1
|
Salgado-Luarte C, González-Teuber M, Madriaza K, Gianoli E. Trade-off between plant resistance and tolerance to herbivory: Mechanical defenses outweigh chemical defenses. Ecology 2023; 104:e3860. [PMID: 36047784 DOI: 10.1002/ecy.3860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 05/19/2022] [Accepted: 07/01/2022] [Indexed: 02/01/2023]
Abstract
Plant resistance includes mechanical and chemical defenses that reduce herbivory, whereas plant tolerance reduces the fitness impact of herbivory. Because defenses are costly and investing in both resistance and tolerance may be superfluous, trade-offs among them are expected. In forest ecosystems, the mechanical strengthening of leaves is linked both to shade adaptation and antiherbivore defenses, but it also compromises resource uptake, therefore limiting regrowth following damage, suggesting a trade-off between mechanical defenses and tolerance. We tested for the resistance-tolerance trade-off across 11 common tree species in a temperate rainforest and explored mechanistic explanations by measuring chemical and mechanical defenses. Herbivory damage was negatively associated with leaf toughness and fiber content, whereas there was no significant relationship between herbivory and secondary metabolites (flavonols, gallic acid, tannins, and terpenoids). We detected a resistance-tolerance trade-off, as expected. We found a negative relationship between mechanical defenses and tolerance, estimated as the survival ratio between experimentally damaged and undamaged seedlings. Tolerance and secondary metabolites showed no significant association. Results suggest that selective forces other than herbivory acting on defensive traits can favor a resistance-tolerance trade-off. Therefore, plant adaptation to contrasting light environments may contribute to the evolution of resistance-tolerance trade-offs.
Collapse
Affiliation(s)
- Cristian Salgado-Luarte
- Instituto Multidisciplinario de Ciencia y Tecnología, Universidad de La Serena, La Serena, Chile
- Departamento de Biología, Universidad de La Serena, La Serena, Chile
| | - Marcia González-Teuber
- Departamento de Química Ambiental, Facultad de Ciencias, Universidad Católica de la Santísima Concepción, Concepción, Chile
| | - Karina Madriaza
- Programa de Doctorado en Ciencias Biológicas, mención en Ecología, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Ernesto Gianoli
- Departamento de Biología, Universidad de La Serena, La Serena, Chile
| |
Collapse
|
2
|
Wang N, Ji T, Liu X, Li Q, Sairebieli K, Wu P, Song H, Wang H, Du N, Zheng P, Wang R. Defoliation Significantly Suppressed Plant Growth Under Low Light Conditions in Two Leguminosae Species. FRONTIERS IN PLANT SCIENCE 2022; 12:777328. [PMID: 35069632 PMCID: PMC8776832 DOI: 10.3389/fpls.2021.777328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
Seedlings in regenerating layer are frequently attacked by herbivorous insects, while the combined effects of defoliation and shading are not fully understood. In the present study, two Leguminosae species (Robinia pseudoacacia and Amorpha fruticosa) were selected to study their responses to combined light and defoliation treatments. In a greenhouse experiment, light treatments (L+, 88% vs L-, 8% full sunlight) and defoliation treatments (CK, without defoliation vs DE, defoliation 50% of the upper crown) were applied at the same time. The seedlings' physiological and growth traits were determined at 1, 10, 30, and 70 days after the combined treatment. Our results showed that the effects of defoliation on growth and carbon allocation under high light treatments in both species were mainly concentrated in the early stage (days 1-10). R. pseudoacacia can achieve growth recovery within 10 days after defoliation, while A. fruticosa needs 30 days. Seedlings increased SLA and total chlorophyll concentration to improve light capture efficiency under low light treatments in both species, at the expense of reduced leaf thickness and leaf lignin concentration. The negative effects of defoliation treatment on plant growth and non-structural carbohydrates (NSCs) concentration in low light treatment were significantly higher than that in high light treatment after recovery for 70 days in R. pseudoacacia, suggesting sufficient production of carbohydrate would be crucial for seedling growth after defoliation. Plant growth was more sensitive to defoliation and low light stress than photosynthesis, resulting in NSCs accumulating during the early period of treatment. These results illustrated that although seedlings could adjust their resource allocation strategy and carbon dynamics in response to combined defoliation and light treatments, individuals grown in low light conditions will be more suppressed by defoliation. Our results indicate that we should pay more attention to understory seedlings' regeneration under the pressure of herbivorous insects.
Collapse
Affiliation(s)
- Ning Wang
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, Qingdao, China
- Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, Qingdao, China
- Qingdao Forest Ecology Research Station of National Forestry and Grassland Administration, Shandong University, Qingdao, China
| | - Tianyu Ji
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, Qingdao, China
- Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, Qingdao, China
- Qingdao Forest Ecology Research Station of National Forestry and Grassland Administration, Shandong University, Qingdao, China
| | - Xiao Liu
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, Qingdao, China
- Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, Qingdao, China
- Qingdao Forest Ecology Research Station of National Forestry and Grassland Administration, Shandong University, Qingdao, China
| | - Qiang Li
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, Qingdao, China
- Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, Qingdao, China
- Qingdao Forest Ecology Research Station of National Forestry and Grassland Administration, Shandong University, Qingdao, China
| | - Kulihong Sairebieli
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, Qingdao, China
- Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, Qingdao, China
- Qingdao Forest Ecology Research Station of National Forestry and Grassland Administration, Shandong University, Qingdao, China
| | - Pan Wu
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, Qingdao, China
- Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, Qingdao, China
- Qingdao Forest Ecology Research Station of National Forestry and Grassland Administration, Shandong University, Qingdao, China
| | - Huijia Song
- Beijing Museum of Natural History, Beijing, China
| | - Hui Wang
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, Qingdao, China
- Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, Qingdao, China
- Qingdao Forest Ecology Research Station of National Forestry and Grassland Administration, Shandong University, Qingdao, China
| | - Ning Du
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, Qingdao, China
- Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, Qingdao, China
- Qingdao Forest Ecology Research Station of National Forestry and Grassland Administration, Shandong University, Qingdao, China
| | - Peiming Zheng
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, Qingdao, China
- Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, Qingdao, China
- Qingdao Forest Ecology Research Station of National Forestry and Grassland Administration, Shandong University, Qingdao, China
| | - Renqing Wang
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, Qingdao, China
- Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, Qingdao, China
- Qingdao Forest Ecology Research Station of National Forestry and Grassland Administration, Shandong University, Qingdao, China
| |
Collapse
|
3
|
Endophytic bacterial communities are associated with leaf mimicry in the vine Boquila trifoliolata. Sci Rep 2021; 11:22673. [PMID: 34811460 PMCID: PMC8608808 DOI: 10.1038/s41598-021-02229-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 11/08/2021] [Indexed: 11/08/2022] Open
Abstract
The mechanisms behind the unique capacity of the vine Boquila trifoliolata to mimic the leaves of several tree species remain unknown. A hypothesis in the original leaf mimicry report considered that microbial vectors from trees could carry genes or epigenetic factors that would alter the expression of leaf traits in Boquila. Here we evaluated whether leaf endophytic bacterial communities are associated with the mimicry pattern. Using 16S rRNA gene sequencing, we compared the endophytic bacterial communities in three groups of leaves collected in a temperate rainforest: (1) leaves from the model tree Rhaphithamnus spinosus (RS), (2) Boquila leaves mimicking the tree leaves (BR), and (3) Boquila leaves from the same individual vine but not mimicking the tree leaves (BT). We hypothesized that bacterial communities would be more similar in the BR-RS comparison than in the BT-RS comparison. We found significant differences in the endophytic bacterial communities among the three groups, verifying the hypothesis. Whereas non-mimetic Boquila leaves and tree leaves (BT-RS) showed clearly different bacterial communities, mimetic Boquila leaves and tree leaves (BR-RS) showed an overlap concerning their bacterial communities. The role of bacteria in this unique case of leaf mimicry should be studied further.
