1
|
Carr LM, Mustafa S, Care A, Collins-Praino LE. More than a number: Incorporating the aged phenotype to improve in vitro and in vivo modeling of neurodegenerative disease. Brain Behav Immun 2024; 119:554-571. [PMID: 38663775 DOI: 10.1016/j.bbi.2024.04.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 03/04/2024] [Accepted: 04/22/2024] [Indexed: 04/29/2024] Open
Abstract
Age is the number one risk factor for developing a neurodegenerative disease (ND), such as Alzheimer's disease (AD) or Parkinson's disease (PD). With our rapidly ageing world population, there will be an increased burden of ND and need for disease-modifying treatments. Currently, however, translation of research from bench to bedside in NDs is poor. This may be due, at least in part, to the failure to account for the potential effect of ageing in preclinical modelling of NDs. While ageing can impact upon physiological response in multiple ways, only a limited number of preclinical studies of ND have incorporated ageing as a factor of interest. Here, we evaluate the aged phenotype and highlight the critical, but unmet, need to incorporate aspects of this phenotype into both the in vitro and in vivo models used in ND research. Given technological advances in the field over the past several years, we discuss how these could be harnessed to create novel models of ND that more readily incorporate aspects of the aged phenotype. This includes a recently described in vitro panel of ageing markers, which could help lead to more standardised models and improve reproducibility across studies. Importantly, we cannot assume that young cells or animals yield the same responses as seen in the context of ageing; thus, an improved understanding of the biology of ageing, and how to appropriately incorporate this into the modelling of ND, will ensure the best chance for successful translation of new therapies to the aged patient.
Collapse
Affiliation(s)
- Laura M Carr
- School of Biomedicine, University of Adelaide, Adelaide, SA, Australia
| | - Sanam Mustafa
- School of Biomedicine, University of Adelaide, Adelaide, SA, Australia; Australian Research Council Centre of Excellence for Nanoscale Biophotonics, The University of Adelaide, Adelaide, SA, Australia; Davies Livestock Research Centre, The University of Adelaide, Roseworthy, SA, Australia
| | - Andrew Care
- School of Life Sciences, University of Technology Sydney, Sydney, NSW, Australia
| | - Lyndsey E Collins-Praino
- School of Biomedicine, University of Adelaide, Adelaide, SA, Australia; Australian Research Council Centre of Excellence for Nanoscale Biophotonics, The University of Adelaide, Adelaide, SA, Australia.
| |
Collapse
|
2
|
Schmidt TT, Tyer C, Rughani P, Haggblom C, Jones JR, Dai X, Frazer KA, Gage FH, Juul S, Hickey S, Karlseder J. High resolution long-read telomere sequencing reveals dynamic mechanisms in aging and cancer. Nat Commun 2024; 15:5149. [PMID: 38890299 PMCID: PMC11189484 DOI: 10.1038/s41467-024-48917-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 05/15/2024] [Indexed: 06/20/2024] Open
Abstract
Telomeres are the protective nucleoprotein structures at the end of linear eukaryotic chromosomes. Telomeres' repetitive nature and length have traditionally challenged the precise assessment of the composition and length of individual human telomeres. Here, we present Telo-seq to resolve bulk, chromosome arm-specific and allele-specific human telomere lengths using Oxford Nanopore Technologies' native long-read sequencing. Telo-seq resolves telomere shortening in five population doubling increments and reveals intrasample, chromosome arm-specific, allele-specific telomere length heterogeneity. Telo-seq can reliably discriminate between telomerase- and ALT-positive cancer cell lines. Thus, Telo-seq is a tool to study telomere biology during development, aging, and cancer at unprecedented resolution.
Collapse
Affiliation(s)
| | - Carly Tyer
- Oxford Nanopore Technologies, Inc., New York, NY, USA
| | | | - Candy Haggblom
- Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Jeffrey R Jones
- Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Xiaoguang Dai
- Oxford Nanopore Technologies, Inc., New York, NY, USA
| | - Kelly A Frazer
- Institute of Genomic Medicine, University of California, San Diego, La Jolla, CA, 92093-0761, USA
| | - Fred H Gage
- Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Sissel Juul
- Oxford Nanopore Technologies, Inc., New York, NY, USA
| | - Scott Hickey
- Oxford Nanopore Technologies, Inc., New York, NY, USA.
| | - Jan Karlseder
- Salk Institute for Biological Studies, La Jolla, CA, 92037, USA.
| |
Collapse
|
3
|
Cipriano A, Moqri M, Maybury-Lewis SY, Rogers-Hammond R, de Jong TA, Parker A, Rasouli S, Schöler HR, Sinclair DA, Sebastiano V. Mechanisms, pathways and strategies for rejuvenation through epigenetic reprogramming. NATURE AGING 2024; 4:14-26. [PMID: 38102454 PMCID: PMC11058000 DOI: 10.1038/s43587-023-00539-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 11/07/2023] [Indexed: 12/17/2023]
Abstract
Over the past decade, there has been a dramatic increase in efforts to ameliorate aging and the diseases it causes, with transient expression of nuclear reprogramming factors recently emerging as an intriguing approach. Expression of these factors, either systemically or in a tissue-specific manner, has been shown to combat age-related deterioration in mouse and human model systems at the cellular, tissue and organismal level. Here we discuss the current state of epigenetic rejuvenation strategies via partial reprogramming in both mouse and human models. For each classical reprogramming factor, we provide a brief description of its contribution to reprogramming and discuss additional factors or chemical strategies. We discuss what is known regarding chromatin remodeling and the molecular dynamics underlying rejuvenation, and, finally, we consider strategies to improve the practical uses of epigenetic reprogramming to treat aging and age-related diseases, focusing on the open questions and remaining challenges in this emerging field.
Collapse
Affiliation(s)
- Andrea Cipriano
- Department of Obstetrics & Gynecology, Stanford School of Medicine, Stanford University, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford School of Medicine, Stanford, CA, USA
| | - Mahdi Moqri
- Department of Obstetrics & Gynecology, Stanford School of Medicine, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford School of Medicine, Stanford University, Stanford, CA, USA
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | - Tineke Anna de Jong
- Department of Obstetrics & Gynecology, Stanford School of Medicine, Stanford University, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford School of Medicine, Stanford, CA, USA
| | - Alexander Parker
- Department of Obstetrics & Gynecology, Stanford School of Medicine, Stanford University, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford School of Medicine, Stanford, CA, USA
| | - Sajede Rasouli
- Department of Obstetrics & Gynecology, Stanford School of Medicine, Stanford University, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford School of Medicine, Stanford, CA, USA
| | - Hans Robert Schöler
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - David A Sinclair
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
- Paul F. Glenn Center for Biology of Aging Research, Harvard Medical School, Boston, MA, USA.
| | - Vittorio Sebastiano
- Department of Obstetrics & Gynecology, Stanford School of Medicine, Stanford University, Stanford, CA, USA.
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford School of Medicine, Stanford, CA, USA.
| |
Collapse
|
4
|
Ding S, Zhang R, Zhang P, Shi J, Liu L, Li J, Zhang R, Wu F, Zhou P. The application of quantitative telomerase activity measurement as an important indicator to monitor the cardiomyocyte differentiation process of human induced pluripotent stem cells under defined conditions. Biochem Biophys Res Commun 2023; 687:149150. [PMID: 37939503 DOI: 10.1016/j.bbrc.2023.149150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/11/2023] [Accepted: 10/23/2023] [Indexed: 11/10/2023]
Abstract
The construction of an in vitro differentiation system for human induced pluripotent stem cells (hiPSCs) has made exciting progress, but it is still of great significance to clarify the differentiation process. The use of conventional genetic and protein-labeled microscopes to observe or detect different stages of hiPSC differentiation is not specific enough and is cumbersome and time-consuming. In this study, in addition to analyzing the expression of gene/protein-related markers, we used a previously reported simple and excellent quantitative method of cellular telomerase activity based on a quartz crystal microbalance (TREAQ) device to monitor the dynamic changes in cellular telomerase activity in hiPSCs during myocardial differentiation under chemically defined conditions. Finally, by integrating these results, we analyzed the relationship between telomerase activity and the expression of marker genes/proteins as well as the cell type at each study time point. This dynamic quantitative measurement of cellular telomerase activity should be a promising indicator for monitoring dynamic changes in a stage of hiPSC differentiation and inducing cell types. This study provided a quantitative, dynamic and simple monitoring index for the in vitro differentiation process of hiPSC-CMs, which was a certain reference value for the optimization and improvement of the induction system.
Collapse
Affiliation(s)
- Shaoli Ding
- Department of Pain Treatment, Gansu Provincial Hospital, Lanzhou, China; The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Rongzhi Zhang
- Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Pengxia Zhang
- School of Stomatology, Lanzhou University, No.222 Tianshui South Road, Chengguan District, Lanzhou, 730000, China
| | - Jiamin Shi
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Lu Liu
- Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Jiamin Li
- School of Stomatology, Lanzhou University, No.222 Tianshui South Road, Chengguan District, Lanzhou, 730000, China
| | - Rui Zhang
- School of Stomatology, Lanzhou University, No.222 Tianshui South Road, Chengguan District, Lanzhou, 730000, China
| | - Fujian Wu
- Translational Medicine Collaborative Innovation Center, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology, The Second Clinical Medical College of Jinan University), Shenzhen, 518055, Guangdong, China.
| | - Ping Zhou
- School of Stomatology, Lanzhou University, No.222 Tianshui South Road, Chengguan District, Lanzhou, 730000, China.
| |
Collapse
|
5
|
McCaughey-Chapman A, Connor B. Cell reprogramming for oligodendrocytes: A review of protocols and their applications to disease modeling and cell-based remyelination therapies. J Neurosci Res 2023; 101:1000-1028. [PMID: 36749877 DOI: 10.1002/jnr.25173] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 02/09/2023]
Abstract
Oligodendrocytes are a type of glial cells that produce a lipid-rich membrane called myelin. Myelin assembles into a sheath and lines neuronal axons in the brain and spinal cord to insulate them. This not only increases the speed and efficiency of nerve signal transduction but also protects the axons from damage and degradation, which could trigger neuronal cell death. Demyelination, which is caused by a loss of myelin and oligodendrocytes, is a prominent feature of many neurological conditions, including Multiple sclerosis (MS), spinal cord injuries (SCI), and leukodystrophies. Demyelination is followed by a time of remyelination mediated by the recruitment of endogenous oligodendrocyte precursor cells, their migration to the injury site, and differentiation into myelin-producing oligodendrocytes. Unfortunately, endogenous remyelination is not sufficient to overcome demyelination, which explains why there are to date no regenerative-based treatments for MS, SCI, or leukodystrophies. To better understand the role of oligodendrocytes and develop cell-based remyelination therapies, human oligodendrocytes have been derived from somatic cells using cell reprogramming. This review will detail the different cell reprogramming methods that have been developed to generate human oligodendrocytes and their applications to disease modeling and cell-based remyelination therapies. Recent developments in the field have seen the derivation of brain organoids from pluripotent stem cells, and protocols have been devised to incorporate oligodendrocytes within the organoids, which will also be reviewed.
Collapse
Affiliation(s)
- Amy McCaughey-Chapman
- Department of Pharmacology and Clinical Pharmacology, Centre for Brain Research, School of Medical Science, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Bronwen Connor
- Department of Pharmacology and Clinical Pharmacology, Centre for Brain Research, School of Medical Science, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
6
|
McCaughey-Chapman A, Tarczyluk-Wells M, Combrinck C, Edwards N, Jones K, Connor B. Reprogramming of adult human dermal fibroblasts to induced dorsal forebrain precursor cells maintains aging signatures. Front Cell Neurosci 2023; 17:1003188. [PMID: 36794263 PMCID: PMC9922835 DOI: 10.3389/fncel.2023.1003188] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 01/10/2023] [Indexed: 01/31/2023] Open
Abstract
Introduction: With the increase in aging populations around the world, the development of in vitro human cell models to study neurodegenerative disease is crucial. A major limitation in using induced pluripotent stem cell (hiPSC) technology to model diseases of aging is that reprogramming fibroblasts to a pluripotent stem cell state erases age-associated features. The resulting cells show behaviors of an embryonic stage exhibiting longer telomeres, reduced oxidative stress, and mitochondrial rejuvenation, as well as epigenetic modifications, loss of abnormal nuclear morphologies, and age-associated features. Methods: We have developed a protocol utilizing stable, non-immunogenic chemically modified mRNA (cmRNA) to convert adult human dermal fibroblasts (HDFs) to human induced dorsal forebrain precursor (hiDFP) cells, which can subsequently be differentiated into cortical neurons. Analyzing an array of aging biomarkers, we demonstrate for the first time the effect of direct-to-hiDFP reprogramming on cellular age. Results: We confirm direct-to-hiDFP reprogramming does not affect telomere length or the expression of key aging markers. However, while direct-to-hiDFP reprogramming does not affect senescence-associated β-galactosidase activity, it enhances the level of mitochondrial reactive oxygen species and the amount of DNA methylation compared to HDFs. Interestingly, following neuronal differentiation of hiDFPs we observed an increase in cell soma size as well as neurite number, length, and branching with increasing donor age suggesting that neuronal morphology is altered with age. Discussion: We propose direct-to-hiDFP reprogramming provides a strategy for modeling age-associated neurodegenerative diseases allowing the persistence of age-associated signatures not seen in hiPSC-derived cultures, thereby facilitating our understanding of neurodegenerative disease and identification of therapeutic targets.
