1
|
Di YP, Kuhn JM, Mangoni ML. Lung antimicrobial proteins and peptides: from host defense to therapeutic strategies. Physiol Rev 2024; 104:1643-1677. [PMID: 39052018 PMCID: PMC11495187 DOI: 10.1152/physrev.00039.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 06/11/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024] Open
Abstract
Representing severe morbidity and mortality globally, respiratory infections associated with chronic respiratory diseases, including complicated pneumonia, asthma, interstitial lung disease, and chronic obstructive pulmonary disease, are a major public health concern. Lung health and the prevention of pulmonary disease rely on the mechanisms of airway surface fluid secretion, mucociliary clearance, and adequate immune response to eradicate inhaled pathogens and particulate matter from the environment. The antimicrobial proteins and peptides contribute to maintaining an antimicrobial milieu in human lungs to eliminate pathogens and prevent them from causing pulmonary diseases. The predominant antimicrobial molecules of the lung environment include human α- and β-defensins and cathelicidins, among numerous other host defense molecules with antimicrobial and antibiofilm activity such as PLUNC (palate, lung, and nasal epithelium clone) family proteins, elafin, collectins, lactoferrin, lysozymes, mucins, secretory leukocyte proteinase inhibitor, surfactant proteins SP-A and SP-D, and RNases. It has been demonstrated that changes in antimicrobial molecule expression levels are associated with regulating inflammation, potentiating exacerbations, pathological changes, and modifications in chronic lung disease severity. Antimicrobial molecules also display roles in both anticancer and tumorigenic effects. Lung antimicrobial proteins and peptides are promising alternative therapeutics for treating and preventing multidrug-resistant bacterial infections and anticancer therapies.
Collapse
Affiliation(s)
- Yuanpu Peter Di
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Jenna Marie Kuhn
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Maria Luisa Mangoni
- Department of Biochemical Sciences, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
2
|
Peña FJ, Martín-Cano FE, Becerro-Rey L, Ortega-Ferrusola C, Gaitskell-Phillips G, da Silva-Álvarez E, Gil MC. Proteomics is advancing the understanding of stallion sperm biology. Proteomics 2024; 24:e2300522. [PMID: 38807556 DOI: 10.1002/pmic.202300522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/17/2024] [Accepted: 05/22/2024] [Indexed: 05/30/2024]
Abstract
The mammalian ejaculate is very well suited to proteomics studies. As such, research concerning sperm proteomics is offering a huge amount of new information on the biology of spermatozoa. Among domestic animals, horses represent a species of special interest, in which reproductive technologies and a sizeable market of genetic material have grown exponentially in the last decade. Studies using proteomic approaches have been conducted in recent years, showing that proteomics is a potent tool to dig into the biology of the stallion spermatozoa. The aim of this review is to present an overview of the research conducted, and how these studies have improved our knowledge of stallion sperm biology. The main outcomes of the research conducted so far have been an improved knowledge of metabolism, and its importance in sperm functions, the impact of different technologies on the sperm proteome, and the identification of potential biomarkers. Moreover, proteomics of seminal plasma and phosphoproteomics are identified as areas of major interest.
Collapse
Affiliation(s)
- Fernando J Peña
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, Universidad de Extremadura, Cáceres, Spain
| | - Francisco Eduardo Martín-Cano
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, Universidad de Extremadura, Cáceres, Spain
| | - Laura Becerro-Rey
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, Universidad de Extremadura, Cáceres, Spain
| | - Cristina Ortega-Ferrusola
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, Universidad de Extremadura, Cáceres, Spain
| | - Gemma Gaitskell-Phillips
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, Universidad de Extremadura, Cáceres, Spain
| | - Eva da Silva-Álvarez
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, Universidad de Extremadura, Cáceres, Spain
| | - María Cruz Gil
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, Universidad de Extremadura, Cáceres, Spain
| |
Collapse
|
3
|
Abdelhamid AG, Yousef AE. Combating Bacterial Biofilms: Current and Emerging Antibiofilm Strategies for Treating Persistent Infections. Antibiotics (Basel) 2023; 12:1005. [PMID: 37370324 DOI: 10.3390/antibiotics12061005] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 05/29/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
Biofilms are intricate multicellular structures created by microorganisms on living (biotic) or nonliving (abiotic) surfaces. Medically, biofilms often lead to persistent infections, increased antibiotic resistance, and recurrence of infections. In this review, we highlighted the clinical problem associated with biofilm infections and focused on current and emerging antibiofilm strategies. These strategies are often directed at disrupting quorum sensing, which is crucial for biofilm formation, preventing bacterial adhesion to surfaces, impeding bacterial aggregation in viscous mucus layers, degrading the extracellular polymeric matrix, and developing nanoparticle-based antimicrobial drug complexes which target persistent cells within the biofilm core. It is important to acknowledge, however, that the use of antibiofilm agents faces obstacles, such as limited effectiveness in vivo, potential cytotoxicity to host cells, and propensity to elicit resistance in targeted biofilm-forming microbes. Emerging next generation antibiofilm strategies, which rely on multipronged approaches, were highlighted, and these benefit from current advances in nanotechnology, synthetic biology, and antimicrobial drug discovery. The assessment of current antibiofilm mitigation approaches, as presented here, could guide future initiatives toward innovative antibiofilm therapeutic strategies. Enhancing the efficacy and specificity of some emerging antibiofilm strategies via careful investigations, under conditions that closely mimic biofilm characteristics within the human body, could bridge the gap between laboratory research and practical application.
Collapse
Affiliation(s)
- Ahmed G Abdelhamid
- Department of Food Science and Technology, The Ohio State University, 2015 Fyffe Court, Columbus, OH 43210, USA
- Botany and Microbiology Department, Faculty of Science, Benha University, Benha 13518, Egypt
| | - Ahmed E Yousef
- Department of Food Science and Technology, The Ohio State University, 2015 Fyffe Court, Columbus, OH 43210, USA
- Department of Microbiology, The Ohio State University, 105 Biological Sciences Building, 484 West 12th Avenue, Columbus, OH 43210, USA
| |
Collapse
|
4
|
Hall-Stoodley L, McCoy KS. Biofilm aggregates and the host airway-microbial interface. Front Cell Infect Microbiol 2022; 12:969326. [PMID: 36081767 PMCID: PMC9445362 DOI: 10.3389/fcimb.2022.969326] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
Biofilms are multicellular microbial aggregates that can be associated with host mucosal epithelia in the airway, gut, and genitourinary tract. The host environment plays a critical role in the establishment of these microbial communities in both health and disease. These host mucosal microenvironments however are distinct histologically, functionally, and regarding nutrient availability. This review discusses the specific mucosal epithelial microenvironments lining the airway, focusing on: i) biofilms in the human respiratory tract and the unique airway microenvironments that make it exquisitely suited to defend against infection, and ii) how airway pathophysiology and dysfunctional barrier/clearance mechanisms due to genetic mutations, damage, and inflammation contribute to biofilm infections. The host cellular responses to infection that contribute to resolution or exacerbation, and insights about evaluating and therapeutically targeting airway-associated biofilm infections are briefly discussed. Since so many studies have focused on Pseudomonas aeruginosa in the context of cystic fibrosis (CF) or on Haemophilus influenzae in the context of upper and lower respiratory diseases, these bacteria are used as examples. However, there are notable differences in diseased airway microenvironments and the unique pathophysiology specific to the bacterial pathogens themselves.
Collapse
Affiliation(s)
- Luanne Hall-Stoodley
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine, Columbus, OH, United States
- *Correspondence: Luanne Hall-Stoodley,
| | - Karen S. McCoy
- Division of Pulmonary Medicine, Nationwide Children’s Hospital, Columbus, OH, United States
| |
Collapse
|
5
|
Jo A, Choi TG, Han JY, Tabor MH, Kolliputi N, Lockey RF, Cho SH. Age-Related Increase of Collagen/Fibrin Deposition and High PAI-1 Production in Human Nasal Polyps. Front Pharmacol 2022; 13:845324. [PMID: 35712705 PMCID: PMC9193225 DOI: 10.3389/fphar.2022.845324] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 05/12/2022] [Indexed: 11/13/2022] Open
Abstract
Objective: Our previous studies showed an age-related increased prevalence of nasal polyps (NP) and reduced production of S100A8/9 in elderly patients with chronic rhinosinusitis with NP (CRSwNP). In this study, we investigated an unbiased age-related gene expression profile in CRSwNP subjects and healthy controls, and further identified the differences in their tissue remodeling. Methods: Microarrays using NP and uncinate tissues from health controls (elderly, age ≥65 vs. non-elderly, age 18-49) were performed, and differentially regulated genes were analyzed. Quantitative real-time PCR (qPCR), Immunostaining, Periodic acid-Schiff (PAS), trichrome staining, Western blot, and ELISA were performed for further investigation. Results: Microarrays identified differentially expressed genes according to disease and age; 278 in NP vs. controls, 75 in non-elderly NP vs. non-elderly controls, and 32 in elderly NP vs. elderly controls. qPCR confirmed that the PLAT gene was downregulated and the SERPINB2 gene upregulated in NP vs. controls. The serous glandular cell-derived antimicrobial protein/peptide-related genes such as BPIFB3, BPIFB2, LPO, and MUC7 were remarkably reduced in NP, regardless of age. SERPINE1 gene (plasminogen activator inhibitor-1, PAI-1) expression was significantly increased in elderly NP versus elderly controls. IHC and western blot confirmed significantly decreased production of MUC7 and LPO in NP versus controls. There was a trend of age-related reduction of submucosal gland cells in normal controls. Trichrome and immunofluorescence staining demonstrated an age-related increase of collagen and fibrin deposition in NP, consistent with increased PAI-1 production. Conclusion: This study demonstrated age-related differential glandular remodeling patterns and fibrosis in NP and normal controls. PAI-1 expression was significantly increased in elderly NP versus elderly controls, suggesting PAI-1 as a potential treatment target in elderly NP.
Collapse
Affiliation(s)
- Ara Jo
- Division of Allergy-Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Tae Gyu Choi
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, South Korea
| | - Jung Yeon Han
- Division of Allergy-Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Mark H. Tabor
- Department of Otolaryngology-Head and Neck Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Narasaiah Kolliputi
- Division of Allergy-Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Richard F. Lockey
- Division of Allergy-Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Seong H. Cho
- Division of Allergy-Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
- Division of Allergy-Immunology, James A. Haley Veterans’ Hospital, Tampa, FL, United States
| |
Collapse
|
6
|
Wu T, Goriounova AS, Worthington EN, Wrennall JA, Ghosh A, Ahmad S, Flori Sassano M, Tarran R. SPLUNC1 is a negative regulator of the Orai1 Ca 2+ channel. Physiol Rep 2022; 10:e15306. [PMID: 35581745 PMCID: PMC9114653 DOI: 10.14814/phy2.15306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/22/2022] [Accepted: 04/27/2022] [Indexed: 06/15/2023] Open
Abstract
Orai1 is a ubiquitously-expressed plasma membrane Ca2+ channel that is involved in store-operated Ca2+ entry (SOCE): a fundamental biological process that regulates gene expression, the onset of inflammation, secretion, and the contraction of airway smooth muscle (ASM). During SOCE, Ca2+ leaves the endoplasmic reticulum, which then stimulates a second, amplifying wave of Ca2+ influx through Orai1 into the cytoplasm. Short Palate LUng and Nasal epithelial Clone 1 (SPLUNC1; gene name BPIFA1) is a multi-functional, innate defense protein that is highly abundant in the lung. We have previously reported that SPLUNC1 was secreted from epithelia, where it bound to and inhibited Orai1, leading to reduced SOCE and ASM relaxation. However, the underlying mechanism of action is unknown. Here, we probed the SPLUNC1-Orai1 interactions in ASM and HEK293T cells using biochemical and imaging techniques. We observed that SPLUNC1 caused a conformational change in Orai1, as measured using Forster resonance energy transfer (FRET). SPLUNC1 binding also led to Nedd4-2 dependent ubiquitination of Orai1. Moreover, SPLUNC1 internalized Orai1 to lysosomes, leading to Orai1 degradation. Thus, we conclude that SPLUNC1 is an allosteric regulator of Orai1. Our data indicate that SPLUNC1-mediated Orai1 inhibition could be utilized as a therapeutic strategy to reduce SOCE.
