 2020; 43:2727-2742. [PMID: 32876347 DOI: 10.1111/pce.13878] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 08/22/2020] [Indexed: 06/11/2023]
Abstract
Heat stress (HS), causing impairment in several physiological processes, is one of the most damaging environmental cues for plants. To counteract the harmful effects of high temperatures, plants activate complex signalling networks, indicated as HS response (HSR). Expression of heat shock proteins (HSPs) and adjustment of redox homeostasis are crucial events of HSR, required for thermotolerance. By pharmacological approaches, the involvement of cAMP in triggering plant HSR has been recently proposed. In this study, to investigate the role of cAMP in HSR signalling, tobacco BY-2 cells overexpressing the 'cAMP-sponge', a genetic tool that reduces intracellular cAMP levels, have been used. in vivo cAMP dampening increased HS susceptibility in a HSPs-independent way. The failure in cAMP elevation during HS caused a high accumulation of reactive oxygen species, due to increased levels of respiratory burst oxidase homolog D, decreased activities of catalase and ascorbate peroxidase, as well as down-accumulation of proteins involved in the control of redox homeostasis. In addition, cAMP deficiency impaired proteasome activity and prevented the accumulation of many proteins of ubiquitin-proteasome system (UPS). By a large-scale proteomic approach together with in silico analyses, these UPS proteins were identified in a specific cAMP-dependent network of HSR.
Collapse
Affiliation(s)
| | - Guido Domingo
- Department of Biotechnology and Life Science, University of Insubria, Varese, Italy
| | - Emanuela Blanco
- Institute of Biosciences and Bioresources, National Research Council, Bari, Italy
| | - Alessio Buscaglia
- Department of Biology, University of Bari "Aldo Moro", Bari, Italy
- Department of Biotechnology and Life Science, University of Insubria, Varese, Italy
| | | | - Milena Marsoni
- Department of Biotechnology and Life Science, University of Insubria, Varese, Italy
| | - Pasquale Scarcia
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari "Aldo Moro", Bari, Italy
| | - Sofia Caretto
- Institute of Sciences of Food Production, CNR, Research Division Lecce, Lecce, Italy
| | - Candida Vannini
- Department of Biotechnology and Life Science, University of Insubria, Varese, Italy
| | | |
Collapse
|
13
|
Shan W, Hu Y, Ding J, Yang X, Lou J, Du Q, Liao Q, Luo L, Xu J, Xie R. Advances in Ca 2+ modulation of gastrointestinal anion secretion and its dysregulation in digestive disorders (Review). Exp Ther Med 2020; 20:8. [PMID: 32934673 PMCID: PMC7471861 DOI: 10.3892/etm.2020.9136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 05/22/2020] [Indexed: 11/29/2022] Open
Abstract
Intracellular calcium (Ca2+) is a critical cell signaling component in gastrointestinal (GI) physiology. Cytosolic calcium ([Ca2+]cyt), as a secondary messenger, controls GI epithelial fluid and ion transport, mucus and neuropeptide secretion, as well as synaptic transmission and motility. The key roles of Ca2+ signaling in other types of secretory cell (including those in the airways and salivary glands) are well known. However, its action in GI epithelial secretion and the underlying molecular mechanisms have remained to be fully elucidated. The present review focused on the role of [Ca2+]cyt in GI epithelial anion secretion. Ca2+ signaling regulates the activities of ion channels and transporters involved in GI epithelial ion and fluid transport, including Cl- channels, Ca2+-activated K+ channels, cystic fibrosis (CF) transmembrane conductance regulator and anion/HCO3- exchangers. Previous studies by the current researchers have focused on this field over several years, providing solid evidence that Ca2+ signaling has an important role in the regulation of GI epithelial anion secretion and uncovering underlying molecular mechanisms. The present review is largely based on previous studies by the current researchers and provides an overview of the currently known molecular mechanisms of GI epithelial anion secretion with an emphasis on Ca2+-mediated ion secretion and its dysregulation in GI disorders. In addition, previous studies by the current researchers demonstrated that different regulatory mechanisms are in place for GI epithelial HCO3- and Cl- secretion. An increased understanding of the roles of Ca2+ signaling and its targets in GI anion secretion may lead to the development of novel strategies to inhibit GI diseases, including the enhancement of fluid secretion in CF and protection of the GI mucosa in ulcer diseases.
Collapse
Affiliation(s)
- Weixi Shan
- Department of Gastroenterology, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Yanxia Hu
- Department of Gastroenterology, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Jianhong Ding
- Department of Gastroenterology, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Xiaoxu Yang
- Department of Gastroenterology, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Jun Lou
- Department of Gastroenterology, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Qian Du
- Department of Gastroenterology, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Qiushi Liao
- Department of Gastroenterology, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Lihong Luo
- Department of Oncology and Geriatrics, Traditional Chinese Medicine Hospital of Chishui City, Guizhou 564700, P.R. China
| | - Jingyu Xu
- Department of Gastroenterology, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Rui Xie
- Department of Gastroenterology, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| |
Collapse
|
14
|
SponGee: A Genetic Tool for Subcellular and Cell-Specific cGMP Manipulation. Cell Rep 2020; 27:4003-4012.e6. [PMID: 31242429 DOI: 10.1016/j.celrep.2019.05.102] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 03/22/2019] [Accepted: 05/29/2019] [Indexed: 12/22/2022] Open
Abstract
cGMP is critical to a variety of cellular processes, but the available tools to interfere with endogenous cGMP lack cellular and subcellular specificity. We introduce SponGee, a genetically encoded chelator of this cyclic nucleotide that enables in vitro and in vivo manipulations in single cells and in biochemically defined subcellular compartments. SponGee buffers physiological changes in cGMP concentration in various model systems while not affecting cAMP signals. We provide proof-of-concept strategies by using this tool to highlight the role of cGMP signaling in vivo and in discrete subcellular domains. SponGee enables the investigation of local cGMP signals in vivo and paves the way for therapeutic strategies that prevent downstream signaling activation.