Collapse
Affiliation(s)
- Amy McCaughey-Chapman
- Department of Pharmacology and Clinical Pharmacology, Centre for Brain Research, School of Medical Science, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Marta Tarczyluk-Wells
- Department of Pharmacology and Clinical Pharmacology, Centre for Brain Research, School of Medical Science, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Catharina Combrinck
- Department of Pharmacology and Clinical Pharmacology, Centre for Brain Research, School of Medical Science, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Nicole Edwards
- Department of Pharmacology and Clinical Pharmacology, Centre for Brain Research, School of Medical Science, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Kathryn Jones
- School of Biological Sciences, Faculty of Science, University of Auckland, Auckland, New Zealand
| | - Bronwen Connor
- Department of Pharmacology and Clinical Pharmacology, Centre for Brain Research, School of Medical Science, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand,*Correspondence: Bronwen Connor
| |
Collapse
|
7
|
Castillo Bautista CM, Sterneckert J. Progress and challenges in directing the differentiation of human iPSCs into spinal motor neurons. Front Cell Dev Biol 2023; 10:1089970. [PMID: 36684437 PMCID: PMC9849822 DOI: 10.3389/fcell.2022.1089970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/21/2022] [Indexed: 01/07/2023] Open
Abstract
Motor neuron (MN) diseases, including amyotrophic lateral sclerosis, progressive bulbar palsy, primary lateral sclerosis and spinal muscular atrophy, cause progressive paralysis and, in many cases, death. A better understanding of the molecular mechanisms of pathogenesis is urgently needed to identify more effective therapies. However, studying MNs has been extremely difficult because they are inaccessible in the spinal cord. Induced pluripotent stem cells (iPSCs) can generate a theoretically limitless number of MNs from a specific patient, making them powerful tools for studying MN diseases. However, to reach their potential, iPSCs need to be directed to efficiently differentiate into functional MNs. Here, we review the reported differentiation protocols for spinal MNs, including induction with small molecules, expression of lineage-specific transcription factors, 2-dimensional and 3-dimensional cultures, as well as the implementation of microfluidics devices and co-cultures with other cell types, including skeletal muscle. We will summarize the advantages and disadvantages of each strategy. In addition, we will provide insights into how to address some of the remaining challenges, including reproducibly obtaining mature and aged MNs.
Collapse
Affiliation(s)
| | - Jared Sterneckert
- Center for Regenerative Therapies TU Dresden (CRTD), Technische Universität (TU) Dresden, Dresden, Germany,Medical Faculty Carl Gustav Carus of TU Dresden, Dresden, Germany,*Correspondence: Jared Sterneckert,
| |
Collapse
|
8
|
Sheridan SD, Horng JE, Perlis RH. Patient-Derived In Vitro Models of Microglial Function and Synaptic Engulfment in Schizophrenia. Biol Psychiatry 2022; 92:470-479. [PMID: 35232567 PMCID: PMC10039432 DOI: 10.1016/j.biopsych.2022.01.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/19/2021] [Accepted: 01/10/2022] [Indexed: 01/11/2023]
Abstract
Multiple lines of evidence implicate dysregulated microglia-mediated synaptic pruning in the pathophysiology of schizophrenia. In vitro human cellular studies represent a promising means of pursuing this hypothesis, complementing efforts with animal models and postmortem human data while addressing their limitations. The challenges in culturing homogeneous populations of cells derived from postmortem or surgical biopsy brain material from patients, and their limited availability, has led to a focus on differentiation of induced pluripotent stem cells. These methods too have limitations, in that they disrupt the epigenome and can demonstrate line-to-line variability due in part to extended time in culture, partial reprogramming, and/or residual epigenetic memory from the cell source, yielding large technical artifacts. Yet another strategy uses direct transdifferentiation of peripheral mononuclear blood cells, or umbilical cord blood cells, to microglia-like cells. Any of these approaches can be paired with patient-derived synaptosomes from differentiated neurons as a simpler alternative to co-culture. Patient-derived microglia models may facilitate identification of novel modulators of synaptic pruning and identification of biomarkers that may allow more targeted early interventions.
Collapse
Affiliation(s)
- Steven D Sheridan
- Center for Genomic Medicine and Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts; Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| | - Joy E Horng
- Center for Genomic Medicine and Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts; Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| | - Roy H Perlis
- Center for Genomic Medicine and Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts; Department of Psychiatry, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
9
|
Barak M, Fedorova V, Pospisilova V, Raska J, Vochyanova S, Sedmik J, Hribkova H, Klimova H, Vanova T, Bohaciakova D. Human iPSC-Derived Neural Models for Studying Alzheimer's Disease: from Neural Stem Cells to Cerebral Organoids. Stem Cell Rev Rep 2022; 18:792-820. [PMID: 35107767 PMCID: PMC8930932 DOI: 10.1007/s12015-021-10254-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2021] [Indexed: 12/05/2022]
Abstract
During the past two decades, induced pluripotent stem cells (iPSCs) have been widely used to study mechanisms of human neural development, disease modeling, and drug discovery in vitro. Especially in the field of Alzheimer’s disease (AD), where this treatment is lacking, tremendous effort has been put into the investigation of molecular mechanisms behind this disease using induced pluripotent stem cell-based models. Numerous of these studies have found either novel regulatory mechanisms that could be exploited to develop relevant drugs for AD treatment or have already tested small molecules on in vitro cultures, directly demonstrating their effect on amelioration of AD-associated pathology. This review thus summarizes currently used differentiation strategies of induced pluripotent stem cells towards neuronal and glial cell types and cerebral organoids and their utilization in modeling AD and potential drug discovery.
Collapse
Affiliation(s)
- Martin Barak
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University Brno, Brno, Czech Republic
| | - Veronika Fedorova
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University Brno, Brno, Czech Republic
| | - Veronika Pospisilova
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University Brno, Brno, Czech Republic
| | - Jan Raska
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University Brno, Brno, Czech Republic
| | - Simona Vochyanova
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University Brno, Brno, Czech Republic
| | - Jiri Sedmik
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University Brno, Brno, Czech Republic
- International Clinical Research Center, St. Anne's Faculty Hospital Brno, Brno, Czech Republic
| | - Hana Hribkova
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University Brno, Brno, Czech Republic
| | - Hana Klimova
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University Brno, Brno, Czech Republic
| | - Tereza Vanova
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University Brno, Brno, Czech Republic
- International Clinical Research Center, St. Anne's Faculty Hospital Brno, Brno, Czech Republic
| | - Dasa Bohaciakova
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University Brno, Brno, Czech Republic.
- International Clinical Research Center, St. Anne's Faculty Hospital Brno, Brno, Czech Republic.
| |
Collapse
|
10
|
Directly Reprogrammed Human Neurons to Understand Age-Related Energy Metabolism Impairment and Mitochondrial Dysfunction in Healthy Aging and Neurodegeneration. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5586052. [PMID: 34950417 PMCID: PMC8691983 DOI: 10.1155/2021/5586052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 11/08/2021] [Accepted: 11/25/2021] [Indexed: 01/10/2023]
Abstract
Brain aging is characterized by several molecular and cellular changes grouped as the hallmarks or pillars of aging, including organelle dysfunction, metabolic and nutrition-sensor changes, stem cell attrition, and macromolecular damages. Separately and collectively, these features degrade the most critical neuronal function: transmission of information in the brain. It is widely accepted that aging is the leading risk factor contributing to the onset of the most prevalent pathological conditions that affect brain functions, such as Alzheimer's, Parkinson's, and Huntington's disease. One of the limitations in understanding the molecular mechanisms involved in those diseases is the lack of an appropriate cellular model that recapitulates the “aged” context in human neurons. The advent of the cellular reprogramming of somatic cells, i.e., dermal fibroblasts, to obtain directly induced neurons (iNs) and induced pluripotent stem cell- (iPSC-) derived neurons is technical sound advances that could open the avenues to understand better the contribution of aging toward neurodegeneration. In this review, we will summarize the commonalities and singularities of these two approaches for the study of brain aging, with an emphasis on the role of mitochondrial dysfunction and redox biology. We will address the evidence showing that iNs retain age-related features in contrast to iPSC-derived neurons that lose the aging signatures during the reprogramming to pluripotency, rendering iNs a powerful strategy to deepen our knowledge of the processes driving normal cellular function decline and neurodegeneration in a human adult model. We will finally discuss the potential utilization of these novel technologies to understand the differential contribution of genetic and epigenetic factors toward neuronal aging, to identify and develop new drugs and therapeutic strategies.
Collapse
|
11
|
Martín-López M, González-Muñoz E, Gómez-González E, Sánchez-Pernaute R, Márquez-Rivas J, Fernández-Muñoz B. Modeling chronic cervical spinal cord injury in aged rats for cell therapy studies. J Clin Neurosci 2021; 94:76-85. [PMID: 34863466 DOI: 10.1016/j.jocn.2021.09.042] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 09/22/2021] [Accepted: 09/30/2021] [Indexed: 12/24/2022]
Abstract
With an expanding elderly population, an increasing number of older adults will experience spinal cord injury (SCI) and might be candidates for cell-based therapies, yet there is a paucity of research in this age group. The objective of the present study was to analyze how aged rats tolerate behavioral testing, surgical procedures, post-operative complications, intra-spinal cell transplantation and immunosuppression, and to examine the effectiveness of human iPSC-derived Neural Progenitor Cells (IMR90-hiPSC-NPCs) in a model of SCI. We performed behavioral tests in rats before and after inducing cervical hemi-contusions at C4 level with a fourth-generation Ohio State University Injury Device. Four weeks later, we injected IMR90-hiPSC-NPCs in animals that were immunosuppressed by daily cyclosporine injection. Four weeks after injection we analyzed locomotor behavior and mortality, and histologically assessed the survival of transplanted human NPCs. As rats aged, their success at completing behavioral tests decreased. In addition, we observed high mortality rates during behavioral training (41.2%), after cervical injury (63.2%) and after cell injection (50%). Histological analysis revealed that injected cells survived and remained at and around the grafted site and did not cause tumors. No locomotor improvement was observed in animals four weeks after IMR90-hiPSC-NPC transplantation. Our results show that elderly rats are highly vulnerable to interventions, and thus large groups of animals must be initially established to study the potential efficacy of cell-based therapies in age-related chronic myelopathies.
Collapse
Affiliation(s)
- María Martín-López
- Unidad de Producción y Reprogramación celular (UPRC), Red Andaluza de Diseño y Traslación de Terapias Avanzadas (RAdytTA), 41092 Sevilla, Spain; Grupo de Neurociencia Aplicada, Instituto de Investigaciones Biomédicas de Sevilla (IBIS), 41013 Sevilla, Spain; Programa de Doctorado en Biología Molecular, Biomedicina e Investigación Clínica, Universidad de Sevilla, Sevilla, Spain.
| | - Elena González-Muñoz
- Departamento de Biología Celular, Genética y Fisiología, Universidad de Málaga, 29071 Málaga, Spain; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, (CIBER-BBN), 29071 Málaga, Spain.
| | - Emilio Gómez-González
- Grupo de Neurociencia Aplicada, Instituto de Investigaciones Biomédicas de Sevilla (IBIS), 41013 Sevilla, Spain; Grupo de Física Interdisciplinar, Departamento de Física Aplicada III, ETS Ingeniería, Universidad de Sevilla, 41092 Sevilla, Spain.
| | - Rosario Sánchez-Pernaute
- Unidad de Coordinación, Red Andaluza de Diseño y Traslación de Terapias Avanzadas (RAdytTA), 41092 Sevilla, Spain.
| | - Javier Márquez-Rivas
- Grupo de Neurociencia Aplicada, Instituto de Investigaciones Biomédicas de Sevilla (IBIS), 41013 Sevilla, Spain; Departamento de Neurocirugía, Hospital Universitario Virgen del Rocío, 41013 Sevilla, Spain.
| | - Beatriz Fernández-Muñoz
- Unidad de Producción y Reprogramación celular (UPRC), Red Andaluza de Diseño y Traslación de Terapias Avanzadas (RAdytTA), 41092 Sevilla, Spain.
| |
Collapse
|
12
|
Samoilova EM, Belopasov VV, Ekusheva EV, Zhang C, Troitskiy AV, Baklaushev VP. Epigenetic Clock and Circadian Rhythms in Stem Cell Aging and Rejuvenation. J Pers Med 2021; 11:1050. [PMID: 34834402 PMCID: PMC8620936 DOI: 10.3390/jpm11111050] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/12/2021] [Accepted: 10/14/2021] [Indexed: 12/12/2022] Open
Abstract
This review summarizes the current understanding of the interaction between circadian rhythms of gene expression and epigenetic clocks characterized by the specific profile of DNA methylation in CpG-islands which mirror the senescence of all somatic cells and stem cells in particular. Basic mechanisms of regulation for circadian genes CLOCK-BMAL1 as well as downstream clock-controlled genes (ССG) are also discussed here. It has been shown that circadian rhythms operate by the finely tuned regulation of transcription and rely on various epigenetic mechanisms including the activation of enhancers/suppressors, acetylation/deacetylation of histones and other proteins as well as DNA methylation. Overall, up to 20% of all genes expressed by the cell are subject to expression oscillations associated with circadian rhythms. Additionally included in the review is a brief list of genes involved in the regulation of circadian rhythms, along with genes important for cell aging, and oncogenesis. Eliminating some of them (for example, Sirt1) accelerates the aging process, while the overexpression of Sirt1, on the contrary, protects against age-related changes. Circadian regulators control a number of genes that activate the cell cycle (Wee1, c-Myc, p20, p21, and Cyclin D1) and regulate histone modification and DNA methylation. Approaches for determining the epigenetic age from methylation profiles across CpG islands in individual cells are described. DNA methylation, which characterizes the function of the epigenetic clock, appears to link together such key biological processes as regeneration and functioning of stem cells, aging and malignant transformation. Finally, the main features of adult stem cell aging in stem cell niches and current possibilities for modulating the epigenetic clock and stem cells rejuvenation as part of antiaging therapy are discussed.
