1
|
Nagesh Kumar MV, Ramya V, Maheshwaramma S, Ganapathy KN, Govindaraj M, Kavitha K, Vanisree K. Exploiting Indian landraces to develop biofortified grain sorghum with high protein and minerals. Front Nutr 2023; 10:1228422. [PMID: 37876619 PMCID: PMC10591322 DOI: 10.3389/fnut.2023.1228422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 09/19/2023] [Indexed: 10/26/2023] Open
Abstract
Sorghum (Sorghum bicolor L. Moench) is the staple cereal and is the primary source of protein for millions of people in Asia and sub-Saharan Africa. Sorghum grain value has been increasing in tropical countries including India owing to its gluten-free nature, anti-oxidant properties and low glycemic index. However, the nutrient composition of modern cultivars is declining thus necessitating genetic biofortification of sorghum to combat malnutrition and improve nutritional balance in the human diet. Keeping this in view, efforts were made to utilize valuable alleles, associated with nutrient composition, that might have been left behind in the varietal development in sorghum. The study aimed to determine the genetic improvement for nine nutritional and quality parameters (crude protein, in vitro protein digestibility (IVPD), total iron (Fe), total zinc (Zn), bioavailable Fe (%), bioavailable Zn (%), total phenolics, tannins and antioxidant activity) in the grains of 19 sorghum genotypes (high yield, drought and grain mold tolerant) developed from 11 superior India's landraces. After selection and advancement made from 2017 to 2022 through single seed descent method, the improvement in the nine nutritional and quality parameters was assessed. Significant variation was observed for all the nine parameters among the landraces and the genotypes. Sorghum genotypes PYPS 2 and PYPS 13 recorded the highest crude protein (13.21 and 12.80% respectively) and IVPD (18.68 and 19.56% respectively). Majority of the sorghum genotypes recorded high Fe (14.21-28.41 mg/100 g) and Zn (4.81-8.16 mg/100 g). High phenolics and antioxidant activity were recorded in sorghum genotypes PYPS 18 (85.65 mg/g gallic acid equivalents) and PYPS 19 (89.78%) respectively. Selections through SSD method revealed highest improvement in genotype PYPS 10 for crude protein (32.25%), total phenolics (18.48%) and antioxidant activity (15.43%). High improvements in genotypes PYPS 12 (23.50%), PYPS 3 (26.79%), PYPS 15 (21.18%) were recorded for total Fe, available Fe and high tannins, respectively. The study demonstrated that landraces could be effectively utilized as a potential, low-cost and eco-friendly approach in sorghum genetic biofortification to improved sorghum productivity and nutritional supply in semi-arid tropics.
Collapse
Affiliation(s)
| | - Vittal Ramya
- Professor Jayashankar Telangana State Agricultural University, Hyderabad, India
| | | | | | - Mahalingam Govindaraj
- HarvestPlus Program, The Alliance of Bioversity International and the International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | - Kosnam Kavitha
- Professor Jayashankar Telangana State Agricultural University, Hyderabad, India
| | - Kalisetti Vanisree
- Professor Jayashankar Telangana State Agricultural University, Hyderabad, India
| |
Collapse
|
2
|
Esteves SM, Jadoul A, Iacono F, Schloesser M, Bosman B, Carnol M, Druet T, Cardol P, Hanikenne M. Natural variation of nutrient homeostasis among laboratory and field strains of Chlamydomonas reinhardtii. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:5198-5217. [PMID: 37235689 DOI: 10.1093/jxb/erad194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 05/24/2023] [Indexed: 05/28/2023]
Abstract
Natural variation among individuals and populations exists in all species, playing key roles in response to environmental stress and adaptation. Micro- and macronutrients have a wide range of functions in photosynthetic organisms, and mineral nutrition thus plays a sizable role in biomass production. To maintain nutrient concentrations inside the cell within physiological limits and prevent the detrimental effects of deficiency or excess, complex homeostatic networks have evolved in photosynthetic cells. The microalga Chlamydomonas reinhardtii (Chlamydomonas) is a unicellular eukaryotic model for studying such mechanisms. In this work, 24 Chlamydomonas strains, comprising field isolates and laboratory strains, were examined for intraspecific differences in nutrient homeostasis. Growth and mineral content were quantified in mixotrophy, as full nutrition control, and compared with autotrophy and nine deficiency conditions for macronutrients (-Ca, -Mg, -N, -P, and -S) and micronutrients (-Cu, -Fe, -Mn, and -Zn). Growth differences among strains were relatively limited. However, similar growth was accompanied by highly divergent mineral accumulation among strains. The expression of nutrient status marker genes and photosynthesis were scored in pairs of contrasting field strains, revealing distinct transcriptional regulation and nutrient requirements. Leveraging this natural variation should enable a better understanding of nutrient homeostasis in Chlamydomonas.
Collapse
Affiliation(s)
- Sara M Esteves
- InBioS-PhytoSystems, Translational Plant Biology, University of Liège, Belgium
| | - Alice Jadoul
- InBioS-PhytoSystems, Translational Plant Biology, University of Liège, Belgium
| | - Fabrizio Iacono
- InBioS-PhytoSystems, Genetics and Physiology of Microalgae, University of Liège, Belgium
| | - Marie Schloesser
- InBioS-PhytoSystems, Translational Plant Biology, University of Liège, Belgium
| | - Bernard Bosman
- InBioS-PhytoSystems, Laboratory of Plant and Microbial Ecology, University of Liège, Belgium
| | - Monique Carnol
- InBioS-PhytoSystems, Laboratory of Plant and Microbial Ecology, University of Liège, Belgium
| | - Tom Druet
- Unit of Animal Genomics (GIGA), University of Liège, Belgium
| | - Pierre Cardol
- InBioS-PhytoSystems, Genetics and Physiology of Microalgae, University of Liège, Belgium
| | - Marc Hanikenne
- InBioS-PhytoSystems, Translational Plant Biology, University of Liège, Belgium
| |
Collapse
|
3
|
Shariatipour N, Heidari B, Ravi S, Stevanato P. Genomic analysis of ionome-related QTLs in Arabidopsis thaliana. Sci Rep 2021; 11:19194. [PMID: 34584138 PMCID: PMC8479127 DOI: 10.1038/s41598-021-98592-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 09/09/2021] [Indexed: 02/08/2023] Open
Abstract
Ionome contributes to maintain cell integrity and acts as cofactors for catalyzing regulatory pathways. Identifying ionome contributing genomic regions provides a practical framework to dissect the genetic architecture of ionomic traits for use in biofortification. Meta-QTL (MQTL) analysis is a robust method to discover stable genomic regions for traits regardless of the genetic background. This study used information of 483 QTLs for ionomic traits identified from 12 populations for MQTL analysis in Arabidopsis thaliana. The selected QTLs were projected onto the newly constructed genetic consensus map and 33 MQTLs distributed on A. thaliana chromosomes were identified. The average confidence interval (CI) of the drafted MQTLs was 1.30 cM, reduced eight folds from a mean CI of 10.88 cM for the original QTLs. Four MQTLs were considered as stable MQTLs over different genetic backgrounds and environments. In parallel to the gene density over the A. thaliana genome, the genomic distribution of MQTLs over the genetic and physical maps indicated the highest density at non- and sub-telomeric chromosomal regions, respectively. Several candidate genes identified in the MQTLs intervals were associated with ion transportation, tolerance, and homeostasis. The genomic context of the identified MQTLs suggested nine chromosomal regions for Zn, Mn, and Fe control. The QTLs for potassium (K) and phosphorus (P) were the most frequently co-located with Zn (78.3%), Mn (76.2%), and Fe (88.2% and 70.6%) QTLs. The current MQTL analysis demonstrates that meta-QTL analysis is cheaper than, and as informative as genome-wide association study (GWAS) in refining the known QTLs.
Collapse
Affiliation(s)
- Nikwan Shariatipour
- grid.412573.60000 0001 0745 1259Department of Plant Production and Genetics, School of Agriculture, Shiraz University, 7144165186 Shiraz, Iran
| | - Bahram Heidari
- grid.412573.60000 0001 0745 1259Department of Plant Production and Genetics, School of Agriculture, Shiraz University, 7144165186 Shiraz, Iran
| | - Samathmika Ravi
- grid.5608.b0000 0004 1757 3470Department of Agronomy, Animals, Natural Resources and Environment‐ DAFNAE, University of Padova, Legnaro, Padova Italy
| | - Piergiorgio Stevanato
- grid.5608.b0000 0004 1757 3470Department of Agronomy, Animals, Natural Resources and Environment‐ DAFNAE, University of Padova, Legnaro, Padova Italy
| |
Collapse
|
4
|
Cobb JN, Chen C, Shi Y, Maron LG, Liu D, Rutzke M, Greenberg A, Craft E, Shaff J, Paul E, Akther K, Wang S, Kochian LV, Zhang D, Zhang M, McCouch SR. Genetic architecture of root and shoot ionomes in rice (Oryza sativa L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:2613-2637. [PMID: 34018019 PMCID: PMC8277617 DOI: 10.1007/s00122-021-03848-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 04/29/2021] [Indexed: 05/09/2023]
Abstract
KEY MESSAGE Association analysis for ionomic concentrations of 20 elements identified independent genetic factors underlying the root and shoot ionomes of rice, providing a platform for selecting and dissecting causal genetic variants. Understanding the genetic basis of mineral nutrient acquisition is key to fully describing how terrestrial organisms interact with the non-living environment. Rice (Oryza sativa L.) serves both as a model organism for genetic studies and as an important component of the global food system. Studies in rice ionomics have primarily focused on above ground tissues evaluated from field-grown plants. Here, we describe a comprehensive study of the genetic basis of the rice ionome in both roots and shoots of 6-week-old rice plants for 20 elements using a controlled hydroponics growth system. Building on the wealth of publicly available rice genomic resources, including a panel of 373 diverse rice lines, 4.8 M genome-wide single-nucleotide polymorphisms, single- and multi-marker analysis pipelines, an extensive tome of 321 candidate genes and legacy QTLs from across 15 years of rice genetics literature, we used genome-wide association analysis and biparental QTL analysis to identify 114 genomic regions associated with ionomic variation. The genetic basis for root and shoot ionomes was highly distinct; 78 loci were associated with roots and 36 loci with shoots, with no overlapping genomic regions for the same element across tissues. We further describe the distribution of phenotypic variation across haplotypes and identify candidate genes within highly significant regions associated with sulfur, manganese, cadmium, and molybdenum. Our analysis provides critical insight into the genetic basis of natural phenotypic variation for both root and shoot ionomes in rice and provides a comprehensive resource for dissecting and testing causal genetic variants.
Collapse
Affiliation(s)
- Joshua N Cobb
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853-1901, USA
- RiceTec Inc, Alvin, TX, 77511, USA
| | - Chen Chen
- Department of Statistics, Purdue University, West Lafayette, IN, 47907-2054, USA
- Ausy Consulting, Esperantolaan 8, 3001, Heverlee, Belgium
| | - Yuxin Shi
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853-1901, USA
| | - Lyza G Maron
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853-1901, USA
| | - Danni Liu
- Department of Statistics, Purdue University, West Lafayette, IN, 47907-2054, USA
| | - Mike Rutzke
- Soil and Crop Sciences Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853-1901, USA
| | - Anthony Greenberg
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853-1901, USA
- Bayesic Research, LLC, 452 Sheffield Rd, Ithaca, NY, 14850, USA
| | - Eric Craft
- Soil and Crop Sciences Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853-1901, USA
| | - Jon Shaff
- Robert W. Holley Center for Agriculture and Health, United States Department of Agriculture-Agricultural Research Service, Ithaca, NY, 14853-1901, USA
| | - Edyth Paul
- GeneFlow, Inc, Centreville, VA, 20120, USA
| | - Kazi Akther
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853-1901, USA
| | - Shaokui Wang
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853-1901, USA
- Department of Plant Breeding, South China Agriculture University, Guangdong, 510642, China
| | - Leon V Kochian
- Robert W. Holley Center for Agriculture and Health, United States Department of Agriculture-Agricultural Research Service, Ithaca, NY, 14853-1901, USA
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK, S7N 4J8, Canada
| | - Dabao Zhang
- Department of Statistics, Purdue University, West Lafayette, IN, 47907-2054, USA
| | - Min Zhang
- Department of Statistics, Purdue University, West Lafayette, IN, 47907-2054, USA.
| | - Susan R McCouch
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853-1901, USA.
| |
Collapse
|
5
|
Ali S, Tyagi A, Bae H. Ionomic Approaches for Discovery of Novel Stress-Resilient Genes in Plants. Int J Mol Sci 2021; 22:7182. [PMID: 34281232 PMCID: PMC8267685 DOI: 10.3390/ijms22137182] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/25/2021] [Accepted: 06/29/2021] [Indexed: 01/03/2023] Open
Abstract
Plants, being sessile, face an array of biotic and abiotic stresses in their lifespan that endanger their survival. Hence, optimized uptake of mineral nutrients creates potential new routes for enhancing plant health and stress resilience. Recently, minerals (both essential and non-essential) have been identified as key players in plant stress biology, owing to their multifaceted functions. However, a realistic understanding of the relationship between different ions and stresses is lacking. In this context, ionomics will provide new platforms for not only understanding the function of the plant ionome during stresses but also identifying the genes and regulatory pathways related to mineral accumulation, transportation, and involvement in different molecular mechanisms under normal or stress conditions. This article provides a general overview of ionomics and the integration of high-throughput ionomic approaches with other "omics" tools. Integrated omics analysis is highly suitable for identification of the genes for various traits that confer biotic and abiotic stress tolerance. Moreover, ionomics advances being used to identify loci using qualitative trait loci and genome-wide association analysis of element uptake and transport within plant tissues, as well as genetic variation within species, are discussed. Furthermore, recent developments in ionomics for the discovery of stress-tolerant genes in plants have also been addressed; these can be used to produce more robust crops with a high nutritional value for sustainable agriculture.