Collapse
|
4
|
Rieksta J, Li T, Michelsen A, Rinnan R. Synergistic effects of insect herbivory and changing climate on plant volatile emissions in the subarctic tundra. GLOBAL CHANGE BIOLOGY 2021; 27:5030-5042. [PMID: 34185349 PMCID: PMC8518364 DOI: 10.1111/gcb.15773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/15/2021] [Accepted: 06/19/2021] [Indexed: 06/01/2023]
Abstract
Climate change increases the insect abundance, especially in Arctic ecosystems. Insect herbivory also significantly increases plant emissions of volatile organic compounds (VOCs), which are highly reactive in the atmosphere and play a crucial role in atmospheric chemistry and physics. However, it is unclear how the effects of insect herbivory on VOC emissions interact with climatic changes, such as warming and increased cloudiness. We assessed how experimental manipulations of temperature and light availability in subarctic tundra, that had been maintained for 30 years at the time of the measurements, affect the VOC emissions from a widespread dwarf birch (Betula nana) when subjected to herbivory by local geometrid moth larvae, the autumnal moth (Epirrita autumnata) and the winter moth (Operophtera brumata). Warming and insect herbivory on B. nana stimulated VOC emission rates and altered the VOC blend. The herbivory-induced increase in sesquiterpene and homoterpene emissions were climate-treatment-dependent. Many herbivory-associated VOCs were more strongly induced in the shading treatment than in other treatments. We showed generally enhanced tundra VOC emissions upon insect herbivory and synergistic effects on the emissions of some VOC groups in a changing climate, which can have positive feedbacks on cloud formation. Furthermore, the acclimation of plants to long-term climate treatments affects VOC emissions and strongly interacts with plant responses to herbivory. Such acclimation complicates predictions of how climate change, together with interacting biotic stresses, affects VOC emissions in the high latitudes.
Collapse
Affiliation(s)
- Jolanta Rieksta
- Terrestrial Ecology SectionDepartment of BiologyUniversity of CopenhagenCopenhagenDenmark
- Center for Permafrost (CENPERM)Department of Geosciences and Natural Resource ManagementUniversity of CopenhagenCopenhagen KDenmark
| | - Tao Li
- Key Laboratory for Bio‐resource and Eco‐environment of Ministry of EducationCollege of Life SciencesSichuan UniversityChengduChina
| | - Anders Michelsen
- Terrestrial Ecology SectionDepartment of BiologyUniversity of CopenhagenCopenhagenDenmark
- Center for Permafrost (CENPERM)Department of Geosciences and Natural Resource ManagementUniversity of CopenhagenCopenhagen KDenmark
| | - Riikka Rinnan
- Terrestrial Ecology SectionDepartment of BiologyUniversity of CopenhagenCopenhagenDenmark
- Center for Permafrost (CENPERM)Department of Geosciences and Natural Resource ManagementUniversity of CopenhagenCopenhagen KDenmark
| |
Collapse
|
5
|
Toledo‐Aceves T, del‐Val E. Do plant‐herbivore interactions persist in assisted migration plantings? Restor Ecol 2020. [DOI: 10.1111/rec.13318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tarin Toledo‐Aceves
- Red de Ecología Funcional Instituto de Ecología, A.C Carretera Antigua a Coatepec No. 351, El Haya C. P. 91073, Xalapa, Veracruz Mexico
| | - Ek del‐Val
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad Universidad Nacional Autónoma de México Antigua Carretera a Pátzcuaro No. 8701, Col. Ex Hacienda de San José de la Huerta, C. P. 58190, Morelia Michoacán Mexico
| |
Collapse
|
6
|
Martini F, Aluthwattha ST, Mammides C, Armani M, Goodale UM. Plant apparency drives leaf herbivory in seedling communities across four subtropical forests. Oecologia 2020; 195:575-587. [PMID: 33251556 DOI: 10.1007/s00442-020-04804-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 11/11/2020] [Indexed: 11/30/2022]
Abstract
Insect herbivory in natural forests is of critical importance in forest regeneration and dynamics. Some hypotheses that have been proposed to explain variation in leaf consumption by herbivores focus on biotic interactions, while others emphasize the role of the abiotic environment. Here, we evaluated the relative importance of both biotic and abiotic factors in explaining leaf damage on seedlings. We measured the percentage of leaf damage in the understory seedling community of four subtropical forests, covering an elevation gradient from 400 to 1850 m asl. We used fine-scale abiotic (elevation, canopy openness, topography, soil fertility) and biotic (seedling height and number of leaves, neighborhood composition) variables to determine both direct and indirect relationships using linear mixed models and structural equation modeling. We also explored the consistency of our results across the four forests. Taller seedlings experienced higher herbivore damage. Herbivory increased at higher elevations and in areas with higher light availability in one forest, but not in the other three. We found no evidence supporting the effects of biotic interactions on herbivory. Our results, at all levels of analysis, are consistent with the plant apparency theory, which posits that more apparent plants suffer greater attack. We did not find support for hypotheses stressing the role of neighborhood composition on herbivory. Similarly, the abiotic environment does not seem to influence herbivory significantly. We argue that plant apparency, rather than other biotic and abiotic factors, may be the most important predictor of leaf damage in the seedling communities of subtropical forests.
