1
|
Higashiyama M, Masuda Y, Katagiri A, Toyoda H, Yamada M, Yoshida A, Kato T. Comparison of rhythmic jaw muscle activities induced by electrical stimulations of the corticobulbar tract during rapid eye movement sleep with those during wakefulness and non-rapid eye movement sleep in freely moving Guinea pigs. J Oral Biosci 2024; 66:58-66. [PMID: 39304060 DOI: 10.1016/j.job.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/11/2024] [Accepted: 09/13/2024] [Indexed: 09/22/2024]
Abstract
OBJECTIVE Rhythmic jaw muscle activities (RJMAs) occur during rapid eye movement (REM) sleep in humans and animals even though motoneurons are inhibited. The present study compared the characteristics of jaw muscle activities induced by electrical microstimulations of the corticobulbar tract (CT) during REM sleep with those during wakefulness and non-REM sleep. METHODS Eleven guinea pigs were surgically prepared for polygraphic recordings with the implantation of a stimulating electrode. Long- and short-train repetitive electrical microstimulations were applied to the CT under freely moving conditions. The response rate, latency, burst amplitude, and cycle length in the digastric muscle were calculated and cortical and cardiac activities were quantified. RESULTS Long-train microstimulations induced RJMAs in the digastric muscle followed by masseter muscle activity during wakefulness and non-REM sleep and only induced rhythmic digastric muscle activity during REM sleep. The response rate of RJMAs and the burst amplitude of digastric muscles were significantly lower during REM sleep than during wakefulness and non-REM sleep. However, response latency did not significantly differ between REM sleep and wakefulness. Transient cortical and cardiac changes were associated with RJMAs induced during non-REM sleep, but not during REM sleep. Short-train microstimulations induced a short-latency digastric response, the amplitude of which was significantly lower during REM sleep than during non-REM sleep and wakefulness. CONCLUSIONS These results suggest that the masticatory CPG was activated by electrical CT stimulations independently of the motoneuron inhibitory system during REM sleep.
Collapse
Affiliation(s)
- Makoto Higashiyama
- Department of Oral Physiology, Osaka University Graduate School of Dentistry, Osaka, Japan.
| | - Yuji Masuda
- Matsumoto Dental University, Graduate School of Oral Medicine, Department of Oro-maxillofacial Neurobiology, Shiojiri, Nagano, Japan.
| | - Ayano Katagiri
- Department of Oral Physiology, Osaka University Graduate School of Dentistry, Osaka, Japan.
| | - Hiroki Toyoda
- Department of Oral Physiology, Osaka University Graduate School of Dentistry, Osaka, Japan.
| | - Masaharu Yamada
- Department of Oral Physiology, Osaka University Graduate School of Dentistry, Osaka, Japan.
| | - Atsushi Yoshida
- Department of Oral Health Sciences, Faculty of Health Care Sciences, Takarazuka University of Medical and Health Care, Takarazuka, Hyogo, Japan.
| | - Takafumi Kato
- Department of Oral Physiology, Osaka University Graduate School of Dentistry, Osaka, Japan; Sleep Medicine Center Osaka University Hospital, Osaka, Japan.
| |
Collapse
|
2
|
Vetrivelan R, Bandaru SS. Neural Control of REM Sleep and Motor Atonia: Current Perspectives. Curr Neurol Neurosci Rep 2023; 23:907-923. [PMID: 38060134 PMCID: PMC11891935 DOI: 10.1007/s11910-023-01322-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2023] [Indexed: 12/08/2023]
Abstract
PURPOSE OF REVIEW Since the formal discovery of rapid eye movement (REM) sleep in 1953, we have gained a vast amount of knowledge regarding the specific populations of neurons, their connections, and synaptic mechanisms regulating this stage of sleep and its accompanying features. This article discusses REM sleep circuits and their dysfunction, specifically emphasizing recent studies using conditional genetic tools. RECENT FINDINGS Sublaterodorsal nucleus (SLD) in the dorsolateral pons, especially the glutamatergic subpopulation in this region (SLDGlut), are shown to be indispensable for REM sleep. These neurons appear to be single REM generators in the rodent brain and may initiate and orchestrate all REM sleep events, including cortical and hippocampal activation and muscle atonia through distinct pathways. However, several cell groups in the brainstem and hypothalamus may influence SLDGlut neuron activity, thereby modulating REM sleep timing, amounts, and architecture. Damage to SLDGlut neurons or their projections involved in muscle atonia leads to REM behavior disorder, whereas the abnormal activation of this pathway during wakefulness may underlie cataplexy in narcolepsy. Despite some opposing views, it has become evident that SLDGlut neurons are the sole generators of REM sleep and its associated characteristics. Further research should prioritize a deeper understanding of their cellular, synaptic, and molecular properties, as well as the mechanisms that trigger their activation during cataplexy and make them susceptible in RBD.
Collapse
Affiliation(s)
- Ramalingam Vetrivelan
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, USA.
| | - Sathyajit Sai Bandaru
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, USA
| |
Collapse
|
3
|
Kato T, Higashiyama M, Katagiri A, Toyoda H, Yamada M, Minota N, Katsura-Fuchihata S, Zhu Y. Understanding the pathophysiology of sleep bruxism based on human and animal studies: A narrative review. J Oral Biosci 2023; 65:156-162. [PMID: 37086888 DOI: 10.1016/j.job.2023.04.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/14/2023] [Accepted: 04/14/2023] [Indexed: 04/24/2023]
Abstract
BACKGROUND Sleep bruxism (SB) is a common sleep disorder that affects approximately 20% of children and 10% of adults. It may cause orodental problems, such as tooth wear, jaw pain, and temporal headaches. However, the pathophysiological mechanisms underlying SB remain largely unknown, and a definitive treatment has not yet been established. HIGHLIGHT Human studies involving polysomnography have shown that rhythmic masticatory muscle activity (RMMA) is more frequent in otherwise healthy individuals with SB than in normal individuals. RMMA occurs during light non-rapid eye movement (non-REM) sleep in association with transient arousals and cyclic sleep processes. To further elucidate the neurophysiological mechanisms of SB, jaw motor activities have been investigated in naturally sleeping animals. These animals exhibit various contractions of masticatory muscles, including episodes of rhythmic and repetitive masticatory muscle bursts that occurred during non-REM sleep in association with cortical and cardiac activation, similar to those found in humans. Electrical microstimulation of corticobulbar tracts may also induce rhythmic masticatory muscle contractions during non-REM sleep, suggesting that the masticatory motor system is activated during non-REM sleep via excitatory inputs to the masticatory central pattern generator. CONCLUSION This review article summarizes the pathophysiology of SB and putative origin of RMMA in both human and animal studies. Physiological factors contributing to RMMA in SB have been identified in human studies and may also be present in animal models. Further research is required to integrate the findings between human and animal studies to better understand the mechanisms underlying SB.