Collapse
|
15
|
Blanco E, Fortunato S, Viggiano L, de Pinto MC. Cyclic AMP: A Polyhedral Signalling Molecule in Plants. Int J Mol Sci 2020; 21:E4862. [PMID: 32660128 PMCID: PMC7402341 DOI: 10.3390/ijms21144862] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 07/06/2020] [Accepted: 07/07/2020] [Indexed: 02/07/2023] Open
Abstract
The cyclic nucleotide cAMP (3',5'-cyclic adenosine monophosphate) is nowadays recognised as an important signalling molecule in plants, involved in many molecular processes, including sensing and response to biotic and abiotic environmental stresses. The validation of a functional cAMP-dependent signalling system in higher plants has spurred a great scientific interest on the polyhedral role of cAMP, as it actively participates in plant adaptation to external stimuli, in addition to the regulation of physiological processes. The complex architecture of cAMP-dependent pathways is far from being fully understood, because the actors of these pathways and their downstream target proteins remain largely unidentified. Recently, a genetic strategy was effectively used to lower cAMP cytosolic levels and hence shed light on the consequences of cAMP deficiency in plant cells. This review aims to provide an integrated overview of the current state of knowledge on cAMP's role in plant growth and response to environmental stress. Current knowledge of the molecular components and the mechanisms of cAMP signalling events is summarised.
Collapse
Affiliation(s)
- Emanuela Blanco
- Institute of Biosciences and Bioresources, National Research Council, Via G. Amendola 165/A, 70126 Bari, Italy
| | - Stefania Fortunato
- Department of Biology, University of Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy; (S.F.); (L.V.)
| | - Luigi Viggiano
- Department of Biology, University of Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy; (S.F.); (L.V.)
| | - Maria Concetta de Pinto
- Department of Biology, University of Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy; (S.F.); (L.V.)
| |
Collapse
|
16
|
Baudet S, Bécret J, Nicol X. Approaches to Manipulate Ephrin-A:EphA Forward Signaling Pathway. Pharmaceuticals (Basel) 2020; 13:ph13070140. [PMID: 32629797 PMCID: PMC7407804 DOI: 10.3390/ph13070140] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/19/2020] [Accepted: 06/28/2020] [Indexed: 02/07/2023] Open
Abstract
Erythropoietin-producing hepatocellular carcinoma A (EphA) receptors and their ephrin-A ligands are key players of developmental events shaping the mature organism. Their expression is mostly restricted to stem cell niches in adults but is reactivated in pathological conditions including lesions in the heart, lung, or nervous system. They are also often misregulated in tumors. A wide range of molecular tools enabling the manipulation of the ephrin-A:EphA system are available, ranging from small molecules to peptides and genetically-encoded strategies. Their mechanism is either direct, targeting EphA receptors, or indirect through the modification of intracellular downstream pathways. Approaches enabling manipulation of ephrin-A:EphA forward signaling for the dissection of its signaling cascade, the investigation of its physiological roles or the development of therapeutic strategies are summarized here.
Collapse
|
17
|
Studying β 1 and β 2 adrenergic receptor signals in cardiac cells using FRET-based sensors. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2019; 154:30-38. [PMID: 31266653 DOI: 10.1016/j.pbiomolbio.2019.06.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 06/10/2019] [Accepted: 06/17/2019] [Indexed: 12/17/2022]
Abstract
Cyclic 3'-5' adenosine monophosphate (cAMP) is a key modulator of cardiac function. Thanks to the sophisticated organization of its pathway in distinct functional units called microdomains, cAMP is involved in the regulation of both inotropy and chronotropy as well as transcription and cardiac death. While visualization of cAMP microdomains can be achieved thanks to cAMP-sensitive FRET-based sensors, the molecular mechanisms through which cAMP-generating stimuli are coupled to distinct functional outcomes are not well understood. One possibility is that each stimulus activates multiple microdomains in order to generate a spatiotemporal code that translates into function. To test this hypothesis here we propose a series of experimental protocols that allow to simultaneously follow cAMP or Protein Kinase A (PKA)-dependent phosphorylation in different subcellular compartments of living cells. We investigate the responses of β Adrenergic receptors (β1AR and β2AR) challenged with selective drugs that enabled us to measure the actions of each receptor independently. At the whole cell level, we used a combination of co-culture with selective βAR stimulation and were able to molecularly separate cardiac fibroblasts from neonatal rat ventricular myocytes based on their cAMP responses. On the other hand, at the subcellular level, these experimental protocols allowed us to dissect the relative weight of β1 and β2 adrenergic receptors on cAMP signalling at the cytosol and outer mitochondrial membrane of NRVMs. We propose that experimental procedures that allow the collection of multiparametric data are necessary in order to understand the molecular mechanisms underlying the coupling between extracellular signals and cellular responses.
Collapse
|
18
|
Direct visualization of cAMP signaling in primary cilia reveals up-regulation of ciliary GPCR activity following Hedgehog activation. Proc Natl Acad Sci U S A 2019; 116:12066-12071. [PMID: 31142652 DOI: 10.1073/pnas.1819730116] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The primary cilium permits compartmentalization of specific signaling pathways, including elements of the Hedgehog (Hh) pathway. Hh transcriptional activity is thought to be negatively regulated by constitutively high ciliary cAMP maintained by the Gα(s)-coupled GPCR, GPR161. However, cilia also sequester many other Gα(s)-coupled GPCRs with unknown potential to regulate Hh. Here we used biosensors optimized for ciliary cAMP and strategies to isolate signals in the cilium from the cell body and neighboring cells. We found that ciliary cAMP was not elevated relative to cellular cAMP, inconsistent with constitutive cAMP production. Gα(s)-coupled GPCRs (e.g., the 5-HT6 serotonin and D1R dopamine receptor) had reduced ability to generate cAMP upon trafficking to the ciliary membrane. However, activation of the Hh pathway restored or amplified GPCR function to permit cAMP elevation selectively in the cilium. Hh therefore enables its own local GPCR-dependent cAMP regulatory circuit. Considering that GPCRs comprise much of the druggable genome, these data suggest alternative strategies to modify Hh signaling.