Collapse
Affiliation(s)
- Francesco Martini
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Daxuedonglu 100, Nanning, 530004, Guangxi, People's Republic of China. .,State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Daxuedonglu 100, Nanning, 530004, Guangxi, People's Republic of China.
| | - S Tharanga Aluthwattha
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Daxuedonglu 100, Nanning, 530004, Guangxi, People's Republic of China.,State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Daxuedonglu 100, Nanning, 530004, Guangxi, People's Republic of China
| | - Christos Mammides
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Daxuedonglu 100, Nanning, 530004, Guangxi, People's Republic of China
| | - Mohammed Armani
- Forestry Research Institute of Ghana, Council for Scientific and Industrial Research, Kumasi, Ghana
| | - Uromi Manage Goodale
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Daxuedonglu 100, Nanning, 530004, Guangxi, People's Republic of China. .,State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Daxuedonglu 100, Nanning, 530004, Guangxi, People's Republic of China.
| |
Collapse
|
7
|
Schneider GF, Coley PD, Younkin GC, Forrister DL, Mills AG, Kursar TA. Phenolics lie at the centre of functional versatility in the responses of two phytochemically diverse tropical trees to canopy thinning. JOURNAL OF EXPERIMENTAL BOTANY 2019. [PMID: 31257446 DOI: 10.5061/dryad.t469v60] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Saplings in the shade of the tropical understorey face the challenge of acquiring sufficient carbon for growth as well as defence against intense pest pressure. A minor increase in light availability via canopy thinning may allow for increased investment in chemical defence against pests, but it may also necessitate additional biochemical investment to prevent light-induced oxidative stress. The shifts in secondary metabolite composition that increased sun exposure may precipitate in such tree species present an ideal milieu for evaluating the potential of a single suite of phenolic secondary metabolites to be used in mitigating both abiotic and biotic stressors. To conduct such an evaluation, we exposed saplings of two unrelated species to a range of light environments and compared changes in their foliar secondary metabolome alongside corresponding changes in the abiotic and biotic activity of their secondary metabolite suites. Among the numerous classes of secondary metabolites found in both species, phenolics accounted for the majority of increases in antioxidant and UV-absorbing properties as well as activity against an invertebrate herbivore and a fungal pathogen. Our results support the hypothesis that phenolics contribute to the capacity of plants to resist co-occurring abiotic and biotic stressors in resource-limited conditions.
Collapse
Affiliation(s)
- Gerald F Schneider
- Department of Biology, University of Utah, Salt Lake City, UT, USA
- Smithsonian Tropical Research Institute, Balboa, Ancon, Republic of Panama
| | - Phyllis D Coley
- Department of Biology, University of Utah, Salt Lake City, UT, USA
- Smithsonian Tropical Research Institute, Balboa, Ancon, Republic of Panama
| | - Gordon C Younkin
- Department of Biology, University of Utah, Salt Lake City, UT, USA
| | - Dale L Forrister
- Department of Biology, University of Utah, Salt Lake City, UT, USA
| | - Anthony G Mills
- Department of Biology, University of Utah, Salt Lake City, UT, USA
| | - Thomas A Kursar
- Department of Biology, University of Utah, Salt Lake City, UT, USA
- Smithsonian Tropical Research Institute, Balboa, Ancon, Republic of Panama
| |
Collapse
|
8
|
Schneider GF, Coley PD, Younkin GC, Forrister DL, Mills AG, Kursar TA. Phenolics lie at the centre of functional versatility in the responses of two phytochemically diverse tropical trees to canopy thinning. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:5853-5864. [PMID: 31257446 PMCID: PMC6812699 DOI: 10.1093/jxb/erz308] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 06/23/2019] [Indexed: 05/21/2023]
Abstract
Saplings in the shade of the tropical understorey face the challenge of acquiring sufficient carbon for growth as well as defence against intense pest pressure. A minor increase in light availability via canopy thinning may allow for increased investment in chemical defence against pests, but it may also necessitate additional biochemical investment to prevent light-induced oxidative stress. The shifts in secondary metabolite composition that increased sun exposure may precipitate in such tree species present an ideal milieu for evaluating the potential of a single suite of phenolic secondary metabolites to be used in mitigating both abiotic and biotic stressors. To conduct such an evaluation, we exposed saplings of two unrelated species to a range of light environments and compared changes in their foliar secondary metabolome alongside corresponding changes in the abiotic and biotic activity of their secondary metabolite suites. Among the numerous classes of secondary metabolites found in both species, phenolics accounted for the majority of increases in antioxidant and UV-absorbing properties as well as activity against an invertebrate herbivore and a fungal pathogen. Our results support the hypothesis that phenolics contribute to the capacity of plants to resist co-occurring abiotic and biotic stressors in resource-limited conditions.
Collapse
Affiliation(s)
- Gerald F Schneider
- Department of Biology, University of Utah, Salt Lake City, UT, USA
- Smithsonian Tropical Research Institute, Balboa, Ancon, Republic of Panama
| | - Phyllis D Coley
- Department of Biology, University of Utah, Salt Lake City, UT, USA
- Smithsonian Tropical Research Institute, Balboa, Ancon, Republic of Panama
| | - Gordon C Younkin
- Department of Biology, University of Utah, Salt Lake City, UT, USA
| | - Dale L Forrister
- Department of Biology, University of Utah, Salt Lake City, UT, USA
| | - Anthony G Mills
- Department of Biology, University of Utah, Salt Lake City, UT, USA
| | - Thomas A Kursar
- Department of Biology, University of Utah, Salt Lake City, UT, USA
- Smithsonian Tropical Research Institute, Balboa, Ancon, Republic of Panama
| |
Collapse
|
9
|
Fuenzalida TI, Hernández-Moreno Á, Piper FI. Secondary leaves of an outbreak-adapted tree species are both more resource acquisitive and more herbivore resistant than primary leaves. TREE PHYSIOLOGY 2019; 39:1499-1511. [PMID: 31384949 DOI: 10.1093/treephys/tpz083] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 05/21/2019] [Accepted: 07/09/2019] [Indexed: 06/10/2023]
Abstract
The magnitude and frequency of insect outbreaks are predicted to increase in forests, but how trees cope with severe outbreak defoliation is not yet fully understood. Winter deciduous trees often produce a secondary leaf flush in response to defoliation (i.e., compensatory leaf regrowth or refoliation), which promotes fast replenishment of carbon (C) storage and eventually tree survival. However, secondary leaf flushes may imply a high susceptibility to insect herbivory, especially in the event of an ongoing outbreak. We hypothesized that in winter deciduous species adapted to outbreak-driven defoliations, secondary leaves are both more C acquisitive and more herbivore resistant than primary leaves. During an outbreak by Ormiscodes amphimone F. affecting Nothofagus pumilio (Poepp. & Endl.) Krasser forests, we (i) quantified the defoliation and subsequent refoliation by analyzing the seasonal dynamics of the normalized difference vegetation index (NDVI) and (ii) compared the physiological traits and herbivore resistance of primary and secondary leaves. Comparisons of the NDVI of the primary and second leaf flushes relative to the NDVI of the defoliated forest indicated 31% refoliation, which is close to the leaf regrowth reported by a previous study in juvenile N. pumilio trees subjected to experimental defoliation. Primary leaves had higher leaf mass per area, size, carbon:nitrogen ratio and soluble sugar concentration than secondary leaves, along with lower nitrogen and starch concentrations, and similar total polyphenol and phosphorus concentrations. In both a choice and a non-choice bioassay, the leaf consumption rates by O. amphimone larvae were significantly higher (>50%) for primary than for secondary leaves, indicating higher herbivore resistance in the latter. Our study shows that secondary leaf flushes in outbreak-adapted tree species can be both C acquisitive and herbivore resistant, and suggests that these two features mediate the positive effects of the compensatory leaf regrowth on the tree C balance and forest resilience.