Collapse
Affiliation(s)
- Tongde Wu
- Department of Cell Biology & PhysiologyThe University of North Carolina at Chapel HillNorth Carolina27599USA
| | - Alexandra S. Goriounova
- Department of PharmacologyThe University of North Carolina at Chapel HillNorth Carolina27599USA
| | - Erin N. Worthington
- Divison of PulmonologyDepartment of PediatricsThe University of North Carolina at Chapel HillNorth Carolina27599USA
- Division of Pulmonology, Department of PediatricsCarilion Clinic and Virginia Tech Carilion School of MedicineRoanokeVirginia24016USA
| | - Joe A. Wrennall
- Department of Cell Biology & PhysiologyThe University of North Carolina at Chapel HillNorth Carolina27599USA
| | - Arunava Ghosh
- Department of Cell Biology & PhysiologyThe University of North Carolina at Chapel HillNorth Carolina27599USA
| | - Saira Ahmad
- Department of Cell Biology & PhysiologyThe University of North Carolina at Chapel HillNorth Carolina27599USA
| | - M. Flori Sassano
- Department of Cell Biology & PhysiologyThe University of North Carolina at Chapel HillNorth Carolina27599USA
| | - Robert Tarran
- Department of Cell Biology & PhysiologyThe University of North Carolina at Chapel HillNorth Carolina27599USA
| |
Collapse
|
7
|
Bacterial biofilms and their resistance mechanisms: a brief look at treatment with natural agents. Folia Microbiol (Praha) 2022; 67:535-554. [DOI: 10.1007/s12223-022-00955-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 01/29/2022] [Indexed: 12/14/2022]
|
8
|
Tong X, Li J, Wei R, Gong L, Ji X, He T, Wang R. RW-BP100-4D, a Promising Antimicrobial Candidate With Broad-Spectrum Bactericidal Activity. Front Microbiol 2022; 12:815980. [PMID: 35145500 PMCID: PMC8822125 DOI: 10.3389/fmicb.2021.815980] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 12/31/2021] [Indexed: 11/29/2022] Open
Abstract
With the rapid emergence and dissemination of antimicrobial resistance (AMR) genes in bacteria from animal, animal-derived food and human clinic, it is of great significance to develop new approaches to combat the multidrug-resistant bacteria. This study presented a short linear antimicrobial peptide RW-BP100-4D, which was derived from RW-BP100 (RRLFRRILRWL-NH2) by transforming the N-terminal 4th amino acid from L- to D-enantiomer. This modification remarkably reduced the peptide cytotoxicity to mammalian cells, as indicated by hemolytic and cytotoxicity assays. Meanwhile, the antimicrobial activity of RW-BP100-4D was improved against a more variety of Gram-positive and Gram-negative bacteria (sensitive and resistant) as well as fungi. Also, RW-BP100-4D showed strong in vitro anti-biofilm activity in a concentration-dependent manner, including inhibition of the biofilm-formation and dispersion of the mature biofilms of Staphylococcus aureus. RW-BP100-4D could be efficiently uptaken by bovine mammary epithelial cells (MAC-T) cells to eliminate the intracellular S. aureus ATCC29213 and Salmonella enterica ATCC13076. Moreover, RW-BP100-4D was highly effective in food disinfection of multiple bacterial contamination (including S. aureus, Listeria monocytogenesis, Escherichia coli O157: H7, Campylobacter jejuni, S. enterica, and Shewanella putrefaction, 3.61 ± 0.063 log reduction) on chicken meat, and could kill 99.99% of the methicillin-resistant Staphylococcus aureus (MRSA) strain in the mouse skin infection model. In summary, RW-BP100-4D is a promising antimicrobial candidate for application on food disinfection and local infection treatment. However, the protease-sensitivity of RW-BP100-4D and toxic effect at higher doses reduced the therapeutic effect of the candidate peptide in vivo and should be improved in the future studies.
Collapse
Affiliation(s)
- Xingqi Tong
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Jun Li
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Ruicheng Wei
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Lan Gong
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Xing Ji
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Tao He
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- *Correspondence: Tao He,
| | - Ran Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Ran Wang,
| |
Collapse
|
9
|
Khanal S, Webster M, Niu N, Zielonka J, Nunez M, Chupp G, Slade MD, Cohn L, Sauler M, Gomez JL, Tarran R, Sharma L, Dela Cruz CS, Egan M, Laguna T, Britto CJ. SPLUNC1: a novel marker of cystic fibrosis exacerbations. Eur Respir J 2021; 58:13993003.00507-2020. [PMID: 33958427 DOI: 10.1183/13993003.00507-2020] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 03/29/2021] [Indexed: 11/05/2022]
Abstract
Acute pulmonary Exacerbations (AE) are episodes of clinical worsening in cystic fibrosis (CF), often precipitated by infection. Timely detection is critical to minimise morbidity and lung function declines associated with acute inflammation during AE. Based on our previous observations that airway protein Short Palate Lung Nasal epithelium Clone 1 (SPLUNC1) is regulated by inflammatory signals, we investigated the use of SPLUNC1 fluctuations to diagnose and predict AE in CF.We enrolled CF participants from two independent cohorts to measure AE markers of inflammation in sputum and recorded clinical outcomes for a 1-year follow-up period.SPLUNC1 levels were high in healthy controls (n=9, 10.7 μg mL-1), and significantly decreased in CF participants without AE (n=30, 5.7 μg mL-1, p=0.016). SPLUNC1 levels were 71.9% lower during AE (n=14, 1.6 μg mL-1, p=0.0034) regardless of age, sex, CF-causing mutation, or microbiology findings. Cytokines Il-1β and TNFα were also increased in AE, whereas lung function did not consistently decrease. Stable CF participants with lower SPLUNC1 levels were much more likely to have an AE at 60 days (HR: 11.49, Standard Error: 0.83, p=0.0033). Low-SPLUNC1 stable participants remained at higher AE risk even one year after sputum collection (HR: 3.21, Standard Error: 0.47, p=0.0125). SPLUNC1 was downregulated by inflammatory cytokines and proteases increased in sputum during AE.In acute CF care, low SPLUNC1 levels could support a decision to increase airway clearance or to initiate pharmacological interventions. In asymptomatic, stable patients, low SPLUNC1 levels could inform changes in clinical management to improve long-term disease control and clinical outcomes in CF.
Collapse
Affiliation(s)
- Sara Khanal
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Megan Webster
- Department of Cell Biology & Physiology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Naiqian Niu
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Jana Zielonka
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Myra Nunez
- Division of Pediatric Respiratory Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Geoffrey Chupp
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Martin D Slade
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Lauren Cohn
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Maor Sauler
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Jose L Gomez
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Robert Tarran
- Department of Cell Biology & Physiology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Lokesh Sharma
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Charles S Dela Cruz
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Marie Egan
- Division of Pediatric Pulmonology, Allergy, Immunology, and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Theresa Laguna
- Division of Pediatric Respiratory Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Clemente J Britto
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
10
|
Wang A, Zhang Q, Wang Y, Li X, Li K, Li Y, Wang J, Li L, Chen H. Inhibition of Gabrp reduces the differentiation of airway epithelial progenitor cells into goblet cells. Exp Ther Med 2021; 22:720. [PMID: 34007329 PMCID: PMC8120639 DOI: 10.3892/etm.2021.10152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 03/12/2021] [Indexed: 12/05/2022] Open
Abstract
Bronchial asthma is an intractable pulmonary disease that affects millions of individuals worldwide, with the overproduction of mucus contributing to high morbidity and mortality. Gamma-aminobutyric acid (GABA) is associated with goblet cell hyperplasia in the lungs of primate models and Club cells serve as airway epithelial progenitor cells that may differentiate into goblet and ciliated cells. In the present study, it was investigated whether the GABAA receptor pi (Gabrp) is essential for Club cell proliferation and differentiation in mice. Validation of microarray analysis results by reverse transcription-quantitative PCR (RT-qPCR) demonstrated that Gabrp is highly expressed in mouse Club cells. Predominant expression of Gabrp in mouse Club cells was further confirmed based on naphthalene-induced Club cell injury in mice, with organoid cultures indicating significant reductions in the organoid-forming ability of mouse Club cells in the presence of Gabrp antagonist bicuculline methiodide (BMI). Furthermore, the RT-qPCR results indicated that the mRNA levels of chloride channel accessory 3, pseudogene (Clca3p), mucin (Muc)5Ac and Muc5B were significantly decreased in BMI organoid cultures. These results suggested that blocking GABA signaling through Gabrp inhibits mouse Club cell proliferation, as well as differentiation into goblet cells. Therefore, targeting GABA/Gabrp signaling may represent a promising strategy for treating goblet cell hyperplasia in bronchial asthma.
Collapse
Affiliation(s)
- An Wang
- Department of Basic Medicine, Haihe Clinical College of Tianjin Medical University, Tianjin 300350, P.R. China
| | - Qiuyang Zhang
- Key Research Laboratory for Infectious Disease Prevention for State Administration of Traditional Chinese Medicine, Tianjin Institute of Respiratory Diseases, Tianjin 300350, P.R. China
| | - Yongmei Wang
- Department of Pathology, Tianjin University Haihe Hospital, Tianjin 300350, P.R. China
| | - Xue Li
- Key Research Laboratory for Infectious Disease Prevention for State Administration of Traditional Chinese Medicine, Tianjin Institute of Respiratory Diseases, Tianjin 300350, P.R. China
| | - Kuan Li
- Key Research Laboratory for Infectious Disease Prevention for State Administration of Traditional Chinese Medicine, Tianjin Institute of Respiratory Diseases, Tianjin 300350, P.R. China
| | - Yu Li
- Key Research Laboratory for Infectious Disease Prevention for State Administration of Traditional Chinese Medicine, Tianjin Institute of Respiratory Diseases, Tianjin 300350, P.R. China
| | - Jianhai Wang
- Key Research Laboratory for Infectious Disease Prevention for State Administration of Traditional Chinese Medicine, Tianjin Institute of Respiratory Diseases, Tianjin 300350, P.R. China
| | - Li Li
- Department of Respiratory Medicine, Tianjin University Haihe Hospital, Tianjin 300350, P.R. China
| | - Huaiyong Chen
- Department of Basic Medicine, Haihe Clinical College of Tianjin Medical University, Tianjin 300350, P.R. China.,Key Research Laboratory for Infectious Disease Prevention for State Administration of Traditional Chinese Medicine, Tianjin Institute of Respiratory Diseases, Tianjin 300350, P.R. China.,Tianjin Key Laboratory of Lung Regenerative Medicine, Tianjin 300350, P.R. China
| |
Collapse
|
11
|
Liu Q, Wang Z, Zhang W. The Multifunctional Roles of Short Palate, Lung, and Nasal Epithelium Clone 1 in Regulating Airway Surface Liquid and Participating in Airway Host Defense. J Interferon Cytokine Res 2021; 41:139-148. [PMID: 33885339 DOI: 10.1089/jir.2020.0141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Short palate, lung, and nasal epithelium clone 1 (SPLUNC1) is a kind of secretory protein, and gets expressed abundantly in normal respiratory epithelium of humans. As a natural immune molecule, SPLUNC1 is proved to be involved in inflammatory response and airway host defense. This review focuses on summarizing and discussing the role of SPLUNC1 in regulating airway surface liquid (ASL) and participating in airway host defense. PubMed and MEDLINE were used for searching and identifying the data in this review. The domain of bactericidal/permeability-increasing protein in SPLUNC1 and the α-helix, α4, are essential for SPLUNC1 to exert biological activities. As a natural innate immune molecule, SPLUNC1 plays a significant role in inflammatory response and airway host defense. Its special expression patterns are not only observed in physiological conditions, but also in some respiratory diseases. The mechanisms of SPLUNC1 in airway host defense include modulating ASL volume, acting as a surfactant protein, inhibiting biofilm formation, as well as regulating ASL compositions, such as LL-37, mucins, Neutrophil elastase, and inflammatory cytokines. Besides, potential correlations are found among these different mechanisms, especially among different ASL compositions, which should be further explored in more systematical frameworks. In this review, we summarize the structural characteristics and expression patterns of SPLUNC1 briefly, and mainly discuss the mechanisms of SPLUNC1 exerted in host defense, aiming to provide a theoretical basis and a novel target for future studies and clinical treatments.
Collapse
Affiliation(s)
- Qingluan Liu
- Department of Medical Laboratory Science, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhicheng Wang
- Department of Medical Laboratory Science, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wenling Zhang
- Department of Medical Laboratory Science, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
12
|
Gaitskell-Phillips G, Martín-Cano FE, Ortiz-Rodríguez JM, Silva-Rodríguez A, Gil MC, Ortega-Ferrusola C, Peña FJ. Differences in the proteome of stallion spermatozoa explain stallion-to-stallion variability in sperm quality post-thaw†. Biol Reprod 2021; 104:1097-1113. [PMID: 33438027 DOI: 10.1093/biolre/ioab003] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/02/2020] [Accepted: 01/05/2021] [Indexed: 02/06/2023] Open
Abstract
The identification of stallions and or ejaculates that will provide commercially acceptable quality post-thaw before cryopreservation is of great interest, avoiding wasting time and resources freezing ejaculates that will not achieve sufficient quality to be marketed. Our hypothesis was that after bioinformatic analysis, the study of the stallion sperm proteome can provide discriminant variables able to predict the post-thaw quality of the ejaculate. At least three ejaculates from 10 different stallions were frozen following a split sample design. Half of the ejaculate was analyzed as a fresh aliquot and the other half was frozen and then analyzed as a frozen-thawed aliquot. Computer-assisted sperm analysis and flow cytometry were used to analyze sperm quality. Detailed proteomic analysis was performed on fresh and frozen and thawed aliquots, and bioinformatic analysis was used to identify discriminant variables in fresh samples able to predict the outcome of cryopreservation. Those with a fold change > 3, a P = 8.2e-04, and a q = 0.074 (equivalent to False discovery rate (FDR)) were selected, and the following proteins were identified in fresh samples as discriminant variables of good motility post-thaw: F6YTG8, K9K273, A0A3Q2I7V9, F7CE45, F6YU15, and F6SKR3. Other discriminant variables were also identified as predictors of good mitochondrial membrane potential and viability post-thaw. We concluded that proteomic approaches are a powerful tool to improve current sperm biotechnologies.
Collapse
Affiliation(s)
- Gemma Gaitskell-Phillips
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| | - Francisco E Martín-Cano
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| | - José M Ortiz-Rodríguez
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| | - Antonio Silva-Rodríguez
- Facility of Innovation and Analysis in Animal Source Foodstuffs, University of Extremadura, Cáceres, Spain
| | - Maria C Gil
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| | - Cristina Ortega-Ferrusola
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| | - Fernando J Peña
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| |
Collapse
|
13
|
Wang X, Wang M, Chen S, Wei B, Gao Y, Huang L, Liu C, Huang T, Yu M, Zhao SH, Li X. Ammonia exposure causes lung injuries and disturbs pulmonary circadian clock gene network in a pig study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 205:111050. [PMID: 32827960 DOI: 10.1016/j.ecoenv.2020.111050] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 07/13/2020] [Accepted: 07/17/2020] [Indexed: 06/11/2023]
Abstract
Ammonia toxicity to respiratory system in pig faming is of particular concern, but the molecular mechanism remains still unclear. The present study was devoted to assess the impacts of the ammonia exposure on the lung tissues based on a pig study using 80 ppm ammonia exposing to piglets for different days. The histology analysis revealed ammonia exposure induced lung injury and inflammatory response, as indicated by epithelial-mesenchymal transition (EMT), significant thickening of alveolar septa, infiltration of inflammatory cells and excessive mucus production. The transcriptome analysis revealed many more up-regulated genes in exposure groups when compared with the control group, and these genes were significantly enriched in the GO term of extracellular exosome, proteolysis, and regulation of circadian rhythm. The study discovered the induction of seven genes (CRY2, CIART, CREM, NR1D1, NR1D2, PER1 and PER3) that encode repressors of circadian clock. One gene (ARNTL) that encodes activator of circadian clock was down-regulated after ammonia exposure. The results of this study suggest that ammonia exposure disturbed the pulmonary circadian clock gene expression, which may establish new evidence for further understanding the toxicity of ammonia to lungs.
