1
|
Zeng C, Zhang Y, Lin C, Liang W, Chen J, Chen Y, Xiao H, Li Y, Guan H. TFCP2L1, a potential differentiation regulator, predicts favorable prognosis and dampens thyroid cancer progression. J Endocrinol Invest 2024; 47:2953-2968. [PMID: 38753296 DOI: 10.1007/s40618-024-02392-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/11/2024] [Indexed: 11/09/2024]
Abstract
PURPOSE Thyroid cancer has an overwhelming incidence in the population. Thus, there is an urgent need to understand the underlying mechanism of its occurrence and development, which may provide new insights into therapeutic strategies. The role and mechanism of TFCP2L1 in regulating the progression of thyroid cancer remains unclear. METHODS Public databases and clinical samples were used to detect the expression of TFCP2L1 in cancer and non-cancer tissues. Kaplan-Meier and Cox regression analyses were used to compare the differences in survival probability of the TFCP2L1 highly expressing group and the TFCP2L1 lowly expressing group. Functional assays were used to evaluate the biological effect of TFCP2L1 on thyroid cancer cells. RNA sequencing and enrichment analyses were used to find out pathways that were activated or inactivated by TFCP2L1. RESULTS We demonstrated that TFCP2L1 was significantly downregulated in thyroid cancer. Decreased expression of TFCP2L1 was associated with malignant clinicopathological characteristics. Kaplan-Meier and Cox regression analyses indicated that thyroid tumor patients with low TFCP2L1 expression presented shorter disease-free interval and progression-free interval. Additionally, TFCP2L1 expression was positively correlated with thyroid differentiation degree. Overexpression of TFCP2L1 in thyroid cancer cells inhibited cell growth and motility in vitro, and tumorigenicity and metastasis in vivo. Mechanistically, the NF-κB signaling pathway was found inactivated by overexpressing TFCP2L1. CONCLUSION Our results suggest that TFCP2L1 is a tumor suppressor and potential differentiation regulator, and might be a potential therapeutic target in thyroid cancer.
Collapse
Affiliation(s)
- C Zeng
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510000, China
| | - Y Zhang
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510000, China
| | - C Lin
- Department of Geriatrics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200000, China
| | - W Liang
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510000, China
| | - J Chen
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510000, China
| | - Y Chen
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510000, China
| | - H Xiao
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510000, China
| | - Y Li
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510000, China.
| | - H Guan
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510000, China.
| |
Collapse
|
2
|
Qiu D, Wang T, Xiong Y, Li K, Qiu X, Feng Y, Lian Q, Qin Y, Liu K, Zhang Q, Jia C. TFCP2L1 drives stemness and enhances their resistance to Sorafenib treatment by modulating the NANOG/STAT3 pathway in hepatocellular carcinoma. Oncogenesis 2024; 13:33. [PMID: 39266516 PMCID: PMC11392926 DOI: 10.1038/s41389-024-00534-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 08/22/2024] [Accepted: 09/02/2024] [Indexed: 09/14/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a prevalent and aggressive malignancy associated with high risks of recurrence and metastasis. Liver cancer stem cells (CSCs) are increasingly recognized as pivotal drivers of these processes. In our previous research, we demonstrated the involvement of TFCP2L1 in maintaining the pluripotency of embryonic stem cells. However, its relevance to liver CSCs remains unexplored. In this study, we report an inverse correlation between TFCP2L1 protein levels in HCC tissue and patient outcomes. The knockdown of TFCP2L1 significantly reduced HCC cell proliferation, invasion, metastasis, clonal formation, and sphere-forming capacity, while its overexpression enhanced these functions. In addition, experiments using a nude mouse model confirmed TFCP2L1's essential role in liver CSCs' function and tumorigenic potential. Mechanistically, we showed that TFCP2L1 promotes the stemness of CSCs by upregulating NANOG, which subsequently activates the JAK/STAT3 pathway, thereby contributing to HCC pathogenesis. Importantly, we identified a specific small molecule targeting TFCP2L1's active domain, which, in combination with Sorafenib, sensitizes hepatoma cells to treatment. Together, these findings underscore TFCP2L1's pathological significance in HCC progression, supporting its potential as a prognostic biomarker and therapeutic target in this disease.
Collapse
Affiliation(s)
- Dongbo Qiu
- Vaccine Research Institute, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Cell-gene Therapy Translational Medicine Research Centre, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Biotherapy Centre, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Tiantian Wang
- Department of Medical Oncology; the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yi Xiong
- Biotherapy Centre, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Kun Li
- Biotherapy Centre, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiusheng Qiu
- Vaccine Research Institute, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yuan Feng
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Qinghai Lian
- Vaccine Research Institute, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yunfei Qin
- Biotherapy Centre, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Kunpeng Liu
- Medical college of Guangxi University, Nanning, Guangxi, China.
| | - Qi Zhang
- Cell-gene Therapy Translational Medicine Research Centre, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
- Biotherapy Centre, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| | - Changchang Jia
- Cell-gene Therapy Translational Medicine Research Centre, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
- Biotherapy Centre, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
3
|
Rao M, G A, Navriya SC, Sureka B, Kudunthail JR. Chromophobe Renal Cell Carcinoma with Sarcomatoid Differentiation (osteosarcomatous and chondrosarcomatous differentiation)-A Case Report and Comprehensive Review. J Kidney Cancer VHL 2024; 11:59-64. [PMID: 39280927 PMCID: PMC11397982 DOI: 10.15586/jkcvhl.v11i3.343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/19/2024] [Indexed: 09/18/2024] Open
Abstract
Chromophobe renal cell carcinomas (ChRCCs) have a good prognosis and comprise approximately 5-7% of renal cell carcinomas (RCCs). The sarcomatoid differentiation in RCC is found in around 5-10% of cases; however, in ChRCC, it is much less than in other RCCs and poorly responds to chemotherapeutic agents. A study by de Peralta-Venturina et al. found 9% sarcomatoid differentiation in chromophobe RCC. We present the case of a 58-year-old female with a left abdominal mass diagnosed as ChRCC with the existence of sarcomatous differentiation including osteosarcomatous and chondrosarcomatous, which are of adverse prognosis. Osteosarcoma-like divergent differentiation in RCC is extremely rare, with limited documented cases. It should be carefully considered in evaluating and managing renal masses due to its potential impact on clinical outcomes.
Collapse
Affiliation(s)
- Meenakshi Rao
- Department of Pathology & Lab Medicine, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Anju G
- Department of Pathology & Lab Medicine, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Shiv Charan Navriya
- Department of Urology, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Binit Sureka
- Department of Diagnostic and Interventional Radiology, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Jeena Raju Kudunthail
- Department of Urology, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| |
Collapse
|
4
|
Čugura T, Boštjančič E, Uhan S, Hauptman N, Jeruc J. Epithelial-mesenchymal transition associated markers in sarcomatoid transformation of clear cell renal cell carcinoma. Exp Mol Pathol 2024; 138:104909. [PMID: 38876079 DOI: 10.1016/j.yexmp.2024.104909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 05/18/2024] [Accepted: 06/03/2024] [Indexed: 06/16/2024]
Abstract
Epithelial-mesenchymal transition (EMT) plays a pivotal role in the development and progression of many cancers. Partial EMT (pEMT) could represent a critical step in tumor migration and dissemination. Sarcomatoid renal cell carcinoma (sRCC) is an aggressive form of renal cell carcinoma (RCC) composed of a carcinomatous (sRCC-Ca) and sarcomatous (sRCC-Sa) component. The role of (p)EMT in the progression of RCC to sRCC remains unclear. The aim of this study was to investigate the involvement of (p)EMT in RCC and sRCC. Tissue samples from 10 patients with clear cell RCC (ccRCC) and 10 patients with sRCC were selected. The expression of main EMT markers (miR-200 family, miR-205, SNAI1/2, TWIST1/2, ZEB1/2, CDH1/2, VIM) was analyzed by qPCR in ccRCC, sRCC-Ca, and sRCC-Sa and compared to non-neoplastic tissue and between both groups. Expression of E-cadherin, N-cadherin, vimentin and ZEB2 was analyzed using immunohistochemistry. miR-200c was downregulated in sRCC-Ca compared to ccRCC, while miR-200a was downregulated in sRCC-Sa compared to ccRCC. CDH1 was downregulated in sRCC-Sa when compared to any other group. ZEB2 was downregulated in ccRCC and sRCC compared to corresponding non-neoplastic kidney. A positive correlation was observed between CDH1 expression and miR-200a/b/c. Our results suggest that full EMT is not present in sRCC. Instead, discreet molecular differences exist between ccRCC, sRCC-Ca, and sRCC-Sa, possibly representing distinct intermediary states undergoing pEMT.
Collapse
MESH Headings
- Humans
- Epithelial-Mesenchymal Transition/genetics
- Carcinoma, Renal Cell/pathology
- Carcinoma, Renal Cell/genetics
- Carcinoma, Renal Cell/metabolism
- Kidney Neoplasms/pathology
- Kidney Neoplasms/genetics
- Kidney Neoplasms/metabolism
- MicroRNAs/genetics
- Male
- Middle Aged
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Female
- Vimentin/metabolism
- Vimentin/genetics
- Zinc Finger E-box Binding Homeobox 2/genetics
- Zinc Finger E-box Binding Homeobox 2/metabolism
- Aged
- Cadherins/genetics
- Cadherins/metabolism
- Gene Expression Regulation, Neoplastic
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Twist-Related Protein 1/genetics
- Twist-Related Protein 1/metabolism
- Snail Family Transcription Factors/genetics
- Snail Family Transcription Factors/metabolism
- Zinc Finger E-box-Binding Homeobox 1/genetics
- Zinc Finger E-box-Binding Homeobox 1/metabolism
- Repressor Proteins/genetics
- Repressor Proteins/metabolism
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/pathology
- Cell Transformation, Neoplastic/metabolism
- Adult
- Nuclear Proteins
Collapse
Affiliation(s)
- Tanja Čugura
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Emanuela Boštjančič
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Sara Uhan
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Nina Hauptman
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Jera Jeruc
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.
| |
Collapse
|
5
|
Wang D, Mahmud I, Thakur VS, Kiat Tan S, Isom DG, Lombard DB, Gonzalgo ML, Kryvenko ON, Lorenzi PL, Tcheuyap VT, Brugarolas J, Welford SM. GPR1 and CMKLR1 Control Lipid Metabolism to Support the Development of Clear Cell Renal Cell Carcinoma. Cancer Res 2024; 84:2141-2154. [PMID: 38640229 PMCID: PMC11290988 DOI: 10.1158/0008-5472.can-23-2926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 02/14/2024] [Accepted: 04/17/2024] [Indexed: 04/21/2024]
Abstract
Clear cell renal cell carcinoma (ccRCC), the most common type of kidney cancer, is largely incurable in the metastatic setting. ccRCC is characterized by excessive lipid accumulation that protects cells from stress and promotes tumor growth, suggesting that the underlying regulators of lipid storage could represent potential therapeutic targets. Here, we evaluated the regulatory roles of GPR1 and CMKLR1, two G protein-coupled receptors of the protumorigenic adipokine chemerin that is involved in ccRCC lipid metabolism. Both genetic and pharmacologic suppression of either receptor suppressed lipid formation and induced multiple forms of cell death, including apoptosis, ferroptosis, and autophagy, thereby significantly impeding ccRCC growth in cell lines and patient-derived xenograft models. Comprehensive lipidomic and transcriptomic profiling of receptor competent and depleted cells revealed overlapping and unique signaling of the receptors granting control over triglyceride synthesis, ceramide production, and fatty acid saturation and class production. Mechanistically, both receptors enforced suppression of adipose triglyceride lipase, but each receptor also demonstrated distinct functions, such as the unique ability of CMKLR1 to control lipid uptake through regulation of sterol regulatory element-binding protein 1c and the CD36 scavenger receptor. Treating patient-derived xenograft models with the CMKLR1-targeting small molecule 2-(α-naphthoyl) ethyltrimethylammonium iodide (α-NETA) led to a dramatic reduction in tumor growth, lipid storage, and clear-cell morphology. Together, these findings provide mechanistic insights into lipid regulation in ccRCC and identify a targetable axis at the core of the histologic definition of this tumor that could be exploited therapeutically. Significance: Extracellular control of lipid accumulation via G protein receptor-mediated cell signaling is a metabolic vulnerability in clear cell renal cell carcinoma, which depends on lipid storage to avoid oxidative toxicity.
Collapse
Affiliation(s)
- Dazhi Wang
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, Florida, 33136, USA
- Sheila and David Fuente Graduate Program in Cancer Biology, University of Miami Miller School of Medicine, Miami, Florida, 33136, USA
| | - Iqbal Mahmud
- Department of Bioinformatics & Computational Biology, MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Vijay S. Thakur
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, Florida, 33136, USA
| | - Sze Kiat Tan
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, Florida, 33136, USA
| | - Daniel G. Isom
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida, 33136, USA
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida, 33136, USA
| | - David B. Lombard
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida, 33136, USA
- Department of Pathology & Laboratory Medicine, University of Miami Miller School of Medicine, Miami, Florida, 33136, USA
- Bruce W. Carter VAMC, Miami FL 33125, USA
| | - Mark L. Gonzalgo
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida, 33136, USA
- Desai Sethi Urology Institute, University of Miami Miller School of Medicine, Miami, Florida, 33136, USA
| | - Oleksandr N. Kryvenko
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, Florida, 33136, USA
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida, 33136, USA
- Department of Pathology & Laboratory Medicine, University of Miami Miller School of Medicine, Miami, Florida, 33136, USA
- Desai Sethi Urology Institute, University of Miami Miller School of Medicine, Miami, Florida, 33136, USA
| | - Philip L. Lorenzi
- Department of Bioinformatics & Computational Biology, MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Vanina T Tcheuyap
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - James Brugarolas
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Internal Medicine/Hematology-Oncology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Scott M. Welford
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, Florida, 33136, USA
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida, 33136, USA
| |
Collapse
|
6
|
Zhou L, Yin M, Guo F, Yu Z, Weng G, Long H. Low ACADM expression predicts poor prognosis and suppressive tumor microenvironment in clear cell renal cell carcinoma. Sci Rep 2024; 14:9533. [PMID: 38664460 PMCID: PMC11045743 DOI: 10.1038/s41598-024-59746-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) represents a highly frequent renal cancer subtype. However, medium-chain acyl-CoA dehydrogenase (ACADM) encodes an important enzyme responsible for fatty acid β-oxidation (FAO) and its association with prognosis and immunity in cancers has rarely been reported. Therefore, the present work focused on exploring ACADM's expression and role among ccRCC cases. We used multiple public databases and showed the hypo levels of ACADM protein and mRNA within ccRCC. Additionally, we found that ACADM down-regulation showed a remarkable relation to the advanced stage, high histological grade, as well as dismal prognostic outcome. As suggested by Kaplan-Meier curve analysis, cases showing low ACADM levels displayed shorter overall survival (OS) as well as disease-free survival (DFS). Moreover, according to univariate/multivariate Cox regression, ACADM-mRNA independently predicted the prognosis of ccRCC. In addition, this work conducted immunohistochemistry for validating ACADM protein expression and its prognostic role in ccRCC samples. KEGG and GO analyses revealed significantly enriched genes related to ACADM expression during fatty acid metabolism. The low-ACADM group with more regulatory T-cell infiltration showed higher expression of immune negative regulation genes and higher TIDE scores, which might contribute to poor response to immunotherapies. In conclusion, our results confirmed that downregulated ACADM predicted a poor prognosis for ccRCC and a poor response to immunotherapy. Our results provide important data for developing immunotherapy for ccRCC.
Collapse
Affiliation(s)
- Libin Zhou
- Department of Urology, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
- Departments of Urology, Ningbo Medical Center Lihuili Hospital, Ningbo, Zhejiang, China
| | - Min Yin
- Department of Urology, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
- Departments of Urology, Ningbo Medical Center Lihuili Hospital, Ningbo, Zhejiang, China
| | - Fei Guo
- Ningbo Institute for Medicine and Biomedical Engineering Combined Innovation, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
| | - Zefeng Yu
- School of Information Engineering, Nanchang University, Nanchang, China
| | - Guobin Weng
- Department of Urology, Ningbo Yinzhou No.2 Hospital, Ningbo, China.
| | - Huimin Long
- Department of Urology, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China.