Collapse
Affiliation(s)
- Sajad Ali
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Korea;
| | - Anshika Tyagi
- National Institute for Plant Biotechnology, New Delhi 110012, India;
| | - Hanhong Bae
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Korea;
| |
Collapse
|
6
|
Zhang L, MacQueen A, Bonnette J, Fritschi FB, Lowry DB, Juenger TE. QTL x environment interactions underlie ionome divergence in switchgrass. G3-GENES GENOMES GENETICS 2021; 11:6259145. [PMID: 33914881 PMCID: PMC8495926 DOI: 10.1093/g3journal/jkab144] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 04/23/2021] [Indexed: 01/02/2023]
Abstract
Ionomics measures elemental concentrations in biological organisms and provides a snapshot of physiology under different conditions. In this study, we evaluate genetic variation of the ionome in outbred, perennial switchgrass in three environments across the species' native range, and explore patterns of genotype-by-environment interactions. We grew 725 clonally replicated genotypes of a large full sib family from a four-way linkage mapping population, created from deeply diverged upland and lowland switchgrass ecotypes, at three common gardens. Concentrations of 18 mineral elements were determined in whole post-anthesis tillers using ion coupled plasma mass spectrometry (ICP-MS). These measurements were used to identify quantitative trait loci (QTL) with and without QTL-by-environment interactions (QTLxE) using a multi-environment QTL mapping approach. We found that element concentrations varied significantly both within and between switchgrass ecotypes, and GxE was present at both the trait and QTL level. Concentrations of 14 of the 18 elements were under some genetic control, and 77 QTL were detected for these elements. 74% of QTL colocalized multiple elements, half of QTL exhibited significant QTLxE, and roughly equal numbers of QTL had significant differences in magnitude and sign of their effects across environments. The switchgrass ionome is under moderate genetic control and by loci with highly variable effects across environments.
Collapse
Affiliation(s)
- Li Zhang
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712
| | - Alice MacQueen
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712
| | - Jason Bonnette
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712
| | - Felix B Fritschi
- Division of Plant Sciences, University of Missouri, Columbia, MO 65211
| | - David B Lowry
- Department of Plant Biology and DOE Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI 48824
| | - Thomas E Juenger
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712
| |
Collapse
|
7
|
Campos ACAL, van Dijk WFA, Ramakrishna P, Giles T, Korte P, Douglas A, Smith P, Salt DE. 1,135 ionomes reveal the global pattern of leaf and seed mineral nutrient and trace element diversity in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:536-554. [PMID: 33506585 DOI: 10.1111/tpj.15177] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 01/07/2021] [Accepted: 01/20/2021] [Indexed: 05/06/2023]
Abstract
Soil is a heterogeneous reservoir of essential elements needed for plant growth and development. Plants have evolved mechanisms to balance their nutritional needs based on availability of nutrients. This has led to genetically based variation in the elemental composition, the 'ionome', of plants, both within and between species. We explore this natural variation using a panel of wild-collected, geographically widespread Arabidopsis thaliana accessions from the 1001 Genomes Project including over 1,135 accessions, and the 19 parental accessions of the Multi-parent Advanced Generation Inter-Cross (MAGIC) panel, all with full-genome sequences available. We present an experimental design pipeline for high-throughput ionomic screenings and analyses with improved normalisation procedures to account for errors and variability in conditions often encountered in large-scale, high-throughput data collection. We report quantification of the complete leaf and seed ionome of the entire collection using this pipeline and a digital tool, Ion Explorer, to interact with the dataset. We describe the pattern of natural ionomic variation across the A. thaliana species and identify several accessions with extreme ionomic profiles. It forms a valuable resource for exploratory genetic mapping studies to identify genes underlying natural variation in leaf and seed ionome and genetic adaptation of plants to soil conditions.
Collapse
Affiliation(s)
- Ana Carolina A L Campos
- Institute of Biological and Environmental Sciences, University of Aberdeen, Cruickshank Building, Aberdeen, AB24 3UU, United Kingdom
| | - William F A van Dijk
- Institute of Biological and Environmental Sciences, University of Aberdeen, Cruickshank Building, Aberdeen, AB24 3UU, United Kingdom
| | - Priya Ramakrishna
- Future Food Beacon of Excellence and School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, United Kingdom
| | - Tom Giles
- Digital Research Service and Advanced Data Analysis Centre, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, United Kingdom
| | - Pamela Korte
- Gregor Mendel Institute of Molecular Plant Biology, Vienna, Austria
| | - Alex Douglas
- Institute of Biological and Environmental Sciences, University of Aberdeen, Cruickshank Building, Aberdeen, AB24 3UU, United Kingdom
| | - Pete Smith
- Institute of Biological and Environmental Sciences, University of Aberdeen, Cruickshank Building, Aberdeen, AB24 3UU, United Kingdom
| | - David E Salt
- Institute of Biological and Environmental Sciences, University of Aberdeen, Cruickshank Building, Aberdeen, AB24 3UU, United Kingdom
- Future Food Beacon of Excellence and School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, United Kingdom
| |
Collapse
|
8
|
Wang W, Zou J, White PJ, Ding G, Li Y, Xu F, Shi L. Identification of QTLs associated with potassium use efficiency and underlying candidate genes by whole-genome resequencing of two parental lines in Brassica napus. Genomics 2021; 113:755-768. [PMID: 33516850 DOI: 10.1016/j.ygeno.2021.01.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/20/2020] [Accepted: 01/26/2021] [Indexed: 10/22/2022]
Abstract
Breeding crops that acquire and/or utilize potassium (K) more effectively could reduce the use of K fertilizers. Sixteen traits affecting K use efficiency (KUE) at the seedling stage were investigated in a B. napus double haploid population grown at an optimal K supply (OK) and a low K supply (LK) in a hydroponic culture system. In total, 50 and 62 QTLs associated with these traits were identified at OK and LK, respectively. A total of 25 orthologues of 23 Arabidopsis genes regulating K transport were identified in the confidence intervals of nine QTLs impacting shoot dry weight at LK, and 22 of these showed variations in coding sequences and/or exhibited significant differences in mRNA abundances in roots at LK between the two parental lines. This study provided insights to the genetic basis of KUE in B. napus, which will accelerate the breeding of K-efficient rapeseed cultivars by marker-assisted selection.
Collapse
Affiliation(s)
- Wei Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Microelement Research Centre, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinsong Zou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Microelement Research Centre, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
| | - Philip J White
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK; Distinguished Scientist Fellowship Program, King Saud University, Riyadh 11451, Saudi Arabia
| | - Guangda Ding
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Microelement Research Centre, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
| | - Yalin Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Microelement Research Centre, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
| | - Fangsen Xu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Microelement Research Centre, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
| | - Lei Shi
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Microelement Research Centre, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
9
|
Murren CJ, Alt CHS, Kohler C, Sancho G. Natural variation on whole-plant form in the wild is influenced by multivariate soil nutrient characteristics: natural selection acts on root traits. AMERICAN JOURNAL OF BOTANY 2020; 107:319-328. [PMID: 32002983 DOI: 10.1002/ajb2.1420] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 09/23/2019] [Indexed: 05/22/2023]
Abstract
PREMISE In the complex soil nutrient environments of wild populations of annual plants, in general, low nutrient availability restricts growth and alters root-shoot relationships. However, our knowledge of natural selection on roots in field settings is limited. We sought to determine whether selection acts directly on root traits and to identify which components of the soil environment were potential agents of selection. METHODS We studied wild native populations of Arabidopsis thaliana across 4 years, measuring aboveground and belowground traits and analyzing soil nutrients. Using multivariate methods, we examined patterns of natural selection and identified soil attributes that contributed to whole-plant form. In a common garden experiment at two field sites with contrasting soil texture, we examined patterns of selection on root and shoot traits. RESULTS In wild populations, we uncovered selection for above- and belowground size and architectural traits. We detected variation through time and identified soil components that influenced fruit production. In the garden experiment, we detected a distinct positive selection for total root length at the site with greater water-holding capacity and negative selection for measures of root architecture at the field site with reduced nutrient availability and water holding capacity. CONCLUSIONS Patterns of natural selection on belowground traits varied through time, across field sites and experimental gardens. Simultaneous investigations of above- and belowground traits reveal trait functional relationships on which natural selection can act, highlighting the influence of edaphic features on evolutionary processes in wild annual plant populations.
Collapse
Affiliation(s)
- Courtney J Murren
- Department of Biology, College of Charleston, Charleston, SC, 29424, USA
| | - Claudia H S Alt
- Department of Biology, College of Charleston, Charleston, SC, 29424, USA
- Department of Earth Sciences, University of Bristol, Bristol, UK
| | - Clare Kohler
- Department of Biology, College of Charleston, Charleston, SC, 29424, USA
- Environmental Sciences Initiative, CUNY ASRC, New York, NY, 10031, USA
| | - Gorka Sancho
- Department of Biology, College of Charleston, Charleston, SC, 29424, USA
| |
Collapse
|
10
|
Natural Root Cellular Variation in Responses to Osmotic Stress in Arabidopsis thaliana Accessions. Genes (Basel) 2019; 10:genes10120983. [PMID: 31795411 PMCID: PMC6969899 DOI: 10.3390/genes10120983] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/21/2019] [Accepted: 11/22/2019] [Indexed: 01/06/2023] Open
Abstract
Arabidopsis naturally occurring populations have allowed for the identification of considerable genetic variation remodeled by adaptation to different environments and stress conditions. Water is a key resource that limits plant growth, and its availability is initially sensed by root tissues. The root’s ability to adjust its physiology and morphology under water deficit makes this organ a useful model to understand how plants respond to water stress. Here, we used hyperosmotic shock stress treatments in different Arabidopsis accessions to analyze the root cell morphological responses. We found that osmotic stress conditions reduced root growth and root apical meristem (RAM) size, promoting premature cell differentiation without affecting the stem cell niche morphology. This phenotype was accompanied by a cluster of small epidermal and cortex cells with radial expansion and root hairs at the transition to the elongation zone. We also found this radial expansion with root hairs when plants are grown under hypoosmotic conditions. Finally, root growth was less affected by osmotic stress in the Sg-2 accession followed by Ws, Cvi-0, and Col-0; however, after a strong osmotic stress, Sg-2 and Cvi-0 were the most resilience accessions. The sensitivity differences among these accessions were not explained by stress-related gene expression. This work provides new cellular insights on the Arabidopsis root phenotypic variability and plasticity to osmotic stress.