Collapse
Affiliation(s)
- Takafumi Kato
- Osaka University Graduate School of Dentistry, Department of Oral Physiology, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Makoto Higashiyama
- Osaka University Graduate School of Dentistry, Department of Oral Physiology, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Ayano Katagiri
- Osaka University Graduate School of Dentistry, Department of Oral Physiology, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Hiroki Toyoda
- Osaka University Graduate School of Dentistry, Department of Oral Physiology, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Masaharu Yamada
- Osaka University Graduate School of Dentistry, Department of Oral Physiology, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan; Osaka University Graduate School of Dentistry, Department of Dental Anesthesiology, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Noriko Minota
- Osaka University Graduate School of Dentistry, Department of Oral Physiology, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan; Osaka University Graduate School of Dentistry, Department of Oral and Maxillofacial Surgery, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Sho Katsura-Fuchihata
- Osaka University Graduate School of Dentistry, Department of Oral Physiology, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Yiwen Zhu
- Osaka University Graduate School of Dentistry, Department of Oral Physiology, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
4
|
Chen HL, Gao JX, Chen YN, Xie JF, Xie YP, Spruyt K, Lin JS, Shao YF, Hou YP. Rapid Eye Movement Sleep during Early Life: A Comprehensive Narrative Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:13101. [PMID: 36293678 PMCID: PMC9602694 DOI: 10.3390/ijerph192013101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/05/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
The ontogenetic sleep hypothesis suggested that rapid eye movement (REM) sleep is ontogenetically primitive. Namely, REM sleep plays an imperative role in the maturation of the central nervous system. In coincidence with a rapidly developing brain during the early period of life, a remarkably large amount of REM sleep has been identified in numerous behavioral and polysomnographic studies across species. The abundant REM sleep appears to serve to optimize a cerebral state suitable for homeostasis and inherent neuronal activities favorable to brain maturation, ranging from neuronal differentiation, migration, and myelination to synaptic formation and elimination. Progressively more studies in Mammalia have provided the underlying mechanisms involved in some REM sleep-related disorders (e.g., narcolepsy, autism, attention deficit hyperactivity disorder (ADHD)). We summarize the remarkable alterations of polysomnographic, behavioral, and physiological characteristics in humans and Mammalia. Through a comprehensive review, we offer a hybrid of animal and human findings, demonstrating that early-life REM sleep disturbances constitute a common feature of many neurodevelopmental disorders. Our review may assist and promote investigations of the underlying mechanisms, functions, and neurodevelopmental diseases involved in REM sleep during early life.
Collapse
Affiliation(s)
- Hai-Lin Chen
- Departments of Neuroscience, Anatomy, Histology, and Embryology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, 199 Donggang Xi Road, Lanzhou 730000, China
| | - Jin-Xian Gao
- Departments of Neuroscience, Anatomy, Histology, and Embryology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, 199 Donggang Xi Road, Lanzhou 730000, China
- Sleep Medicine Center of Gansu Provincial Hospital, Lanzhou 730000, China
| | - Yu-Nong Chen
- Departments of Neuroscience, Anatomy, Histology, and Embryology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, 199 Donggang Xi Road, Lanzhou 730000, China
| | - Jun-Fan Xie
- Departments of Neuroscience, Anatomy, Histology, and Embryology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, 199 Donggang Xi Road, Lanzhou 730000, China
| | - Yu-Ping Xie
- Sleep Medicine Center of Gansu Provincial Hospital, Lanzhou 730000, China
| | - Karen Spruyt
- Université de Paris, NeuroDiderot–INSERM, 75019 Paris, France
| | - Jian-Sheng Lin
- Integrative Physiology of the Brain Arousal Systems, CRNL, INSERM U1028-CNRS UMR 5292, University Claude Bernard Lyon 1, Centre Hospitalier Le Vinatier–Neurocampus Michel Jouvet, 95 Boulevard Pinel, CEDEX, 69675 Bron, France
| | - Yu-Feng Shao
- Departments of Neuroscience, Anatomy, Histology, and Embryology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, 199 Donggang Xi Road, Lanzhou 730000, China
- Integrative Physiology of the Brain Arousal Systems, CRNL, INSERM U1028-CNRS UMR 5292, University Claude Bernard Lyon 1, Centre Hospitalier Le Vinatier–Neurocampus Michel Jouvet, 95 Boulevard Pinel, CEDEX, 69675 Bron, France
- Key Lab of Neurology of Gansu Province, Lanzhou University, Lanzhou 730000, China
| | - Yi-Ping Hou
- Departments of Neuroscience, Anatomy, Histology, and Embryology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, 199 Donggang Xi Road, Lanzhou 730000, China
- Key Lab of Neurology of Gansu Province, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
5
|
Shi XB, Wang J, Li FT, Zhang YB, Qu WM, Dai CF, Huang ZL. Whole-brain monosynaptic outputs and presynaptic inputs of GABAergic neurons in the vestibular nuclei complex of mice. Front Neurosci 2022; 16:982596. [PMID: 36090271 PMCID: PMC9459096 DOI: 10.3389/fnins.2022.982596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/02/2022] [Indexed: 11/13/2022] Open
Abstract
GABAergic neurons in the vestibular nuclei (VN) participate in multiple vital vestibular sensory processing allowing for the maintenance and rehabilitation of vestibular functions. However, although the important role of GABA in the central vestibular system has been widely reported, the underlying neural circuits between VN GABAergic neurons and other brain functional regions remain elusive, which limits the further study of the underlying mechanism. Hence, it is necessary to elucidate neural connectivity based on outputs and inputs of GABAergic neurons in the VN. This study employed a modified rabies virus retrograde tracing vector and cre-dependent adeno-associated viruses (AAVs) anterograde tracing vector, combined with a transgenic VGAT-IRES-Cre mice, to map the inputs and outputs of VN GABAergic neurons in the whole brain. We found that 51 discrete brain regions received projections from VN GABAergic neurons in the whole brain, and there were 77 upstream nuclei innervating GABAergic neurons in the VN. These nuclei were mainly located in four brain regions, including the medulla, pons, midbrain, and cerebellum. Among them, VN GABAergic neurons established neural circuits with some functional nuclei in the whole brain, especially regulating balance maintenance, emotion control, pain processing, sleep and circadian rhythm regulation, and fluid homeostasis. Therefore, this study deepens a comprehensive understanding of the whole-brain neural connectivity of VN, providing the neuroanatomical information for further research on the neural mechanism of the co-morbidities with vestibular dysfunction.
Collapse
Affiliation(s)
- Xun-Bei Shi
- Department of Otology and Skull Base Surgery, Eye and Ear, Nose and Throat Hospital, Fudan University, Shanghai, China
- Department of Pharmacology, School of Basic Medical Sciences, Shanghai, China
- State Key Laboratory of Medical Neurobiology, Ministry of Education Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
- Key Laboratory of Hearing Medicine, Ministry of Health, Eye and Ear, Nose and Throat Hospital, Fudan University, Shanghai, China
| | - Jing Wang
- Department of Otology and Skull Base Surgery, Eye and Ear, Nose and Throat Hospital, Fudan University, Shanghai, China
- Key Laboratory of Hearing Medicine, Ministry of Health, Eye and Ear, Nose and Throat Hospital, Fudan University, Shanghai, China
| | - Fei-Tian Li
- Department of Otology and Skull Base Surgery, Eye and Ear, Nose and Throat Hospital, Fudan University, Shanghai, China
- Key Laboratory of Hearing Medicine, Ministry of Health, Eye and Ear, Nose and Throat Hospital, Fudan University, Shanghai, China
| | - Yi-Bo Zhang
- Department of Otology and Skull Base Surgery, Eye and Ear, Nose and Throat Hospital, Fudan University, Shanghai, China
- Key Laboratory of Hearing Medicine, Ministry of Health, Eye and Ear, Nose and Throat Hospital, Fudan University, Shanghai, China
| | - Wei-Min Qu
- Department of Pharmacology, School of Basic Medical Sciences, Shanghai, China
- State Key Laboratory of Medical Neurobiology, Ministry of Education Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Chun-Fu Dai
- Department of Otology and Skull Base Surgery, Eye and Ear, Nose and Throat Hospital, Fudan University, Shanghai, China
- Key Laboratory of Hearing Medicine, Ministry of Health, Eye and Ear, Nose and Throat Hospital, Fudan University, Shanghai, China
- Chun-Fu Dai
| | - Zhi-Li Huang
- Department of Pharmacology, School of Basic Medical Sciences, Shanghai, China
- State Key Laboratory of Medical Neurobiology, Ministry of Education Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
- *Correspondence: Zhi-Li Huang
| |
Collapse
|
6
|
Wang YQ, Liu WY, Li L, Qu WM, Huang ZL. Neural circuitry underlying REM sleep: A review of the literature and current concepts. Prog Neurobiol 2021; 204:102106. [PMID: 34144122 DOI: 10.1016/j.pneurobio.2021.102106] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 04/25/2021] [Accepted: 06/09/2021] [Indexed: 01/09/2023]
Abstract
As one of the fundamental sleep states, rapid eye movement (REM) sleep is believed to be associated with dreaming and is characterized by low-voltage, fast electroencephalographic activity and loss of muscle tone. However, the mechanisms of REM sleep generation have remained unclear despite decades of research. Several models of REM sleep have been established, including a reciprocal interaction model, limit-cycle model, flip-flop model, and a model involving γ-aminobutyric acid, glutamate, and aminergic/orexin/melanin-concentrating hormone neurons. In the present review, we discuss these models and summarize two typical disorders related to REM sleep, namely REM sleep behavior disorder and narcolepsy. REM sleep behavior disorder is a sleep muscle-tone-related disorder and can be treated with clonazepam and melatonin. Narcolepsy, with core symptoms of excessive daytime sleepiness and cataplexy, is strongly connected with orexin in early adulthood.
