1
|
Nawae W, Sangsrakru D, Yoocha T, Pinsupa S, Phetchawang P, Bua-Art S, Chusri O, Tangphatsornruang S, Pootakham W. Differences in transcriptomic responses upon Phytophthora palmivora infection among cultivars reveal potential underlying resistant mechanisms in durian. BMC PLANT BIOLOGY 2024; 24:878. [PMID: 39358741 PMCID: PMC11448271 DOI: 10.1186/s12870-024-05545-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 08/26/2024] [Indexed: 10/04/2024]
Abstract
BACKGROUND Phytophthora palmivora is a devastating oomycete pathogen in durian, one of the most economically important crops in Southeast Asia. The use of fungicides in Phytophthora management may not be a long-term solution because of emerging chemical resistance issues. It is crucial to develop Phytophthora-resistant durian cultivars, and information regarding the underlying resistance mechanisms is valuable for smart breeding programs. RESULTS In this study, we conducted RNA sequencing (RNA-seq) to investigate early gene expression responses (at 8, 24, and 48 h) after the P. palmivora infection in three durian cultivars, which included one resistant cultivar (Puangmanee; PM) and two susceptible cultivars (Monthong; MT and Kradumthong; KD). We performed co-expression and differential gene expression analyses to capture gene expression patterns and identify the differentially expressed genes. The results showed that genes encoding heat shock proteins (HSPs) were upregulated in all infected durians. The expression levels of genes encoding HSPs, such as ERdj3B, were high only in infected PM. A higher level of P. palmivora resistance in PM appeared to be associated with higher expression levels of various genes encoding defense and chitin response proteins, such as lysM domain receptor-like kinases. MT had a lower resistance level than PM, although it possessed more upregulated genes during P. palmivora infection. Many photosynthetic and defense genes were upregulated in the infected MT, although their expression levels were lower than those in the infected PM. KD, the least resistant cultivar, showed downregulation of genes involved in cell wall organization or biogenesis during P. palmivora infection. CONCLUSIONS Our results showed that the three durian cultivars exhibited significantly different gene expression patterns in response to P. palmivora infection. The upregulation of genes encoding HSPs was common in all studied durians. The high expression of genes encoding chitin response proteins likely contributed to P. palmivora resistance in durians. Durian susceptibility was associated with low basal expression of defense genes and downregulation of several cell wall-related genes. These findings enhance our understanding of durian resistance to Phytophthora infection and could be useful for the development of elite durian cultivars.
Collapse
Affiliation(s)
- Wanapinun Nawae
- National Omics Center, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Thailand Science Park, Pathum Thani, Thailand
| | - Duangjai Sangsrakru
- National Omics Center, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Thailand Science Park, Pathum Thani, Thailand
| | - Thippawan Yoocha
- National Omics Center, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Thailand Science Park, Pathum Thani, Thailand
| | - Suparat Pinsupa
- National Omics Center, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Thailand Science Park, Pathum Thani, Thailand
| | - Phakamas Phetchawang
- National Omics Center, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Thailand Science Park, Pathum Thani, Thailand
| | - Sureeporn Bua-Art
- Department of Agriculture, Plant Pathology Research Group Plant Protection Research and Development Office, Bangkok, Thailand
| | - Orwintinee Chusri
- Chanthaburi Horticultural Research Center, Khlung, Chanthaburi, Thailand
| | - Sithichoke Tangphatsornruang
- National Omics Center, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Thailand Science Park, Pathum Thani, Thailand
| | - Wirulda Pootakham
- National Omics Center, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Thailand Science Park, Pathum Thani, Thailand.
| |
Collapse
|
2
|
Lee HY, Back K. Melatonin-Regulated Chaperone Binding Protein Plays a Key Role in Cadmium Stress Tolerance in Rice, Revealed by the Functional Characterization of a Novel Serotonin N-Acetyltransferase 3 ( SNAT3) in Rice. Int J Mol Sci 2024; 25:5952. [PMID: 38892140 PMCID: PMC11172786 DOI: 10.3390/ijms25115952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
The study of the mechanisms by which melatonin protects against cadmium (Cd) toxicity in plants is still in its infancy, particularly at the molecular level. In this study, the gene encoding a novel serotonin N-acetyltransferase 3 (SNAT3) in rice, a pivotal enzyme in the melatonin biosynthetic pathway, was cloned. Rice (Oryza sativa) OsSNAT3 is the first identified plant ortholog of archaeon Thermoplasma volcanium SNAT. The purified recombinant OsSNAT3 catalyzed the conversion of serotonin and 5-methoxytryptamine to N-acetylserotonin and melatonin, respectively. The suppression of OsSNAT3 by RNAi led to a decline in endogenous melatonin levels followed by a reduction in Cd tolerance in transgenic RNAi rice lines. In addition, the expression levels of genes encoding the endoplasmic reticulum (ER) chaperones BiP3, BiP4, and BiP5 were much lower in RNAi lines than in the wild type. In transgenic rice plants overexpressing OsSNAT3 (SNAT3-OE), however, melatonin levels were higher than in wild-type plants. SNAT3-OE plants also tolerated Cd stress, as indicated by seedling growth, malondialdehyde, and chlorophyll levels. BiP4 expression was much higher in the SNAT3-OE lines than in the wild type. These results indicate that melatonin engineering could help crops withstand Cd stress, resulting in high yields in Cd-contaminated fields.
Collapse
Affiliation(s)
| | - Kyoungwhan Back
- Department of Molecular Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea;
| |
Collapse
|
3
|
Ivanauskas A, Inaba J, Zhao Y, Bottner-Parker KD, Wei W. Differential Symptomology, Susceptibility, and Titer Dynamics Manifested by Phytoplasma-Infected Periwinkle and Tomato Plants. PLANTS (BASEL, SWITZERLAND) 2024; 13:787. [PMID: 38592808 PMCID: PMC10974080 DOI: 10.3390/plants13060787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/08/2024] [Accepted: 03/09/2024] [Indexed: 04/11/2024]
Abstract
Phytoplasmas are intracellular pathogenic bacteria that infect a wide range of plant species, including agriculturally important crops and ornamental trees. However, our understanding of the relationship between symptom severity, disease progression, and phytoplasma concentration remains limited due to the inability to inoculate phytoplasmas mechanically into new plant hosts. The present study investigated phytoplasma titer dynamics and symptom development in periwinkle and tomato, both infected with the same potato purple top (PPT) phytoplasma strain using a small seedling grafting approach. Virescence, phyllody, and witches'-broom (WB) symptoms sequentially developed in periwinkle, while in tomato plants, big bud (BB, a form of phyllody), cauliflower-like inflorescence (CLI), and WB appeared in order. Results from quantitative polymerase chain reaction (qPCR) targeting the PPT phytoplasma's 16S rRNA gene revealed that in both host species, phytoplasma titers differed significantly at different infection stages. Notably, the highest phytoplasma concentration in periwinkles was observed in samples displaying phyllody symptoms, whereas in tomatoes, the titer peaked at the BB stage. Western blot analysis, utilizing an antibody specific to PPT phytoplasma, confirmed substantial phytoplasma presence in samples displaying phyllody and BB symptoms, consistent with the qPCR results. These findings challenge the conventional understanding that phytoplasma infection dynamics result in a higher titer at later stages, such as WB (excessive vegetative growth), rather than in the early stage, such as phyllody (abnormal reproductive growth). Furthermore, the PPT phytoplasma titer was markedly higher in periwinkles than in tomato plants, indicating differing susceptibilities between the hosts. This study reveals distinct host responses to PPT phytoplasma infection, providing valuable insights into phytoplasma titer dynamics and symptom development, with implications for the future management of agricultural disease.
Collapse
Affiliation(s)
- Algirdas Ivanauskas
- Molecular Plant Pathology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA; (A.I.); (J.I.); (Y.Z.); (K.D.B.-P.)
- Laboratory of Plant Pathology, Nature Research Centre, Akademijos Str. 2, LT-08412 Vilnius, Lithuania
| | - Junichi Inaba
- Molecular Plant Pathology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA; (A.I.); (J.I.); (Y.Z.); (K.D.B.-P.)
| | - Yan Zhao
- Molecular Plant Pathology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA; (A.I.); (J.I.); (Y.Z.); (K.D.B.-P.)
| | - Kristi D. Bottner-Parker
- Molecular Plant Pathology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA; (A.I.); (J.I.); (Y.Z.); (K.D.B.-P.)
| | - Wei Wei
- Molecular Plant Pathology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA; (A.I.); (J.I.); (Y.Z.); (K.D.B.-P.)
| |
Collapse
|
4
|
King FJ, Yuen ELH, Bozkurt TO. Border Control: Manipulation of the Host-Pathogen Interface by Perihaustorial Oomycete Effectors. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2024; 37:220-226. [PMID: 37999635 DOI: 10.1094/mpmi-09-23-0122-fi] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Filamentous plant pathogens, including fungi and oomycetes, cause some of the most devastating plant diseases. These organisms serve as ideal models for understanding the intricate molecular interplay between plants and the invading pathogens. Filamentous pathogens secrete effector proteins via haustoria, specialized structures for infection and nutrient uptake, to suppress the plant immune response and to reprogram plant metabolism. Recent advances in cell biology have provided crucial insights into the biogenesis of the extrahaustorial membrane and the redirection of host endomembrane trafficking toward this interface. Functional studies have shown that an increasing number of oomycete effectors accumulate at the perihaustorial interface to subvert plant focal immune responses, with a particular convergence on targets involved in host endomembrane trafficking. In this review, we summarize the diverse mechanisms of perihaustorial effectors from oomycetes and pinpoint pressing questions regarding their role in manipulating host defense and metabolism at the haustorial interface. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Freddie J King
- Department of Life Sciences, Imperial College, London, SW7 2AZ, U.K
| | | | - Tolga O Bozkurt
- Department of Life Sciences, Imperial College, London, SW7 2AZ, U.K
| |
Collapse
|
5
|
Yang Z, Zhu Z, Guo Y, Lan J, Zhang J, Chen S, Dou S, Yang M, Li L, Liu G. OsMKK1 is a novel element that positively regulates the Xa21-mediated resistance response to Xanthomonas oryzae pv. oryzae in rice. PLANT CELL REPORTS 2024; 43:31. [PMID: 38195905 DOI: 10.1007/s00299-023-03085-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 10/18/2023] [Indexed: 01/11/2024]
Abstract
KEY MESSAGE OsMKK1, a MAPK gene, positively regulates rice Xa21-mediated resistance response and also plays roles in normal growth and development process of rice. The mitogen-activated protein kinase (MAPK) cascade was highly conserved among eukaryotes, which played crucial roles in plant responses to pathogen infection. Bacterial blight is the most devastating bacterial disease. Xa21 confers broad-spectrum resistance to Xanthomonas oryzae pv. Oryzae (Xoo). This study identified that the transcription level of OsMKK1 was up-regulated in resistant response against Xoo, thus overexpression (OsMKK1-OX) and RNA interference (OsMKK1-RNAi) transgenic rice lines under the background of Xa21 was constructed. Compared with recipient control plants 4021, the OsMKK1-OX lines significantly enhanced disease resistance to Xoo, on the contrary, the resistance of OsMKK1-RNAi lines was weakened, demonstrated that OsMKK1 played a positive role in Xa21-mediated disease resistance pathway. A number of pathogenesis-related proteins, including PR1A, PR2 and PR10A showed enhanced expression in OsMKK1-OX lines, supported that these PR genes may be regulated by OsMKK1 to participate in the defense responses. In addition, the agronomic traits of OsMKK1 transgenic plants were affected. Overall, these results revealed the role of OsMKK1 in Xa21-mediated resistance against Xoo and in the normal growth and development process in rice.
Collapse
Affiliation(s)
- ZeXi Yang
- Hebei Key Laboratory of Plant Physiology and Molecular Pathology, College of Life Sciences, Hebei Agricultural University, Baoding, 071001, Hebei, China
| | - Zheng Zhu
- Hebei Key Laboratory of Plant Physiology and Molecular Pathology, College of Life Sciences, Hebei Agricultural University, Baoding, 071001, Hebei, China
| | - Yalu Guo
- Hebei Key Laboratory of Plant Physiology and Molecular Pathology, College of Life Sciences, Hebei Agricultural University, Baoding, 071001, Hebei, China
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518116, Guangdong, China
| | - Jinping Lan
- Hebei Key Laboratory of Plant Physiology and Molecular Pathology, College of Life Sciences, Hebei Agricultural University, Baoding, 071001, Hebei, China
- Research Center for Life Sciences, Hebei North University, Zhangjiakou, 075000, Hebei, China
| | - Jianshuo Zhang
- Hebei Key Laboratory of Plant Physiology and Molecular Pathology, College of Life Sciences, Hebei Agricultural University, Baoding, 071001, Hebei, China
| | - Shuo Chen
- Hebei Key Laboratory of Plant Physiology and Molecular Pathology, College of Life Sciences, Hebei Agricultural University, Baoding, 071001, Hebei, China
| | - Shijuan Dou
- Hebei Key Laboratory of Plant Physiology and Molecular Pathology, College of Life Sciences, Hebei Agricultural University, Baoding, 071001, Hebei, China
| | - Ming Yang
- Hebei Key Laboratory of Plant Physiology and Molecular Pathology, College of Life Sciences, Hebei Agricultural University, Baoding, 071001, Hebei, China
| | - Liyun Li
- Hebei Key Laboratory of Plant Physiology and Molecular Pathology, College of Life Sciences, Hebei Agricultural University, Baoding, 071001, Hebei, China.
| | - Guozhen Liu
- Hebei Key Laboratory of Plant Physiology and Molecular Pathology, College of Life Sciences, Hebei Agricultural University, Baoding, 071001, Hebei, China.
| |
Collapse
|
6
|
Son S, Park SR. The rice SnRK family: biological roles and cell signaling modules. FRONTIERS IN PLANT SCIENCE 2023; 14:1285485. [PMID: 38023908 PMCID: PMC10644236 DOI: 10.3389/fpls.2023.1285485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/19/2023] [Indexed: 12/01/2023]
Abstract
Stimulus-activated signaling pathways orchestrate cellular responses to control plant growth and development and mitigate the effects of adverse environmental conditions. During this process, signaling components are modulated by central regulators of various signal transduction pathways. Protein phosphorylation by kinases is one of the most important events transmitting signals downstream, via the posttranslational modification of signaling components. The plant serine and threonine kinase SNF1-related protein kinase (SnRK) family, which is classified into three subgroups, is highly conserved in plants. SnRKs participate in a wide range of signaling pathways and control cellular processes including plant growth and development and responses to abiotic and biotic stress. Recent notable discoveries have increased our understanding of how SnRKs control these various processes in rice (Oryza sativa). In this review, we summarize current knowledge of the roles of OsSnRK signaling pathways in plant growth, development, and stress responses and discuss recent insights. This review lays the foundation for further studies on SnRK signal transduction and for developing strategies to enhance stress tolerance in plants.