Collapse
|
19
|
Sabetta W, Vandelle E, Locato V, Costa A, Cimini S, Bittencourt Moura A, Luoni L, Graf A, Viggiano L, De Gara L, Bellin D, Blanco E, de Pinto MC. Genetic buffering of cyclic AMP in Arabidopsis thaliana compromises the plant immune response triggered by an avirulent strain of Pseudomonas syringae pv. tomato. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 98:590-606. [PMID: 30735606 DOI: 10.1111/tpj.14275] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 12/23/2018] [Accepted: 01/24/2019] [Indexed: 05/21/2023]
Abstract
Cyclic AMP plays important roles in different physiological processes, including plant defence responses. However, as little information is known on plant enzymes responsible for cAMP production/degradation, studies of cAMP functions have relied, to date, on non-specific pharmacological approaches. We therefore developed a more reliable approach, producing transgenic Arabidopsis thaliana lines overexpressing the 'cAMP-sponge' (cAS), a genetic tool that specifically buffers cAMP levels. In response to an avirulent strain of Pseudomonas syringae pv. tomato (PstAvrB), cAS plants showed a higher bacterial growth and a reduced hypersensitive cell death in comparison with wild-type (WT) plants. The low cAMP availability after pathogen infection delayed cytosolic calcium elevation, as well as hydrogen peroxide increase and induction of redox systems. The proteomic analysis, performed 24 h post-infection, indicated that a core of 49 proteins was modulated in both genotypes, while 16 and 42 proteins were uniquely modulated in WT and cAS lines, respectively. The involvement of these proteins in the impairment of defence response in cAS plants is discussed in this paper. Moreover, in silico analysis revealed that the promoter regions of the genes coding for proteins uniquely accumulating in WT plants shared the CGCG motif, a target of the calcium-calmodulin-binding transcription factor AtSR1 (Arabidopsis thaliana signal responsive1). Therefore, following pathogen perception, the low free cAMP content, altering timing and levels of defence signals, and likely acting in part through the mis-regulation of AtSR1 activity, affected the speed and strength of the immune response.
Collapse
Affiliation(s)
- Wilma Sabetta
- Institute of Biosciences and Bioresources, CNR, Research Division Bari, Via Amendola 165/A, 70126, Bari, Italy
| | - Elodie Vandelle
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy
| | - Vittoria Locato
- Unit of Food Science and Human Nutrition, University Camps Bio-Medico of Rome, via Alvaro del Portillo, 21, 00128, Rome, Italy
| | - Alex Costa
- Department of Biosciences, University of Milan, Via G. Celoria 26, 20133, Milano, Italy
| | - Sara Cimini
- Unit of Food Science and Human Nutrition, University Camps Bio-Medico of Rome, via Alvaro del Portillo, 21, 00128, Rome, Italy
| | | | - Laura Luoni
- Department of Biosciences, University of Milan, Via G. Celoria 26, 20133, Milano, Italy
| | - Alexander Graf
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Luigi Viggiano
- Department of Biology, University of Bari "Aldo Moro", Via Orabona 4, 70125, Bari, Italy
| | - Laura De Gara
- Unit of Food Science and Human Nutrition, University Camps Bio-Medico of Rome, via Alvaro del Portillo, 21, 00128, Rome, Italy
| | - Diana Bellin
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy
| | - Emanuela Blanco
- Institute of Biosciences and Bioresources, CNR, Research Division Bari, Via Amendola 165/A, 70126, Bari, Italy
| | - Maria C de Pinto
- Department of Biology, University of Bari "Aldo Moro", Via Orabona 4, 70125, Bari, Italy
| |
Collapse
|
20
|
Greenwald EC, Mehta S, Zhang J. Genetically Encoded Fluorescent Biosensors Illuminate the Spatiotemporal Regulation of Signaling Networks. Chem Rev 2018; 118:11707-11794. [PMID: 30550275 PMCID: PMC7462118 DOI: 10.1021/acs.chemrev.8b00333] [Citation(s) in RCA: 349] [Impact Index Per Article: 49.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cellular signaling networks are the foundation which determines the fate and function of cells as they respond to various cues and stimuli. The discovery of fluorescent proteins over 25 years ago enabled the development of a diverse array of genetically encodable fluorescent biosensors that are capable of measuring the spatiotemporal dynamics of signal transduction pathways in live cells. In an effort to encapsulate the breadth over which fluorescent biosensors have expanded, we endeavored to assemble a comprehensive list of published engineered biosensors, and we discuss many of the molecular designs utilized in their development. Then, we review how the high temporal and spatial resolution afforded by fluorescent biosensors has aided our understanding of the spatiotemporal regulation of signaling networks at the cellular and subcellular level. Finally, we highlight some emerging areas of research in both biosensor design and applications that are on the forefront of biosensor development.
Collapse
Affiliation(s)
- Eric C Greenwald
- University of California , San Diego, 9500 Gilman Drive, BRFII , La Jolla , CA 92093-0702 , United States
| | - Sohum Mehta
- University of California , San Diego, 9500 Gilman Drive, BRFII , La Jolla , CA 92093-0702 , United States
| | - Jin Zhang
- University of California , San Diego, 9500 Gilman Drive, BRFII , La Jolla , CA 92093-0702 , United States
| |
Collapse
|
21
|
Phosphatases control PKA-dependent functional microdomains at the outer mitochondrial membrane. Proc Natl Acad Sci U S A 2018; 115:E6497-E6506. [PMID: 29941564 PMCID: PMC6048485 DOI: 10.1073/pnas.1806318115] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The selective phosphorylation of spatially distinct PKA targets is key for the pleiotropy of the cAMP cascade. This characteristic of the pathway is currently attributed to the ability of phosphodiesterases or adenylate cyclases to create subcellular sites (microdomains) where the concentration of cAMP is distinct from that of the surrounding areas. The role of phosphatases in this process has not been tested. Here we show that limited access of phosphatases to the PKA targets present at the outer mitochondrial membrane generates distinct microdomains of PKA phosphorylated proteins despite there being no differences in the local cAMP levels. These results describe an alternative mechanism capable of generating functional cAMP/PKA-dependent microdomains and may be extrapolated to the compartmentalization of other kinase-dependent events. Evidence supporting the heterogeneity in cAMP and PKA signaling is rapidly accumulating and has been largely attributed to the localization or activity of adenylate cyclases, phosphodiesterases, and A-kinase–anchoring proteins in different cellular subcompartments. However, little attention has been paid to the possibility that, despite homogeneous cAMP levels, a major heterogeneity in cAMP/PKA signaling could be generated by the spatial distribution of the final terminators of this cascade, i.e., the phosphatases. Using FRET-based sensors to monitor cAMP and PKA-dependent phosphorylation in the cytosol and outer mitochondrial membrane (OMM) of primary rat cardiomyocytes, we demonstrate that comparable cAMP increases in these two compartments evoke higher levels of PKA-dependent phosphorylation in the OMM. This difference is most evident for small, physiological increases of cAMP levels and with both OMM-located probes and endogenous OMM proteins. We demonstrate that this disparity depends on differences in the rates of phosphatase-dependent dephosphorylation of PKA targets in the two compartments. Furthermore, we show that the activity of soluble phosphatases attenuates PKA-driven activation of the cAMP response element-binding protein while concurrently enhancing PKA-dependent mitochondrial elongation. We conclude that phosphatases can sculpt functionally distinct cAMP/PKA domains even in the absence of gradients or microdomains of this messenger. We present a model that accounts for these unexpected results in which the degree of PKA-dependent phosphorylation is dictated by both the subcellular distribution of the phosphatases and the different accessibility of membrane-bound and soluble phosphorylated substrates to the cytosolic enzymes.