Collapse
Affiliation(s)
- Ekaterina M. Samoilova
- Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies, FMBA of Russia, 115682 Moscow, Russia; (A.V.T.); (V.P.B.)
| | | | - Evgenia V. Ekusheva
- Academy of Postgraduate Education of the Federal Scientific and Clinical Center for Specialized Types of Medical Care and Medical Technologies, FMBA of Russia, 125371 Moscow, Russia;
| | - Chao Zhang
- Tianjin’s Clinical Research Center for Cancer, Tianjin 300060, China;
| | - Alexander V. Troitskiy
- Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies, FMBA of Russia, 115682 Moscow, Russia; (A.V.T.); (V.P.B.)
| | - Vladimir P. Baklaushev
- Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies, FMBA of Russia, 115682 Moscow, Russia; (A.V.T.); (V.P.B.)
| |
Collapse
|
13
|
Samoylova EM, Baklaushev VP. Cell Reprogramming Preserving Epigenetic Age: Advantages and Limitations. BIOCHEMISTRY (MOSCOW) 2021; 85:1035-1047. [PMID: 33050850 DOI: 10.1134/s0006297920090047] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Our understanding of cell aging advanced significantly since the discovery of this phenomenon by Hayflick and Moorhead in 1961. In addition to the well-known shortening of telomeric regions of chromosomes, cell aging is closely associated with changes of the DNA methylation profile. Establishing, maintaining, or reversing epigenetic age of a cell is central to the technology of cell reprogramming. Two distinct approaches - iPSC- and transdifferentiation-based cell reprogramming - affect differently epigenetic age of the cells. The iPSC-based reprogramming protocols are generally believed to result in the reversion of DNA methylation profiles towards less differentiated states, while the original methylation profiles are preserved in the direct trans-differentiation protocols. Clearly, in order to develop adequate model of CNS pathologies, one has to have thorough understanding of the biological roles of DNA methylation in the development, maintenance of functional activity, tissue and cell diversity, restructuring of neural networks during learning, as well as in aging-associated neuronal decline. Direct cell reprogramming is an excellent alternative and a valuable supplement to the iPSC-based technologies both as a source of mature cells for modeling of neurodegenerative diseases, and as a novel powerful strategy for in vivo cell replacement therapy. Further advancement of the regenerative and personalized medicine will strongly depend on optimization of the production of patient-specific autologous cells involving alternative approaches of direct and indirect cell reprogramming that take into account epigenetic age of the starting cell material.
Collapse
Affiliation(s)
- E M Samoylova
- Federal Research Clinical Center, FMBA of Russia, Moscow, 115682, Russia.
| | - V P Baklaushev
- Federal Research Clinical Center, FMBA of Russia, Moscow, 115682, Russia
| |
Collapse
|
14
|
Jiao H, Walczak BE, Lee MS, Lemieux ME, Li WJ. GATA6 regulates aging of human mesenchymal stem/stromal cells. STEM CELLS (DAYTON, OHIO) 2020; 39:62-77. [PMID: 33252174 DOI: 10.1002/stem.3297] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 03/29/2020] [Accepted: 10/12/2020] [Indexed: 12/17/2022]
Abstract
Cellular reprogramming forcing the expression of pluripotency markers can reverse aging of cells, but how molecular mechanisms through which reprogrammed cells alter aging-related cellular activities still remains largely unclear. In this study, we reprogrammed human synovial fluid-derived mesenchymal stem cells (MSCs) into induced pluripotent stem cells (iPSCs) using six reprogramming factors and reverted the iPSCs back to MSCs, as an approach to cell rejuvenation. Using the parental and reprogrammed MSCs as control nonrejuvenated and rejuvenated cells, respectively, for comparative analysis, we found that aging-related activities were greatly reduced in reprogrammed MSCs compared with those in their parental lines, indicating reversal of cell aging. Global transcriptome analysis revealed differences in activities of regulatory networks associated with inflammation and proliferation. Mechanistically, we demonstrated that, compared with control cells, the expression of GATA binding protein 6 (GATA6) in reprogrammed cells was attenuated, resulting in an increase in the activity of sonic hedgehog signaling and the expression level of downstream forkhead box P1 (FOXP1), in turn ameliorating cellular hallmarks of aging. Lower levels of GATA6 expression were also found in cells harvested from younger mice or lower passage cultures. Our findings suggest that GATA6 is a critical regulator increased in aged MSCs that controls the downstream sonic hedgehog signaling and FOXP1 pathway to modulate cellular senescence and aging-related activities.
Collapse
Affiliation(s)
- Hongli Jiao
- Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Brian E Walczak
- Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Ming-Song Lee
- Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | | | - Wan-Ju Li
- Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
15
|
Induced pluripotency and spontaneous reversal of cellular aging in supercentenarian donor cells. Biochem Biophys Res Commun 2020; 525:563-569. [DOI: 10.1016/j.bbrc.2020.02.092] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 02/12/2020] [Indexed: 12/14/2022]
|
16
|
Hu X, Mao C, Fan L, Luo H, Hu Z, Zhang S, Yang Z, Zheng H, Sun H, Fan Y, Yang J, Shi C, Xu Y. Modeling Parkinson's Disease Using Induced Pluripotent Stem Cells. Stem Cells Int 2020; 2020:1061470. [PMID: 32256606 PMCID: PMC7091557 DOI: 10.1155/2020/1061470] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 02/08/2020] [Accepted: 02/15/2020] [Indexed: 02/06/2023] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease. The molecular mechanisms of PD at the cellular level involve oxidative stress, mitochondrial dysfunction, autophagy, axonal transport, and neuroinflammation. Induced pluripotent stem cells (iPSCs) with patient-specific genetic background are capable of directed differentiation into dopaminergic neurons. Cell models based on iPSCs are powerful tools for studying the molecular mechanisms of PD. The iPSCs used for PD studies were mainly from patients carrying mutations in synuclein alpha (SNCA), leucine-rich repeat kinase 2 (LRRK2), PTEN-induced putative kinase 1 (PINK1), parkin RBR E3 ubiquitin protein ligase (PARK2), cytoplasmic protein sorting 35 (VPS35), and variants in glucosidase beta acid (GBA). In this review, we summarized the advances in molecular mechanisms of Parkinson's disease using iPSC models.
Collapse
Affiliation(s)
- Xinchao Hu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000 Henan, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450000 Henan, China
| | - Chengyuan Mao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000 Henan, China
| | - Liyuan Fan
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000 Henan, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450000 Henan, China
| | - Haiyang Luo
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000 Henan, China
| | - Zhengwei Hu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000 Henan, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450000 Henan, China
| | - Shuo Zhang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000 Henan, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450000 Henan, China
| | - Zhihua Yang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000 Henan, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450000 Henan, China
| | - Huimin Zheng
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000 Henan, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450000 Henan, China
| | - Huifang Sun
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000 Henan, China
| | - Yu Fan
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000 Henan, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450000 Henan, China
| | - Jing Yang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000 Henan, China
| | - Changhe Shi
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000 Henan, China
| | - Yuming Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000 Henan, China
| |
Collapse
|
17
|
Toubiana S, Gagliardi M, Papa M, Manco R, Tzukerman M, Matarazzo MR, Selig S. Persistent epigenetic memory impedes rescue of the telomeric phenotype in human ICF iPSCs following DNMT3B correction. eLife 2019; 8:e47859. [PMID: 31738163 PMCID: PMC6897513 DOI: 10.7554/elife.47859] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 11/17/2019] [Indexed: 12/15/2022] Open
Abstract
DNA methyltransferase 3B (DNMT3B) is the major DNMT that methylates mammalian genomes during early development. Mutations in human DNMT3B disrupt genome-wide DNA methylation patterns and result in ICF syndrome type 1 (ICF1). To study whether normal DNA methylation patterns may be restored in ICF1 cells, we corrected DNMT3B mutations in induced pluripotent stem cells from ICF1 patients. Focusing on repetitive regions, we show that in contrast to pericentromeric repeats, which reacquire normal methylation, the majority of subtelomeres acquire only partial DNA methylation and, accordingly, the ICF1 telomeric phenotype persists. Subtelomeres resistant to de novo methylation were characterized by abnormally high H3K4 trimethylation (H3K4me3), and short-term reduction of H3K4me3 by pharmacological intervention partially restored subtelomeric DNA methylation. These findings demonstrate that the abnormal epigenetic landscape established in ICF1 cells restricts the recruitment of DNMT3B, and suggest that rescue of epigenetic diseases with genome-wide disruptions will demand further manipulation beyond mutation correction.
Collapse
Affiliation(s)
- Shir Toubiana
- Molecular Medicine LaboratoryRappaport Faculty of Medicine, TechnionHaifaIsrael
- Rambam Health Care CampusHaifaIsrael
| | | | | | - Roberta Manco
- Institute of Genetics and Biophysics, ABT CNRNaplesItaly
| | - Maty Tzukerman
- Molecular Medicine LaboratoryRappaport Faculty of Medicine, TechnionHaifaIsrael
- Rambam Health Care CampusHaifaIsrael
| | | | - Sara Selig
- Molecular Medicine LaboratoryRappaport Faculty of Medicine, TechnionHaifaIsrael
- Rambam Health Care CampusHaifaIsrael
| |
Collapse
|
18
|
Donaires FS, Alves-Paiva RM, Gutierrez-Rodrigues F, da Silva FB, Tellechea MF, Moreira LF, Santana BA, Traina F, Dunbar CE, Winkler T, Calado RT. Telomere dynamics and hematopoietic differentiation of human DKC1-mutant induced pluripotent stem cells. Stem Cell Res 2019; 40:101540. [PMID: 31479877 DOI: 10.1016/j.scr.2019.101540] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 08/08/2019] [Accepted: 08/19/2019] [Indexed: 02/07/2023] Open
Abstract
Telomeropathies are a group of phenotypically heterogeneous diseases molecularly unified by pathogenic mutations in telomere-maintenance genes causing critically short telomeres. X-linked dyskeratosis congenita (DC), the prototypical telomere disease, manifested with ectodermal dysplasia, cancer predisposition, and severe bone marrow failure, is caused by mutations in DKC1, encoding a protein responsible for telomerase holoenzyme complex stability. To investigate the effects of pathogenic DKC1 mutations on telomere repair and hematopoietic development, we derived induced pluripotent stem cells (iPSCs) from fibroblasts of a DC patient carrying the most frequent mutation: DKC1 p.A353V. Telomeres eroded immediately after reprogramming in DKC1-mutant iPSCs but stabilized in later passages. The telomerase activity of mutant iPSCs was comparable to that observed in human embryonic stem cells, and no evidence of alternative lengthening of telomere pathways was detected. Hematopoietic differentiation was carried out in DKC1-mutant iPSC clones that resulted in increased capacity to generate hematopoietic colony-forming units compared to controls. Our study indicates that telomerase-dependent telomere maintenance is defective in pluripotent stem cells harboring DKC1 mutation and unable to elongate telomeres, but sufficient to maintain cell proliferation and self-renewal, as well as to support the primitive hematopoiesis, the program that is recapitulated with our differentiation protocol.
Collapse
Affiliation(s)
- Flavia S Donaires
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Raquel M Alves-Paiva
- Department of Medical Imaging, Hematology, and Clinical Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Fernanda Gutierrez-Rodrigues
- Department of Medical Imaging, Hematology, and Clinical Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Fernanda Borges da Silva
- Department of Medical Imaging, Hematology, and Clinical Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Maria Florencia Tellechea
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Lilian Figueiredo Moreira
- Department of Medical Imaging, Hematology, and Clinical Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Barbara A Santana
- Department of Medical Imaging, Hematology, and Clinical Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Fabiola Traina
- Department of Medical Imaging, Hematology, and Clinical Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Cynthia E Dunbar
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Thomas Winkler
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Rodrigo T Calado
- Department of Medical Imaging, Hematology, and Clinical Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
19
|
Ohashi M, Korsakova E, Allen D, Lee P, Fu K, Vargas BS, Cinkornpumin J, Salas C, Park JC, Germanguz I, Langerman J, Chronis C, Kuoy E, Tran S, Xiao X, Pellegrini M, Plath K, Lowry WE. Loss of MECP2 Leads to Activation of P53 and Neuronal Senescence. Stem Cell Reports 2019; 10:1453-1463. [PMID: 29742391 PMCID: PMC5995366 DOI: 10.1016/j.stemcr.2018.04.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 03/30/2018] [Accepted: 04/03/2018] [Indexed: 01/15/2023] Open
Abstract
To determine the role for mutations of MECP2 in Rett syndrome, we generated isogenic lines of human induced pluripotent stem cells, neural progenitor cells, and neurons from patient fibroblasts with and without MECP2 expression in an attempt to recapitulate disease phenotypes in vitro. Molecular profiling uncovered neuronal-specific gene expression changes, including induction of a senescence-associated secretory phenotype (SASP) program. Patient-derived neurons made without MECP2 showed signs of stress, including induction of P53, and senescence. The induction of P53 appeared to affect dendritic branching in Rett neurons, as P53 inhibition restored dendritic complexity. The induction of P53 targets was also detectable in analyses of human Rett patient brain, suggesting that this disease-in-a-dish model can provide relevant insights into the human disorder. Development of a patient-specific model of human Rett syndrome Loss of function of MECP2 leads to induction of p53 MECP2 null neurons show evidence of cellular senescence Inhibition of p53 can restore dendritic branching in MECP2 null neurons
Collapse
Affiliation(s)
- Minori Ohashi
- Department of Molecular Cell and Developmental Biology, UCLA, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center for Regenerative Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Elena Korsakova
- Molecular Biology Institute, UCLA, Los Angeles, CA 90095, USA
| | - Denise Allen
- Department of Molecular Cell and Developmental Biology, UCLA, Los Angeles, CA 90095, USA
| | - Peiyee Lee
- Department of Molecular Cell and Developmental Biology, UCLA, Los Angeles, CA 90095, USA
| | - Kai Fu
- Department of Molecular Cell and Developmental Biology, UCLA, Los Angeles, CA 90095, USA
| | - Benni S Vargas
- Department of Molecular Cell and Developmental Biology, UCLA, Los Angeles, CA 90095, USA
| | - Jessica Cinkornpumin
- Department of Molecular Cell and Developmental Biology, UCLA, Los Angeles, CA 90095, USA
| | - Carlos Salas
- Department of Molecular Cell and Developmental Biology, UCLA, Los Angeles, CA 90095, USA
| | - Jenny C Park
- Department of Molecular Cell and Developmental Biology, UCLA, Los Angeles, CA 90095, USA
| | - Igal Germanguz
- Department of Molecular Cell and Developmental Biology, UCLA, Los Angeles, CA 90095, USA
| | - Justin Langerman
- Department of Biological Chemistry, UCLA, Los Angeles, CA 90095, USA
| | | | - Edward Kuoy
- Department of Biological Chemistry, UCLA, Los Angeles, CA 90095, USA
| | - Stephen Tran
- Department of Integrative Biology and Physiology, UCLA, Los Angeles, CA 90095, USA
| | - Xinshu Xiao
- Department of Integrative Biology and Physiology, UCLA, Los Angeles, CA 90095, USA
| | - Matteo Pellegrini
- Department of Molecular Cell and Developmental Biology, UCLA, Los Angeles, CA 90095, USA
| | - Kathrin Plath
- Department of Biological Chemistry, UCLA, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center for Regenerative Medicine, UCLA, Los Angeles, CA 90095, USA.