Collapse
Affiliation(s)
- Tomás I Fuenzalida
- Plant Science Division, Research School of Biology, The Austral National University, Acton, ACT, Australia
| | - Ángela Hernández-Moreno
- Centro de Investigación en Ecosistemas de la Patagonia (CIEP), Camino Baguales, Coyhaique, Chile
| | - Frida I Piper
- Centro de Investigación en Ecosistemas de la Patagonia (CIEP), Camino Baguales, Coyhaique, Chile
| |
Collapse
|
10
|
Piper FI, Gundale MJ, Fuenzalida T, Fajardo A. Herbivore resistance in congeneric and sympatric Nothofagus species is not related to leaf habit. AMERICAN JOURNAL OF BOTANY 2019; 106:788-797. [PMID: 31131459 DOI: 10.1002/ajb2.1293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 03/26/2019] [Indexed: 06/09/2023]
Abstract
PREMISE Two fundamental hypotheses on herbivore resistance and leaf habit are the resource availability hypothesis (RAH) and the carbon-nutrient balance hypothesis (CNBH). The RAH predicts higher constitutive resistance by evergreens, and the CNBH predicts higher induced resistance by deciduous species. Although support for these hypotheses is mixed, they have rarely been examined in congeneric species. METHODS We compared leaf constitutive and induced resistance (as leaf polyphenol and tannin concentrations, and as damage level in non-choice experiments) and leaf traits associated with herbivory of coexisting Nothofagus species using (1) a defoliation experiment and (2) natural defoliation caused by an outbreak of a common defoliator of Nothofagus species. RESULTS In the defoliation experiment, polyphenol and tannin concentrations were similar between deciduous and evergreen species; regardless of leaf habit, polyphenols increased in response to defoliation. In the natural defoliation survey, N. pumilio (deciduous) had significantly higher herbivory, lower carbon/nitrogen ratio and leaf mass per area, and higher nitrogen and phosphorus concentrations than N. betuloides (evergreen); N. antarctica (deciduous) had intermediate values. Polyphenol concentrations and herbivore resistance indicated by the non-choice experiment were lower in N. pumilio than in N. antarctica and N. betuloides, which had similar values. CONCLUSIONS Higher herbivory in N. pumilio was associated with a higher nutritional value and a lower level of leaf carbon-based defenses compared to both the evergreen and the other deciduous species, indicating that herbivore resistance in Nothofagus species cannot be attributed to only leaf habit as predicted by the RAH or CNBH.
Collapse
Affiliation(s)
- Frida I Piper
- Centro de Investigación en Ecosistemas de la Patagonia (CIEP), Moraleda 16, Coyhaique, 5951601, Chile
| | - Michael J Gundale
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, SE-901 83, Umeå, Sweden
| | - Tomás Fuenzalida
- Plant Science Division, Research School of Biology, The Australian National University, Acton, ACT, 2601, Australia
| | - Alex Fajardo
- Centro de Investigación en Ecosistemas de la Patagonia (CIEP), Moraleda 16, Coyhaique, 5951601, Chile
| |
Collapse
|
11
|
Dostálek T, Rokaya MB, Münzbergová Z. Altitude, habitat type and herbivore damage interact in their effects on plant population dynamics. PLoS One 2018; 13:e0209149. [PMID: 30557339 PMCID: PMC6296709 DOI: 10.1371/journal.pone.0209149] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 12/02/2018] [Indexed: 11/19/2022] Open
Abstract
Insects represent one of the most abundant groups of herbivores, and many of them have significant impacts on the dynamics of plant populations. As insects are very sensitive to changes in climatic conditions, we hypothesize that their effects on plant population dynamics will depend on climatic conditions. Knowledge of the variation in herbivore effects on plant population dynamics is, however, still rather sparse. We studied population dynamics and herbivore damage at the individual plant level of Salvia nubicola along a wide altitudinal gradient representing a range of climatic conditions. Using integral projection models, we estimated the effect of changes in herbivore pressure on plant populations in different climates and habitat types. Since we recorded large differences in the extent of herbivore damage along the altitudinal gradient, we expected that the performance of plants from different altitudes would be affected to different degrees by herbivores. Indeed, we found that populations from low altitudes were better able to withstand increased herbivore damage, while populations from high altitudes were suppressed by herbivores. However, the pattern described above was evident only in populations from open habitats. In forest habitats, the differences in population dynamics between low and high altitudes were largely diminished. The effects of herbivores on plants from different altitudes were thus largely habitat specific. Our results indicate potential problems for plant populations from high altitudes in open habitats because of increased herbivore damage. However, forest habitats may provide refuges for the plants at these high altitudes.