Collapse
|
22
|
Kinoshita N, Arenas-Huertero C, Chua NH. Visualizing nuclear-localized RNA using transient expression system in plants. Genes Cells 2018; 23:105-111. [PMID: 29271544 DOI: 10.1111/gtc.12549] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 10/23/2017] [Indexed: 12/24/2022]
Abstract
By modifying the existing cytosolic RNA visualization tool pioneered by Schönberger, Hammes, and Dresselhaus (2012), we developed a method to visualize nuclear-localized RNA. Our method uses (i) an RNA component that consists of an RNA of interest that is fused to a bacteriophage-derived MS2 sequence; and (ii) GFP fused to MS2 coat protein (MSCP), which binds specifically to MS2 as is also the case in the method for cytosolic RNA visualization. The nuclear localization sequence (NLS) at the C-terminal of MSCP-GFP tethers the probe to the nucleus. To reduce background signals in the nucleus, we replaced the NLS with a nuclear export sequence (NES) that anchors the MSCP-GFP probe in the cytosol. Our nuclear RNA visualization method differs from previous methods in two aspects: (i) We used an NES to reduce nuclear background signal so that the MSCP-GFP probe localizes in the cytosol by default; (ii) We added mCherry as a visual marker in the RNA component to increase its efficient usage in a transient system.
Collapse
Affiliation(s)
- Natsuko Kinoshita
- Lab of Plant Molecular Biology, The Rockefeller University, New York, NY, USA
| | | | - Nam-Hai Chua
- Lab of Plant Molecular Biology, The Rockefeller University, New York, NY, USA
| |
Collapse
|
23
|
Interrogating cyclic AMP signaling using optical approaches. Cell Calcium 2017; 64:47-56. [PMID: 28274483 DOI: 10.1016/j.ceca.2017.02.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Accepted: 02/20/2017] [Indexed: 11/23/2022]
Abstract
Optical reporters for cAMP represent a fundamental advancement in our ability to investigate the dynamics of cAMP signaling. These fluorescent sensors can measure changes in cAMP in single cells or in microdomains within cells as opposed to whole populations of cells required for other methods of measuring cAMP. The first optical cAMP reporters were FRET-based sensors utilizing dissociation of purified regulatory and catalytic subunits of PKA, introduced by Roger Tsien in the early 1990s. The utility of these sensors was vastly improved by creating genetically encoded versions that could be introduced into cells with transfection, the first of which was published in the year 2000. Subsequently, improved sensors have been developed using different cAMP binding platforms, optimized fluorescent proteins, and targeting motifs that localize to specific microdomains. The most common sensors in use today are FRET-based sensors designed around an Epac backbone. These rely on the significant conformational changes in Epac when it binds cAMP, altering the signal between FRET pairs flanking Epac. Several other strategies for optically interrogating cAMP have been developed, including fluorescent translocation reporters, dimerization-dependent FP based biosensors, BRET (bioluminescence resonance energy transfer)-based sensors, non-FRET single wavelength reporters, and sensors based on bacterial cAMP-binding domains. Other newly described mammalian cAMP-binding proteins such as Popdc and CRIS may someday be exploited in sensor design. With the proliferation of engineered fluorescent proteins and the abundance of cAMP binding targets in nature, the field of optical reporters for cAMP should continue to see rapid refinement in the coming years.
Collapse
|
24
|
Averaimo S, Assali A, Ros O, Couvet S, Zagar Y, Genescu I, Rebsam A, Nicol X. A plasma membrane microdomain compartmentalizes ephrin-generated cAMP signals to prune developing retinal axon arbors. Nat Commun 2016; 7:12896. [PMID: 27694812 PMCID: PMC5059439 DOI: 10.1038/ncomms12896] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 08/11/2016] [Indexed: 01/11/2023] Open
Abstract
The development of neuronal circuits is controlled by guidance molecules that are hypothesized to interact with the cholesterol-enriched domains of the plasma membrane termed lipid rafts. Whether such domains enable local intracellular signalling at the submicrometre scale in developing neurons and are required for shaping the nervous system connectivity in vivo remains controversial. Here, we report a role for lipid rafts in generating domains of local cAMP signalling in axonal growth cones downstream of ephrin-A repulsive guidance cues. Ephrin-A-dependent retraction of retinal ganglion cell axons involves cAMP signalling restricted to the vicinity of lipid rafts and is independent of cAMP modulation outside of this microdomain. cAMP modulation near lipid rafts controls the pruning of ectopic axonal branches of retinal ganglion cells in vivo, a process requiring intact ephrin-A signalling. Together, our findings indicate that lipid rafts structure the subcellular organization of intracellular cAMP signalling shaping axonal arbors during the nervous system development.