Collapse
Affiliation(s)
| | - Sang Ryeol Park
- National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, Republic of Korea
| |
Collapse
|
7
|
Inaba J, Kim BM, Zhao Y, Jansen AM, Wei W. The Endoplasmic Reticulum Is a Key Battleground between Phytoplasma Aggression and Host Plant Defense. Cells 2023; 12:2110. [PMID: 37626920 PMCID: PMC10453741 DOI: 10.3390/cells12162110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 08/18/2023] [Accepted: 08/19/2023] [Indexed: 08/27/2023] Open
Abstract
Phytoplasmas are intracellular plant pathogens that heavily rely on host cell nutrients for survival and propagation due to their limited ability to synthesize essential substrates. The endoplasmic reticulum (ER), which plays a vital role in various cellular processes, including lipid and protein biosynthesis, is an attractive target for numerous intracellular pathogens to exploit. This study investigated the impact of potato purple top (PPT) phytoplasma infection on the ER in tomato plants. Abnormal accumulation of ER-resident proteins, disrupted ER network structures, and formation of protein aggregates in the phloem were observed using confocal microscopy and transmission electron microscopy, indicating a phytoplasma-infection-induced disturbance in ER homeostasis. The colocalization of phytoplasmas with the accumulated ER-resident proteins suggests an association between ER stress, unfolded protein response (UPR) induction, and phytoplasma infection and colonization, with the ER stress response likely contributing to the host plant's defense mechanisms. Quantitative real-time PCR revealed a negative correlation between ER stress/UPR activation and PPT phytoplasma titer, implying the involvement of UPR in curbing phytoplasma proliferation. Inducing ER stress and activating the UPR pathway effectively decreased phytoplasma titer, while suppressing the ER-resident protein, binding immunoglobulin protein (BiP) increased phytoplasma titer. These results highlight the ER as an intracellular battleground where phytoplasmas exploit host components for survival and multiplication, while host plants deploy defense mechanisms to counteract the invasion. Understanding the intricate interactions between phytoplasmas and plant hosts at the subcellular level, particularly within the ER, provides valuable insights for developing new strategies to control phytoplasma diseases.
Collapse
Affiliation(s)
- Junichi Inaba
- Molecular Plant Pathology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA; (J.I.); (B.M.K.); (Y.Z.)
| | - Bo Min Kim
- Molecular Plant Pathology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA; (J.I.); (B.M.K.); (Y.Z.)
| | - Yan Zhao
- Molecular Plant Pathology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA; (J.I.); (B.M.K.); (Y.Z.)
| | - Andrew M. Jansen
- Electron and Confocal Microscopy Unit, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA;
| | - Wei Wei
- Molecular Plant Pathology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA; (J.I.); (B.M.K.); (Y.Z.)
| |
Collapse
|
8
|
Zhu Z, Wang T, Lan J, Ma J, Xu H, Yang Z, Guo Y, Chen Y, Zhang J, Dou S, Yang M, Li L, Liu G. Rice MPK17 Plays a Negative Role in the Xa21-Mediated Resistance Against Xanthomonas oryzae pv. oryzae. RICE (NEW YORK, N.Y.) 2022; 15:41. [PMID: 35920921 PMCID: PMC9349333 DOI: 10.1186/s12284-022-00590-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
Rice bacterial blight, caused by Xanthomonas oryzae pv. oryzae (Xoo), is one of the most serious diseases affecting rice production worldwide. Xa21 was the first disease resistance gene cloned in rice, which encodes a receptor kinase and confers broad resistance against Xoo stains. Dozens of components in the Xa21-mediated pathway have been identified in the past decades, however, the involvement of mitogen-activated protein kinase (MAPK) genes in the pathway has not been well described. To identify MAPK involved in Xa21-mediated resistance, the level of MAPK proteins was profiled using Western blot analysis. The abundance of OsMPK17 (MPK17) was found decreased during the rice-Xoo interaction in the background of Xa21. To investigate the function of MPK17, MPK17-RNAi and over-expression (OX) transgenic lines were generated. The RNAi lines showed an enhanced resistance, while OX lines had impaired resistance against Xoo, indicating that MPK17 plays negative role in Xa21-mediated resistance. Furthermore, the abundance of transcription factor WRKY62 and pathogenesis-related proteins PR1A were changed in the MPK17 transgenic lines when inoculated with Xoo. We also observed that the MPK17-RNAi and -OX rice plants showed altered agronomic traits, indicating that MPK17 also plays roles in the growth and development. On the basis of the current study and published results, we propose a "Xa21-MPK17-WRKY62-PR1A" signaling that functions in the Xa21-mediated disease resistance pathway. The identification of MPK17 advances our understanding of the mechanism underlying Xa21-mediated immunity, specifically in the mid- and late-stages.
Collapse
Affiliation(s)
- Zheng Zhu
- College of Life Sciences, Hebei Agricultural University, 2596 Lekai South Street, West Campus, Baoding, 071001, Hebei, China
- Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Baoding, 071001, China
| | - Tianxingzi Wang
- College of Life Sciences, Hebei Agricultural University, 2596 Lekai South Street, West Campus, Baoding, 071001, Hebei, China
- Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Baoding, 071001, China
| | - Jinping Lan
- College of Life Sciences, Hebei Agricultural University, 2596 Lekai South Street, West Campus, Baoding, 071001, Hebei, China
- Research Center for Life Sciences, Hebei North University, Zhangjiakou, 075000, Hebei, China
| | - Jinjiao Ma
- College of Life Sciences, Hebei Agricultural University, 2596 Lekai South Street, West Campus, Baoding, 071001, Hebei, China
- Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Baoding, 071001, China
| | - Haiqing Xu
- College of Life Sciences, Hebei Agricultural University, 2596 Lekai South Street, West Campus, Baoding, 071001, Hebei, China
- Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Baoding, 071001, China
| | - Zexi Yang
- College of Life Sciences, Hebei Agricultural University, 2596 Lekai South Street, West Campus, Baoding, 071001, Hebei, China
- Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Baoding, 071001, China
| | - Yalu Guo
- College of Life Sciences, Hebei Agricultural University, 2596 Lekai South Street, West Campus, Baoding, 071001, Hebei, China
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518116, Guangdong, China
| | - Yue Chen
- College of Life Sciences, Hebei Agricultural University, 2596 Lekai South Street, West Campus, Baoding, 071001, Hebei, China
- Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Baoding, 071001, China
| | - Jianshuo Zhang
- College of Life Sciences, Hebei Agricultural University, 2596 Lekai South Street, West Campus, Baoding, 071001, Hebei, China
- Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Baoding, 071001, China
| | - Shijuan Dou
- College of Life Sciences, Hebei Agricultural University, 2596 Lekai South Street, West Campus, Baoding, 071001, Hebei, China
- Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Baoding, 071001, China
| | - Ming Yang
- College of Life Sciences, Hebei Agricultural University, 2596 Lekai South Street, West Campus, Baoding, 071001, Hebei, China
- Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Baoding, 071001, China
| | - Liyun Li
- College of Life Sciences, Hebei Agricultural University, 2596 Lekai South Street, West Campus, Baoding, 071001, Hebei, China.
- Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Baoding, 071001, China.
| | - Guozhen Liu
- College of Life Sciences, Hebei Agricultural University, 2596 Lekai South Street, West Campus, Baoding, 071001, Hebei, China.
- Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Baoding, 071001, China.
| |
Collapse
|
9
|
The Rice Malectin Regulates Plant Cell Death and Disease Resistance by Participating in Glycoprotein Quality Control. Int J Mol Sci 2022; 23:ijms23105819. [PMID: 35628631 PMCID: PMC9144812 DOI: 10.3390/ijms23105819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 11/16/2022] Open
Abstract
In animals, malectin is well known to play an essential role in endoplasmic reticulum quality control (ERQC) by interacting with ribophorin I, one unit of the oligosaccharyltransferase (OST) complex. However, the functions of malectin in plants remain largely unknown. Here, we demonstrate the rice OsMLD1 is an ER- and Golgi-associated malectin protein and physically interacts with rice homolog of ribophorin I (OsRpn1), and its disruption leads to spontaneous lesion mimic lesions, enhanced disease resistance, and prolonged ER stress. In addition, there are many more N-glycosites and N-glycoproteins identified from the mld1 mutant than wildtype. Furthermore, OsSERK1 and OsSERK2, which have more N-glycosites in mld1, were demonstrated to interact with OsMLD1. OsMLD1 can suppress OsSERK1- or OsSERK2-induced cell death. Thus, OsMLD1 may play a similar role to its mammalian homologs in glycoprotein quality control, thereby regulating cell death and immunity of rice, which uncovers the function of malectin in plants.
Collapse
|
10
|
Berka M, Kopecká R, Berková V, Brzobohatý B, Černý M. Regulation of heat shock proteins 70 and their role in plant immunity. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:1894-1909. [PMID: 35022724 PMCID: PMC8982422 DOI: 10.1093/jxb/erab549] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 12/10/2021] [Indexed: 05/03/2023]
Abstract
Heat shock proteins 70 (HSP70s) are steadily gaining more attention in the field of plant biotic interactions. Though their regulation and activity in plants are much less well characterized than are those of their counterparts in mammals, accumulating evidence indicates that the role of HSP70-mediated defense mechanisms in plant cells is indispensable. In this review, we summarize current knowledge of HSP70 post-translational control in plants. We comment on the phytohormonal regulation of HSP70 expression and protein abundance, and identify a prominent role for cytokinin in HSP70 control. We outline HSP70s' subcellular localizations, chaperone activity, and chaperone-mediated protein degradation. We focus on the role of HSP70s in plant pathogen-associated molecular pattern-triggered immunity and effector-triggered immunity, and discuss the contribution of different HSP70 subfamilies to plant defense against pathogens.
Collapse
Affiliation(s)
- Miroslav Berka
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, CZ-61300 Brno, Czech Republic
| | - Romana Kopecká
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, CZ-61300 Brno, Czech Republic
| | - Veronika Berková
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, CZ-61300 Brno, Czech Republic
| | - Břetislav Brzobohatý
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, CZ-61300 Brno, Czech Republic
| | - Martin Černý
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, CZ-61300 Brno, Czech Republic
- Correspondence:
| |
Collapse
|
11
|
Simoni EB, Oliveira CC, Fraga OT, Reis PAB, Fontes EPB. Cell Death Signaling From Endoplasmic Reticulum Stress: Plant-Specific and Conserved Features. FRONTIERS IN PLANT SCIENCE 2022; 13:835738. [PMID: 35185996 PMCID: PMC8850647 DOI: 10.3389/fpls.2022.835738] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/10/2022] [Indexed: 05/06/2023]
Abstract
The endoplasmic reticulum (ER) stress response is triggered by any condition that disrupts protein folding and promotes the accumulation of unfolded proteins in the lumen of the organelle. In eukaryotic cells, the evolutionarily conserved unfolded protein response is activated to clear unfolded proteins and restore ER homeostasis. The recovery from ER stress is accomplished by decreasing protein translation and loading into the organelle, increasing the ER protein processing capacity and ER-associated protein degradation activity. However, if the ER stress persists and cannot be reversed, the chronically prolonged stress leads to cellular dysfunction that activates cell death signaling as an ultimate attempt to survive. Accumulating evidence implicates ER stress-induced cell death signaling pathways as significant contributors for stress adaptation in plants, making modulators of ER stress pathways potentially attractive targets for stress tolerance engineering. Here, we summarize recent advances in understanding plant-specific molecular mechanisms that elicit cell death signaling from ER stress. We also highlight the conserved features of ER stress-induced cell death signaling in plants shared by eukaryotic cells.
Collapse
|
12
|
Yu X, Mo Z, Tang X, Gao T, Mao Y. Genome-wide analysis of HSP70 gene superfamily in Pyropia yezoensis (Bangiales, Rhodophyta): identification, characterization and expression profiles in response to dehydration stress. BMC PLANT BIOLOGY 2021; 21:435. [PMID: 34560838 PMCID: PMC8464122 DOI: 10.1186/s12870-021-03213-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 09/14/2021] [Indexed: 05/12/2023]
Abstract
BACKGROUND Heat shock proteins (HSPs) perform a fundamental role in protecting plants against abiotic stresses. Individual family members have been analyzed in previous studies, but there has not yet been a comprehensive analysis of the HSP70 gene family in Pyropia yezoensis. RESULTS We investigated 15 putative HSP70 genes in Py. yezoensis. These genes were classified into two sub-families, denoted as DnaK and Hsp110. In each sub-family, there was relative conservation of the gene structure and motif. Synteny-based analysis indicated that seven and three PyyHSP70 genes were orthologous to HSP70 genes in Pyropia haitanensis and Porphyra umbilicalis, respectively. Most PyyHSP70s showed up-regulated expression under different degrees of dehydration stress. PyyHSP70-1 and PyyHSP70-3 were expressed in higher degrees compared with other PyyHSP70s in dehydration treatments, and then expression degrees somewhat decreased in rehydration treatment. Subcellular localization showed PyyHSP70-1-GFP and PyyHSP70-3-GFP were in the cytoplasm and nucleus/cytoplasm, respectively. Similar expression patterns of paired orthologs in Py. yezoensis and Py. haitanensis suggest important roles for HSP70s in intertidal environmental adaptation during evolution. CONCLUSIONS These findings provide insight into the evolution and modification of the PyyHSP70 gene family and will help to determine the functions of the HSP70 genes in Py. yezoensis growth and development.
Collapse
Affiliation(s)
- Xinzi Yu
- Key Laboratory of Marine Genetics and Breeding (Ministry of Education), Ocean University of China, Qingdao, 266003, China
- College of Marine Life Sciences , Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Zhaolan Mo
- Key Laboratory of Marine Genetics and Breeding (Ministry of Education), Ocean University of China, Qingdao, 266003, China
- College of Marine Life Sciences , Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Xianghai Tang
- Key Laboratory of Marine Genetics and Breeding (Ministry of Education), Ocean University of China, Qingdao, 266003, China
- College of Marine Life Sciences , Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Tian Gao
- Key Laboratory of Marine Genetics and Breeding (Ministry of Education), Ocean University of China, Qingdao, 266003, China
- College of Marine Life Sciences , Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Yunxiang Mao
- Key Laboratory of Utilization and Conservation of Tropical Marine Bioresource (Hainan Tropical Ocean University), Ministry of Education, Sanya, 572022, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| |
Collapse
|
13
|
Zhou Y, Yang K, Cheng M, Cheng Y, Li Y, Ai G, Bai T, Xu R, Duan W, Peng H, Li X, Xia A, Wang Y, Jing M, Dou D, Dickman MB. Double-faced role of Bcl-2-associated athanogene 7 in plant-Phytophthora interaction. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:5751-5765. [PMID: 34195821 DOI: 10.1093/jxb/erab252] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 06/03/2021] [Indexed: 06/13/2023]
Abstract
Due to their sessile nature, plants must respond to various environmental assaults in a coordinated manner. The endoplasmic reticulum is a central hub for plant responses to various stresses. We previously showed that Phytophthora utilizes effector PsAvh262-mediated binding immunoglobulin protein (BiP) accumulation for suppressing endoplasmic reticulum stress-triggered cell death. As a BiP binding partner, Bcl-2-associated athanogene 7 (BAG7) plays a crucial role in the maintenance of the unfolded protein response, but little is known about its role in plant immunity. In this work, we reveal a double-faced role of BAG7 in Arabidopsis-Phytophthora interaction in which it regulates endoplasmic reticulum stress-mediated immunity oppositely in different cellular compartments. In detail, it acts as a susceptibility factor in the endoplasmic reticulum, but plays a resistance role in the nucleus against Phytophthora. Phytophthora infection triggers the endoplasmic reticulum-to-nucleus translocation of BAG7, the same as abiotic heat stress; however, this process can be prevented by PsAvh262-mediated BiP accumulation. Moreover, the immunoglobulin/albumin-binding domain in PsAvh262 is essential for both pathogen virulence and BiP accumulation. Taken together, our study uncovers a double-faced role of BAG7; Phytophthora advances its colonization in planta by utilizing an effector to detain BAG7 in the endoplasmic reticulum.