- Departments of Urology, Ningbo Medical Center Lihuili Hospital, Ningbo, Zhejiang, China.
| |
Collapse
|
7
|
Le LNH, Choi C, Han JA, Kim EB, Trinh VN, Kim YJ, Ryu S. Apolipoprotein L1 is a tumor suppressor in clear cell renal cell carcinoma metastasis. Front Oncol 2024; 14:1371934. [PMID: 38680858 PMCID: PMC11045967 DOI: 10.3389/fonc.2024.1371934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/29/2024] [Indexed: 05/01/2024] Open
Abstract
The 5-year survival rate of kidney cancer drops dramatically from 93% to 15% when it is metastatic. Metastasis constitutes for 30% of kidney cancer cases, in which clear cell renal cell carcinoma (ccRCC) is the most prominent subtype. By sequencing mRNA of ccRCC patient samples, we found that apolipoprotein L1 (APOL1) was highly expressed in tumors compared to their adjacent normal tissues. This gene has been previously identified in a large body of kidney disease research and was reported as a potential prognosis marker in many types of cancers. However, the molecular function of APOL1 in ccRCC, especially in metastasis, remained unknown. In this study, we modulated the expression of APOL1 in various renal cancer cell lines and analyzed their proliferative, migratory, and invasive properties. Strikingly, APOL1 overexpression suppressed ccRCC metastasis both in vitro and in vivo. We then explored the mechanism by which APOL1 alleviated ccRCC malignant progression by investigating its downstream pathways. APOL1 overexpression diminished the activity of focal adhesive molecules, Akt signaling pathways, and EMT processes. Furthermore, in the upstream, we discovered that miR-30a-3p could inhibit APOL1 expression. In conclusion, our study revealed that APOL1 play a role as a tumor suppressor in ccRCC and inhibit metastasis, which may provide novel potential therapeutic approaches for ccRCC patients.
Collapse
Affiliation(s)
- Linh Nguy-Hoang Le
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan, Republic of Korea
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan, Republic of Korea
| | - Cheolwon Choi
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan, Republic of Korea
| | - Jae-A. Han
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan, Republic of Korea
| | - Eun-Bit Kim
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan, Republic of Korea
| | - Van Ngu Trinh
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan, Republic of Korea
| | - Yong-June Kim
- Department of Urology, Chungbuk National University Hospital, Cheongju, Republic of Korea
- Department of Urology, Chungbuk National University College of Medicine, Cheongju, Republic of Korea
| | - Seongho Ryu
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan, Republic of Korea
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan, Republic of Korea
| |
Collapse
|
8
|
Mendivelso González DF, Sánchez Villalobos SA, Ramos AE, Montero Ovalle WJ, Serrano López ML. Single Nucleotide Polymorphisms Associated with Prostate Cancer Progression: A Systematic Review. Cancer Invest 2024; 42:75-96. [PMID: 38055319 DOI: 10.1080/07357907.2023.2291776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 12/03/2023] [Indexed: 12/07/2023]
Abstract
BACKGROUND New biomarkers of progression in patients with prostate cancer (PCa) are needed to improve their classification and clinical management. This systematic review investigated the relationship between single nucleotide polymorphisms (SNPs) and PCa progression. METHODS A keyword search was performed in Pubmed, EMBASE, Scopus, Web of Science, and Cochrane for publications between 2007 and 2022. We included articles with adjusted and significant associations, a median follow-up greater than or equal to 24 months, patients taken to radical prostatectomy (RP) as a first therapeutic option, and results presented based on biochemical recurrence (BCR). RESULTS In the 27 articles selected, 73 SNPs were identified in 39 genes, organized in seven functional groups. Of these, 50 and 23 SNPs were significantly associated with a higher and lower risk of PCa progression, respectively. Likewise, four haplotypes were found to have a significant association with PCa progression. CONCLUSION This article highlights the importance of SNPs as potential markers of PCa progression and their possible functional relationship with some genes relevant to its development and progression. However, most variants were identified only in cohorts from two countries; no additional studies reproduce these findings.
Collapse
Affiliation(s)
| | | | | | | | - Martha Lucía Serrano López
- Cancer Biology Research Group, Instituto Nacional de Cancerología, Bogotá, Colombia
- Department of Chemistry, Universidad Nacional de Colombia, Bogotá, Colombia
| |
Collapse
|
9
|
Liu Y, Li H, Zeng T, Wang Y, Zhang H, Wan Y, Shi Z, Cao R, Tang H. Integrated bulk and single-cell transcriptomes reveal pyroptotic signature in prognosis and therapeutic options of hepatocellular carcinoma by combining deep learning. Brief Bioinform 2023; 25:bbad487. [PMID: 38197309 PMCID: PMC10777172 DOI: 10.1093/bib/bbad487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/22/2023] [Accepted: 11/30/2023] [Indexed: 01/11/2024] Open
Abstract
Although some pyroptosis-related (PR) prognostic models for cancers have been reported, pyroptosis-based features have not been fully discovered at the single-cell level in hepatocellular carcinoma (HCC). In this study, by deeply integrating single-cell and bulk transcriptome data, we systematically investigated significance of the shared pyroptotic signature at both single-cell and bulk levels in HCC prognosis. Based on the pyroptotic signature, a robust PR risk system was constructed to quantify the prognostic risk of individual patient. To further verify capacity of the pyroptotic signature on predicting patients' prognosis, an attention mechanism-based deep neural network classification model was constructed. The mechanisms of prognostic difference in the patients with distinct PR risk were dissected on tumor stemness, cancer pathways, transcriptional regulation, immune infiltration and cell communications. A nomogram model combining PR risk with clinicopathologic data was constructed to evaluate the prognosis of individual patients in clinic. The PR risk could also evaluate therapeutic response to neoadjuvant therapies in HCC patients. In conclusion, the constructed PR risk system enables a comprehensive assessment of tumor microenvironment characteristics, accurate prognosis prediction and rational therapeutic options in HCC.
Collapse
Affiliation(s)
- Yang Liu
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Hanlin Li
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Tianyu Zeng
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Yang Wang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Hongqi Zhang
- School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Ying Wan
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Zheng Shi
- Clinical Genetics Laboratory, Clinical Medical College & Affiliated Hospital, Chengdu University, Chengdu 610106, China
| | - Renzhi Cao
- Department of Computer Science, Pacific Lutheran University, Tacoma, Washington 98447, USA
| | - Hua Tang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases,Ministry of Education, Luzhou 646000, China
- Medical Engineering & Medical Informatics Integration and Transformational Medicine Key Laboratory of Luzhou City, Luzhou 646000, China
| |
Collapse
|
10
|
Xu J, Jiang J, Yin C, Wang Y, Shi B. Identification of ATP6V0A4 as a potential biomarker in renal cell carcinoma using integrated bioinformatics analysis. Oncol Lett 2023; 26:366. [PMID: 37559594 PMCID: PMC10407721 DOI: 10.3892/ol.2023.13952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/16/2023] [Indexed: 08/11/2023] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is the most common pathological type of renal cancer, and is associated with a high mortality rate, which is related to high rates of tumor recurrence and metastasis. The aim of the present study was to identify reliable molecular biomarkers with high specificity and sensitivity for ccRCC. A total of eight ccRCC-related expression profiles were downloaded from Gene Expression Omnibus for integrated bioinformatics analysis to screen for significantly differentially expressed genes (DEGs). Reverse transcription-quantitative (RT-q)PCR, western blotting and immunohistochemistry staining assays were performed to evaluate the expression levels of candidate biomarkers in ccRCC tissues and cell lines. In total, 255 ccRCC specimens and 165 adjacent normal kidney specimens were analyzed, and 344 significant DEGs, consisting of 115 upregulated DEGs and 229 downregulated DEGs, were identified. The results of Gene Ontology analysis suggested a significant enrichment of DEGs in 'organic anion transport' and 'small molecule catabolic process' in biological processes, in 'apical plasma membrane' and 'apical part of the cell' in cell components, and in 'anion transmembrane transporter activity' and 'active transmembrane transporter activity' in molecular functions. Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis indicated that the DEGs were significantly enriched in the 'phagosome', the 'PPAR signaling pathway', 'complement and coagulation cascades', the 'HIF-1 signaling pathway' and 'carbon metabolism'. Next, 7 hub genes (SUCNR1, CXCR4, VCAN, CASR, ATP6V0A4, VEGFA and SERPINE1) were identified and validated using The Cancer Genome Atlas database. Survival analysis showed that low expression of ATP6V0A4 was associated with a poor prognosis in patients with ccRCC. Additionally, received operating characteristic curves indicated that ATP6V0A4 could distinguish ccRCC samples from normal kidney samples. Furthermore, RT-qPCR, western blotting and immunohistochemistry staining results showed that ATP6V0A4 was significantly downregulated in ccRCC tissues and cell lines. In conclusion, ATP6V0A4 may be involved in tumor progression and regarded as a potential therapeutic target for the recurrence and metastasis of ccRCC.
Collapse
Affiliation(s)
- Jinming Xu
- Department of Urology, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong 518035, P.R. China
- Department of Urology, Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - Jiahao Jiang
- Department of Urology, Shenzhen Second People's Hospital, Clinical College of Anhui Medical University, Shenzhen, Guangdong 518035, P.R. China
| | - Cong Yin
- Department of Urology, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong 518035, P.R. China
| | - Yan Wang
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| | - Bentao Shi
- Department of Urology, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong 518035, P.R. China
| |
Collapse
|
11
|
Jin C, Luo Y, Liang Z, Li X, Kołat D, Zhao L, Xiong W. Crucial role of the transcription factors family activator protein 2 in cancer: current clue and views. J Transl Med 2023; 21:371. [PMID: 37291585 PMCID: PMC10249218 DOI: 10.1186/s12967-023-04189-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 05/08/2023] [Indexed: 06/10/2023] Open
Abstract
The transcription factor family activator protein 2 (TFAP2) is vital for regulating both embryonic and oncogenic development. The TFAP2 family consists of five DNA-binding proteins, including TFAP2A, TFAP2B, TFAP2C, TFAP2D and TFAP2E. The importance of TFAP2 in tumor biology is becoming more widely recognized. While TFAP2D is not well studied, here, we mainly focus on the other four TFAP2 members. As a transcription factor, TFAP2 regulates the downstream targets directly by binding to their regulatory region. In addition, the regulation of downstream targets by epigenetic modification, posttranslational regulation, and interaction with noncoding RNA have also been identified. According to the pathways in which the downstream targets are involved in, the regulatory effects of TFAP2 on tumorigenesis are generally summarized as follows: stemness and EMT, interaction between TFAP2 and tumor microenvironment, cell cycle and DNA damage repair, ER- and ERBB2-related signaling pathway, ferroptosis and therapeutic response. Moreover, the factors that affect TFAP2 expression in oncogenesis are also summarized. Here, we review and discuss the most recent studies on TFAP2 and its effects on carcinogenesis and regulatory mechanisms.
Collapse
Affiliation(s)
- Chen Jin
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Liver Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yuxiao Luo
- University Medical Center Göttingen, University of Göttingen, Göttingen, Germany
| | - Zhu Liang
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Chinese Academy for Medical Sciences Oxford Institute, Oxford, UK
| | - Xi Li
- Department of Urology, Churchill Hospital, Oxford University Hospitals NHS Foundation, Oxford, UK
| | - Damian Kołat
- Department of Experimental Surgery, Medical University of Lodz, Lodz, Poland
| | - Linyong Zhao
- Department of General Surgery & Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| | - Weixi Xiong
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China.
- Institute of Brain Science and Brain-Inspired Technology, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
12
|
Cardenas-Diaz FL, Liberti DC, Leach JP, Babu A, Barasch J, Shen T, Diaz-Miranda MA, Zhou S, Ying Y, Callaway DA, Morley MP, Morrisey EE. Temporal and spatial staging of lung alveolar regeneration is determined by the grainyhead transcription factor Tfcp2l1. Cell Rep 2023; 42:112451. [PMID: 37119134 PMCID: PMC10360042 DOI: 10.1016/j.celrep.2023.112451] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 01/23/2023] [Accepted: 04/13/2023] [Indexed: 04/30/2023] Open
Abstract
Alveolar epithelial type 2 (AT2) cells harbor the facultative progenitor capacity in the lung alveolus to drive regeneration after lung injury. Using single-cell transcriptomics, software-guided segmentation of tissue damage, and in vivo mouse lineage tracing, we identified the grainyhead transcription factor cellular promoter 2-like 1 (Tfcp2l1) as a regulator of this regenerative process. Tfcp2l1 loss in adult AT2 cells inhibits self-renewal and enhances AT2-AT1 differentiation during tissue regeneration. Conversely, Tfcp2l1 blunts the proliferative response to inflammatory signaling during the early acute injury phase. Tfcp2l1 temporally regulates AT2 self-renewal and differentiation in alveolar regions undergoing active regeneration. Single-cell transcriptomics and lineage tracing reveal that Tfcp2l1 regulates cell fate dynamics across the AT2-AT1 differentiation and restricts the inflammatory program in murine AT2 cells. Organoid modeling shows that Tfcp2l1 regulation of interleukin-1 (IL-1) receptor expression controlled these cell fate dynamics. These findings highlight the critical role Tfcp2l1 plays in balancing epithelial cell self-renewal and differentiation during alveolar regeneration.
Collapse
Affiliation(s)
- Fabian L Cardenas-Diaz
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Derek C Liberti
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - John P Leach
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Apoorva Babu
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jonathan Barasch
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | - Tian Shen
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | - Maria A Diaz-Miranda
- Division of Genomic Diagnostics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Su Zhou
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yun Ying
- Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Danielle A Callaway
- Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael P Morley
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Edward E Morrisey
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
13
|
Koca D, Séraudie I, Jardillier R, Cochet C, Filhol O, Guyon L. COL7A1 Expression Improves Prognosis Prediction for Patients with Clear Cell Renal Cell Carcinoma Atop of Stage. Cancers (Basel) 2023; 15:2701. [PMID: 37345040 DOI: 10.3390/cancers15102701] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/19/2023] [Accepted: 04/28/2023] [Indexed: 06/23/2023] Open
Abstract
Clear-cell renal cell carcinoma (ccRCC) accounts for 75% of kidney cancers. Due to the high recurrence rate and treatment options that come with high costs and potential side effects, a correct prognosis of patient survival is essential for the successful and effective treatment of patients. Novel biomarkers could play an important role in the assessment of the overall survival of patients. COL7A1 encodes for collagen type VII, a constituent of the basal membrane. COL7A1 is associated with survival in many cancers; however, the prognostic value of COL7A1 expression as a standalone biomarker in ccRCC has not been investigated. With five publicly available independent cohorts, we used Kaplan-Meier curves and the Cox proportional hazards model to investigate the prognostic value of COL7A1, as well as gene set enrichment analysis to investigate genes co-expressed with COL7A1. COL7A1 expression stratifies patients in terms of aggressiveness, where the 5-year survival probability of each of the four groups was 72.4%, 59.1%, 34.15%, and 8.6% in order of increasing expression. Additionally, COL7A1 expression was successfully used to further divide patients of each stage and histological grade into groups of high and low risk. Similar results were obtained in independent cohorts. In vitro knockdown of COL7A1 expression significantly affected ccRCC cells' ability to migrate, leading to the hypothesis that COL7A1 may have a role in cancer aggressiveness. To conclude, we identified COL7A1 as a new prognosis marker that can stratify ccRCC patients.