| | - William E Lowry
- Department of Molecular Cell and Developmental Biology, UCLA, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center for Regenerative Medicine, UCLA, Los Angeles, CA 90095, USA; Molecular Biology Institute, UCLA, Los Angeles, CA 90095, USA.
| |
Collapse
|
20
|
Chang WF, Wu YH, Xu J, Sung LY. Compromised Chondrocyte Differentiation Capacity in TERC Knockout Mouse Embryonic Stem Cells Derived by Somatic Cell Nuclear Transfer. Int J Mol Sci 2019; 20:ijms20051236. [PMID: 30870992 PMCID: PMC6429130 DOI: 10.3390/ijms20051236] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 02/26/2019] [Accepted: 03/07/2019] [Indexed: 12/18/2022] Open
Abstract
Mammalian telomere lengths are primarily regulated by telomerase, consisting of a reverse transcriptase protein (TERT) and an RNA subunit (TERC). We previously reported the generation of mouse Terc+/- and Terc-/- embryonic stem cells (ntESCs) by somatic cell nuclear transfer. In the present work, we investigated the germ layer development competence of Terc-/-, Terc+/- and wild-type (Terc+/+) ntESCs. The telomere lengths are longest in wild-type but shortest in Terc-/- ntESCs, and correlate reversely with the population doubling time. Interestingly, while in vitro embryoid body (EB) differentiation assay reveals EB size difference among ntESCs of different genotypes, the more stringent in vivo teratoma assay demonstrates that Terc-/- ntESCs are severely defective in differentiating into the mesodermal lineage cartilage. Consistently, in a directed in vitro chondrocyte differentiation assay, the Terc-/- cells failed in forming Collagen II expressing cells. These findings underscore the significance in maintaining proper telomere lengths in stem cells and their derivatives for regenerative medicine.
Collapse
Affiliation(s)
- Wei-Fang Chang
- Institute of Biotechnology, National Taiwan University, Taipei 106, Taiwan.
| | - Yun-Hsin Wu
- Institute of Biotechnology, National Taiwan University, Taipei 106, Taiwan.
| | - Jie Xu
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, Ann Arbor, MI 48109, USA.
| | - Li-Ying Sung
- Institute of Biotechnology, National Taiwan University, Taipei 106, Taiwan.
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan.
- Animal Resource Center, National Taiwan University, Taipei 106, Taiwan.
- Center for Biotechnology, National Taiwan University, Taipei 106, Taiwan.
| |
Collapse
|
21
|
Mertens J, Reid D, Lau S, Kim Y, Gage FH. Aging in a Dish: iPSC-Derived and Directly Induced Neurons for Studying Brain Aging and Age-Related Neurodegenerative Diseases. Annu Rev Genet 2018; 52:271-293. [PMID: 30208291 DOI: 10.1146/annurev-genet-120417-031534] [Citation(s) in RCA: 185] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Age-associated neurological diseases represent a profound challenge in biomedical research as we are still struggling to understand the interface between the aging process and the manifestation of disease. Various pathologies in the elderly do not directly result from genetic mutations, toxins, or infectious agents but are primarily driven by the many manifestations of biological aging. Therefore, the generation of appropriate model systems to study human aging in the nervous system demands new concepts that lie beyond transgenic and drug-induced models. Although access to viable human brain specimens is limited and induced pluripotent stem cell models face limitations due to reprogramming-associated cellular rejuvenation, the direct conversion of somatic cells into induced neurons allows for the generation of human neurons that capture many aspects of aging. Here, we review advances in exploring age-associated neurodegenerative diseases using human cell reprogramming models, and we discuss general concepts, promises, and limitations of the field.
Collapse
Affiliation(s)
- Jerome Mertens
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, California 92037, USA; .,Department of Genomics, Stem Cell Biology and Regenerative Medicine, Institute of Molecular Biology, and Center for Molecular Biosciences Innsbruck, University of Innsbruck, A-6020 Innsbruck, Austria
| | - Dylan Reid
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, California 92037, USA;
| | - Shong Lau
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, California 92037, USA;
| | - Yongsung Kim
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, California 92037, USA;
| | - Fred H Gage
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, California 92037, USA;
| |
Collapse
|
22
|
Cobb MM, Ravisankar A, Skibinski G, Finkbeiner S. iPS cells in the study of PD molecular pathogenesis. Cell Tissue Res 2018; 373:61-77. [PMID: 29234887 PMCID: PMC5997490 DOI: 10.1007/s00441-017-2749-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 11/21/2017] [Indexed: 12/12/2022]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease and its pathogenic mechanisms are poorly understood. The majority of PD cases are sporadic but a number of genes are associated with familial PD. Sporadic and familial PD have many molecular and cellular features in common, suggesting some shared pathogenic mechanisms. Induced pluripotent stem cells (iPSCs) have been derived from patients harboring a range of different mutations of PD-associated genes. PD patient-derived iPSCs have been differentiated into relevant cell types, in particular dopaminergic neurons and used as a model to study PD. In this review, we describe how iPSCs have been used to improve our understanding of the pathogenesis of PD. We describe what cellular and molecular phenotypes have been observed in neurons derived from iPSCs harboring known PD-associated mutations and what common pathways may be involved.
Collapse
Affiliation(s)
- Melanie M Cobb
- Gladstone Institutes, the Taube/Koret Center for Neurodegenerative Disease, San Francisco, CA, 94158, USA
| | - Abinaya Ravisankar
- Gladstone Institutes, the Taube/Koret Center for Neurodegenerative Disease, San Francisco, CA, 94158, USA
| | - Gaia Skibinski
- Gladstone Institutes, the Taube/Koret Center for Neurodegenerative Disease, San Francisco, CA, 94158, USA
| | - Steven Finkbeiner
- Gladstone Institutes, the Taube/Koret Center for Neurodegenerative Disease, San Francisco, CA, 94158, USA.
- Department of Neurology, University of California, San Francisco, CA, 94143, USA.
- Department Physiology, University of California, San Francisco, CA, 94143, USA.
- Graduate Programs in Neuroscience and Biomedical Sciences, University of California, San Francisco, CA, 94143, USA.
| |
Collapse
|
23
|
Fermini B, Coyne ST, Coyne KP. Clinical Trials in a Dish: A Perspective on the Coming Revolution in Drug Development. SLAS DISCOVERY 2018; 23:765-776. [PMID: 29862873 PMCID: PMC6104197 DOI: 10.1177/2472555218775028] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The pharmaceutical industry is facing unprecedented challenges as the cost of developing
new drugs has reached unsustainable levels, fueled in large parts by a high attrition rate
in clinical development. Strategies to bridge studies between preclinical testing and
clinical trials are needed to reduce the knowledge gap and allow earlier decisions to be
made on the continuation or discontinuation of further development of drugs. The discovery
and development of human induced pluripotent stem cells (hiPSCs) have opened up new
avenues that support the concept of screening for cell-based safety and toxicity at the
level of a population. This approach, termed “Clinical Trials in a Dish” (CTiD), allows
testing medical therapies for safety or efficacy on cells collected from a representative
sample of human patients, before moving into actual clinical trials. It can be applied to
the development of drugs for specific populations, and it allows predicting not only the
magnitude of effects but also the incidence of patients in a population who will benefit
or be harmed by these drugs. This, in turn, can lead to the selection of safer drugs to
move into clinical development, resulting in a reduction in attrition. The current article
offers a perspective of this new model for “humanized” preclinical drug development.
Collapse
|
24
|
Pisal RV, Suchanek J, Siller R, Soukup T, Hrebikova H, Bezrouk A, Kunke D, Micuda S, Filip S, Sullivan G, Mokry J. Directed reprogramming of comprehensively characterized dental pulp stem cells extracted from natal tooth. Sci Rep 2018; 8:6168. [PMID: 29670257 PMCID: PMC5906561 DOI: 10.1038/s41598-018-24421-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 04/03/2018] [Indexed: 02/07/2023] Open
Abstract
The aim of this study was to extensively characterise natal dental pulp stem cells (nDPSC) and assess their efficiency to generate human induced pluripotent stem cells (hiPSC). A number of distinguishing features prompted us to choose nDPSC over normal adult DPSC, in that they differed in cell surface marker expression and initial doubling time. In addition, nDPSC expressed 17 out of 52 pluripotency genes we analysed, and the level of expression was comparable to human embryonic stem cells (hESC). Ours is the first group to report comprehensive characterization of nDPSC followed by directed reprogramming to a pluripotent stem cell state. nDPSC yielded hiPSC colonies upon transduction with Sendai virus expressing the pluripotency transcription factors POU5F1, SOX2, c-MYC and KLF4. nDPSC had higher reprogramming efficiency compared to human fibroblasts. nDPSC derived hiPSCs closely resembled hESC in terms of their morphology, expression of pluripotency markers and gene expression profiles. Furthermore, nDPSC derived hiPSCs differentiated into the three germ layers when cultured as embryoid bodies (EB) and by directed differentiation. Based on our findings, nDPSC present a unique marker expression profile compared with adult DPSC and possess higher reprogramming efficiency as compared with dermal fibroblasts thus proving to be more amenable for reprogramming.
Collapse
Affiliation(s)
- Rishikaysh V Pisal
- Department of Histology and Embryology, Faculty of Medicine in Hradec Kralove, Charles University, Simkova 870, 500 03, Hradec Kralove, Czech Republic
| | - Jakub Suchanek
- Department of Dentistry, Faculty Hospital in Hradec Kralove and Faculty of Medicine in Hradec Kralove, Charles University, Simkova 870, 500 03, Hradec Kralove, Czech Republic
| | - Richard Siller
- Norwegian Center for Stem Cell Research, University of Oslo, 0317, Oslo, Norway.,Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, 0317, Oslo, Norway
| | - Tomas Soukup
- Department of Histology and Embryology, Faculty of Medicine in Hradec Kralove, Charles University, Simkova 870, 500 03, Hradec Kralove, Czech Republic
| | - Hana Hrebikova
- Department of Histology and Embryology, Faculty of Medicine in Hradec Kralove, Charles University, Simkova 870, 500 03, Hradec Kralove, Czech Republic
| | - Ales Bezrouk
- Department of Biophysics, Faculty of Medicine in Hradec Kralove, Charles University, Simkova 870, 500 03, Hradec Kralove, Czech Republic
| | - David Kunke
- Department of Histology and Embryology, Faculty of Medicine in Hradec Kralove, Charles University, Simkova 870, 500 03, Hradec Kralove, Czech Republic
| | - Stanislav Micuda
- Department of Pharmacology, Faculty of Medicine in Hradec Kralove, Charles University, Simkova 870, 500 03, Hradec Kralove, Czech Republic
| | - Stanislav Filip
- Department of Oncology and Radiotherapy, Faculty of Medicine in Hradec Kralove, Charles University, Simkova 870, 500 03, Hradec Kralove, Czech Republic
| | - Gareth Sullivan
- Norwegian Center for Stem Cell Research, University of Oslo, 0317, Oslo, Norway.,Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, 0317, Oslo, Norway.,Institute of Immunology, Oslo University Hospital-Rikshospitalet, PO Box 4950 Nydalen, Oslo, 0424, Norway.,Hybrid Technology Hub - Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, Blindern, 0317, Oslo, Norway.,Department of Pediatric Research, Oslo University Hospital, 0424, Nydalen, Norway
| | - Jaroslav Mokry
- Department of Histology and Embryology, Faculty of Medicine in Hradec Kralove, Charles University, Simkova 870, 500 03, Hradec Kralove, Czech Republic.
| |
Collapse
|
25
|
Borger DK, McMahon B, Roshan Lal T, Serra-Vinardell J, Aflaki E, Sidransky E. Induced pluripotent stem cell models of lysosomal storage disorders. Dis Model Mech 2018; 10:691-704. [PMID: 28592657 PMCID: PMC5483008 DOI: 10.1242/dmm.029009] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 04/28/2017] [Indexed: 01/30/2023] Open
Abstract
Induced pluripotent stem cells (iPSCs) have provided new opportunities to explore the cell biology and pathophysiology of human diseases, and the lysosomal storage disorder research community has been quick to adopt this technology. Patient-derived iPSC models have been generated for a number of lysosomal storage disorders, including Gaucher disease, Pompe disease, Fabry disease, metachromatic leukodystrophy, the neuronal ceroid lipofuscinoses, Niemann-Pick types A and C1, and several of the mucopolysaccharidoses. Here, we review the strategies employed for reprogramming and differentiation, as well as insights into disease etiology gleaned from the currently available models. Examples are provided to illustrate how iPSC-derived models can be employed to develop new therapeutic strategies for these disorders. We also discuss how models of these rare diseases could contribute to an enhanced understanding of more common neurodegenerative disorders such as Parkinson’s disease, and discuss key challenges and opportunities in this area of research. Summary: This Review discusses how induced pluripotent stem cells (iPSCs) provide new opportunities to explore the biology and pathophysiology of lysosomal storage diseases, and how iPSCs have illuminated the role of lysosomes in more common disorders.