Collapse
Affiliation(s)
- Xiaotong Wang
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China
| | - Mengyao Wang
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shuangzhao Chen
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China
| | - Baoxin Wei
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yun Gao
- College of Engineering, The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China
| | - Longhui Huang
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chun Liu
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China
| | - Tao Huang
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China
| | - Mei Yu
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shu-Hong Zhao
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaoping Li
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
14
|
Ahmad S, Kim CSK, Tarran R. The SPLUNC1-βENaC complex prevents Burkholderia cenocepacia invasion in normal airway epithelia. Respir Res 2020; 21:190. [PMID: 32680508 PMCID: PMC7368771 DOI: 10.1186/s12931-020-01454-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 07/13/2020] [Indexed: 12/13/2022] Open
Abstract
Cystic fibrosis (CF) patients are extremely vulnerable to Burkholderia cepacia complex (Bcc) infections. However, the underlying etiology is poorly understood. We tested the hypothesis that short palate lung and nasal epithelial clone 1 (SPLUNC1)-epithelial sodium channel (ENaC) interactions at the plasma membrane are required to reduce Bcc burden in normal airways. To determine if SPLUNC1 was needed to reduce Bcc burden in the airways, SPLUNC1 knockout mice and their wild-type littermates were infected with B. cenocepacia strain J2315. SPLUNC1 knockout mice had increased bacterial burden in the lungs compared to wild-type littermate mice. SPLUNC1-knockdown primary human bronchial epithelia (HBECs) were incubated with J2315, which resulted in increased bacterial burden compared to non-transduced HBECs. We next determined the interaction of the SPLUNC1-ENaC complex during J2315 infection. SPLUNC1 remained at the apical plasma membrane of normal HBECs but less was present at the apical plasma membrane of CF HBECs. Additionally, SPLUNC1-βENaC complexes reduced intracellular J2315 burden. Our data indicate that (i) secreted SPLUNC1 is required to reduce J2315 burden in the airways and (ii) its interaction with ENaC prevents cellular invasion of J2315.
Collapse
Affiliation(s)
- Saira Ahmad
- Department of Cell Biology and Physiology, The University of North Carolina, Marsico Lung Insitute, 115 Mason Farm Rd CB 7545, UNC, Chapel Hill, NC, 27599, USA
| | - Christine Seul Ki Kim
- Department of Cell Biology and Physiology, The University of North Carolina, Marsico Lung Insitute, 115 Mason Farm Rd CB 7545, UNC, Chapel Hill, NC, 27599, USA
- Present address: Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Robert Tarran
- Department of Cell Biology and Physiology, The University of North Carolina, Marsico Lung Insitute, 115 Mason Farm Rd CB 7545, UNC, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
15
|
Nandula SR, Huxford I, Wheeler TT, Aparicio C, Gorr SU. The parotid secretory protein BPIFA2 is a salivary surfactant that affects lipopolysaccharide action. Exp Physiol 2020; 105:1280-1292. [PMID: 32390232 DOI: 10.1113/ep088567] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 05/06/2020] [Indexed: 12/30/2022]
Abstract
NEW FINDINGS What is the central question of this study? The salivary protein BPIFA2 binds lipopolysaccharide, but its physiological function is not known. This study uses a new knockout mouse model to explore the physiological role of BPIFA2 in the oral cavity and systemic physiology. What is the main finding and its importance? BPIFA2 is a crucial surfactant in mouse saliva. In its absence, saliva exhibits the surface tension of water. Depletion of BPIFA2 affects salivary and ingested lipopolysaccharide and leads to systemic sequelae that include increased insulin secretion and metabolomic changes. These results suggest that the lipopolysaccharide-binding activity of BPIFA2 affects the activity of ingested lipopolysaccharide in the intestine and that BPIFA2 depletion causes mild metabolic endotoxaemia. ABSTRACT Saliva plays important roles in the mastication, swallowing and digestion of food, speech and lubrication of the oral mucosa, antimicrobial and anti-inflammatory activities, and the control of body temperature in grooming animals. The salivary protein BPIFA [BPI fold containing family A member 2; former names: parotid secretory protein (PSP), SPLUN2 and C20orf70] is related to lipid-binding and lipopolysaccharide (LPS)-binding proteins expressed in the mucosa. Indeed, BPIFA2 binds LPS, but the physiological role of BPIFA2 remains to be determined. To address this question, Bpifa2 knockout (Bpifa2tm1(KOMP)Vlcg ) (KO) mice were phenotyped, with emphasis on the saliva and salivary glands. Stimulated whole saliva collected from KO mice was less able to spread on a hydrophobic surface than wild-type saliva, and the surface tension of KO saliva was close to that of water. These data suggest that BPIFA2 is a salivary surfactant that is mainly responsible for the low surface tension of mouse saliva. The reduced surfactant activity of KO saliva did not affect consumption of dry food or grooming, but saliva from KO mice contained less LPS than wild-type saliva. Indeed, mice lacking BPIFA2 responded to ingested LPS with an increased stool frequency, suggesting that BPIFA2 plays a role in the solubilization and activity of ingested LPS. Consistent with these findings, BPIFA2-depleted mice also showed increased insulin secretion and metabolomic changes that were consistent with a mild endotoxaemia. These results support the distal physiological function of a salivary protein and reinforce the connection between oral biology and systemic disease.
Collapse
Affiliation(s)
- Seshagiri Rao Nandula
- Department of Diagnostic and Biological Sciences, University of Minnesota School of Dentistry, Minneapolis, MN, USA.,Department of Biochemistry & Molecular Biology, George Washington University, Washington, DC, USA
| | - Ian Huxford
- Department of Restorative Sciences, University of Minnesota School of Dentistry, Minneapolis, MN, USA
| | | | - Conrado Aparicio
- Department of Restorative Sciences, University of Minnesota School of Dentistry, Minneapolis, MN, USA
| | - Sven-Ulrik Gorr
- Department of Diagnostic and Biological Sciences, University of Minnesota School of Dentistry, Minneapolis, MN, USA
| |
Collapse
|
16
|
Mashbat B, Bellos E, Hodeib S, Bidmos F, Thwaites RS, Lu Y, Wright VJ, Herberg JA, Klobassa DS, Walton WG, Zenz W, Hansel TT, Nadel S, Langford PR, Schlapbach LJ, Li MS, Redinbo MR, Di YP, Levin M, Sancho-Shimizu V. A Rare Mutation in SPLUNC1 Affects Bacterial Adherence and Invasion in Meningococcal Disease. Clin Infect Dis 2020; 70:2045-2053. [PMID: 31504285 PMCID: PMC7201419 DOI: 10.1093/cid/ciz600] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 06/28/2019] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Neisseria meningitidis (Nm) is a nasopharyngeal commensal carried by healthy individuals. However, invasive infections occurs in a minority of individuals, with devastating consequences. There is evidence that common polymorphisms are associated with invasive meningococcal disease (IMD), but the contributions of rare variants other than those in the complement system have not been determined. METHODS We identified familial cases of IMD in the UK meningococcal disease study and the European Union Life-Threatening Infectious Disease Study. Candidate genetic variants were identified by whole-exome sequencing of 2 patients with familial IMD. Candidate variants were further validated by in vitro assays. RESULTS Exomes of 2 siblings with IMD identified a novel heterozygous missense mutation in BPIFA1/SPLUNC1. Sequencing of 186 other nonfamilial cases identified another unrelated IMD patient with the same mutation. SPLUNC1 is an innate immune defense protein expressed in the nasopharyngeal epithelia; however, its role in invasive infections is unknown. In vitro assays demonstrated that recombinant SPLUNC1 protein inhibits biofilm formation by Nm, and impedes Nm adhesion and invasion of human airway cells. The dominant negative mutant recombinant SPLUNC1 (p.G22E) showed reduced antibiofilm activity, increased meningococcal adhesion, and increased invasion of cells, compared with wild-type SPLUNC1. CONCLUSIONS A mutation in SPLUNC1 affecting mucosal attachment, biofilm formation, and invasion of mucosal epithelial cells is a new genetic cause of meningococcal disease.
Collapse
Affiliation(s)
- Bayarchimeg Mashbat
- Department of Paediatric Infectious Diseases, Division of Medicine, Imperial College London, Norfolk Place, United Kingdom
| | - Evangelos Bellos
- Department of Paediatric Infectious Diseases, Division of Medicine, Imperial College London, Norfolk Place, United Kingdom
| | - Stephanie Hodeib
- Department of Paediatric Infectious Diseases, Division of Medicine, Imperial College London, Norfolk Place, United Kingdom
| | - Fadil Bidmos
- Department of Paediatric Infectious Diseases, Division of Medicine, Imperial College London, Norfolk Place, United Kingdom
| | - Ryan S Thwaites
- National Heart and Lung Institute, Imperial College London, United Kingdom
| | - Yaxuan Lu
- Department of Paediatric Infectious Diseases, Division of Medicine, Imperial College London, Norfolk Place, United Kingdom
| | - Victoria J Wright
- Department of Paediatric Infectious Diseases, Division of Medicine, Imperial College London, Norfolk Place, United Kingdom
| | - Jethro A Herberg
- Department of Paediatric Infectious Diseases, Division of Medicine, Imperial College London, Norfolk Place, United Kingdom
| | - Daniela S Klobassa
- Department of Pediatric and Adolescence Surgery, Division of General Pediatric Surgery, Medical University Graz, Austria
| | - William G Walton
- Paediatric Intensive Care Unit, St. Mary’s Hospital, Imperial College Healthcare Trust, London, United Kingdom
| | - Werner Zenz
- Department of Pediatric and Adolescence Surgery, Division of General Pediatric Surgery, Medical University Graz, Austria
| | - Trevor T Hansel
- National Heart and Lung Institute, Imperial College London, United Kingdom
| | - Simon Nadel
- Paediatric Intensive Care Unit, St. Mary’s Hospital, Imperial College Healthcare Trust, London, United Kingdom
| | - Paul R Langford
- Department of Paediatric Infectious Diseases, Division of Medicine, Imperial College London, Norfolk Place, United Kingdom
| | - Luregn J Schlapbach
- Faculty of Medicine Brisbane, The University of Queensland Brisbane, Australia
- Paediatric Critical Care Research Group, The University of Queensland Brisbane, Australia
- Paediatric Intensive Care Unit, Lady Cilento Children’s Hospital, Children’s Health Queensland, Brisbane, Australia
- Department of Pediatrics, Bern University Hospital, Inselspital, University of Bern, Switzerland
| | - Ming-Shi Li
- Department of Paediatric Infectious Diseases, Division of Medicine, Imperial College London, Norfolk Place, United Kingdom
| | - Matthew R Redinbo
- Department of Chemistry, University of North Carolina, Chapel Hill
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill
| | - Y Peter Di
- Department of Environmental and Occupational Health, University of Pittsburgh, Pennsylvania
| | - Michael Levin
- Department of Paediatric Infectious Diseases, Division of Medicine, Imperial College London, Norfolk Place, United Kingdom
| | - Vanessa Sancho-Shimizu
- Department of Paediatric Infectious Diseases, Division of Medicine, Imperial College London, Norfolk Place, United Kingdom
| |
Collapse
|
17
|
Li J, Xu P, Wang L, Feng M, Chen D, Yu X, Lu Y. Molecular biology of BPIFB1 and its advances in disease. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:651. [PMID: 32566588 PMCID: PMC7290611 DOI: 10.21037/atm-20-3462] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bactericidal/permeability-increasing (BPI)-fold-containing family B member 1 (BPIFB1), also known as long-palate lung and nasal epithelium clone 1 (LPLUNC1), belongs to the BPI-fold-containing family, is a newly discovered natural immune protection molecule, which, having the function of bactericidal and osmotic enhancement protein domain, can respond to the external physical and chemical stimuli. The gene of BPIFB1 is located at chromosome 20q11.21-20q11.22, and contains 16 exons and 15 introns, encoding 484 amino acids. The 5' terminal of the BPIFB1 protein has a signal peptide sequence composed of 19 amino acids. BPIFB1 is abnormally expressed in nasopharyngeal carcinoma (NPC), gastric cancer, and other cancer tissues, regulate chronic infections and inflammation, indicating that it may play an important role in the development of tumors. Meanwhile, BPIFB1 has well-recognized roles in sensing and responding to Gram-negative bacteria due to its structural similarity with BPI protein and lipopolysaccharide (LPS)-binding protein, both of which are innate immune molecules with recognized roles in sensing and responding to Gram-negative bacteria, so it can regulate cystic fibrosis (CF), chronic obstructive pulmonary disease (COPD), asthma, and other respiratory diseases. In this article, we will discuss the progress of BPIFB1 in a variety of diseases and fully understand its function.