Collapse
Affiliation(s)
- Stefania Averaimo
- Sorbonne Universités, UPMC University Paris 06, UMR_S 968, Institut de la Vision, Paris F-75012, France.,CNRS, UMR_7210, Paris F-75012, France.,INSERM, UMR_S 968, Paris F-75012, France
| | - Ahlem Assali
- Sorbonne Universités, UPMC University Paris 06, UMR_S 839, Paris F-75005, France.,INSERM UMR_S 839, Paris F-75005, France.,Institut du Fer à Moulin, Paris F-75005, France
| | - Oriol Ros
- Sorbonne Universités, UPMC University Paris 06, UMR_S 968, Institut de la Vision, Paris F-75012, France.,CNRS, UMR_7210, Paris F-75012, France.,INSERM, UMR_S 968, Paris F-75012, France
| | - Sandrine Couvet
- Sorbonne Universités, UPMC University Paris 06, UMR_S 968, Institut de la Vision, Paris F-75012, France.,CNRS, UMR_7210, Paris F-75012, France.,INSERM, UMR_S 968, Paris F-75012, France
| | - Yvrick Zagar
- Sorbonne Universités, UPMC University Paris 06, UMR_S 968, Institut de la Vision, Paris F-75012, France.,CNRS, UMR_7210, Paris F-75012, France.,INSERM, UMR_S 968, Paris F-75012, France
| | - Ioana Genescu
- Sorbonne Universités, UPMC University Paris 06, UMR_S 968, Institut de la Vision, Paris F-75012, France.,CNRS, UMR_7210, Paris F-75012, France.,INSERM, UMR_S 968, Paris F-75012, France
| | - Alexandra Rebsam
- Sorbonne Universités, UPMC University Paris 06, UMR_S 839, Paris F-75005, France.,INSERM UMR_S 839, Paris F-75005, France.,Institut du Fer à Moulin, Paris F-75005, France
| | - Xavier Nicol
- Sorbonne Universités, UPMC University Paris 06, UMR_S 968, Institut de la Vision, Paris F-75012, France.,CNRS, UMR_7210, Paris F-75012, France.,INSERM, UMR_S 968, Paris F-75012, France
| |
Collapse
|
25
|
Belmonte SA, Mayorga LS, Tomes CN. The Molecules of Sperm Exocytosis. ADVANCES IN ANATOMY EMBRYOLOGY AND CELL BIOLOGY 2016; 220:71-92. [PMID: 27194350 DOI: 10.1007/978-3-319-30567-7_4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Exocytosis is a fundamental process used by eukaryotic cells to release biological compounds and to insert lipids and proteins in the plasma membrane. Specialized secretory cells undergo regulated exocytosis in response to physiological signals. Sperm exocytosis or acrosome reaction (AR) is essentially a regulated secretion with special characteristics. We will focus here on some of these unique features, covering the topology, kinetics, and molecular mechanisms that prepare, drive, and regulate membrane fusion during the AR. Last, we will compare acrosomal release with exocytosis in other model systems.
Collapse
Affiliation(s)
- Silvia A Belmonte
- Laboratorio de Biología Celular y Molecular, Instituto de Histología y Embriología, IHEM-CONICET, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, 5500, Mendoza, Mendoza, Argentina
| | - Luis S Mayorga
- Laboratorio de Biología Celular y Molecular, Instituto de Histología y Embriología, IHEM-CONICET, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, 5500, Mendoza, Mendoza, Argentina
| | - Claudia N Tomes
- Laboratorio de Biología Celular y Molecular, Instituto de Histología y Embriología, IHEM-CONICET, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, 5500, Mendoza, Mendoza, Argentina.
| |
Collapse
|
26
|
Richards M, Lomas O, Jalink K, Ford KL, Vaughan-Jones RD, Lefkimmiatis K, Swietach P. Intracellular tortuosity underlies slow cAMP diffusion in adult ventricular myocytes. Cardiovasc Res 2016; 110:395-407. [PMID: 27089919 PMCID: PMC4872880 DOI: 10.1093/cvr/cvw080] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 04/11/2016] [Indexed: 12/20/2022] Open
Abstract
Aims 3′,5′-Cyclic adenosine monophosphate (cAMP) signals in the heart are often confined to concentration microdomains shaped by cAMP diffusion and enzymatic degradation. While the importance of phosphodiesterases (degradative enzymes) in sculpting cAMP microdomains is well established in cardiomyocytes, less is known about cAMP diffusivity (DcAMP) and factors affecting it. Many earlier studies have reported fast diffusivity, which argues against sharply defined microdomains. Methods and results [cAMP] dynamics in the cytoplasm of adult rat ventricular myocytes were imaged using a fourth generation genetically encoded FRET-based sensor. The [cAMP]-response to the addition and removal of isoproterenol (β-adrenoceptor agonist) quantified the rates of cAMP synthesis and degradation. To obtain a read out of DcAMP, a stable [cAMP] gradient was generated using a microfluidic device which delivered agonist to one half of the myocyte only. After accounting for phosphodiesterase activity, DcAMP was calculated to be 32 µm2/s; an order of magnitude lower than in water. Diffusivity was independent of the amount of cAMP produced. Saturating cAMP-binding sites with the analogue 6-Bnz-cAMP did not accelerate DcAMP, arguing against a role of buffering in restricting cAMP mobility. cAMP diffused at a comparable rate to chemically unrelated but similar sized molecules, arguing for a common physical cause of restricted diffusivity. Lower mitochondrial density and order in neonatal cardiac myocytes allowed for faster diffusion, demonstrating the importance of mitochondria as physical barriers to cAMP mobility. Conclusion In adult cardiac myocytes, tortuosity due to physical barriers, notably mitochondria, restricts cAMP diffusion to levels that are more compatible with microdomain signalling.