Collapse
Affiliation(s)
- Tomáš Dostálek
- Institute of Botany, the Czech Academy of Sciences, Průhonice, Czech Republic
- Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic
| | - Maan Bahadur Rokaya
- Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic
- Department of Biodiversity Research, Global Change Research Centre, the Czech Academy of Sciences, Brno, Czech Republic
| | - Zuzana Münzbergová
- Institute of Botany, the Czech Academy of Sciences, Průhonice, Czech Republic
- Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
12
|
Piper FI, Altmann SH, Lusk CH. Global patterns of insect herbivory in gap and understorey environments, and their implications for woody plant carbon storage. OIKOS 2018. [DOI: 10.1111/oik.04686] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Frida I. Piper
- Centro de Investigación en Ecosistemas de la Patagonia (CIEP); Moraleda 16 Coyhaique Chile
| | | | | |
Collapse
|
13
|
Gianoli E, Salgado-Luarte C. Tolerance to herbivory and the resource availability hypothesis. Biol Lett 2017; 13:rsbl.2017.0120. [PMID: 28490446 DOI: 10.1098/rsbl.2017.0120] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 04/18/2017] [Indexed: 11/12/2022] Open
Abstract
The resource availability hypothesis (RAH), the most successful theory explaining plant defence patterns, predicts that defence investment is related to the relative growth rate (RGR) of plant species, which is associated with habitat quality. Thus, fast-growing species should show lower resistance than slow-growing species, which would lead fast growers to sustain higher herbivory rates, but the fitness consequences of herbivory would be greater for slow growers. The latter is often assumed but rarely tested. In a temperate rainforest, we tested the expected pattern of tolerance to herbivory derived from the RAH: that fast-growing species should be more tolerant than slow-growing species. We also evaluated whether other plant features covary with RGR (leaf lifespan, shade tolerance and leaf toughness) and thus could also contribute to the patterns of tolerance to herbivory. As expected, seedlings from tree species with higher RGR showed greater tolerance to herbivory. Among the three plant features included, only leaf lifespan showed a significant association with RGR, but RGR was the best predictor of tolerance. We argue that plant tolerance to herbivory must be evaluated to properly verify the assumptions of the RAH.
Collapse
Affiliation(s)
- Ernesto Gianoli
- Departamento de Biología, Universidad de La Serena, Casilla 554 La Serena, Chile .,Departamento de Botánica, Universidad de Concepción, Concepción, Chile
| | | |
Collapse
|
14
|
Salgado-Luarte C, Gianoli E. Shade tolerance and herbivory are associated with RGR of tree species via different functional traits. PLANT BIOLOGY (STUTTGART, GERMANY) 2017; 19:413-419. [PMID: 27995703 DOI: 10.1111/plb.12534] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 12/12/2016] [Indexed: 06/06/2023]
Abstract
Relative growth rate (RGR) plays an important role in plant adaptation to the light environment through the growth potential/survival trade-off. RGR is a complex trait with physiological and biomass allocation components. It has been argued that herbivory may influence the evolution of plant strategies to cope with the light environment, but little is known about the relation between susceptibility to herbivores and growth-related functional traits. Here, we examined in 11 evergreen tree species from a temperate rainforest the association between growth-related functional traits and (i) species' shade-tolerance, and (ii) herbivory rate in the field. We aimed at elucidating the differential linkage of shade and herbivory with RGR via growth-related functional traits. We found that RGR was associated negatively with shade-tolerance and positively with herbivory rate. However, herbivory rate and shade-tolerance were not significantly related. RGR was determined mainly by photosynthetic rate (Amax ) and specific leaf area (SLA). Results suggest that shade tolerance and herbivore resistance do not covary with the same functional traits. Whereas shade-tolerance was strongly related to Amax and to a lesser extent to leaf mass ratio (LMR) and dark respiration (Rd ), herbivory rate was closely related to allocation traits (SLA and LMR) and slightly associated with protein content. The effects of low light on RGR would be mediated by Amax , while the effects of herbivory on RGR would be mediated by SLA. Our findings suggest that shade and herbivores may differentially contribute to shape RGR of tree species through their effects on different resource-uptake functional traits.
Collapse
Affiliation(s)
- C Salgado-Luarte
- Departamento de Biología, Universidad de La Serena, Casilla La Serena, Chile
| | - E Gianoli
- Departamento de Biología, Universidad de La Serena, Casilla La Serena, Chile
- Departamento de Botánica, Universidad de Concepción, Concepción, Chile
| |
Collapse
|
15
|
Cripps MG, Jackman SD, Roquet C, van Koten C, Rostás M, Bourdôt GW, Susanna A. Evolution of Specialization of Cassida rubiginosa on Cirsium arvense (Compositae, Cardueae). FRONTIERS IN PLANT SCIENCE 2016; 7:1261. [PMID: 27602042 PMCID: PMC4994537 DOI: 10.3389/fpls.2016.01261] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 08/08/2016] [Indexed: 05/08/2023]
Abstract
The majority of herbivorous insects are specialized feeders restricted to a plant family, genus, or species. The evolution of specialized insect-plant interactions is generally considered to be a result of trade-offs in fitness between possible hosts. Through the course of natural selection, host plants that maximize insect fitness should result in optimal, specialized, insect-plant associations. However, the extent to which insects are tracking plant phylogeny or key plant traits that act as herbivore resistance or acceptance characters is uncertain. Thus, with regard to the evolution of host plant specialization, we tested if insect performance is explained by phylogenetic relatedness of potential host plants, or key plant traits that are not phylogenetically related. We tested the survival (naive first instar to adult) of the oligophagous leaf-feeding beetle, Cassida rubiginosa, on 16 selected representatives of the Cardueae tribe (thistles and knapweeds), including some of the worst weeds in temperate grasslands of the world in terms of the economic impacts caused by lost productivity. Leaf traits (specific leaf area, leaf pubescence, flavonoid concentration, carbon and nitrogen content) were measured as explanatory variables and tested in relation to survival of the beetle, and the phylogenetic signal of the traits were examined. The survival of C. rubiginosa decreased with increasing phylogenetic distance from the known primary host plant, C. arvense, suggesting that specialization is a conserved character, and that insect host range, to a large degree is constrained by evolutionary history. The only trait measured that clearly offered some explanatory value for the survival of C. rubiginosa was specific leaf area. This trait was not phylogenetically dependant, and when combined with phylogenetic distance from C. arvense gave the best model explaining C. rubiginosa survival. We conclude that the specialization of the beetle is explained by a combination of adaptation to an optimal host plant over evolutionary time, and key plant traits such as specific leaf area that can restrict or broaden host utilization within the Cardueae lineage. The phylogenetic pattern of C. rubiginosa fitness will aid in predicting the ability of this biocontrol agent to control multiple Cardueae weeds.