Collapse
|
11
|
Akhtar M, Yousaf S, Sarwar N, Hussain S. Zinc biofortification of cereals-role of phosphorus and other impediments in alkaline calcareous soils. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2019; 41:2365-2379. [PMID: 30903431 DOI: 10.1007/s10653-019-00279-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Accepted: 03/08/2019] [Indexed: 05/17/2023]
Abstract
Alkaline calcareous soils are deficient in plant nutrients; in particular, phosphorus (P) and zinc (Zn) are least available; their inorganic fertilizers are generally applied to meet the demand of crops. The applied nutrients react with soil constituents as well as with each other, resulting in lower plant uptake. Phosphorus availability is usually deterred due to lime content, while Zn availability is largely linked with alkalinity of the soil. The present manuscript critically discusses the factors associated with physicochemical properties of soil and other interactions in soil-plant system which contribute to the nutrients supply from soil, and affect productivity and quality attributes of cereals. Appropriate measures may possibly lessen the severity of nutritional disorder in cereal and optimize P and Zn concentrations in grain. Foliar Zn spray is found to escape most of the soil reactions; thus, Zn bioavailability is higher either through increase in grain Zn or through decrease in phytate content. The reactivity of nutrients prior to its uptake is deemed as major impediments in Zn biofortification of cereals. The article addresses physiological limitation of plants to accumulate grain Zn and the ways to achieve biofortification in cereals, while molecular mechanism explains how it affects nutritional quality of cereals. Moreover, it highlights the desirable measures for enhancing Zn bioavailability, e.g., manipulation of genetic makeup for efficient nutrient uptake/translocation, and also elucidates agronomic measures that help facilitate Zn supply in soil for plant accumulation.
Collapse
Affiliation(s)
- Muhammad Akhtar
- Nuclear Institute for Agriculture and Biology (NIAB), Faisalabad, Pakistan
| | - Sundas Yousaf
- Nuclear Institute for Agriculture and Biology (NIAB), Faisalabad, Pakistan.
| | - Nadeem Sarwar
- Nuclear Institute for Agriculture and Biology (NIAB), Faisalabad, Pakistan
| | - Saddam Hussain
- Department of Agronomy, University of Agriculture, Faisalabad, Pakistan.
| |
Collapse
|
12
|
Comparative Analysis of Perennial and Annual Phaseolus Seed Nutrient Concentrations. SUSTAINABILITY 2019. [DOI: 10.3390/su11102787] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Long-term agricultural sustainability is dependent in part on our capacity to provide productive, nutritious crops that minimize the negative impacts of agriculture on the landscape. Perennial grains within an agroforestry context offers one solution: These plants produce large root systems that reduce soil erosion and simultaneously have the potential to produce nutrients to combat malnutrition. However, nutrient compositions of wild, perennial, herbaceous species, such as those related to the common bean (Phaseolus vulgaris) are not well known. In this study, seed ion and amino acid concentrations of perennial and annual Phaseolus species were quantified using ionomics and mass spectrometry. No statistical difference was observed for Zn, toxic ions (e.g., As) or essential amino acid concentrations (except threonine) between perennial and annual Phaseolus species. However, differences were observed for some nutritionally important ions. For example, Ca, Cu, Fe, Mg, Mn, and P concentrations were higher in annual species; further, ion and amino acid concentrations appear to be largely independent of each other. These results suggest variability in ion and amino acid concentrations exist in Phaseolus. As new crop candidates are considered for ecological services, nutritional quality should be optimized to maximize nutrient output of sustainable food crops.
Collapse
|
13
|
Fikas AA, Dilkes BP, Baxter I. Multivariate analysis reveals environmental and genetic determinants of element covariation in the maize grain ionome. PLANT DIRECT 2019; 3:e00139. [PMID: 31245778 PMCID: PMC6589523 DOI: 10.1002/pld3.139] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 02/25/2019] [Accepted: 04/02/2019] [Indexed: 05/06/2023]
Abstract
The integrated responses of biological systems to genetic and environmental variation result in substantial covariance in multiple phenotypes. The resultant pleiotropy, environmental effects, and genotype-by-environmental interactions (GxE) are foundational to our understanding of biology and genetics. Yet, the treatment of correlated characters, and the identification of the genes encoding functions that generate this covariance, has lagged. As a test case for analyzing the genetic basis underlying multiple correlated traits, we analyzed maize kernel ionomes from Intermated B73 x Mo17 (IBM) recombinant inbred populations grown in 10 environments. Plants obtain elements from the soil through genetic and biochemical pathways responsive to physiological state and environment. Most perturbations affect multiple elements which leads the ionome, the full complement of mineral nutrients in an organism, to vary as an integrated network rather than a set of distinct single elements. We compared quantitative trait loci (QTL) determining single-element variation to QTL that predict variation in principal components (PCs) of multiple-element covariance. Single-element and multivariate approaches detected partially overlapping sets of loci. QTL influencing trait covariation were detected at loci that were not found by mapping single-element traits. Moreover, this approach permitted testing environmental components of trait covariance, and identified multi-element traits that were determined by both genetic and environmental factors as well as genotype-by-environment interactions. Growth environment had a profound effect on the elemental profiles and multi-element phenotypes were significantly correlated with specific environmental variables.
Collapse
Affiliation(s)
- Alexandra Asaro Fikas
- Donald Danforth Plant Science CenterSt. LouisMissouri
- Washington University in St. LouisSt. LouisMissouri
| | - Brian P. Dilkes
- Department of BiochemistryPurdue UniversityWest LafayetteIndiana
| | - Ivan Baxter
- Donald Danforth Plant Science CenterSt. LouisMissouri
| |
Collapse
|
14
|
Du F, Wang L, Yang Z, Liu P, Li D. Ionomic profile and arsenic speciation in Semisulcospira cancellata, a freshwater shellfish from a mine-impacted river in China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:10148-10158. [PMID: 30756351 DOI: 10.1007/s11356-019-04489-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 02/05/2019] [Indexed: 05/27/2023]
Abstract
Freshwater aquatic environment close to cities and industrial areas is more sensitive than marine environment. The freshwater shellfish Semisulcospira cancellate was introduced as a bioindicator to monitor the heavy metal contamination in the river through ionomic profiles and arsenic speciation. The shellfish samples were collected near four cities along the Xiang River in China. The concentrations of elements including Mg, Al, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, As, Sr, Cd, Sn, Sb, Ba, and Pb were determined using ICP-MS. Multivariate statistical analyses such as Pearson's correlation analysis and principle component analysis (PCA) were employed to identify the possible sources of the elements in the shellfish samples. Three principle components were extracted from the ionomic matrix and were associated with natural existence, biological pathways, and mining and smelting activities, respectively. The ionomic profiles of the shellfish samples were evaluated through hierarchical cluster analysis (HCA) which was exhibited in the form of heatmap. The shellfish samples were categorized according to the sampling sites with different contamination levels. Six As species including arsenite [As(III)], arsenate [As(V)], monomethylarsonic acid (MMA), dimethylarsinic acid (DMA), arsenobetaine (AsB), and arsenocholine (AsC) were separated and quantified using HPLC-ICP-MS. The concentrations of As(III) and As(V) were linearly increased with total As concentration increasing. However, the proportion of AsB was decreased with total As while the AsB concentration was irrelevant to total As.
Collapse
Affiliation(s)
- Fan Du
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Lin Wang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China.
| | - Zhaoguang Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
- Center for Environment and Water Resources, Central South University, Changsha, 410083, China
| | - Peng Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Deliang Li
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
15
|
Peñuelas J, Fernández‐Martínez M, Ciais P, Jou D, Piao S, Obersteiner M, Vicca S, Janssens IA, Sardans J. The bioelements, the elementome, and the biogeochemical niche. Ecology 2019; 100:e02652. [DOI: 10.1002/ecy.2652] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 12/26/2018] [Accepted: 01/16/2019] [Indexed: 01/30/2023]
Affiliation(s)
- Josep Peñuelas
- CSIC Global Ecology Unit CREAF‐CSIC‐UAB Bellaterra 08193 Spain
- CREAF Cerdanyola del Valles 08193 Spain
| | - Marcos Fernández‐Martínez
- CREAF Cerdanyola del Valles 08193 Spain
- Research Group Plants and Ecosystems (PLECO) Department of Biology University of Antwerp Wilrijk B‐2610 Belgium
| | - Philippe Ciais
- Laboratoire des Sciences du Climat et de l'Environnement IPSL Gif‐sur‐Yvette 91191 France
| | - David Jou
- Department of Physics Universitat Autònoma de Barcelona Bellaterra 08193 Spain
| | - Shilong Piao
- Sino‐French Institute for Earth System Science College of Urban and Environmental Sciences Peking University Beijing 100871 China
| | - Michael Obersteiner
- International Institute for Applied Systems Analysis (IIASA), Ecosystems Services and Management Schlossplatz 1 Laxenburg A‐2361 Austria
| | - Sara Vicca
- Research Group Plants and Ecosystems (PLECO) Department of Biology University of Antwerp Wilrijk B‐2610 Belgium
| | - Ivan A. Janssens
- Research Group Plants and Ecosystems (PLECO) Department of Biology University of Antwerp Wilrijk B‐2610 Belgium
| | - Jordi Sardans
- CSIC Global Ecology Unit CREAF‐CSIC‐UAB Bellaterra 08193 Spain
- CREAF Cerdanyola del Valles 08193 Spain
| |
Collapse
|
16
|
Phuke RM, Anuradha K, Radhika K, Jabeen F, Anuradha G, Ramesh T, Hariprasanna K, Mehtre SP, Deshpande SP, Anil G, Das RR, Rathore A, Hash T, Reddy BVS, Kumar AA. Genetic Variability, Genotype × Environment Interaction, Correlation, and GGE Biplot Analysis for Grain Iron and Zinc Concentration and Other Agronomic Traits in RIL Population of Sorghum ( Sorghum bicolor L. Moench). FRONTIERS IN PLANT SCIENCE 2017; 8:712. [PMID: 28529518 PMCID: PMC5418227 DOI: 10.3389/fpls.2017.00712] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 04/18/2017] [Indexed: 05/24/2023]
Abstract
The low grain iron and zinc densities are well documented problems in food crops, affecting crop nutritional quality especially in cereals. Sorghum is a major source of energy and micronutrients for majority of population in Africa and central India. Understanding genetic variation, genotype × environment interaction and association between these traits is critical for development of improved cultivars with high iron and zinc. A total of 336 sorghum RILs (Recombinant Inbred Lines) were evaluated for grain iron and zinc concentration along with other agronomic traits for 2 years at three locations. The results showed that large variability exists in RIL population for both micronutrients (Iron = 10.8 to 76.4 mg kg-1 and Zinc = 10.2 to 58.7 mg kg-1, across environments) and agronomic traits. Genotype × environment interaction for both micronutrients (iron and zinc) was highly significant. GGE biplots comparison for grain iron and zinc showed greater variation across environments. The results also showed that G × E was substantial for grain iron and zinc, hence wider testing needed for taking care of G × E interaction to breed micronutrient rich sorghum lines. Iron and zinc concentration showed high significant positive correlation (across environment = 0.79; p < 0.01) indicating possibility of simultaneous effective selection for both the traits. The RIL population showed good variability and high heritabilities (>0.60, in individual environments) for Fe and Zn and other traits studied indicating its suitability to map QTL for iron and zinc.
Collapse
Affiliation(s)
- Rahul M. Phuke
- International Crops Research Institute for the Semi-Arid TropicsHyderabad, India
- Professor Jayashankar Telangana State Agricultural UniversityHyderbad, India
| | - Kotla Anuradha
- International Crops Research Institute for the Semi-Arid TropicsHyderabad, India
| | - Kommineni Radhika
- Professor Jayashankar Telangana State Agricultural UniversityHyderbad, India
| | - Farzana Jabeen
- Professor Jayashankar Telangana State Agricultural UniversityHyderbad, India
| | - Ghanta Anuradha
- Professor Jayashankar Telangana State Agricultural UniversityHyderbad, India
| | - Thatikunta Ramesh
- Professor Jayashankar Telangana State Agricultural UniversityHyderbad, India
| | | | | | - Santosh P. Deshpande
- International Crops Research Institute for the Semi-Arid TropicsHyderabad, India
| | - Gaddameedi Anil
- International Crops Research Institute for the Semi-Arid TropicsHyderabad, India
| | - Roma R. Das
- International Crops Research Institute for the Semi-Arid TropicsHyderabad, India
| | - Abhishek Rathore
- International Crops Research Institute for the Semi-Arid TropicsHyderabad, India
| | - Tom Hash
- International Crops Research Institute for the Semi-Arid TropicsHyderabad, India
| | - Belum V. S. Reddy
- International Crops Research Institute for the Semi-Arid TropicsHyderabad, India
| | - Are Ashok Kumar
- International Crops Research Institute for the Semi-Arid TropicsHyderabad, India
| |
Collapse
|
17
|
Sarwar N, Imran M, Shaheen MR, Ishaque W, Kamran MA, Matloob A, Rehim A, Hussain S. Phytoremediation strategies for soils contaminated with heavy metals: Modifications and future perspectives. CHEMOSPHERE 2017; 171:710-721. [PMID: 28061428 DOI: 10.1016/j.chemosphere.2016.12.116] [Citation(s) in RCA: 543] [Impact Index Per Article: 77.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 11/27/2016] [Accepted: 12/22/2016] [Indexed: 05/19/2023]
Abstract
Presence of heavy metals in agricultural soils is of major environmental concern and a great threat to life on the earth. A number of human health risks are associated with heavy metals regarding their entry into food chain. Various physical, chemical and biological techniques are being used to remove heavy metals and metalloids from soils. Among them, phytoremediation is a good strategy to harvest heavy metals from soils and have been proven as an effective and economical technique. In present review, we discussed various sources and harmful effects of some important heavy metals and metalloids, traditional phytoremediation strategies, mechanisms involved in phytoremediation of these metals, limitations and some recent advances in phytoremediation approaches. Since traditional phytoremediation approach poses some limitations regarding their applications at large scale, so there is a dire need to modify this strategy using modern chemical, biological and genetic engineering tools. In view of above, the present manuscript brings both traditional and advanced phytoremediation techniques together in order to compare, understand and apply these strategies effectively to exclude heavy metals from soil keeping in view the economics and effectiveness of phytoremediation strategies.