Collapse
Affiliation(s)
- Daniel K Borger
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Benjamin McMahon
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tamanna Roshan Lal
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jenny Serra-Vinardell
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Elma Aflaki
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ellen Sidransky
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
26
|
Strässler ET, Aalto-Setälä K, Kiamehr M, Landmesser U, Kränkel N. Age Is Relative-Impact of Donor Age on Induced Pluripotent Stem Cell-Derived Cell Functionality. Front Cardiovasc Med 2018; 5:4. [PMID: 29423397 PMCID: PMC5790033 DOI: 10.3389/fcvm.2018.00004] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 01/09/2018] [Indexed: 01/20/2023] Open
Abstract
Induced pluripotent stem cells (iPSCs) avoid many of the restrictions that hamper the application of human embryonic stem cells: limited availability of source material due to legal restrictions in some countries, immunogenic rejection and ethical concerns. Also, the donor’s clinical phenotype is often known when working with iPSCs. Therefore, iPSCs seem ideal to tackle the two biggest tasks of regenerative medicine: degenerative diseases with genetic cause (e.g., Duchenne’s muscular dystrophy) and organ replacement in age-related diseases (e.g., end-stage heart or renal failure), especially in combination with recently developed gene-editing tools. In the setting of autologous transplantation in elderly patients, donor age becomes a potentially relevant factor that needs to be assessed. Here, we review and critically discuss available data pertinent to the questions: How does donor age influence the reprogramming process and iPSC functionality? Would it even be possible to reprogram senescent somatic cells? How does donor age affect iPSC differentiation into specialised cells and their functionality? We also identify research needs, which might help resolve current unknowns. Until recently, most hallmarks of ageing were attributed to an accumulation of DNA damage over time, and it was thus expected that DNA damage from a somatic cell would accumulate in iPSCs and the cells derived from them. In line with this, a decreased lifespan of cloned organisms compared with the donor was also observed in early cloning experiments. Therefore, it was questioned for a time whether iPSC derived from an old individual’s somatic cells would suffer from early senescence and, thus, may not be a viable option either for disease modelling nor future clinical applications. Instead, typical signs of cellular ageing are reverted in the process of iPSC reprogramming, and iPSCs from older donors do not show diminished differentiation potential nor do iPSC-derived cells from older donors suffer early senescence or show functional impairments when compared with those from younger donors. Thus, the data would suggest that donor age does not limit iPSC application for modelling genetic diseases nor regenerative therapies. However, open questions remain, e.g., regarding the potential tumourigenicity of iPSC-derived cells and the impact of epigenetic pattern retention.
Collapse
Affiliation(s)
- Elisabeth Tamara Strässler
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.,Partner Site Berlin, German Centre for Cardiovascular Research (DZHK), Berlin, Germany
| | - Katriina Aalto-Setälä
- University of Tampere, Department of Medicine and Life Sciences, Tampere, Finland.,Heart Center, Tampere University Hospital, Tampere, Finland
| | - Mostafa Kiamehr
- University of Tampere, Department of Medicine and Life Sciences, Tampere, Finland.,Heart Center, Tampere University Hospital, Tampere, Finland
| | - Ulf Landmesser
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.,Partner Site Berlin, German Centre for Cardiovascular Research (DZHK), Berlin, Germany
| | - Nicolle Kränkel
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.,Partner Site Berlin, German Centre for Cardiovascular Research (DZHK), Berlin, Germany
| |
Collapse
|
27
|
Yener Ilce B, Cagin U, Yilmazer A. Cellular reprogramming: A new way to understand aging mechanisms. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2018; 7. [PMID: 29350802 DOI: 10.1002/wdev.308] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 09/29/2017] [Accepted: 10/13/2017] [Indexed: 12/11/2022]
Abstract
Increased life expectancy, due to the rise in life quality and the decline in mortality rates, is leading to a society in which the population aged 60 and over is growing more rapidly than the entire population. Although various models and model organisms have been employed to investigate the mechanism of aging, induced pluripotent stem cells (iPSCs) are useful candidates to study human aging and age-related human diseases. This work discusses how iPSCs can be used as an alternative to the model organisms such as yeast, Caenorhabditis elegans, Drosophila melanogaster, or the mouse. The main focus is the reprogramming technology of somatic cells which is thought to provide an important perspective for rejuvenation strategies. The effects and relationships between aging and cell reprogramming are discussed, and studies related to aging and cell reprogramming are critically reviewed. We believe that for future studies, different parameters and detailed quantitative experiments should be performed in order to clearly understand the effect of aging on human cell reprogramming with respect to programming efficiency and differentiation capacity. This way, new insights will be provided to prevent or even reverse the aging process. WIREs Dev Biol 2018, 7:e308. doi: 10.1002/wdev.308 This article is categorized under: Adult Stem Cells, Tissue Renewal, and Regeneration > Stem Cells and Aging Adult Stem Cells, Tissue Renewal, and Regeneration > Regeneration Adult Stem Cells, Tissue Renewal, and Regeneration > Stem Cells and Disease.
Collapse
Affiliation(s)
| | | | - Acelya Yilmazer
- Biomedical Engineering Department, Engineering Faculty, Ankara University, Ankara, Turkey.,Stem Cell Institute, Ankara University, Ankara, Turkey
| |
Collapse
|
28
|
Ravaioli F, Bacalini MG, Franceschi C, Garagnani P. Age-Related Epigenetic Derangement upon Reprogramming and Differentiation of Cells from the Elderly. Genes (Basel) 2018; 9:genes9010039. [PMID: 29337900 PMCID: PMC5793190 DOI: 10.3390/genes9010039] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/22/2017] [Accepted: 01/10/2018] [Indexed: 01/01/2023] Open
Abstract
Aging is a complex multi-layered phenomenon. The study of aging in humans is based on the use of biological material from hard-to-gather tissues and highly specific cohorts. The introduction of cell reprogramming techniques posed promising features for medical practice and basic research. Recently, a growing number of studies have been describing the generation of induced pluripotent stem cells (iPSCs) from old or centenarian biologic material. Nonetheless, Reprogramming techniques determine a profound remodelling on cell epigenetic architecture whose extent is still largely debated. Given that cell epigenetic profile changes with age, the study of cell-fate manipulation approaches on cells deriving from old donors or centenarians may provide new insights not only on regenerative features and physiology of these cells, but also on reprogramming-associated and age-related epigenetic derangement.
Collapse
Affiliation(s)
- Francesco Ravaioli
- Department of Specialty, Diagnostic and Experimental Medicine (DIMES), Via San Giacomo 12, 40126 Bologna, Italy.
- CIG, Interdepartmental Center 'L. Galvani', Alma Mater Studiorum, Via G. Petroni 26, 40126 Bologna, Italy.
| | - Maria G Bacalini
- IRCCS Institute of Neurological Sciences, Via Altura 1-8, 40139 Bologna, Italy.
| | - Claudio Franceschi
- IRCCS Institute of Neurological Sciences, Via Altura 1-8, 40139 Bologna, Italy.
| | - Paolo Garagnani
- Department of Specialty, Diagnostic and Experimental Medicine (DIMES), Via San Giacomo 12, 40126 Bologna, Italy.
- CIG, Interdepartmental Center 'L. Galvani', Alma Mater Studiorum, Via G. Petroni 26, 40126 Bologna, Italy.
- Karolinska Institute, Clinical Chemistry, Department of Laboratory Medicine (LABMED), H5, Huddinge University Hospital, 14186 Stockholm, Sweden.
- CNR Institute of Molecular Genetics, Unit of Bologna, 40136 Bologna, Italy.
- Applied Biomedical Research Center (CRBA), S. Orsola-Malpighi Polyclinic, 40138 Bologna, Italy.
| |
Collapse
|
29
|
Tousley A, Kegel-Gleason KB. Induced Pluripotent Stem Cells in Huntington's Disease Research: Progress and Opportunity. J Huntingtons Dis 2017; 5:99-131. [PMID: 27372054 PMCID: PMC4942721 DOI: 10.3233/jhd-160199] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Induced pluripotent stem cells (iPSCs) derived from controls and patients can act as a starting point for in vitro differentiation into human brain cells for discovery of novel targets and treatments for human disease without the same ethical limitations posed by embryonic stem cells. Numerous groups have successfully produced and characterized Huntington’s disease (HD) iPSCs with different CAG repeat lengths, including cells from patients with one or two HD alleles. HD iPSCs and the neural cell types derived from them recapitulate some disease phenotypes found in both human patients and animal models. Although these discoveries are encouraging, the use of iPSCs for cutting edge and reproducible research has been limited due to some of the inherent problems with cell lines and the technological differences in the way laboratories use them. The goal of this review is to summarize the current state of the HD iPSC field, and to highlight some of the issues that need to be addressed to maximize their potential as research tools.
Collapse
Affiliation(s)
| | - Kimberly B. Kegel-Gleason
- Correspondence to: Kimberly Kegel-Gleason, Assistant Professor in Neurology, Massachusetts General Hospital and Harvard Medical School, 114 16th Street, Room 2001, Charlestown, MA 02129, USA. Tel.: +1 617 724 8754; E-mail:
| |
Collapse
|
30
|
Charneca J, Matias AC, Escapa AL, Fernandes C, Alves A, Santos JMA, Nascimento R, Bragança J. Ectopic expression of CITED2 prior to reprogramming, promotes and homogenises the conversion of somatic cells into induced pluripotent stem cells. Exp Cell Res 2017; 358:290-300. [PMID: 28684114 DOI: 10.1016/j.yexcr.2017.07.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 06/28/2017] [Accepted: 07/01/2017] [Indexed: 02/07/2023]
Abstract
Cited2 plays crucial roles in mouse embryonic stem cells self-renewal, the initiation of the somatic reprogramming process into induced pluripotent stem cells (iPSC) and the suppression of cell senescence. Here, we investigated the potential of CITED2 expression in combination with the Oct4, Sox2, Klf4 and c-Myc factors for reprogramming of primary mouse embryonic fibroblasts (MEF) at passage 2 and 4. The ectopic CITED2 expression in primary MEF prior to the onset of the reprogramming process, generated iPSC with less variability in the expression of endogenous pluripotency-related genes. In contrast, part of the MEF reprogrammed without ectopic expression of CITED2 at passage 4 originated partially reprogrammed iPSC or pre-iPSC. However, the overexpression of CITED2 in the pre-iPSC was insufficient to complete the reprogramming process into iPSC. These results indicated that ectopic CITED2 expression at the onset of the reprogramming process in combination with the reprogramming factors promotes a complete and homogeneous conversion of somatic cells into iPSC.
Collapse
Affiliation(s)
- João Charneca
- Regenerative Medicine Program, Department of Biomedical Sciences and Medicine, University of Algarve, 8005-139 Faro, Portugal; Centre for Biomedical Research - CBMR, University of Algarve, Campus of Gambelas, Building 8, Room 2.22, 8005-139 Faro, Portugal
| | - Ana Catarina Matias
- Regenerative Medicine Program, Department of Biomedical Sciences and Medicine, University of Algarve, 8005-139 Faro, Portugal; Centre for Biomedical Research - CBMR, University of Algarve, Campus of Gambelas, Building 8, Room 2.22, 8005-139 Faro, Portugal
| | - Ana Luisa Escapa
- Regenerative Medicine Program, Department of Biomedical Sciences and Medicine, University of Algarve, 8005-139 Faro, Portugal; Centre for Biomedical Research - CBMR, University of Algarve, Campus of Gambelas, Building 8, Room 2.22, 8005-139 Faro, Portugal
| | - Catarina Fernandes
- Regenerative Medicine Program, Department of Biomedical Sciences and Medicine, University of Algarve, 8005-139 Faro, Portugal; Centre for Biomedical Research - CBMR, University of Algarve, Campus of Gambelas, Building 8, Room 2.22, 8005-139 Faro, Portugal
| | - André Alves
- Regenerative Medicine Program, Department of Biomedical Sciences and Medicine, University of Algarve, 8005-139 Faro, Portugal; Centre for Biomedical Research - CBMR, University of Algarve, Campus of Gambelas, Building 8, Room 2.22, 8005-139 Faro, Portugal
| | - João M A Santos
- Regenerative Medicine Program, Department of Biomedical Sciences and Medicine, University of Algarve, 8005-139 Faro, Portugal; Centre for Biomedical Research - CBMR, University of Algarve, Campus of Gambelas, Building 8, Room 2.22, 8005-139 Faro, Portugal
| | - Rita Nascimento
- Regenerative Medicine Program, Department of Biomedical Sciences and Medicine, University of Algarve, 8005-139 Faro, Portugal; Centre for Biomedical Research - CBMR, University of Algarve, Campus of Gambelas, Building 8, Room 2.22, 8005-139 Faro, Portugal
| | - José Bragança
- Regenerative Medicine Program, Department of Biomedical Sciences and Medicine, University of Algarve, 8005-139 Faro, Portugal; Centre for Biomedical Research - CBMR, University of Algarve, Campus of Gambelas, Building 8, Room 2.22, 8005-139 Faro, Portugal; ABC - Algarve Biomedical Centre, 8005-139 Faro, Portugal.
| |
Collapse
|
31
|
Cheng Z, Peng HL, Zhang R, Fu XM, Zhang GS. Rejuvenation of Cardiac Tissue Developed from Reprogrammed Aged Somatic Cells. Rejuvenation Res 2017; 20:389-400. [PMID: 28478705 DOI: 10.1089/rej.2017.1930] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Induced pluripotent stem cells (iPSCs) derived via somatic cell reprogramming have been reported to reset aged somatic cells to a more youthful state, characterized by elongated telomeres, a rearranged mitochondrial network, reduced oxidative stress, and restored pluripotency. However, it is still unclear whether the reprogrammed aged somatic cells can function normally as embryonic stem cells (ESCs) during development and be rejuvenated. In the current study, we applied the aggregation technique to investigate whether iPSCs derived from aged somatic cells could develop normally and be rejuvenated. iPSCs derived from bone marrow myeloid cells of 2-month-old (2 M) and 18-month-old (18 M) C57BL/6-Tg (CAG-EGFP)1Osb/J mice were aggregated with embryos derived from wild-type ICR mice to produce chimeras (referred to as 2 M CA and 18 M CA, respectively). Our observations focused on comparing the ability of the iPSCs derived from 18 M and 2 M bone marrow cells to develop rejuvenated cardiac tissue (the heart is the most vital organ during aging). The results showed an absence of p16 and p53 upregulation, telomere length shortening, and mitochondrial gene expression and deletion in 18 M CA, whereas slight changes in mitochondrial ultrastructure, cytochrome C oxidase activity, ATP production, and reactive oxygen species production were observed in CA cardiac tissues. The data implied that all of the aging characteristics observed in the newborn cardiac tissue of 18 M CA were comparable with those of 2 M CA newborn cardiac tissue. This study provides the first direct evidence of the aging-related characteristics of cardiac tissue developed from aged iPSCs, and our observations demonstrate that partial rejuvenation can be achieved by reprogramming aged somatic cells to a pluripotent state.