Collapse
Affiliation(s)
- Yang Zhou
- The Key Laboratory of Plant Immunity, Collage of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Kun Yang
- The Key Laboratory of Plant Immunity, Collage of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ming Cheng
- The Key Laboratory of Plant Immunity, Collage of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yang Cheng
- The Key Laboratory of Plant Immunity, Collage of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yurong Li
- Corteva Agriscience, Johnston, IA 50131, USA
- Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX 77843, USA
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843, USA
| | - Gan Ai
- The Key Laboratory of Plant Immunity, Collage of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Tian Bai
- The Key Laboratory of Plant Immunity, Collage of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ruofei Xu
- The Key Laboratory of Plant Immunity, Collage of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Weiwei Duan
- The Key Laboratory of Plant Immunity, Collage of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hao Peng
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99164, USA
| | - Xiaobo Li
- Crops Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Crop Genetic Improvement, Guangdong, Guangzhou 510640, China
| | - Ai Xia
- The Key Laboratory of Plant Immunity, Collage of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuanchao Wang
- The Key Laboratory of Plant Immunity, Collage of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Maofeng Jing
- The Key Laboratory of Plant Immunity, Collage of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Daolong Dou
- The Key Laboratory of Plant Immunity, Collage of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Marty B Dickman
- Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX 77843, USA
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
14
|
Two nuclear effectors of the rice blast fungus modulate host immunity via transcriptional reprogramming. Nat Commun 2020; 11:5845. [PMID: 33203871 PMCID: PMC7672089 DOI: 10.1038/s41467-020-19624-w] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 10/20/2020] [Indexed: 02/04/2023] Open
Abstract
Pathogens utilize multiple types of effectors to modulate plant immunity. Although many apoplastic and cytoplasmic effectors have been reported, nuclear effectors have not been well characterized in fungal pathogens. Here, we characterize two nuclear effectors of the rice blast pathogen Magnaporthe oryzae. Both nuclear effectors are secreted via the biotrophic interfacial complex, translocated into the nuclei of initially penetrated and surrounding cells, and reprogram the expression of immunity-associated genes by binding on effector binding elements in rice. Their expression in transgenic rice causes ambivalent immunity: increased susceptibility to M. oryzae and Xanthomonas oryzae pv. oryzae, hemibiotrophic pathogens, but enhanced resistance to Cochliobolus miyabeanus, a necrotrophic pathogen. Our findings help remedy a significant knowledge deficiency in the mechanism of M. oryzae–rice interactions and underscore how effector-mediated manipulation of plant immunity by one pathogen may also affect the disease severity by other pathogens. Plant pathogens secrete various effectors to manipulate host immunity. Here, Kim et al. describe two Magnaporthe oryzae effectors that translocate into the nuclei of infected rice cells and reprogram expression of immunity-associated genes, increasing susceptibility to hemibiotrophic pathogens.
Collapse
|
15
|
Jiang N, Yan J, Liang Y, Shi Y, He Z, Wu Y, Zeng Q, Liu X, Peng J. Resistance Genes and their Interactions with Bacterial Blight/Leaf Streak Pathogens (Xanthomonas oryzae) in Rice (Oryza sativa L.)-an Updated Review. RICE (NEW YORK, N.Y.) 2020; 13:3. [PMID: 31915945 PMCID: PMC6949332 DOI: 10.1186/s12284-019-0358-y] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 12/18/2019] [Indexed: 05/19/2023]
Abstract
Rice (Oryza sativa L.) is a staple food crop, feeding more than 50% of the world's population. Diseases caused by bacterial, fungal, and viral pathogens constantly threaten the rice production and lead to enormous yield losses. Bacterial blight (BB) and bacterial leaf streak (BLS), caused respectively by gram-negative bacteria Xanthomonas oryzae pv. oryzae (Xoo) and Xanthomonas oryzae pv. oryzicola (Xoc), are two important diseases affecting rice production worldwide. Due to the economic importance, extensive genetic and genomic studies have been conducted to elucidate the molecular mechanism of rice response to Xoo and Xoc in the last two decades. A series of resistance (R) genes and their cognate avirulence and virulence effector genes have been characterized. Here, we summarize the recent advances in studies on interactions between rice and the two pathogens through these R genes or their products and effectors. Breeding strategies to develop varieties with durable and broad-spectrum resistance to Xanthomonas oryzae based on the published studies are also discussed.
Collapse
Affiliation(s)
- Nan Jiang
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, College of Agronomy, Hunan Agricultural University, Changsha, 410128 Hunan China
- Huazhi Rice Bio-tech Company Ltd., Changsha, 410125 Hunan China
| | - Jun Yan
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture Rural Affairs, School of Pharmacy and Bioengineering, Chengdu University, Chengdu, 610106 Sichuan China
| | - Yi Liang
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, College of Agronomy, Hunan Agricultural University, Changsha, 410128 Hunan China
- Huazhi Rice Bio-tech Company Ltd., Changsha, 410125 Hunan China
| | - Yanlong Shi
- Huazhi Rice Bio-tech Company Ltd., Changsha, 410125 Hunan China
| | - Zhizhou He
- Huazhi Rice Bio-tech Company Ltd., Changsha, 410125 Hunan China
| | - Yuntian Wu
- Huazhi Rice Bio-tech Company Ltd., Changsha, 410125 Hunan China
| | - Qin Zeng
- Huazhi Rice Bio-tech Company Ltd., Changsha, 410125 Hunan China
| | - Xionglun Liu
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, College of Agronomy, Hunan Agricultural University, Changsha, 410128 Hunan China
| | - Junhua Peng
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, College of Agronomy, Hunan Agricultural University, Changsha, 410128 Hunan China
- Huazhi Rice Bio-tech Company Ltd., Changsha, 410125 Hunan China
| |
Collapse
|
16
|
Jiang L, Li G, Chern M, Jain R, Pham NT, Martin JA, Schackwitz WS, Zhao J, Ruan D, Huang R, Zheng J, Ronald PC. Whole-Genome Sequencing Identifies a Rice Grain Shape Mutant, gs9-1. RICE (NEW YORK, N.Y.) 2019; 12:52. [PMID: 31321562 PMCID: PMC6639446 DOI: 10.1186/s12284-019-0308-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 06/27/2019] [Indexed: 05/05/2023]
Abstract
BACKGROUND Breeding for genes controlling key agronomic traits is an important goal of rice genetic improvement. To gain insight into genes controlling grain morphology, we screened M3 plants derived from 1,000 whole-genome sequenced (WGS) M2 Kitaake mutants to identify lines with altered grain size. RESULTS In this study, we isolated a mutant, named fast-neutron (FN) 60-4, which exhibits a significant reduction in grain size. We crossed FN60-4 with the parental line Kitaake and analyzed the resulting backcross population. Segregation analysis of 113 lines from the BC2F2 population revealed that the mutant phenotype is controlled by a single semi-dominant locus. Mutant FN60-4 is reduced 20% in plant height and 8.8% in 1000-grain weight compared with Kitaake. FN60-4 also exhibits an 8% reduction in cell number and a 9% reduction in cell length along the vertical axis of the glume. We carried out whole-genome sequencing of DNA pools extracted from segregants with long grains or short grains, and revealed that one gene, LOC_Os09g02650, cosegregated with the grain size phenotype in the BC1F2 and BC2F2 populations. This mutant allele was named grain shape 9-1 (gs9-1). gs9-1 carries a 3-bp deletion that affects two amino acids. This locus is a new allele of the BC12/GDD1/MTD1 gene that encodes a kinesin-like protein involved in cell-cycle progression, cellulose microfibril deposition and gibberellic acid (GA) biosynthesis. The GA biosynthesis-related gene KO2 is down-regulated in gs9-1. The dwarf phenotype of gs9-1 can be rescued by adding exogenous GA3. In contrast to the phenotypes for the other alleles, the gs9-1 is less severe, consistent with the nature of the mutation, which does not disrupt the open reading frame as observed for the other alleles. CONCLUSIONS In this study, we isolated a mutant, which exhibits altered grain shape and identified the mutated gene, gs9-1. Our study reveals that gs9-1 is a semi-dominant gene that carries a two-amino acid mutation. gs9-1 is allelic to the BC12/GDD1/MTD1 gene involved in GA biosynthesis. These results demonstrate the efficiency and convenience of cloning genes from the whole-genome sequenced Kitaake mutant population to advance investigations into genes controlling key agronomic traits in rice.
Collapse
Affiliation(s)
- Liangrong Jiang
- Xiamen Plant Genetics Key Laboratory, School of Life Sciences, Xiamen University, Xiamen, 361102 People’s Republic of China
- Department of Plant Pathology and the Genome Center, University of California, Davis, CA 95616 USA
- Feedstocks Division, Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - Guotian Li
- Department of Plant Pathology and the Genome Center, University of California, Davis, CA 95616 USA
- Feedstocks Division, Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 USA
- State Key Laboratory of Agricultural Microbiology and College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070 Hubei China
| | - Mawsheng Chern
- Department of Plant Pathology and the Genome Center, University of California, Davis, CA 95616 USA
- Feedstocks Division, Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - Rashmi Jain
- Department of Plant Pathology and the Genome Center, University of California, Davis, CA 95616 USA
- Feedstocks Division, Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - Nhan T. Pham
- Department of Plant Pathology and the Genome Center, University of California, Davis, CA 95616 USA
- Feedstocks Division, Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - Joel A. Martin
- U.S. Department of Energy Joint Genome Institute, Walnut Creek, CA 94598 USA
| | - Wendy S. Schackwitz
- U.S. Department of Energy Joint Genome Institute, Walnut Creek, CA 94598 USA
| | - Juan Zhao
- State Key Laboratory of Agricultural Microbiology and College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070 Hubei China
| | - Deling Ruan
- Department of Plant Pathology and the Genome Center, University of California, Davis, CA 95616 USA
- Feedstocks Division, Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - Rongyu Huang
- Xiamen Plant Genetics Key Laboratory, School of Life Sciences, Xiamen University, Xiamen, 361102 People’s Republic of China
| | - Jingsheng Zheng
- Xiamen Plant Genetics Key Laboratory, School of Life Sciences, Xiamen University, Xiamen, 361102 People’s Republic of China
| | - Pamela C. Ronald
- Department of Plant Pathology and the Genome Center, University of California, Davis, CA 95616 USA
- Feedstocks Division, Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| |
Collapse
|
17
|
Identification of Quantitative Trait Loci Associated with Nutrient Use Efficiency Traits, Using SNP Markers in an Early Backcross Population of Rice ( Oryza sativa L.). Int J Mol Sci 2019; 20:ijms20040900. [PMID: 30791412 PMCID: PMC6413108 DOI: 10.3390/ijms20040900] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 01/21/2019] [Accepted: 01/23/2019] [Indexed: 12/24/2022] Open
Abstract
The development of rice cultivars with nutrient use efficiency (NuUE) is highly crucial for sustaining global rice production in Asia and Africa. However, this requires a better understanding of the genetics of NuUE-related traits and their relationship to grain yield. In this study, simultaneous efforts were made to develop nutrient use efficient rice cultivars and to map quantitative trait loci (QTLs) governing NuUE-related traits in rice. A total of 230 BC1F5 introgression lines (ILs) were developed from a single early backcross population involving Weed Tolerant Rice 1, as the recipient parent, and Hao-an-nong, as the donor parent. The ILs were cultivated in field conditions with a different combination of fertilizer schedule under six nutrient conditions: minus nitrogen (–N), minus phosphorus (–P), (–NP), minus nitrogen phosphorus and potassium (–NPK), 75% of recommended nitrogen (75N), and NPK. Analysis of variance revealed that significant differences (p < 0.01) were noted among ILs and treatments for all traits. A high-density linkage map was constructed by using 704 high-quality single nucleotide polymorphism (SNP) markers. A total of 49 main-effect QTLs were identified on all chromosomes, except on chromosome 7, 11 and 12, which are showing 20.25% to 34.68% of phenotypic variation. With further analysis of these QTLs, we refined them to four top hotspot QTLs (QTL harbor-I to IV) located on chromosomes 3, 5, 9, and 11. However, we identified four novel putative QTLs for agronomic efficiency (AE) and 22 QTLs for partial factor productivity (PFP) under –P and 75N conditions. These interval regions of QTLs, several transporters and genes are located that were involved in nutrient uptake from soil to plant organs and tolerance to biotic and abiotic stresses. Further, the validation of these potential QTLs, genes may provide remarkable value for marker-aided selection and pyramiding of multiple QTLs, which would provide supporting evidence for the enhancement of grain yield and cloning of NuUE tolerance-responsive genes in rice.
Collapse
|
18
|
The Hsp70 Gene Family in Solanum tuberosum: Genome-Wide Identification, Phylogeny, and Expression Patterns. Sci Rep 2018; 8:16628. [PMID: 30413778 PMCID: PMC6226454 DOI: 10.1038/s41598-018-34878-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 10/28/2018] [Indexed: 11/08/2022] Open
Abstract
Heat shock protein 70 (Hsp70) family members play important roles in protecting plants against abiotic stresses, including salt, drought, heat, and cold. In this study, 20 putative StHsp70 genes were identified in potato (Solanum tuberosum L.) through the integration of the gene structures, chromosome locations, phylogenetic relationships, and expression profiles. These StHsp70 genes were classified into five sub-families based on phylogenetic analysis. Chromosome mapping revealed that they were unevenly and unequally distributed on 10 of the 12 chromosomes. Furthermore, segmental and tandem duplication events contributed to the expansion of the StHsp70 genes. Phylogenetic tree of the HSP70 genes from potato and other plant species revealed multiple sub-families. These findings indicated a common ancestor which had generated diverse sub-families prior to a mono-dicot split. In addition, expression analysis using RNA-seq revealed that the majority of these genes were expressed in at least one of the tested tissue, and were induced by Phytophthora infestans. Then, based on qRT-PCR analysis, the results showed that the transcript levels of some of the StHsp70 genes could be remarkably induced by such abiotic and hormone stresses, which indicated their potential roles in mediating the responses of potato plants to both abiotic and biotic stress conditions.