Collapse
Affiliation(s)
- Michael G. Cripps
- AgResearch Ltd.Lincoln, New Zealand
- *Correspondence: Michael G. Cripps,
| | | | - Cristina Roquet
- Laboratoire d’Écologie Alpine, Centre National de la Recherche Scientifique, Université Grenoble AlpesGrenoble, France
| | | | - Michael Rostás
- Bio-Protection Research Centre, University of LincolnLincoln, New Zealand
| | | | - Alfonso Susanna
- Institut Botànic de Barcelona – Consejo Superior de Investigaciones Científicas – Institut de Cultura de BarcelonaBarcelona, Spain
| |
Collapse
|
16
|
Lázaro-Nogal A, Matesanz S, Hallik L, Krasnova A, Traveset A, Valladares F. Population differentiation in a Mediterranean relict shrub: the potential role of local adaptation for coping with climate change. Oecologia 2015; 180:1075-90. [PMID: 26662734 DOI: 10.1007/s00442-015-3514-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 11/17/2015] [Indexed: 11/25/2022]
Abstract
Plants can respond to climate change by either migrating, adapting to the new conditions or going extinct. Relict plant species of limited distribution can be especially vulnerable as they are usually composed of small and isolated populations, which may reduce their ability to cope with rapidly changing environmental conditions. The aim of this study was to assess the vulnerability of Cneorum tricoccon L. (Cneoraceae), a Mediterranean relict shrub of limited distribution, to a future drier climate. We evaluated population differentiation in functional traits related to drought tolerance across seven representative populations of the species' range. We measured morphological and physiological traits in both the field and the greenhouse under three water availability levels. Large phenotypic differences among populations were found under field conditions. All populations responded plastically to simulated drought, but they differed in mean trait values as well as in the slope of the phenotypic response. Particularly, dry-edge populations exhibited multiple functional traits that favored drought tolerance, such as more sclerophyllous leaves, strong stomatal control but high photosynthetic rates, which increases water use efficiency (iWUE), and an enhanced ability to accumulate sugars as osmolytes. Although drought decreased RGR in all populations, this reduction was smaller for populations from the dry edge. Our results suggest that dry-edge populations of this relict species are well adapted to drought, which could potentially mitigate the species' extinction risk under drier scenarios. Dry-edge populations not only have a great conservation value but can also change expectations from current species' distribution models.
Collapse
Affiliation(s)
- Ana Lázaro-Nogal
- LINCGlobal, Departamento de Biogeografía y Cambio Global, Museo Nacional de Ciencias Naturales, MNCN-CSIC, Serrano 115 dpdo., 28006, Madrid, Spain.
| | - Silvia Matesanz
- Departamento de Biología y Geología, ESCET, Universidad Rey Juan Carlos, Tulipán s/n, 28933, Móstoles, Spain
| | - Lea Hallik
- Department of Plant Physiology, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51014, Tartu, Estonia
- Tartu Observatory, Tõravere, 61602, Tartumaa, Estonia
| | - Alisa Krasnova
- Department of Plant Physiology, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51014, Tartu, Estonia
| | - Anna Traveset
- LINCGlobal, Institut Mediterrani d'Estudis Avançats, IMEDEA-CSIC, Miquel Marquès 21, 07190, Esporles, Mallorca, Spain
| | - Fernando Valladares
- LINCGlobal, Departamento de Biogeografía y Cambio Global, Museo Nacional de Ciencias Naturales, MNCN-CSIC, Serrano 115 dpdo., 28006, Madrid, Spain
- Departamento de Biología y Geología, ESCET, Universidad Rey Juan Carlos, Tulipán s/n, 28933, Móstoles, Spain
| |
Collapse
|
17
|
Hahn PG, Orrock JL. Spatial arrangement of canopy structure and land-use history alter the effect that herbivores have on plant growth. Ecosphere 2015. [DOI: 10.1890/es15-00036.1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
18
|
Specialist Insect Herbivore and Light Availability Do Not Interact in the Evolution of an Invasive Plant. PLoS One 2015; 10:e0139234. [PMID: 26407176 PMCID: PMC4583994 DOI: 10.1371/journal.pone.0139234] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 09/10/2015] [Indexed: 11/25/2022] Open
Abstract
Release from specialist insect herbivores may allow invasive plants to evolve traits associated with decreased resistance and increased competitive ability. Given that there may be genetic trade-off between resistance and tolerance, invasive plants could also become more tolerant to herbivores. Although it is widely acknowledged that light availability affects tolerance to herbivores, little information is available for whether the effect of light availability on tolerance differ between the introduced and native populations. We conducted a common garden experiment in the introduced range of Alternanthera philoxeroides using ten invasive US and ten native Argentinean populations at two levels of light availability and in the presence or absence of a specialist stem-boring insect Agasicles hygrophila. Plant biomass (total and storage root biomass), two allocation traits (root/shoot ratio and branch intensity, branches biomass/main stem biomass) and two functional traits (specific stem length and specific leaf area), which are potentially associated with herbivore resistance and light capture, were measured. Overall, we found that A. philoxeroides from introduced ranges had comparable biomass and tolerance to specialist herbivores, lower branch intensity, lower specific stem length and specific leaf area. Moreover, introduced populations displayed higher shade tolerance of storage root biomass and lower plastic response to shading in specific stem length. Finally, light availability had no significant effect on evolution of tolerance to specialist herbivores of A. philoxeroides. Our results suggest that post-introduction evolution might have occurred in A. philoxeroides. While light availability did not influence the evolution of tolerance to specialist herbivores, increased shade tolerance and release from specialist insects might have contributed to the successful invasion of A. philoxeroides.
Collapse
|
19
|
Piper FI. Patterns of carbon storage in relation to shade tolerance in southern South American species. AMERICAN JOURNAL OF BOTANY 2015; 102:1442-1452. [PMID: 26362192 DOI: 10.3732/ajb.1500241] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Accepted: 08/07/2015] [Indexed: 06/05/2023]
Abstract
PREMISE OF THE STUDY Carbon (C) allocation to storage in woody tissues at the expense of growth is thought to promote shade tolerance, yet few studies on the subject examined C storage during maximum growth and considered stand influences. I asked how C storage in different plant tissues relates to shade tolerance in temperate forests with contrasting climates and physiognomies, and whether relationships vary during the growing season. METHODS In the late spring and late summer, I harvested seedlings of eight species with contrasting light requirements from the understory of a cold rainforest and a Mediterranean forest in Chile. Nonstructural carbohydrate (NSC) concentrations and pools (i.e., biomass x NSC concentration) were determined in leaves, aboveground wood, and roots. The effects of shade tolerance and sampling date on the NSCs were analyzed for each forest and tissue with linear mixed-effects models. KEY RESULTS In both forests, concentrations of NSC and soluble sugars in woody tissues, as well as fractions of NSC in these tissues, were lower in shade tolerant than in shade intolerant species. For root NSC concentrations, these trends depended on the sampling date: in the late spring the concentrations were similar in shade tolerant and intolerant species, while in the late summer they were lower in shade tolerant species. CONCLUSIONS Shade tolerance is not linked to C storage in the two studied forests, suggesting that allocation to growth or defenses could be more advantageous for low light persistence. Alternatively, high levels of C storage could be also selected in shade intolerant species to face herbivory or drought.