Collapse
Affiliation(s)
- Jie Li
- Key Laboratory of Shenzhen Respiratory Disease, Shenzhen Institute of Respiratory Disease, Shenzhen People's Hospital (The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University), Shenzhen, China
| | - Peng Xu
- Key Laboratory of Shenzhen Respiratory Disease, Shenzhen Institute of Respiratory Disease, Shenzhen People's Hospital (The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University), Shenzhen, China
| | - Lingwei Wang
- Key Laboratory of Shenzhen Respiratory Disease, Shenzhen Institute of Respiratory Disease, Shenzhen People's Hospital (The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University), Shenzhen, China
| | - Mengjie Feng
- Key Laboratory of Shenzhen Respiratory Disease, Shenzhen Institute of Respiratory Disease, Shenzhen People's Hospital (The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University), Shenzhen, China
| | - Dandan Chen
- Key Laboratory of Shenzhen Respiratory Disease, Shenzhen Institute of Respiratory Disease, Shenzhen People's Hospital (The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University), Shenzhen, China
| | - Xiu Yu
- Key Laboratory of Shenzhen Respiratory Disease, Shenzhen Institute of Respiratory Disease, Shenzhen People's Hospital (The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University), Shenzhen, China
| | - Yongzhen Lu
- Key Laboratory of Shenzhen Respiratory Disease, Shenzhen Institute of Respiratory Disease, Shenzhen People's Hospital (The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University), Shenzhen, China
| |
Collapse
|
18
|
Tomazic PV, Darnhofer B, Birner-Gruenberger R. Nasal mucus proteome and its involvement in allergic rhinitis. Expert Rev Proteomics 2020; 17:191-199. [PMID: 32266843 PMCID: PMC7261402 DOI: 10.1080/14789450.2020.1748502] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Introduction: Nasal mucus is the first line defense barrier against various pathogens including allergens. Proteins in nasal mucus maybe used as biomarkers for diagnosis or future therapeutic strategies. Proteomics opens the possibility to investigate whole human proteomes. Areas Covered: We aimed to analyze the existing literature on nasal mucus and nasal secretions proteomic approaches especially in allergic rhinitis. A PubMed/Medline search was conducted entering the following keywords and combinations: “nasal mucus”, “nasal lavage fluid,” nasal secretions,” “nasal swabs,” “allergic rhinitis,” ”proteins,” and “proteomics.” Expert opinion: The majority of studies focus on single proteins or protein groups mainly using ELISA techniques. Four studies met the criteria using mass spectrometry in the analysis of nasal mucus proteomes in rhinologic diseases. In these studies, 7, 35, 267, and 430 proteins were identified, respectively. These four studies are discussed in this review and put in relation to seven other proteomic studies that focus on nasal lavage fluid and nasal secretions obtained by swabs or filter paper. To put it in a nutshell, proteomics facilitates the investigation of the nasal secretome and its role in healthy and diseased state and as potential biomarkers for new diagnostic or therapeutic approaches.
Collapse
Affiliation(s)
| | - Barbara Darnhofer
- Diagnostic and Research Institute of Pathology, Diagnostic and Research Center of Molecular Medicine, Medical University of Graz, Graz, Austria.,BioTechMed-Graz, The Omics Center Graz, Graz, Austria
| | - Ruth Birner-Gruenberger
- Diagnostic and Research Institute of Pathology, Diagnostic and Research Center of Molecular Medicine, Medical University of Graz, Graz, Austria.,BioTechMed-Graz, The Omics Center Graz, Graz, Austria.,Institute of Chemical Technologies and Analytics, Vienna University of Technology, Vienna, Austria
| |
Collapse
|
19
|
Olivença DV, Fonseca LL, Voit EO, Pinto FR. Thickness of the airway surface liquid layer in the lung is affected in cystic fibrosis by compromised synergistic regulation of the ENaC ion channel. J R Soc Interface 2019; 16:20190187. [PMID: 31455163 DOI: 10.1098/rsif.2019.0187] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The lung epithelium is lined with a layer of airway surface liquid (ASL) that is crucial for healthy lung function. ASL thickness is controlled by two ion channels: epithelium sodium channel (ENaC) and cystic fibrosis (CF) transmembrane conductance regulator (CFTR). Here, we present a minimal mathematical model of ENaC, CFTR and ASL regulation that sheds light on the control of ENaC by the short palate lung and nasal epithelial clone 1 (SPLUNC1) protein and by phosphatidylinositol 4,5-biphosphate (PI(4,5)P2). The model, despite its simplicity, yields a good fit to experimental observations and is an effective tool for exploring the interplay between ENaC, CFTR and ASL. Steady-state data and dynamic information constrain the model's parameters without ambiguities. Testing the hypothesis that PI(4,5)P2 protects ENaC from ubiquitination suggests that this protection does not improve the model results and that the control of the ENaC opening probability by PI(4,5)P2 is sufficient to explain all available data. The model analysis further demonstrates that ASL at the steady state is sensitive to small changes in PI(4,5)P2 abundance, particularly in CF conditions, which suggests that manipulation of phosphoinositide metabolism may promote therapeutic benefits for CF patients.
Collapse
Affiliation(s)
- Daniel V Olivença
- Faculty of Sciences, BioISI-Biosystems and Integrative Sciences Institute, University of Lisboa, Lisboa, Portugal
| | - Luis L Fonseca
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Eberhard O Voit
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Francisco R Pinto
- Faculty of Sciences, BioISI-Biosystems and Integrative Sciences Institute, University of Lisboa, Lisboa, Portugal
| |
Collapse
|
20
|
Moore PJ, Sesma J, Alexis NE, Tarran R. Tobacco exposure inhibits SPLUNC1-dependent antimicrobial activity. Respir Res 2019; 20:94. [PMID: 31113421 PMCID: PMC6530064 DOI: 10.1186/s12931-019-1066-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Accepted: 05/06/2019] [Indexed: 11/24/2022] Open
Abstract
Background Tobacco smoke exposure impairs the lung’s innate immune response, leading to an increased risk of chronic infections. SPLUNC1 is a secreted, multifunctional innate defense protein that has antimicrobial activity against Gram negative organisms. We hypothesize that tobacco smoke-induced SPLUNC1 dysfunction contributes to the observed defect in innate immunity in tobacco smokers and that this dysfunction can be used as a potential biomarker of harm. Methods We collected sputum from never-smokers and otherwise healthy smokers. We performed Western blotting to determine SPLUNC1 levels and determined antimicrobial activity against nontypeable Haemophilus influenzae. An in vitro exposure model was utilized to measure the effect of tobacco exposure on human bronchial epithelial culture (HBEC) antimicrobial activity against H. influenzae. The direct effects of cigarette and little cigar smoke exposure on SPLUNC1 function was determined using 24 h growth measurements and LPS binding assays. Results H. influenzae growth in cigarette smoker’s sputum was significantly greater compared to never-smokers sputum over 24 h. HBEC supernatants and lysates contained significantly higher numbers of H. influenzae following chronic cigarette and little cigar smoke exposure compared to air-exposed controls. Furthermore, SPLUNC1’s antimicrobial activity and LPS-binding capability against both H. influenzae and P. aeruginosa was attenuated following cigarette and little cigar exposure. Conclusions These data suggest that cigarette and little cigar exposure impairs SPLUNC1’s antimicrobial ability and that this inhibition may serve as a novel biomarker of harm that can be used to assess the toxicity of commercial tobacco products.
Collapse
Affiliation(s)
- Patrick J Moore
- Marsico Lung Institute, University of North Carolina at Chapel Hill, 7118A Marsico Hall, 125 Mason Farm Road, Chapel Hill, NC, 27599, USA.
| | - Juliana Sesma
- CONICET, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Neil E Alexis
- Center for Environmental Medicine, Asthma and Lung Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Robert Tarran
- Marsico Lung Institute, University of North Carolina at Chapel Hill, 7118A Marsico Hall, 125 Mason Farm Road, Chapel Hill, NC, 27599, USA.,Department of Cell Biology & Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| |
Collapse
|
21
|
Parrish JM, Soni M, Mittal R. Subversion of host immune responses by otopathogens during otitis media. J Leukoc Biol 2019; 106:943-956. [PMID: 31075181 PMCID: PMC7166519 DOI: 10.1002/jlb.4ru0119-003r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 03/11/2019] [Accepted: 04/05/2019] [Indexed: 12/26/2022] Open
Abstract
Otitis media (OM) is one of the most common ear diseases affecting humans. Children are at greater risk and suffer most frequently from OM, which can cause serious deterioration in the quality of life. OM is generally classified into two main types: acute and chronic OM (AOM and COM). AOM is characterized by tympanic membrane swelling or otorrhea and is accompanied by signs or symptoms of ear infection. In COM, there is a tympanic membrane perforation and purulent discharge. The most common pathogens that cause AOM are Streptococcus pneumoniae, Haemophilus influenzae, and Moraxella catarrhalis whereas Pseudomonas aeruginosa and Staphylococcus aureus are commonly associated with COM. Innate and adaptive immune responses provide protection against OM. However, pathogens employ a wide arsenal of weapons to evade potent immune responses and these mechanisms likely contribute to AOM and COM. Immunologic evasion is multifactorial, and involves damage to host mucociliary tract, genetic polymorphisms within otopathogens, the number and variety of different otopathogens in the nasopharynx as well as the interaction between the host's innate and adaptive immune responses. Otopathogens utilize host mucin production, phase variation, biofilm production, glycans, as well as neutrophil and eosinophilic extracellular traps to induce OM. The objective of this review article is to discuss our current understanding about the mechanisms through which otopathogens escape host immunity to induce OM. A better knowledge about the molecular mechanisms leading to subversion of host immune responses will provide novel clues to develop effective treatment modalities for OM.
Collapse
Affiliation(s)
- James M Parrish
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Manasi Soni
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Rahul Mittal
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
22
|
Zhang H, Burrows J, Card GL, Attwood G, Wheeler TT, Arcus VL. The three dimensional structure of Bovine Salivary Protein 30b (BSP30b) and its interaction with specific rumen bacteria. PLoS One 2019; 14:e0206709. [PMID: 30978191 PMCID: PMC6461236 DOI: 10.1371/journal.pone.0206709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 03/26/2019] [Indexed: 11/18/2022] Open
Abstract
Bovine Salivary Protein 30b (BSP30b) is a member of the tubular lipid-binding (TULIP) superfamily that includes the human bactericidal/permeability-increasing proteins (BPI), lipopolysaccharide binding proteins (LBP) and palate, lung, and nasal epithelium carcinoma-associated proteins (PLUNC). BSP30b is most closely related to the PLUNC family and is predominantly found in bovine saliva. There are four BSP30 isoforms (BSP30a-d) and collectively, they are the most abundant protein component of bovine saliva. The PLUNC family members are proposed to be lipid binding proteins, although in most cases their lipid ligands are unknown. Here, we present the X-ray crystal structure of BSP30b at 2.0 Å resolution. We used a double methionine mutant and Se-Met SAD phasing to solve the structure. The structure adopts a curved cylindrical form with a hydrophobic channel formed by an α/β wrap, which is consistent with the TULIP superfamily. The structure of BSP30b in complex with oleic acid is also presented where the ligand is accommodated within the hydrophobic channel. The electron density for oleic acid suggests that the ligand is only partially occupied in the binding site implying that oleic acid may not be the preferred ligand. GFP-tagged BSP30b binds to the surface of olive oil droplets, as observed under fluorescent microscopy, and acts as a surfactant consistent with its association with decreased susceptibility to bloat in cattle. Bacteria extracted directly from bovine rumen contents indicate that the GFP_BSP30b fusion protein binds to a small number of selected bacterial species in vivo. These results suggest that BSP30b may bind to bacterial lipids from specific species and that this abundant protein may have important biological roles via interacting with rumen bacteria during feeding and rumination.
Collapse
Affiliation(s)
- Heng Zhang
- School of Science, University of Waikato, Hamilton, New Zealand
| | - Judith Burrows
- School of Science, University of Waikato, Hamilton, New Zealand
| | - Graeme L. Card
- Stanford Synchrotron Radiation Lightsource, Menlo Park, California, United States of America
| | - Graeme Attwood
- AgResearch Grasslands, Tennent Drive, Palmerston North, New Zealand
| | - Tom T. Wheeler
- Cawthron Research Institute, The Wood, Nelson, New Zealand
| | - Vickery L. Arcus
- School of Science, University of Waikato, Hamilton, New Zealand
- * E-mail:
| |
Collapse
|
23
|
Schrumpf JA, Ninaber DK, van der Does AM, Hiemstra PS. TGF-β1 Impairs Vitamin D-Induced and Constitutive Airway Epithelial Host Defense Mechanisms. J Innate Immun 2019; 12:74-89. [PMID: 30970352 DOI: 10.1159/000497415] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 01/28/2019] [Indexed: 12/11/2022] Open
Abstract
Airway epithelium is an important site for local vitamin D (VD) metabolism; this can be negatively affected by inflammatory mediators. VD is an important regulator of respiratory host defense, for example, by increasing the expression of hCAP18/LL-37. TGF-β1 is increased in chronic obstructive pulmonary disease (COPD), and known to decrease the expression of constitutive host defense mediators such as secretory leukocyte protease inhibitor (SLPI) and polymeric immunoglobulin receptor (pIgR). VD has been shown to affect TGF-β1-signaling by inhibiting TGF-β1-induced epithelial-to-mesenchymal transition. However, interactions between VD and TGF-β1, relevant for the understanding host defense in COPD, are incompletely understood. Therefore, the aim of the present study was to investigate the combined effects of VD and TGF-β1 on airway epithelial cell host defense mechanisms. Exposure to TGF-β1 reduced both baseline and VD-induced expression of hCAP18/LL-37, partly by increasing the expression of the VD-degrading enzyme CYP24A1. TGF-β1 alone decreased the number of secretory club and goblet cells and reduced the expression of constitutive host defense mediators SLPI, s/lPLUNC and pIgR, effects that were not modulated by VD. These results suggest that TGF-β1 may decrease the respiratory host defense both directly by reducing the expression of host defense mediators, and indirectly by affecting VD-mediated effects such as expression of hCAP18/LL-37.