Collapse
Affiliation(s)
- Zhao Cheng
- 1 Department of Hematology, Institute of Molecular Hematology, The Second Xiang-ya Hospital, Central South University , Changsha, People's Republic of China
| | - Hong-Ling Peng
- 1 Department of Hematology, Institute of Molecular Hematology, The Second Xiang-ya Hospital, Central South University , Changsha, People's Republic of China
| | - Rong Zhang
- 2 Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center , Kashiwanoha, Kashiwa, Japan
| | - Xian-Ming Fu
- 3 Department of Cardiac Surgery, The Second Xiang-ya Hospital, Central South University , Changsha, People's Republic of China
| | - Guang-Sen Zhang
- 1 Department of Hematology, Institute of Molecular Hematology, The Second Xiang-ya Hospital, Central South University , Changsha, People's Republic of China
| |
Collapse
|
32
|
Zhou H, You C, Wang X, Jin R, Wu P, Li Q, Han C. The progress and challenges for dermal regeneration in tissue engineering. J Biomed Mater Res A 2017; 105:1208-1218. [PMID: 28063210 DOI: 10.1002/jbm.a.35996] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 12/30/2016] [Accepted: 01/03/2017] [Indexed: 01/17/2023]
Affiliation(s)
- Hanlei Zhou
- Department of Burns; 2nd Affiliated Hospital of Zhejiang University, College of Medicine; Hangzhou 310009 China
| | - Chuangang You
- Department of Burns; 2nd Affiliated Hospital of Zhejiang University, College of Medicine; Hangzhou 310009 China
| | - Xingang Wang
- Department of Burns; 2nd Affiliated Hospital of Zhejiang University, College of Medicine; Hangzhou 310009 China
| | - Ronghua Jin
- Department of Burns; 2nd Affiliated Hospital of Zhejiang University, College of Medicine; Hangzhou 310009 China
| | - Pan Wu
- Department of Burns; 2nd Affiliated Hospital of Zhejiang University, College of Medicine; Hangzhou 310009 China
| | - Qiong Li
- Department of Burns; 2nd Affiliated Hospital of Zhejiang University, College of Medicine; Hangzhou 310009 China
| | - Chunmao Han
- Department of Burns; 2nd Affiliated Hospital of Zhejiang University, College of Medicine; Hangzhou 310009 China
| |
Collapse
|
33
|
Liu L. Linking Telomere Regulation to Stem Cell Pluripotency. Trends Genet 2016; 33:16-33. [PMID: 27889084 DOI: 10.1016/j.tig.2016.10.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Revised: 10/18/2016] [Accepted: 10/31/2016] [Indexed: 12/31/2022]
Abstract
Embryonic stem cells (ESCs), somatic cell nuclear transfer ESCs, and induced pluripotent stem cells (iPSCs) represent the most studied group of PSCs. Unlimited self-renewal without incurring chromosomal instability and pluripotency are essential for the potential use of PSCs in regenerative therapy. Telomere length maintenance is critical for the unlimited self-renewal, pluripotency, and chromosomal stability of PSCs. While telomerase has a primary role in telomere maintenance, alternative lengthening of telomere pathways involving recombination and epigenetic modifications are also required for telomere length regulation, notably in mouse PSCs. Telomere rejuvenation is part of epigenetic reprogramming to pluripotency. Insights into telomere reprogramming and maintenance in PSCs may have implications for understanding of aging and tumorigenesis. Here, I discuss the link between telomere elongation and homeostasis to the acquisition and maintenance of stem cell pluripotency, and their regulatory mechanisms by epigenetic modifications.
Collapse
Affiliation(s)
- Lin Liu
- State Key Laboratory of Medicinal Chemical Biology, Department of Cell Biology and Genetics, College of Life Sciences, Collaborative Innovation Center for Biotherapy, Nankai University, Tianjin 300071, China.
| |
Collapse
|
34
|
Luo J, Cibelli JB. Conserved Role of bFGF and a Divergent Role of LIF for Pluripotency Maintenance and Survival in Canine Pluripotent Stem Cells. Stem Cells Dev 2016; 25:1670-1680. [DOI: 10.1089/scd.2016.0164] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Affiliation(s)
- Jiesi Luo
- Department of Animal Science, Michigan State University, East Lansing, Michigan
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, Connecticut
| | - Jose B. Cibelli
- Department of Animal Science, Michigan State University, East Lansing, Michigan
- Department of Physiology, Michigan State University, East Lansing, Michigan
- LARCEL, Laboratorio Andaluz de Reprogramación Celular, BIONAND, Andalucía, Spain
| |
Collapse
|
35
|
Robust reprogramming of Ataxia-Telangiectasia patient and carrier erythroid cells to induced pluripotent stem cells. Stem Cell Res 2016; 17:296-305. [DOI: 10.1016/j.scr.2016.08.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 07/29/2016] [Accepted: 08/06/2016] [Indexed: 12/18/2022] Open
|
36
|
Identification of MMP1 as a novel risk factor for intracranial aneurysms in ADPKD using iPSC models. Sci Rep 2016; 6:30013. [PMID: 27418197 PMCID: PMC4945931 DOI: 10.1038/srep30013] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 06/29/2016] [Indexed: 11/08/2022] Open
Abstract
Cardiovascular complications are the leading cause of death in autosomal dominant polycystic kidney disease (ADPKD), and intracranial aneurysm (ICA) causing subarachnoid hemorrhage is among the most serious complications. The diagnostic and therapeutic strategies for ICAs in ADPKD have not been fully established. We here generated induced pluripotent stem cells (iPSCs) from seven ADPKD patients, including four with ICAs. The vascular cells differentiated from ADPKD-iPSCs showed altered Ca(2+) entry and gene expression profiles compared with those of iPSCs from non-ADPKD subjects. We found that the expression level of a metalloenzyme gene, matrix metalloproteinase (MMP) 1, was specifically elevated in iPSC-derived endothelia from ADPKD patients with ICAs. Furthermore, we confirmed the correlation between the serum MMP1 levels and the development of ICAs in 354 ADPKD patients, indicating that high serum MMP1 levels may be a novel risk factor. These results suggest that cellular disease models with ADPKD-specific iPSCs can be used to study the disease mechanisms and to identify novel disease-related molecules or risk factors.
Collapse
|
37
|
Ocampo A, Reddy P, Belmonte JCI. Anti-Aging Strategies Based on Cellular Reprogramming. Trends Mol Med 2016; 22:725-738. [PMID: 27426043 DOI: 10.1016/j.molmed.2016.06.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 06/08/2016] [Accepted: 06/08/2016] [Indexed: 12/21/2022]
Abstract
Aging can be defined as the progressive decline in the ability of a cell or organism to resist stress and disease. Recent advances in cellular reprogramming technologies have enabled detailed analyses of the aging process, often involving cell types derived from aged individuals, or patients with premature aging syndromes. In this review we discuss how cellular reprogramming allows the recapitulation of aging in a dish, describing novel experimental approaches to investigate the aging process. Finally, we explore the role of epigenetic dysregulation as a driver of aging, discussing how epigenetic reprogramming may be harnessed to ameliorate aging hallmarks, both in vitro and in vivo. A better understanding of the reprogramming process may indeed assist the development of novel therapeutic strategies to extend a healthy lifespan.
Collapse
Affiliation(s)
- Alejandro Ocampo
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Pradeep Reddy
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | | |
Collapse
|
38
|
Pareja-Galeano H, Sanchis-Gomar F, Pérez LM, Emanuele E, Lucia A, Gálvez BG, Gallardo ME. iPSCs-based anti-aging therapies: Recent discoveries and future challenges. Ageing Res Rev 2016; 27:37-41. [PMID: 26921478 DOI: 10.1016/j.arr.2016.02.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 02/16/2016] [Accepted: 02/22/2016] [Indexed: 12/26/2022]
Abstract
The main biological hallmarks of the aging process include stem cell exhaustion and cellular senescence. Consequently, research efforts to treat age-related diseases as well as anti-aging therapies in general have recently focused on potential 'reprogramming' regenerative therapies. These new approaches are based on induced pluripotent stem cells (iPSCs), including potential in vivo reprogramming for tissue repair. Another possibility is targeting pathways of cellular senescence, e.g., through modulation of p16INK4a signaling and especially inhibition of the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). Here, we reviewed and discussed these recent developments together with their possible usefulness for future treatments against sarcopenia, a major age-related condition.
Collapse
Affiliation(s)
- Helios Pareja-Galeano
- European University of Madrid, Spain; Research Institute of Hospital 12 de Octubre ("i+12"), Madrid, Spain.
| | | | - Laura M Pérez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | | | - Alejandro Lucia
- European University of Madrid, Spain; Research Institute of Hospital 12 de Octubre ("i+12"), Madrid, Spain
| | - Beatriz G Gálvez
- European University of Madrid, Spain; Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - María Esther Gallardo
- Research Institute of Hospital 12 de Octubre ("i+12"), Madrid, Spain; Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain; Instituto de Investigaciones Biomédicas "Alberto Sols" (UAM-CSIC) and Centro de Investigación Biomédica en Red (CIBERER), Spain
| |
Collapse
|
39
|
Cortese FAB, Santostasi G. Whole-Body Induced Cell Turnover: A Proposed Intervention for Age-Related Damage and Associated Pathology. Rejuvenation Res 2016; 19:322-36. [PMID: 26649945 DOI: 10.1089/rej.2015.1763] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
In both biomedicine in general and biomedical gerontology in particular, cell replacement therapy is traditionally proposed as an intervention for cell loss. This article presents a proposed intervention-whole-body induced cell turnover (WICT)-for use in biomedical gerontology that combines cell replacement therapy with a second therapeutic component (targeted cell ablation) so as to broaden the therapeutic utility of cell therapies and increase the categories of age-related damage that are amenable to cell-based interventions. In particular, WICT may allow cell therapies to serve as an intervention for accumulated cellular and intracellular damage, such as telomere depletion, genomic DNA and mitochondrial DNA damage and mutations, replicative senescence, functionally deleterious age-related changes in gene expression, accumulated cellular and intracellular aggregates, and functionally deleterious posttranslationally modified gene products. WICT consists of the gradual ablation and subsequent replacement of a patient's entire set of constituent cells gradually over the course of their adult life span through the quantitative and qualitative coordination of targeted cell ablation with exogenous cell administration. The aim is to remove age-associated cellular and intracellular damage present in the patient's endogenous cells. In this study, we outline the underlying techniques and technologies by which WICT can be mediated, describe the mechanisms by which it can serve to negate or prevent age-related cellular and intracellular damage, explicate the unique therapeutic components and utilities that distinguish it as a distinct type of cell-based intervention for use in biomedical gerontology, and address potential complications associated with the therapy.
Collapse
Affiliation(s)
| | - Giovanni Santostasi
- 2 Department of Neurology, Feinberg School of Medicine, Northwestern University , Chicago, Illinois
| |
Collapse
|
40
|
Studer L, Vera E, Cornacchia D. Programming and Reprogramming Cellular Age in the Era of Induced Pluripotency. Cell Stem Cell 2016; 16:591-600. [PMID: 26046759 DOI: 10.1016/j.stem.2015.05.004] [Citation(s) in RCA: 132] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The ability to reprogram adult somatic cells back to pluripotency presents a powerful tool for studying cell-fate identity and modeling human disease. However, the reversal of cellular age during reprogramming results in an embryonic-like state of induced pluripotent stem cells (iPSCs) and their derivatives, which presents specific challenges for modeling late onset disease. This age reset requires novel methods to mimic age-related changes but also offers opportunities for studying cellular rejuvenation in real time. Here, we discuss how iPSC research may transform studies of aging and enable the precise programming of cellular age in parallel to cell-fate specification.
Collapse
Affiliation(s)
- Lorenz Studer
- Developmental Biology and Center of Stem Cell Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10003, USA.
| | - Elsa Vera
- Developmental Biology and Center of Stem Cell Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10003, USA
| | - Daniela Cornacchia
- Developmental Biology and Center of Stem Cell Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10003, USA
| |
Collapse
|
41
|
Teichroeb JH, Kim J, Betts DH. The role of telomeres and telomerase reverse transcriptase isoforms in pluripotency induction and maintenance. RNA Biol 2016; 13:707-19. [PMID: 26786236 DOI: 10.1080/15476286.2015.1134413] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Telomeres are linear guanine-rich DNA structures at the ends of chromosomes. The length of telomeric DNA is actively regulated by a number of mechanisms in highly proliferative cells such as germ cells, cancer cells, and pluripotent stem cells. Telomeric DNA is synthesized by way of the ribonucleoprotein called telomerase containing a reverse transcriptase (TERT) subunit and RNA component (TERC). TERT is highly conserved across species and ubiquitously present in their respective pluripotent cells. Recent studies have uncovered intricate associations between telomeres and the self-renewal and differentiation properties of pluripotent stem cells. Interestingly, the past decade's work indicates that the TERT subunit also has the capacity to modulate mitochondrial function, to remodel chromatin structure, and to participate in key signaling pathways such as the Wnt/β-catenin pathway. Many of these non-canonical functions do not require TERT's catalytic activity, which hints at possible functions for the extensive number of alternatively spliced TERT isoforms that are highly expressed in pluripotent stem cells. In this review, some of the established and potential routes of pluripotency induction and maintenance are highlighted from the perspectives of telomere maintenance, known TERT isoform functions and their complex regulation.