Collapse
Affiliation(s)
- Frida I Piper
- Centro de Investigación en Ecosistemas de la Patagonia (CIEP), Simpson 471, Coyhaique, Chile; Universidad Austral de Chile, campus Patagonia, km 4 camino Coyhaique Alto, Coyhaique, Chile; and Instituto de Ecología y Biodiversidad (IEB), Santiago, Chile
| |
Collapse
|
20
|
Silvestrini M, Dos Santos FAM. Variation in the population structure between a natural and a human-modified forest for a pioneer tropical tree species not restricted to large gaps. Ecol Evol 2015; 5:2420-32. [PMID: 26120431 PMCID: PMC4475374 DOI: 10.1002/ece3.1528] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Revised: 04/15/2015] [Accepted: 04/19/2015] [Indexed: 11/12/2022] Open
Abstract
The distribution of tree species in tropical forests is generally related to the occurrence of disturbances and shifts in the local environmental conditions such as light, temperature, and biotic factors. Thus, the distribution of pioneer tree species is expected to vary according to the gap characteristics and with human disturbances. We asked whether there was variation in the distribution of a pioneer species under different environmental conditions generated by natural disturbances, and between two forests with contrasting levels of human disturbance. To answer this question, we studied the distribution patterns and population persistence of the pioneer tree species Croton floribundus in the size and age gap range of a primary Brazilian forest. Additionally, we compared the plant density of two size-classes between a primary and an early successional human-disturbed forest. Croton floribundus was found to be widespread and equally distributed along the gap-size gradient in the primary forest. Overall density did not vary with gap size or age (F-ratio = 0.062, P = 0.941), and while juveniles were found to have a higher density in the early successional forest (P = 0.021), tree density was found to be similar between forests (P = 0.058). Our results indicate that the population structure of a pioneer tree species with long life span and a broad gap-size niche preference varied between natural and human-disturbed forests, but not with the level of natural disturbance. We believe this can be explained by the extreme environmental changes that occur after human disturbance. The ecological processes that affect the distribution of pioneer species in natural and human-modified forests may be similar, but our results suggest they act differently under the contrasting environmental conditions generated by natural and human disturbances.
Collapse
Affiliation(s)
- Milene Silvestrini
- Programa de Pós-Graduação em Ecologia, Departamento de Biologia Vegetal, IB, Universidade Estadual de Campinas (UNICAMP) 970, Monteiro Lobato, P.O. Box 6109, 13083-862, Campinas, SP, Brazil
| | | |
Collapse
|
21
|
Goodale UM, Berlyn GP, Gregoire TG, Tennakoon KU, Ashton MS. Differences in Survival and Growth Among Tropical Rain Forest Pioneer Tree Seedlings in Relation to Canopy Openness and Herbivory. Biotropica 2014. [DOI: 10.1111/btp.12088] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Uromi M. Goodale
- Key Laboratory of Tropical Forest Ecology; Chinese Academy of Sciences; Xishuangbanna Tropical Botanical Garden; Menglun, Mengla, Yunnan 666303 China
| | - Graeme P. Berlyn
- School of Forestry and Environmental Studies; Yale University; New Haven CT 06511 U.S.A
| | - Timothy G. Gregoire
- School of Forestry and Environmental Studies; Yale University; New Haven CT 06511 U.S.A
| | - Kushan U. Tennakoon
- Institute for Biodiversity and Environmental Research (IBER) and Faculty of Science; Faculty of Science; Universiti of Brunei Darussalam; Jalan Tungku Link Gadong BE 1410 Brunei Darussalam
| | - Mark S. Ashton
- School of Forestry and Environmental Studies; Yale University; New Haven CT 06511 U.S.A
| |
Collapse
|
22
|
Norghauer JM, Newbery DM. Herbivores differentially limit the seedling growth and sapling recruitment of two dominant rain forest trees. Oecologia 2013; 174:459-69. [PMID: 24072438 DOI: 10.1007/s00442-013-2769-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 08/30/2013] [Indexed: 11/26/2022]
Abstract
Resource heterogeneity may influence how plants are attacked and respond to consumers in multiple ways. Perhaps a better understanding of how this interaction might limit sapling recruitment in tree populations may be achieved by examining species' functional responses to herbivores on a continuum of resource availability. Here, we experimentally reduced herbivore pressure on newly established seedlings of two dominant masting trees in 40 canopy gaps, across c. 80 ha of tropical rain forest in central Africa (Korup, Cameroon). Mesh cages were built to protect individual seedlings, and their leaf production and changes in height were followed for 22 months. With more light, herbivores increasingly prevented the less shade-tolerant Microberlinia bisulcata from growing as tall as it could and producing more leaves, indicating an undercompensation. The more shade-tolerant Tetraberlinia bifoliolata was much less affected by herbivores, showing instead near to full compensation for leaf numbers, and a negligible to weak impact of herbivores on its height growth. A stage-matrix model that compared control and caged populations lent evidence for a stronger impact of herbivores on the long-term population dynamics of M. bisulcata than T. bifoliolata. Our results suggest that insect herbivores can contribute to the local coexistence of two abundant tree species at Korup by disproportionately suppressing sapling recruitment of the faster-growing dominant via undercompensation across the light gradient created by canopy disturbances. The functional patterns we have documented here are consistent with current theory, and, because gap formations are integral to forest regeneration, they may be more widely applicable in other tropical forest communities. If so, the interaction between life-history and herbivore impact across light gradients may play a substantial role in tree species coexistence.