Collapse
Affiliation(s)
- Jasmijn A Schrumpf
- Department of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands,
| | - Dennis K Ninaber
- Department of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands
| | - Anne M van der Does
- Department of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands
| | - Pieter S Hiemstra
- Department of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
24
|
Dutra GA, Ishak GM, Pechanova O, Pechan T, Peterson DG, Jacob JCF, Willard ST, Ryan PL, Gastal EL, Feugang JM. Seasonal variation in equine follicular fluid proteome. Reprod Biol Endocrinol 2019; 17:29. [PMID: 30841911 PMCID: PMC6404268 DOI: 10.1186/s12958-019-0473-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 02/26/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Proteomic studies of follicular fluid (FF) exist for several species, including the horse; however, the seasonal influence on FF proteome has not been explored in livestock. The application of high-throughput proteomics of FF in horse has the potential to identify seasonal variations of proteins involved in follicle and oocyte growth. METHODS This study (i) profiles the proteomes of equine FF collected from dominant growing follicles during the spring anovulatory season (SAN), and spring (SOV), summer (SUM), and fall (FOV) ovulatory seasons; and (ii) identifies season-dependent regulatory networks and associated key proteins. RESULTS Regardless of season, a total of 90 proteins were identified in FF, corresponding to 63, 72, 69, and 78 proteins detected in the SAN, SOV, SUM, and FOV seasons, respectively. Fifty-two proteins were common to all seasons, a total of 13 were unique to either season, and 25 were shared between two seasons or more. Protein-to-protein interaction (PPI) analysis indicated the likely critical roles of plasminogen in the SAN season, the prothrombin/plasminogen combination in SUM, and plasminogen/complement C3 in both SOV and FOV seasons. The apolipoprotein A1 appeared crucial in all seasons. The present findings show that FF proteome of SUM differs from other seasons, with FF having high fluidity (low viscosity). CONCLUSIONS The balance between the FF contents in prothrombin, plasminogen, and coagulation factor XII proteins favoring FF fluidity may be crucial at the peak of the ovulatory season (SUM) and may explain the reported lower incidence of hemorrhagic anovulatory follicles during the SUM season.
Collapse
Affiliation(s)
- G A Dutra
- Department of Animal Science, Food and Nutrition, Southern Illinois University, Carbondale, IL, USA
- Department of Reproduction and Animal Evaluation, Federal Rural University of Rio de Janeiro, Seropédica, Brazil
| | - G M Ishak
- Department of Animal Science, Food and Nutrition, Southern Illinois University, Carbondale, IL, USA
- Department of Surgery and Obstetrics, College of Veterinary Medicine, University of Baghdad, Baghdad, Iraq
| | - O Pechanova
- Institute for Genomics, Biocomputing and Bioinformatics, University, Mississippi State, Oxford, MS, USA
| | - T Pechan
- Institute for Genomics, Biocomputing and Bioinformatics, University, Mississippi State, Oxford, MS, USA
| | - D G Peterson
- Institute for Genomics, Biocomputing and Bioinformatics, University, Mississippi State, Oxford, MS, USA
| | - J C F Jacob
- Department of Reproduction and Animal Evaluation, Federal Rural University of Rio de Janeiro, Seropédica, Brazil
| | - S T Willard
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, 4025 Wise Center, PO Box 9815, Mississippi State, MS, 39762, USA
| | - P L Ryan
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, 4025 Wise Center, PO Box 9815, Mississippi State, MS, 39762, USA
| | - E L Gastal
- Department of Animal Science, Food and Nutrition, Southern Illinois University, Carbondale, IL, USA
| | - J M Feugang
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, 4025 Wise Center, PO Box 9815, Mississippi State, MS, 39762, USA.
| |
Collapse
|
25
|
Hamilos DL. Biofilm Formations in Pediatric Respiratory Tract Infection : Part 1: Biofilm Structure, Role of Innate Immunity in Protection Against and Response to Biofilm, Methods of Biofilm Detection, Pediatric Respiratory Tract Diseases Associated with Mucosal Biofilm Formation. Curr Infect Dis Rep 2019; 21:6. [PMID: 30820766 DOI: 10.1007/s11908-019-0658-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
PURPOSE OF REVIEW Biofilm represents an organized structure of microorganisms within an extracellular matrix attached to a surface. While the importance of biofilm in prosthetic heart valve and catheter-related infections has been known since the 1980s, the role of mucosal biofilm in human disease pathogenesis has only recently been elucidated. It is now clear that mucosal biofilm is present in both healthy and pathologic states. The purpose of this review is to examine the role of mucosal biofilm in pediatric respiratory infections. RECENT FINDINGS Mucosal biofilm has been implicated in relationship to several pediatric respiratory infections, including tonsillitis, adenoiditis, otitis media with effusion, chronic rhinosinusitis, persistent endobronchial infection, and bronchiectasis. In these conditions, core pathogens are detected in the biofilm, biofilm organisms are often detected by molecular techniques when conventional cultures are negative, and biofilm presence is more extensive in relation to disease than in healthy tissues. In chronic rhinosinusitis, the presence of polymicrobial biofilm is also a predictor of poorer outcome following sinus surgery. Biofilm in the tonsillar and adenoidal compartments plays a distinct role in contributing to disease in the middle ear and sinuses. Key observations regarding the relevance of biofilm to pediatric respiratory infections include (1) the association between the presence of biofilm and persistent/recurrent and more severe disease in these tissues despite antibiotic treatment, (2) linkage between biofilm core pathogens and acute infections, and (3) interrelationship between biofilm presence in one tissue and persistent or recurrent infection in an adjacent tissue. A greater understanding of the significance of mucosal biofilm will undoubtedly emerge with the development of effective means of eradicating mucosal biofilm.
Collapse
Affiliation(s)
- Daniel L Hamilos
- Division of Rheumatology, Allergy & Immunology, Massachusetts General Hospital, 55 Fruit Street, Bulfinch-422, Boston, MA, 02114, USA. .,Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
26
|
Jappe U, Schwager C, Schromm AB, González Roldán N, Stein K, Heine H, Duda KA. Lipophilic Allergens, Different Modes of Allergen-Lipid Interaction and Their Impact on Asthma and Allergy. Front Immunol 2019; 10:122. [PMID: 30837983 PMCID: PMC6382701 DOI: 10.3389/fimmu.2019.00122] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 01/15/2019] [Indexed: 12/12/2022] Open
Abstract
Molecular allergology research has provided valuable information on the structure and function of single allergenic molecules. There are several allergens in food and inhalant allergen sources that are able to interact with lipid ligands via different structural features: hydrophobic pockets, hydrophobic cavities, or specialized domains. For only a few of these allergens information on their associated ligands is already available. Several of the allergens are clinically relevant, so that it is highly probable that the individual structural features with which they interact with lipids have a direct effect on their allergenic potential, and thus on allergy development. There is some evidence for a protective effect of lipids delaying the enzymatic digestion of the peanut (Arachis hypogaea) allergen Ara h 8 (hydrophobic pocket), probably allowing this molecule to get to the intestinal immune system intact (sensitization). Oleosins from different food allergen sources are part of lipid storage organelles and potential marker allergens for the severity of the allergic reaction. House dust mite (HDM), is more often associated with allergic asthma than other sources of inhalant allergens. In particular, lipid-associated allergens from Dermatophagoides pteronyssinus which are Der p 2, Der p 5, Der p 7, Der p 13, Der p 14, and Der p 21 have been reported to be associated with severe allergic reactions and respiratory symptoms such as asthma. The exact mechanism of interaction of these allergens with lipids still has to be elucidated. Apart from single allergens glycolipids have been shown to directly induce allergic inflammation. Several-in parts conflicting-data exist on the lipid (and allergen) and toll-like receptor interactions. For only few single allergens mechanistic studies were performed on their interaction with the air-liquid interface of the lungs, in particular with the surfactant components SP-A and SP-D. The increasing knowledge on protein-lipid-interaction for lipophilic and hydrophobic food and inhalant allergens on the basis of their particular structure, of their capacity to be integral part of membranes (like the oleosins), and their ability to interact with membranes, surfactant components, and transport lipids (like the lipid transfer proteins) are essential to eventually clarify allergy and asthma development.
Collapse
Affiliation(s)
- Uta Jappe
- Division of Clinical and Molecular Allergology, Research Center Borstel, Leibniz Lung Center, Airway Research Center North, German Center for Lung Research, Borstel, Germany
- Interdisciplinary Allergy Outpatient Clinic, Department of Pneumology, University of Luebeck, Borstel, Germany
| | - Christian Schwager
- Division of Clinical and Molecular Allergology, Research Center Borstel, Leibniz Lung Center, Airway Research Center North, German Center for Lung Research, Borstel, Germany
| | - Andra B. Schromm
- Division of Immunobiophysics, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Nestor González Roldán
- Junior Research Group of Allergobiochemistry, Research Center Borstel, Leibniz Lung Center, Airway Research Center North, German Center for Lung Research, Borstel, Germany
| | - Karina Stein
- Division of Innate Immunity, Research Center Borstel, Leibniz Lung Center, Airway Research Center North, German Center for Lung Research, Borstel, Germany
| | - Holger Heine
- Division of Innate Immunity, Research Center Borstel, Leibniz Lung Center, Airway Research Center North, German Center for Lung Research, Borstel, Germany
| | - Katarzyna A. Duda
- Junior Research Group of Allergobiochemistry, Research Center Borstel, Leibniz Lung Center, Airway Research Center North, German Center for Lung Research, Borstel, Germany
| |
Collapse
|
27
|
Peng G, Hou X, Zhang W, Song M, Yin M, Wang J, Li J, Liu Y, Zhang Y, Zhou W, Li X, Li G. Alkyl rhamnosides, a series of amphiphilic materials exerting broad-spectrum anti-biofilm activity against pathogenic bacteria via multiple mechanisms. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 46:S217-S232. [PMID: 30618296 DOI: 10.1080/21691401.2018.1491474] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
As novel amphiphilic materials, six uncharged alkyl rhamnosides incorporating various alkyl chain and one rhamnose amine quaternary ammonium salt were successfully synthesized in this study. Their amphiphilic properties (HLB and CMC), antimicrobial and anti-biofilm activity against S. aureus and P. aeruginosa were investigated. Differentially regulated proteins and pathways were identified by comparative proteomics research to first give a sight on how alkyl rhamnosides performed the anti-biofilm activity at protein and pathway levels. Among the uncharged alkyl rhamnosides, dodecyl rhamnoside and octyl rhamnoside showed the best antimicrobial and anti-biofilm ability against S. aureus and against P. aeruginosa, respectively. Interestingly, the relationships between amphiphilic properties or MIC with anti-biofilm activity were first established. Uncharged alkyl rhamnoside with an optimized HLB value of 5.0 had both the strongest antibacterial and anti-biofilm activity against S. aureus, and MIC was the maximum biofilm inhibitory concentration for all alkyl rhamnosides. Alkyl rhamnosides have a significant overall regulatory effect on the proteomics and pathways of bacterial biofilms, including energy production, substrates transportation, signal transduction, key molecules balance, and so on. These amphiphilic materials have a great potential to be used as additives in pharmaceutic, cosmetic, food industry, hospital and in other non-medical fields.
Collapse
Affiliation(s)
- Guanghua Peng
- a Beijing Key Laboratory of Molecular Pharmaceutics and New Drug System, School of Pharmaceutical Sciences , Peking University Health Science Center , Beijing , China
| | - Xucheng Hou
- a Beijing Key Laboratory of Molecular Pharmaceutics and New Drug System, School of Pharmaceutical Sciences , Peking University Health Science Center , Beijing , China
| | - Wenxi Zhang
- a Beijing Key Laboratory of Molecular Pharmaceutics and New Drug System, School of Pharmaceutical Sciences , Peking University Health Science Center , Beijing , China
| | - Maoyuan Song
- a Beijing Key Laboratory of Molecular Pharmaceutics and New Drug System, School of Pharmaceutical Sciences , Peking University Health Science Center , Beijing , China
| | - Mengya Yin
- a Beijing Key Laboratory of Molecular Pharmaceutics and New Drug System, School of Pharmaceutical Sciences , Peking University Health Science Center , Beijing , China
| | - Jiaxing Wang
- a Beijing Key Laboratory of Molecular Pharmaceutics and New Drug System, School of Pharmaceutical Sciences , Peking University Health Science Center , Beijing , China
| | - Jiajia Li
- a Beijing Key Laboratory of Molecular Pharmaceutics and New Drug System, School of Pharmaceutical Sciences , Peking University Health Science Center , Beijing , China
| | - Yajie Liu
- a Beijing Key Laboratory of Molecular Pharmaceutics and New Drug System, School of Pharmaceutical Sciences , Peking University Health Science Center , Beijing , China
| | - Yuanyuan Zhang
- a Beijing Key Laboratory of Molecular Pharmaceutics and New Drug System, School of Pharmaceutical Sciences , Peking University Health Science Center , Beijing , China
| | - Wenkai Zhou
- b Institute of Medicinal Biotechnology, Chinese Academy of Medical Science & Peking Union Medical College , Beijing , China
| | - Xinru Li
- a Beijing Key Laboratory of Molecular Pharmaceutics and New Drug System, School of Pharmaceutical Sciences , Peking University Health Science Center , Beijing , China
| | - Guiling Li
- b Institute of Medicinal Biotechnology, Chinese Academy of Medical Science & Peking Union Medical College , Beijing , China
| |
Collapse
|
28
|
Abstract
Surfaces and interfaces are ubiquitous in nature and are involved in many biological processes. Due to this, natural organisms have evolved a number of methods to control interfacial and surface properties. Many of these methods involve the use of specialised protein biosurfactants, which due to the competing demands of high surface activity, biocompatibility, and low solution aggregation may take structures that differ from the traditional head–tail structure of small molecule surfactants. As well as their biological functions, these proteins have also attracted interest for industrial applications, in areas including food technology, surface modification, and drug delivery. To understand the biological functions and technological applications of protein biosurfactants, it is necessary to have a molecular level description of their behaviour, in particular at surfaces and interfaces, for which molecular simulation is well suited to investigate. In this review, we will give an overview of simulation studies of a number of examples of protein biosurfactants (hydrophobins, surfactin, and ranaspumin). We will also outline some of the key challenges and future directions for molecular simulation in the investigation of protein biosurfactants and how this can help guide future developments.