Collapse
Affiliation(s)
- Yi-Qun Wang
- Department of Pharmacology, School of Basic Medical Sciences and State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Wen-Ying Liu
- Department of Pharmacology, School of Basic Medical Sciences and State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Lei Li
- Department of Pharmacology, School of Basic Medical Sciences and State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Wei-Min Qu
- Department of Pharmacology, School of Basic Medical Sciences and State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Zhi-Li Huang
- Department of Pharmacology, School of Basic Medical Sciences and State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
7
|
Shi X, Wei H, Chen Z, Wang J, Qu W, Huang Z, Dai C. Whole-brain monosynaptic inputs and outputs of glutamatergic neurons of the vestibular nuclei complex in mice. Hear Res 2020; 401:108159. [PMID: 33401198 DOI: 10.1016/j.heares.2020.108159] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 12/15/2020] [Accepted: 12/21/2020] [Indexed: 11/18/2022]
Abstract
Vestibular nuclei complex (VN) glutamatergic neurons play a critical role in the multisensory and multimodal processing. The dysfunction of VN leads to a series of vestibular concurrent symptoms, such as disequilibrium, spatial disorientation, autonomic disorders and even emotion disorders. However, the reciprocal neural connectivity in the whole brain of VN glutamatergic neurons was incompletely understood. Here, we employed a cell-type-specific, cre-dependent, modified virus vector to retrogradely and anterogradely trace VN glutamatergic neurons in the VGLUT2-IRES-Cre mouse line. We identified and analyzed statistically the afferents and efferents of VN glutamatergic neurons in the whole brain, and also reconstructed monosynaptic inputs distribution of VN glutamatergic neurons at the three-dimensional level with the combination of a fluorescence micro-optical sectioning tomography system (fMOST). We found that VN glutamatergic neurons primarily received afferents from 57 nuclei and send efferents to 59 nuclei in the whole brain, intensively located in the brainstem and cerebellum. Projections from nuclei in the cerebellum targeting VN glutamatergic neurons mainly performed the balance control - the principal function of the vestibular system. In addition, VN glutamatergic neurons sent projections to oculomotor nucleus, trochlear nucleus and abducens nucleus dominating the eye movement. Except for the maintenance of balance, VN glutamatergic neurons were also directly connected with other functional regions, such as sleep-wake state (locus coeruleus, dorsal raphe nucleus, and laterodorsal tegmental nucleus, gigantocellular reticular nucleus, lateral paragigantocellular nucleus, periaqueductal gray, subcoeruleus nucleus, parvicellular reticular nucleus, paramedian raphe nucleus), and emotional regulation (locus coeruleus and dorsal raphe nucleus). Hence, this study revealed a comprehensive whole-brain neural connectivity of VN glutamatergic neurons and provided with a neuroanatomic foundation to further study on central vestibular circuits.
Collapse
Affiliation(s)
- Xunbei Shi
- Department of Otology and Skull Base Surgery, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China; NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai 200031, China
| | - Haohua Wei
- Department of Pharmacology, School of Basic Medical Sciences; State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai 200032, China; Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Zeka Chen
- Department of Pharmacology, School of Basic Medical Sciences; State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Jing Wang
- Department of Otology and Skull Base Surgery, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China; NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai 200031, China
| | - Weimin Qu
- Department of Pharmacology, School of Basic Medical Sciences; State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Zhili Huang
- Department of Pharmacology, School of Basic Medical Sciences; State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai 200032, China.
| | - Chunfu Dai
- Department of Otology and Skull Base Surgery, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China; NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai 200031, China.
| |
Collapse
|
8
|
Alam MA, Kostin A, Siegel J, McGinty D, Szymusiak R, Alam MN. Characteristics of sleep-active neurons in the medullary parafacial zone in rats. Sleep 2019; 41:5050231. [PMID: 29986116 DOI: 10.1093/sleep/zsy130] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Indexed: 12/21/2022] Open
Abstract
Growing evidence supports a role for the medullary parafacial zone in non-rapid eye movement (non-REM) sleep regulation. Cell-body specific lesions of the parafacial zone or disruption of its GABAergic/glycinergic transmission causes suppression of non-REM sleep, whereas, targeted activation of parafacial GABAergic/glycinergic neurons reduce sleep latency and increase non-REM sleep amount, bout duration, and cortical electroencephalogram (EEG) slow-wave activity. Parafacial GABAergic/glycinergic neurons also express sleep-associated c-fos immunoreactivity. Currently, it is not clear if parafacial neurons are non-REM sleep-active and/or REM sleep-active or play a role in the initiation or maintenance of non-REM sleep. We recorded extracellular discharge activity of parafacial neurons across the spontaneous sleep-waking cycle using microwire technique in freely behaving rats. Waking-, non-REM sleep-, and REM sleep-active neuronal groups were segregated by the ratios of their discharge rate changes during non-REM and REM sleep versus waking and non-REM sleep versus REM sleep. Parafacial neurons exhibited heterogeneity in sleep-waking discharge patterns, but 34 of 86 (40%) recorded neurons exhibited increased discharge rate during non-REM sleep compared to waking. These neurons also exhibited increased discharge prior to non-REM sleep onset, similar to median preoptic nucleus (MnPO) and ventrolateral preoptic area (VLPO) sleep-active neurons. However, unlike MnPO and VLPO sleep-active neurons, parafacial neurons were weakly-moderately sleep-active and exhibited a stable rather than decreasing discharge across sustained non-REM sleep episode. We show for the first time that the medullary parafacial zone contains non-REM sleep-active neurons. These neurons are likely functionally important brainstem compliments to the preoptic-hypothalamic sleep-promoting neuronal networks that underlie sleep onset and maintenance.