Collapse
|
19
|
Unraveling Field Crops Sensitivity to Heat Stress:Mechanisms, Approaches, and Future Prospects. AGRONOMY-BASEL 2018. [DOI: 10.3390/agronomy8070128] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The astonishing increase in temperature presents an alarming threat to crop production worldwide. As evident by huge yield decline in various crops, the escalating drastic impacts of heat stress (HS) are putting global food production as well as nutritional security at high risk. HS is a major abiotic stress that influences plant morphology, physiology, reproduction, and productivity worldwide. The physiological and molecular responses to HS are dynamic research areas, and molecular techniques are being adopted for producing heat tolerant crop plants. In this article, we reviewed recent findings, impacts, adoption, and tolerance at the cellular, organellar, and whole plant level and reported several approaches that are used to improve HS tolerance in crop plants. Omics approaches unravel various mechanisms underlying thermotolerance, which is imperative to understand the processes of molecular responses toward HS. Our review about physiological and molecular mechanisms may enlighten ways to develop thermo-tolerant cultivars and to produce crop plants that are agriculturally important in adverse climatic conditions.
Collapse
|
20
|
Abstract
The endoplasmic reticulum (ER) is the site of maturation for roughly one-third of all cellular proteins. ER-resident molecular chaperones and folding catalysts promote folding and assembly in a diverse set of newly synthesized proteins. Because these processes are error-prone, all eukaryotic cells have a quality-control system in place that constantly monitors the proteins and decides their fate. Proteins with potentially harmful nonnative conformations are subjected to assisted folding or degraded. Persistent folding-defective proteins are distinguished from folding intermediates and targeted for degradation by a specific process involving clearance from the ER. Although the basic principles of these processes appear conserved from yeast to animals and plants, there are distinct differences in the ER-associated degradation of misfolded glycoproteins. The general importance of ER quality-control events is underscored by their involvement in the biogenesis of diverse cell surface receptors and their crucial maintenance of protein homeostasis under diverse stress conditions.
Collapse
Affiliation(s)
- Richard Strasser
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, 1190 Vienna, Austria;
| |
Collapse
|
21
|
Abstract
The endoplasmic reticulum (ER) is the site of maturation for roughly one-third of all cellular proteins. ER-resident molecular chaperones and folding catalysts promote folding and assembly in a diverse set of newly synthesized proteins. Because these processes are error-prone, all eukaryotic cells have a quality-control system in place that constantly monitors the proteins and decides their fate. Proteins with potentially harmful nonnative conformations are subjected to assisted folding or degraded. Persistent folding-defective proteins are distinguished from folding intermediates and targeted for degradation by a specific process involving clearance from the ER. Although the basic principles of these processes appear conserved from yeast to animals and plants, there are distinct differences in the ER-associated degradation of misfolded glycoproteins. The general importance of ER quality-control events is underscored by their involvement in the biogenesis of diverse cell surface receptors and their crucial maintenance of protein homeostasis under diverse stress conditions.
Collapse
Affiliation(s)
- Richard Strasser
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, 1190 Vienna, Austria;
| |
Collapse
|
22
|
Caddell DF, Park CJ, Thomas NC, Canlas PE, Ronald PC. Silencing of the Rice Gene LRR1 Compromises Rice Xa21 Transcript Accumulation and XA21-Mediated Immunity. RICE (NEW YORK, N.Y.) 2017; 10:23. [PMID: 28534133 PMCID: PMC5440417 DOI: 10.1186/s12284-017-0162-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 05/11/2017] [Indexed: 05/27/2023]
Abstract
BACKGROUND The rice immune receptor XA21 confers resistance to Xanthomonas oryzae pv. oryzae (Xoo), the causal agent of bacterial leaf blight. We previously demonstrated that an auxilin-like protein, XA21 BINDING PROTEIN 21 (XB21), positively regulates resistance to Xoo. RESULTS To further investigate the function of XB21, we performed a yeast two-hybrid screen. We identified 22 unique XB21 interacting proteins, including LEUCINE-RICH REPEAT PROTEIN 1 (LRR1), which we selected for further analysis. Silencing of LRR1 in the XA21 genetic background (XA21-LRR1Ri) compromises resistance to Xoo compared with control XA21 plants. XA21-LRR1Ri plants have reduced Xa21 transcript levels and reduced expression of genes that serve as markers of XA21-mediated activation. Overexpression of LRR1 is insufficient to alter resistance to Xoo in rice lines lacking XA21. CONCLUSIONS Taken together, our results indicate that LRR1 is required for wild-type Xa21 transcript expression and XA21-mediated immunity.
Collapse
Affiliation(s)
- Daniel F. Caddell
- Department of Plant Pathology and the Genome Center, University of California, Davis, Davis, CA 95616 USA
| | - Chang-Jin Park
- Department of Plant Pathology and the Genome Center, University of California, Davis, Davis, CA 95616 USA
- Present Address: Department of Bioresources Engineering and PERI, Sejong University, Seoul, 05006 Republic of Korea
| | - Nicholas C. Thomas
- Department of Plant Pathology and the Genome Center, University of California, Davis, Davis, CA 95616 USA
- Present Address: Department of Plant Pathology and Microbiology, University of California, Riverside, Riverside, CA 92521 USA
| | - Patrick E. Canlas
- Department of Plant Pathology and the Genome Center, University of California, Davis, Davis, CA 95616 USA
| | - Pamela C. Ronald
- Department of Plant Pathology and the Genome Center, University of California, Davis, Davis, CA 95616 USA
| |
Collapse
|
23
|
Park CJ, Wei T, Sharma R, Ronald PC. Overexpression of Rice Auxilin-Like Protein, XB21, Induces Necrotic Lesions, up-Regulates Endocytosis-Related Genes, and Confers Enhanced Resistance to Xanthomonas oryzae pv. oryzae. RICE (NEW YORK, N.Y.) 2017; 10:27. [PMID: 28577284 PMCID: PMC5457384 DOI: 10.1186/s12284-017-0166-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 05/24/2017] [Indexed: 05/29/2023]
Abstract
BACKGROUND The rice immune receptor XA21 confers resistance to the bacterial pathogen, Xanthomonas oryzae pv. oryzae (Xoo). To elucidate the mechanism of XA21-mediated immunity, we previously performed a yeast two-hybrid screening for XA21 interactors and identified XA21 binding protein 21 (XB21). RESULTS Here, we report that XB21 is an auxilin-like protein predicted to function in clathrin-mediated endocytosis. We demonstrate an XA21/XB21 in vivo interaction using co-immunoprecipitation in rice. Overexpression of XB21 in rice variety Kitaake and a Kitaake transgenic line expressing XA21 confers a necrotic lesion phenotype and enhances resistance to Xoo. RNA sequencing reveals that XB21 overexpression results in the differential expression of 8735 genes (4939 genes up- and 3846 genes down-regulated) (≥2-folds, FDR ≤0.01). The up-regulated genes include those predicted to be involved in 'cell death' and 'vesicle-mediated transport'. CONCLUSION These results indicate that XB21 plays a role in the plant immune response and in regulation of cell death. The up-regulation of genes controlling 'vesicle-mediated transport' in XB21 overexpression lines is consistent with a functional role for XB21 as an auxilin.
Collapse
Affiliation(s)
- Chang-Jin Park
- Department of Plant Pathology and the Genome Center, University of California Davis, Davis, CA, 95616, USA
- Department of Bioresources Engineering and the Plant Engineering Research Institute, Sejong University, Seoul, 05006, Republic of Korea
| | - Tong Wei
- Department of Plant Pathology and the Genome Center, University of California Davis, Davis, CA, 95616, USA
- Feedstocks Division, Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Rita Sharma
- Department of Plant Pathology and the Genome Center, University of California Davis, Davis, CA, 95616, USA
- School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Pamela C Ronald
- Department of Plant Pathology and the Genome Center, University of California Davis, Davis, CA, 95616, USA.
- Feedstocks Division, Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| |
Collapse
|
24
|
A Class II small heat shock protein OsHsp18.0 plays positive roles in both biotic and abiotic defense responses in rice. Sci Rep 2017; 7:11333. [PMID: 28900229 PMCID: PMC5595972 DOI: 10.1038/s41598-017-11882-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 08/31/2017] [Indexed: 11/08/2022] Open
Abstract
Bacterial blight caused by Xanthomonas oryzae pv. oryzae (Xoo) is one of the most devastating diseases of rice. However, the molecular mechanism underpinning the Xoo resistance of rice is still not fully understood. Here, we report that a class II small heat shock protein gene, OsHsp18.0, whose expression was differentially induced between a resistant and a susceptible variety in response to Xoo infection, plays positive roles in both biotic and abiotic resistance. The molecular chaperone activity of OsHsp18.0 was confirmed by a bacterium-expressed glutathione S-transferase fusion protein. Overexpression of OsHsp18.0 in a susceptible rice variety significantly enhanced its resistance to multiple Xoo strains, whereas silencing of OsHsp18.0 in a resistant variety drastically increased its susceptibility. The enhanced Xoo resistance in OsHsp18.0-overexpressing lines was positively correlated with the sensitized salicylic acid-dependent defense responses. In addition to disease resistance, the OsHsp18.0 overexpressing and silencing lines exhibited enhanced and reduced tolerance, respectively, to heat and salt treatments. The subcellular localization study revealed that the green fluorescent protein-OsHsp18.0 was enriched on the nuclear envelope, suggesting a potential role of OsHsp18.0 in the nucleo-cytoplasmic trafficking. Together, our results reveal that the rice OsHsp18.0 is a positive regulator in both biotic and abiotic defense responses.
Collapse
|
25
|
Li G, Jain R, Chern M, Pham NT, Martin JA, Wei T, Schackwitz WS, Lipzen AM, Duong PQ, Jones KC, Jiang L, Ruan D, Bauer D, Peng Y, Barry KW, Schmutz J, Ronald PC. The Sequences of 1504 Mutants in the Model Rice Variety Kitaake Facilitate Rapid Functional Genomic Studies. THE PLANT CELL 2017; 29:1218-1231. [PMID: 28576844 PMCID: PMC5502455 DOI: 10.1105/tpc.17.00154] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 05/16/2017] [Accepted: 06/01/2017] [Indexed: 05/19/2023]
Abstract
The availability of a whole-genome sequenced mutant population and the cataloging of mutations of each line at a single-nucleotide resolution facilitate functional genomic analysis. To this end, we generated and sequenced a fast-neutron-induced mutant population in the model rice cultivar Kitaake (Oryza sativa ssp japonica), which completes its life cycle in 9 weeks. We sequenced 1504 mutant lines at 45-fold coverage and identified 91,513 mutations affecting 32,307 genes, i.e., 58% of all rice genes. We detected an average of 61 mutations per line. Mutation types include single-base substitutions, deletions, insertions, inversions, translocations, and tandem duplications. We observed a high proportion of loss-of-function mutations. We identified an inversion affecting a single gene as the causative mutation for the short-grain phenotype in one mutant line. This result reveals the usefulness of the resource for efficient, cost-effective identification of genes conferring specific phenotypes. To facilitate public access to this genetic resource, we established an open access database called KitBase that provides access to sequence data and seed stocks. This population complements other available mutant collections and gene-editing technologies. This work demonstrates how inexpensive next-generation sequencing can be applied to generate a high-density catalog of mutations.
Collapse
Affiliation(s)
- Guotian Li
- Department of Plant Pathology and the Genome Center, University of California, Davis, California 95616
- Grass Genetics, Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, California 94720
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Rashmi Jain
- Department of Plant Pathology and the Genome Center, University of California, Davis, California 95616
- Grass Genetics, Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, California 94720
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Mawsheng Chern
- Department of Plant Pathology and the Genome Center, University of California, Davis, California 95616
- Grass Genetics, Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, California 94720
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Nikki T Pham
- Department of Plant Pathology and the Genome Center, University of California, Davis, California 95616
- Grass Genetics, Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Joel A Martin
- U.S. Department of Energy Joint Genome Institute, Walnut Creek, California 94598
| | - Tong Wei
- Department of Plant Pathology and the Genome Center, University of California, Davis, California 95616
- Grass Genetics, Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, California 94720
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Wendy S Schackwitz
- U.S. Department of Energy Joint Genome Institute, Walnut Creek, California 94598
| | - Anna M Lipzen
- U.S. Department of Energy Joint Genome Institute, Walnut Creek, California 94598
| | - Phat Q Duong
- Department of Plant Pathology and the Genome Center, University of California, Davis, California 95616
| | - Kyle C Jones
- Department of Plant Pathology and the Genome Center, University of California, Davis, California 95616
- Grass Genetics, Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Liangrong Jiang
- Department of Plant Pathology and the Genome Center, University of California, Davis, California 95616
- School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Deling Ruan
- Department of Plant Pathology and the Genome Center, University of California, Davis, California 95616
- Grass Genetics, Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, California 94720
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Diane Bauer
- U.S. Department of Energy Joint Genome Institute, Walnut Creek, California 94598
| | - Yi Peng
- U.S. Department of Energy Joint Genome Institute, Walnut Creek, California 94598
| | - Kerrie W Barry
- U.S. Department of Energy Joint Genome Institute, Walnut Creek, California 94598
| | - Jeremy Schmutz
- U.S. Department of Energy Joint Genome Institute, Walnut Creek, California 94598
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806
| | - Pamela C Ronald
- Department of Plant Pathology and the Genome Center, University of California, Davis, California 95616
- Grass Genetics, Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, California 94720
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| |
Collapse
|
26
|
Thitisaksakul M, Arias MC, Dong S, Beckles DM. Overexpression of GSK3-like Kinase 5 (OsGSK5) in rice (Oryza sativa) enhances salinity tolerance in part via preferential carbon allocation to root starch. FUNCTIONAL PLANT BIOLOGY : FPB 2017; 44:705-719. [PMID: 32480600 DOI: 10.1071/fp16424] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Accepted: 04/01/2017] [Indexed: 05/26/2023]
Abstract
Rice (Oryza sativa L.) is very sensitive to soil salinity. To identify endogenous mechanisms that may help rice to better survive salt stress, we studied a rice GSK3-like isoform (OsGSK5), an orthologue of a Medicago GSK3 previously shown to enhance salinity tolerance in Arabidopsis by altering carbohydrate metabolism. We wanted to determine whether OsGSK5 functions similarly in rice. OsGSK5 was cloned and sequence, expression, evolutionary and functional analyses were conducted. OsGSK5 was expressed highest in rice seedling roots and was both salt and sugar starvation inducible in this tissue. A short-term salt-shock (150mM) activated OsGSK5, whereas moderate (50mM) salinity over the same period repressed the transcript. OsGSK5 response to salinity was due to an ionic effect since it was unaffected by polyethylene glycol. We engineered a rice line with 3.5-fold higher OsGSK5 transcript, which better tolerated cultivation on saline soils (EC=8 and 10dSm-2). This line produced more panicles and leaves, and a higher shoot biomass under high salt stress than the control genotypes. Whole-plant 14C-tracing and correlative analysis of OsGSK5 transcript with eco-physiological assessments pointed to the accelerated allocation of carbon to the root and its deposition as starch, as part of the tolerance mechanism.