Collapse
Affiliation(s)
- Dzenis Koca
- Interdisciplinary Research Institute of Grenoble, IRIG-Biosanté, University Grenoble Alpes, CEA, INSERM, UMR 1292, F-38000 Grenoble, France
| | - Irinka Séraudie
- Interdisciplinary Research Institute of Grenoble, IRIG-Biosanté, University Grenoble Alpes, CEA, INSERM, UMR 1292, F-38000 Grenoble, France
| | - Rémy Jardillier
- Interdisciplinary Research Institute of Grenoble, IRIG-Biosanté, University Grenoble Alpes, CEA, INSERM, UMR 1292, F-38000 Grenoble, France
| | - Claude Cochet
- Interdisciplinary Research Institute of Grenoble, IRIG-Biosanté, University Grenoble Alpes, CEA, INSERM, UMR 1292, F-38000 Grenoble, France
| | - Odile Filhol
- Interdisciplinary Research Institute of Grenoble, IRIG-Biosanté, University Grenoble Alpes, CEA, INSERM, UMR 1292, F-38000 Grenoble, France
| | - Laurent Guyon
- Interdisciplinary Research Institute of Grenoble, IRIG-Biosanté, University Grenoble Alpes, CEA, INSERM, UMR 1292, F-38000 Grenoble, France
| |
Collapse
|
14
|
Hong SH, Hwang HJ, Son DH, Kim ES, Park SY, Yoon YE. Inhibition of EZH2 exerts antitumorigenic effects in renal cell carcinoma via LATS1. FEBS Open Bio 2023; 13:724-735. [PMID: 36808829 PMCID: PMC10068324 DOI: 10.1002/2211-5463.13579] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 02/01/2023] [Accepted: 02/20/2023] [Indexed: 02/23/2023] Open
Abstract
The most common type of kidney cancer in adults is renal cell carcinoma (RCC), which accounts for approximately 90% of cases. RCC is a variant disease with numerous subtypes; the most common subtype is clear cell RCC (ccRCC, 75%), followed by papillary RCC (pRCC, 10%) and chromophobe RCC (chRCC, 5%). To identify a genetic target for all subtypes, we analyzed The Cancer Genome Atlas (TCGA) databases of ccRCC, pRCC, and chromophobe RCC. Enhancer of zeste homolog 2 (EZH2), which encodes a methyltransferase, was observed to be significantly upregulated in tumors. The EZH2 inhibitor tazemetostat induced anticancer effects in RCC cells. TCGA analysis revealed that large tumor suppressor kinase 1 (LATS1), a key tumor suppressor of the Hippo pathway, was significantly downregulated in tumors; the expression of LATS1 was increased by tazemetostat. Through additional experiments, we confirmed that LATS1 plays a crucial role in EZH2 inhibition and has a negative association with EZH2. Therefore, we suggest that epigenetic control could be a novel therapeutic strategy for three subtypes of RCC.
Collapse
Affiliation(s)
- Seong Hwi Hong
- Department of Urology, Hanyang University College of Medicine, Seoul, Korea
| | - Hyun Ji Hwang
- Department of Urology, Hanyang University College of Medicine, Seoul, Korea
- Department of Translational Medicine, Hanyang University Graduate School of Biomedical Science & Engineering, Seoul, Korea
| | - Da Hyeon Son
- Department of Urology, Hanyang University College of Medicine, Seoul, Korea
- Department of Translational Medicine, Hanyang University Graduate School of Biomedical Science & Engineering, Seoul, Korea
| | - Eun Song Kim
- Department of Urology, Hanyang University College of Medicine, Seoul, Korea
- Department of Translational Medicine, Hanyang University Graduate School of Biomedical Science & Engineering, Seoul, Korea
| | - Sung Yul Park
- Department of Urology, Hanyang University College of Medicine, Seoul, Korea
| | - Young Eun Yoon
- Department of Urology, Hanyang University College of Medicine, Seoul, Korea
| |
Collapse
|
15
|
Chang CC, Hsu CC, Yu TH, Hung WC, Kuo SM, Chen CC, Wu CC, Chung FM, Lee YJ, Wei CT. Plasma levels and tissue expression of liver-type fatty acid-binding protein in patients with breast cancer. World J Surg Oncol 2023; 21:52. [PMID: 36800961 PMCID: PMC9938596 DOI: 10.1186/s12957-023-02944-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 02/11/2023] [Indexed: 02/19/2023] Open
Abstract
BACKGROUND Liver-type fatty acid-binding protein (L-FABP) is widely expressed in hepatocytes and plays a role in lipid metabolism. It has been demonstrated to be overexpressed in different types of cancer; however, few studies have investigated the association between L-FABP and breast cancer. The aim of this study was to assess the association between plasma concentrations of L-FABP in breast cancer patients and the expression of L-FABP in breast cancer tissue. METHOD A total of 196 patients with breast cancer and 57 age-matched control subjects were studied. Plasma L-FABP concentrations were measured using ELISA in both groups. The expression of L-FABP in breast cancer tissue was examined using immunohistochemistry. RESULT The patients had higher plasma L-FABP levels than the controls (7.6 ng/mL (interquartile range 5.2-12.1) vs. 6.3 ng/mL (interquartile range 5.3-8.5), p = 0.008). Multiple logistic regression analysis showed an independent association between L-FABP and breast cancer, even after adjusting for known biomarkers. Moreover, the rates of pathologic stage T2+T3+T4, clinical stage III, positive HER-2 receptor status, and negative estrogen receptor status were significantly higher in the patients with an L-FABP level greater than the median. Furthermore, the L-FABP level gradually increased with the increasing stage. In addition, L-FABP was detected in the cytoplasm, nuclear, or both cytoplasm and nuclear of all breast cancer tissue examined, not in the normal tissue. CONCLUSIONS Plasma L-FABP levels were significantly higher in the patients with breast cancer than in the controls. In addition, L-FABP was expressed in breast cancer tissue, which suggests that L-FABP may be involved in the pathogenesis of breast cancer.
Collapse
Affiliation(s)
- Chi-Chang Chang
- grid.414686.90000 0004 1797 2180Department of Obstetrics & Gynecology, E-Da Hospital/E-Da Dachang Hospital, Kaohsiung, 82445 Taiwan ,grid.412019.f0000 0000 9476 5696School of Medicine for International Students, College of Medicine, I-Shou University, Kaohsiung, 82445 Taiwan
| | - Chia-Chang Hsu
- grid.414686.90000 0004 1797 2180Division of Gastroenterology and Hepatology, Department of Internal Medicine, E-Da Hospital, Kaohsiung, 82445 Taiwan ,Health Examination Center, E-Da Dachang Hospital, Kaohsiung, 80794 Taiwan ,grid.411447.30000 0004 0637 1806The School of Chinese Medicine for Post Baccalaureate, College of Medicine, I-Shou University, Kaohsiung, 82445 Taiwan
| | - Teng-Hung Yu
- grid.414686.90000 0004 1797 2180Division of Cardiology, Department of Internal Medicine, E-Da Hospital, Kaohsiung, 82445 Taiwan ,grid.411447.30000 0004 0637 1806School of Medicine, College of Medicine, I-Shou University, Kaohsiung, 82445 Taiwan
| | - Wei-Chin Hung
- grid.414686.90000 0004 1797 2180Division of Cardiology, Department of Internal Medicine, E-Da Hospital, Kaohsiung, 82445 Taiwan ,grid.411447.30000 0004 0637 1806School of Medicine, College of Medicine, I-Shou University, Kaohsiung, 82445 Taiwan
| | - Shyh-Ming Kuo
- grid.411447.30000 0004 0637 1806Department of Biomedical Engineering, I-Shou University, Kaohsiung, 82445 Taiwan
| | - Chia-Chi Chen
- grid.414686.90000 0004 1797 2180Department of Pathology, E-Da Hospital, Kaohsiung, 82445 Taiwan ,grid.411447.30000 0004 0637 1806College of Medicine, I-Shou University, Kaohsiung, 82445 Taiwan
| | - Cheng-Ching Wu
- grid.414686.90000 0004 1797 2180Division of Cardiology, Department of Internal Medicine, E-Da Hospital, Kaohsiung, 82445 Taiwan ,grid.411447.30000 0004 0637 1806School of Medicine, College of Medicine, I-Shou University, Kaohsiung, 82445 Taiwan
| | - Fu-Mei Chung
- grid.414686.90000 0004 1797 2180Division of Cardiology, Department of Internal Medicine, E-Da Hospital, Kaohsiung, 82445 Taiwan
| | | | - Ching-Ting Wei
- The School of Chinese Medicine for Post Baccalaureate, College of Medicine, I-Shou University, Kaohsiung, 82445, Taiwan. .,Division of General Surgery, Department of Surgery, E-Da Hospital, No. 1, Yi-Da Rd., Jiau-Shu Village, Yan-Chao Township, Kaohsiung, 82445, Taiwan. .,Department of Biomedical Engineering, I-Shou University, Kaohsiung, 82445, Taiwan. .,Department of Electrical Engineering, I-Shou University, Kaohsiung, 82445, Taiwan.
| |
Collapse
|
16
|
Wu J, Miao C, Wang Y, Wang S, Wang Z, Liu Y, Wang X, Wang Z. SPTBN1 abrogates renal clear cell carcinoma progression via glycolysis reprogramming in a GPT2-dependent manner. J Transl Med 2022; 20:603. [PMID: 36527113 PMCID: PMC9756479 DOI: 10.1186/s12967-022-03805-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Renal clear cell carcinoma (ccRCC) is the most prevalent tumors worldwide. Discovering effective biomarkers is essential to monitor the prognosis and provide alternative clinical options. SPTBN1 is implicated in various cancerous processes. However, its role in ccRCC remains unelucidated. This study intends to explore the biological function and mechanism of SPTBN1 in ccRCC. METHODS Single-cell and bulk RNA-seq, tissue microarray, real-time quantitative PCR, and western blotting were applied to verify the expression and predictive value of SPTBN1 in ccRCC. Gain or loss of functional ccRCC cell line models were constructed, and in vitro and in vivo assays were performed to elucidate its tumorigenic phenotypes. Actinomycin D experiment, RNA immunoprecipitation (RIP), specific inhibitors, and rescue experiments were carried out to define the molecular mechanisms. RESULTS SPTBN1 was down-regulated in ccRCC and knockdown of SPTBN1 displayed a remarkably oncogenic role both in vitro and in vivo; while overexpressing SPTBN1 reversed this effect. SPTBN1 mediated ccRCC progression via the pathway of glutamate pyruvate transaminase 2 (GPT2)-dependent glycolysis. The expression of GPT2 was significantly negatively correlated with that of SPTBN1. As an RNA binding protein SPTBN1, regulated the mRNA stability of GPT2. CONCLUSION Our research demonstrated that SPTBN1 is significantly down-regulated in ccRCC. SPTBN1 knockdown promotes ccRCC progression via activating GPT2-dependent glycolysis. SPTBN1 may serve as a therapeutic target for the treatment of ccRCC.
Collapse
Affiliation(s)
- Jiajin Wu
- grid.412676.00000 0004 1799 0784Department of Urology, The First Affiliated Hospital of Nanjing Medical University/Jiangsu Province Hospital, No. 300 Guangzhou Road, Nanjing, 210029 China
| | - Chenkui Miao
- grid.412676.00000 0004 1799 0784Department of Urology, The First Affiliated Hospital of Nanjing Medical University/Jiangsu Province Hospital, No. 300 Guangzhou Road, Nanjing, 210029 China
| | - Yuhao Wang
- grid.412676.00000 0004 1799 0784Department of Urology, The First Affiliated Hospital of Nanjing Medical University/Jiangsu Province Hospital, No. 300 Guangzhou Road, Nanjing, 210029 China
| | - Songbo Wang
- grid.412676.00000 0004 1799 0784Department of Urology, The First Affiliated Hospital of Nanjing Medical University/Jiangsu Province Hospital, No. 300 Guangzhou Road, Nanjing, 210029 China
| | - Zhongyuan Wang
- grid.412676.00000 0004 1799 0784Department of Urology, The First Affiliated Hospital of Nanjing Medical University/Jiangsu Province Hospital, No. 300 Guangzhou Road, Nanjing, 210029 China
| | - Yiyang Liu
- grid.412676.00000 0004 1799 0784Department of Urology, The First Affiliated Hospital of Nanjing Medical University/Jiangsu Province Hospital, No. 300 Guangzhou Road, Nanjing, 210029 China
| | - Xiaoyi Wang
- grid.412676.00000 0004 1799 0784Core Facility Center, The First Affiliated Hospital of Nanjing Medical University/Jiangsu Province Hospital, No. 300 Guangzhou Road, Nanjing, 210029 China
| | - Zengjun Wang
- grid.412676.00000 0004 1799 0784Department of Urology, The First Affiliated Hospital of Nanjing Medical University/Jiangsu Province Hospital, No. 300 Guangzhou Road, Nanjing, 210029 China
| |
Collapse
|
17
|
The regulatory role of AP-2β in monoaminergic neurotransmitter systems: insights on its signalling pathway, linked disorders and theragnostic potential. Cell Biosci 2022; 12:151. [PMID: 36076256 PMCID: PMC9461128 DOI: 10.1186/s13578-022-00891-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/28/2022] [Indexed: 11/10/2022] Open
Abstract
AbstractMonoaminergic neurotransmitter systems play a central role in neuronal function and behaviour. Dysregulation of these systems gives rise to neuropsychiatric and neurodegenerative disorders with high prevalence and societal burden, collectively termed monoamine neurotransmitter disorders (MNDs). Despite extensive research, the transcriptional regulation of monoaminergic neurotransmitter systems is not fully explored. Interestingly, certain drugs that act on these systems have been shown to modulate central levels of the transcription factor AP-2 beta (AP-2β, gene: TFAP2Β). AP-2β regulates multiple key genes within these systems and thereby its levels correlate with monoamine neurotransmitters measures; yet, its signalling pathways are not well understood. Moreover, although dysregulation of TFAP2Β has been associated with MNDs, the underlying mechanisms for these associations remain elusive. In this context, this review addresses AP-2β, considering its basic structural aspects, regulation and signalling pathways in the controlling of monoaminergic neurotransmitter systems, and possible mechanisms underpinning associated MNDS. It also underscores the significance of AP-2β as a potential diagnostic biomarker and its potential and limitations as a therapeutic target for specific MNDs as well as possible pharmaceutical interventions for targeting it. In essence, this review emphasizes the role of AP-2β as a key regulator of the monoaminergic neurotransmitter systems and its importance for understanding the pathogenesis and improving the management of MNDs.
Collapse
|
18
|
Feng D, Gao P, Henley N, Dubuissez M, Chen N, Laurin LP, Royal V, Pichette V, Gerarduzzi C. SMOC2 promotes an epithelial-mesenchymal transition and a pro-metastatic phenotype in epithelial cells of renal cell carcinoma origin. Cell Death Dis 2022; 13:639. [PMID: 35869056 PMCID: PMC9307531 DOI: 10.1038/s41419-022-05059-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 06/22/2022] [Accepted: 07/01/2022] [Indexed: 01/21/2023]
Abstract
Renal Cell Carcinoma (RCC) is the most common form of all renal cancer cases, and well-known for its highly aggressive metastatic behavior. SMOC2 is a recently described non-structural component of the extracellular matrix (ECM) that is highly expressed during tissue remodeling processes with emerging roles in cancers, yet its role in RCC remains elusive. Using gene expression profiles from patient samples, we identified SMOC2 as being significantly expressed in RCC tissue compared to normal renal tissue, which correlated with shorter RCC patient survival. Specifically, de novo protein synthesis of SMOC2 was shown to be much higher in the tubular epithelial cells of patients with biopsy-proven RCC. More importantly, we provide evidence of SMOC2 triggering kidney epithelial cells into an epithelial-to-mesenchymal transition (EMT), a phenotype known to promote metastasis. We found that SMOC2 induced mesenchymal-like morphology and activities in both RCC and non-RCC kidney epithelial cell lines. Mechanistically, treatment of RCC cell lines ACHN and 786-O with SMOC2 (recombinant and enforced expression) caused a significant increase in EMT-markers, -matrix production, -proliferation, and -migration, which were inhibited by targeting SMOC2 by siRNA. We further characterized SMOC2 activation of EMT to occur through the integrin β3, FAK and paxillin pathway. The proliferation and metastatic potential of SMOC2 overexpressing ACHN and 786-O cell lines were validated in vivo by their significantly higher tumor growth in kidneys and systemic dissemination into other organs when compared to their respective controls. In principle, understanding the impact that SMOC2 has on EMT may lead to more evidence-based treatments and biomarkers for RCC metastasis.