Collapse
Affiliation(s)
- Md Aftab Alam
- Research Service (151A3), Veterans Affairs Greater Los Angeles Healthcare System, Sepulveda, CA.,Department of Psychiatry, University of California, Los Angeles, CA
| | - Andrey Kostin
- Research Service (151A3), Veterans Affairs Greater Los Angeles Healthcare System, Sepulveda, CA
| | - Jerome Siegel
- Research Service (151A3), Veterans Affairs Greater Los Angeles Healthcare System, Sepulveda, CA.,Department of Psychiatry, University of California, Los Angeles, CA
| | - Dennis McGinty
- Research Service (151A3), Veterans Affairs Greater Los Angeles Healthcare System, Sepulveda, CA.,Department of Psychology, University of California, Los Angeles, CA
| | - Ronald Szymusiak
- Research Service (151A3), Veterans Affairs Greater Los Angeles Healthcare System, Sepulveda, CA.,Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA
| | - Md Noor Alam
- Research Service (151A3), Veterans Affairs Greater Los Angeles Healthcare System, Sepulveda, CA.,Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA
| |
Collapse
|
9
|
Erickson ETM, Ferrari LL, Gompf HS, Anaclet C. Differential Role of Pontomedullary Glutamatergic Neuronal Populations in Sleep-Wake Control. Front Neurosci 2019; 13:755. [PMID: 31417341 PMCID: PMC6682622 DOI: 10.3389/fnins.2019.00755] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 07/08/2019] [Indexed: 01/08/2023] Open
Abstract
Parafacial zone (PZ) GABAergic neurons play a major role in slow-wave-sleep (SWS), also called non-rapid eye movement (NREM) sleep. The PZ also contains glutamatergic neurons expressing the vesicular transporter for glutamate, isoform 2 (Vglut2). We hypothesized that PZ Vglut2-expressing (PZVglut2) neurons are also involved in sleep control, playing a synergistic role with PZ GABAergic neurons. To test this hypothesis, we specifically activated PZVglut2 neurons using the excitatory chemogenetic receptor hM3Dq. Anatomical inspection of the injection sites revealed hM3Dq transfection in PZ, parabrachial nucleus (PB), sublaterodorsal nucleus (SLD) or various combinations of these three brain areas. Consistent with the known wake- and REM sleep-promoting role of PB and SLD, respectively, chemogenetic activation of PBVglut2 or SLDVglut2 resulted in wake or REM sleep enhancement. Chemogenetic activation of PZVglut2 neurons did not affect sleep-wake phenotype during the mouse active period but increased wakefulness and REM sleep, similar to PBVglut2 and SLDVglut2 activation, during the rest period. To definitively confirm the role of PZVglut2 neurons, we used a specific marker for PZVglut2 neurons, Phox2B. Chemogenetic activation of PZPhox2B neurons did not affect sleep-wake phenotype, indicating that PZ glutamatergic neurons are not sufficient to affect sleep-wake cycle. These results indicate that PZ glutamatergic neurons are not involved in sleep-wake control.
Collapse
Affiliation(s)
- Evelyn T M Erickson
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA, United States
| | - Loris L Ferrari
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA, United States
| | - Heinrich S Gompf
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA, United States
| | - Christelle Anaclet
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA, United States
| |
Collapse
|
10
|
The REM sleep circuit and how its impairment leads to REM sleep behavior disorder. Cell Tissue Res 2018; 373:245-266. [DOI: 10.1007/s00441-018-2852-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 05/03/2018] [Indexed: 10/16/2022]
|
11
|
Whole-Brain Mapping of Direct Inputs to and Axonal Projections from GABAergic Neurons in the Parafacial Zone. Neurosci Bull 2018; 34:485-496. [PMID: 29557546 DOI: 10.1007/s12264-018-0216-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 12/01/2017] [Indexed: 01/27/2023] Open
Abstract
The GABAergic neurons in the parafacial zone (PZ) play an important role in sleep-wake regulation and have been identified as part of a sleep-promoting center in the brainstem, but the long-range connections mediating this function remain poorly characterized. Here, we performed whole-brain mapping of both the inputs and outputs of the GABAergic neurons in the PZ of the mouse brain. We used the modified rabies virus EnvA-ΔG-DsRed combined with a Cre/loxP gene-expression strategy to map the direct monosynaptic inputs to the GABAergic neurons in the PZ, and found that they receive inputs mainly from the hypothalamic area, zona incerta, and parasubthalamic nucleus in the hypothalamus; the substantia nigra, pars reticulata and deep mesencephalic nucleus in the midbrain; and the intermediate reticular nucleus and medial vestibular nucleus (parvocellular part) in the pons and medulla. We also mapped the axonal projections of the PZ GABAergic neurons with adeno-associated virus, and defined the reciprocal connections of the PZ GABAergic neurons with their input and output nuclei. The newly-found inputs and outputs of the PZ were also listed compared with the literature. This cell-type-specific neuronal whole-brain mapping of the PZ GABAergic neurons may reveal the circuits underlying various functions such as sleep-wake regulation.
Collapse
|
12
|
Anaclet C, Griffith K, Fuller PM. Activation of the GABAergic Parafacial Zone Maintains Sleep and Counteracts the Wake-Promoting Action of the Psychostimulants Armodafinil and Caffeine. Neuropsychopharmacology 2018; 43:415-425. [PMID: 28722021 PMCID: PMC5729562 DOI: 10.1038/npp.2017.152] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 07/05/2017] [Accepted: 07/13/2017] [Indexed: 11/08/2022]
Abstract
We previously reported that acute and selective activation of GABA-releasing parafacial zone (PZVgat) neurons in behaving mice produces slow-wave-sleep (SWS), even in the absence of sleep deficit, suggesting that these neurons may represent, at least in part, a key cellular substrate underlying sleep drive. It remains, however, to be determined if PZVgat neurons actively maintain, as oppose to simply gate, SWS. To begin to experimentally address this knowledge gap, we asked whether activation of PZVgat neurons could attenuate or block the wake-promoting effects of two widely used wake-promoting psychostimulants, armodafinil or caffeine. We found that activation of PZVgat neurons completely blocked the behavioral and electrocortical wake-promoting action of armodafinil. In some contrast, activation of PZVgat neurons inhibited the behavioral, but not electrocortical, arousal response to caffeine. These results suggest that: (1) PZVgat neurons actively maintain, as oppose to simply gate, SWS and cortical slow-wave-activity; (2) armodafinil cannot exert its wake-promoting effects when PZVgat neurons are activated, intimating a possible shared circuit/molecular basis for mechanism of action; (3) caffeine can continue to exert potent cortical desynchronizing, but not behavioral, effects when PZVgat neurons are activated, inferring a shared and divergent circuit/molecular basis for mechanism of action; and 4) PZVgat neurons represent a key cell population for SWS induction and maintenance.
Collapse
Affiliation(s)
- Christelle Anaclet
- Division of Sleep Medicine, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Kobi Griffith
- Division of Sleep Medicine, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Patrick M Fuller
- Division of Sleep Medicine, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
13
|
Sakai K. Are there Sleep-promoting Neurons in the Mouse Parafacial Zone? Neuroscience 2017; 367:98-109. [PMID: 29111358 DOI: 10.1016/j.neuroscience.2017.10.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 10/17/2017] [Accepted: 10/22/2017] [Indexed: 11/25/2022]
Abstract
Although recent studies have reported that gamma-aminobutyric acid (GABA) neurons in the parafacial zone (PZ) of the rostral medulla are needed for the induction of slow-wave sleep (SWS) and that the PZ is a medullary SWS-promoting center, it remains unknown whether the PZ contains SWS-active or sleep-promoting neurons. In the present study, a total of 125 neurons were recorded, for the first time, in non-anesthetized, head-restrained mice during the complete wake-sleep cycle throughout the PZ of the rostral medulla. The vast majority (87.2%) of the neurons displayed increased activity during both wakefulness (W) and paradoxical (or rapid eye movement) sleep (PS) compared to during SWS (W/PS-active neurons) and a few (8.0%) discharged phasically and selectively during PS (PS-active neurons), but none discharged maximally during SWS (SWS-active neurons) or displayed a higher rate of spontaneous discharge during both SWS and PS than during W (SWS/PS-active neurons). These findings do not support the view that the GABAergic PZ is a medullary SWS-promoting center.