Collapse
Affiliation(s)
- Nadeem Sarwar
- Nuclear Institute for Agriculture and Biology (NIAB), Faisalabad, Pakistan
| | - Muhammad Imran
- Department of Soil Science, Bahauddin Zakariya University, Multan, Pakistan.
| | - Muhammad Rashid Shaheen
- Department of Horticultural Sciences, University College of Agriculture and Environmental Sciences, The Islamia University of Bahawalpur, Pakistan
| | - Wajid Ishaque
- Nuclear Institute for Agriculture and Biology (NIAB), Faisalabad, Pakistan
| | | | - Amar Matloob
- Department of Agronomy, Muhammad Nawaz Shareef University of Agriculture, Multan, Pakistan
| | - Abdur Rehim
- Department of Soil Science, Bahauddin Zakariya University, Multan, Pakistan
| | - Saddam Hussain
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei, China; Department of Agronomy, University of Agriculture, Faisalabad, Pakistan.
| |
Collapse
|
18
|
Win KT, Oo AZ, Kojima K, Salem D, Yamaya H, Bellingrath-Kimura SD, Tomooka N, Kaga A, Ohkama-Ohtsu N, Yokoyama T. Genotypic difference in (137)Cs accumulation and transfer from the contaminated field in Fukushima to azuki bean (Vigna angularis). JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2016; 158-159:138-147. [PMID: 27105146 DOI: 10.1016/j.jenvrad.2016.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 04/09/2016] [Accepted: 04/10/2016] [Indexed: 06/05/2023]
Abstract
The screening of mini-core collection of azuki bean accessions (Vigna angularis (Willd.) Ohwi & Ohashi) for comparative uptake of (137)Cs in their edible portions was done in field trials on land contaminated by the Fukushima Daiichi Nuclear Power Plant (FDNPP) accident. Ninety seven azuki bean accessions including their wild relatives from a Japanese gene bank, were grown in a field in the Fukushima prefecture, which is located approximately 51 km north of FDNPP. The contamination level of the soil was 3665 ± 480 Bq kg(-1) dry weight ((137)Cs, average ± SD). The soil type comprised clay loam, where the sand: silt: clay proportion was 42:21:37. There was a significant varietal difference in the biomass production, radiocaesium accumulation and transfer factor (TF) of radiocaesium from the soil to edible portion. Under identical agricultural practice, the extent of (137)Cs accumulation by seeds differed between the accessions by as much as 10-fold. Inter-varietal variation was expressed at the ratio of the maximum to minimum observed (137)Cs transfer factor for seeds ranged from 0.092 to 0.009. The total biomass, time to flowering and maturity, and seed yield had negative relationship to (137)Cs activity concentration in seeds. The results suggest that certain variety/varieties of azuki bean which accumulated less (137)Cs in edible portion with preferable agronomic traits are suitable to reduce the (137)Cs accumulation in food chain on contaminated land.
Collapse
Affiliation(s)
- Khin Thuzar Win
- Faculty of Agriculture, Tokyo University of Agriculture and Technology, Saiwaicho 3-5-8, Fuchu, Tokyo, 183-8509, Japan
| | - Aung Zaw Oo
- Faculty of Agriculture, Tokyo University of Agriculture and Technology, Saiwaicho 3-5-8, Fuchu, Tokyo, 183-8509, Japan
| | - Katsuhiro Kojima
- Faculty of Agriculture, Tokyo University of Agriculture and Technology, Saiwaicho 3-5-8, Fuchu, Tokyo, 183-8509, Japan
| | - Djedidi Salem
- Faculty of Agriculture, Tokyo University of Agriculture and Technology, Saiwaicho 3-5-8, Fuchu, Tokyo, 183-8509, Japan
| | - Hiroko Yamaya
- College of Bioresources Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa, 252-0880, Japan
| | | | - Norihiko Tomooka
- Gene Bank, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8602, Japan
| | - Akito Kaga
- Gene Bank, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8602, Japan
| | - Naoko Ohkama-Ohtsu
- Instutute of Agriculture, Tokyo University of Agriculture and Technology, Saiwaicho 3-5-8, Fuchu, Tokyo, 183-8509, Japan
| | - Tadashi Yokoyama
- Instutute of Agriculture, Tokyo University of Agriculture and Technology, Saiwaicho 3-5-8, Fuchu, Tokyo, 183-8509, Japan.
| |
Collapse
|
19
|
Shakoor N, Ziegler G, Dilkes BP, Brenton Z, Boyles R, Connolly EL, Kresovich S, Baxter I. Integration of Experiments across Diverse Environments Identifies the Genetic Determinants of Variation in Sorghum bicolor Seed Element Composition. PLANT PHYSIOLOGY 2016; 170:1989-98. [PMID: 26896393 PMCID: PMC4825124 DOI: 10.1104/pp.15.01971] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 02/16/2016] [Indexed: 05/17/2023]
Abstract
Seedling establishment and seed nutritional quality require the sequestration of sufficient element nutrients. The identification of genes and alleles that modify element content in the grains of cereals, including sorghum (Sorghum bicolor), is fundamental to developing breeding and selection methods aimed at increasing bioavailable element content and improving crop growth. We have developed a high-throughput work flow for the simultaneous measurement of multiple elements in sorghum seeds. We measured seed element levels in the genotyped Sorghum Association Panel, representing all major cultivated sorghum races from diverse geographic and climatic regions, and mapped alleles contributing to seed element variation across three environments by genome-wide association. We observed significant phenotypic and genetic correlation between several elements across multiple years and diverse environments. The power of combining high-precision measurements with genome-wide association was demonstrated by implementing rank transformation and a multilocus mixed model to map alleles controlling 20 element traits, identifying 255 loci affecting the sorghum seed ionome. Sequence similarity to genes characterized in previous studies identified likely causative genes for the accumulation of zinc, manganese, nickel, calcium, and cadmium in sorghum seeds. In addition to strong candidates for these five elements, we provide a list of candidate loci for several other elements. Our approach enabled the identification of single-nucleotide polymorphisms in strong linkage disequilibrium with causative polymorphisms that can be evaluated in targeted selection strategies for plant breeding and improvement.
Collapse
Affiliation(s)
- Nadia Shakoor
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132 (N.S.);United States Department of Agriculture-Agricultural Research Service, Donald Danforth Plant Science Center, St. Louis, Missouri 63132 (G.Z., I.B.);Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907 (B.P.D.);Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina 29631 (Z.B., R.B., S.K.); andDepartment of Biological Sciences, University of South Carolina, Columbia, South Carolina 29208 (E.L.C.)
| | - Greg Ziegler
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132 (N.S.);United States Department of Agriculture-Agricultural Research Service, Donald Danforth Plant Science Center, St. Louis, Missouri 63132 (G.Z., I.B.);Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907 (B.P.D.);Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina 29631 (Z.B., R.B., S.K.); andDepartment of Biological Sciences, University of South Carolina, Columbia, South Carolina 29208 (E.L.C.)
| | - Brian P Dilkes
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132 (N.S.);United States Department of Agriculture-Agricultural Research Service, Donald Danforth Plant Science Center, St. Louis, Missouri 63132 (G.Z., I.B.);Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907 (B.P.D.);Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina 29631 (Z.B., R.B., S.K.); andDepartment of Biological Sciences, University of South Carolina, Columbia, South Carolina 29208 (E.L.C.)
| | - Zachary Brenton
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132 (N.S.);United States Department of Agriculture-Agricultural Research Service, Donald Danforth Plant Science Center, St. Louis, Missouri 63132 (G.Z., I.B.);Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907 (B.P.D.);Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina 29631 (Z.B., R.B., S.K.); andDepartment of Biological Sciences, University of South Carolina, Columbia, South Carolina 29208 (E.L.C.)
| | - Richard Boyles
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132 (N.S.);United States Department of Agriculture-Agricultural Research Service, Donald Danforth Plant Science Center, St. Louis, Missouri 63132 (G.Z., I.B.);Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907 (B.P.D.);Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina 29631 (Z.B., R.B., S.K.); andDepartment of Biological Sciences, University of South Carolina, Columbia, South Carolina 29208 (E.L.C.)
| | - Erin L Connolly
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132 (N.S.);United States Department of Agriculture-Agricultural Research Service, Donald Danforth Plant Science Center, St. Louis, Missouri 63132 (G.Z., I.B.);Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907 (B.P.D.);Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina 29631 (Z.B., R.B., S.K.); andDepartment of Biological Sciences, University of South Carolina, Columbia, South Carolina 29208 (E.L.C.)
| | - Stephen Kresovich
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132 (N.S.);United States Department of Agriculture-Agricultural Research Service, Donald Danforth Plant Science Center, St. Louis, Missouri 63132 (G.Z., I.B.);Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907 (B.P.D.);Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina 29631 (Z.B., R.B., S.K.); andDepartment of Biological Sciences, University of South Carolina, Columbia, South Carolina 29208 (E.L.C.)
| | - Ivan Baxter
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132 (N.S.);United States Department of Agriculture-Agricultural Research Service, Donald Danforth Plant Science Center, St. Louis, Missouri 63132 (G.Z., I.B.);Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907 (B.P.D.);Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina 29631 (Z.B., R.B., S.K.); andDepartment of Biological Sciences, University of South Carolina, Columbia, South Carolina 29208 (E.L.C.)
| |
Collapse
|
20
|
Chen X, Yuan L, Ludewig U. Natural Genetic Variation of Seed Micronutrients of Arabidopsis thaliana Grown in Zinc-Deficient and Zinc-Amended Soil. FRONTIERS IN PLANT SCIENCE 2016; 7:1070. [PMID: 27507976 PMCID: PMC4960235 DOI: 10.3389/fpls.2016.01070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 07/07/2016] [Indexed: 05/03/2023]
Abstract
The quality of edible seeds for human and animal nutrition is crucially dependent on high zinc (Zn) and iron (Fe) seed concentrations. The micronutrient bioavailability is strongly reduced by seed phytate that forms complexes with seed cations. Superior genotypes with increased seed Zn concentrations had been identified, but low micronutrient seed levels often prevail when the plants are grown in Zn-deficient soils, which are globally widespread and correlate with human Zn-deficiency. Here, seed Zn concentrations of Arabidopsis accessions grown in Zn-deficient and Zn-amended conditions were measured together with seed Fe and manganese (Mn), in a panel of 108 accessions. By applying genome-wide association, de novo candidate genes potentially involved in the seed micronutrient accumulation were identified. However, a candidate inositol 1,3,4-trisphosphate 5/6-kinase 3 gene (ITPK3), located close to a significant nucleotide polymorphism associated with relative Zn seed concentrations, was dispensable for seed micronutrients accumulation in Col-0. Loss of this gene in itpk3-1 did neither affect phytate seed levels, nor seed Zn, Fe, and Mn. It is concluded that large natural variance of micronutrient seed levels is identified in the population and several accessions maintain high seed Zn despite growth in Zn-deficient conditions.