Collapse
|
29
|
van der Does AM, Amatngalim GD, Keijser B, Hiemstra PS, Villenave R. Contribution of Host Defence Proteins and Peptides to Host-Microbiota Interactions in Chronic Inflammatory Lung Diseases. Vaccines (Basel) 2018; 6:vaccines6030049. [PMID: 30060554 PMCID: PMC6161034 DOI: 10.3390/vaccines6030049] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 07/23/2018] [Accepted: 07/25/2018] [Indexed: 12/11/2022] Open
Abstract
The respiratory tract harbours a variety of microorganisms, collectively called the respiratory microbiota. Over the past few years, alterations in respiratory and gut microbiota composition have been associated with chronic inflammatory diseases of the lungs. How these changes influence disease development and progression is an active field of investigation. Identifying and understanding host-microbiota interactions and factors contributing to these interactions could promote the development of novel therapeutic strategies aimed at restoring host-microbiota homeostasis. In this review, we discuss recent literature on host-microbiota interactions in the respiratory tract, with a specific focus on the influence of endogenous host defence peptides and proteins (HDPs) on the composition of microbiota populations in vivo and explore possible HDPs-related therapeutic approaches targeting microbiota dysbiosis in chronic inflammatory lung diseases.
Collapse
Affiliation(s)
- Anne M van der Does
- Department of Pulmonology, Leiden University Medical Center, Leiden 2300 RC, The Netherlands.
| | - Gimano D Amatngalim
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht 3508 AB, The Netherlands.
- Regenerative Medicine Center, University Medical Center Utrecht, Utrecht 3508 AB, The Netherlands.
| | - Bart Keijser
- Research Group Microbiology and Systems Biology, TNO (The Netherlands Organization for Applied Scientific Research), Zeist 3704 HE, The Netherlands.
- Department of Preventive Dentistry, Academic Center for Dentistry Amsterdam (ACTA), University of Amsterdam, Amsterdam 1008 AA, The Netherlands.
| | - Pieter S Hiemstra
- Department of Pulmonology, Leiden University Medical Center, Leiden 2300 RC, The Netherlands.
| | | |
Collapse
|
30
|
Kim CS, Ahmad S, Wu T, Walton WG, Redinbo MR, Tarran R. SPLUNC1 is an allosteric modulator of the epithelial sodium channel. FASEB J 2018; 32:2478-2491. [PMID: 29295861 PMCID: PMC5901381 DOI: 10.1096/fj.201701126r] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 12/04/2017] [Indexed: 01/20/2023]
Abstract
Cystic fibrosis (CF) is a common genetic disease with significantly increased mortality. CF airways exhibit ion transport abnormalities, including hyperactivity of the epithelial Na+ channel (ENaC). Short-palate lung and nasal epithelial clone 1 (SPLUNC1) is a multifunctional innate defense protein that is secreted into the airway lumen. We have previously demonstrated that SPLUNC1 binds to and inhibits ENaC to maintain fluid homeostasis in airway epithelia and that this process fails in CF airways. Despite this, how SPLUNC1 actually regulates ENaC is unknown. Here, we found that SPLUNC1 caused αγ-ENaC to internalize, whereas SPLUNC1 and β-ENaC remained at the plasma membrane. Additional studies revealed that SPLUNC1 increased neural precursor cell-expressed developmentally down-regulated protein 4-2-dependent ubiquitination of α- but not β- or γ-ENaC. We also labeled intracellular ENaC termini with green fluorescent protein and mCherry, and found that extracellular SPLUNC1 altered intracellular ENaC Forster resonance energy transfer. Taken together, our data indicate that SPLUNC1 is an allosteric regulator of ENaC that dissociates αβγ-ENaC to generate a new SPLUNC1-β-ENaC complex. These data indicate a novel mode for regulating ENaC at the plasma membrane.-Kim, C. S., Ahmad, S., Wu, T., Walton, W. G., Redinbo, M. R., Tarran, R. SPLUNC1 is an allosteric modulator of the epithelial sodium channel.
Collapse
Affiliation(s)
- Christine Seulki Kim
- Cystic Fibrosis Center, Marsico Lung Institute, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Saira Ahmad
- Cystic Fibrosis Center, Marsico Lung Institute, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Tongde Wu
- Cystic Fibrosis Center, Marsico Lung Institute, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - William G. Walton
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Matthew R. Redinbo
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Robert Tarran
- Cystic Fibrosis Center, Marsico Lung Institute, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
31
|
An innate defense peptide BPIFA1/SPLUNC1 restricts influenza A virus infection. Mucosal Immunol 2018; 11:71-81. [PMID: 28513596 DOI: 10.1038/mi.2017.45] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 04/17/2017] [Indexed: 02/04/2023]
Abstract
The airway epithelium secretes proteins that function in innate defense against infection. Bactericidal/permeability-increasing fold-containing family member A1 (BPIFA1) is secreted into airways and has a protective role during bacterial infections, but it is not known whether it also has an antiviral role. To determine a role in host defense against influenza A virus (IAV) infection and to find the underlying defense mechanism, we developed transgenic mouse models that are deficient in BPIFA1 and used these, in combination with in vitro three-dimensional mouse tracheal epithelial cell (mTEC) cultures, to investigate its antiviral properties. We show that BPIFA1 has a significant role in mucosal defense against IAV infection. BPIFA1 secretion was highly modulated after IAV infection. Mice deficient in BPIFA1 lost more weight after infection, supported a higher viral load and virus reached the peripheral lung earlier, indicative of a defect in the control of infection. Further analysis using mTEC cultures showed that BPIFA1-deficient cells bound more virus particles, displayed increased nuclear import of IAV ribonucleoprotein complexes, and supported higher levels of viral replication. Our results identify a critical role of BPIFA1 in the initial phase of infection by inhibiting the binding and entry of IAV into airway epithelial cells.
Collapse
|
32
|
Wong LH, Levine TP. Tubular lipid binding proteins (TULIPs) growing everywhere. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:1439-1449. [PMID: 28554774 PMCID: PMC5507252 DOI: 10.1016/j.bbamcr.2017.05.019] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 05/11/2017] [Accepted: 05/17/2017] [Indexed: 12/27/2022]
Abstract
Tubular lipid binding proteins (TULIPs) have become a focus of interest in the cell biology of lipid signalling, lipid traffic and membrane contact sites. Each tubular domain has an internal pocket with a hydrophobic lining that can bind a hydrophobic molecule such as a lipid. This allows TULIP proteins to carry lipids through the aqueous phase. TULIP domains were first found in a large family of extracellular proteins related to the bacterial permeability-inducing protein (BPI) and cholesterol ester transfer protein (CETP). Since then, the same fold and lipid transfer capacity have been found in SMP domains (so-called for their occurrence in synaptotagmin, mitochondrial and lipid binding proteins), which localise to intracellular membrane contact sites. Here the methods for identifying known TULIPs are described, and used to find previously unreported TULIPs, one in the silk polymer and another in prokaryotes illustrated by the E. coli protein YceB. The bacterial TULIP alters views on the likely evolution of the domain, suggesting its presence in the last universal common ancestor. The major function of TULIPs is to handle lipids, but we still do not know how they work in detail, or how many more remain to be discovered. This article is part of a Special Issue entitled: Membrane Contact Sites edited by Christian Ungermann and Benoit Kornmann. Proteins with the tubular lipid binding fold exist in a wider variety than is usually appreciated. TULIPs are found in prokaryotes, altering views on their evolution. It is not yet known whether TULIPs transfer lipids as tunnels or as shuttles. Tests have not yet been done to say if TULIPs with SMP domains (for example E-syts and ERMES components) tether contact sites. It is likely that more TULIPs remain to be discovered.
Collapse
Affiliation(s)
- Louise H Wong
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - Tim P Levine
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK.
| |
Collapse
|
33
|
Sunde M, Pham CLL, Kwan AH. Molecular Characteristics and Biological Functions of Surface-Active and Surfactant Proteins. Annu Rev Biochem 2017; 86:585-608. [PMID: 28125290 DOI: 10.1146/annurev-biochem-061516-044847] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Many critical biological processes take place at hydrophobic:hydrophilic interfaces, and a wide range of organisms produce surface-active proteins and peptides that reduce surface and interfacial tension and mediate growth and development at these boundaries. Microorganisms produce both small lipid-associated peptides and amphipathic proteins that allow growth across water:air boundaries, attachment to surfaces, predation, and improved bioavailability of hydrophobic substrates. Higher-order organisms produce surface-active proteins with a wide variety of functions, including the provision of protective foam environments for vulnerable reproductive stages, evaporative cooling, and gas exchange across airway membranes. In general, the biological functions supported by these diverse polypeptides require them to have an amphipathic nature, and this is achieved by a diverse range of molecular structures, with some proteins undergoing significant conformational change or intermolecular association to generate the structures that are surface active.
Collapse
Affiliation(s)
- Margaret Sunde
- Discipline of Pharmacology, School of Medical Sciences and Australian Institute for Nanoscale Science and Technology, University of Sydney, NSW 2006, Australia; ,
| | - Chi L L Pham
- Discipline of Pharmacology, School of Medical Sciences and Australian Institute for Nanoscale Science and Technology, University of Sydney, NSW 2006, Australia; ,
| | - Ann H Kwan
- School of Life and Environmental Sciences and Australian Institute for Nanoscale Science and Technology, University of Sydney, NSW 2006, Australia;
| |
Collapse
|
34
|
Short Palate, Lung, and Nasal Epithelial Clone 1 Has Antimicrobial and Antibiofilm Activities against the Burkholderia cepacia Complex. Antimicrob Agents Chemother 2016; 60:6003-12. [PMID: 27458217 DOI: 10.1128/aac.00975-16] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 07/17/2016] [Indexed: 02/07/2023] Open
Abstract
The opportunistic bacteria of the Burkholderia cepacia complex (Bcc) are extremely pathogenic to cystic fibrosis (CF) patients, and acquisition of Bcc bacteria is associated with a significant increase in mortality. Treatment of Bcc infections is difficult because the bacteria are multidrug resistant and able to survive in biofilms. Short palate, lung, and nasal epithelial clone 1 (SPLUNC1) is an innate defense protein that is secreted by the upper airways and pharynx. While SPLUNC1 is known to have antimicrobial functions, its effects on Bcc strains are unclear. We therefore tested the hypothesis that SPLUNC1 is able to impair Bcc growth and biofilm formation. We found that SPLUNC1 exerted bacteriostatic effects against several Bcc clinical isolates, including B. cenocepacia strain J2315 (50% inhibitory concentration [IC50] = 0.28 μM), and reduced biofilm formation and attachment (IC50 = 0.11 μM). We then determined which domains of SPLUNC1 are responsible for its antimicrobial activity. Deletions of SPLUNC1's N terminus and α6 helix did not affect its function. However, deletion of the α4 helix attenuated antimicrobial activity, while the corresponding α4 peptide displayed antimicrobial activity. Chronic neutrophilia is a hallmark of CF lung disease, and neutrophil elastase (NE) cleaves SPLUNC1. However, we found that the ability of SPLUNC1 to disrupt biofilm formation was significantly potentiated by NE pretreatment. While the impact of CF on SPLUNC1-Bcc interactions is not currently known, our data suggest that understanding this interaction may have important implications for CF lung disease.
Collapse
|
35
|
Walton WG, Ahmad S, Little MR, Kim CS, Tyrrell J, Lin Q, Di YP, Tarran R, Redinbo MR. Structural Features Essential to the Antimicrobial Functions of Human SPLUNC1. Biochemistry 2016; 55:2979-91. [PMID: 27145151 PMCID: PMC4887393 DOI: 10.1021/acs.biochem.6b00271] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
SPLUNC1 is an abundantly secreted innate immune protein in the mammalian respiratory tract that exerts bacteriostatic and antibiofilm effects, binds to lipopolysaccharide (LPS), and acts as a fluid-spreading surfactant. Here, we unravel the structural elements essential for the surfactant and antimicrobial functions of human SPLUNC1 (short palate lung nasal epithelial clone 1). A unique α-helix (α4) that extends from the body of SPLUNC1 is required for the bacteriostatic, surfactant, and LPS binding activities of this protein. Indeed, we find that mutation of just four leucine residues within this helical motif to alanine is sufficient to significantly inhibit the fluid spreading abilities of SPLUNC1, as well as its bacteriostatic actions against Gram-negative pathogens Burkholderia cenocepacia and Pseudomonas aeruginosa. Conformational flexibility in the body of SPLUNC1 is also involved in the bacteriostatic, surfactant, and LPS binding functions of the protein as revealed by disulfide mutants introduced into SPLUNC1. In addition, SPLUNC1 exerts antibiofilm effects against Gram-negative bacteria, although α4 is not involved in this activity. Interestingly, though, the introduction of surface electrostatic mutations away from α4 based on the unique dolphin SPLUNC1 sequence, and confirmed by crystal structure, is shown to impart antibiofilm activity against Staphylococcus aureus, the first SPLUNC1-dependent effect against a Gram-positive bacterium reported to date. Together, these data pinpoint SPLUNC1 structural motifs required for the antimicrobial and surfactant actions of this protective human protein.