Collapse
Affiliation(s)
- Maysaya Thitisaksakul
- Department of Plant Sciences, University of California, One Shields Avenue, Davis, CA 95616, USA
| | - Maria C Arias
- Unité de Glycobiologie Structurale et Fonctionnelle, Université des Sciences et Technologies de Lille, Unité Mixte de Recherche du Centre National de la Recherche Scientifique no. 8576, 59655 Villeneuve D'Ascq cedex, France
| | - Shaoyun Dong
- Department of Plant Sciences, University of California, One Shields Avenue, Davis, CA 95616, USA
| | - Diane M Beckles
- Department of Plant Sciences, University of California, One Shields Avenue, Davis, CA 95616, USA
| |
Collapse
|
27
|
Ying Y, Yue W, Wang S, Li S, Wang M, Zhao Y, Wang C, Mao C, Whelan J, Shou H. Two h-Type Thioredoxins Interact with the E2 Ubiquitin Conjugase PHO2 to Fine-Tune Phosphate Homeostasis in Rice. PLANT PHYSIOLOGY 2017; 173:812-824. [PMID: 27895204 PMCID: PMC5210762 DOI: 10.1104/pp.16.01639] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 11/27/2016] [Indexed: 05/02/2023]
Abstract
Phosphate overaccumulator2 (PHO2) encodes a ubiquitin-conjugating E2 enzyme that is a major negative regulator of the inorganic phosphate (Pi)-starvation response-signaling pathway. A yeast two-hybrid (Y2H) screen in rice (Oryza sativa; Os) using OsPHO2 as bait revealed an interaction between OsPHO2 and two h-type thioredoxins, OsTrxh1 and OsTrxh4. These interactions were confirmed in vivo using bimolecular fluorescence complementation (BiFC) of OsPHO2 and OsTrxh1/h4 in rice protoplasts and by in vitro pull-down assays with 6His-tagged OsTrxh1/h4 and GST-tagged OsPHO2. Y2H assays revealed that amino acid Cys-445 of OsPHO2 and an N-terminal Cys in the "WCGPC" motif of Trxhs were required for the interaction. Split-ubiquitin Y2H analyses and BiFC assays in rice protoplasts confirmed the interaction of OsPHO2 with PHOSPHATE TRANSPORTER TRAFFIC FACILITATOR1 (OsPHF1), and PHOSPHATE1;2 (OsPHO1;2) in the endoplasmic reticulum and Golgi membrane system, where OsPHO2 mediates the degradation of OsPHF1 in both tobacco (Nicotiana benthamiana) leaves and rice seedlings. Characterization of rice pho2 complemented lines, transformed with an endogenous genomic OsPHO2 or OsPHO2C445S (a constitutively reduced form) fragment, indicated that OsPHO2C445S restored Pi concentration in rice to statistically significant lower levels compared to native OsPHO2 Moreover, the suppression of OsTrxh1 (knockdown and knockout) resulted in slightly higher Pi concentration than that of wild-type Nipponbare in leaves. These results demonstrate that OsPHO2 is under redox control by thioredoxins, which fine-tune its activity and link Pi homeostasis with redox balance in rice.
Collapse
Affiliation(s)
- Yinghui Ying
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China (Y.Y., W.Y., S.W., S.L., M.W., Y.Z., C.W., C.M., H.S.); and
- Australian Research Council Centre of Excellence in Plant Energy Biology, Department of Animal, Plant, and Soil Science, School of Life Science, La Trobe University, Bundoora, Victoria 3086, Australia (J.W.)
| | - Wenhao Yue
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China (Y.Y., W.Y., S.W., S.L., M.W., Y.Z., C.W., C.M., H.S.); and
- Australian Research Council Centre of Excellence in Plant Energy Biology, Department of Animal, Plant, and Soil Science, School of Life Science, La Trobe University, Bundoora, Victoria 3086, Australia (J.W.)
| | - Shoudong Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China (Y.Y., W.Y., S.W., S.L., M.W., Y.Z., C.W., C.M., H.S.); and
- Australian Research Council Centre of Excellence in Plant Energy Biology, Department of Animal, Plant, and Soil Science, School of Life Science, La Trobe University, Bundoora, Victoria 3086, Australia (J.W.)
| | - Shuai Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China (Y.Y., W.Y., S.W., S.L., M.W., Y.Z., C.W., C.M., H.S.); and
- Australian Research Council Centre of Excellence in Plant Energy Biology, Department of Animal, Plant, and Soil Science, School of Life Science, La Trobe University, Bundoora, Victoria 3086, Australia (J.W.)
| | - Min Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China (Y.Y., W.Y., S.W., S.L., M.W., Y.Z., C.W., C.M., H.S.); and
- Australian Research Council Centre of Excellence in Plant Energy Biology, Department of Animal, Plant, and Soil Science, School of Life Science, La Trobe University, Bundoora, Victoria 3086, Australia (J.W.)
| | - Yang Zhao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China (Y.Y., W.Y., S.W., S.L., M.W., Y.Z., C.W., C.M., H.S.); and
- Australian Research Council Centre of Excellence in Plant Energy Biology, Department of Animal, Plant, and Soil Science, School of Life Science, La Trobe University, Bundoora, Victoria 3086, Australia (J.W.)
| | - Chuang Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China (Y.Y., W.Y., S.W., S.L., M.W., Y.Z., C.W., C.M., H.S.); and
- Australian Research Council Centre of Excellence in Plant Energy Biology, Department of Animal, Plant, and Soil Science, School of Life Science, La Trobe University, Bundoora, Victoria 3086, Australia (J.W.)
| | - Chuanzao Mao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China (Y.Y., W.Y., S.W., S.L., M.W., Y.Z., C.W., C.M., H.S.); and
- Australian Research Council Centre of Excellence in Plant Energy Biology, Department of Animal, Plant, and Soil Science, School of Life Science, La Trobe University, Bundoora, Victoria 3086, Australia (J.W.)
| | - James Whelan
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China (Y.Y., W.Y., S.W., S.L., M.W., Y.Z., C.W., C.M., H.S.); and
- Australian Research Council Centre of Excellence in Plant Energy Biology, Department of Animal, Plant, and Soil Science, School of Life Science, La Trobe University, Bundoora, Victoria 3086, Australia (J.W.)
| | - Huixia Shou
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China (Y.Y., W.Y., S.W., S.L., M.W., Y.Z., C.W., C.M., H.S.); and
- Australian Research Council Centre of Excellence in Plant Energy Biology, Department of Animal, Plant, and Soil Science, School of Life Science, La Trobe University, Bundoora, Victoria 3086, Australia (J.W.)
| |
Collapse
|
28
|
Vo KTX, Kim CY, Hoang TV, Lee SK, Shirsekar G, Seo YS, Lee SW, Wang GL, Jeon JS. OsWRKY67 Plays a Positive Role in Basal and XA21-Mediated Resistance in Rice. FRONTIERS IN PLANT SCIENCE 2017; 8:2220. [PMID: 29375598 PMCID: PMC5769460 DOI: 10.3389/fpls.2017.02220] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 12/18/2017] [Indexed: 05/07/2023]
Abstract
WRKY proteins play important roles in transcriptional reprogramming in plants in response to various stresses including pathogen attack. In this study, we functionally characterized a rice WRKY gene, OsWRKY67, whose expression is upregulated against pathogen challenges. Activation of OsWRKY67 by T-DNA tagging significantly improved the resistance against two rice pathogens, Magnaporthe oryzae and Xanthomonas oryzae pv. oryzae (Xoo). Reactive oxygen species (ROS) rapidly accumulated in OsWRKY67 activation mutant lines in response to elicitor treatment, compared with the controls. Overexpression of OsWRKY67 in rice confirmed enhanced disease resistance, but led to a restriction of plant growth in transgenic lines with high levels of OsWRKY67 protein. OsWRKY67 RNAi lines significantly reduced resistance to M. oryzae and Xoo isolates tested, and abolished XA21-mediated resistance, implying the possibility of broad-spectrum resistance from OsWRKY67. Transcriptional activity and subcellular localization assays indicated that OsWRKY67 is present in the nucleus where it functions as a transcriptional activator. Quantitative PCR revealed that the pathogenesis-related genes, PR1a, PR1b, PR4, PR10a, and PR10b, are upregulated in OsWRKY67 overexpression lines. Therefore, these results suggest that OsWRKY67 positively regulates basal and XA21-mediated resistance, and is a promising candidate for genetic improvement of disease resistance in rice.
Collapse
Affiliation(s)
- Kieu T. X. Vo
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin, South Korea
| | - Chi-Yeol Kim
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin, South Korea
| | - Trung V. Hoang
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin, South Korea
| | - Sang-Kyu Lee
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin, South Korea
| | - Gautam Shirsekar
- Department of Plant Pathology, The Ohio State University, Columbus, OH, United States
| | - Young-Su Seo
- Department of Microbiology, Pusan National University, Busan, South Korea
| | - Sang-Won Lee
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin, South Korea
| | - Guo-Liang Wang
- Department of Plant Pathology, The Ohio State University, Columbus, OH, United States
| | - Jong-Seong Jeon
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin, South Korea
| |
Collapse
|
29
|
Moon JY, Lee JH, Oh C, Kang H, Park JM. Endoplasmic reticulum stress responses function in the HRT-mediated hypersensitive response in Nicotiana benthamiana. MOLECULAR PLANT PATHOLOGY 2016; 17:1382-1397. [PMID: 26780303 PMCID: PMC6638521 DOI: 10.1111/mpp.12369] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 01/10/2016] [Accepted: 01/11/2016] [Indexed: 05/08/2023]
Abstract
HRT is a plant coiled-coil, nucleotide-binding and leucine-rich repeat (CC-NB-LRR) disease resistance protein that triggers the hypersensitive response (HR) on recognition of Turnip crinkle virus (TCV) coat protein (CP). The molecular mechanism and significance of HR-mediated cell death for TCV resistance have not been fully elucidated. To identify the genes involved in HRT/TCV CP-mediated HR in Nicotiana benthamiana, we performed virus-induced gene silencing (VIGS) of 459 expressed sequence tags (ESTs) of pathogen-responsive Capsicum annuum genes. VIGS of CaBLP5, which encodes an endoplasmic reticulum (ER)-associated immunoglobulin-binding protein (BiP), silenced NbBiP4 and NbBiP5 and significantly reduced HRT-mediated HR. The induction of ER stress-responsive genes and the accumulation of ER-targeted BiPs in response to HRT-mediated HR suggest that ER is involved in HR in N. benthamiana. BiP4/5 silencing significantly down-regulated HRT at the mRNA and protein levels, and affected SGT1 and HSP90 expression. Co-expression of TCV CP in BiP4/5-silenced plants completely abolished HRT induction. Transient expression of TCV CP alone induced selected ER stress-responsive gene transcripts only in Tobacco rattle virus (TRV)-infected plants, and most of these genes were induced by HRT/TCV CP, except for bZIP60, which was induced specifically in response to HRT/TCV CP. TCV CP-mediated induction of ER stress-responsive genes still occurred in BiP4/5-silenced plants, but HRT/TCV CP-mediated induction of these genes was defective. Tunicamycin, a chemical that inhibits protein N-glycosylation, inhibited HRT-mediated HR, suggesting that ER has a role in HR regulation. These results indicate that BiP and ER, which modulate pattern recognition receptors in innate immunity, also regulate R protein-mediated resistance.
Collapse
Affiliation(s)
- Ju Yeon Moon
- Molecular Biofarming Research CenterKRIBBDaejeon305‐600South Korea
- Department of Biosystems and BioengineeringUSTDaejeon305‐350South Korea
| | - Jeong Hee Lee
- Molecular Biofarming Research CenterKRIBBDaejeon305‐600South Korea
| | - Chang‐Sik Oh
- Department of HorticultureKyung Hee UniversityYongin446‐701South Korea
| | - Hong‐Gu Kang
- Department of BiologyTexas State UniversitySan MarcosTX78666USA
| | - Jeong Mee Park
- Molecular Biofarming Research CenterKRIBBDaejeon305‐600South Korea
- Department of Biosystems and BioengineeringUSTDaejeon305‐350South Korea
| |
Collapse
|
30
|
Wei T, Chen TC, Ho YT, Ronald PC. Mutation of the rice XA21 predicted nuclear localization sequence does not affect resistance to Xanthomonas oryzae pv. oryzae. PeerJ 2016; 4:e2507. [PMID: 27761320 PMCID: PMC5068440 DOI: 10.7717/peerj.2507] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 08/30/2016] [Indexed: 11/20/2022] Open
Abstract
Background The rice receptor kinase XA21 confers robust resistance to the bacterial pathogen Xanthomonas oryzaepv. oryzae(Xoo). We previously reported that XA21 is cleaved in transgenic plants overexpressing XA21 with a GFP tag (Ubi-XA21-GFP) and that the released C-terminal domain is localized to the nucleus. XA21 carries a predicted nuclear localization sequence (NLS) that directs the C-terminal domain to the nucleus in transient assays, whereas alanine substitutions in the NLS disrupt the nuclear localization. Methods To determine if the predicted NLS is required for XA21-mediated immunity in planta, we generated transgenic plants overexpressing an XA21 variant carrying the NLS with the same alanine substitutions (Ubi-XA21nls-GFP). Results Ubi-XA21nls-GFP plants displayed slightly longer lesion lengths, higher Xoobacterial populations after inoculation and lower levels of reactive oxygen species production compared with the Ubi-XA21-GFP control plants. However, the Ubi-XA21nls-GFP plants express lower levels of protein than that observed in Ubi-XA21-GFP. Discussion These results demonstrate that the predicted NLS is not required for XA21-mediated immunity.
Collapse
Affiliation(s)
- Tong Wei
- Department of Plant Pathology and the Genome Center, University of California, Davis, CA, United States.,Feedstocks Division, Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, United States.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Tsung-Chi Chen
- Department of Plant Pathology and the Genome Center, University of California, Davis, CA, United States
| | - Yuen Ting Ho
- Department of Plant Pathology and the Genome Center, University of California, Davis, CA, United States
| | - Pamela C Ronald
- Department of Plant Pathology and the Genome Center, University of California, Davis, CA, United States.,Feedstocks Division, Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, United States.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| |
Collapse
|
31
|
Karlen SD, Zhang C, Peck ML, Smith RA, Padmakshan D, Helmich KE, Free HCA, Lee S, Smith BG, Lu F, Sedbrook JC, Sibout R, Grabber JH, Runge TM, Mysore KS, Harris PJ, Bartley LE, Ralph J. Monolignol ferulate conjugates are naturally incorporated into plant lignins. SCIENCE ADVANCES 2016; 2:e1600393. [PMID: 27757415 PMCID: PMC5065250 DOI: 10.1126/sciadv.1600393] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 09/01/2016] [Indexed: 05/02/2023]
Abstract
Angiosperms represent most of the terrestrial plants and are the primary research focus for the conversion of biomass to liquid fuels and coproducts. Lignin limits our access to fibers and represents a large fraction of the chemical energy stored in plant cell walls. Recently, the incorporation of monolignol ferulates into lignin polymers was accomplished via the engineering of an exotic transferase into commercially relevant poplar. We report that various angiosperm species might have convergently evolved to natively produce lignins that incorporate monolignol ferulate conjugates. We show that this activity may be accomplished by a BAHD feruloyl-coenzyme A monolignol transferase, OsFMT1 (AT5), in rice and its orthologs in other monocots.