Collapse
Affiliation(s)
- Mark Richards
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, Parks Road, Oxford OX1 3PT, UK
| | - Oliver Lomas
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, Parks Road, Oxford OX1 3PT, UK
| | - Kees Jalink
- Division of Cell Biology, Netherlands Cancer Institute, 1066 CX Amsterdam, Netherlands
| | - Kerrie L Ford
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, Parks Road, Oxford OX1 3PT, UK
| | - Richard D Vaughan-Jones
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, Parks Road, Oxford OX1 3PT, UK
| | - Konstantinos Lefkimmiatis
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, Parks Road, Oxford OX1 3PT, UK BHF Centre of Research Excellence, Oxford
| | - Pawel Swietach
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, Parks Road, Oxford OX1 3PT, UK
| |
Collapse
|
27
|
Sabetta W, Vannini C, Sgobba A, Marsoni M, Paradiso A, Ortolani F, Bracale M, Viggiano L, Blanco E, de Pinto MC. Cyclic AMP deficiency negatively affects cell growth and enhances stress-related responses in tobacco Bright Yellow-2 cells. PLANT MOLECULAR BIOLOGY 2016; 90:467-83. [PMID: 26786166 DOI: 10.1007/s11103-016-0431-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 01/05/2016] [Indexed: 05/24/2023]
Abstract
Cyclic adenosine 3',5'-monophosphate (cAMP) is a recognized second messenger; however, knowledge of cAMP involvement in plant physiological processes originates primarily from pharmacological studies. To obtain direct evidence for cAMP function in plants, tobacco Bright Yellow-2 (BY-2) cells were transformed with the cAMP sponge, which is a genetically encoded tool that reduces cAMP availability. BY-2 cells expressing the cAMP sponge (cAS cells), showed low levels of free cAMP and exhibited growth inhibition that was not proportional to the cAMP sponge transcript level. Growth inhibition in cAS cells was closely related to the precocious inhibition of mitosis due to a delay in cell cycle progression. The cAMP deficiency also enhanced antioxidant systems. Remarkable changes occurred in the cAS proteomic profile compared with that of wild-type (WT) cells. Proteins involved in translation, cytoskeletal organization, and cell proliferation were down-regulated, whereas stress-related proteins were up-regulated in cAS cells. These results support the hypothesis that BY-2 cells sense cAMP deficiency as a stress condition. Finally, many proteasome subunits were differentially expressed in cAS cells compared with WT cells, indicating that cAMP signaling broadly affects protein degradation via the ubiquitin/proteasome pathway.
Collapse
Affiliation(s)
- Wilma Sabetta
- Istituto di Bioscienze e Biorisorse, CNR, Via G. Amendola 165/A, 70126, Bari, Italy
| | - Candida Vannini
- Dipartimento di Biotecnologie e Scienze della Vita, Università degli Studi dell'Insubria, Via H. J. Dunant 3, 21100, Varese, Italy
| | - Alessandra Sgobba
- Dipartimento di Biologia, Università degli Studi di Bari "Aldo Moro", via E. Orabona 4, 70125, Bari, Italy
| | - Milena Marsoni
- Dipartimento di Biotecnologie e Scienze della Vita, Università degli Studi dell'Insubria, Via H. J. Dunant 3, 21100, Varese, Italy
| | - Annalisa Paradiso
- Dipartimento di Biologia, Università degli Studi di Bari "Aldo Moro", via E. Orabona 4, 70125, Bari, Italy
| | - Francesca Ortolani
- Dipartimento di Biotecnologie e Scienze della Vita, Università degli Studi dell'Insubria, Via H. J. Dunant 3, 21100, Varese, Italy
| | - Marcella Bracale
- Dipartimento di Biotecnologie e Scienze della Vita, Università degli Studi dell'Insubria, Via H. J. Dunant 3, 21100, Varese, Italy
| | - Luigi Viggiano
- Dipartimento di Biologia, Università degli Studi di Bari "Aldo Moro", via E. Orabona 4, 70125, Bari, Italy
| | - Emanuela Blanco
- Istituto di Bioscienze e Biorisorse, CNR, Via G. Amendola 165/A, 70126, Bari, Italy
| | - Maria Concetta de Pinto
- Dipartimento di Biologia, Università degli Studi di Bari "Aldo Moro", via E. Orabona 4, 70125, Bari, Italy.
| |
Collapse
|
28
|
Lucchesi O, Ruete MC, Bustos MA, Quevedo MF, Tomes CN. The signaling module cAMP/Epac/Rap1/PLCε/IP3 mobilizes acrosomal calcium during sperm exocytosis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1863:544-61. [PMID: 26704387 DOI: 10.1016/j.bbamcr.2015.12.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Revised: 11/23/2015] [Accepted: 12/14/2015] [Indexed: 12/29/2022]
Abstract
Exocytosis of the sperm's single secretory granule, or acrosome, is a regulated exocytosis triggered by components of the egg's investments. In addition to external calcium, sperm exocytosis (termed the acrosome reaction) requires cAMP synthesized endogenously and calcium mobilized from the acrosome through IP3-sensitive channels. The relevant cAMP target is Epac. In the first part of this paper, we present a novel tool (the TAT-cAMP sponge) to investigate cAMP-related signaling pathways in response to progesterone as acrosome reaction trigger. The TAT-cAMP sponge consists of the cAMP-binding sites of protein kinase A regulatory subunit RIβ fused to the protein transduction domain TAT of the human immunodeficiency virus-1. The sponge permeated into sperm, sequestered endogenous cAMP, and blocked exocytosis. Progesterone increased the population of sperm with Rap1-GTP, Rab3-GTP, and Rab27-GTP in the acrosomal region; pretreatment with the TAT-cAMP sponge prevented the activation of all three GTPases. In the second part of this manuscript, we show that phospholipase Cε (PLCε) is required for the acrosome reaction downstream of Rap1 and upstream of intra-acrosomal calcium mobilization. Last, we present direct evidence that cAMP, Epac, Rap1, and PLCε are necessary for calcium mobilization from sperm's secretory granule. In summary, we describe here a pathway that connects cAMP to calcium mobilization from the acrosome during sperm exocytosis. Never before had direct evidence for each step of the cascade been put together in the same study.