Collapse
Affiliation(s)
- William G. Walton
- Departments of Chemistry, Biochemistry and Microbiology, 4350 Genome Sciences Building, University of North Carolina, Chapel Hill, NC 27599-3290, USA
| | - Saira Ahmad
- Marsico Lung Institute, Cystic Fibrosis/Pulmonary Research and Treatment Center, 7102 Marsico Hall, University of North Carolina, Chapel Hill, NC 27599-7248, USA
| | - Michael R. Little
- Departments of Chemistry, Biochemistry and Microbiology, 4350 Genome Sciences Building, University of North Carolina, Chapel Hill, NC 27599-3290, USA
| | - Christine S.K. Kim
- Marsico Lung Institute, Cystic Fibrosis/Pulmonary Research and Treatment Center, 7102 Marsico Hall, University of North Carolina, Chapel Hill, NC 27599-7248, USA
| | - Jean Tyrrell
- Marsico Lung Institute, Cystic Fibrosis/Pulmonary Research and Treatment Center, 7102 Marsico Hall, University of North Carolina, Chapel Hill, NC 27599-7248, USA
| | - Qiao Lin
- Department of Environmental and Occupational Health, 331 Bridgeside Point Building, University of Pittsburgh, Pittsburgh, PA 15260
| | - Y. Peter Di
- Department of Environmental and Occupational Health, 331 Bridgeside Point Building, University of Pittsburgh, Pittsburgh, PA 15260
| | - Robert Tarran
- Marsico Lung Institute, Cystic Fibrosis/Pulmonary Research and Treatment Center, 7102 Marsico Hall, University of North Carolina, Chapel Hill, NC 27599-7248, USA
| | - Matthew R. Redinbo
- Departments of Chemistry, Biochemistry and Microbiology, 4350 Genome Sciences Building, University of North Carolina, Chapel Hill, NC 27599-3290, USA
| |
Collapse
|
36
|
Schor M, Reid JL, MacPhee CE, Stanley-Wall NR. The Diverse Structures and Functions of Surfactant Proteins. Trends Biochem Sci 2016; 41:610-620. [PMID: 27242193 PMCID: PMC4929970 DOI: 10.1016/j.tibs.2016.04.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 04/25/2016] [Accepted: 04/29/2016] [Indexed: 01/26/2023]
Abstract
Surface tension at liquid–air interfaces is a major barrier that needs to be surmounted by a wide range of organisms; surfactant and interfacially active proteins have evolved for this purpose. Although these proteins are essential for a variety of biological processes, our understanding of how they elicit their function has been limited. However, with the recent determination of high-resolution 3D structures of several examples, we have gained insight into the distinct shapes and mechanisms that have evolved to confer interfacial activity. It is now a matter of harnessing this information, and these systems, for biotechnological purposes. Interfacially active proteins fulfill a wide range of biological functions in organisms ranging from bacteria and fungi to mammals. Their physicochemical properties make interfacially active proteins attractive for biotechnological applications; for example, as coatings on nanodevices or medical implants and as emulsifiers in food and personal-care products. High-resolution 3D structures show that the mechanisms by which interfacially active proteins achieve their function are highly diverse.
Collapse
Affiliation(s)
- Marieke Schor
- School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
| | - Jack L Reid
- School of Life Sciences, University of Dundee, Dundee, UK
| | - Cait E MacPhee
- School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK.
| | | |
Collapse
|
37
|
Aqueous solubilization of C60 fullerene by natural protein surfactants, latherin and ranaspumin-2. Biophys Chem 2016; 214-215:27-32. [PMID: 27214760 PMCID: PMC4906151 DOI: 10.1016/j.bpc.2016.05.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 05/10/2016] [Accepted: 05/10/2016] [Indexed: 11/21/2022]
Abstract
C60 fullerene is not soluble in water and dispersion usually requires organic solvents, sonication or vigorous mechanical mixing. However, we show here that mixing of pristine C60 in water with natural surfactant proteins latherin and ranaspumin-2 (Rsn-2) at low concentrations yields stable aqueous dispersions with spectroscopic properties similar to those previously obtained by more vigorous methods. Particle sizes are significantly smaller than those achieved by mechanical dispersion alone, and concentrations are compatible with clusters approximating 1:1 protein:C60 stoichiometry. These proteins can also be adsorbed onto more intractable carbon nanotubes. This promises to be a convenient way to interface a range of hydrophobic nanoparticles and related materials with biological macromolecules, with potential to exploit the versatility of recombinant protein engineering in the development of nano-bio interface devices. It also has potential consequences for toxicological aspects of these and similar nanoparticles.
Collapse
|
38
|
Seasonal proteome changes of nasal mucus reflect perennial inflammatory response and reduced defence mechanisms and plasticity in allergic rhinitis. J Proteomics 2016; 133:153-160. [DOI: 10.1016/j.jprot.2015.12.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 12/05/2015] [Accepted: 12/18/2015] [Indexed: 01/05/2023]
|
39
|
Interleukin-13 Inhibits Lipopolysaccharide-Induced BPIFA1 Expression in Nasal Epithelial Cells. PLoS One 2015; 10:e0143484. [PMID: 26646664 PMCID: PMC4672888 DOI: 10.1371/journal.pone.0143484] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 11/05/2015] [Indexed: 02/01/2023] Open
Abstract
Short palate, lung, and nasal epithelium clone 1 (SPLUNC1) protein is expressed in human nasopharyngeal and respiratory epithelium and has demonstrated antimicrobial activity. SPLUNC1 is now referred to as bactericidal/permeability-increasing fold containing family A, member 1 (BPIFA1). Reduced BPIFA1 expression is associated with bacterial colonization in patients with chronic rhinosinusitis with nasal polyps (CRSwNP). Interleukin 13 (IL-13), predominately secreted by T helper 2 (TH2) cells, has been found to contribute to airway allergies and suppress BPIFA1 expression in nasal epithelial cells. However, the molecular mechanism of IL-13 perturbation of bacterial infection and BPIFA1 expression in host airways remains unclear. In this study, we found that lipopolysaccharide (LPS)-induced BPIFA1 expression in nasal epithelial cells was mediated through the JNK/c-Jun signaling pathway and AP-1 activation. We further demonstrated that IL-13 downregulated the LPS-induced activation of phosphorylated JNK and c-Jun, followed by attenuation of BPIFA1 expression. Moreover, the immunohistochemical analysis showed that IL-13 prominently suppressed BPIFA1 expression in eosinophilic CRSwNP patients with bacterial infection. Taken together, these results suggest that IL-13 plays a critical role in attenuation of bacteria-induced BPIFA1 expression that may result in eosinophilic CRSwNP.
Collapse
|
40
|
Abstract
Submucosal glands contribute to airway surface liquid (ASL), a film that protects all airway surfaces. Glandular mucus comprises electrolytes, water, the gel-forming mucin MUC5B, and hundreds of different proteins with diverse protective functions. Gland volume per unit area of mucosal surface correlates positively with impaction rate of inhaled particles. In human main bronchi, the volume of the glands is ∼ 50 times that of surface goblet cells, but the glands diminish in size and frequency distally. ASL and its trapped particles are removed from the airways by mucociliary transport. Airway glands have a tubuloacinar structure, with a single terminal duct, a nonciliated collecting duct, then branching secretory tubules lined with mucous cells and ending in serous acini. They allow for a massive increase in numbers of mucus-producing cells without replacing surface ciliated cells. Active secretion of Cl(-) and HCO3 (-) by serous cells produces most of the fluid of gland secretions. Glands are densely innervated by tonically active, mutually excitatory airway intrinsic neurons. Most gland mucus is secreted constitutively in vivo, with large, transient increases produced by emergency reflex drive from the vagus. Elevations of [cAMP]i and [Ca(2+)]i coordinate electrolyte and macromolecular secretion and probably occur together for baseline activity in vivo, with cholinergic elevation of [Ca(2+)]i being mainly responsive for transient increases in secretion. Altered submucosal gland function contributes to the pathology of all obstructive diseases, but is an early stage of pathogenesis only in cystic fibrosis.
Collapse
Affiliation(s)
- Jonathan H Widdicombe
- Department of Physiology and Membrane Biology, University of California-Davis, Davis, California; and Department of Psychology and Cystic Fibrosis Research Laboratory, Stanford University, Stanford, California
| | - Jeffrey J Wine
- Department of Physiology and Membrane Biology, University of California-Davis, Davis, California; and Department of Psychology and Cystic Fibrosis Research Laboratory, Stanford University, Stanford, California
| |
Collapse
|
41
|
Britto CJ, Cohn L. Bactericidal/Permeability-increasing protein fold-containing family member A1 in airway host protection and respiratory disease. Am J Respir Cell Mol Biol 2015; 52:525-34. [PMID: 25265466 DOI: 10.1165/rcmb.2014-0297rt] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Bactericidal/permeability-increasing protein fold-containing family member A1 (BPIFA1), formerly known as SPLUNC1, is one of the most abundant proteins in respiratory secretions and has been identified with increasing frequency in studies of pulmonary disease. Its expression is largely restricted to the respiratory tract, being highly concentrated in the upper airways and proximal trachea. BPIFA1 is highly responsive to airborne pathogens, allergens, and irritants. BPIFA1 actively participates in host protection through antimicrobial, surfactant, airway surface liquid regulation, and immunomodulatory properties. Its expression is modulated in multiple lung diseases, including cystic fibrosis, chronic obstructive pulmonary disease, respiratory malignancies, and idiopathic pulmonary fibrosis. However, the role of BPIFA1 in pulmonary pathogenesis remains to be elucidated. This review highlights the versatile properties of BPIFA1 in antimicrobial protection and its roles as a sensor of environmental exposure and regulator of immune cell function. A greater understanding of the contribution of BPIFA1 to disease pathogenesis and activity may clarify if BPIFA1 is a biomarker and potential drug target in pulmonary disease.
Collapse
Affiliation(s)
- Clemente J Britto
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut
| | | |
Collapse
|
42
|
Leeming GH, Kipar A, Hughes DJ, Bingle L, Bennett E, Moyo NA, Tripp RA, Bigley AL, Bingle CD, Sample JT, Stewart JP. Gammaherpesvirus infection modulates the temporal and spatial expression of SCGB1A1 (CCSP) and BPIFA1 (SPLUNC1) in the respiratory tract. J Transl Med 2015; 95:610-24. [PMID: 25531566 PMCID: PMC4450743 DOI: 10.1038/labinvest.2014.162] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 10/23/2014] [Accepted: 11/11/2014] [Indexed: 11/09/2022] Open
Abstract
Murine γ-herpesvirus 68 (MHV-68) infection of Mus musculus-derived strains of mice is an established model of γ-herpesvirus infection. We have previously developed an alternative system using a natural host, the wood mouse (Apodemus sylvaticus), and shown that the MHV-68 M3 chemokine-binding protein contributes significantly to MHV-68 pathogenesis. Here we demonstrate in A. sylvaticus using high-density micro-arrays that M3 influences the expression of genes involved in the host response including Scgb1a1 and Bpifa1 that encode potential innate defense proteins secreted into the respiratory tract. Further analysis of MHV-68-infected animals showed that the levels of both protein and RNA for SCGB1A1 and BPIFA1 were decreased at day 7 post infection (p.i.) but increased at day 14 p.i. as compared with M3-deficient and mock-infected animals. The modulation of expression was most pronounced in bronchioles but was also present in the bronchi and trachea. Double staining using RNA in situ hybridization and immunohistology demonstrated that much of the BPIFA1 expression occurs in club cells along with SCGB1A1 and that BPIFA1 is stored within granules in these cells. The increase in SCGB1A1 and BPIFA1 expression at day 14 p.i. was associated with the differentiation of club cells into mucus-secreting cells. Our data highlight the role of club cells and the potential of SCGB1A1 and BPIFA1 as innate defense mediators during respiratory virus infection.
Collapse
Affiliation(s)
- Gail H Leeming
- Department of Infection Biology, University of Liverpool, Liverpool, UK,Department of Veterinary Pathology, School of Veterinary Science, University of Liverpool, Liverpool, UK
| | - Anja Kipar
- Department of Infection Biology, University of Liverpool, Liverpool, UK,Department of Veterinary Pathology, School of Veterinary Science, University of Liverpool, Liverpool, UK,Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - David J Hughes
- Department of Infection Biology, University of Liverpool, Liverpool, UK
| | - Lynne Bingle
- Academic Unit of Oral and Maxillofacial Pathology, School of Clinical Dentistry, University of Sheffield, Sheffield, UK
| | - Elaine Bennett
- Department of Infection Biology, University of Liverpool, Liverpool, UK
| | - Nathifa A Moyo
- Department of Infection Biology, University of Liverpool, Liverpool, UK
| | - Ralph A Tripp
- Department of Infectious Diseases, University of Georgia, Athens, GA, USA
| | - Alison L Bigley
- Investigative and Translational Pathology, AstraZeneca, R&D Innovative Medicines, Global Safety Assessment, Macclesfield, UK
| | - Colin D Bingle
- Academic Unit of Respiratory Medicine, Department of Infection and Immunity, University of Sheffield, Sheffield, UK
| | - Jeffery T Sample
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - James P Stewart
- Department of Infection Biology, University of Liverpool, Liverpool, UK,Department of Infection Biology, University of Liverpool, Liverpool Science Park IC2, 146 Brownlow Hill, Liverpool L3 5RF, UK. E-mail:
| |
Collapse
|
43
|
Bartlett JA, Meyerholz DK, Wohlford-Lenane CL, Naumann PW, Salzman NH, McCray PB. Increased susceptibility to otitis media in a Splunc1-deficient mouse model. Dis Model Mech 2015; 8:501-8. [PMID: 25765466 PMCID: PMC4415896 DOI: 10.1242/dmm.019646] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Accepted: 03/07/2015] [Indexed: 12/15/2022] Open
Abstract
Otitis media (inflammation of the middle ear) is one of the most common diseases of early childhood. Susceptibility to otitis is influenced by a number of factors, including the actions of innate immune molecules secreted by the epithelia lining the nasopharynx, middle ear and Eustachian tube. The SPLUNC1 (short palate, lung, nasal epithelial clone 1) protein is a highly abundant secretory product of the mammalian nasal, oral and respiratory mucosa that is thought to play a multifunctional role in host defense. In this study we investigated Splunc1 expression in the ear of the mouse, and examined whether this protein contributes to overall host defense in the middle ear and/or Eustachian tube. We found that Splunc1 is highly expressed in both the surface epithelium and in submucosal glands in these regions in wild-type mice. In mice lacking Splunc1, we noted histologically an increased frequency of otitis media, characterized by the accumulation of leukocytes (neutrophils with scattered macrophages), proteinaceous fluid and mucus in the middle ear lumens. Furthermore, many of these mice had extensive remodeling of the middle ear wall, suggesting a chronic course of disease. From these observations, we conclude that loss of Splunc1 predisposes mice to the development of otitis media. The Splunc1−/− mouse model should help investigators to better understand both the biological role of Splunc1 as well as host defense mechanisms in the middle ear. Summary: We document expression of the innate immune factor Splunc1 in the murine middle ear and Eustachian tube, and describe spontaneous development of otitis media in mice lacking functional Splunc1.