Collapse
Affiliation(s)
- Daniel Feng
- Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada
- Centre de recherche de l'Hôpital Maisonneuve-Rosemont, Faculté de Médecine, Centre affilié à l'Université de Montréal, Montréal, Québec, Canada
| | - Peng Gao
- Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada
- Centre de recherche de l'Hôpital Maisonneuve-Rosemont, Faculté de Médecine, Centre affilié à l'Université de Montréal, Montréal, Québec, Canada
| | - Nathalie Henley
- Centre de recherche de l'Hôpital Maisonneuve-Rosemont, Faculté de Médecine, Centre affilié à l'Université de Montréal, Montréal, Québec, Canada
| | - Marion Dubuissez
- Centre de recherche de l'Hôpital Maisonneuve-Rosemont, Faculté de Médecine, Centre affilié à l'Université de Montréal, Montréal, Québec, Canada
| | - Nan Chen
- Faculty of Science, University of British Columbia, Vancouver, British Columbia, Canada
| | - Louis-Philippe Laurin
- Centre de recherche de l'Hôpital Maisonneuve-Rosemont, Faculté de Médecine, Centre affilié à l'Université de Montréal, Montréal, Québec, Canada
| | - Virginie Royal
- Centre de recherche de l'Hôpital Maisonneuve-Rosemont, Faculté de Médecine, Centre affilié à l'Université de Montréal, Montréal, Québec, Canada
| | - Vincent Pichette
- Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada
- Centre de recherche de l'Hôpital Maisonneuve-Rosemont, Faculté de Médecine, Centre affilié à l'Université de Montréal, Montréal, Québec, Canada
- Département de Médecine, Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada
| | - Casimiro Gerarduzzi
- Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada.
- Centre de recherche de l'Hôpital Maisonneuve-Rosemont, Faculté de Médecine, Centre affilié à l'Université de Montréal, Montréal, Québec, Canada.
- Département de Médecine, Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada.
| |
Collapse
|
19
|
Khouja HI, Ashankyty IM, Bajrai LH, Kumar PKP, Kamal MA, Firoz A, Mobashir M. Multi-staged gene expression profiling reveals potential genes and the critical pathways in kidney cancer. Sci Rep 2022; 12:7240. [PMID: 35508649 PMCID: PMC9065671 DOI: 10.1038/s41598-022-11143-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 10/11/2021] [Indexed: 02/05/2023] Open
Abstract
Cancer is among the highly complex disease and renal cell carcinoma is the sixth-leading cause of cancer death. In order to understand complex diseases such as cancer, diabetes and kidney diseases, high-throughput data are generated at large scale and it has helped in the research and diagnostic advancement. However, to unravel the meaningful information from such large datasets for comprehensive and minute understanding of cell phenotypes and disease pathophysiology remains a trivial challenge and also the molecular events leading to disease onset and progression are not well understood. With this goal, we have collected gene expression datasets from publicly available dataset which are for two different stages (I and II) for renal cell carcinoma and furthermore, the TCGA and cBioPortal database have been utilized for clinical relevance understanding. In this work, we have applied computational approach to unravel the differentially expressed genes, their networks for the enriched pathways. Based on our results, we conclude that among the most dominantly altered pathways for renal cell carcinoma, are PI3K-Akt, Foxo, endocytosis, MAPK, Tight junction, cytokine-cytokine receptor interaction pathways and the major source of alteration for these pathways are MAP3K13, CHAF1A, FDX1, ARHGAP26, ITGBL1, C10orf118, MTO1, LAMP2, STAMBP, DLC1, NSMAF, YY1, TPGS2, SCARB2, PRSS23, SYNJ1, CNPPD1, PPP2R5E. In terms of clinical significance, there are large number of differentially expressed genes which appears to be playing critical roles in survival.
Collapse
Affiliation(s)
- Hamed Ishaq Khouja
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Ibraheem Mohammed Ashankyty
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Leena Hussein Bajrai
- Special Infectious Agents Unit-BSL3, King Fahad Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Biochemistry Department, Sciences College, King Abdulaziz University, Jeddah, Saudi Arabia
| | - P K Praveen Kumar
- Department of Biotechnology, Sri Venkateswara College of Engineering, Sriperumbudur, 602105, India
| | - Mohammad Amjad Kamal
- West China School of Nursing/Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- King Fahd Medical Research Center, King Abdulaziz University, P. O. Box 80216, Jeddah, 21589, Saudi Arabia
- Enzymoics, Novel Global Community Educational Foundation, 7 Peterlee Place, Hebersham, NSW, 2770, Australia
| | - Ahmad Firoz
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Mohammad Mobashir
- SciLifeLab, Department of Oncology and Pathology, Karolinska Institutet, Box 1031, 171 21, Stockholm, Sweden.
| |
Collapse
|
20
|
Evaluating Established Roles, Future Perspectives and Methodological Heterogeneity for Wilms’ Tumor 1 (WT1) Antigen Detection in Adult Renal Cell Carcinoma, Using a Novel N-Terminus Targeted Antibody (Clone WT49). Biomedicines 2022; 10:biomedicines10040912. [PMID: 35453662 PMCID: PMC9026801 DOI: 10.3390/biomedicines10040912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/23/2022] [Accepted: 04/11/2022] [Indexed: 11/20/2022] Open
Abstract
Renal cell carcinoma (RCC) is arguably the deadliest form of genitourinary malignancy and is nowadays viewed as a heterogeneous series of cancers, with the same origin but fundamentally different metabolisms and clinical behaviors. Immunohistochemistry (IHC) is increasingly necessary for RCC subtyping and definitive diagnosis. WT1 is a complex gene involved in carcinogenesis. To address reporting heterogeneity and WT1 IHC standardization, we used a recent N-terminus targeted monoclonal antibody (clone WT49) to evaluate WT1 protein expression in 56 adult RCC (aRCC) cases. This is the largest WT1 IHC investigation focusing exclusively on aRCCs and the first report on clone WT49 staining in aRCCs. We found seven (12.5%) positive cases, all clear cell RCCs, showing exclusively nuclear staining for WT1. We did not disregard cytoplasmic staining in any of the negative cases. Extratumoral fibroblasts, connecting tubules and intratumoral endothelial cells showed the same exclusively nuclear WT1 staining pattern. We reviewed WT1 expression patterns in aRCCs and the possible explanatory underlying metabolomics. For now, WT1 protein expression in aRCCs is insufficiently investigated, with significant discrepancies in the little data reported. Emerging WT1-targeted RCC immunotherapy will require adequate case selection and sustained efforts to standardize the quantification of tumor-associated antigens for aRCC and its many subtypes.
Collapse
|
21
|
Wang S, Wei X, Ji C, Wang Y, Zhang X, Cong R, Song N. Adipogenic Transdifferentiation and Regulatory Factors Promote the Progression and the Immunotherapy Response of Renal Cell Carcinoma: Insights From Integrative Analysis. Front Oncol 2022; 12:781932. [PMID: 35356208 PMCID: PMC8959453 DOI: 10.3389/fonc.2022.781932] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 02/09/2022] [Indexed: 12/24/2022] Open
Abstract
Background Adipogenic transdifferentiation was an important carcinogenic factor in various tumors, while studies on its role in clear cell renal cell carcinoma (ccRCC) were still relatively few. This study aimed to investigate its prognostic value and mechanism of action in ccRCC. Methods Gene expression profiles and clinical data of ccRCC patients were obtained from The Cancer Genome Atlas database. Nonnegative matrix factorization was used for clustering. Gene set variation analysis (GSVA) and gene set enrichment analysis (GSEA) were used to analyze the pathways and biological process activities. single-sample GSEA (ssGSEA) was utilized to quantify the relative abundance of each immune cell. Tumor Immune Estimation Resource (TIMER) was used to evaluate the proportion of various immune infiltrating cells across diverse cancer types. Real-Time PCR was performed to examine the gene expression. R software was utilized to analyze the expression and prognostic role of genes in ccRCC. Results A total of 49 adipose-related genes (ARGs) were screened for differential expression between normal and ccRCC tissues. Based on differentially expressed ARGs, patients with ccRCC were divided into two adipose subtypes with different clinical, molecular, and pathway characteristics. Patients in cluster A exhibited more advanced pathological stages, higher expressions of RARRES2 and immune checkpoint genes, higher immune infiltration scores, and less nutrient metabolism pathways. Adipose differentiation index (ADI) was constructed according to the above ARGs and survival data, and its robustness and accuracy was validated in different cohorts. In addition, it was found that the expression of ARGs was associated with immune cell infiltration and immune checkpoint in ccRCC, among which GBP2 was thought to be the most relevant gene to the tumor immune microenvironment and play a potential role in carcinogenesis and invasion of tumor cells. Conclusion Our analysis revealed the consistency of higher adipogenic transdifferentiation of tumor cells with worse clinical outcomes in ccRCC. The 16-mRNA signature could predict the prognosis of ccRCC patients with high accuracy. ARGs such as GBP2 might shed light on the development of novel biomarkers and immunotherapies of ccRCC.
Collapse
Affiliation(s)
- Shuai Wang
- The State Key Lab of Reproductive Medicine, Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiyi Wei
- The State Key Lab of Reproductive Medicine, Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chengjian Ji
- The State Key Lab of Reproductive Medicine, Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yichun Wang
- The State Key Lab of Reproductive Medicine, Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xi Zhang
- The State Key Lab of Reproductive Medicine, Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Rong Cong
- The State Key Lab of Reproductive Medicine, Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ninghong Song
- The State Key Lab of Reproductive Medicine, Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Department of Urology, The Affiliated Kezhou People's Hospital of Nanjing Medical University, Kezhou, China
| |
Collapse
|
22
|
Patel V, Szász I, Koroknai V, Kiss T, Balázs M. Molecular Alterations Associated with Acquired Drug Resistance during Combined Treatment with Encorafenib and Binimetinib in Melanoma Cell Lines. Cancers (Basel) 2021; 13:cancers13236058. [PMID: 34885166 PMCID: PMC8656772 DOI: 10.3390/cancers13236058] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/24/2021] [Accepted: 11/29/2021] [Indexed: 12/21/2022] Open
Abstract
Combination treatment using BRAF/MEK inhibitors is a promising therapy for patients with advanced BRAFV600E/K mutant melanoma. However, acquired resistance largely limits the clinical efficacy of this drug combination. Identifying resistance mechanisms is essential to reach long-term, durable responses. During this study, we developed six melanoma cell lines with acquired resistance for BRAFi/MEKi treatment and defined the molecular alterations associated with drug resistance. We observed that the invasion of three resistant cell lines increased significantly compared to the sensitive cells. RNA-sequencing analysis revealed differentially expressed genes that were functionally linked to a variety of biological functions including epithelial-mesenchymal transition, the ROS pathway, and KRAS-signalling. Using proteome profiler array, several differentially expressed proteins were detected, which clustered into a unique pattern. Galectin showed increased expression in four resistant cell lines, being the highest in the WM1617E+BRes cells. We also observed that the resistant cells behaved differently after the withdrawal of the inhibitors, five were not drug addicted at all and did not exhibit significantly increased lethality; however, the viability of one resistant cell line (WM1617E+BRes) decreased significantly. We have selected three resistant cell lines to investigate the protein expression changes after drug withdrawal. The expression patterns of CapG, Enolase 2, and osteopontin were similar in the resistant cells after ten days of "drug holiday", but the Snail protein was only expressed in the WM1617E+BRes cells, which showed a drug-dependent phenotype, and this might be associated with drug addiction. Our results highlight that melanoma cells use several types of resistance mechanisms involving the altered expression of different proteins to bypass drug treatment.
Collapse
Affiliation(s)
- Vikas Patel
- Doctoral School of Health Sciences, University of Debrecen, 4032 Debrecen, Hungary;
| | - István Szász
- MTA-DE Public Health Research Group, University of Debrecen, 4032 Debrecen, Hungary; (I.S.); (V.K.)
- Department of Public Health and Epidemiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary;
| | - Viktória Koroknai
- MTA-DE Public Health Research Group, University of Debrecen, 4032 Debrecen, Hungary; (I.S.); (V.K.)
- Department of Public Health and Epidemiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary;
| | - Tímea Kiss
- Department of Public Health and Epidemiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary;
| | - Margit Balázs
- MTA-DE Public Health Research Group, University of Debrecen, 4032 Debrecen, Hungary; (I.S.); (V.K.)
- Department of Public Health and Epidemiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary;
- Correspondence:
| |
Collapse
|
23
|
PBRM1 loss in kidney cancer unbalances the proximal tubule master transcription factor hub to repress proximal tubule differentiation. Cell Rep 2021; 36:109747. [PMID: 34551289 PMCID: PMC8561673 DOI: 10.1016/j.celrep.2021.109747] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 07/20/2021] [Accepted: 09/01/2021] [Indexed: 01/10/2023] Open
Abstract
PBRM1, a subunit of the PBAF coactivator complex that transcription factors use to activate target genes, is genetically inactivated in almost all clear cell renal cell cancers (RCCs). Using unbiased proteomic analyses, we find that PAX8, a master transcription factor driver of proximal tubule epithelial fates, recruits PBRM1/PBAF. Reverse analyses of the PAX8 interactome confirm recruitment specifically of PBRM1/PBAF and not functionally similar BAF. More conspicuous in the PAX8 hub in RCC cells, however, are corepressors, which functionally oppose coactivators. Accordingly, key PAX8 target genes are repressed in RCC versus normal kidneys, with the loss of histone lysine-27 acetylation, but intact lysine-4 trimethylation, activation marks. Re-introduction of PBRM1, or depletion of opposing corepressors using siRNA or drugs, redress coregulator imbalance and release RCC cells to terminal epithelial fates. These mechanisms thus explain RCC resemblance to the proximal tubule lineage but with suppression of the late-epithelial program that normally terminates lineage-precursor proliferation. Gu et al. identify that transcription factor PAX8 needs the PBRM1/PBAF coactivator to activate proximal tubule genes. PBRM1 mutation/deletion thus explains the resemblance of clear cell kidney cancer to proximal tubule tissue but with suppressed terminal epithelial markers. This oncogenic mechanism could be repaired using drugs to inhibit corepressors.
Collapse
|
24
|
Lee S, Ku JY, Kang BJ, Kim KH, Ha HK, Kim S. A Unique Urinary Metabolic Feature for the Determination of Bladder Cancer, Prostate Cancer, and Renal Cell Carcinoma. Metabolites 2021; 11:metabo11090591. [PMID: 34564407 PMCID: PMC8468099 DOI: 10.3390/metabo11090591] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 08/28/2021] [Accepted: 08/31/2021] [Indexed: 01/16/2023] Open
Abstract
Prostate cancer (PCa), bladder cancer (BCa), and renal cell carcinoma (RCC) are the most prevalent cancer among urological cancers. However, there are no cancer-specific symptoms that can differentiate them as well as early clinical signs of urological malignancy. Furthermore, many metabolic studies have been conducted to discover their biomarkers, but the metabolic profiling study to discriminate between these cancers have not yet been described. Therefore, in this study, we aimed to investigate the urinary metabolic differences in male patients with PCa (n = 24), BCa (n = 29), and RCC (n = 12) to find the prominent combination of metabolites between cancers. Based on 1H NMR analysis, orthogonal partial least-squares discriminant analysis was applied to find distinct metabolites among cancers. Moreover, the ranked analysis of covariance by adjusting a potential confounding as age revealed that 4-hydroxybenzoate, N-methylhydantoin, creatinine, glutamine, and acetate had significantly different metabolite levels among groups. The receiver operating characteristic analysis created by prominent five metabolites showed the great discriminatory accuracy with area under the curve (AUC) > 0.7 for BCa vs. RCC, PCa vs. BCa, and RCC vs. PCa. This preliminary study compares the metabolic profiles of BCa, PCa, and RCC, and reinforces the exploratory role of metabolomics in the investigation of human urine.