Collapse
Affiliation(s)
- Xiaochao Chen
- Institute of Crop Science, Nutritional Crop Physiology, University of Hohenheim, StuttgartGermany
| | - Lixing Yuan
- Key Laboratory of Plant-Soil Interaction, Ministry of Education, Center for Resources, Environment and Food Security, College Resources and Environmental Sciences, China Agricultural University, BeijingChina
| | - Uwe Ludewig
- Institute of Crop Science, Nutritional Crop Physiology, University of Hohenheim, StuttgartGermany
- *Correspondence: Uwe Ludewig,
| |
Collapse
|
21
|
Pii Y, Cesco S, Mimmo T. Shoot ionome to predict the synergism and antagonism between nutrients as affected by substrate and physiological status. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2015; 94:48-56. [PMID: 26004913 DOI: 10.1016/j.plaphy.2015.05.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 05/02/2015] [Indexed: 05/18/2023]
Abstract
The elemental composition of a tissue or organism is defined as ionome. However, the combined effects on the shoot ionome determined by the taxonomic character, the nutrient status and different substrates have not been investigated. This study tests the hypothesis that phylogenetic variation of monocots and dicots grown in iron deficiency can be distinguished by the shoot ionome. We analyzed 18 elements in barley, cucumber and tomato and in two substrates (hydroponic vs soil) with different nutritional regimes. Multivariate analysis evidenced a clear separation between the species. In hydroponic conditions the main drivers separating the species are non essential-nutrients as Ti, Al, Na and Li, which were positively correlated with macro- (P, K) and micronutrients (Fe, Zn, Mo, B). The separation between species is confirmed when plants are grown on soil, but the distribution is determined especially by macronutrients (S, P, K, Ca, Mg) and micronutrients (B). A number of macro (Mg, Ca, S, P, K) and micronutrients (Fe, Mn, Zn, Cu, Mo, B) contribute to plant growth and several other important physiological and metabolic plant activities. The results reported here confirmed that the synergism and antagonism between them and other non-essential elements (Ti, Al, Si, Na) define the plant taxonomic character. The ionome profile might thus be exploited as a tool for the diagnosis of plants physiological/nutritional status but also in defining biofortification strategies to optimize both mineral enrichment of staple food crops and the nutrient input as fertilizers.
Collapse
Affiliation(s)
- Youry Pii
- Faculty of Science and Technology, Free University of Bolzano, I-39100 Bolzano, Italy.
| | - Stefano Cesco
- Faculty of Science and Technology, Free University of Bolzano, I-39100 Bolzano, Italy
| | - Tanja Mimmo
- Faculty of Science and Technology, Free University of Bolzano, I-39100 Bolzano, Italy
| |
Collapse
|
22
|
Gu R, Chen F, Liu B, Wang X, Liu J, Li P, Pan Q, Pace J, Soomro AA, Lübberstedt T, Mi G, Yuan L. Comprehensive phenotypic analysis and quantitative trait locus identification for grain mineral concentration, content, and yield in maize (Zea mays L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2015; 128:1777-89. [PMID: 26058362 DOI: 10.1007/s00122-015-2546-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 05/22/2015] [Indexed: 05/07/2023]
Abstract
Understanding the correlations of seven minerals for concentration, content and yield in maize grain, and exploring their genetic basis will help breeders to develop high grain quality maize. Biofortification by enhanced mineral accumulation in grain through genetic improvement is an efficient way to solve global nutrient malnutrition, in which one key step is to detect the underlying quantitative trait loci (QTL). Herein, a maize recombinant inbred population (RIL) was field grown to maturity across four environments (two locations × two years). Phenotypic data for grain mineral concentration, content and yield were determined for copper (Cu), iron (Fe), manganese (Mn), zinc (Zn), magnesium (Mg), potassium (K) and phosphorus (P). Significant effects of genotype, location and year were observed for all investigated traits. The strongest location effects were found for Zn accumulation traits probably due to distinct soil Zn availabilities across locations. Heritability (H (2)) of different traits varied with higher H (2) (72-85 %) for mineral concentration and content, and lower (48-63 %) for mineral yield. Significant positive correlations for grain concentration were revealed between several minerals. QTL analysis revealed 28, 25, and 12 QTL for mineral concentration, content and yield, respectively; and identified 8 stable QTL across at least two environments. All these QTL were assigned into 12 distinct QTL clusters. A cluster at chromosome Bin 6.07/6.08 contained 6 QTL for kernel weight, mineral concentration (Mg) and content (Zn, K, Mg, P). Another cluster at Bin 4.05/4.06 contained a stable QTL for Mn concentration, which were previously identified in other maize and rice RIL populations. These results highlighted the phenotypic and genetic performance of grain mineral accumulation, and revealed two promising chromosomal regions for genetic improvement of grain biofortification in maize.
Collapse
Affiliation(s)
- Riliang Gu
- Key Lab of Plant-Soil Interaction, MOE, Center for Resources, Environment and Food Security, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Baxter I. Should we treat the ionome as a combination of individual elements, or should we be deriving novel combined traits? JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:2127-31. [PMID: 25711709 PMCID: PMC4986723 DOI: 10.1093/jxb/erv040] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 12/12/2014] [Accepted: 01/12/2015] [Indexed: 05/18/2023]
Abstract
It has been more than 10 years since the concept of the ionome, all of the mineral nutrients in a cell tissue or organism, was introduced. In the intervening years, ionomics, high throughput elemental profiling, has been used to analyse over 400,000 samples from at least 10 different organisms. There are now multiple published examples where an ionomics approach has been used to find genes of novel function, find lines or environments that produce foods with altered nutritional profiles, or define gene by environmental effects on elemental accumulation. In almost all of these studies, the ionome has been treated as a collection of independent elements, with the analysis repeated on each measured element. However, many elements share chemical properties, are known to interact with each other, or have been shown to have similar interactions with biological molecules. Accordingly, there is strong evidence from ionomic studies that the elements of the ionome do not behave independently and that combinations of elements should be treated as the phenotypes of interest. In this review, I will consider the evidence that we have for the interdependence of the ionome, some of its causes, methods for incorporating this interdependence into analyses and the benefits, drawbacks, and challenges of taking these approaches.
Collapse
Affiliation(s)
- Ivan Baxter
- United States Department of Agriculture-Agricultural Research Service Plant Genetics Research Unit, Donald Danforth Plant Science Center, St Louis, MO 63132, USA
| |
Collapse
|
24
|
Chu Q, Watanabe T, Sha Z, Osaki M, Shinano T. Interactions between Cs, Sr, and other nutrients and trace element accumulation in Amaranthus shoot in response to variety effect. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:2355-63. [PMID: 25660261 DOI: 10.1021/jf5058777] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Aiming at clarifying the interactions between Cs, Sr, and other mineral elements in the genus Amaranthus, this study adopted 33 different varieties of Amaranthus and investigated the concentrations of 23 mineral elements in shoots grown in the fields of Iino in Fukushima prefecture. Significant varietal effects were detected for all elements except Se, and degree of interspecies variation was highly element dependent. Among 23 elements, amaranths were less sensitive to the accumulation of Cs and Sr than most other mineral elements to the species level. There are six elements showing significant correlation with Cs, positive correlations between As, Rb, Al, Fe, Ni, and Cs, and negative correlation between Ba and Cs. Significant correlations between Ca, Mg, Mn, Zn, B, Ba, Cd, and Sr were detected, and all of the coefficients were positive. Cs and Sr did not present significant correlation, but they were both significantly correlated with Ba. By principal component analysis (PCA), the first and second principal components (PC1 and PC2) accounted for 23.2 and 20.3% of the total variance and associated with Cs and Sr, respectively. Both of the two species took up more Cs by promoting the influx of elements positively correlated with Cs into shoot, but at the same time, Amaranthus hypochondriacus (L.) Mapes 847 decreased the K and Ba uptake and Amaranthus powellii (S. Wats) subsp. Powellii inhibited the accumulation of Rb, Sr, and significantly correlated elements of Sr in shoot. This study is the first to pave the way for comprehension on ionome in amaranth shoot at the variety level. The results of this research provide the ionomic basis for implementing countermeasures in the field against the translocation of Cs (and potentially Sr) toward crops and food.
Collapse
Affiliation(s)
- Qingnan Chu
- Graduate School of Agriculture, Hokkaido University , Sapporo 062-8555, Japan
| | | | | | | | | |
Collapse
|
25
|
Deshmukh R, Sonah H, Patil G, Chen W, Prince S, Mutava R, Vuong T, Valliyodan B, Nguyen HT. Integrating omic approaches for abiotic stress tolerance in soybean. FRONTIERS IN PLANT SCIENCE 2014; 5:244. [PMID: 24917870 PMCID: PMC4042060 DOI: 10.3389/fpls.2014.00244] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 05/13/2014] [Indexed: 05/18/2023]
Abstract
Soybean production is greatly influenced by abiotic stresses imposed by environmental factors such as drought, water submergence, salt, and heavy metals. A thorough understanding of plant response to abiotic stress at the molecular level is a prerequisite for its effective management. The molecular mechanism of stress tolerance is complex and requires information at the omic level to understand it effectively. In this regard, enormous progress has been made in the omics field in the areas of genomics, transcriptomics, and proteomics. The emerging field of ionomics is also being employed for investigating abiotic stress tolerance in soybean. Omic approaches generate a huge amount of data, and adequate advancements in computational tools have been achieved for effective analysis. However, the integration of omic-scale information to address complex genetics and physiological questions is still a challenge. In this review, we have described advances in omic tools in the view of conventional and modern approaches being used to dissect abiotic stress tolerance in soybean. Emphasis was given to approaches such as quantitative trait loci (QTL) mapping, genome-wide association studies (GWAS), and genomic selection (GS). Comparative genomics and candidate gene approaches are also discussed considering identification of potential genomic loci, genes, and biochemical pathways involved in stress tolerance mechanism in soybean. This review also provides a comprehensive catalog of available online omic resources for soybean and its effective utilization. We have also addressed the significance of phenomics in the integrated approaches and recognized high-throughput multi-dimensional phenotyping as a major limiting factor for the improvement of abiotic stress tolerance in soybean.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Henry T. Nguyen
- National Center for Soybean Biotechnology and Division of Plant Sciences, University of MissouriColumbia, MO, USA
| |
Collapse
|
26
|
Greganova E, Steinmann M, Mäser P, Fankhauser N. In silico ionomics segregates parasitic from free-living eukaryotes. Genome Biol Evol 2014; 5:1902-9. [PMID: 24048281 PMCID: PMC3814192 DOI: 10.1093/gbe/evt134] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Ion transporters are fundamental to life. Due to their ancient origin and conservation in sequence, ion transporters are also particularly well suited for comparative genomics of distantly related species. Here, we perform genome-wide ion transporter profiling as a basis for comparative genomics of eukaryotes. From a given predicted proteome, we identify all bona fide ion channels, ion porters, and ion pumps. Concentrating on unicellular eukaryotes (n = 37), we demonstrate that clustering of species according to their repertoire of ion transporters segregates obligate endoparasites (n = 23) on the one hand, from free-living species and facultative parasites (n = 14) on the other hand. This surprising finding indicates strong convergent evolution of the parasites regarding the acquisition and homeostasis of inorganic ions. Random forest classification identifies transporters of ammonia, plus transporters of iron and other transition metals, as the most informative for distinguishing the obligate parasites. Thus, in silico ionomics further underscores the importance of iron in infection biology and suggests access to host sources of nitrogen and transition metals to be selective forces in the evolution of parasitism. This finding is in agreement with the phenomenon of iron withholding as a primordial antimicrobial strategy of infected mammals.