Collapse
Affiliation(s)
- Steven D. Karlen
- Department of Energy Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin–Madison, Madison, WI 53726, USA
- Department of Biochemistry, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Chengcheng Zhang
- Department of Microbiology and Plant Biology, The University of Oklahoma, Norman, OK 73019, USA
| | - Matthew L. Peck
- Department of Microbiology and Plant Biology, The University of Oklahoma, Norman, OK 73019, USA
| | - Rebecca A. Smith
- Department of Energy Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin–Madison, Madison, WI 53726, USA
- Department of Biochemistry, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Dharshana Padmakshan
- Department of Energy Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin–Madison, Madison, WI 53726, USA
| | - Kate E. Helmich
- Department of Energy Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin–Madison, Madison, WI 53726, USA
- Department of Biochemistry, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Heather C. A. Free
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
- School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
| | - Seonghee Lee
- Department of Horticultural Science, IFAS (Institute of Food and Agricultural Sciences) Gulf Coast Research and Education Center, University of Florida, 14625 County Road 672, Wimauma, FL 33598, USA
| | - Bronwen G. Smith
- School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
| | - Fachuang Lu
- Department of Energy Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin–Madison, Madison, WI 53726, USA
- Department of Biochemistry, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - John C. Sedbrook
- Department of Energy Great Lakes Bioenergy Research Center, School of Biological Sciences, Illinois State University, Normal, IL 61790, USA
| | - Richard Sibout
- Institut National de la Recherche Agronomique and AgroParisTech, Institut Jean-Pierre Bourgin UMR 1318, Saclay Plant Science, 78000 Versailles, France
| | - John H. Grabber
- U.S. Dairy Forage Research Center, Agricultural Research Service, U.S. Department of Agriculture, 1925 Linden Drive West, Madison, WI 53706, USA
| | - Troy M. Runge
- Department of Energy Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin–Madison, Madison, WI 53726, USA
- Department of Biological Systems Engineering, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Kirankumar S. Mysore
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, OK 73401, USA
| | - Philip J. Harris
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Laura E. Bartley
- Department of Microbiology and Plant Biology, The University of Oklahoma, Norman, OK 73019, USA
| | - John Ralph
- Department of Energy Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin–Madison, Madison, WI 53726, USA
- Department of Biochemistry, University of Wisconsin–Madison, Madison, WI 53706, USA
| |
Collapse
|
32
|
Salicylic acid signalling: new insights and prospects at a quarter-century milestone. Essays Biochem 2016; 58:101-13. [PMID: 26374890 DOI: 10.1042/bse0580101] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The plant hormone salicylic acid (SA) plays an essential role in the regulation of diverse biological processes throughout the entire lifespan of the plant. Twenty-five years ago, SA first emerged as an endogenous signal capable of inducing plant defence responses both at the site of infection and in the systemic tissue of the plant. Since then, SA-mediated signalling pathways have been extensively characterized and dissected using genetic and biochemical approaches. Current research is largely focused on the identification of novel SA downstream signalling genes, in order to understand their precise contributions to the phytohormonal cross-talk and signalling network. This will subsequently help us to identify novel targets that are important for plant health, and contribute to advances in modern agriculture. In this chapter we highlight recent advances in the field of SA biosynthesis and the discovery of candidates for systemic mobile signals. We also discuss the molecular mechanisms underlying SA perception. In addition, we review the novel SA signalling components that expand the scope of SA functions beyond plant immunity to include plant growth and development, endoplasmic reticulum (ER) stress, DNA repair and homologous recombination. Finally, we shed light on the roles of SA in epigenetically controlled transgenerational immune memory that has long-term benefits for plants.
Collapse
|
33
|
Jing M, Guo B, Li H, Yang B, Wang H, Kong G, Zhao Y, Xu H, Wang Y, Ye W, Dong S, Qiao Y, Tyler BM, Ma W, Wang Y. A Phytophthora sojae effector suppresses endoplasmic reticulum stress-mediated immunity by stabilizing plant Binding immunoglobulin Proteins. Nat Commun 2016; 7:11685. [PMID: 27256489 PMCID: PMC4895818 DOI: 10.1038/ncomms11685] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 04/18/2016] [Indexed: 11/15/2022] Open
Abstract
Phytophthora pathogens secrete an array of specific effector proteins to manipulate host innate immunity to promote pathogen colonization. However, little is known about the host targets of effectors and the specific mechanisms by which effectors increase susceptibility. Here we report that the soybean pathogen Phytophthora sojae uses an essential effector PsAvh262 to stabilize endoplasmic reticulum (ER)-luminal binding immunoglobulin proteins (BiPs), which act as negative regulators of plant resistance to Phytophthora. By stabilizing BiPs, PsAvh262 suppresses ER stress-triggered cell death and facilitates Phytophthora infection. The direct targeting of ER stress regulators may represent a common mechanism of host manipulation by microbes.
Collapse
Affiliation(s)
- Maofeng Jing
- Department of Plant Pathology, Nanjing Agricultural University, 210095 Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), 210095 Nanjing, China
| | - Baodian Guo
- Department of Plant Pathology, Nanjing Agricultural University, 210095 Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), 210095 Nanjing, China
| | - Haiyang Li
- Department of Plant Pathology, Nanjing Agricultural University, 210095 Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), 210095 Nanjing, China
| | - Bo Yang
- Department of Plant Pathology, Nanjing Agricultural University, 210095 Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), 210095 Nanjing, China
| | - Haonan Wang
- Department of Plant Pathology, Nanjing Agricultural University, 210095 Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), 210095 Nanjing, China
| | - Guanghui Kong
- Department of Plant Pathology, Nanjing Agricultural University, 210095 Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), 210095 Nanjing, China
| | - Yao Zhao
- Department of Plant Pathology, Nanjing Agricultural University, 210095 Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), 210095 Nanjing, China
| | - Huawei Xu
- Department of Plant Pathology, Nanjing Agricultural University, 210095 Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), 210095 Nanjing, China
| | - Yan Wang
- Department of Plant Pathology, Nanjing Agricultural University, 210095 Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), 210095 Nanjing, China
| | - Wenwu Ye
- Department of Plant Pathology, Nanjing Agricultural University, 210095 Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), 210095 Nanjing, China
| | - Suomeng Dong
- Department of Plant Pathology, Nanjing Agricultural University, 210095 Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), 210095 Nanjing, China
| | - Yongli Qiao
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, 100081 Beijing, China
| | - Brett M. Tyler
- Center for Genome Research and Biocomputing and Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331, USA
| | - Wenbo Ma
- Department of Plant Pathology and Microbiology, University of California, Riverside, California 92521, USA
- Center for Plant Cell Biology, University of California, Riverside, California 92521, USA
| | - Yuanchao Wang
- Department of Plant Pathology, Nanjing Agricultural University, 210095 Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), 210095 Nanjing, China
| |
Collapse
|
34
|
Park CJ, Seo YS. Heat Shock Proteins: A Review of the Molecular Chaperones for Plant Immunity. THE PLANT PATHOLOGY JOURNAL 2015; 31:323-33. [PMID: 26676169 PMCID: PMC4677741 DOI: 10.5423/ppj.rw.08.2015.0150] [Citation(s) in RCA: 298] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 09/14/2015] [Accepted: 09/14/2015] [Indexed: 05/19/2023]
Abstract
As sessile organisms, plants are exposed to persistently changing stresses and have to be able to interpret and respond to them. The stresses, drought, salinity, chemicals, cold and hot temperatures, and various pathogen attacks have interconnected effects on plants, resulting in the disruption of protein homeostasis. Maintenance of proteins in their functional native conformations and preventing aggregation of non-native proteins are important for cell survival under stress. Heat shock proteins (HSPs) functioning as molecular chaperones are the key components responsible for protein folding, assembly, translocation, and degradation under stress conditions and in many normal cellular processes. Plants respond to pathogen invasion using two different innate immune responses mediated by pattern recognition receptors (PRRs) or resistance (R) proteins. HSPs play an indispensable role as molecular chaperones in the quality control of plasma membrane-resident PRRs and intracellular R proteins against potential invaders. Here, we specifically discuss the functional involvement of cytosolic and endoplasmic reticulum (ER) HSPs/chaperones in plant immunity to obtain an integrated understanding of the immune responses in plant cells.
Collapse
Affiliation(s)
- Chang-Jin Park
- Department of Plant Biotechnology and PERI, Sejong University, Seoul 143-747,
Korea
- Corresponding author. C.-J. Park, Phone) +82-2-3408-4378, FAX) +82-2-3408-4318, E-mail) . Y.-S. Seo, Phone) +82-51-510-2267, FAX) +82-51-514-1778, E-mail:) , ORCID, Young-Su Seo, http://orcid.org/0000-0001-9191-1405, Chang-Jin Park, http://orcid.org/0000-0002-2586-8856
| | - Young-Su Seo
- Department of Microbiology, Pusan National University, Busan 609-735,
Korea
- Corresponding author. C.-J. Park, Phone) +82-2-3408-4378, FAX) +82-2-3408-4318, E-mail) . Y.-S. Seo, Phone) +82-51-510-2267, FAX) +82-51-514-1778, E-mail:) , ORCID, Young-Su Seo, http://orcid.org/0000-0001-9191-1405, Chang-Jin Park, http://orcid.org/0000-0002-2586-8856
| |
Collapse
|
35
|
Hu H, Wang J, Shi C, Yuan C, Peng C, Yin J, Li W, He M, Wang J, Ma B, Wang Y, Li S, Chen X. A receptor like kinase gene with expressional responsiveness on Xanthomonas oryzae pv. oryzae is essential for Xa21-mediated disease resistance. RICE (NEW YORK, N.Y.) 2015; 8:34. [PMID: 26054238 PMCID: PMC4883590 DOI: 10.1186/s12284-014-0034-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 12/06/2014] [Indexed: 05/12/2023]
Abstract
BACKGROUND Leucine-rich repeat receptor-like kinases (LRR-RLKs) represent a large class of proteins in regulating plant development and immunity. The LRR-RLK XA21 confers resistance to the bacterial disease caused by the pathogen of Xanthomonas oryzae pv. oryzae (Xoo). Several XA21 binding proteins have been characterized, however the early events governing XA21 signaling have not been fully elucidated. RESULTS Here we report the identification of one LRR-RLK gene (XIK1) whose expression is induced rapidly upon the infection with the pathogen of Xoo. Expression pattern analysis reveals that XIK1 is preferentially expressed in reproductive leaves and panicles, and that expression is associated with plant development. By using RNA interference (RNAi), we silenced the expression of XIK1 in rice with Xa21 and found that reduced expression of XIK1 compromised disease resistance mediated by XA21. In addition, we found that the expression of the downstream marker genes of pathogen associated molecular pattern (PAMP) triggered immunity (PTI) in rice was compromised in Xa21 plants silenced for XIK1. CONCLUSION Our study reveals that the LRR-RLK gene XIK1 is Xoo-responsive and positively regulates Xa21-mediated disease resistance.
Collapse
Affiliation(s)
- Haitao Hu
- />Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130 China
- />State Key Laboratory of Hybrid Rice, Sichuan Agricultural University at Wenjiang, Chengdu, 611130 China
| | - Jing Wang
- />Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130 China
- />State Key Laboratory of Hybrid Rice, Sichuan Agricultural University at Wenjiang, Chengdu, 611130 China
| | - Chan Shi
- />Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130 China
- />State Key Laboratory of Hybrid Rice, Sichuan Agricultural University at Wenjiang, Chengdu, 611130 China
| | - Can Yuan
- />Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130 China
- />State Key Laboratory of Hybrid Rice, Sichuan Agricultural University at Wenjiang, Chengdu, 611130 China
| | - Chunfang Peng
- />Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130 China
- />State Key Laboratory of Hybrid Rice, Sichuan Agricultural University at Wenjiang, Chengdu, 611130 China
| | - Junjie Yin
- />Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130 China
- />State Key Laboratory of Hybrid Rice, Sichuan Agricultural University at Wenjiang, Chengdu, 611130 China
| | - Weitao Li
- />Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130 China
- />State Key Laboratory of Hybrid Rice, Sichuan Agricultural University at Wenjiang, Chengdu, 611130 China
| | - Min He
- />Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130 China
- />State Key Laboratory of Hybrid Rice, Sichuan Agricultural University at Wenjiang, Chengdu, 611130 China
| | - Jichun Wang
- />Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130 China
- />State Key Laboratory of Hybrid Rice, Sichuan Agricultural University at Wenjiang, Chengdu, 611130 China
| | - Bintian Ma
- />Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130 China
- />State Key Laboratory of Hybrid Rice, Sichuan Agricultural University at Wenjiang, Chengdu, 611130 China
| | - Yuping Wang
- />Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130 China
- />State Key Laboratory of Hybrid Rice, Sichuan Agricultural University at Wenjiang, Chengdu, 611130 China
| | - Shigui Li
- />Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130 China
- />State Key Laboratory of Hybrid Rice, Sichuan Agricultural University at Wenjiang, Chengdu, 611130 China
- />Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin at Sichuan, Chengdu, 611130 China
| | - Xuewei Chen
- />Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130 China
- />State Key Laboratory of Hybrid Rice, Sichuan Agricultural University at Wenjiang, Chengdu, 611130 China
- />Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin at Sichuan, Chengdu, 611130 China
| |
Collapse
|
36
|
Jisha V, Dampanaboina L, Vadassery J, Mithöfer A, Kappara S, Ramanan R. Overexpression of an AP2/ERF Type Transcription Factor OsEREBP1 Confers Biotic and Abiotic Stress Tolerance in Rice. PLoS One 2015; 10:e0127831. [PMID: 26035591 PMCID: PMC4452794 DOI: 10.1371/journal.pone.0127831] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2015] [Accepted: 04/21/2015] [Indexed: 11/18/2022] Open
Abstract
AP2/ERF–type transcription factors regulate important functions of plant growth and development as well as responses to environmental stimuli. A rice AP2/ERF transcription factor, OsEREBP1 is a downstream component of a signal transduction pathway in a specific interaction between rice (Oryza sativa) and its bacterial pathogen, Xoo (Xanthomonas oryzae pv. oryzae). Constitutive expression of OsEREBP1 in rice driven by maize ubiquitin promoter did not affect normal plant growth. Microarray analysis revealed that over expression of OsEREBP1 caused increased expression of lipid metabolism related genes such as lipase and chloroplastic lipoxygenase as well as several genes related to jasmonate and abscisic acid biosynthesis. PR genes, transcription regulators and Aldhs (alcohol dehydrogenases) implicated in abiotic stress and submergence tolerance were also upregulated in transgenic plants. Transgenic plants showed increase in endogenous levels of α-linolenate, several jasmonate derivatives and abscisic acid but not salicylic acid. Soluble modified GFP (SmGFP)-tagged OsEREBP1 was localized to plastid nucleoids. Comparative analysis of non-transgenic and OsEREBP1 overexpressing genotypes revealed that OsEREBP1 attenuates disease caused by Xoo and confers drought and submergence tolerance in transgenic rice. Our results suggest that constitutive expression of OsEREBP1 activates the jasmonate and abscisic acid signalling pathways thereby priming the rice plants for enhanced survival under abiotic or biotic stress conditions. OsEREBP1 is thus, a good candidate gene for engineering plants for multiple stress tolerance.