Collapse
Affiliation(s)
- Sujin Lee
- Department of Chemistry and Chemistry Institute for Functional Materials, Institute for Plastic Information and Energy Materials, Pusan National University, Busandaehak-ro 63, Geumjeong-gu, Busan 46241, Korea;
| | - Ja Yoon Ku
- Department of Urology, Dongnam Institute of Radiological & Medical Sciences Cancer Center, Busan 46033, Korea;
| | - Byeong Jin Kang
- Department of Urology, College of Medicine, Pusan National University, Busan 49241, Korea; (B.J.K.); (K.H.K.)
| | - Kyung Hwan Kim
- Department of Urology, College of Medicine, Pusan National University, Busan 49241, Korea; (B.J.K.); (K.H.K.)
| | - Hong Koo Ha
- Department of Urology, College of Medicine, Pusan National University and Biomedical Research Institute, Pusan National University Hospital, Busan 49241, Korea;
| | - Suhkmann Kim
- Department of Chemistry and Chemistry Institute for Functional Materials, Institute for Plastic Information and Energy Materials, Pusan National University, Busandaehak-ro 63, Geumjeong-gu, Busan 46241, Korea;
- Correspondence: ; Tel.: +82-51-510-2240
| |
Collapse
|
25
|
TF-RBP-AS Triplet Analysis Reveals the Mechanisms of Aberrant Alternative Splicing Events in Kidney Cancer: Implications for Their Possible Clinical Use as Prognostic and Therapeutic Biomarkers. Int J Mol Sci 2021; 22:ijms22168789. [PMID: 34445498 PMCID: PMC8395830 DOI: 10.3390/ijms22168789] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/30/2021] [Accepted: 08/11/2021] [Indexed: 12/17/2022] Open
Abstract
Aberrant alternative splicing (AS) is increasingly linked to cancer; however, how AS contributes to cancer development still remains largely unknown. AS events (ASEs) are largely regulated by RNA-binding proteins (RBPs) whose ability can be modulated by a variety of genetic and epigenetic mechanisms. In this study, we used a computational framework to investigate the roles of transcription factors (TFs) on regulating RBP-AS interactions. A total of 6519 TF–RBP–AS triplets were identified, including 290 TFs, 175 RBPs, and 16 ASEs from TCGA–KIRC RNA sequencing data. TF function categories were defined according to correlation changes between RBP expression and their targeted ASEs. The results suggested that most TFs affected multiple targets, and six different classes of TF-mediated transcriptional dysregulations were identified. Then, regulatory networks were constructed for TF–RBP–AS triplets. Further pathway-enrichment analysis showed that these TFs and RBPs involved in triplets were enriched in a variety of pathways that were associated with cancer development and progression. Survival analysis showed that some triplets were highly associated with survival rates. These findings demonstrated that the integration of TFs into alternative splicing regulatory networks can help us in understanding the roles of alternative splicing in cancer.
Collapse
|
26
|
Zheng Q, Li P, Zhou X, Qiang Y, Fan J, Lin Y, Chen Y, Guo J, Wang F, Xue H, Xiong J, Li F. Deficiency of the X-inactivation escaping gene KDM5C in clear cell renal cell carcinoma promotes tumorigenicity by reprogramming glycogen metabolism and inhibiting ferroptosis. Theranostics 2021; 11:8674-8691. [PMID: 34522206 PMCID: PMC8419058 DOI: 10.7150/thno.60233] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 07/25/2021] [Indexed: 12/17/2022] Open
Abstract
Background: Clear cell renal cell carcinoma (ccRCC) is characterized by glycogen-laden, unexplained male predominance, and frequent mutations in the Von Hippel-Lindau (VHL) gene and histone modifier genes. Besides, poor survival rates of ccRCC patients seem to be associated with up-regulation of the pentose phosphate pathway (PPP). However, the mechanism underlying these features remains unclear. Methods: Whole exome sequencing was used to identify the gene mutation that implicated in the rewired glucose metabolism. RNA-seq analyses were performed to evaluate the function of KDM5C in ccRCC. Furthermore, heavy isotope tracer analysis and metabolites quantification assays were used to study how KDM5C affects intracellular metabolic flux. To provide more in vivo evidence, we generated the Kdm5c-/- mice by CRISPR-Cas9 mediated gene knockout and performed the xenografts with KDM5C overexpressing or depleted cell lines. Results: A histone demethylase gene KDM5C, which can escape from X-inactivation and is predominantly mutated in male ccRCC patients, was identified to harbor the frameshift mutation in the ccRCC cell line with the highest glycogen level, while the restoration of KDM5C significantly reduced the glycogen level. Transcriptome and metabolomic analysis linked KDM5C to metabolism-related biological processes. KDM5C specifically regulated the expression of several hypoxia-inducible factor (HIF)-related genes and Glucose-6-phosphate dehydrogenase (G6PD) that were involved in glycogenesis/glycogenolysis and PPP, respectively, mainly through the histone demethylase activity of KDM5C. Depletion of KDM5C increased the production of glycogen, which was then directed to glycogenolysis to generate glucose-6-phosphate (G6P) and subsequently PPP to produce nicotinamide adenine dinucleotide phosphate hydride (NADPH) and glutathione (GSH), thus conferring cells resistance to reactive oxygen species (ROS) and ferroptosis. KDM5C re-expression suppressed the glucose flux through PPP and re-sensitized cancer cells to ferroptosis. Notably, Kdm5c-knockout mice kidney tissues exhibited elevated glycogen level, reduced lipid peroxidation and displayed a transformation of renal cysts into hyperplastic lesions, implying a cancer-protective benefit of ferroptosis. Furthermore, KDM5C deficiency predicted the poor prognosis, and clinically relevant KDM5C mutants failed to suppress glycogen accumulation and promoted ferroptosis as wild type. Conclusion: This work revealed that a histone modifier gene inactive mutation reprogramed glycogen metabolism and helped to explain the long-standing puzzle of male predominance in human cancer. In addition, our findings may suggest the therapeutic value of targeting glycogen metabolism in ccRCC.
Collapse
Affiliation(s)
- Qian Zheng
- Department of Medical Genetics, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Pengfei Li
- Department of Medical Genetics, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Xin Zhou
- Department of Medical Genetics, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Yulong Qiang
- Department of Medical Genetics, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Jiachen Fan
- Department of Medical Genetics, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Yan Lin
- Department of Medical Genetics, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Yurou Chen
- Department of Gynecology and Obstetrics, Zhongnan Hospital of Wuhan University, Wuhan 430072, China
| | - Jing Guo
- Department of Medical Genetics, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Fan Wang
- Department of Medical Genetics, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Haihua Xue
- Department of Medical Genetics, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Jie Xiong
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Feng Li
- Department of Medical Genetics, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
- Hubei Provincial Key Laboratory of Allergy and Immunology, Wuhan 430071, China
| |
Collapse
|
27
|
Jin C, Shi L, Li K, Liu W, Qiu Y, Zhao Y, Zhao B, Li Z, Li Y, Zhu Q. Mechanism of tumor‑derived extracellular vesicles in regulating renal cell carcinoma progression by the delivery of MALAT1. Oncol Rep 2021; 46:187. [PMID: 34278501 PMCID: PMC8298989 DOI: 10.3892/or.2021.8138] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 04/28/2021] [Indexed: 02/06/2023] Open
Abstract
Renal cell carcinoma (RCC) is a major healthcare burden globally. Tumor-derived extracellular vesicles (EVs) contribute to the formation of a pro-metastatic microenvironment. In the present study, we explored the role and mechanism of RCC cell 786-O-derived EVs (786-O-EVs) in RCC. First, 786-O-EVs were extracted and identified, and EV internalization of RCC cells was observed. RCC cell malignant behaviors and long noncoding RNA (lncRNA) metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) expression patterns were detected before and after 786-O-EV treatment. MALAT1 was intervened to evaluate RCC cell behaviors. The downstream mechanism involving MALAT1 was predicted. In addition, the relationship among MALAT1, transcription factor CP2 like 1 (TFCP2L1) and ETS proto-oncogene 1, transcription factor (ETS1) was analyzed. TFCP2L1 expression patterns were measured after 786-O-EV exposure. Tumor xenograft formation assay and lung metastasis model were adopted to verify the role of 786-O-EVs in vivo in RCC. It was found that 786-O-EVs could be internalized by RCC cells. 786-O-EVs promoted RCC cell malignant behaviors, accompanied by elevated MALAT1 expression levels. The 786-O-EVs with MALAT1 knockdown attenuated the promotive effect of sole 786-O-EVs on RCC cells. MALAT1 located ETS1 in the TFCP2L1 promoter and negatively regulated TFCP2L1, and ETS1 protein could specifically bind to MALAT1. 786-O-EVs enhanced the binding of ETS1 and the TFCP2L1 promoter and decreased TFCP2L1 expression. In vivo, 786-O-EVs promoted tumor growth and RCC lung metastasis, which was suppressed following inhibition of MALAT1. Our findings indicated that 786-O-EVs promoted RCC invasion and metastasis by transporting MALAT1 to promote the binding of transcription factor ETS1 and TFCP2L1 promoter.
Collapse
Affiliation(s)
- Chengluo Jin
- Department of Urology, The Second Affiliated Hospital, Harbin Medical University, Nangang, Harbin, Heilongjiang 150086, P.R. China
| | - Linmei Shi
- School of Health Management, Harbin Medical University, Nangang, Harbin, Heilongjiang 150086, P.R. China
| | - Kunlun Li
- Department of Urology, The Second Affiliated Hospital, Harbin Medical University, Nangang, Harbin, Heilongjiang 150086, P.R. China
| | - Wei Liu
- Department of Urology, The Second Affiliated Hospital, Harbin Medical University, Nangang, Harbin, Heilongjiang 150086, P.R. China
| | - Yu Qiu
- Department of Urology, The Second Affiliated Hospital, Harbin Medical University, Nangang, Harbin, Heilongjiang 150086, P.R. China
| | - Yakun Zhao
- Department of Urology, The Second Affiliated Hospital, Harbin Medical University, Nangang, Harbin, Heilongjiang 150086, P.R. China
| | - Bai Zhao
- Department of Urology, The Second Affiliated Hospital, Harbin Medical University, Nangang, Harbin, Heilongjiang 150086, P.R. China
| | - Zhexun Li
- Department of Urology, The Second Affiliated Hospital, Harbin Medical University, Nangang, Harbin, Heilongjiang 150086, P.R. China
| | - Yifei Li
- Department of Urology, The Second Affiliated Hospital, Harbin Medical University, Nangang, Harbin, Heilongjiang 150086, P.R. China
| | - Qingguo Zhu
- Department of Urology, The Second Affiliated Hospital, Harbin Medical University, Nangang, Harbin, Heilongjiang 150086, P.R. China
| |
Collapse
|
28
|
Melana JP, Mignolli F, Stoyanoff T, Aguirre MV, Balboa MA, Balsinde J, Rodríguez JP. The Hypoxic Microenvironment Induces Stearoyl-CoA Desaturase-1 Overexpression and Lipidomic Profile Changes in Clear Cell Renal Cell Carcinoma. Cancers (Basel) 2021; 13:cancers13122962. [PMID: 34199164 PMCID: PMC8231571 DOI: 10.3390/cancers13122962] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/02/2021] [Accepted: 06/10/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Clear cell renal cell carcinoma (ccRCC) is characterized by a high rate of cell proliferation and an extensive accumulation of lipids. Uncontrolled cell growth usually generates areas of intratumoral hypoxia that define the tumor phenotype. In this work, we show that, under these microenvironmental conditions, stearoyl-CoA desaturase-1 is overexpressed. This enzyme induces changes in the cellular lipidomic profile, increasing the oleic acid levels, a metabolite that is essential for cell proliferation. This work supports the idea of considering stearoyl-CoA desaturase-1 as an exploitable therapeutic target in ccRCC. Abstract Clear cell renal cell carcinoma (ccRCC) is the most common histological subtype of renal cell carcinoma (RCC). It is characterized by a high cell proliferation and the ability to store lipids. Previous studies have demonstrated the overexpression of enzymes associated with lipid metabolism, including stearoyl-CoA desaturase-1 (SCD-1), which increases the concentration of unsaturated fatty acids in tumor cells. In this work, we studied the expression of SCD-1 in primary ccRCC tumors, as well as in cell lines, to determine its influence on the tumor lipid composition and its role in cell proliferation. The lipidomic analyses of patient tumors showed that oleic acid (18:1n-9) is one of the major fatty acids, and it is particularly abundant in the neutral lipid fraction of the tumor core. Using a ccRCC cell line model and in vitro-generated chemical hypoxia, we show that SCD-1 is highly upregulated (up to 200-fold), and this causes an increase in the cellular level of 18:1n-9, which, in turn, accumulates in the neutral lipid fraction. The pharmacological inhibition of SCD-1 blocks 18:1n-9 synthesis and compromises the proliferation. The addition of exogenous 18:1n-9 to the cells reverses the effects of SCD-1 inhibition on cell proliferation. These data reinforce the role of SCD-1 as a possible therapeutic target.
Collapse
Affiliation(s)
- Juan Pablo Melana
- Laboratorio de Investigaciones Bioquímicas de la Facultad de Medicina (LIBIM), Instituto de Química Básica y Aplicada del Nordeste Argentino (IQUIBA-NEA), Universidad Nacional del Nordeste, Consejo Nacional de Investigaciones Científicas y Técnicas (UNNE-CONICET), Corrientes 3400, Argentina; (J.P.M.); (T.S.); (M.V.A.)
| | - Francesco Mignolli
- Instituto de Botánica del Nordeste, Facultad de Ciencias Agrarias (UNNE-CONICET), Universidad Nacional del Nordeste, Corrientes 3400, Argentina;
| | - Tania Stoyanoff
- Laboratorio de Investigaciones Bioquímicas de la Facultad de Medicina (LIBIM), Instituto de Química Básica y Aplicada del Nordeste Argentino (IQUIBA-NEA), Universidad Nacional del Nordeste, Consejo Nacional de Investigaciones Científicas y Técnicas (UNNE-CONICET), Corrientes 3400, Argentina; (J.P.M.); (T.S.); (M.V.A.)
| | - María V. Aguirre
- Laboratorio de Investigaciones Bioquímicas de la Facultad de Medicina (LIBIM), Instituto de Química Básica y Aplicada del Nordeste Argentino (IQUIBA-NEA), Universidad Nacional del Nordeste, Consejo Nacional de Investigaciones Científicas y Técnicas (UNNE-CONICET), Corrientes 3400, Argentina; (J.P.M.); (T.S.); (M.V.A.)
| | - María A. Balboa
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), 47003 Valladolid, Spain;
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
| | - Jesús Balsinde
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), 47003 Valladolid, Spain;
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
- Correspondence: (J.B.); (J.P.R.); Tel.: +34-983-423-062 (J.B.); Tel.: +54-937-9469-4464 (J.P.R.)
| | - Juan Pablo Rodríguez
- Laboratorio de Investigaciones Bioquímicas de la Facultad de Medicina (LIBIM), Instituto de Química Básica y Aplicada del Nordeste Argentino (IQUIBA-NEA), Universidad Nacional del Nordeste, Consejo Nacional de Investigaciones Científicas y Técnicas (UNNE-CONICET), Corrientes 3400, Argentina; (J.P.M.); (T.S.); (M.V.A.)
- Correspondence: (J.B.); (J.P.R.); Tel.: +34-983-423-062 (J.B.); Tel.: +54-937-9469-4464 (J.P.R.)
| |
Collapse
|
29
|
Yang L, Zhang H, Yang X, Lu T, Ma S, Cheng H, Yen K, Cheng T. Prognostic Prediction of Cytogenetically Normal Acute Myeloid Leukemia Based on a Gene Expression Model. Front Oncol 2021; 11:659201. [PMID: 34123815 PMCID: PMC8190396 DOI: 10.3389/fonc.2021.659201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/26/2021] [Indexed: 11/22/2022] Open
Abstract
Acute myeloid leukemia (AML) refers to a heterogeneous group of hematopoietic malignancies. The well-known European Leukemia Network (ELN) stratifies AML patients into three risk groups, based primarily on the detection of cytogenetic abnormalities. However, the prognosis of cytogenetically normal AML (CN-AML), which is the largest AML subset, can be hard to define. Moreover, the clinical outcomes associated with this subgroup are diverse. In this study, using transcriptome profiles collected from CN-AML patients in the BeatAML cohort, we constructed a robust prognostic Cox model named NEST (Nine-gEne SignaTure). The validity of NEST was confirmed in four external independent cohorts. Moreover, the risk score predicted by the NEST model remained an independent prognostic factor in multivariate analyses. Further analysis revealed that the NEST model was suitable for bone marrow mononuclear cell (BMMC) samples but not peripheral blood mononuclear cell (PBMC) samples, which indirectly indicated subtle differences between BMMCs and PBMCs. Our data demonstrated the robustness and accuracy of the NEST model and implied the importance of the immune dysfunction in the leukemogenesis that occurs in CN-AML, which shed new light on the further exploration of molecular mechanisms and treatment guidance for CN-AML.