Collapse
Affiliation(s)
- Eva Greganova
- Swiss Tropical and Public Health Institute, Basel, Switzerland
| | | | | | | |
Collapse
|
27
|
Ostaszewska M, Juszczuk IM, Kołodziejek I, Rychter AM. Long-term sulphur starvation of Arabidopsis thaliana modifies mitochondrial ultrastructure and activity and changes tissue energy and redox status. JOURNAL OF PLANT PHYSIOLOGY 2014; 171:549-558. [PMID: 24655391 DOI: 10.1016/j.jplph.2013.12.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 12/12/2013] [Accepted: 12/16/2013] [Indexed: 06/03/2023]
Abstract
Sulphur, as a constituent of amino acids (cysteine and methionine), iron-sulphur clusters, proteins, membrane sulpholipids, glutathione, glucosinolates, coenzymes, and auxin precursors, is essential for plant growth and development. Absence or low sulphur concentration in the soil results in severe growth retardation. Arabidopsis thaliana plants grown hydroponically for nine weeks on Knop nutrient medium without sulphur showed morphological symptoms of sulphur deficiency. The purpose of our study was to investigate changes that mitochondria undergo and the role of the highly branched respiratory chain in survival during sulphur deficiency stress. Ultrastructure analysis of leaf mesophyll cells of sulphur-deficient Arabidopsis showed heterogeneity of mitochondria; some of them were not altered, but the majority had swollen morphology. Dilated mitochondria displayed a lower matrix density and fewer cristae compared to control mitochondria. Disintegration of the inner and outer membranes of some mitochondria from the leaves of sulphur-deficient plants was observed. On the contrary, chloroplast ultrastructure was not affected. Sulphur deficiency changed the respiratory activity of tissues and isolated mitochondria; Complex I and IV capacities and phosphorylation rates were lower, but external NAD(P)H dehydrogenase activity increased. Higher external NAD(P)H dehydrogenase activity corresponded to increased cell redox level with doubled NADH/NAD ratio in the leaf and root tissues. Sulphur deficiency modified energy status in the tissues of Arabidopsis plants. The total concentration of adenylates (expressed as ATP+ADP), measured in the light, was lower in the leaves and roots of sulphur-deficient plants than in the controls, which was mainly due to the severely decreased ATP levels. We show that the changes in mitochondrial ultrastructure are compensated by the modifications in respiratory chain activity. Although mitochondria of Arabidopsis tissues are affected by sulphur deficiency, their metabolic and structural features, which readily reach new homeostasis, make these organelles crucial for adaptation of plants to survive sulphur deficiency.
Collapse
Affiliation(s)
- Monika Ostaszewska
- Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Izabela M Juszczuk
- Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland.
| | - Izabella Kołodziejek
- Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Anna M Rychter
- Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| |
Collapse
|
28
|
Jeyasingh PD, Cothran RD, Tobler M. Testing the ecological consequences of evolutionary change using elements. Ecol Evol 2014; 4:528-38. [PMID: 24634736 PMCID: PMC3936398 DOI: 10.1002/ece3.950] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 12/02/2013] [Accepted: 12/06/2013] [Indexed: 12/27/2022] Open
Abstract
Understanding the ecological consequences of evolutionary change is a central challenge in contemporary biology. We propose a framework based on the ˜25 elements represented in biology, which can serve as a conduit for a general exploration of poorly understood evolution-to-ecology links. In this framework, known as ecological stoichiometry, the quantity of elements in the inorganic realm is a fundamental environment, while the flow of elements from the abiotic to the biotic realm is due to the action of genomes, with the unused elements excreted back into the inorganic realm affecting ecological processes at higher levels of organization. Ecological stoichiometry purposefully assumes distinct elemental composition of species, enabling powerful predictions about the ecological functions of species. However, this assumption results in a simplified view of the evolutionary mechanisms underlying diversification in the elemental composition of species. Recent research indicates substantial intraspecific variation in elemental composition and associated ecological functions such as nutrient excretion. We posit that attention to intraspecific variation in elemental composition will facilitate a synthesis of stoichiometric information in light of population genetics theory for a rigorous exploration of the ecological consequences of evolutionary change.
Collapse
Affiliation(s)
- Punidan D Jeyasingh
- Department of Zoology, Oklahoma State University Stillwater, Oklahoma, 74078
| | - Rickey D Cothran
- Department of Biological Sciences and Pymatuning Laboratory of Ecology, University of Pittsburgh Pittsburgh, Pennsylvania, 15260
| | - Michael Tobler
- Department of Zoology, Oklahoma State University Stillwater, Oklahoma, 74078
| |
Collapse
|
29
|
Sanchez DH. Physiological and biotechnological implications of transcript-level variation under abiotic stress. PLANT BIOLOGY (STUTTGART, GERMANY) 2013; 15:925-930. [PMID: 24033916 DOI: 10.1111/plb.12075] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 06/09/2013] [Indexed: 06/02/2023]
Abstract
The discovery of genes that can be used to increase plant tolerance to environmental stress has practical implications for agriculture, since knowledge at the molecular level can potentially be translated from model plants to crops or from tolerant to sensitive cultivars. For more than a decade, researchers have attempted to identify transcriptional and metabolic pathways involved in stress tolerance using functional genomics tools. In some cases, promising results were obtained when a clear causal link was found between transcripts and tolerance/sensitivity to stress. However, recent reports question the global translational power of functional genomics for biotechnological applications, as one of the main limitations seems to be the large variability in gene expression. Transcript-level variability under stress has not been considered of interest in the scientific literature because it is intuitively obvious, but most reports seem to naively overlook the consequences. Here, three case situations are reviewed (variability between genotypes, variability due to environmental interactions and variability between stressors) in support of the concept that inherent transcript-level variation in biological systems may limit our knowledge of environmental plant tolerance and of functional genomics in molecular stress physiology.
Collapse
Affiliation(s)
- D H Sanchez
- Laboratory of Plant Genetics-Sciences III, University of Geneva, Geneva, Switzerland
| |
Collapse
|
30
|
Carvalho SM, Vasconcelos MW. Producing more with less: Strategies and novel technologies for plant-based food biofortification. Food Res Int 2013. [DOI: 10.1016/j.foodres.2012.12.021] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
31
|
McDowell SC, Akmakjian G, Sladek C, Mendoza-Cozatl D, Morrissey JB, Saini N, Mittler R, Baxter I, Salt DE, Ward JM, Schroeder JI, Guerinot ML, Harper JF. Elemental concentrations in the seed of mutants and natural variants of Arabidopsis thaliana grown under varying soil conditions. PLoS One 2013; 8:e63014. [PMID: 23671651 PMCID: PMC3646034 DOI: 10.1371/journal.pone.0063014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Accepted: 03/27/2013] [Indexed: 01/11/2023] Open
Abstract
The concentrations of mineral nutrients in seeds are critical to both the life cycle of plants as well as human nutrition. These concentrations are strongly influenced by soil conditions, as shown here by quantifying the concentration of 14 elements in seeds from Arabidopsis thaliana plants grown under four different soil conditions: standard, or modified with NaCl, heavy metals, or alkali. Each of the modified soils resulted in a unique change to the seed ionome (the mineral nutrient content of the seeds). To help identify the genetic networks regulating the seed ionome, changes in elemental concentrations were evaluated using mutants corresponding to 760 genes as well as 10 naturally occurring accessions. The frequency of ionomic phenotypes supports an estimate that as much as 11% of the A. thaliana genome encodes proteins of functional relevance to ion homeostasis in seeds. A subset of mutants were analyzed with two independent alleles, providing five examples of genes important for regulation of the seed ionome: SOS2, ABH1, CCC, At3g14280 and CNGC2. In a comparison of nine different accessions to a Col-0 reference, eight accessions were observed to have reproducible differences in elemental concentrations, seven of which were dependent on specific soil conditions. These results indicate that the A. thaliana seed ionome is distinct from the vegetative ionome, and that elemental analysis is a sensitive approach to identify genes controlling ion homeostasis, including those that regulate gene expression, phospho-regulation, and ion transport.
Collapse
Affiliation(s)
- Stephen C McDowell
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada, United States of America
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Kellermeier F, Chardon F, Amtmann A. Natural variation of Arabidopsis root architecture reveals complementing adaptive strategies to potassium starvation. PLANT PHYSIOLOGY 2013; 161:1421-32. [PMID: 23329148 PMCID: PMC3585606 DOI: 10.1104/pp.112.211144] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Root architecture is a highly plastic and environmentally responsive trait that enables plants to counteract nutrient scarcities with different foraging strategies. In potassium (K) deficiency (low K), seedlings of the Arabidopsis (Arabidopsis thaliana) reference accession Columbia (Col-0) show a strong reduction of lateral root elongation. To date, it is not clear whether this is a direct consequence of the lack of K as an osmoticum or a triggered response to maintain the growth of other organs under limiting conditions. In this study, we made use of natural variation within Arabidopsis to look for novel root architectural responses to low K. A comprehensive set of 14 differentially responding root parameters were quantified in K-starved and K-replete plants. We identified a phenotypic gradient that links two extreme strategies of morphological adaptation to low K arising from a major tradeoff between main root (MR) and lateral root elongation. Accessions adopting strategy I (e.g. Col-0) maintained MR growth but compromised lateral root elongation, whereas strategy II genotypes (e.g. Catania-1) arrested MR elongation in favor of lateral branching. K resupply and histochemical staining resolved the temporal and spatial patterns of these responses. Quantitative trait locus analysis of K-dependent root architectures within a Col-0 × Catania-1 recombinant inbred line population identified several loci each of which determined a particular subset of root architectural parameters. Our results indicate the existence of genomic hubs in the coordinated control of root growth in stress conditions and provide resources to facilitate the identification of the underlying genes.
Collapse
|
33
|
Roy SJ, Huang W, Wang XJ, Evrard A, Schmöckel SM, Zafar ZU, Tester M. A novel protein kinase involved in Na(+) exclusion revealed from positional cloning. PLANT, CELL & ENVIRONMENT 2013; 36:553-68. [PMID: 22897323 DOI: 10.1111/j.1365-3040.2012.02595.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Salinity is a major abiotic stress which affects crop plants around the world, resulting in substantial loss of yield and millions of dollars of lost revenue. High levels of Na(+) in shoot tissue have many adverse effects and, crucially, yield in cereals is commonly inversely proportional to the extent of shoot Na(+) accumulation. We therefore need to identify genes, resistant plant cultivars and cellular processes that are involved in salinity tolerance, with the goal of introducing these factors into commercially available crops. Through the use of an Arabidopsis thaliana mapping population, we have identified a highly significant quantitative trait locus (QTL) linked to Na(+) exclusion. Fine mapping of this QTL identified a protein kinase (AtCIPK16), related to AtSOS2, that was significantly up-regulated under salt stress. Greater Na(+) exclusion was associated with significantly higher root expression of AtCIPK16, which is due to differences in the gene's promoter. Constitutive overexpression of the gene in Arabidopsis leads to plants with significant reduction in shoot Na(+) and greater salinity tolerance. amiRNA knock-downs of AtCIPK16 in Arabidopsis show a negative correlation between the expression levels of the gene and the amount of shoot Na(+) . Transgenic barley lines overexpressing AtCIPK16 show increased salinity tolerance.
Collapse
Affiliation(s)
- S J Roy
- Australian Centre for Plant Functional Genomics and the University of Adelaide, PMB 1, Glen Osmond, SA 5064, Australia.
| | | | | | | | | | | | | |
Collapse
|
34
|
Satismruti K, Senthil N, Vellaikumar S, Ranjani RV, Raveendran M. Plant Ionomics: A Platform for Identifying Novel Gene Regulating Plant Mineral Nutrition. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/ajps.2013.47162] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
35
|
Abstract
Plant tissue analysis is a valuable tool for evaluating the nutritional status and quality of crops and is widely used for scientific and commercial purposes. The majority of plant analyzes are now performed by techniques based on ICP spectrometry such as inductively coupled plasma-optical emission spectroscopy (ICP-OES) or ICP-mass spectrometry (ICP-MS). These techniques enable fast and accurate measurements of multielement profiles when combined with appropriate methods for sample preparation and digestion. This chapter presents state-of-the-art methods for digestion of plant tissues and subsequent analysis of their multielement composition by ICP spectrometry. Details on upcoming techniques, expected to gain importance within the field of multielement plant tissue analysis over the coming years, are also provided. Finally, attention is given to laser ablation ICP-MS (LA-ICP-MS) for multielement bioimaging of plant tissues. The presentation of the methods covers instructions on all steps from sampling and sample preparation to data interpretation.
Collapse
|
36
|
Abstract
Ionomics is the study of the elemental composition of biological tissues. It complements knowledge acquired by metabolomics, proteomics, bioinformatics, and genomics in elucidating the physiological status of plants as well as the identification of genes involved in the transport and metabolism of individual elements and their interactions. Inductively coupled plasma-mass spectrometry (ICP-MS) technology provides a very sensitive method for the medium- and high-throughput elemental analysis of plant tissues. This chapter introduces the plant physiologist to the ICP-MS technique, a method for sample preparation and analysis.