Collapse
Affiliation(s)
- K Sakai
- Integrative Physiology of the Brain Arousal System, Lyon Neuroscience Research Center, INSERM U1028-CNRS UMR5292, School of Medicine, Claude Bernard University, F-69373 Lyon, France.
| |
Collapse
|
14
|
Kato T, Toyota R, Haraki S, Yano H, Higashiyama M, Ueno Y, Yano H, Sato F, Yatani H, Yoshida A. Comparison of rhythmic masticatory muscle activity during non-rapid eye movement sleep in guinea pigs and humans. J Sleep Res 2017; 27:e12608. [DOI: 10.1111/jsr.12608] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 07/30/2017] [Indexed: 02/04/2023]
Affiliation(s)
- Takafumi Kato
- Department of Oral Physiology; Osaka University Graduate School of Dentistry; Osaka Japan
- Osaka University Hospital; Sleep Medicine Center; Osaka Japan
| | - Risa Toyota
- Department of Oral Physiology; Osaka University Graduate School of Dentistry; Osaka Japan
- Department of Removable Prosthodontics; Osaka University Graduate School of Dentistry; Osaka Japan
| | - Shingo Haraki
- Department of Oral Physiology; Osaka University Graduate School of Dentistry; Osaka Japan
- Department of Fixed Prosthodontics; Osaka University Graduate School of Dentistry; Osaka Japan
| | - Hiroyuki Yano
- Department of Oral Physiology; Osaka University Graduate School of Dentistry; Osaka Japan
- Department of Oral Anatomy and Neurobiology; Osaka University Graduate School of Dentistry; Osaka Japan
- Department of Oral and Maxillofacial Surgery II; Osaka University Graduate School of Dentistry; Osaka Japan
| | - Makoto Higashiyama
- Department of Oral Physiology; Osaka University Graduate School of Dentistry; Osaka Japan
- Department of Fixed Prosthodontics; Osaka University Graduate School of Dentistry; Osaka Japan
- Department of Oral Anatomy and Neurobiology; Osaka University Graduate School of Dentistry; Osaka Japan
| | - Yoshio Ueno
- Department of Oral Physiology; Osaka University Graduate School of Dentistry; Osaka Japan
- Department of Oral Anatomy and Neurobiology; Osaka University Graduate School of Dentistry; Osaka Japan
- Department of Oral and Maxillofacial Surgery II; Osaka University Graduate School of Dentistry; Osaka Japan
| | - Hiroshi Yano
- Department of Oral Physiology; Osaka University Graduate School of Dentistry; Osaka Japan
- Department of Oral Anatomy and Neurobiology; Osaka University Graduate School of Dentistry; Osaka Japan
- Department of Oral and Maxillofacial Surgery II; Osaka University Graduate School of Dentistry; Osaka Japan
| | - Fumihiko Sato
- Department of Oral Anatomy and Neurobiology; Osaka University Graduate School of Dentistry; Osaka Japan
| | - Hirofumi Yatani
- Department of Fixed Prosthodontics; Osaka University Graduate School of Dentistry; Osaka Japan
| | - Atsushi Yoshida
- Department of Oral Anatomy and Neurobiology; Osaka University Graduate School of Dentistry; Osaka Japan
| |
Collapse
|
15
|
Zhang Y, Lu J, Wang Z, Zhong Z, Xu M, Zou X, Yu B, Yao D. Companion of oral movements with limb movements in patients with sleep bruxism: preliminary findings. Sleep Med 2017; 36:156-164. [DOI: 10.1016/j.sleep.2017.05.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 05/13/2017] [Accepted: 05/25/2017] [Indexed: 12/22/2022]
|
16
|
Kubin L. Neural Control of the Upper Airway: Respiratory and State-Dependent Mechanisms. Compr Physiol 2016; 6:1801-1850. [PMID: 27783860 DOI: 10.1002/cphy.c160002] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Upper airway muscles subserve many essential for survival orofacial behaviors, including their important role as accessory respiratory muscles. In the face of certain predisposition of craniofacial anatomy, both tonic and phasic inspiratory activation of upper airway muscles is necessary to protect the upper airway against collapse. This protective action is adequate during wakefulness, but fails during sleep which results in recurrent episodes of hypopneas and apneas, a condition known as the obstructive sleep apnea syndrome (OSA). Although OSA is almost exclusively a human disorder, animal models help unveil the basic principles governing the impact of sleep on breathing and upper airway muscle activity. This article discusses the neuroanatomy, neurochemistry, and neurophysiology of the different neuronal systems whose activity changes with sleep-wake states, such as the noradrenergic, serotonergic, cholinergic, orexinergic, histaminergic, GABAergic and glycinergic, and their impact on central respiratory neurons and upper airway motoneurons. Observations of the interactions between sleep-wake states and upper airway muscles in healthy humans and OSA patients are related to findings from animal models with normal upper airway, and various animal models of OSA, including the chronic-intermittent hypoxia model. Using a framework of upper airway motoneurons being under concurrent influence of central respiratory, reflex and state-dependent inputs, different neurotransmitters, and neuropeptides are considered as either causing a sleep-dependent withdrawal of excitation from motoneurons or mediating an active, sleep-related inhibition of motoneurons. Information about the neurochemistry of state-dependent control of upper airway muscles accumulated to date reveals fundamental principles and may help understand and treat OSA. © 2016 American Physiological Society. Compr Physiol 6:1801-1850, 2016.
Collapse
Affiliation(s)
- Leszek Kubin
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
17
|
Jennum P, Christensen JA, Zoetmulder M. Neurophysiological basis of rapid eye movement sleep behavior disorder: informing future drug development. Nat Sci Sleep 2016; 8:107-20. [PMID: 27186147 PMCID: PMC4847600 DOI: 10.2147/nss.s99240] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Rapid eye movement (REM) sleep behavior disorder (RBD) is a parasomnia characterized by a history of recurrent nocturnal dream enactment behavior and loss of skeletal muscle atonia and increased phasic muscle activity during REM sleep: REM sleep without atonia. RBD and associated comorbidities have recently been identified as one of the most specific and potentially sensitive risk factors for later development of any of the alpha-synucleinopathies: Parkinson's disease, dementia with Lewy bodies, and other atypical parkinsonian syndromes. Several other sleep-related abnormalities have recently been identified in patients with RBD/Parkinson's disease who experience abnormalities in sleep electroencephalographic frequencies, sleep-wake transitions, wake and sleep stability, occurrence and morphology of sleep spindles, and electrooculography measures. These findings suggest a gradual involvement of the brainstem and other structures, which is in line with the gradual involvement known in these disorders. We propose that these findings may help identify biomarkers of individuals at high risk of subsequent conversion to parkinsonism.
Collapse
Affiliation(s)
- Poul Jennum
- Department of Clinical Neurophysiology, Faculty of Health Sciences, Danish Center for Sleep Medicine, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Julie Ae Christensen
- Department of Clinical Neurophysiology, Faculty of Health Sciences, Danish Center for Sleep Medicine, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Marielle Zoetmulder
- Department of Clinical Neurophysiology, Faculty of Health Sciences, Danish Center for Sleep Medicine, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
18
|
Katayama K, Mochizuki A, Kato T, Ikeda M, Ikawa Y, Nakamura S, Nakayama K, Wakabayashi N, Baba K, Inoue T. Dark/light transition and vigilance states modulate jaw-closing muscle activity level in mice. Neurosci Res 2015; 101:24-31. [DOI: 10.1016/j.neures.2015.07.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 06/10/2015] [Accepted: 07/06/2015] [Indexed: 11/26/2022]
|
19
|
Sánchez-López Á, Escudero M. An accurate and portable eye movement detector for studying sleep in small animals. J Sleep Res 2015; 24:466-73. [DOI: 10.1111/jsr.12276] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 12/04/2014] [Indexed: 11/28/2022]
Affiliation(s)
- Álvaro Sánchez-López
- Neurociencia y Comportamiento; Departamento de Fisiología; Facultad de Biología; Universidad de Sevilla; Seville Spain
| | - Miguel Escudero
- Neurociencia y Comportamiento; Departamento de Fisiología; Facultad de Biología; Universidad de Sevilla; Seville Spain
| |
Collapse
|
20
|
Anaclet C, Ferrari L, Arrigoni E, Bass CE, Saper CB, Lu J, Fuller PM. The GABAergic parafacial zone is a medullary slow wave sleep-promoting center. Nat Neurosci 2014; 17:1217-24. [PMID: 25129078 PMCID: PMC4214681 DOI: 10.1038/nn.3789] [Citation(s) in RCA: 220] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Accepted: 07/17/2014] [Indexed: 01/08/2023]
Abstract
Work in animals and humans suggest the existence of a slow–wave sleep (SWS) promoting/EEG synchronizing center in the mammalian lower brainstem. While sleep–active GABAergic neurons in the medullary parafacial zone (PZ) are needed for normal SWS, it remains unclear if these neurons can initiate and maintain SWS or EEG slow wave activity (SWA) in behaving mice. We used genetically targeted activation and optogenetic–based mapping to uncover the downstream circuitry engaged by SWS–promoting PZ neurons, and we show that this circuit uniquely and potently initiates SWS and EEG SWA, regardless of the time of day. PZ neurons monosynaptically innervate and release synaptic GABA onto parabrachial neurons that in turn project to and release synaptic glutamate onto cortically–projecting neurons of the magnocellular basal forebrain; hence a circuit substrate is in place through which GABAergic PZ neurons can potently trigger SWS and modulate the cortical EEG.