Collapse
Affiliation(s)
- Liu Yang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.,Department of Stem Cell and Regenerative Medicine, Peking Union Medical College, Tianjin, China.,Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China
| | - Houyu Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.,School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Xue Yang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.,Department of Stem Cell and Regenerative Medicine, Peking Union Medical College, Tianjin, China.,Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China
| | - Ting Lu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.,Department of Stem Cell and Regenerative Medicine, Peking Union Medical College, Tianjin, China.,Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China
| | - Shihui Ma
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.,Department of Stem Cell and Regenerative Medicine, Peking Union Medical College, Tianjin, China.,Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China
| | - Hui Cheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.,Department of Stem Cell and Regenerative Medicine, Peking Union Medical College, Tianjin, China.,Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China
| | - Kuangyu Yen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.,Department of Stem Cell and Regenerative Medicine, Peking Union Medical College, Tianjin, China.,Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.,Department of Stem Cell and Regenerative Medicine, Peking Union Medical College, Tianjin, China.,Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China
| |
Collapse
|
30
|
Liu S, Garcia-Marques F, Zhang CA, Lee JJ, Nolley R, Shen M, Hsu EC, Aslan M, Koul K, Pitteri SJ, Brooks JD, Stoyanova T. Discovery of CASP8 as a potential biomarker for high-risk prostate cancer through a high-multiplex immunoassay. Sci Rep 2021; 11:7612. [PMID: 33828176 PMCID: PMC8027881 DOI: 10.1038/s41598-021-87155-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/22/2021] [Indexed: 01/22/2023] Open
Abstract
Prostate cancer remains the most common non-cutaneous malignancy among men in the United States. To discover potential serum-based biomarkers for high-risk prostate cancer, we performed a high-multiplex immunoassay utilizing patient-matched pre-operative and post-operative serum samples from ten men with high-grade and high-volume prostate cancer. Our study identified six (CASP8, MSLN, FGFBP1, ICOSLG, TIE2 and S100A4) out of 174 proteins that were significantly decreased after radical prostatectomy. High levels of CASP8 were detected in pre-operative serum samples when compared to post-operative serum samples and serum samples from patients with benign prostate hyperplasia (BPH). By immunohistochemistry, CASP8 protein was expressed at higher levels in prostate cancer tissues compared to non-cancerous and BPH tissues. Likewise, CASP8 mRNA expression was significantly upregulated in prostate cancer when compared to benign prostate tissues in four independent clinical datasets. In addition, mRNA levels of CASP8 were higher in patients with recurrent prostate cancer when compared to patients with non-recurrent prostate cancer and high expression of CASP8 was associated with worse disease-free survival and overall survival in renal cancer. Together, our results suggest that CASP8 may potentially serve as a biomarker for high-risk prostate cancer and possibly renal cancer.
Collapse
Affiliation(s)
- Shiqin Liu
- Department of Radiology, Stanford University, Stanford, CA, USA.,Canary Center at Stanford for Cancer Early Detection, Stanford University, Stanford, CA, USA
| | - Fernando Garcia-Marques
- Department of Radiology, Stanford University, Stanford, CA, USA.,Canary Center at Stanford for Cancer Early Detection, Stanford University, Stanford, CA, USA
| | | | - Jordan John Lee
- Department of Radiology, Stanford University, Stanford, CA, USA.,Canary Center at Stanford for Cancer Early Detection, Stanford University, Stanford, CA, USA
| | - Rosalie Nolley
- Department of Urology, Stanford University, Stanford, CA, USA
| | - Michelle Shen
- Department of Radiology, Stanford University, Stanford, CA, USA.,Canary Center at Stanford for Cancer Early Detection, Stanford University, Stanford, CA, USA
| | - En-Chi Hsu
- Department of Radiology, Stanford University, Stanford, CA, USA.,Canary Center at Stanford for Cancer Early Detection, Stanford University, Stanford, CA, USA
| | - Merve Aslan
- Department of Radiology, Stanford University, Stanford, CA, USA.,Canary Center at Stanford for Cancer Early Detection, Stanford University, Stanford, CA, USA
| | - Kashyap Koul
- Department of Radiology, Stanford University, Stanford, CA, USA.,Canary Center at Stanford for Cancer Early Detection, Stanford University, Stanford, CA, USA
| | - Sharon J Pitteri
- Department of Radiology, Stanford University, Stanford, CA, USA.,Canary Center at Stanford for Cancer Early Detection, Stanford University, Stanford, CA, USA
| | - James D Brooks
- Canary Center at Stanford for Cancer Early Detection, Stanford University, Stanford, CA, USA.,Department of Urology, Stanford University, Stanford, CA, USA
| | - Tanya Stoyanova
- Department of Radiology, Stanford University, Stanford, CA, USA. .,Canary Center at Stanford for Cancer Early Detection, Stanford University, Stanford, CA, USA. .,, 3155 Porter Drive, Palo Alto, CA, 94304, USA.
| |
Collapse
|
31
|
Raap M, Gierendt L, Kreipe HH, Christgen M. Transcription factor AP-2beta in development, differentiation and tumorigenesis. Int J Cancer 2021; 149:1221-1227. [PMID: 33720400 DOI: 10.1002/ijc.33558] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 01/15/2021] [Accepted: 02/08/2021] [Indexed: 12/17/2022]
Abstract
To date, the AP-2 family of transcription factors comprises five members. Transcription factor AP-2beta (TFAP2B)/AP-2β was first described in 1995. Several studies indicate a critical role of AP-2β in the development of tissues and organs of ectodermal, neuroectodermal and also mesodermal origin. Germline mutation of TFAP2B is known to cause the Char syndrome, an autosomal dominant disorder characterized by facial dysmorphism, patent ductus arteriosus and anatomical abnormalities of the fifth digit. Furthermore, single-nucleotide polymorphisms in TFAP2B were linked to obesity and specific personality traits. In neoplasias, AP-2β was first described in alveolar rhabdomyosarcoma. Immunohistochemical staining of AP-2β is a recommended ancillary test for the histopathological diagnosis of this uncommon childhood malignancy. In neuroblastoma, AP-2β supports noradrenergic differentiation. Recently, the function of AP-2β in breast cancer (BC) has gained interest. AP-2β is associated with the lobular BC subtype. Moreover, AP-2β controls BC cell proliferation and has a prognostic impact in patients with BC. This review provides a comprehensive overview of the current knowledge about AP-2β and its function in organ development, differentiation and tumorigenesis.
Collapse
Affiliation(s)
- Mieke Raap
- Institute of Pathology, Hannover Medical School, Hannover, Germany
| | - Lisa Gierendt
- Institute of Pathology, Hannover Medical School, Hannover, Germany
| | - Hans H Kreipe
- Institute of Pathology, Hannover Medical School, Hannover, Germany
| | | |
Collapse
|
32
|
Tan SK, Mahmud I, Fontanesi F, Puchowicz M, Neumann CKA, Griswold AJ, Patel R, Dispagna M, Ahmed HH, Gonzalgo ML, Brown JM, Garrett TJ, Welford SM. Obesity-Dependent Adipokine Chemerin Suppresses Fatty Acid Oxidation to Confer Ferroptosis Resistance. Cancer Discov 2021; 11:2072-2093. [PMID: 33757970 DOI: 10.1158/2159-8290.cd-20-1453] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 02/15/2021] [Accepted: 03/18/2021] [Indexed: 12/13/2022]
Abstract
Clear cell renal cell carcinoma (ccRCC) is characterized by accumulation of neutral lipids and adipogenic transdifferentiation. We assessed adipokine expression in ccRCC and found that tumor tissues and patient plasma exhibit obesity-dependent elevations of the adipokine chemerin. Attenuation of chemerin by several approaches led to significant reduction in lipid deposition and impairment of tumor cell growth in vitro and in vivo. A multi-omics approach revealed that chemerin suppresses fatty acid oxidation, preventing ferroptosis, and maintains fatty acid levels that activate hypoxia-inducible factor 2α expression. The lipid coenzyme Q and mitochondrial complex IV, whose biogeneses are lipid-dependent, were found to be decreased after chemerin inhibition, contributing to lipid reactive oxygen species production. Monoclonal antibody targeting chemerin led to reduced lipid storage and diminished tumor growth, demonstrating translational potential of chemerin inhibition. Collectively, the results suggest that obesity and tumor cells contribute to ccRCC through the expression of chemerin, which is indispensable in ccRCC biology. SIGNIFICANCE: Identification of a hypoxia-inducible factor-dependent adipokine that prevents fatty acid oxidation and causes escape from ferroptosis highlights a critical metabolic dependency unique in the clear cell subtype of kidney cancer. Targeting lipid metabolism via inhibition of a soluble factor is a promising pharmacologic approach to expand therapeutic strategies for patients with ccRCC.See related commentary by Reznik et al., p. 1879.This article is highlighted in the In This Issue feature, p. 1861.
Collapse
Affiliation(s)
- Sze Kiat Tan
- Department of Radiation Oncology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida.,Sheila and David Fuente Graduate Program in Cancer Biology, University of Miami Miller School of Medicine, Miami, Florida
| | - Iqbal Mahmud
- Department of Pathology, Immunology and Laboratory Medicine, UF Health, UF Health Cancer Center, Southeast Center for Integrated Metabolomics, Clinical and Translational Science Institute, College of Medicine, University of Florida, Gainesville, Florida
| | - Flavia Fontanesi
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida
| | - Michelle Puchowicz
- Department of Pediatrics, Metabolic Phenotyping Core, Pediatric Obesity Program, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Chase K A Neumann
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio
| | - Anthony J Griswold
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida
| | - Rutulkumar Patel
- Department of Radiation Oncology, Duke University School of Medicine, Durham, North Carolina
| | - Marco Dispagna
- Department of Radiation Oncology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida
| | - Hamzah H Ahmed
- Department of Pathology, Immunology and Laboratory Medicine, UF Health, UF Health Cancer Center, Southeast Center for Integrated Metabolomics, Clinical and Translational Science Institute, College of Medicine, University of Florida, Gainesville, Florida.,Diagnostic Radiology Department, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mark L Gonzalgo
- Department of Urology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida
| | - J Mark Brown
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio.,Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio.,Center for Microbiome and Human Health, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Timothy J Garrett
- Department of Pathology, Immunology and Laboratory Medicine, UF Health, UF Health Cancer Center, Southeast Center for Integrated Metabolomics, Clinical and Translational Science Institute, College of Medicine, University of Florida, Gainesville, Florida
| | - Scott M Welford
- Department of Radiation Oncology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida.
| |
Collapse
|
33
|
Udayaraja GK, Arnold Emerson I. Network-based gene deletion analysis identifies candidate genes and molecular mechanism involved in clear cell renal cell carcinoma. J Genet 2021. [DOI: 10.1007/s12041-021-01260-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
34
|
Zhu M, Zou L, Lu F, Ye L, Su B, Yang K, Lin M, Fu J, Li Y. miR-142-5p promotes renal cell tumorigenesis by targeting TFAP2B. Oncol Lett 2020; 20:324. [PMID: 33123240 PMCID: PMC7583739 DOI: 10.3892/ol.2020.12187] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 06/23/2020] [Indexed: 01/28/2023] Open
Abstract
The transcription factor AP-2 β (TFAP2B) serves an important role in kidney development. MicroRNAs (miRNAs) regulate carcinogenic pathways and have gained increasing attention owing to their association with human clear cell renal cell carcinoma (ccRCC) tumorigenesis. However, whether miRNAs could affect renal cell tumorigenesis by regulating TFAP2B expression has not been identified. The aim of this study was to investigate the effects of miRNA on TFAP2B and its potential role in cell growth, invasion and migration. PCR, western blot and dual luciferase reporter assays were performed to analyze the effects of miR-142-5p on TFAP2B. Furthermore, MTT, flow cytometry, wound healing and Transwell migration assays were used to analyze the effect of miR-142-5p on cell proliferation and migration. The results demonstrated that miR-142-5p targeted TFAP2B and downregulated the expression of TFAP2B at the mRNA and protein levels, promoting cell proliferation and migration in two ccRCC cell lines, 786-O and A-498. This phenomenon supported the theory that miR-142-5p may function as an oncogene in ccRCC. The potential clinical significance of miR-142-5p as a biomarker and a therapeutic target provides rationale for further investigation into miR-142-5p-mediated molecular pathways and how these may be associated with ccRCC development.
Collapse
Affiliation(s)
- Maoshu Zhu
- The Central Laboratory, The Fifth Hospital of Xiamen, Xiamen, Fujian 361101, P.R. China
| | - Liangneng Zou
- Department of Geriatrics, The Fifth Hospital of Xiamen, Xiamen, Fujian 361101, P.R. China
| | - Fuhua Lu
- Department of Nephrology, The Fifth Hospital of Xiamen, Xiamen, Fujian 361101, P.R. China
| | - Ling Ye
- Department of Respiratory Medicine, The Fifth Hospital of Xiamen, Xiamen, Fujian 361101, P.R. China
| | - Bin Su
- Department of Pharmacy Education, The Fifth Hospital of Xiamen, Xiamen, Fujian 361101, P.R. China
| | - Kaichun Yang
- Department of Emergency, The Fifth Hospital of Xiamen, Xiamen, Fujian 361101, P.R. China
| | - Minghua Lin
- Department of Pathology, The Fifth Hospital of Xiamen, Xiamen, Fujian 361101, P.R. China
| | - Jianqian Fu
- Department of Medical Oncology, The Fifth Hospital of Xiamen, Xiamen, Fujian 361101, P.R. China
| | - Yongwu Li
- Department of Emergency, The Fifth Hospital of Xiamen, Xiamen, Fujian 361101, P.R. China
| |
Collapse
|
35
|
Zhou G, Yang Y, Zhang X, Wang J. Msx1 cooperates with Runx1 for inhibiting myoblast differentiation. Protein Expr Purif 2020; 179:105797. [PMID: 33242573 DOI: 10.1016/j.pep.2020.105797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 10/12/2020] [Accepted: 11/13/2020] [Indexed: 01/19/2023]
Abstract
Myogenesis is an important and complicated biological process, especially during the process of embryonic development. The homeoprotein Msx1 is a crucial transcriptional repressor of myogenesis and maintains myogenic precursor cells in an undifferentiated, proliferative state. However, the molecular mechanism through which Msx1 coordinates myogenesis remains to be elucidated. Here, we determine the interacting partner proteins of Msx1 in myoblast cells by a proteomic screening method. Msx1 is found to interact with 55 proteins, among which our data demonstrate that the cooperation of Runt-related transcription factor 1 (Runx1) with Msx1 is required for myoblast cell differentiation. Our findings provide important insights into the mechanistic roles of Msx1 in myoblast cell differentiation, and lays foundation for the myogenic differentiation process.
Collapse
Affiliation(s)
- Guoqiang Zhou
- School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Yenan Yang
- School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Xumin Zhang
- School of Life Sciences, Fudan University, Shanghai, 200438, China.
| | - Jingqiang Wang
- School of Life Sciences, Fudan University, Shanghai, 200438, China.
| |
Collapse
|
36
|
McCauley C, Anang V, Cole B, Simmons GE. Potential Links between YB-1 and Fatty Acid Synthesis in Clear Cell Renal Carcinoma. ACTA ACUST UNITED AC 2020; 8. [PMID: 33778158 DOI: 10.18103/mra.v8i10.2273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
According to the National Institutes of Health, clear cell renal cell carcinoma (ccRCC) is the most common type of Renal Cell Carcinoma (RCC), making up approximately 75% of total renal carcinoma cases. Clear cell Renal Cell Carcinoma is characterized by a significant accumulation of lipids in the cytoplasm, which allows light from microscopes to pass through giving them a "clear" phenotype. Many of these lipids are in the form of fatty acids, both free and incorporated into lipid droplets. RCC is typically associated with a poor prognosis due to the lack of specific symptoms. Some symptoms include blood in urine, fever, lump on the side, weight loss, fatigue, to name a few; all of which can be associated with non-specific, non-cancerous, health conditions that contribute to difficult diagnosis. Treatment of RCC has typically been centered around radical nephrectomy as the standard of care, but due to the potentially small size of lesions and the possibility of causing surgically induced chronic kidney disease, treatments have shifted to more cautious, less invasive approaches. These approaches include active surveillance, nephron-sparing surgery, and other minimally invasive techniques like cryotherapy and renal ablation. Although these techniques have had the desired effect of reducing the number of surgeries, there is still considerable potential for renal impairment and the chance that tumors can grow out of control without surgery. With the difficulty that surrounds the treatment of ccRCC and its considerably high mortality rate amongst urological cancers, it is important to look for novel approaches to improve patient outcomes. This review looks at available literature and our data that suggests the lipogenic enzyme stearoyl-CoA desaturase may be more beneficial to patient survival than once thought. As our understanding of the importance of lipids in cell metabolism and longevity matures, it is important to present new perspectives that present a new understanding of ccRCC and the role of lipids in survival mechanisms engaged by transformed cells during cancer progression. In this review, we provide evidence that pharmacological inhibition of lipid desaturation in renal cancer patients is not without risk, and that the presence of unsaturated fatty acids may be a beneficial factor in patient outcomes. Although more direct experimental evidence is needed to make definitive conclusions, it is clear that the work reviewed herein should challenge our current understanding of cancer biology and may inform novel approaches to the diagnosis and treatment of ccRCC.