Collapse
Affiliation(s)
- Jonathan H Teichroeb
- a Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry , The University of Western Ontario , London , Ontario , Canada
| | - Joohwan Kim
- a Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry , The University of Western Ontario , London , Ontario , Canada
| | - Dean H Betts
- a Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry , The University of Western Ontario , London , Ontario , Canada.,b Children's Health Research Institute, Lawson Health Research Institute , London , Ontario , Canada
| |
Collapse
|
42
|
Back and forth in time: Directing age in iPSC-derived lineages. Brain Res 2015; 1656:14-26. [PMID: 26592774 DOI: 10.1016/j.brainres.2015.11.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 10/19/2015] [Accepted: 11/10/2015] [Indexed: 02/07/2023]
Abstract
The advent of induced pluripotent stem cells (iPSC) has transformed the classic approach of studying human disease, providing in vitro access to disease-relevant cells from patients for the study of disease pathogenesis and for drug screening. However, in spite of the broad repertoire of iPSC-based disease models developed in recent years, increasing evidence suggests that this technology might not be fully suitable for the study of conditions of old age, such as neurodegeneration. The difficulty in recapitulating late-stage features of disease in cells of pluripotent origin is believed to be a discrepancy between the fetal-like nature of iPSC-progeny and the advanced age of onset of neurodegenerative syndromes. In parallel to the issue of functional immaturity known to affect derivatives of pluripotent cells, latest findings suggest that reprogramming also subjects cells to a process of "rejuvenation", giving rise to cells that are too "young" to manifest phenotypes of age-related diseases. Thus, following the significant progress in manipulating cellular fate, the stem cell field will now have to face the new challenge of controlling cellular age, in order to fully harness the potential of iPSC-technology to advance the research and cure of diseases of the aging brain. This article is part of a Special Issue entitled SI: Exploiting human neurons.
Collapse
|
43
|
Cary WA, Hori CN, Pham MT, Nacey CA, McGee JL, Hamou M, Berman RF, Bauer G, Nolta JA, Waldau B. Efficient Generation of Induced Pluripotent Stem and Neural Progenitor Cells From Acutely Harvested Dura Mater Obtained During Ventriculoperitoneal Shunt Surgery. World Neurosurg 2015; 84:1256-66.e1. [PMID: 26074438 DOI: 10.1016/j.wneu.2015.05.076] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 05/29/2015] [Accepted: 05/30/2015] [Indexed: 12/24/2022]
Abstract
BACKGROUND The dura mater can be easily biopsied during most cranial neurosurgical operations. We describe a protocol that allows for robust generation of induced pluripotent stem cells (iPSCs) and neural progenitors from acutely harvested dura mater. OBJECTIVE To generate iPSCs and neural progenitor cells from dura mater obtained during ventriculoperitoneal shunt surgery. METHODS Dura was obtained during ventriculoperitoneal shunt surgery for normal pressure hydrocephalus from a 60-year-old patient with severe cognitive impairment. Fibroblasts were isolated from the dural matrix and transduced with nonintegrating Sendai virus for iPSC induction. A subset of successfully generated iPSC clones underwent immunocytochemical analysis, teratoma assay, karyotyping, and targeted neural differentiation. RESULTS Eleven iPSC clones were obtained from the transduction of an estimated 600,000 dural fibroblasts after 3 passages. Three clones underwent immunocytochemical analysis and were shown to express the transcription factors OCT-4, SOX2, and the embryonic cell markers SSEA-4, TRA-1-60, and Nanog. Two clones were tested for pluripotency and formed teratomas at the injection site in immunodeficient mice. Three clones underwent chromosomal analysis and were found to have a normal metaphase spread and karyotype. One clone underwent targeted neural differentiation and formed neural rosettes as well as TuJ1/SOX1-positive neural progenitor cells. CONCLUSIONS IPSCs and neural progenitor cells can be efficiently derived from the dura of patients who need to undergo cranial neurosurgical operations. IPSCs were obtained with a nonintegrating virus and exhibited a normal karyotype, making them candidates for future autotransplantation after targeted differentiation to treat functional deficits.
Collapse
Affiliation(s)
- Whitney Ann Cary
- Institute for Regenerative Cures (IRC), Sacramento, California, USA; UC Davis Stem Cell Program, Sacramento, California, USA
| | - Courtney Namiko Hori
- Institute for Regenerative Cures (IRC), Sacramento, California, USA; UC Davis Stem Cell Program, Sacramento, California, USA
| | - Missy Trananh Pham
- Institute for Regenerative Cures (IRC), Sacramento, California, USA; UC Davis Stem Cell Program, Sacramento, California, USA
| | - Catherine Ann Nacey
- Institute for Regenerative Cures (IRC), Sacramento, California, USA; UC Davis Stem Cell Program, Sacramento, California, USA
| | - Jeannine Logan McGee
- Institute for Regenerative Cures (IRC), Sacramento, California, USA; UC Davis Stem Cell Program, Sacramento, California, USA
| | - Mattan Hamou
- Institute for Regenerative Cures (IRC), Sacramento, California, USA; UC Davis Stem Cell Program, Sacramento, California, USA
| | - Robert F Berman
- Department of Neurosurgery, UC Davis Medical Center, Sacramento, California, USA
| | - Gerhard Bauer
- Institute for Regenerative Cures (IRC), Sacramento, California, USA; UC Davis Stem Cell Program, Sacramento, California, USA
| | - Jan A Nolta
- Institute for Regenerative Cures (IRC), Sacramento, California, USA; UC Davis Stem Cell Program, Sacramento, California, USA
| | - Ben Waldau
- Department of Neurosurgery, UC Davis Medical Center, Sacramento, California, USA; UC Davis Stem Cell Program, Sacramento, California, USA.
| |
Collapse
|
44
|
Lemey C, Milhavet O, Lemaitre JM. iPSCs as a major opportunity to understand and cure age-related diseases. Biogerontology 2015; 16:399-410. [DOI: 10.1007/s10522-015-9579-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Accepted: 04/28/2015] [Indexed: 01/21/2023]
|
45
|
Kim PJ, Mahmoudi M, Ge X, Matsuura Y, Toma I, Metzler S, Kooreman NG, Ramunas J, Holbrook C, McConnell MV, Blau H, Harnish P, Rulifson E, Yang PC. Direct evaluation of myocardial viability and stem cell engraftment demonstrates salvage of the injured myocardium. Circ Res 2015; 116:e40-50. [PMID: 25654979 DOI: 10.1161/circresaha.116.304668] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
RATIONALE The mechanism of functional restoration by stem cell therapy remains poorly understood. Novel manganese-enhanced MRI and bioluminescence reporter gene imaging were applied to follow myocardial viability and cell engraftment, respectively. Human-placenta-derived amniotic mesenchymal stem cells (AMCs) demonstrate unique immunoregulatory and precardiac properties. In this study, the restorative effects of 3 AMC-derived subpopulations were examined in a murine myocardial injury model: (1) unselected AMCs, (2) ckit(+)AMCs, and (3) AMC-derived induced pluripotent stem cells (MiPSCs). OBJECTIVE To determine the differential restorative effects of the AMC-derived subpopulations in the murine myocardial injury model using multimodality imaging. METHODS AND RESULTS SCID (severe combined immunodeficiency) mice underwent left anterior descending artery ligation and were divided into 4 treatment arms: (1) normal saline control (n=14), (2) unselected AMCs (n=10), (3) ckit(+)AMCs (n=13), and (4) MiPSCs (n=11). Cardiac MRI assessed myocardial viability and left ventricular function, whereas bioluminescence imaging assessed stem cell engraftment during a 4-week period. Immunohistological labeling and reverse transcriptase polymerase chain reaction of the explanted myocardium were performed. The unselected AMC and ckit(+)AMC-treated mice demonstrated transient left ventricular functional improvement. However, the MiPSCs exhibited a significantly greater increase in left ventricular function compared with all the other groups during the entire 4-week period. Left ventricular functional improvement correlated with increased myocardial viability and sustained stem cell engraftment. The MiPSC-treated animals lacked any evidence of de novo cardiac differentiation. CONCLUSION The functional restoration seen in MiPSCs was characterized by increased myocardial viability and sustained engraftment without de novo cardiac differentiation, indicating salvage of the injured myocardium.
Collapse
Affiliation(s)
- Paul J Kim
- From the Division of Cardiovascular Medicine, Department of Medicine, Stanford University Medical Center, CA (P.J.K., M.M., X.G., Y.M., I.T., S.M., N.G.K., M.V.M., E.R., P.C.Y.); Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, CA (J.R., C.H., H.B.); and Eagle Vision Pharmaceutical Corporation, Exton, PA (P.H.)
| | - Morteza Mahmoudi
- From the Division of Cardiovascular Medicine, Department of Medicine, Stanford University Medical Center, CA (P.J.K., M.M., X.G., Y.M., I.T., S.M., N.G.K., M.V.M., E.R., P.C.Y.); Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, CA (J.R., C.H., H.B.); and Eagle Vision Pharmaceutical Corporation, Exton, PA (P.H.)
| | - Xiaohu Ge
- From the Division of Cardiovascular Medicine, Department of Medicine, Stanford University Medical Center, CA (P.J.K., M.M., X.G., Y.M., I.T., S.M., N.G.K., M.V.M., E.R., P.C.Y.); Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, CA (J.R., C.H., H.B.); and Eagle Vision Pharmaceutical Corporation, Exton, PA (P.H.)
| | - Yuka Matsuura
- From the Division of Cardiovascular Medicine, Department of Medicine, Stanford University Medical Center, CA (P.J.K., M.M., X.G., Y.M., I.T., S.M., N.G.K., M.V.M., E.R., P.C.Y.); Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, CA (J.R., C.H., H.B.); and Eagle Vision Pharmaceutical Corporation, Exton, PA (P.H.)
| | - Ildiko Toma
- From the Division of Cardiovascular Medicine, Department of Medicine, Stanford University Medical Center, CA (P.J.K., M.M., X.G., Y.M., I.T., S.M., N.G.K., M.V.M., E.R., P.C.Y.); Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, CA (J.R., C.H., H.B.); and Eagle Vision Pharmaceutical Corporation, Exton, PA (P.H.)
| | - Scott Metzler
- From the Division of Cardiovascular Medicine, Department of Medicine, Stanford University Medical Center, CA (P.J.K., M.M., X.G., Y.M., I.T., S.M., N.G.K., M.V.M., E.R., P.C.Y.); Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, CA (J.R., C.H., H.B.); and Eagle Vision Pharmaceutical Corporation, Exton, PA (P.H.)
| | - Nigel G Kooreman
- From the Division of Cardiovascular Medicine, Department of Medicine, Stanford University Medical Center, CA (P.J.K., M.M., X.G., Y.M., I.T., S.M., N.G.K., M.V.M., E.R., P.C.Y.); Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, CA (J.R., C.H., H.B.); and Eagle Vision Pharmaceutical Corporation, Exton, PA (P.H.)
| | - John Ramunas
- From the Division of Cardiovascular Medicine, Department of Medicine, Stanford University Medical Center, CA (P.J.K., M.M., X.G., Y.M., I.T., S.M., N.G.K., M.V.M., E.R., P.C.Y.); Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, CA (J.R., C.H., H.B.); and Eagle Vision Pharmaceutical Corporation, Exton, PA (P.H.)
| | - Colin Holbrook
- From the Division of Cardiovascular Medicine, Department of Medicine, Stanford University Medical Center, CA (P.J.K., M.M., X.G., Y.M., I.T., S.M., N.G.K., M.V.M., E.R., P.C.Y.); Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, CA (J.R., C.H., H.B.); and Eagle Vision Pharmaceutical Corporation, Exton, PA (P.H.)
| | - Michael V McConnell
- From the Division of Cardiovascular Medicine, Department of Medicine, Stanford University Medical Center, CA (P.J.K., M.M., X.G., Y.M., I.T., S.M., N.G.K., M.V.M., E.R., P.C.Y.); Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, CA (J.R., C.H., H.B.); and Eagle Vision Pharmaceutical Corporation, Exton, PA (P.H.)
| | - Helen Blau
- From the Division of Cardiovascular Medicine, Department of Medicine, Stanford University Medical Center, CA (P.J.K., M.M., X.G., Y.M., I.T., S.M., N.G.K., M.V.M., E.R., P.C.Y.); Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, CA (J.R., C.H., H.B.); and Eagle Vision Pharmaceutical Corporation, Exton, PA (P.H.)
| | - Phillip Harnish
- From the Division of Cardiovascular Medicine, Department of Medicine, Stanford University Medical Center, CA (P.J.K., M.M., X.G., Y.M., I.T., S.M., N.G.K., M.V.M., E.R., P.C.Y.); Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, CA (J.R., C.H., H.B.); and Eagle Vision Pharmaceutical Corporation, Exton, PA (P.H.)
| | - Eric Rulifson
- From the Division of Cardiovascular Medicine, Department of Medicine, Stanford University Medical Center, CA (P.J.K., M.M., X.G., Y.M., I.T., S.M., N.G.K., M.V.M., E.R., P.C.Y.); Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, CA (J.R., C.H., H.B.); and Eagle Vision Pharmaceutical Corporation, Exton, PA (P.H.)
| | - Phillip C Yang
- From the Division of Cardiovascular Medicine, Department of Medicine, Stanford University Medical Center, CA (P.J.K., M.M., X.G., Y.M., I.T., S.M., N.G.K., M.V.M., E.R., P.C.Y.); Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, CA (J.R., C.H., H.B.); and Eagle Vision Pharmaceutical Corporation, Exton, PA (P.H.).
| |
Collapse
|
46
|
Ramunas J, Yakubov E, Brady JJ, Corbel SY, Holbrook C, Brandt M, Stein J, Santiago JG, Cooke JP, Blau HM. Transient delivery of modified mRNA encoding TERT rapidly extends telomeres in human cells. FASEB J 2015; 29:1930-9. [PMID: 25614443 DOI: 10.1096/fj.14-259531] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 12/31/2014] [Indexed: 12/13/2022]
Abstract
Telomere extension has been proposed as a means to improve cell culture and tissue engineering and to treat disease. However, telomere extension by nonviral, nonintegrating methods remains inefficient. Here we report that delivery of modified mRNA encoding TERT to human fibroblasts and myoblasts increases telomerase activity transiently (24-48 h) and rapidly extends telomeres, after which telomeres resume shortening. Three successive transfections over a 4 d period extended telomeres up to 0.9 kb in a cell type-specific manner in fibroblasts and myoblasts and conferred an additional 28 ± 1.5 and 3.4 ± 0.4 population doublings (PDs), respectively. Proliferative capacity increased in a dose-dependent manner. The second and third transfections had less effect on proliferative capacity than the first, revealing a refractory period. However, the refractory period was transient as a later fourth transfection increased fibroblast proliferative capacity by an additional 15.2 ± 1.1 PDs, similar to the first transfection. Overall, these treatments led to an increase in absolute cell number of more than 10(12)-fold. Notably, unlike immortalized cells, all treated cell populations eventually stopped increasing in number and expressed senescence markers to the same extent as untreated cells. This rapid method of extending telomeres and increasing cell proliferative capacity without risk of insertional mutagenesis should have broad utility in disease modeling, drug screening, and regenerative medicine.