Collapse
Affiliation(s)
- Christelle Anaclet
- Department of Neurology, Division of Sleep Medicine, Harvard Medical School and Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Loris Ferrari
- Department of Neurology, Division of Sleep Medicine, Harvard Medical School and Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Elda Arrigoni
- Department of Neurology, Division of Sleep Medicine, Harvard Medical School and Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Caroline E Bass
- Department of Pharmacology and Toxicology, School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
| | - Clifford B Saper
- Department of Neurology, Division of Sleep Medicine, Harvard Medical School and Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Jun Lu
- Department of Neurology, Division of Sleep Medicine, Harvard Medical School and Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Patrick M Fuller
- Department of Neurology, Division of Sleep Medicine, Harvard Medical School and Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| |
Collapse
|
21
|
Schwarz PB, Mir S, Peever JH. Noradrenergic modulation of masseter muscle activity during natural rapid eye movement sleep requires glutamatergic signalling at the trigeminal motor nucleus. J Physiol 2014; 592:3597-609. [PMID: 24860176 DOI: 10.1113/jphysiol.2014.272633] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Noradrenergic neurotransmission in the brainstem is closely coupled to changes in muscle activity across the sleep-wake cycle, and noradrenaline is considered to be a key excitatory neuromodulator that reinforces the arousal-related stimulus on motoneurons to drive movement. However, it is unknown if α-1 noradrenoceptor activation increases motoneuron responsiveness to excitatory glutamate (AMPA) receptor-mediated inputs during natural behaviour. We studied the effects of noradrenaline on AMPA receptor-mediated motor activity at the motoneuron level in freely behaving rats, particularly during rapid eye movement (REM) sleep, a period during which both AMPA receptor-triggered muscle twitches and periods of muscle quiescence in which AMPA drive is silent are exhibited. Male rats were subjected to electromyography and electroencephalography recording to monitor sleep and waking behaviour. The implantation of a cannula into the trigeminal motor nucleus of the brainstem allowed us to perfuse noradrenergic and glutamatergic drugs by reverse microdialysis, and thus to use masseter muscle activity as an index of motoneuronal output. We found that endogenous excitation of both α-1 noradrenoceptor and AMPA receptors during waking are coupled to motor activity; however, REM sleep exhibits an absence of endogenous α-1 noradrenoceptor activity. Importantly, exogenous α-1 noradrenoceptor stimulation cannot reverse the muscle twitch suppression induced by AMPA receptor blockade and nor can it elevate muscle activity during quiet REM, a phase when endogenous AMPA receptor activity is subthreshold. We conclude that the presence of an endogenous glutamatergic drive is necessary for noradrenaline to trigger muscle activity at the level of the motoneuron in an animal behaving naturally.
Collapse
Affiliation(s)
- Peter B Schwarz
- Systems Neurobiology Laboratory, Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Saba Mir
- Systems Neurobiology Laboratory, Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - John H Peever
- Systems Neurobiology Laboratory, Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada Department of Physiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
22
|
Chen MC, Yu H, Huang ZL, Lu J. Rapid eye movement sleep behavior disorder. Curr Opin Neurobiol 2013; 23:793-8. [PMID: 23518139 PMCID: PMC3750096 DOI: 10.1016/j.conb.2013.02.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 02/26/2013] [Accepted: 02/27/2013] [Indexed: 11/15/2022]
Abstract
Rapid eye movement (REM) sleep behavior disorder (RBD) is a failure of the circuitry regulating motor atonia during REM sleep. In REM sleep, neurons of the sublaterodorsal tegmental nucleus (SLD) project to interneurons in the ventromedial medulla (VMM) and spinal cord that in turn inhibit spinal motoneurons. In RBD, degeneration of this circuitry disinhibits phasic motor commands originating from motor generators. The resulting behavior ranges from simple twitches or jerks to complex behavior. Simple behaviors in RBD may originate from cortical, brainstem and spinal cord motor generators, while complex behavior may originate from cortical motor generators, possibly related to dream content in REM sleep. While RBD can occur idiopathically, it is usually comorbid with or a precursor to a synucleinopathy such as Parkinson's disease (PD). RBD can precede the onset of PD by decades, suggesting an underlying pathology that can progressively afflict REM atonia and midbrain dopaminergic centers. The relative recovery of motor function during REM sleep in some of the cases of PD with RBD emphasizes the complexity of motor pathway control during wakefulness and REM sleep.
Collapse
Affiliation(s)
- Michael C Chen
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | | | | | | |
Collapse
|
23
|
D'Amico JM, Yavuz ŞU, Saraçoglu A, Atiş ES, Gorassini MA, Türker KS. Activation properties of trigeminal motoneurons in participants with and without bruxism. J Neurophysiol 2013; 110:2863-72. [PMID: 24068753 DOI: 10.1152/jn.00536.2013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In animals, sodium- and calcium-mediated persistent inward currents (PICs), which produce long-lasting periods of depolarization under conditions of low synaptic drive, can be activated in trigeminal motoneurons following the application of the monoamine serotonin. Here we examined if PICs are activated in human trigeminal motoneurons during voluntary contractions and under physiological levels of monoaminergic drive (e.g., serotonin and norepinephrine) using a paired motor unit analysis technique. We also examined if PICs activated during voluntary contractions are larger in participants who demonstrate involuntary chewing during sleep (bruxism), which is accompanied by periods of high monoaminergic drive. In control participants, during a slowly increasing and then decreasing isometric contraction, the firing rate of an earlier-recruited masseter motor unit, which served as a measure of synaptic input to a later-recruited test unit, was consistently lower during derecruitment of the test unit compared with at recruitment (ΔF = 4.6 ± 1.5 imp/s). The ΔF, therefore, is a measure of the reduction in synaptic input needed to counteract the depolarization from the PIC to provide an indirect estimate of PIC amplitude. The range of ΔF values measured in the bruxer participants during similar voluntary contractions was the same as in controls, suggesting that abnormally high levels of monoaminergic drive are not continually present in the absence of involuntary motor activity. We also observed a consistent "onion skin effect" during the moderately sized contractions (<20% of maximal), whereby the firing rate of higher threshold motor units discharged at slower rates (by 4-7 imp/s) compared with motor units with relatively lower thresholds. The presence of lower firing rates in the more fatigue-prone, higher threshold trigeminal motoneurons, in addition to the activation of PICs, likely facilitates the activation of the masseter muscle during motor activities such as eating, nonnutritive chewing, clenching, and yawning.