Collapse
Affiliation(s)
- Carter McCauley
- University of Minnesota Medical School, Duluth, MN, MN 55812, USA
| | - Vasthy Anang
- Clinical and Translational Science Institute PREP Program, University of Minnesota Medical School, Minneapolis, MN, MN 55812, USA
| | - Breanna Cole
- Department of Biology, The College of St. Scholastica, Duluth, MN, 55811, USA
| | - Glenn E Simmons
- University of Minnesota Medical School, Duluth, MN, MN 55812, USA.,Clinical and Translational Science Institute PREP Program, University of Minnesota Medical School, Minneapolis, MN, MN 55812, USA.,Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN, MN 55812, USA.,Carcinogenesis and Chemoprevention program, Masonic Cancer Center, Minneapolis, MN 55455, USA
| |
Collapse
|
37
|
Guerra B, Issinger OG. Role of Protein Kinase CK2 in Aberrant Lipid Metabolism in Cancer. Pharmaceuticals (Basel) 2020; 13:ph13100292. [PMID: 33027921 PMCID: PMC7601870 DOI: 10.3390/ph13100292] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 10/01/2020] [Accepted: 10/02/2020] [Indexed: 12/20/2022] Open
Abstract
Uncontrolled proliferation is a feature defining cancer and it is linked to the ability of cancer cells to effectively adapt their metabolic needs in response to a harsh tumor environment. Metabolic reprogramming is considered a hallmark of cancer and includes increased glucose uptake and processing, and increased glutamine utilization, but also the deregulation of lipid and cholesterol-associated signal transduction, as highlighted in recent years. In the first part of the review, we will (i) provide an overview of the major types of lipids found in eukaryotic cells and their importance as mediators of intracellular signaling pathways (ii) analyze the main metabolic changes occurring in cancer development and the role of oncogenic signaling in supporting aberrant lipid metabolism and (iii) discuss combination strategies as powerful new approaches to cancer treatment. The second part of the review will address the emerging role of CK2, a conserved serine/threonine protein kinase, in lipid homeostasis with an emphasis regarding its function in lipogenesis and adipogenesis. Evidence will be provided that CK2 regulates these processes at multiple levels. This suggests that its pharmacological inhibition combined with dietary restrictions and/or inhibitors of metabolic targets could represent an effective way to undermine the dependency of cancer cells on lipids to interfere with tumor progression.
Collapse
|
38
|
Bombelli S, Torsello B, De Marco S, Lucarelli G, Cifola I, Grasselli C, Strada G, Bovo G, Perego RA, Bianchi C. 36-kDa Annexin A3 Isoform Negatively Modulates Lipid Storage in Clear Cell Renal Cell Carcinoma Cells. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:2317-2326. [PMID: 32861643 DOI: 10.1016/j.ajpath.2020.08.008] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 07/28/2020] [Accepted: 08/18/2020] [Indexed: 11/26/2022]
Abstract
The adipocyte-like morphology of clear cell renal cell carcinoma (ccRCC) cells results from a grade-dependent neutral lipid accumulation; however, the molecular mechanism and role in renal cancer progression have yet to be clarified. ccRCC shows a gene expression signature consistent with adipogenesis, and the phospholipid-binding protein annexin A3 (AnxA3), a negative regulator of adipocyte differentiation, is down-regulated in RCC and shows a differential expression pattern for two isoforms of 36 and 33 kDa. Using primary cell cultures and cell lines, we investigated the involvement of AnxA3 isoforms in lipid storage modulation of ccRCC cells. We found that the increased accumulation of lipids into ccRCC cells correlated with a decrease of the 36/33 isoform ratio. Treatment with adipogenic medium induced a significant increment of lipid storage in ccRCC cells that had a low 36-kDa AnxA3 expression and 36/33 ratio. The 36-kDa AnxA3 silencing in ccRCC cells increased lipid storage induced by adipogenic medium. These data suggest that 36-kDa AnxA3 negatively modulates the response to adipogenic treatment and may act as negative regulator of lipid storage in ccRCC cells. The subcellular distribution of AnxA3 in the cellular endocytic compartment suggests its involvement in modulation of vesicular trafficking, and it might serve as a putative mechanism of lipid storage regulation in ccRCC cells, opening novel translational outcomes.
Collapse
Affiliation(s)
- Silvia Bombelli
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Barbara Torsello
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Sofia De Marco
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Giuseppe Lucarelli
- Department of Emergency and Organ Transplantation-Urology, University of Bari, Bari, Italy
| | - Ingrid Cifola
- Institute for Biomedical Technologies, National Research Council, Segrate, Italy
| | - Chiara Grasselli
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Guido Strada
- Urology Unit, ASST North Milan, Bassini Hospital, Cinisello Balsamo, Italy
| | - Giorgio Bovo
- Pathology Unit, ASST North Milan, Vimercate Hospital, Vimercate, Italy
| | - Roberto A Perego
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.
| | - Cristina Bianchi
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.
| |
Collapse
|
39
|
Li Y, Xiao X, Chen H, Chen Z, Hu K, Yin D. Transcription factor NFYA promotes G1/S cell cycle transition and cell proliferation by transactivating cyclin D1 and CDK4 in clear cell renal cell carcinoma. Am J Cancer Res 2020; 10:2446-2463. [PMID: 32905496 PMCID: PMC7471361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 07/10/2020] [Indexed: 06/11/2023] Open
Abstract
NFYA (nuclear transcription factor Y, subunit A) is a CCAAT-binding transcription factor. Accumulating evidence suggests that NFYA plays an important role in breast, ovarian, lung and gastric cancer. However, the role of NFYA in clear cell renal cell carcinoma (ccRCC) remains unclear. In this study, it was discovered that the expression of NFYA is elevated in tissues of ccRCC patient and high NFYA expression is linked to poor overall survival in ccRCC patient. Inhibition of G1/S cell cycle transition and decreased cell proliferation were observed upon NFYA knockdown in ccRCC cells. Moreover, further investigation revealed that NFYA binds directly to the promoter region of both CDK4 and cyclin D1 (CCND1) thus transactivating their expression, resulting in RB phosphorylation and the activation of subsequent E2F pathway activation. Taken together, these findings imply the oncogenic role of NFYA in ccRCC progression and its potential as a target for ccRCC therapy.
Collapse
Affiliation(s)
- Yu Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen UniversityGuangzhou 510120, Guangdong, China
| | - Xing Xiao
- Department of Dermatology, Shenzhen Children’s HospitalShenzhen 518000, Guangdong, China
| | - Hengxing Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen UniversityGuangzhou 510120, Guangdong, China
| | - Zhen Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen UniversityGuangzhou 510120, Guangdong, China
| | - Kaishun Hu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen UniversityGuangzhou 510120, Guangdong, China
| | - Dong Yin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen UniversityGuangzhou 510120, Guangdong, China
| |
Collapse
|
40
|
Han Y, Wang L, Wang Y. Integrated Analysis of Three Publicly Available Gene Expression Profiles Identified Genes and Pathways Associated with Clear Cell Renal Cell Carcinoma. Med Sci Monit 2020; 26:e919965. [PMID: 32712616 PMCID: PMC7405617 DOI: 10.12659/msm.919965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Although advances have been achieved in the therapy of clear cell renal cell carcinoma (ccRCC), the pathogenesis of ccRCC is not yet fully understood. This study aimed to explore the critical genes and pathways associated with ccRCC by meta-analysis. MATERIAL AND METHODS We performed an integrated analysis of 3 publicly available microarray datasets developed from ccRCC tumor samples and normal tissues. A list of overlapped differentially expressed genes (DEGs) with the consistent expression trend in ccRCC tumor samples were identified, for which the protein-protein interaction (PPI) network was constructed, followed by topology structure and module analysis. The microRNA (miRNA) regulatory network and ccRCC associated pathway network were reconstructed. RESULTS A total of 504 genes were found to be consistently and differentially regulated based on 3 microarray datasets. The overrepresented pathways for DEGs included citric acid cycle (TCA cycle) and peroxisome proliferator-activated receptor (PPAR) signaling pathway and cell cycle. The PPI network was clustered into 6 modules that were closely related with the M phase, desmosome assembly, and response to hormone stimulus. The hsa04110: cell cycle and hsa04510: focal adhesion were the significant pathways associated with ccRCC overlapped with enrichment analysis. KDR and ITGB4 were focal-adhesion-associated genes, which were regulated by has-miR-424 and has-miR-204, respectively. CCND2 and CCNA2 were cell-cycle-associated genes, which were regulated by hsa-miR-324-3p, hsa-miR-146a and hsa-miR-145. CONCLUSIONS Cell cycle and focal adhesion were dysregulated in ccRCC, which were associated with the expression of CCND2, ITGB4, KDR, and CCNA2 genes. The deregulation of pathways and associated genes may provide insights to ccRCC research and therapy.
Collapse
Affiliation(s)
- YuPing Han
- Department of Urology, The Third Hospital of Jilin University, Changchun, Jilin, China (mainland)
| | - LinLin Wang
- Department of Ultrasound, The Third Hospital of Jilin University, Changchun, Jilin, China (mainland)
| | - Ye Wang
- Departmen of Pediatrics, The Third Hospital of Jilin University, Changchun, Jilin, China (mainland)
| |
Collapse
|
41
|
LRRC19-A Bridge between Selenium Adjuvant Therapy and Renal Clear Cell Carcinoma: A Study Based on Datamining. Genes (Basel) 2020; 11:genes11040440. [PMID: 32316597 PMCID: PMC7230350 DOI: 10.3390/genes11040440] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/08/2020] [Accepted: 04/14/2020] [Indexed: 02/06/2023] Open
Abstract
Kidney renal clear cell carcinoma (KIRC) is the most common and fatal subtype of renal cancer. Antagonistic associations between selenium and cancer have been reported in previous studies. Selenium compounds, as anti-cancer agents, have been reported and approved for clinical trials. The main active form of selenium in selenoproteins is selenocysteine (Sec). The process of Sec biosynthesis and incorporation into selenoproteins plays a significant role in biological processes, including anti-carcinogenesis. However, a comprehensive selenoprotein mRNA analysis in KIRC remains absent. In the present study, we examined all 25 selenoproteins and identified key selenoproteins, glutathione peroxidase 3 (GPX3) and type 1 iodothyronine deiodinase (DIO1), with the associated prognostic biomarker leucine-rich repeat containing 19 (LRRC19) in clear cell renal cell carcinoma cases from The Cancer Genome Atlas (TCGA) database. We performed validations for the key gene expression levels by two individual clear cell renal cell carcinoma cohorts, GSE781 and GSE6344, datasets from the Gene Expression Omnibus (GEO) database. Multivariate survival analysis demonstrated that low expression of LRRC19 was an independent risk factor for OS. Gene set enrichment analysis (GSEA) identified tyrosine metabolism, metabolic pathways, peroxisome, and fatty acid degradation as differentially enriched with the high LRRC19 expression in KIRC cases, which are involved in selenium therapy of clear cell renal cell carcinoma. In conclusion, low expression of LRRC19 was identified as an independent risk factor, which will advance our understanding concerning the selenium adjuvant therapy of clear cell renal cell carcinoma.
Collapse
|
42
|
Drake RR, McDowell C, West C, David F, Powers TW, Nowling T, Bruner E, Mehta AS, Angel PM, Marlow LA, Tun HW, Copland JA. Defining the human kidney N-glycome in normal and cancer tissues using MALDI imaging mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2020; 55:e4490. [PMID: 31860772 PMCID: PMC7187388 DOI: 10.1002/jms.4490] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 11/27/2019] [Accepted: 12/16/2019] [Indexed: 05/03/2023]
Abstract
Clear-cell renal cell carcinoma (ccRCC) presents challenges to clinical management because of late-stage detection, treatment resistance, and frequent disease recurrence. Metabolically, ccRCC has a well-described Warburg effect utilization of glucose, but how this affects complex carbohydrate synthesis and alterations to protein and cell surface glycosylation is poorly defined. Using an imaging mass spectrometry approach, N-glycosylation patterns and compositional differences were assessed between tumor and nontumor regions of formalin-fixed clinical ccRCC specimens and tissue microarrays. Regions of normal kidney tissue samples were also evaluated for N-linked glycan-based distinctions between cortex, medullar, glomeruli, and proximal tubule features. Most notable was the proximal tubule localized detection of abundant multiantennary N-glycans with bisecting N-acetylglucosamine and multziple fucose residues. These glycans are absent in ccRCC tissues, while multiple tumor-specific N-glycans were detected with tri- and tetra-antennary structures and varying levels of fucosylation and sialylation. A polycystic kidney disease tissue was also characterized for N-glycan composition, with specific nonfucosylated glycans detected in the cyst fluid regions. Complementary to the imaging mass spectrometry analyses was an assessment of transcriptomic gene array data focused on the fucosyltransferase gene family and other glycosyltransferase genes. The transcript levels of the FUT3 and FUT6 genes responsible for the enzymes that add fucose to N-glycan antennae were significantly decreased in all ccRCC tissues relative to matching nontumor tissues. These striking differences in glycosylation associated with ccRCC could lead to new mechanistic insight into the glycobiology underpinning kidney malignancies and suggest the potential for new therapeutic interventions and diagnostic markers.