Collapse
Affiliation(s)
- John Ramunas
- *Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Institute for Stem Cell Biology and Regenerative Medicine, Clinical Sciences Research Center, Stanford University School of Medicine, Stanford, California, USA; Falk Cardiovascular Research Center, Stanford University School of Medicine, Stanford, California, USA; SpectraCell Laboratories, Inc., Houston, Texas, USA; and Department of Mechanical Engineering, Stanford University, Stanford, California, USA
| | - Eduard Yakubov
- *Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Institute for Stem Cell Biology and Regenerative Medicine, Clinical Sciences Research Center, Stanford University School of Medicine, Stanford, California, USA; Falk Cardiovascular Research Center, Stanford University School of Medicine, Stanford, California, USA; SpectraCell Laboratories, Inc., Houston, Texas, USA; and Department of Mechanical Engineering, Stanford University, Stanford, California, USA
| | - Jennifer J Brady
- *Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Institute for Stem Cell Biology and Regenerative Medicine, Clinical Sciences Research Center, Stanford University School of Medicine, Stanford, California, USA; Falk Cardiovascular Research Center, Stanford University School of Medicine, Stanford, California, USA; SpectraCell Laboratories, Inc., Houston, Texas, USA; and Department of Mechanical Engineering, Stanford University, Stanford, California, USA
| | - Stéphane Y Corbel
- *Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Institute for Stem Cell Biology and Regenerative Medicine, Clinical Sciences Research Center, Stanford University School of Medicine, Stanford, California, USA; Falk Cardiovascular Research Center, Stanford University School of Medicine, Stanford, California, USA; SpectraCell Laboratories, Inc., Houston, Texas, USA; and Department of Mechanical Engineering, Stanford University, Stanford, California, USA
| | - Colin Holbrook
- *Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Institute for Stem Cell Biology and Regenerative Medicine, Clinical Sciences Research Center, Stanford University School of Medicine, Stanford, California, USA; Falk Cardiovascular Research Center, Stanford University School of Medicine, Stanford, California, USA; SpectraCell Laboratories, Inc., Houston, Texas, USA; and Department of Mechanical Engineering, Stanford University, Stanford, California, USA
| | - Moritz Brandt
- *Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Institute for Stem Cell Biology and Regenerative Medicine, Clinical Sciences Research Center, Stanford University School of Medicine, Stanford, California, USA; Falk Cardiovascular Research Center, Stanford University School of Medicine, Stanford, California, USA; SpectraCell Laboratories, Inc., Houston, Texas, USA; and Department of Mechanical Engineering, Stanford University, Stanford, California, USA
| | - Jonathan Stein
- *Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Institute for Stem Cell Biology and Regenerative Medicine, Clinical Sciences Research Center, Stanford University School of Medicine, Stanford, California, USA; Falk Cardiovascular Research Center, Stanford University School of Medicine, Stanford, California, USA; SpectraCell Laboratories, Inc., Houston, Texas, USA; and Department of Mechanical Engineering, Stanford University, Stanford, California, USA
| | - Juan G Santiago
- *Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Institute for Stem Cell Biology and Regenerative Medicine, Clinical Sciences Research Center, Stanford University School of Medicine, Stanford, California, USA; Falk Cardiovascular Research Center, Stanford University School of Medicine, Stanford, California, USA; SpectraCell Laboratories, Inc., Houston, Texas, USA; and Department of Mechanical Engineering, Stanford University, Stanford, California, USA
| | - John P Cooke
- *Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Institute for Stem Cell Biology and Regenerative Medicine, Clinical Sciences Research Center, Stanford University School of Medicine, Stanford, California, USA; Falk Cardiovascular Research Center, Stanford University School of Medicine, Stanford, California, USA; SpectraCell Laboratories, Inc., Houston, Texas, USA; and Department of Mechanical Engineering, Stanford University, Stanford, California, USA
| | - Helen M Blau
- *Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Institute for Stem Cell Biology and Regenerative Medicine, Clinical Sciences Research Center, Stanford University School of Medicine, Stanford, California, USA; Falk Cardiovascular Research Center, Stanford University School of Medicine, Stanford, California, USA; SpectraCell Laboratories, Inc., Houston, Texas, USA; and Department of Mechanical Engineering, Stanford University, Stanford, California, USA
| |
Collapse
|
47
|
Freude K, Pires C, Hyttel P, Hall VJ. Induced Pluripotent Stem Cells Derived from Alzheimer's Disease Patients: The Promise, the Hope and the Path Ahead. J Clin Med 2014; 3:1402-36. [PMID: 26237610 PMCID: PMC4470192 DOI: 10.3390/jcm3041402] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 11/12/2014] [Accepted: 11/14/2014] [Indexed: 02/07/2023] Open
Abstract
The future hope of generated induced pluripotent stem cells (iPS cells) from Alzheimer’s disease patients is multifold. Firstly, they may help to uncover novel mechanisms of the disease, which could lead to the development of new and unprecedented drugs for patients and secondly, they could also be directly used for screening and testing of potential new compounds for drug discovery. In addition, in the case of familial known mutations, these cells could be targeted by use of advanced gene-editing techniques to correct the mutation and be used for future cell transplantation therapies. This review summarizes the work so far in regards to production and characterization of iPS cell lines from both sporadic and familial Alzheimer’s patients and from other iPS cell lines that may help to model the disease. It provides a detailed comparison between published reports and states the present hurdles we face with this new technology. The promise of new gene-editing techniques and accelerated aging models also aim to move this field further by providing better control cell lines for comparisons and potentially better phenotypes, respectively.
Collapse
Affiliation(s)
- Kristine Freude
- Department of Veterinary Clinical and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Gronnegaardsvej 7, Frederiksberg C DK-1870, Denmark.
| | - Carlota Pires
- Department of Veterinary Clinical and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Gronnegaardsvej 7, Frederiksberg C DK-1870, Denmark.
| | - Poul Hyttel
- Department of Veterinary Clinical and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Gronnegaardsvej 7, Frederiksberg C DK-1870, Denmark.
| | - Vanessa Jane Hall
- Department of Veterinary Clinical and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Gronnegaardsvej 7, Frederiksberg C DK-1870, Denmark.
| |
Collapse
|
48
|
Bilousova G, Roop DR. Induced pluripotent stem cells in dermatology: potentials, advances, and limitations. Cold Spring Harb Perspect Med 2014; 4:a015164. [PMID: 25368014 DOI: 10.1101/cshperspect.a015164] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The discovery of methods for reprogramming adult somatic cells into induced pluripotent stem cells (iPSCs) has raised the possibility of producing truly personalized treatment options for numerous diseases. Similar to embryonic stem cells (ESCs), iPSCs can give rise to any cell type in the body and are amenable to genetic correction by homologous recombination. These ESC properties of iPSCs allow for the development of permanent corrective therapies for many currently incurable disorders, including inherited skin diseases, without using embryonic tissues or oocytes. Here, we review recent progress and limitations of iPSC research with a focus on clinical applications of iPSCs and using iPSCs to model human diseases for drug discovery in the field of dermatology.
Collapse
Affiliation(s)
- Ganna Bilousova
- Department of Dermatology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado 80045 Charles C. Gates Center for Regenerative Medicine and Stem Cell Biology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado 80045
| | - Dennis R Roop
- Department of Dermatology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado 80045 Charles C. Gates Center for Regenerative Medicine and Stem Cell Biology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado 80045
| |
Collapse
|
49
|
Zhao Z, Pan X, Liu L, Liu N. Telomere length maintenance, shortening, and lengthening. J Cell Physiol 2014; 229:1323-9. [PMID: 24374808 DOI: 10.1002/jcp.24537] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 12/13/2013] [Indexed: 12/28/2022]
Abstract
Telomeres maintain chromosome stability and cell replicative capacity. Telomere shortening occurs concomitant with aging. Short telomeres are associated with some diseases, such as dyskeratosis congenita, idiopathic pulmonary fibrosis, and aplastic anemia. Telomeres are longer in pluripotent stem cells than in somatic cells and lengthen significantly during preimplantation development. Furthermore, telomere elongation during somatic cell reprogramming is of great importance in the acquisition of authentic pluripotency. This review focuses primarily on regulatory mechanisms of telomere length maintenance in pluripotent cells, telomere length extension in early embryo development, and also telomere rejuvenation in somatic cell reprogramming. Telomere related diseases are also discussed in this review.
Collapse
Affiliation(s)
- Zhenrong Zhao
- Department of Genetics and Cell Biology, College of Life Science, Nankai University, Tianjin, China; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| | | | | | | |
Collapse
|
50
|
Sagie S, Ellran E, Katzir H, Shaked R, Yehezkel S, Laevsky I, Ghanayim A, Geiger D, Tzukerman M, Selig S. Induced pluripotent stem cells as a model for telomeric abnormalities in ICF type I syndrome. Hum Mol Genet 2014; 23:3629-40. [PMID: 24549038 DOI: 10.1093/hmg/ddu071] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
Human telomeric regions are packaged as constitutive heterochromatin, characterized by extensive subtelomeric DNA methylation and specific histone modifications. ICF (immunodeficiency, centromeric instability, facial anomalies) type I patients carry mutations in DNA methyltransferase 3B (DNMT3B) that methylates de novo repetitive sequences during early embryonic development. ICF type I patient fibroblasts display hypomethylated subtelomeres, abnormally short telomeres and premature senescence. In order to study the molecular mechanism by which the failure to de novo methylate subtelomeres results in accelerated telomere shortening, we generated induced pluripotent stem cells (iPSCs) from 3 ICF type I patients. Telomeres were elongated in ICF-iPSCs during reprogramming, and the senescence phenotype was abolished despite sustained subtelomeric hypomethylation and high TERRA levels. Fibroblast-like cells (FLs) isolated from differentiated ICF-iPSCs maintained abnormally high TERRA levels, and telomeres in these cells shortened at an accelerated rate, leading to early senescence, thus recapitulating the telomeric phenotype of the parental fibroblasts. These findings demonstrate that the abnormal telomere phenotype associated with subtelomeric hypomethylation is overridden in cells expressing telomerase, therefore excluding telomerase inhibition by TERRA as a central mechanism responsible for telomere shortening in ICF syndrome. The data in the current study lend support to the use of ICF-iPSCs for modeling of phenotypic and molecular defects in ICF syndrome and for unraveling the mechanism whereby subtelomeric hypomethylation is linked to accelerated telomeric loss in this syndrome.
Collapse
Affiliation(s)
- Shira Sagie
- Laboratory of Molecular Medicine, Rambam Health Care Campus and Rappaport Faculty of Medicine and Research Institute, Technion, Haifa 31096, Israel
| | - Erika Ellran
- Laboratory of Molecular Medicine, Rambam Health Care Campus and Rappaport Faculty of Medicine and Research Institute, Technion, Haifa 31096, Israel
| | - Hagar Katzir
- Laboratory of Molecular Medicine, Rambam Health Care Campus and Rappaport Faculty of Medicine and Research Institute, Technion, Haifa 31096, Israel
| | - Rony Shaked
- Laboratory of Molecular Medicine, Rambam Health Care Campus and Rappaport Faculty of Medicine and Research Institute, Technion, Haifa 31096, Israel
| | - Shiran Yehezkel
- Laboratory of Molecular Medicine, Rambam Health Care Campus and Rappaport Faculty of Medicine and Research Institute, Technion, Haifa 31096, Israel
| | - Ilana Laevsky
- The Sohnis and Forman Families Stem Cell Center, Rappaport Faculty of Medicine and Research Institute, Technion, Haifa 31096, Israel
| | - Alaa Ghanayim
- Computer Science Department, Technion, Haifa 32000, Israel
| | - Dan Geiger
- Computer Science Department, Technion, Haifa 32000, Israel
| | - Maty Tzukerman
- Laboratory of Molecular Medicine, Rambam Health Care Campus and Rappaport Faculty of Medicine and Research Institute, Technion, Haifa 31096, Israel
| | - Sara Selig
- Laboratory of Molecular Medicine, Rambam Health Care Campus and Rappaport Faculty of Medicine and Research Institute, Technion, Haifa 31096, Israel,
| |
Collapse
|