Collapse
Affiliation(s)
- Jessica M D'Amico
- Department of Biomedical Engineering, Centre for Neuroscience, University of Alberta, Canada
| | | | | | | | | | | |
Collapse
|
24
|
Schenck CH, Montplaisir JY, Frauscher B, Hogl B, Gagnon JF, Postuma R, Sonka K, Jennum P, Partinen M, Arnulf I, Cochen de Cock V, Dauvilliers Y, Luppi PH, Heidbreder A, Mayer G, Sixel-Döring F, Trenkwalder C, Unger M, Young P, Wing YK, Ferini-Strambi L, Ferri R, Plazzi G, Zucconi M, Inoue Y, Iranzo A, Santamaria J, Bassetti C, Möller JC, Boeve BF, Lai YY, Pavlova M, Saper C, Schmidt P, Siegel JM, Singer C, St Louis E, Videnovic A, Oertel W. Rapid eye movement sleep behavior disorder: devising controlled active treatment studies for symptomatic and neuroprotective therapy--a consensus statement from the International Rapid Eye Movement Sleep Behavior Disorder Study Group. Sleep Med 2013; 14:795-806. [PMID: 23886593 DOI: 10.1016/j.sleep.2013.02.016] [Citation(s) in RCA: 167] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 01/25/2013] [Accepted: 02/22/2013] [Indexed: 10/26/2022]
Abstract
OBJECTIVES We aimed to provide a consensus statement by the International Rapid Eye Movement Sleep Behavior Disorder Study Group (IRBD-SG) on devising controlled active treatment studies in rapid eye movement sleep behavior disorder (RBD) and devising studies of neuroprotection against Parkinson disease (PD) and related neurodegeneration in RBD. METHODS The consensus statement was generated during the fourth IRBD-SG symposium in Marburg, Germany in 2011. The IRBD-SG identified essential methodologic components for a randomized trial in RBD, including potential screening and diagnostic criteria, inclusion and exclusion criteria, primary and secondary outcomes for symptomatic therapy trials (particularly for melatonin and clonazepam), and potential primary and secondary outcomes for eventual trials with disease-modifying and neuroprotective agents. The latter trials are considered urgent, given the high conversion rate from idiopathic RBD (iRBD) to Parkinsonian disorders (i.e., PD, dementia with Lewy bodies [DLB], multiple system atrophy [MSA]). RESULTS Six inclusion criteria were identified for symptomatic therapy and neuroprotective trials: (1) diagnosis of RBD needs to satisfy the International Classification of Sleep Disorders, second edition, (ICSD-2) criteria; (2) minimum frequency of RBD episodes should preferably be ⩾2 times weekly to allow for assessment of change; (3) if the PD-RBD target population is included, it should be in the early stages of PD defined as Hoehn and Yahr stages 1-3 in Off (untreated); (4) iRBD patients with soft neurologic dysfunction and with operational criteria established by the consensus of study investigators; (5) patients with mild cognitive impairment (MCI); and (6) optimally treated comorbid OSA. Twenty-four exclusion criteria were identified. The primary outcome measure for RBD treatment trials was determined to be the Clinical Global Impression (CGI) efficacy index, consisting of a four-point scale with a four-point side-effect scale. Assessment of video-polysomnographic (vPSG) changes holds promise but is costly and needs further elaboration. Secondary outcome measures include sleep diaries; sleepiness scales; PD sleep scale 2 (PDSS-2); serial motor examinations; cognitive indices; mood and anxiety indices; assessment of frequency of falls, gait impairment, and apathy; fatigue severity scale; and actigraphy and customized bed alarm systems. Consensus also was established for evaluating the clinical and vPSG aspects of RBD. End points for neuroprotective trials in RBD, taking lessons from research in PD, should be focused on the ultimate goal of determining the performance of disease-modifying agents. To date no compound with convincing evidence of disease-modifying or neuroprotective efficacy has been identified in PD. Nevertheless, iRBD patients are considered ideal candidates for neuroprotective studies. CONCLUSIONS The IRBD-SG provides an important platform for developing multinational collaborative studies on RBD such as on environmental risk factors for iRBD, as recently reported in a peer-reviewed journal article, and on controlled active treatment studies for symptomatic and neuroprotective therapy that emerged during the 2011 consensus conference in Marburg, Germany, as described in our report.
Collapse
Affiliation(s)
- C H Schenck
- Minnesota Regional Sleep Disorders Center, Department of Psychiatry, Hennepin County Medical Center and University of Minnesota Medical School, Minneapolis, MN, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Ramaligam V, Chen MC, Saper CB, Lu J. Perspectives on the rapid eye movement sleep switch in rapid eye movement sleep behavior disorder. Sleep Med 2013; 14:707-13. [PMID: 23768838 DOI: 10.1016/j.sleep.2013.03.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 02/25/2013] [Accepted: 03/25/2013] [Indexed: 01/10/2023]
Abstract
Rapid eye movement (REM) sleep in mammals is associated with wakelike cortical and hippocampal activation and concurrent postural muscle atonia. Research during the past 5 decades has revealed the details of the neural circuitry regulating REM sleep and muscle atonia during this state. REM-active glutamatergic neurons in the sublaterodorsal nucleus (SLD) of the dorsal pons are critical for generation for REM sleep atonia. Descending projections from SLD glutamatergic neurons activate inhibitory premotor neurons in the ventromedial medulla (VMM) and in the spinal cord to antagonize the glutamatergic supraspinal inputs on the motor neurons during REM sleep. REM sleep behavior disorder (RBD) consists of simple behaviors (i.e., twitching, jerking) and complex behaviors (i.e., defensive behavior, talking). Animal research has lead to the hypothesis that complex behaviors in RBD are due to SLD pathology, while simple behaviors of RBD may be due to less severe SLD pathology or dysfunction of the VMM, ventral pons, or spinal cord.
Collapse
Affiliation(s)
- Vetrivelan Ramaligam
- Department of Neurology and Division of Sleep Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | | | | | | |
Collapse
|
26
|
Identification and characterization of a sleep-active cell group in the rostral medullary brainstem. J Neurosci 2013; 32:17970-6. [PMID: 23238713 DOI: 10.1523/jneurosci.0620-12.2012] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Early transection and stimulation studies suggested the existence of sleep-promoting circuitry in the medullary brainstem, yet the location and identity of the neurons comprising this putative hypnogenic circuitry remains unresolved. In the present study, we sought to uncover the location and identity of medullary neurons that might contribute to the regulation of sleep. Here we show the following in rats: (1) a delimited node of medullary neurons located lateral and dorsal to the facial nerve-a region we termed the parafacial zone (PZ)-project to the wake-promoting medial parabrachial nucleus; (2) PZ neurons express c-Fos after sleep but not after wakefulness and hence are sleep active; and (3) cell-body-specific lesions of the PZ result in large and sustained increases (50%) in daily wakefulness at the expense of slow-wave sleep (SWS). Using transgenic reporter mice [vesicular GABA/glycine transporter (Vgat)-GFP], we then show that >50% of PZ sleep-active neurons are inhibitory (GABAergic/glycinergic, VGAT-positive) in nature. Finally, we used a Cre-expressing adeno-associated viral vector and conditional Vgat(lox/lox) mice to selectively and genetically disrupt GABA/glycinergic neurotransmission from PZ neurons. Disruption of PZ GABAergic/glycinergic neurotransmission resulted in sustained increases (40%) in daily wakefulness at the expense of both SWS and rapid eye movement sleep. These results together reveal the location and neurochemical identity of a delimited node of sleep-active neurons within the rostral medullary brainstem.