Collapse
Affiliation(s)
- Richard R. Drake
- Department of Cell and Molecular Pharmacology and Experimental TherapeuticsMedical University of South CarolinaCharlestonSC29425USA
| | - Colin McDowell
- Department of Cell and Molecular Pharmacology and Experimental TherapeuticsMedical University of South CarolinaCharlestonSC29425USA
| | - Connor West
- Department of Cell and Molecular Pharmacology and Experimental TherapeuticsMedical University of South CarolinaCharlestonSC29425USA
| | - Fred David
- Department of Cell and Molecular Pharmacology and Experimental TherapeuticsMedical University of South CarolinaCharlestonSC29425USA
| | - Thomas W. Powers
- Department of Cell and Molecular Pharmacology and Experimental TherapeuticsMedical University of South CarolinaCharlestonSC29425USA
| | - Tamara Nowling
- Department of Medicine, Division of Rheumatology and ImmunologyMedical University of South CarolinaCharlestonSC29425USA
| | - Evelyn Bruner
- Department of Pathology and Laboratory MedicineMedical University of South CarolinaCharlestonSC29425USA
| | - Anand S. Mehta
- Department of Cell and Molecular Pharmacology and Experimental TherapeuticsMedical University of South CarolinaCharlestonSC29425USA
| | - Peggi M. Angel
- Department of Cell and Molecular Pharmacology and Experimental TherapeuticsMedical University of South CarolinaCharlestonSC29425USA
| | - Laura A. Marlow
- Department of Cancer BiologyMayo ClinicJacksonvilleFL32224USA
| | - Han W. Tun
- Department of Cancer BiologyMayo ClinicJacksonvilleFL32224USA
- Division of Hematology/Oncology, Internal Medicine DepartmentMayo ClinicJacksonvilleFL32224USA
| | - John A. Copland
- Department of Cancer BiologyMayo ClinicJacksonvilleFL32224USA
| |
Collapse
|
43
|
Macklin PS, Yamamoto A, Browning L, Hofer M, Adam J, Pugh CW. Recent advances in the biology of tumour hypoxia with relevance to diagnostic practice and tissue-based research. J Pathol 2020; 250:593-611. [PMID: 32086807 DOI: 10.1002/path.5402] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 02/18/2020] [Indexed: 02/06/2023]
Abstract
In this review article, we examine the importance of low levels of oxygen (hypoxia) in cancer biology. We provide a brief description of how mammalian cells sense oxygen. The hypoxia-inducible factor (HIF) pathway is currently the best characterised oxygen-sensing system, but recent work has revealed that mammals also use an oxygen-sensing system found in plants to regulate the abundance of some proteins and peptides with an amino-terminal cysteine residue. We discuss how the HIF pathway is affected during the growth of solid tumours, which develop in microenvironments with gradients of oxygen availability. We then introduce the concept of 'pseudohypoxia', a state of constitutive, oxygen-independent HIF system activation that occurs due to oncogenic stimulation in a number of specific tumour types that are of immediate relevance to diagnostic histopathologists. We provide an overview of the different methods of quantifying tumour hypoxia, emphasising the importance of pre-analytic factors in interpreting the results of tissue-based studies. Finally, we review recent approaches to targeting hypoxia/HIF system activation for therapeutic benefit, the application of which may require knowledge of which hypoxia signalling components are being utilised by a given tumour. © 2020 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Philip S Macklin
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Atsushi Yamamoto
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Lisa Browning
- Department of Cellular Pathology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Monika Hofer
- Department of Neuropathology and Ocular Pathology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Julie Adam
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | |
Collapse
|
44
|
Tan SK, Welford SM. Lipid in Renal Carcinoma: Queen Bee to Target? Trends Cancer 2020; 6:448-450. [PMID: 32459999 DOI: 10.1016/j.trecan.2020.02.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/13/2020] [Accepted: 02/19/2020] [Indexed: 01/01/2023]
Abstract
Clear cell renal cell carcinoma (ccRCC) is the most common renal cancer subtype, characterized by a lipid storage phenotype. We found that carnitine palmitoyltransferase 1A (CPT1A), the rate-limiting enzyme of mitochondrial fatty acid (FA) transport, is repressed by hypoxia-inducible factors (HIFs), reducing FA oxidation (FAO). Altering lipid metabolism may be a new therapeutic avenue in ccRCC.
Collapse
Affiliation(s)
- Sze Kiat Tan
- Department of Radiation Oncology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Scott M Welford
- Department of Radiation Oncology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| |
Collapse
|
45
|
Yu CC, Chen LC, Huang CY, Lin VC, Lu TL, Lee CH, Huang SP, Bao BY. Genetic association analysis identifies a role for ANO5 in prostate cancer progression. Cancer Med 2020; 9:2372-2378. [PMID: 32027096 PMCID: PMC7131841 DOI: 10.1002/cam4.2909] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/23/2020] [Accepted: 01/23/2020] [Indexed: 01/02/2023] Open
Abstract
Anoctamins were originally identified as a family of calcium‐activated chloride channels, but recently their roles in the development of different types of malignancies were suggested. Here, we evaluated the associations between 211 common single‐nucleotide polymorphisms in 10 anoctamin genes with biochemical recurrence (BCR) after radical prostatectomy (RP) for localized prostate cancer. Four SNPs (ANO4 rs585335, ANO5 rs4622263, ANO7 rs62187431, and ANO10 rs118005571) remained significantly associated with BCR after multiple test correction (P < .05 and q = 0.232) and adjustment for known prognostic factors. Expression quantitative trait loci analysis found that ANO5 rs4622263 C and ANO10 rs118005571 C alleles were associated with decreased mRNA expression levels. Moreover, lower expression of ANO5 was correlated with more advanced tumors and poorer outcomes in two independent prostate cancer cohorts. Taken together, ANO5 rs4622263 was associated with BCR, and ANO5 gene expression was correlated with patient prognosis, suggesting a pivotal role for ANO5 in prostate cancer progression.
Collapse
Affiliation(s)
- Chia-Cheng Yu
- Division of Urology/Transplant Surgery, Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan.,Department of Urology, School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Department of Pharmacy, College of Pharmacy and Health Care, Tajen University, Pingtung, Taiwan
| | - Lih-Chyang Chen
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
| | - Chao-Yuan Huang
- Department of Urology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Victor C Lin
- Department of Urology, E-Da Hospital, Kaohsiung, Taiwan.,School of Medicine for International Students, I-Shou University, Kaohsiung, Taiwan
| | - Te-Ling Lu
- Department of Pharmacy, China Medical University, Taichung, Taiwan
| | - Cheng-Hsueh Lee
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Shu-Pin Huang
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Urology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Bo-Ying Bao
- Department of Pharmacy, China Medical University, Taichung, Taiwan.,Sex Hormone Research Center, China Medical University Hospital, Taichung, Taiwan.,Department of Nursing, Asia University, Taichung, Taiwan
| |
Collapse
|
46
|
Kumar R, Kumar R, Tanwar P, Deo SVS, Mathur S, Agarwal U, Hussain S. Structural and conformational changes induced by missense variants in the zinc finger domains of GATA3 involved in breast cancer. RSC Adv 2020; 10:39640-39653. [PMID: 35515377 PMCID: PMC9057444 DOI: 10.1039/d0ra07786k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 10/22/2020] [Indexed: 12/24/2022] Open
Abstract
Breast cancer (BC) is the main cancer in women having multiple receptor based tumour subtypes. Large scale genome sequencing studies of BC have identified several genes among which GATA3 is reported as a highly mutated gene followed by TP53 and PIK3CA. GATA3 is a crucial transcription factor, and was initially identified as a DNA-binding protein involved in the regulation of immune cell functions. Different missense mutations in the region of the DNA-binding domain of GATA3 are associated with BC and other neoplastic disorders. In this study, computational based approaches have been exploited to reveal associations of various mutations on structure, stability, conformation and function of GATA3. Our findings have suggested that, all analysed missense mutations were deleterious and highly pathogenic in nature. A molecular dynamics simulation study showed that all mutations led to structural destabilisation by reducing protein globularity and flexibility, by altering secondary structural configuration and decreasing protein ligand stability. Essential dynamics analysis indicated that mutations in GATA3 decreased protein mobility and increased its conformational instability. Furthermore, residue network analysis showed that the mutations affected the signal transduction of important residues that potentially influenced GATA3-DNA binding. The present study highlights the importance of different variants of GATA3 which have potential impact on neoplastic progression in breast cancer and may facilitate development of precise and personalized therapeutics. Mutations in the N- and C-finger domains of GATA3 lead to breast cancer.![]()
Collapse
Affiliation(s)
- Rakesh Kumar
- Dr B. R. A.-Institute Rotary Cancer Hospital
- All India Institute of Medical Sciences
- New Delhi
- India-110029
| | - Rahul Kumar
- Dr B. R. A.-Institute Rotary Cancer Hospital
- All India Institute of Medical Sciences
- New Delhi
- India-110029
| | - Pranay Tanwar
- Dr B. R. A.-Institute Rotary Cancer Hospital
- All India Institute of Medical Sciences
- New Delhi
- India-110029
| | - S. V. S. Deo
- Dr B. R. A.-Institute Rotary Cancer Hospital
- All India Institute of Medical Sciences
- New Delhi
- India-110029
| | - Sandeep Mathur
- Department of Pathology
- All India Institute of Medical Sciences
- New Delhi
- India-110029
| | - Usha Agarwal
- National Institute of Pathology
- New Delhi
- India-110029
| | - Showket Hussain
- Division of Molecular Oncology
- National Institute of Cancer Prevention and Research
- Noida
- India-201301
| |
Collapse
|
47
|
Hu F, Zeng W, Liu X. A Gene Signature of Survival Prediction for Kidney Renal Cell Carcinoma by Multi-Omic Data Analysis. Int J Mol Sci 2019; 20:ijms20225720. [PMID: 31739630 PMCID: PMC6888680 DOI: 10.3390/ijms20225720] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/09/2019] [Accepted: 11/13/2019] [Indexed: 02/07/2023] Open
Abstract
Kidney renal cell carcinoma (KIRC), which is the most common subtype of kidney cancer, has a poor prognosis and a high mortality rate. In this study, a multi-omics analysis is performed to build a multi-gene prognosis signature for KIRC. A combination of a DNA methylation analysis and a gene expression data analysis revealed 863 methylated differentially expressed genes (MDEGs). Seven MDEGs (BID, CCNF, DLX4, FAM72D, PYCR1, RUNX1, and TRIP13) were further screened using LASSO Cox regression and integrated into a prognostic risk score model. Then, KIRC patients were divided into high- and low-risk groups. A univariate cox regression analysis revealed a significant association between the high-risk group and a poor prognosis. The time-dependent receiver operating characteristic (ROC) curve shows that the risk group performs well in predicting overall survival. Furthermore, the risk group is contained in the best multivariate model that was obtained by a multivariate stepwise analysis, which further confirms that the risk group can be used as a potential prognostic biomarker. In addition, a nomogram was established for the best multivariate model and shown to perform well in predicting the survival of KIRC patients. In summary, a seven-MDEG signature is a powerful prognosis factor for KIRC patients and may provide useful suggestions for their personalized therapy.
Collapse
Affiliation(s)
- Fuyan Hu
- Department of Statistics, Faculty of Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China;
| | - Wenying Zeng
- Department of Water Resources and Hydro-elctricity Engineering, College of Water Resources and Architectural Engineering, Northwest A&F University, No.3 Taicheng Road, Yangling 712100, China;
| | - Xiaoping Liu
- School of Mathematics and Statistics, Shandong University at Weihai, Weihai 264209, China
- Correspondence: ; Tel.: +86-631-5688523
| |
Collapse
|
48
|
Green NH, Galvan DL, Badal SS, Chang BH, LeBleu VS, Long J, Jonasch E, Danesh FR. MTHFD2 links RNA methylation to metabolic reprogramming in renal cell carcinoma. Oncogene 2019; 38:6211-6225. [PMID: 31289360 PMCID: PMC8040069 DOI: 10.1038/s41388-019-0869-4] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 05/22/2019] [Accepted: 05/26/2019] [Indexed: 12/31/2022]
Abstract
One-carbon metabolism plays a central role in a broad array of metabolic processes required for the survival and growth of tumor cells. However, the molecular basis of how one-carbon metabolism may influence RNA methylation and tumorigenesis remains largely unknown. Here we show MTHFD2, a mitochondrial enzyme involved in one-carbon metabolism, contributes to the progression of renal cell carcinoma (RCC) via a novel epitranscriptomic mechanism that involves HIF-2α. We found that expression of MTHFD2 was significantly elevated in human RCC tissues, and MTHFD2 knockdown strongly reduced xenograft tumor growth. Mechanistically, using an unbiased methylated RNA immunoprecipitation sequencing (meRIP-Seq) approach, we found that MTHFD2 plays a critical role in controlling global N6-methyladenosine (m6A) methylation levels, including the m6A methylation of HIF-2α mRNA, which results in enhanced translation of HIF-2α. Enhanced HIF-2α translation, in turn, promotes the aerobic glycolysis, linking one-carbon metabolism to HIF-2α-dependent metabolic reprogramming through RNA methylation. Our findings also suggest that MTHFD2 and HIF-2α form a positive feedforward loop in RCC, promoting metabolic reprograming and tumor growth. Taken together, our results suggest that MTHFD2 links RNA methylation status to the metabolic state of tumor cells in RCC.
Collapse
Affiliation(s)
- Nathanael H Green
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX, 77030, USA
- Section of Nephrology, the University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Daniel L Galvan
- Section of Nephrology, the University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Shawn S Badal
- Section of Nephrology, the University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Benny H Chang
- Department of Medicine and Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Valerie S LeBleu
- Department of Cancer Biology, the University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jianyin Long
- Section of Nephrology, the University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Eric Jonasch
- Department of Genitourinary Oncology, the University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Farhad R Danesh
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX, 77030, USA.
- Section of Nephrology, the University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|
49
|
Li J, Lamere AT. DiPhiSeq: robust comparison of expression levels on RNA-Seq data with large sample sizes. Bioinformatics 2019; 35:2235-2242. [PMID: 30452547 DOI: 10.1093/bioinformatics/bty952] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 10/22/2018] [Accepted: 11/16/2018] [Indexed: 01/07/2023] Open
Abstract
MOTIVATION In the analysis of RNA-Seq data, detecting differentially expressed (DE) genes has been a hot research area in recent years and many methods have been proposed. DE genes show different average expression levels in different sample groups, and thus can be important biological markers. While generally very successful, these methods need to be further tailored and improved for cancerous data, which often features quite diverse expression in the samples from the cancer group, and this diversity is much larger than that in the control group. RESULTS We propose a statistical method that can detect not only genes that show different average expressions, but also genes that show different diversities of expressions in different groups. These 'differentially dispersed' genes can be important clinical markers. Our method uses a redescending penalty on the quasi-likelihood function, and thus has superior robustness against outliers and other noise. Simulations and real data analysis demonstrate that DiPhiSeq outperforms existing methods in the presence of outliers, and identifies unique sets of genes. AVAILABILITY AND IMPLEMENTATION DiPhiSeq is publicly available as an R package on CRAN: https://cran.r-project.org/package=DiPhiSeq. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Jun Li
- Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame, IN, USA
| | - Alicia T Lamere
- Mathematics Department, Bryant University, Smithfield, RI, USA
| |
Collapse
|
50
|
Wu F, Wu S, Tong H, He W, Gou X. HOXA6 inhibits cell proliferation and induces apoptosis by suppressing the PI3K/Akt signaling pathway in clear cell renal cell carcinoma. Int J Oncol 2019; 54:2095-2105. [PMID: 31081053 PMCID: PMC6521939 DOI: 10.3892/ijo.2019.4789] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 04/09/2019] [Indexed: 12/13/2022] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is the most common type of renal cell carcinoma and the incidence of this disease is increasing. The present study aimed to investigate the role of homeobox A6 (HOXA6) in the proliferation and apoptosis of ccRCC cells. Analysis of the GSE6344 dataset and immunohistochemistry revealed that the mRNA and protein expression levels of HOXA6 were suppressed in ccRCC tissues. To evaluate the roles of HOXA6 in cell proliferation and apoptosis, ccRCC cell lines (786‑O and 769‑P) were transfected with plasmids expressing HOXA6, empty vector, short hairpin (sh)HOXA6 and non‑targeting shRNA (NC). Cell Counting Kit‑8, colony formation and 5‑ethynyl‑2'‑deoxyuridine staining assays were performed to analyze cell proliferation. In addition, Caspase‑Glo and terminal deoxynucleotidyl transferase dUTP nick end labeling assays were performed to detect apoptosis. Furthermore, the cell cycle and apoptotic rates of 786‑O and 769‑P cells were analyzed by flow cytometry. The results demonstrated that, compared with the empty vector group, the proliferation of 786‑O and 769‑P cells decreased following HOXA6 overexpression; however, compared with the NC group, cell proliferation increased in the shHOXA6 group. The rate of apoptosis of HOXA6‑overexpressing cells was increased compared with the empty vector group, while the rate of apoptosis in the shHOXA6 group was reduced compared with the NC group. In addition, flow cytometry demonstrated that upregulated HOXA6 expression levels could inhibit the cell cycle at the G0/G1 phase. Western blotting revealed that the expression levels of phosphoinositide 3‑kinase (PI3K), phosphorylated (p)‑protein kinase B (Akt), mitogen‑activated protein kinase kinase, p‑extracellular signal‑regulated kinase (ERK) and B‑cell lymphoma 2 (Bcl‑2) were suppressed in cells overexpressing HOXA6; however, the protein expression levels of phosphatase and tensin homolog, Bcl‑2‑associated X protein, cleaved caspase‑3 and cleaved‑poly (ADP‑ribose) polymerase were increased compared with the empty vector group. Opposing results were reported for the shHOXA6 group compared with the NC group. In summary, the results demonstrated that HOXA6 suppresses cell proliferation and promotes apoptosis, which may occur via inhibition of the PI3K/Akt/ERK cascade. These findings indicate the role of HOXA6 in ccRCC; however, the underlying mechanism requires further investigation.
Collapse
Affiliation(s)
- Feixiang Wu
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Shasha Wu
- Department of Gastroenterology, The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, Sichuan 621000, P.R. China
| | - Hang Tong
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Weiyang He
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Xin Gou
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|