Collapse
Affiliation(s)
- Ornella Lucchesi
- Laboratorio de Biología Celular y Molecular, Instituto de Histología y Embriología, IHEM-CONICET, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza 5500, Argentina
| | - María C Ruete
- Laboratorio de Biología Celular y Molecular, Instituto de Histología y Embriología, IHEM-CONICET, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza 5500, Argentina
| | - Matías A Bustos
- Laboratorio de Biología Celular y Molecular, Instituto de Histología y Embriología, IHEM-CONICET, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza 5500, Argentina
| | - María F Quevedo
- Laboratorio de Biología Celular y Molecular, Instituto de Histología y Embriología, IHEM-CONICET, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza 5500, Argentina
| | - Claudia N Tomes
- Laboratorio de Biología Celular y Molecular, Instituto de Histología y Embriología, IHEM-CONICET, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza 5500, Argentina.
| |
Collapse
|
29
|
Paramonov VM, Mamaeva V, Sahlgren C, Rivero-Müller A. Genetically-encoded tools for cAMP probing and modulation in living systems. Front Pharmacol 2015; 6:196. [PMID: 26441653 PMCID: PMC4569861 DOI: 10.3389/fphar.2015.00196] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 08/28/2015] [Indexed: 11/19/2022] Open
Abstract
Intracellular 3′-5′-cyclic adenosine monophosphate (cAMP) is one of the principal second messengers downstream of a manifold of signal transduction pathways, including the ones triggered by G protein-coupled receptors. Not surprisingly, biochemical assays for cAMP have been instrumental for basic research and drug discovery for decades, providing insights into cellular physiology and guiding pharmaceutical industry. However, despite impressive track record, the majority of conventional biochemical tools for cAMP probing share the same fundamental shortcoming—all the measurements require sample disruption for cAMP liberation. This common bottleneck, together with inherently low spatial resolution of measurements (as cAMP is typically analyzed in lysates of thousands of cells), underpin the ensuing limitations of the conventional cAMP assays: (1) genuine kinetic measurements of cAMP levels over time in a single given sample are unfeasible; (2) inability to obtain precise information on cAMP spatial distribution and transfer at subcellular levels, let alone the attempts to pinpoint dynamic interactions of cAMP and its effectors. At the same time, tremendous progress in synthetic biology over the recent years culminated in drastic refinement of our toolbox, allowing us not only to bypass the limitations of conventional assays, but to put intracellular cAMP life-span under tight control—something, that seemed scarcely attainable before. In this review article we discuss the main classes of modern genetically-encoded tools tailored for cAMP probing and modulation in living systems. We examine the capabilities and weaknesses of these different tools in the context of their operational characteristics and applicability to various experimental set-ups involving living cells, providing the guidance for rational selection of the best tools for particular needs.
Collapse
Affiliation(s)
- Valeriy M Paramonov
- Department of Physiology, Institute of Biomedicine, University of Turku , Turku, Finland ; Turku Center for Biotechnology, University of Turku and Åbo Akademi University , Turku, Finland
| | - Veronika Mamaeva
- Department of Clinical Science, University of Bergen , Bergen, Norway
| | - Cecilia Sahlgren
- Turku Center for Biotechnology, University of Turku and Åbo Akademi University , Turku, Finland ; Department of Biomedical Engineering, Eindhoven University of Technology , Eindhoven, Netherlands
| | - Adolfo Rivero-Müller
- Department of Physiology, Institute of Biomedicine, University of Turku , Turku, Finland ; Faculty of Natural Sciences and Technology, Åbo Akademi University , Turku, Finland ; Department of Biochemistry and Molecular Biology, Medical University of Lublin , Lublin, Poland
| |
Collapse
|
30
|
Tapping the translation potential of cAMP signalling: molecular basis for selectivity in cAMP agonism and antagonism as revealed by NMR. Biochem Soc Trans 2015; 42:302-7. [PMID: 24646235 DOI: 10.1042/bst20130282] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Eukaryotic CBDs (cAMP-binding domains) control multiple cellular functions (e.g. phosphorylation, guanine exchange and ion channel gating). Hence the manipulation of cAMP-dependent signalling pathways has a high translational potential. However, the ubiquity of eukaryotic CBDs also poses a challenge in terms of selectivity. Before the full translational potential of cAMP signalling can be tapped, it is critical to understand the structural basis for selective cAMP agonism and antagonism. Recent NMR investigations have shown that structurally homologous CBDs respond differently to several CBD ligands and that these unexpected differences arise at the level of either binding (i.e. affinity) or allostery (i.e. modulation of the autoinhibitory equilibria). In the present article, we specifically address how the highly conserved CBD fold binds cAMP with markedly different affinities in PKA (protein kinase A) relative to other eukaryotic cAMP receptors, such as Epac (exchange protein directly activated by cAMP) and HCN (hyperpolarization-activated cyclic-nucleotide-modulated channel). A major emerging determinant of cAMP affinity is hypothesized to be the position of the autoinhibitory equilibrium of the apo-CBD, which appears to vary significantly across different CBDs. These analyses may assist the development of selective CBD effectors that serve as potential drug leads for the treatment of cardiovascular diseases.
Collapse
|
31
|
Keller MJ, Lecuona E, Prakriya M, Cheng Y, Soberanes S, Budinger GRS, Sznajder JI. Calcium release-activated calcium (CRAC) channels mediate the β(2)-adrenergic regulation of Na,K-ATPase. FEBS Lett 2014; 588:4686-93. [PMID: 25447523 PMCID: PMC4267986 DOI: 10.1016/j.febslet.2014.10.041] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 10/23/2014] [Accepted: 10/29/2014] [Indexed: 01/11/2023]
Abstract
β2-Adrenergic agonists have been shown to regulate Na,K-ATPase in the alveolar epithelium by recruiting Na,K-ATPase-containing vesicles to the plasma membrane of alveolar epithelial cells (AEC). Here, we provide evidence that β2-agonists induce store-operated calcium entry (SOCE) in AECs. This calcium entry is necessary for β2-agonist-induced recruitment of Na,K-ATPase to the plasma membrane of AECs. Specifically, we show that β2-agonists induce SOCE via stromal interaction molecule 1 (STIM1)-associated calcium release-activated calcium (CRAC) channels. We also demonstrate that the magnitude of SOCE affects the abundance of Na,K-ATPase at the plasma membrane of AECs.