Collapse
|
37
|
Pineau C, Loubet S, Lefoulon C, Chalies C, Fizames C, Lacombe B, Ferrand M, Loudet O, Berthomieu P, Richard O. Natural variation at the FRD3 MATE transporter locus reveals cross-talk between Fe homeostasis and Zn tolerance in Arabidopsis thaliana. PLoS Genet 2012; 8:e1003120. [PMID: 23236296 PMCID: PMC3516540 DOI: 10.1371/journal.pgen.1003120] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Accepted: 10/12/2012] [Indexed: 12/03/2022] Open
Abstract
Zinc (Zn) is essential for the optimal growth of plants but is toxic if present in excess, so Zn homeostasis needs to be finely tuned. Understanding Zn homeostasis mechanisms in plants will help in the development of innovative approaches for the phytoremediation of Zn-contaminated sites. In this study, Zn tolerance quantitative trait loci (QTL) were identified by analyzing differences in the Bay-0 and Shahdara accessions of Arabidopsis thaliana. Fine-scale mapping showed that a variant of the Fe homeostasis-related FERRIC REDUCTASE DEFECTIVE3 (FRD3) gene, which encodes a multidrug and toxin efflux (MATE) transporter, is responsible for reduced Zn tolerance in A. thaliana. Allelic variation in FRD3 revealed which amino acids are necessary for FRD3 function. In addition, the results of allele-specific expression assays in F1 individuals provide evidence for the existence of at least one putative metal-responsive cis-regulatory element. Our results suggest that FRD3 works as a multimer and is involved in loading Zn into xylem. Cross-homeostasis between Fe and Zn therefore appears to be important for Zn tolerance in A. thaliana with FRD3 acting as an essential regulator. Plants are adapted to soils in which the amounts of different nutrients vary widely, like Zn-deficient or Zn-contaminated soils. Exploring the molecular bases of plant adaptation to Zn-contaminated soils is important in determining strategies for phytoremediation. Here, we describe the mapping and characterization of a QTL for Zn tolerance in A. thaliana that underlies the natural variation of the root response to excess Zn. This physiological variation is controlled by different alleles of the AtFRD3 gene, which codes for a citrate transporter that uploads citrate into the xylem sap, hence playing a role in Fe homeostasis. In the Zn-sensitive accession Shahdara, the expression of AtFRD3 is drastically reduced and the protein encoded is unable to efflux citrate in vitro. Less Fe and Zn are found in Shahdara root exudates, and less Fe and Zn are translocated from root to shoot when Zn is in excess. We deduce that a fine-tuned Fe and Zn homeostasis is crucial for Zn tolerance in A. thaliana. Finally, as a range of alleles were identified, some rare, it was possible to define a sequence motif that is a putative metal-responsive cis-element and demonstrate that two amino acids are essential for the function of the FRD3 transporter.
Collapse
Affiliation(s)
- Christophe Pineau
- CNRS-INRA-MontpellierSupAgro-UM2, UMR Biochimie et Physiologie Moléculaire des Plantes, Montpellier, France
| | - Stéphanie Loubet
- CNRS-INRA-MontpellierSupAgro-UM2, UMR Biochimie et Physiologie Moléculaire des Plantes, Montpellier, France
| | - Cécile Lefoulon
- CNRS-INRA-MontpellierSupAgro-UM2, UMR Biochimie et Physiologie Moléculaire des Plantes, Montpellier, France
| | - Claude Chalies
- CNRS-INRA-MontpellierSupAgro-UM2, UMR Biochimie et Physiologie Moléculaire des Plantes, Montpellier, France
| | - Cécile Fizames
- CNRS-INRA-MontpellierSupAgro-UM2, UMR Biochimie et Physiologie Moléculaire des Plantes, Montpellier, France
| | - Benoit Lacombe
- CNRS-INRA-MontpellierSupAgro-UM2, UMR Biochimie et Physiologie Moléculaire des Plantes, Montpellier, France
| | - Marina Ferrand
- INRA, UMR1318, Institut Jean-Pierre Bourgin, Versailles, France
| | - Olivier Loudet
- INRA, UMR1318, Institut Jean-Pierre Bourgin, Versailles, France
| | - Pierre Berthomieu
- CNRS-INRA-MontpellierSupAgro-UM2, UMR Biochimie et Physiologie Moléculaire des Plantes, Montpellier, France
| | - Odile Richard
- CNRS-INRA-MontpellierSupAgro-UM2, UMR Biochimie et Physiologie Moléculaire des Plantes, Montpellier, France
- * E-mail:
| |
Collapse
|
38
|
Abstract
Most mineral elements found in plant tissues come exclusively from the soil, necessitating that plants adapt to highly variable soil compositions to survive and thrive. Profiling element concentrations in genetically diverse plant populations is providing insights into the plant-environment interactions that control elemental accumulation, as well as identifying the underlying genes. The resulting molecular understanding of plant adaptation to the environment both demonstrates how soils can shape genetic diversity and provides solutions to important agricultural challenges.
Collapse
Affiliation(s)
- Ivan Baxter
- U.S. Department of Agriculture-Agricultural Research Service, Plant Genetics Research Unit, Donald Danforth Plant Science Center, St. Louis, MO 63132, USA.
| | | |
Collapse
|
39
|
Kazmi RH, Khan N, Willems LAJ, VAN Heusden AW, Ligterink W, Hilhorst HWM. Complex genetics controls natural variation among seed quality phenotypes in a recombinant inbred population of an interspecific cross between Solanum lycopersicum × Solanum pimpinellifolium. PLANT, CELL & ENVIRONMENT 2012; 35:929-51. [PMID: 22074055 DOI: 10.1111/j.1365-3040.2011.02463.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Seed quality in tomato is associated with many complex physiological and genetic traits. While plant processes are frequently controlled by the action of small- to large-effect genes that follow classic Mendelian inheritance, our study suggests that seed quality is primarily quantitative and genetically complex. Using a recombinant inbred line population of Solanum lycopersicum × Solanum pimpinellifolium, we identified quantitative trait loci (QTLs) influencing seed quality phenotypes under non-stress, as well as salt, osmotic, cold, high-temperature and oxidative stress conditions. In total, 42 seed quality traits were analysed and 120 QTLs were identified for germination traits under different conditions. Significant phenotypic correlations were observed between germination traits under optimal conditions, as well as under different stress conditions. In conclusion, one or more QTLs were identified for each trait with some of these QTLs co-locating. Co-location of QTLs for different traits can be an indication that a locus has pleiotropic effects on multiple traits due to a common mechanistic basis. However, several QTLs also dissected seed quality in its separate components, suggesting different physiological mechanisms and signalling pathways for different seed quality attributes.
Collapse
Affiliation(s)
- Rashid H Kazmi
- Wageningen Seed Lab, Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, NL-6708 PB Wageningen, the Netherlands
| | | | | | | | | | | |
Collapse
|
40
|
Baxter I, Hermans C, Lahner B, Yakubova E, Tikhonova M, Verbruggen N, Chao DY, Salt DE. Biodiversity of mineral nutrient and trace element accumulation in Arabidopsis thaliana. PLoS One 2012; 7:e35121. [PMID: 22558123 PMCID: PMC3338729 DOI: 10.1371/journal.pone.0035121] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 03/13/2012] [Indexed: 11/19/2022] Open
Abstract
In order to grow on soils that vary widely in chemical composition, plants have evolved mechanisms for regulating the elemental composition of their tissues to balance the mineral nutrient and trace element bioavailability in the soil with the requirements of the plant for growth and development. The biodiversity that exists within a species can be utilized to investigate how regulatory mechanisms of individual elements interact and to identify genes important for these processes. We analyzed the elemental composition (ionome) of a set of 96 wild accessions of the genetic model plant Arabidopsis thaliana grown in hydroponic culture and soil using inductively coupled plasma mass spectrometry (ICP-MS). The concentrations of 17-19 elements were analyzed in roots and leaves from plants grown hydroponically, and leaves and seeds from plants grown in artificial soil. Significant genetic effects were detected for almost every element analyzed. We observed very few correlations between the elemental composition of the leaves and either the roots or seeds. There were many pairs of elements that were significantly correlated with each other within a tissue, but almost none of these pairs were consistently correlated across tissues and growth conditions, a phenomenon observed in several previous studies. These results suggest that the ionome of a plant tissue is variable, yet tightly controlled by genes and gene × environment interactions. The dataset provides a valuable resource for mapping studies to identify genes regulating elemental accumulation. All of the ionomic data is available at www.ionomicshub.org.
Collapse
Affiliation(s)
- Ivan Baxter
- Agricultural Research Service Plant Genetics Research Unit, Donald Danforth Plant Science Center, United States Department of Agriculture, St. Louis, Missouri, United States of America.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Conn SJ, Berninger P, Broadley MR, Gilliham M. Exploiting natural variation to uncover candidate genes that control element accumulation in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2012; 193:859-66. [PMID: 22403822 DOI: 10.1111/j.1469-8137.2011.03977.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The plant ionome varies both inter- and intraspecifically despite the highly conserved roles for particular elements across the plant kingdom. Element storage requires transport across the plasma membrane and commonly deposition within the central vacuole. Therefore, tonoplast transport characteristics can be highly influential in controlling the plant ionome. As a result, individual cell types of the same plant, each with unique transcriptomes and vacuolar proteomes, can display very different elemental profiles. Here we address the use of natural variation in Arabidopsis thaliana for identifying genes involved in elemental accumulation. We present a conceptual framework, exploiting publicly available leaf ionomic and transcriptomic data across 31 Arabidopsis accessions, that promises to accelerate conventional forward genetics approaches for candidate gene discovery. Utilizing this framework, we identify numerous genes with documented roles in accumulation of calcium, magnesium and zinc and implicate additional candidate genes. Where appropriate, we discuss their role in cell-specific elemental accumulation. Currently, this framework could represent an alternate approach for identifying genes suitable for element biofortification of plants. Integration of additional cell-specific and whole-plant 'omics' datasets across Arabidopsis accessions under diverse environmental conditions should enable this concept to be developed into a scalable and robust tool for linking genotype and phenotype.
Collapse
Affiliation(s)
- Simon J Conn
- European Molecular Biology Laboratory, Grenoble Outstation, 38042 Grenoble, France.
| | | | | | | |
Collapse
|
42
|
Protein fractionation and detection for metalloproteomics: challenges and approaches. Anal Bioanal Chem 2012; 402:3311-22. [DOI: 10.1007/s00216-012-5743-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Revised: 01/09/2012] [Accepted: 01/12/2012] [Indexed: 12/17/2022]
|
43
|
McCouch SR, McNally KL, Wang W, Sackville Hamilton R. Genomics of gene banks: A case study in rice. AMERICAN JOURNAL OF BOTANY 2012; 99:407-23. [PMID: 22314574 DOI: 10.3732/ajb.1100385] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Only a small fraction of the naturally occurring genetic diversity available in the world's germplasm repositories has been explored to date, but this is expected to change with the advent of affordable, high-throughput genotyping and sequencing technology. It is now possible to examine genome-wide patterns of natural variation and link sequence polymorphisms with downstream phenotypic consequences. In this paper, we discuss how dramatic changes in the cost and efficiency of sequencing and genotyping are revolutionizing the way gene bank scientists approach the responsibilities of their job. Sequencing technology provides a set of tools that can be used to enhance the quality, efficiency, and cost-effectiveness of gene bank operations, the depth of scientific knowledge of gene bank holdings, and the level of public interest in natural variation. As a result, gene banks have the chance to take on new life. Previously seen as "warehouses" where seeds were diligently maintained, but evolutionarily frozen in time, gene banks could transform into vibrant research centers that actively investigate the genetic potential of their holdings. In this paper, we will discuss how genotyping and sequencing can be integrated into the activities of a modern gene bank to revolutionize the way scientists document the genetic identity of their accessions; track seed lots, varieties, and alleles; identify duplicates; and rationalize active collections, and how the availability of genomics data are likely to motivate innovative collaborations with the larger research and breeding communities to engage in systematic and rigorous phenotyping and multilocation evaluation of the genetic resources in gene banks around the world. The objective is to understand and eventually predict how variation at the DNA level helps determine the phenotypic potential of an individual or population. Leadership and vision are needed to coordinate the characterization of collections and to integrate genotypic and phenotypic information in ways that will illuminate the value of these resources. Genotyping of collections represents a powerful starting point that will enable gene banks to become more effective as stewards of crop biodiversity.