Collapse
|
27
|
Kato T, Nakamura N, Masuda Y, Yoshida A, Morimoto T, Yamamura K, Yamashita S, Sato F. Phasic bursts of the antagonistic jaw muscles during REM sleep mimic a coordinated motor pattern during mastication. J Appl Physiol (1985) 2012. [PMID: 23195628 DOI: 10.1152/japplphysiol.00895.2012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Sleep-related movement disorders are characterized by the specific phenotypes of muscle activities and movements during sleep. However, the state-specific characteristics of muscle bursts and movement during sleep are poorly understood. In this study, jaw-closing and -opening muscle electromyographic (EMG) activities and jaw movements were quantified to characterize phenotypes of motor patterns during sleep in freely moving and head-restrained guinea pigs. During non-rapid eye movement (NREM) sleep, both muscles were irregularly activated in terms of duration, activity, and intervals. During rapid eye movement (REM) sleep, clusters of phasic bursts occurred in the two muscles. Compared with NREM sleep, burst duration, activity, and intervals were less variable during REM sleep for both muscles. Although burst activity was lower during the two sleep states than during chewing, burst duration and intervals during REM sleep were distributed within a similar range to those during chewing. A trigger-averaged analysis of muscle bursts revealed that the temporal association between the bursts of the jaw-closing and -opening muscles during REM sleep was analogous to the temporal association during natural chewing. The burst characteristics of the two muscles reflected irregular patterns of jaw movements during NREM sleep and repetitive alternating bilateral movements during REM sleep. The distinct patterns of jaw muscle bursts and movements reflect state-specific regulations of the jaw motor system during sleep states. Phasic activations in the antagonistic jaw muscles during REM sleep are regulated, at least in part, by the neural networks involving masticatory pattern generation, demonstrating that waking jaw motor patterns are replayed during sleep periods.
Collapse
Affiliation(s)
- T Kato
- Osaka University Graduate School of Dentistry, Department of Oral Anatomy and Neurobiology, Osaka, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Olarte-Sánchez CM, Valencia Torres L, Body S, Cassaday HJ, Bradshaw CM, Szabadi E. Effect of orexin-B-saporin-induced lesions of the lateral hypothalamus on performance on a progressive ratio schedule. J Psychopharmacol 2012; 26:871-86. [PMID: 21926428 DOI: 10.1177/0269881111409607] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
It has been suggested that a sub-population of orexinergic neurones whose somata lie in the lateral hypothalamic area (LHA) play an important role in regulating the reinforcing value of both food and drugs. This experiment examined the effect of disruption of orexinergic mechanisms in the LHA on performance on the progressive ratio schedule of reinforcement, in which the response requirement increases progressively for successive reinforcers. The data were analysed using a mathematical model which yields a quantitative index of reinforcer value and dissociates effects of interventions on motor and motivational processes. Rats were trained under a progressive ratio schedule using food-pellet reinforcement. They received bilateral injections of conjugated orexin-B-saporin (OxSap) into the LHA or sham lesions. Training continued for a further 40 sessions after surgery. Equations were fitted to the response rate data from each rat, and the parameters of the model were derived for successive blocks of 10 sessions. The OxSap lesion reduced the number of orexin-containing neurones in the LHA by approximately 50% compared with the sham-lesioned group. The parameter expressing the incentive value of the reinforcer was not significantly altered by the lesion. However, the parameter related to the maximum response rate was significantly affected, suggesting that motor capacity was diminished in the OxSap-lesioned group. The results indicate that OxSap lesions of the LHA disrupted food-reinforced responding on the progressive ratio schedule. It is suggested that this disruption was brought about by a change in non-motivational (motor) processes.
Collapse
Affiliation(s)
- C M Olarte-Sánchez
- Psychopharmacology Section, Division of Psychiatry, University of Nottingham, Nottingham, UK
| | | | | | | | | | | |
Collapse
|
29
|
Activation of inactivation process initiates rapid eye movement sleep. Prog Neurobiol 2012; 97:259-76. [PMID: 22521402 DOI: 10.1016/j.pneurobio.2012.04.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Revised: 04/01/2012] [Accepted: 04/02/2012] [Indexed: 02/07/2023]
Abstract
Interactions among REM-ON and REM-OFF neurons form the basic scaffold for rapid eye movement sleep (REMS) regulation; however, precise mechanism of their activation and cessation, respectively, was unclear. Locus coeruleus (LC) noradrenalin (NA)-ergic neurons are REM-OFF type and receive GABA-ergic inputs among others. GABA acts postsynaptically on the NA-ergic REM-OFF neurons in the LC and presynaptically on the latter's projection terminals and modulates NA-release on the REM-ON neurons. Normally during wakefulness and non-REMS continuous release of NA from the REM-OFF neurons, which however, is reduced during the latter phase, inhibits the REM-ON neurons and prevents REMS. At this stage GABA from substantia nigra pars reticulate acting presynaptically on NA-ergic terminals on REM-ON neurons withdraws NA-release causing the REM-ON neurons to escape inhibition and being active, may be even momentarily. A working-model showing neurochemical-map explaining activation of inactivation process, showing contribution of GABA-ergic presynaptic inhibition in withdrawing NA-release and dis-inhibition induced activation of REM-ON neurons, which in turn activates other GABA-ergic neurons and shutting-off REM-OFF neurons for the initiation of REMS-generation has been explained. Our model satisfactorily explains yet unexplained puzzles (i) why normally REMS does not appear during waking, rather, appears following non-REMS; (ii) why cessation of LC-NA-ergic-REM-OFF neurons is essential for REMS-generation; (iii) factor(s) which does not allow cessation of REM-OFF neurons causes REMS-loss; (iv) the association of changes in levels of GABA and NA in the brain during REMS and its deprivation and associated symptoms; v) why often dreams are associated with REMS.
Collapse
|
30
|
Brainstem and spinal cord circuitry regulating REM sleep and muscle atonia. PLoS One 2011; 6:e24998. [PMID: 22043278 PMCID: PMC3197189 DOI: 10.1371/journal.pone.0024998] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Accepted: 08/24/2011] [Indexed: 11/19/2022] Open
Abstract
Background Previous work has suggested, but not demonstrated directly, a critical role for both glutamatergic and GABAergic neurons of the pontine tegmentum in the regulation of rapid eye movement (REM) sleep. Methodology/Principal Findings To determine the in vivo roles of these fast-acting neurotransmitters in putative REM pontine circuits, we injected an adeno-associated viral vector expressing Cre recombinase (AAV-Cre) into mice harboring lox-P modified alleles of either the vesicular glutamate transporter 2 (VGLUT2) or vesicular GABA-glycine transporter (VGAT) genes. Our results show that glutamatergic neurons of the sublaterodorsal nucleus (SLD) and glycinergic/GABAergic interneurons of the spinal ventral horn contribute to REM atonia, whereas a separate population of glutamatergic neurons in the caudal laterodorsal tegmental nucleus (cLDT) and SLD are important for REM sleep generation. Our results further suggest that presynaptic GABA release in the cLDT-SLD, ventrolateral periaqueductal gray matter (vlPAG) and lateral pontine tegmentum (LPT) are not critically involved in REM sleep control. Conclusions/Significance These findings reveal the critical and divergent in vivo role of pontine glutamate and spinal cord GABA/glycine in the regulation of REM sleep and atonia and suggest a possible etiological basis for REM sleep behavior disorder (RBD).
Collapse
|
31
|
Sánchez-López A, Escudero M. Tonic and phasic components of eye movements during REM sleep in the rat. Eur J Neurosci 2011; 33:2129-38. [DOI: 10.1111/j.1460-9568.2011.07702.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
32
|
LAZARUS M, SAPER CB, FULLER PM. Genetic dissection of neural circuitry regulating behavioral state using conditional transgenics. Sleep Biol Rhythms 2011. [DOI: 10.1111/j.1479-8425.2010.00469.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|