Collapse
Affiliation(s)
- Michael J Keller
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Emilia Lecuona
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA.
| | - Murali Prakriya
- Department of Molecular Pharmacology and Biological Chemistry, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Yuan Cheng
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Saul Soberanes
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - G R Scott Budinger
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Jacob I Sznajder
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
32
|
Maiellaro I, Lefkimmiatis K, Moyer MP, Curci S, Hofer AM. Termination and activation of store-operated cyclic AMP production. J Cell Mol Med 2012; 16:2715-25. [PMID: 22681560 PMCID: PMC3470754 DOI: 10.1111/j.1582-4934.2012.01592.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Accepted: 06/05/2012] [Indexed: 01/03/2023] Open
Abstract
Diverse pathophysiological processes (e.g. obesity, lifespan determination, addiction and male fertility) have been linked to the expression of specific isoforms of the adenylyl cyclases (AC1-AC10), the enzymes that generate cyclic AMP (cAMP). Our laboratory recently discovered a new mode of cAMP production, prominent in certain cell types, that is stimulated by any manoeuvre causing reduction of free [Ca(2+) ] within the lumen of the endoplasmic reticulum (ER) calcium store. Activation of this 'store-operated' pathway requires the ER Ca(2+) sensor, STIM1, but the identity of the enzymes responsible for cAMP production and how this process is regulated is unknown. Here, we used sensitive FRET-based sensors for cAMP in single cells combined with silencing and overexpression approaches to show that store-operated cAMP production occurred preferentially via the isoform AC3 in NCM460 colonic epithelial cells. Ca(2+) entry via the plasma membrane Ca(2+) channel, Orai1, suppressed cAMP production, independent of store refilling. These findings are an important first step towards defining the functional significance and to identify the protein composition of this novel Ca(2+) /cAMP crosstalk system.
Collapse
Affiliation(s)
- Isabella Maiellaro
- VA Boston Healthcare System, Department of Surgery, Brigham and Women's Hospital, Harvard Medical SchoolWest Roxbury, MA, USA
| | - Konstantinos Lefkimmiatis
- VA Boston Healthcare System, Department of Surgery, Brigham and Women's Hospital, Harvard Medical SchoolWest Roxbury, MA, USA
| | | | - Silvana Curci
- VA Boston Healthcare System, Department of Surgery, Brigham and Women's Hospital, Harvard Medical SchoolWest Roxbury, MA, USA
| | - Aldebaran M Hofer
- VA Boston Healthcare System, Department of Surgery, Brigham and Women's Hospital, Harvard Medical SchoolWest Roxbury, MA, USA
| |
Collapse
|
33
|
FRET measurements of intracellular cAMP concentrations and cAMP analog permeability in intact cells. Nat Protoc 2011; 6:427-38. [PMID: 21412271 DOI: 10.1038/nprot.2010.198] [Citation(s) in RCA: 165] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Real-time measurements of second messengers in living cells, such as cAMP, are usually performed by ratiometric fluorescence resonance energy transfer (FRET) imaging. However, correct calibration of FRET ratios, accurate calculations of absolute cAMP levels and actual permeabilities of different cAMP analogs have been challenging. Here we present a protocol that allows precise measurements of cAMP concentrations and kinetics by expressing FRET-based cAMP sensors in cells and modulating them with an inhibitor of adenylyl cyclase activity and a cell-permeable cAMP analog that fully inhibits and activates the sensors, respectively. Using this protocol, we observed different basal cAMP levels in primary mouse cardiomyocytes, thyroid cells and in 293A cells. The protocol can be generally applied for calibration of second messenger or metabolite concentrations measured by FRET, and for studying kinetics and pharmacological properties of their membrane-permeable analogs. The complete procedure, including cell preparation and FRET measurements, takes 3-6 d.
Collapse
|
34
|
Roy J, Lefkimmiatis K, Moyer MP, Curci S, Hofer AM. The {omega}-3 fatty acid eicosapentaenoic acid elicits cAMP generation in colonic epithelial cells via a "store-operated" mechanism. Am J Physiol Gastrointest Liver Physiol 2010; 299:G715-22. [PMID: 20576916 PMCID: PMC2950681 DOI: 10.1152/ajpgi.00028.2010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Eicosapentaenoic acid (EPA) is an omega-3 polyunsaturated fatty acid abundant in fish oil that exerts a wide spectrum of documented beneficial health effects in humans. Because dietary interventions are relatively inexpensive and are widely assumed to be safe, they have broad public appeal. Their endorsement can potentially have a major impact on human health, but hard mechanistic evidence that specifies how these derivatives work at the cellular level is limited. EPA (50 microM) caused a small elevation of cytoplasmic Ca(2+) concentration ([Ca(2+)]) in intact NCM460 human colonic epithelial cells as measured by fura 2 and a profound drop of [Ca(2+)] within the endoplasmic reticulum (ER) of permeabilized cells as monitored by compartmentalized mag-fura 2. Total internal reflection fluorescence microscopy showed that this loss of ER store [Ca(2+)] led to translocation of the ER-resident transmembrane Ca(2+) sensor STIM1. Using sensitive FRET-based sensors for cAMP in single cells, we further found that EPA caused a substantial increase in cellular cAMP concentration, a large fraction of which was dependent on the drop in ER [Ca(2+)], but independent of cytosolic Ca(2+). An additional component of the EPA-induced cAMP signal was sensitive to the phosphodiesterase inhibitor isobutyl methylxanthine. We conclude that EPA slowly releases ER Ca(2+) stores, resulting in the generation of cAMP. The elevated cAMP is apparently independent of classical G protein-coupled receptor activation and is likely the consequence of a newly described "store-operated" cAMP signaling pathway that is mediated by STIM1.
Collapse
Affiliation(s)
- Jessica Roy
- 1Veterans Affairs Boston Healthcare System and the Department of Surgery, Brigham and Women's Hospital and Harvard Medical School, West Roxbury, Massachusetts; and
| | - Konstantinos Lefkimmiatis
- 1Veterans Affairs Boston Healthcare System and the Department of Surgery, Brigham and Women's Hospital and Harvard Medical School, West Roxbury, Massachusetts; and
| | | | - Silvana Curci
- 1Veterans Affairs Boston Healthcare System and the Department of Surgery, Brigham and Women's Hospital and Harvard Medical School, West Roxbury, Massachusetts; and
| | - Aldebaran M. Hofer
- 1Veterans Affairs Boston Healthcare System and the Department of Surgery, Brigham and Women's Hospital and Harvard Medical School, West Roxbury, Massachusetts; and
| |
Collapse
|