Collapse
Affiliation(s)
- Jennifer A Bartlett
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - David K Meyerholz
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | | | - Paul W Naumann
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Nita H Salzman
- Department of Pediatrics, Division of Gastroenterology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Paul B McCray
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
44
|
Zheng X, Cheng M, Fu B, Fan X, Wang Q, Yu X, Sun R, Tian Z, Wei H. Targeting LUNX inhibits non-small cell lung cancer growth and metastasis. Cancer Res 2015; 75:1080-90. [PMID: 25600649 DOI: 10.1158/0008-5472.can-14-1831] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
There remains a great need for effective therapies for lung cancer, the majority of which are non-small cell lung cancers (NSCLC). Here, we report the identification of a novel candidate therapeutic target, LUNX, as a molecule overexpressed in primary NSCLC and lymph node metastases that is associated with reduced postoperative survival. Functional studies demonstrated that LUNX overexpression promoted lung cancer cell migration and proliferation by interactions with the chaperone protein 14-3-3. Conversely, LUNX silencing disrupted primary tumor growth, local invasion, and metastatic colonization. The finding that LUNX was expressed on cell membranes prompted us to generate and characterize LUNX antibodies as a candidate therapeutic. Anti-LUNX could downregulate LUNX and reduce lung cancer cell proliferation and migration in vitro. Administered in vivo to mice bearing lung cancer xenografts, anti-LUNX could slow tumor growth and metastasis and improve mouse survival. Together, our work provides a preclinical proof of concept for LUNX as a novel candidate target for immunotherapy in lung cancer.
Collapse
Affiliation(s)
- Xiaohu Zheng
- Institute of Immunology, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China. Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui, China
| | - Min Cheng
- Institute of Immunology, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China. Anhui Province Hospital Affiliated Anhui Medical University, Hefei, Anhui, China
| | - Binqing Fu
- Institute of Immunology, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China. Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui, China
| | - Xiaolei Fan
- Institute of Immunology, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China. Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui, China
| | - Qing Wang
- Anhui Chest Hospital, Hefei, Anhui, China
| | - Xiaoqing Yu
- The First People's Hospital of Hefei, Hefei, Anhui, China
| | - Rui Sun
- Institute of Immunology, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China. Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui, China
| | - Zhigang Tian
- Institute of Immunology, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China. Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui, China.
| | - Haiming Wei
- Institute of Immunology, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China. Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui, China.
| |
Collapse
|
45
|
Calkovska A, Uhliarova B, Joskova M, Franova S, Kolomaznik M, Calkovsky V, Smolarova S. Pulmonary surfactant in the airway physiology: a direct relaxing effect on the smooth muscle. Respir Physiol Neurobiol 2015; 209:95-105. [PMID: 25583659 DOI: 10.1016/j.resp.2015.01.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 01/05/2015] [Accepted: 01/05/2015] [Indexed: 12/13/2022]
Abstract
Beside alveoli, surface active material plays an important role in the airway physiology. In the upper airways it primarily serves in local defense. Lower airway surfactant stabilizes peripheral airways, provides the transport and defense, has barrier and anti-edematous functions, and possesses direct relaxant effect on the smooth muscle. We tested in vitro the effect of two surfactant preparations Curosurf® and Alveofact® on the precontracted smooth muscle of intra- and extra-pulmonary airways. Relaxation was more pronounced for lung tissue strip containing bronchial smooth muscle as the primary site of surfactant effect. The study does not confirm the participation of ATP-dependent potassium channels and cAMP-regulated epithelial chloride channels known as CFTR chloride channels, or nitric oxide involvement in contractile response of smooth muscle to surfactant.By controlling wall thickness and airway diameter, pulmonary surfactant is an important component of airway physiology. Thus, surfactant dysfunction may be included in pathophysiology of asthma, COPD, or other diseases with bronchial obstruction.
Collapse
Affiliation(s)
- A Calkovska
- Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Slovakia.
| | - B Uhliarova
- Department of Otorhinolaryngology, FD Roosevelt Faculty Hospital, Banska Bystrica, Slovakia.
| | - M Joskova
- Department of Pharmacology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Slovakia.
| | - S Franova
- Department of Pharmacology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Slovakia.
| | - M Kolomaznik
- Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Slovakia.
| | - V Calkovsky
- Clinic of Otorhinolaryngology and Head and Neck Surgery, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava and University Hospital Martin, Slovakia.
| | - S Smolarova
- Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Slovakia.
| |
Collapse
|
46
|
Role of innate immunity in the pathogenesis of otitis media. Int J Infect Dis 2014; 29:259-67. [PMID: 25447732 DOI: 10.1016/j.ijid.2014.10.015] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 09/29/2014] [Accepted: 10/02/2014] [Indexed: 12/12/2022] Open
Abstract
Otitis media (OM) is a public health problem in both developed and developing countries. It is the leading cause of hearing loss and represents a significant healthcare burden. In some cases, acute OM progresses to chronic suppurative OM (CSOM), characterized by effusion and discharge, despite antimicrobial therapy. The emergence of antibiotic resistance and potential ototoxicity of antibiotics has created an urgent need to design non-conventional therapeutic strategies against OM based on modern insights into its pathophysiology. In this article, we review the role of innate immunity as it pertains to OM and discuss recent advances in understanding the role of innate immune cells in protecting the middle ear. We also discuss the mechanisms utilized by pathogens to subvert innate immunity and thereby overcome defensive responses. A better knowledge about bacterial virulence and host resistance promises to reveal novel targets to design effective treatment strategies against OM. The identification and characterization of small natural compounds that can boost innate immunity may provide new avenues for the treatment of OM. There is also a need to design novel methods for targeted delivery of these compounds into the middle ear, allowing higher therapeutic doses and minimizing systemic side effects.
Collapse
|
47
|
Herwig A, Campbell G, Mayer CD, Boelen A, Anderson RA, Ross AW, Mercer JG, Barrett P. A thyroid hormone challenge in hypothyroid rats identifies T3 regulated genes in the hypothalamus and in models with altered energy balance and glucose homeostasis. Thyroid 2014; 24:1575-93. [PMID: 25087834 PMCID: PMC4229697 DOI: 10.1089/thy.2014.0169] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND The thyroid hormone triiodothyronine (T3) is known to affect energy balance. Recent evidence points to an action of T3 in the hypothalamus, a key area of the brain involved in energy homeostasis, but the components and mechanisms are far from understood. The aim of this study was to identify components in the hypothalamus that may be involved in the action of T3 on energy balance regulatory mechanisms. METHODS Sprague Dawley rats were made hypothyroid by giving 0.025% methimazole (MMI) in their drinking water for 22 days. On day 21, half the MMI-treated rats received a saline injection, whereas the others were injected with T3. Food intake and body weight measurements were taken daily. Body composition was determined by magnetic resonance imaging, gene expression was analyzed by in situ hybridization, and T3-induced gene expression was determined by microarray analysis of MMI-treated compared to MMI-T3-injected hypothalamic RNA. RESULTS Post mortem serum thyroid hormone levels showed that MMI treatment decreased circulating thyroid hormones and increased thyrotropin (TSH). MMI treatment decreased food intake and body weight. Body composition analysis revealed reduced lean and fat mass in thyroidectomized rats from day 14 of the experiment. MMI treatment caused a decrease in circulating triglyceride concentrations, an increase in nonesterified fatty acids, and decreased insulin levels. A glucose tolerance test showed impaired glucose clearance in the thyroidectomized animals. In the brain, in situ hybridization revealed marked changes in gene expression, including genes such as Mct8, a thyroid hormone transporter, and Agrp, a key component in energy balance regulation. Microarray analysis revealed 110 genes to be up- or downregulated with T3 treatment (± 1.3-fold change, p<0.05). Three genes chosen from the differentially expressed genes were verified by in situ hybridization to be activated by T3 in cells located at or close to the hypothalamic ventricular ependymal layer and differentially expressed in animal models of long- and short-term body weight regulation. CONCLUSION This study identified genes regulated by T3 in the hypothalamus, a key area of the brain involved in homeostasis and neuroendocrine functions. These include genes hitherto not known to be regulated by thyroid status.
Collapse
Affiliation(s)
- Annika Herwig
- Ingestive Behaviour Group, Rowett Institute for Nutrition and Health, University of Aberdeen, Aberdeen, United Kingdom
- Zoological Institute, University of Hamburg, Hamburg, Germany
| | - Gill Campbell
- Ingestive Behaviour Group, Rowett Institute for Nutrition and Health, University of Aberdeen, Aberdeen, United Kingdom
| | - Claus-Dieter Mayer
- Biomathematics and Statistics Scotland, Rowett Institute for Nutrition and Health, University of Aberdeen, Aberdeen, United Kingdom
| | - Anita Boelen
- Department of Endocrinology, Metabolism, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Richard A. Anderson
- Ingestive Behaviour Group, Rowett Institute for Nutrition and Health, University of Aberdeen, Aberdeen, United Kingdom
| | - Alexander W. Ross
- Ingestive Behaviour Group, Rowett Institute for Nutrition and Health, University of Aberdeen, Aberdeen, United Kingdom
| | - Julian G. Mercer
- Ingestive Behaviour Group, Rowett Institute for Nutrition and Health, University of Aberdeen, Aberdeen, United Kingdom
| | - Perry Barrett
- Ingestive Behaviour Group, Rowett Institute for Nutrition and Health, University of Aberdeen, Aberdeen, United Kingdom
| |
Collapse
|
48
|
Microbial biofilms: biosurfactants as antibiofilm agents. Appl Microbiol Biotechnol 2014; 98:9915-29. [DOI: 10.1007/s00253-014-6169-6] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 10/13/2014] [Accepted: 10/14/2014] [Indexed: 10/24/2022]
|
49
|
Ning F, Wang C, Berry KZ, Kandasamy P, Liu H, Murphy RC, Voelker DR, Nho CW, Pan CH, Dai S, Niu L, Chu HW, Zhang G. Structural characterization of the pulmonary innate immune protein SPLUNC1 and identification of lipid ligands. FASEB J 2014; 28:5349-60. [PMID: 25223608 DOI: 10.1096/fj.14-259291] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The short palate, lung and nasal epithelial clone 1 (SPLUNC1) protein is a member of the palate, lung, and nasal epithelium clone (PLUNC) family, also known as bactericidal/permeability-increasing (BPI) fold-containing protein, family A, member 1 (BPIFA1). SPLUNC1 is an abundant protein in human airways, but its function remains poorly understood. The lipid ligands of SPLUNC1 as well as other PLUNC family members are largely unknown, although some reports provide evidence that lipopolysaccharide (LPS) could be a lipid ligand. Unlike previous hypotheses, we found significant structural differences between SPLUNC1 and BPI. Recombinant SPLUNC1 produced in HEK 293 cells harbored several molecular species of sphingomyelin and phosphatidylcholine as its ligands. Significantly, in vitro lipid-binding studies failed to demonstrate interactions between SPLUNC1 and LPS, lipoteichoic acid, or polymyxin B. Instead, one of the major and most important pulmonary surfactant phospholipids, dipalmitoylphosphatidylcholine (DPPC), bound to SPLUNC1 with high affinity and specificity. We found that SPLUNC1 could be the first protein receptor for DPPC. These discoveries provide insight into the specific determinants governing the interaction between SPLUNC1 and lipids and also shed light on novel functions that SPLUNC1 and other PLUNC family members perform in host defense.
Collapse
Affiliation(s)
- Fangkun Ning
- School of Life Sciences, University of Science and Technology of China, Hefei, China; Integrated Department of Immunology, National Jewish Health and University of Colorado Denver, Denver, Colorado, USA
| | - Chao Wang
- Integrated Department of Immunology, National Jewish Health and University of Colorado Denver, Denver, Colorado, USA
| | - Karin Zemski Berry
- Department of Pharmacology, University of Colorado Denver, Aurora, Colorado, USA
| | | | - Haolin Liu
- Integrated Department of Immunology, National Jewish Health and University of Colorado Denver, Denver, Colorado, USA
| | - Robert C Murphy
- Department of Pharmacology, University of Colorado Denver, Aurora, Colorado, USA
| | - Dennis R Voelker
- Department of Medicine, National Jewish Health, Denver, Colorado, USA; and
| | - Chu Won Nho
- Functional Food Center, Korea Institute of Science and Technology, GangNeung, Korea
| | - Choel-Ho Pan
- Functional Food Center, Korea Institute of Science and Technology, GangNeung, Korea
| | - Shaodong Dai
- Integrated Department of Immunology, National Jewish Health and University of Colorado Denver, Denver, Colorado, USA
| | - Liwen Niu
- School of Life Sciences, University of Science and Technology of China, Hefei, China;
| | - Hong-Wei Chu
- Integrated Department of Immunology, National Jewish Health and University of Colorado Denver, Denver, Colorado, USA; Department of Medicine, National Jewish Health, Denver, Colorado, USA; and
| | - Gongyi Zhang
- Integrated Department of Immunology, National Jewish Health and University of Colorado Denver, Denver, Colorado, USA
| |
Collapse
|
50
|
PLUNC proteins positivity in patients with chronic rhinosinusitis: a case-control study. ScientificWorldJournal 2014; 2014:853583. [PMID: 25136695 PMCID: PMC4124241 DOI: 10.1155/2014/853583] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 06/18/2014] [Accepted: 06/20/2014] [Indexed: 11/17/2022] Open
Abstract
Introduction. Innate immunity is the first protection against microorganisms. Nowadays, there is a growing interest in innate immune molecule known as palate, lung, nasal epithelial clone (PLUNC). PLUNC is a specific product of the airways, of approximately 25 kDa, encoded by adjacent genes found within a 300 kb region of chromosome 20; these proteins must be detected predominantly in the upper respiratory tract. Materials and Methods. We performed a case-control study to investigate the presence of this protein in nasal tissue of patients affected by chronic rhinosinusitis. 59 patients were enrolled (44 cases, 15 controls). We have examined the correlation between the presence of pathology and the PLUNC proteins positivity. Results. 100% of controls have a +++ rated PLUNC proteins positivity, while cases have a lower percentage of positivity. We used χ2 statistical test to analyze the results of the study and there is a difference statistically significant between cases and controls in PLUNC proteins positivity. Conclusions. These observations suggest that, in response to agents or chemical factors, nasal mucosal epithelium will react and produce PLUNC proteins. So PLUNC proteins have a protective function on upper airways mucosa, as we can see by evaluating the high positivity in control group.
Collapse
|