Collapse
Affiliation(s)
- V. Jisha
- Centre for Cellular and Molecular Biology, Hyderabad, India
| | | | | | - Axel Mithöfer
- Max Planck Institute for Chemical Ecology, Department Bioorganic Chemistry, Jena, Germany
| | | | | |
Collapse
|
37
|
Transgenic expression of the dicotyledonous pattern recognition receptor EFR in rice leads to ligand-dependent activation of defense responses. PLoS Pathog 2015; 11:e1004809. [PMID: 25821973 PMCID: PMC4379099 DOI: 10.1371/journal.ppat.1004809] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 03/12/2015] [Indexed: 12/21/2022] Open
Abstract
Plant plasma membrane localized pattern recognition receptors (PRRs) detect extracellular pathogen-associated molecules. PRRs such as Arabidopsis EFR and rice XA21 are taxonomically restricted and are absent from most plant genomes. Here we show that rice plants expressing EFR or the chimeric receptor EFR::XA21, containing the EFR ectodomain and the XA21 intracellular domain, sense both Escherichia coli- and Xanthomonas oryzae pv. oryzae (Xoo)-derived elf18 peptides at sub-nanomolar concentrations. Treatment of EFR and EFR::XA21 rice leaf tissue with elf18 leads to MAP kinase activation, reactive oxygen production and defense gene expression. Although expression of EFR does not lead to robust enhanced resistance to fully virulent Xoo isolates, it does lead to quantitatively enhanced resistance to weakly virulent Xoo isolates. EFR interacts with OsSERK2 and the XA21 binding protein 24 (XB24), two key components of the rice XA21-mediated immune response. Rice-EFR plants silenced for OsSERK2, or overexpressing rice XB24 are compromised in elf18-induced reactive oxygen production and defense gene expression indicating that these proteins are also important for EFR-mediated signaling in transgenic rice. Taken together, our results demonstrate the potential feasibility of enhancing disease resistance in rice and possibly other monocotyledonous crop species by expression of dicotyledonous PRRs. Our results also suggest that Arabidopsis EFR utilizes at least a subset of the known endogenous rice XA21 signaling components. Plants possess multi-layered immune recognition systems. Early in the infection process, plants use receptor proteins to recognize pathogen molecules. Some of these receptors are present in only in a subset of plant species. Transfer of these taxonomically restricted immune receptors between plant species by genetic engineering is a promising approach for boosting the plant immune system. Here we show the successful transfer of an immune receptor from a species in the mustard family, called EFR, to rice. Rice plants expressing EFR are able to sense the bacterial ligand of EFR and elicit an immune response. We show that the EFR receptor is able to use components of the rice immune signaling pathway for its function. Under laboratory conditions, this leads to an enhanced resistance response to two weakly virulent isolates of an economically important bacterial disease of rice.
Collapse
|
38
|
Holton N, Nekrasov V, Ronald PC, Zipfel C. The phylogenetically-related pattern recognition receptors EFR and XA21 recruit similar immune signaling components in monocots and dicots. PLoS Pathog 2015; 11:e1004602. [PMID: 25607985 PMCID: PMC4301810 DOI: 10.1371/journal.ppat.1004602] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Accepted: 12/04/2014] [Indexed: 11/19/2022] Open
Abstract
During plant immunity, surface-localized pattern recognition receptors (PRRs) recognize pathogen-associated molecular patterns (PAMPs). The transfer of PRRs between plant species is a promising strategy for engineering broad-spectrum disease resistance. Thus, there is a great interest in understanding the mechanisms of PRR-mediated resistance across different plant species. Two well-characterized plant PRRs are the leucine-rich repeat receptor kinases (LRR-RKs) EFR and XA21 from Arabidopsis thaliana (Arabidopsis) and rice, respectively. Interestingly, despite being evolutionary distant, EFR and XA21 are phylogenetically closely related and are both members of the sub-family XII of LRR-RKs that contains numerous potential PRRs. Here, we compared the ability of these related PRRs to engage immune signaling across the monocots-dicots taxonomic divide. Using chimera between Arabidopsis EFR and rice XA21, we show that the kinase domain of the rice XA21 is functional in triggering elf18-induced signaling and quantitative immunity to the bacteria Pseudomonas syringae pv. tomato (Pto) DC3000 and Agrobacterium tumefaciens in Arabidopsis. Furthermore, the EFR:XA21 chimera associates dynamically in a ligand-dependent manner with known components of the EFR complex. Conversely, EFR associates with Arabidopsis orthologues of rice XA21-interacting proteins, which appear to be involved in EFR-mediated signaling and immunity in Arabidopsis. Our work indicates the overall functional conservation of immune components acting downstream of distinct LRR-RK-type PRRs between monocots and dicots. Pests and diseases cause significant agricultural losses. Plants recognize pathogen-derived molecules via plasma membrane-localized immune receptors (called pattern recognition receptors or PRRs), resulting in pathogen resistance. In recent years, the transfer of PRRs across plant species has emerged as a promising biotechnological approach to improve crop disease resistance. Successful transfers of PRRs suggest that immune signaling components are conserved across plant species. In this study, we demonstrate that the PRR XA21 from the monocot plant rice is functional in the dicot plant Arabidopsis thaliana (Arabidopsis) and that it confers quantitatively enhanced resistance to bacteria. Furthermore, we show that the rice XA21 and the Arabidopsis EFR, which are evolutionary-distant but phylogenetically closely related, recruit similar signaling components for their function, revealing an overall conservation of immune pathways across monocots and dicots. These findings demonstrate evolutionary conservation of downstream signaling from PRRs and indicate that transfer of PRRs is possible between different plant families, but also between monocots and dicots.
Collapse
Affiliation(s)
- Nicholas Holton
- The Sainsbury Laboratory, Norwich Research Park, Norwich, United Kingdom
| | - Vladimir Nekrasov
- The Sainsbury Laboratory, Norwich Research Park, Norwich, United Kingdom
| | - Pamela C. Ronald
- Department of Plant Pathology and the Genome Center, University of California, Davis, Davis, California, United States of America
| | - Cyril Zipfel
- The Sainsbury Laboratory, Norwich Research Park, Norwich, United Kingdom
- * E-mail:
| |
Collapse
|
39
|
Ben Khaled S, Postma J, Robatzek S. A moving view: subcellular trafficking processes in pattern recognition receptor-triggered plant immunity. ANNUAL REVIEW OF PHYTOPATHOLOGY 2015; 53:379-402. [PMID: 26243727 DOI: 10.1146/annurev-phyto-080614-120347] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
A significant challenge for plants is to induce localized defense responses at sites of pathogen attack. Therefore, host subcellular trafficking processes enable accumulation and exchange of defense compounds, which contributes to the plant on-site defenses in response to pathogen perception. This review summarizes our current understanding of the transport processes that facilitate immunity, the significance of which is highlighted by pathogens reprogramming membrane trafficking through host cell translocated effectors. Prominent immune-related cargos of plant trafficking pathways are the pattern recognition receptors (PRRs), which must be present at the plasma membrane to sense microbes in the apoplast. We focus on the dynamic localization of the FLS2 receptor and discuss the pathways that regulate receptor transport within the cell and their link to FLS2-mediated immunity. One emerging theme is that ligand-induced late endocytic trafficking is conserved across different PRR protein families as well as across different plant species.
Collapse
Affiliation(s)
- Sara Ben Khaled
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, United Kingdom;
| | | | | |
Collapse
|
40
|
Tripathi JN, Lorenzen J, Bahar O, Ronald P, Tripathi L. Transgenic expression of the rice Xa21 pattern-recognition receptor in banana (Musa sp.) confers resistance to Xanthomonas campestris pv. musacearum. PLANT BIOTECHNOLOGY JOURNAL 2014; 12:663-73. [PMID: 24612254 PMCID: PMC4110157 DOI: 10.1111/pbi.12170] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 12/20/2013] [Accepted: 01/09/2014] [Indexed: 05/04/2023]
Abstract
Banana Xanthomonas wilt (BXW), caused by the bacterium Xanthomonas campestris pv. musacearum (Xcm), is the most devastating disease of banana in east and central Africa. The spread of BXW threatens the livelihood of millions of African farmers who depend on banana for food security and income. There are no commercial chemicals, biocontrol agents or resistant cultivars available to control BXW. Here, we take advantage of the robust resistance conferred by the rice pattern-recognition receptor (PRR), XA21, to the rice pathogen Xanthomonas oryzae pv. oryzae (Xoo). We identified a set of genes required for activation of Xa21-mediated immunity (rax) that were conserved in both Xoo and Xcm. Based on the conservation, we hypothesized that intergeneric transfer of Xa21 would confer resistance to Xcm. We evaluated 25 transgenic lines of the banana cultivar 'Gonja manjaya' (AAB) using a rapid bioassay and 12 transgenic lines in the glasshouse for resistance against Xcm. About 50% of the transgenic lines showed complete resistance to Xcm in both assays. In contrast, all of the nontransgenic control plants showed severe symptoms that progressed to complete wilting. These results indicate that the constitutive expression of the rice Xa21 gene in banana results in enhanced resistance against Xcm. Furthermore, this work demonstrates the feasibility of PRR gene transfer between monocotyledonous species and provides a valuable new tool for controlling the BXW pandemic of banana, a staple food for 100 million people in east Africa.
Collapse
Affiliation(s)
| | - Jim Lorenzen
- International Institute of Tropical Agriculture (IITA), Arusha, Tanzania
| | - Ofir Bahar
- Department of Pathology and the Genome Center, University of California, Davis, USA
| | - Pamela Ronald
- Department of Pathology and the Genome Center, University of California, Davis, USA
| | - Leena Tripathi
- International Institute of Tropical Agriculture (IITA), Nairobi, Kenya
| |
Collapse
|
41
|
Zhang Z, Shrestha J, Tateda C, Greenberg JT. Salicylic acid signaling controls the maturation and localization of the arabidopsis defense protein ACCELERATED CELL DEATH6. MOLECULAR PLANT 2014; 7:1365-1383. [PMID: 24923602 PMCID: PMC4168298 DOI: 10.1093/mp/ssu072] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
ACCELERATED CELL DEATH6 (ACD6) is a multipass membrane protein with an ankyrin domain that acts in a positive feedback loop with the defense signal salicylic acid (SA). This study implemented biochemical approaches to infer changes in ACD6 complexes and localization. In addition to forming endoplasmic reticulum (ER)- and plasma membrane (PM)-localized complexes, ACD6 forms soluble complexes, where it is bound to cytosolic HSP70, ubiquitinated, and degraded via the proteasome. Thus, ACD6 constitutively undergoes ER-associated degradation. During SA signaling, the soluble ACD6 pool decreases, whereas the PM pool increases. Similarly, ACD6-1, an activated version of ACD6 that induces SA, is present at low levels in the soluble fraction and high levels in the PM. However, ACD6 variants with amino acid substitutions in the ankyrin domain form aberrant, inactive complexes, are induced by a SA agonist, but show no PM localization. SA signaling also increases the PM pools of FLAGELLIN SENSING2 (FLS2) and BRI1-ASSOCIATED RECEPTOR KINASE 1 (BAK1). FLS2 forms complexes ACD6; both FLS2 and BAK1 require ACD6 for maximal accumulation at the PM in response to SA signaling. A plausible scenario is that SA increases the efficiency of productive folding and/or complex formation in the ER, such that ACD6, together with FLS2 and BAK1, reaches the cell surface to more effectively promote immune responses.
Collapse
Affiliation(s)
- Zhongqin Zhang
- Department of Molecular Genetics and Cell Biology, University of Chicago, 929 East 57 Street, GCIS W524, Chicago, IL 60637, USA
| | - Jay Shrestha
- Department of Molecular Genetics and Cell Biology, University of Chicago, 929 East 57 Street, GCIS W524, Chicago, IL 60637, USA
| | - Chika Tateda
- Department of Molecular Genetics and Cell Biology, University of Chicago, 929 East 57 Street, GCIS W524, Chicago, IL 60637, USA
| | - Jean T Greenberg
- Department of Molecular Genetics and Cell Biology, University of Chicago, 929 East 57 Street, GCIS W524, Chicago, IL 60637, USA.
| |
Collapse
|
42
|
Chen X, Zuo S, Schwessinger B, Chern M, Canlas PE, Ruan D, Zhou X, Wang J, Daudi A, Petzold CJ, Heazlewood JL, Ronald PC. An XA21-associated kinase (OsSERK2) regulates immunity mediated by the XA21 and XA3 immune receptors. MOLECULAR PLANT 2014; 7:874-92. [PMID: 24482436 PMCID: PMC4064043 DOI: 10.1093/mp/ssu003] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 12/29/2013] [Indexed: 05/20/2023]
Abstract
The rice XA21 immune receptor kinase and the structurally related XA3 receptor confer immunity to Xanthomonas oryzae pv. oryzae (Xoo), the causal agent of bacterial leaf blight. Here we report the isolation of OsSERK2 (rice somatic embryogenesis receptor kinase 2) and demonstrate that OsSERK2 positively regulates immunity mediated by XA21 and XA3 as well as the rice immune receptor FLS2 (OsFLS2). Rice plants silenced for OsSerk2 display altered morphology and reduced sensitivity to the hormone brassinolide. OsSERK2 interacts with the intracellular domains of each immune receptor in the yeast two-hybrid system in a kinase activity-dependent manner. OsSERK2 undergoes bidirectional transphosphorylation with XA21 in vitro and forms a constitutive complex with XA21 in vivo. These results demonstrate an essential role for OsSERK2 in the function of three rice immune receptors and suggest that direct interaction with the rice immune receptors is critical for their function. Taken together, our findings suggest that the mechanism of OsSERK2-meditated regulation of rice XA21, XA3, and FLS2 differs from that of AtSERK3/BAK1-mediated regulation of Arabidopsis FLS2 and EFR.