Collapse
Affiliation(s)
- Susan R McCouch
- Department of Plant Breeding and Genetics, Cornell University, Ithaca, NewYork 14853-1901, USA.
| | | | | | | |
Collapse
|
44
|
Lowry DB, Sheng CC, Zhu Z, Juenger TE, Lahner B, Salt DE, Willis JH. Mapping of ionomic traits in Mimulus guttatus reveals Mo and Cd QTLs that colocalize with MOT1 homologues. PLoS One 2012; 7:e30730. [PMID: 22292026 PMCID: PMC3265502 DOI: 10.1371/journal.pone.0030730] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Accepted: 12/27/2011] [Indexed: 12/18/2022] Open
Abstract
Natural variation in the regulation of the accumulation of mineral nutrients and trace elements in plant tissues is crucial to plant metabolism, development, and survival across different habitats. Studies of the genetic basis of natural variation in nutrient metabolism have been facilitated by the development of ionomics. Ionomics is a functional genomic approach for the identification of the genes and gene networks that regulate the elemental composition, or ionome, of an organism. In this study, we evaluated the genetic basis of divergence in elemental composition between an inland annual and a coastal perennial accession of Mimulus guttatus using a recombinant inbred line (RIL) mapping population. Out of 20 elements evaluated, Mo and Cd were the most divergent in accumulation between the two accessions and were highly genetically correlated in the RILs across two replicated experiments. We discovered two major quantitative trait loci (QTL) for Mo accumulation, the largest of which consistently colocalized with a QTL for Cd accumulation. Interestingly, both Mo QTLs also colocalized with the two M. guttatus homologues of MOT1, the only known plant transporter to be involved in natural variation in molybdate uptake.
Collapse
Affiliation(s)
- David B Lowry
- University Program in Genetics and Genomics, Duke University Medical Center, Durham, North Carolina, United States of America.
| | | | | | | | | | | | | |
Collapse
|
45
|
Stein RJ, Waters BM. Use of natural variation reveals core genes in the transcriptome of iron-deficient Arabidopsis thaliana roots. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:1039-55. [PMID: 22039296 PMCID: PMC3254695 DOI: 10.1093/jxb/err343] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Iron (Fe) is an essential mineral micronutrient for plants and animals. Plants respond to Fe deficiency by increasing root uptake capacity. Identification of gene networks for Fe uptake and homeostasis could result in improved crop growth and nutritional value. Previous studies have used microarrays to identify a large number of genes regulated by Fe deficiency in roots of three Arabidopsis ecotypes. However, a large proportion of these genes may be involved in secondary or genotype-influenced responses rather than in a universal role in Fe uptake or homeostasis. Here we show that a small percentage of the Fe deficiency transcriptome of two contrasting ecotypes, Kas-1 and Tsu-1, was shared with other ecotypes. Kas-1 and Tsu-1 had different timing and magnitude of ferric reductase activity upon Fe withdrawal, and different categories of overrepresented Fe-regulated genes. To gain insights into universal responses of Arabidopsis to Fe deficiency, the Kas-1 and Tsu-1 transcriptomes were compared with those of Col-0, Ler, and C24. In early Fe deficiency (24-48 h), no Fe-downregulated genes and only 10 upregulated genes were found in all ecotypes, and only 20 Fe-downregulated and 58 upregulated genes were found in at least three of the five ecotypes. Supernode gene networks were constructed to visualize conserved Fe homeostasis responses. Contrasting gene expression highlighted different responses to Fe deficiency between ecotypes. This study demonstrates the use of natural variation to identify central Fe-deficiency-regulated genes in plants, and identified genes with potential new roles in signalling during Fe deficiency.
Collapse
|
46
|
Mendoza-Cózatl DG, Jobe TO, Hauser F, Schroeder JI. Long-distance transport, vacuolar sequestration, tolerance, and transcriptional responses induced by cadmium and arsenic. CURRENT OPINION IN PLANT BIOLOGY 2011; 14:554-62. [PMID: 21820943 PMCID: PMC3191310 DOI: 10.1016/j.pbi.2011.07.004] [Citation(s) in RCA: 248] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Revised: 07/07/2011] [Accepted: 07/11/2011] [Indexed: 05/18/2023]
Abstract
Iron, zinc, copper and manganese are essential metals for cellular enzyme functions while cadmium, mercury and the metalloid arsenic lack any biological function. Both, essential metals, at high concentrations, and non-essential metals and metalloids are extremely reactive and toxic. Therefore, plants have acquired specialized mechanisms to sense, transport and maintain essential metals within physiological concentrations and to detoxify non-essential metals and metalloids. This review focuses on the recent identification of transporters that sequester cadmium and arsenic in vacuoles and the mechanisms mediating the partitioning of these metal(loid)s between roots and shoots. We further discuss recent models of phloem-mediated long-distance transport, seed accumulation of Cd and As and recent data demonstrating that plants posses a defined transcriptional response that allow plants to preserve metal homeostasis. This research is instrumental for future engineering of reduced toxic metal(loid) accumulation in edible crop tissues as well as for improved phytoremediation technologies.
Collapse
Affiliation(s)
| | | | | | - Julian I. Schroeder
- Corresponding author, Julian I. Schroeder, Ph D, University of California, San Diego, Division of Biological Sciences, 9500 Gilman Drive, La Jolla, CA 92093-0116, USA., +1 858 534-7759 (phone), +1 858 534-7108 (fax),
| |
Collapse
|
47
|
Lung'aho MG, Mwaniki AM, Szalma SJ, Hart JJ, Rutzke MA, Kochian LV, Glahn RP, Hoekenga OA. Genetic and physiological analysis of iron biofortification in maize kernels. PLoS One 2011; 6:e20429. [PMID: 21687662 PMCID: PMC3110754 DOI: 10.1371/journal.pone.0020429] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2011] [Accepted: 04/20/2011] [Indexed: 11/29/2022] Open
Abstract
Background Maize is a major cereal crop widely consumed in developing countries, which have a high prevalence of iron (Fe) deficiency anemia. The major cause of Fe deficiency in these countries is inadequate intake of bioavailable Fe, where poverty is a major factor. Therefore, biofortification of maize by increasing Fe concentration and or bioavailability has great potential to alleviate this deficiency. Maize is also a model system for genomic research and thus allows the opportunity for gene discovery. Here we describe an integrated genetic and physiological analysis of Fe nutrition in maize kernels, to identify loci that influence grain Fe concentration and bioavailability. Methodology Quantitative trait locus (QTL) analysis was used to dissect grain Fe concentration (FeGC) and Fe bioavailability (FeGB) from the Intermated B73 × Mo17 (IBM) recombinant inbred (RI) population. FeGC was determined by ion coupled argon plasma emission spectroscopy (ICP). FeGB was determined by an in vitro digestion/Caco-2 cell line bioassay. Conclusions Three modest QTL for FeGC were detected, in spite of high heritability. This suggests that FeGC is controlled by many small QTL, which may make it a challenging trait to improve by marker assisted breeding. Ten QTL for FeGB were identified and explained 54% of the variance observed in samples from a single year/location. Three of the largest FeGB QTL were isolated in sister derived lines and their effect was observed in three subsequent seasons in New York. Single season evaluations were also made at six other sites around North America, suggesting the enhancement of FeGB was not specific to our farm site. FeGB was not correlated with FeGC or phytic acid, suggesting that novel regulators of Fe nutrition are responsible for the differences observed. Our results indicate that iron biofortification of maize grain is achievable using specialized phenotyping tools and conventional plant breeding techniques.
Collapse
Affiliation(s)
- Mercy G. Lung'aho
- USDA-ARS, Robert W. Holley Center for Agriculture and Health, Cornell University, Ithaca, New York, United States of America
- Department of Food Science, Cornell University, Ithaca, New York, United States of America
| | - Angela M. Mwaniki
- USDA-ARS, Robert W. Holley Center for Agriculture and Health, Cornell University, Ithaca, New York, United States of America
- Department of Food Science, Cornell University, Ithaca, New York, United States of America
| | - Stephen J. Szalma
- USDA-ARS, Plant Science Research Unit, Raleigh, North Carolina, United States of America
| | - Jonathan J. Hart
- USDA-ARS, Robert W. Holley Center for Agriculture and Health, Cornell University, Ithaca, New York, United States of America
| | - Michael A. Rutzke
- USDA-ARS, Robert W. Holley Center for Agriculture and Health, Cornell University, Ithaca, New York, United States of America
| | - Leon V. Kochian
- USDA-ARS, Robert W. Holley Center for Agriculture and Health, Cornell University, Ithaca, New York, United States of America
| | - Raymond P. Glahn
- USDA-ARS, Robert W. Holley Center for Agriculture and Health, Cornell University, Ithaca, New York, United States of America
| | - Owen A. Hoekenga
- USDA-ARS, Robert W. Holley Center for Agriculture and Health, Cornell University, Ithaca, New York, United States of America
- * E-mail:
| |
Collapse
|
48
|
Trontin C, Tisné S, Bach L, Loudet O. What does Arabidopsis natural variation teach us (and does not teach us) about adaptation in plants? CURRENT OPINION IN PLANT BIOLOGY 2011; 14:225-31. [PMID: 21536479 DOI: 10.1016/j.pbi.2011.03.024] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Revised: 03/29/2011] [Accepted: 03/31/2011] [Indexed: 05/10/2023]
Abstract
Sessile organisms such as plants have to develop adaptive responses to face environmental change. In Arabidopsis thaliana populations, natural variation for stress responses have been observed at different levels of integration and the genetic bases of those variations have been analysed using two strategies: classical linkage and association (LD) mapping. The strength of Arabidopsis resides in the huge amount of genomic data and molecular tools available leading to the identification of many polymorphisms responsible for phenotypic variation. Remaining limitations to clearly understand how Arabidopsis adapts to its environment, that is the complexity of the genetic architecture and the lack of ecological data, should be partially solved thanks to the development of new methods and the acquisition of new data.
Collapse
Affiliation(s)
- Charlotte Trontin
- Institut Jean-Pierre Bourgin, UMR1318/INRA-AgroParisTech, Versailles, France
| | | | | | | |
Collapse
|
49
|
Chao DY, Gable K, Chen M, Baxter I, Dietrich CR, Cahoon EB, Guerinot ML, Lahner B, Lü S, Markham JE, Morrissey J, Han G, Gupta SD, Harmon JM, Jaworski JG, Dunn TM, Salt DE. Sphingolipids in the root play an important role in regulating the leaf ionome in Arabidopsis thaliana. THE PLANT CELL 2011; 23:1061-81. [PMID: 21421810 PMCID: PMC3082254 DOI: 10.1105/tpc.110.079095] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Revised: 01/19/2011] [Accepted: 02/14/2011] [Indexed: 05/18/2023]
Abstract
Sphingolipid synthesis is initiated by condensation of Ser with palmitoyl-CoA producing 3-ketodihydrosphinganine (3-KDS), which is reduced by a 3-KDS reductase to dihydrosphinganine. Ser palmitoyltransferase is essential for plant viability. Arabidopsis thaliana contains two genes (At3g06060/TSC10A and At5g19200/TSC10B) encoding proteins with significant similarity to the yeast 3-KDS reductase, Tsc10p. Heterologous expression in yeast of either Arabidopsis gene restored 3-KDS reductase activity to the yeast tsc10Δ mutant, confirming both as bona fide 3-KDS reductase genes. Consistent with sphingolipids having essential functions in plants, double mutant progeny lacking both genes were not recovered from crosses of single tsc10A and tsc10B mutants. Although the 3-KDS reductase genes are functionally redundant and ubiquitously expressed in Arabidopsis, 3-KDS reductase activity was reduced to 10% of wild-type levels in the loss-of-function tsc10a mutant, leading to an altered sphingolipid profile. This perturbation of sphingolipid biosynthesis in the Arabidopsis tsc10a mutant leads an altered leaf ionome, including increases in Na, K, and Rb and decreases in Mg, Ca, Fe, and Mo. Reciprocal grafting revealed that these changes in the leaf ionome are driven by the root and are associated with increases in root suberin and alterations in Fe homeostasis.
Collapse
Affiliation(s)
- Dai-Yin Chao
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana 47906, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Frérot H. A challenge for hyperaccumulating plant models: 'cycling' as fast as Arabidopsis thaliana. THE NEW PHYTOLOGIST 2011; 189:357-359. [PMID: 21175629 DOI: 10.1111/j.1469-8137.2010.03591.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Affiliation(s)
- Hélène Frérot
- Université Lille 1, GEPV, Bâtiment SN2, Villeneuve d'Ascq 59655, France.
| |
Collapse
|