Collapse
Affiliation(s)
- Xuewei Chen
- To whom correspondence should be addressed. X.C. E-mail , fax (86)-28-86290948, tel. (86)-28-86290950. P.C.R. E-mail , fax (1)-530-752-6088, tel. (1)-530-752-1654
| | - Shimin Zuo
- Department of Plant Pathology and the Genome Center, University of California, Davis, CA 95616, USA
- Joint Bioenergy Institute, Emeryville, CA 94710, USA
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou 225009, China
- These authors contributed equally to this work
| | - Benjamin Schwessinger
- Department of Plant Pathology and the Genome Center, University of California, Davis, CA 95616, USA
- These authors contributed equally to this work
| | - Mawsheng Chern
- Department of Plant Pathology and the Genome Center, University of California, Davis, CA 95616, USA
- Joint Bioenergy Institute, Emeryville, CA 94710, USA
| | - Patrick E. Canlas
- Department of Plant Pathology and the Genome Center, University of California, Davis, CA 95616, USA
- Joint Bioenergy Institute, Emeryville, CA 94710, USA
| | - Deling Ruan
- Department of Plant Pathology and the Genome Center, University of California, Davis, CA 95616, USA
- Joint Bioenergy Institute, Emeryville, CA 94710, USA
| | - Xiaogang Zhou
- Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Jing Wang
- Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Arsalan Daudi
- Department of Plant Pathology and the Genome Center, University of California, Davis, CA 95616, USA
| | | | | | - Pamela C. Ronald
- Department of Plant Pathology and the Genome Center, University of California, Davis, CA 95616, USA
- Joint Bioenergy Institute, Emeryville, CA 94710, USA
- To whom correspondence should be addressed. X.C. E-mail , fax (86)-28-86290948, tel. (86)-28-86290950. P.C.R. E-mail , fax (1)-530-752-6088, tel. (1)-530-752-1654
| |
Collapse
|
43
|
Park CJ, Song MY, Kim CY, Jeon JS, Ronald PC. Rice BiP3 regulates immunity mediated by the PRRs XA3 and XA21 but not immunity mediated by the NB-LRR protein, Pi5. Biochem Biophys Res Commun 2014; 448:70-5. [PMID: 24780396 DOI: 10.1016/j.bbrc.2014.04.093] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 04/13/2014] [Indexed: 10/25/2022]
Abstract
Plant innate immunity is mediated by pattern recognition receptors (PRRs) and intracellular NB-LRR (nucleotide-binding domain and leucine-rich repeat) proteins. Overexpression of the endoplasmic reticulum (ER) chaperone, luminal-binding protein 3 (BiP3) compromises resistance to Xanthomonas oryzae pv. oryzae (Xoo) mediated by the rice PRR XA21 [12]. Here we show that BiP3 overexpression also compromises resistance mediated by rice XA3, a PRR that provides broad-spectrum resistance to Xoo. In contrast, BiP3 overexpression has no effect on resistance mediated by rice Pi5, an NB-LRR protein that confers resistance to the fungal pathogen Magnaporthe oryzae (M. oryzae). Our results suggest that rice BiP3 regulates membrane-resident PRR-mediated immunity.
Collapse
Affiliation(s)
- Chang-Jin Park
- Department of Plant Pathology and the Genome Center, University of California Davis, Davis, CA 95616, USA; Department of Bioresources Engineering, Sejong University, Seoul 143-747, Republic of Korea
| | - Min-Young Song
- Graduate School of Biotechnology & Crop Biotech Institute, Kyung Hee University, Yongin 446-701, Republic of Korea
| | - Chi-Yeol Kim
- Graduate School of Biotechnology & Crop Biotech Institute, Kyung Hee University, Yongin 446-701, Republic of Korea
| | - Jong-Seong Jeon
- Graduate School of Biotechnology & Crop Biotech Institute, Kyung Hee University, Yongin 446-701, Republic of Korea
| | - Pamela C Ronald
- Department of Plant Pathology and the Genome Center, University of California Davis, Davis, CA 95616, USA.
| |
Collapse
|
44
|
Tintor N, Saijo Y. ER-mediated control for abundance, quality, and signaling of transmembrane immune receptors in plants. FRONTIERS IN PLANT SCIENCE 2014; 5:65. [PMID: 24616730 PMCID: PMC3933923 DOI: 10.3389/fpls.2014.00065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Accepted: 02/07/2014] [Indexed: 05/03/2023]
Abstract
Plants recognize a wide range of microbes with cell-surface and intracellular immune receptors. Transmembrane pattern recognition receptors (PRRs) initiate immune responses upon recognition of cognate ligands characteristic of microbes or aberrant cellular states, designated microbe-associated molecular patterns or danger-associated molecular patterns (DAMPs), respectively.Pattern-triggered immunity provides a first line of defense that restricts the invasion and propagation of both adapted and non-adapted pathogens. Receptor kinases (RKs) and receptor-like proteins (RLPs) with an extracellular leucine-rich repeat or lysine-motif (LysM) domain are extensively used as PRRs. The correct folding of the extracellular domain of these receptors is under quality control (QC) in the endoplasmic reticulum (ER), which thus provides a critical step in plant immunity. Genetic and structural insight suggests that ERQC regulates not only the abundance and quality of transmembrane receptors but also affects signal sorting between multi-branched pathways downstream of the receptor. However, ERQC dysfunction can also positively stimulate plant immunity, possibly through cell death and DAMP signaling pathways.
Collapse
Affiliation(s)
- Nico Tintor
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding ResearchCologne, Germany
| | - Yusuke Saijo
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding ResearchCologne, Germany
- Laboratory of Plant Immunity, Graduate School of Biological Sciences, Nara Institute of Science and TechnologyIkoma, Japan
- Japan Science and Technology, Precursory Research for Embryonic Science and TechnologyKawaguchi, Japan
- *Correspondence: Yusuke Saijo, Laboratory of Plant Immunity, Graduate School of Biological Sciences, Nara Institute of Science and Technology, 630-0192 Ikoma, Japan e-mail:
| |
Collapse
|
45
|
Liebrand TWH, Kombrink A, Zhang Z, Sklenar J, Jones AME, Robatzek S, Thomma BPHJ, Joosten MHAJ. Chaperones of the endoplasmic reticulum are required for Ve1-mediated resistance to Verticillium. MOLECULAR PLANT PATHOLOGY 2014; 15:109-17. [PMID: 24015989 PMCID: PMC6638731 DOI: 10.1111/mpp.12071] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The tomato receptor-like protein (RLP) Ve1 mediates resistance to the vascular fungal pathogen Verticillium dahliae. To identify the proteins required for Ve1 function, we transiently expressed and immunopurified functional Ve1-enhanced green fluorescent protein (eGFP) from Nicotiana benthamiana leaves, followed by mass spectrometry. This resulted in the identification of peptides originating from the endoplasmic reticulum (ER)-resident chaperones HSP70 binding proteins (BiPs) and a lectin-type calreticulin (CRT). Knock-down of the different BiPs and CRTs in tomato resulted in compromised Ve1-mediated resistance to V. dahliae in most cases, showing that these chaperones play an important role in Ve1 functionality. Recently, it has been shown that one particular CRT is required for the biogenesis of the RLP-type Cladosporium fulvum resistance protein Cf-4 of tomato, as silencing of CRT3a resulted in a reduced pool of complex glycosylated Cf-4 protein. In contrast, knock-down of the various CRTs in N. benthamiana or N. tabacum did not result in reduced accumulation of mature complex glycosylated Ve1 protein. Together, this study shows that the BiP and CRT ER chaperones differentially contribute to Cf-4- and Ve1-mediated immunity.
Collapse
Affiliation(s)
- Thomas W H Liebrand
- Laboratory of Phytopathology, Wageningen University, 6708 PB, Wageningen, the Netherlands; Centre for BioSystems Genomics, 6700 AB, Wageningen, the Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Narsai R, Devenish J, Castleden I, Narsai K, Xu L, Shou H, Whelan J. Rice DB: an Oryza Information Portal linking annotation, subcellular location, function, expression, regulation, and evolutionary information for rice and Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 76:1057-73. [PMID: 24147765 PMCID: PMC4253041 DOI: 10.1111/tpj.12357] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 09/30/2013] [Accepted: 10/04/2013] [Indexed: 05/04/2023]
Abstract
Omics research in Oryza sativa (rice) relies on the use of multiple databases to obtain different types of information to define gene function. We present Rice DB, an Oryza information portal that is a functional genomics database, linking gene loci to comprehensive annotations, expression data and the subcellular location of encoded proteins. Rice DB has been designed to integrate the direct comparison of rice with Arabidopsis (Arabidopsis thaliana), based on orthology or 'expressology', thus using and combining available information from two pre-eminent plant models. To establish Rice DB, gene identifiers (more than 40 types) and annotations from a variety of sources were compiled, functional information based on large-scale and individual studies was manually collated, hundreds of microarrays were analysed to generate expression annotations, and the occurrences of potential functional regulatory motifs in promoter regions were calculated. A range of computational subcellular localization predictions were also run for all putative proteins encoded in the rice genome, and experimentally confirmed protein localizations have been collated, curated and linked to functional studies in rice. A single search box allows anything from gene identifiers (for rice and/or Arabidopsis), motif sequences, subcellular location, to keyword searches to be entered, with the capability of Boolean searches (such as AND/OR). To demonstrate the utility of Rice DB, several examples are presented including a rice mitochondrial proteome, which draws on a variety of sources for subcellular location data within Rice DB. Comparisons of subcellular location, functional annotations, as well as transcript expression in parallel with Arabidopsis reveals examples of conservation between rice and Arabidopsis, using Rice DB (http://ricedb.plantenergy.uwa.edu.au).
Collapse
Affiliation(s)
- Reena Narsai
- ARC Centre of Excellence in Plant Energy Biology, University of Western AustraliaMCS Building M316, 35 Stirling Highway, Crawley, 6009, Western Australia, Australia
- Centre for Computational Systems Biology, University of Western AustraliaMCS Building M316, 35 Stirling Highway, Crawley, 6009, Western Australia, Australia
| | - James Devenish
- ARC Centre of Excellence in Plant Energy Biology, University of Western AustraliaMCS Building M316, 35 Stirling Highway, Crawley, 6009, Western Australia, Australia
| | - Ian Castleden
- Centre for Computational Systems Biology, University of Western AustraliaMCS Building M316, 35 Stirling Highway, Crawley, 6009, Western Australia, Australia
| | - Kabir Narsai
- ARC Centre of Excellence in Plant Energy Biology, University of Western AustraliaMCS Building M316, 35 Stirling Highway, Crawley, 6009, Western Australia, Australia
| | - Lin Xu
- ARC Centre of Excellence in Plant Energy Biology, University of Western AustraliaMCS Building M316, 35 Stirling Highway, Crawley, 6009, Western Australia, Australia
| | - Huixia Shou
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang UniversityHangzhou, 310058, China
| | - James Whelan
- ARC Centre of Excellence in Plant Energy Biology, University of Western AustraliaMCS Building M316, 35 Stirling Highway, Crawley, 6009, Western Australia, Australia
| |
Collapse
|
47
|
Park CJ, Sharma R, Lefebvre B, Canlas PE, Ronald PC. The endoplasmic reticulum-quality control component SDF2 is essential for XA21-mediated immunity in rice. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2013; 210:53-60. [PMID: 23849113 DOI: 10.1016/j.plantsci.2013.05.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 04/17/2013] [Accepted: 05/07/2013] [Indexed: 05/08/2023]
Abstract
Plant genomes contain large number of plasma membrane (PM)-localized immune receptors, also called pattern recognition receptors (PRRs). PRRs are synthesized in the endoplasmic reticulum (ER) and then translocated to the PM, where they recognize conserved pathogen-associated molecular patterns (PAMPs) and activate innate immune response. The rice XA21 immune receptor confers resistance to the Gram-negative bacterial pathogen, Xanthomonas oryzae pv. oryzae (Xoo). To identify components that mediate XA21-mediated signaling, we performed co-purification experiments using C-terminal GFP tagged XA21 protein. Several endoplasmic reticulum-quality control (ER-QC) proteins including stromal-derived factor 2 (SDF2) co-purified with XA21. Silencing of the SDF2 genes in the XA21 rice genetic background compromises resistance to Xoo but does not affect plant growth and development.
Collapse
Affiliation(s)
- Chang-Jin Park
- Department of Plant Pathology and The Genome Center, University of California Davis, Davis, CA, United States
| | | | | | | | | |
Collapse
|
48
|
Kawano Y, Shimamoto K. Early signaling network in rice PRR-mediated and R-mediated immunity. CURRENT OPINION IN PLANT BIOLOGY 2013; 16:496-504. [PMID: 23927868 DOI: 10.1016/j.pbi.2013.07.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 07/11/2013] [Accepted: 07/12/2013] [Indexed: 05/21/2023]
Abstract
Recent studies on plant immunity and pathogen infection have revealed sophisticated forms of plant-pathogen interaction. Considerable progress has been made recently in our understanding of the molecular mechanism underlying chitin signaling in rice. The identification and characterization of two direct substrates, OsRacGEF1 and OsRLCK185, as components in the chitin receptor complex of OsCERK1 have revealed how pattern recognition receptors transduce pathogen signals to downstream molecules in rice. In this review, we highlight these and other recent studies that have contributed to our current understanding of the signaling network in rice immunity, especially with regard to pattern recognition receptors, disease resistance (R) proteins, and their downstream targets.
Collapse
Affiliation(s)
- Yoji Kawano
- Laboratory of Plant Molecular Genetics, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0101, Japan
| | | |
Collapse
|
49
|
Genome-wide expression analysis of HSP70 family genes in rice and identification of a cytosolic HSP70 gene highly induced under heat stress. Funct Integr Genomics 2013; 13:391-402. [DOI: 10.1007/s10142-013-0331-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2012] [Revised: 06/16/2013] [Accepted: 06/25/2013] [Indexed: 10/26/2022]
|
50
|
Robatzek S, Wirthmueller L. Mapping FLS2 function to structure: LRRs, kinase and its working bits. PROTOPLASMA 2013; 250:671-81. [PMID: 23053766 DOI: 10.1007/s00709-012-0459-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 09/21/2012] [Indexed: 05/26/2023]
Abstract
The plasma membrane-localised FLAGELLIN SENSING 2 (FLS2) receptor is an important component of plant immunity against potentially pathogenic bacteria, acting to recognise the conserved flg22 peptide of flagellin. FLS2 shares the common structure of transmembrane receptor kinases with a receptor-like ectodomain composed of leucine-rich repeats (LRR) and an active intracellular kinase domain. Upon ligand binding, FLS2 dimerises with the regulatory LRR-receptor kinase BRI1-associated kinase 1, which in turn triggers downstream signalling cascades. Although lacking crystal structure data, recent advances have been made in our understanding of flg22 recognition based on structural and functional analyses of FLS2. These studies have revealed critical regions/residues of FLS2 and post-translational modifications that regulate the abundance and activity of this receptor. In this review, we present the current knowledge on the structural mechanism of the FLS2-flg22 interaction and subsequent receptor-mediated signalling.
Collapse
Affiliation(s)
- Silke Robatzek
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, UK.
| | | |
Collapse
|