Collapse
Affiliation(s)
- Julian M Norghauer
- Institute of Plant Sciences, University of Bern, 21 Altenbergrain, 3013, Bern, Switzerland,
| | | |
Collapse
|
23
|
Kitajima K, Cordero RA, Wright SJ. Leaf life span spectrum of tropical woody seedlings: effects of light and ontogeny and consequences for survival. ANNALS OF BOTANY 2013; 112:685-99. [PMID: 23532047 PMCID: PMC3736767 DOI: 10.1093/aob/mct036] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 01/14/2013] [Indexed: 05/10/2023]
Abstract
BACKGROUND AND AIMS Leaf life span is widely recognized as a key life history trait associated with herbivory resistance, but rigorous comparative data are rare for seedlings. The goal of this study was to examine how light environment affects leaf life span, and how ontogenetic development during the first year may influence leaf fracture toughness, lamina density and stem density that are relevant for herbivory resistance, leaf life span and seedling survival. METHODS Data from three experiments encompassing 104 neotropical woody species were combined. Leaf life span, lamina and vein fracture toughness, leaf and stem tissue density and seedling survival were quantified for the first-year seedlings at standardized ontogenetic stages in shade houses and common gardens established in gaps and shaded understorey in a moist tropical forest in Panama. Mortality of naturally recruited seedlings till 1 year later was quantified in 800 1-m² plots from 1994 to 2011. KEY RESULTS Median leaf life span ranged widely among species, always greater in shade (ranging from 151 to >1790 d in the understorey and shade houses) than in gaps (115-867 d), but with strong correlation between gaps and shade. Leaf and stem tissue density increased with seedling age, whereas leaf fracture toughness showed only a weak increase. All these traits were positively correlated with leaf life span. Leaf life span and stem density were negatively correlated with seedling mortality in shade, while gap mortality showed no correlation with these traits. CONCLUSIONS The wide spectrum of leaf life span and associated functional traits reflects variation in shade tolerance of first-year seedlings among coexisting trees, shrubs and lianas in this neotropical forest. High leaf tissue density is important in enhancing leaf toughness, a known physical defence, and leaf life span. Both seedling leaf life span and stem density should be considered as key functional traits that contribute to seedling survival in tropical forest understoreys.
Collapse
Affiliation(s)
- Kaoru Kitajima
- Department of Biology, University of Florida, Gainesville, FL 32611, USA.
| | | | | |
Collapse
|
24
|
Liu G, Huang QQ, Lin ZG, Huang FF, Liao HX, Peng SL. High tolerance to salinity and herbivory stresses may explain the expansion of Ipomoea cairica to salt marshes. PLoS One 2012; 7:e48829. [PMID: 23166596 PMCID: PMC3499518 DOI: 10.1371/journal.pone.0048829] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 10/05/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Invasive plants are often confronted with heterogeneous environments and various stress factors during their secondary phase of invasion into more stressful habitats. A high tolerance to stress factors may allow exotics to successfully invade stressful environments. Ipomoea cairica, a vigorous invader in South China, has recently been expanding into salt marshes. METHODOLOGY/PRINCIPAL FINDINGS To examine why this liana species is able to invade a stressful saline environment, we utilized I. cairica and 3 non-invasive species for a greenhouse experiment. The plants were subjected to three levels of salinity (i.e., watered with 0, 4 and 8 g L(-1) NaCl solutions) and simulated herbivory (0, 25 and 50% of the leaf area excised) treatments. The relative growth rate (RGR) of I. cairica was significantly higher than the RGR of non-invasive species under both stress treatments. The growth performance of I. cairica was not significantly affected by either stress factor, while that of the non-invasive species was significantly inhibited. The leaf condensed tannin content was generally lower in I. cairica than in the non-invasive I. triloba and Paederia foetida. Ipomoea cairica exhibited a relatively low resistance to herbivory, however, its tolerance to stress factors was significantly higher than either of the non-invasive species. CONCLUSIONS/SIGNIFICANCE This is the first study examining the expansion of I. cairica to salt marshes in its introduced range. Our results suggest that the high tolerance of I. cairica to key stress factors (e.g., salinity and herbivory) contributes to its invasion into salt marshes. For I. cairica, a trade-off in resource reallocation may allow increased resources to be allocated to tolerance and growth. This may contribute to a secondary invasion into stressful habitats. Finally, we suggest that I. cairica could spread further and successfully occupy salt marshes, and countermeasures based on herbivory could be ineffective for controlling this invasion.
Collapse
Affiliation(s)
- Gang Liu
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Qiao-Qiao Huang
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, China
| | - Zhen-Guang Lin
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Fang-Fang Huang
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Hui-Xuan Liao
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Shao-Lin Peng
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
25
|
Agrawal AA, Kearney EE, Hastings AP, Ramsey TE. Attenuation of the jasmonate burst, plant defensive traits, and resistance to specialist monarch caterpillars on shaded common milkweed (Asclepias syriaca). J Chem Ecol 2012. [PMID: 22661306 DOI: 10.1007/s10886-012-0145-143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
Plant responses to herbivory and light competition are often in opposing directions, posing a potential conflict for plants experiencing both stresses. For sun-adapted species, growing in shade typically makes plants more constitutively susceptible to herbivores via reduced structural and chemical resistance traits. Nonetheless, the impact of light environment on induced resistance has been less well-studied, especially in field experiments that link physiological mechanisms to ecological outcomes. Accordingly, we studied induced resistance of common milkweed (Asclepias syriaca, a sun-adapted plant), and linked hormonal responses, resistance traits, and performance of specialist monarch caterpillars (Danaus plexippus) in varying light environments. In natural populations, plants growing under forest-edge shade showed reduced levels of resistance traits (lower leaf toughness, cardenolides, and trichomes) and enhanced light-capture traits (higher specific leaf area, larger leaves, and lower carbon-to-nitrogen ratio) compared to paired plants in full sun. In a field experiment repeated over two years, only milkweeds growing in full sun exhibited induced resistance to monarchs, whereas plants growing in shade were constitutively more susceptible and did not induce resistance. In a more controlled field experiment, plant hormones were higher in the sun (jasmonic acid, salicylic acid, abscisic acid, indole acidic acid) and were induced by herbivory (jasmonic acid and abscisic acid). In particular, the jasmonate burst following herbivory was halved in plants raised in shaded habitats, and this correspondingly reduced latex induction (but not cardenolide induction). Thus, we provide a mechanistic basis for the attenuation of induced plant resistance in low resource environments. Additionally, there appears to be specificity in these interactions, with light-mediated impacts on jasmonate-induction being stronger for latex exudation than cardenolides.
Collapse
Affiliation(s)
- Anurag A Agrawal
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853-2701, USA.
| | | | | | | |
Collapse
|
26
|
Salgado-Luarte C, Gianoli E. Herbivores modify selection on plant functional traits in a temperate rainforest understory. Am Nat 2012; 180:E42-53. [PMID: 22766937 DOI: 10.1086/666612] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
There is limited evidence regarding the adaptive value of plant functional traits in contrasting light environments. It has been suggested that changes in these traits in response to light availability can increase herbivore susceptibility. We tested the adaptive value of plant functional traits linked with carbon gain in contrasting light environments and also evaluated whether herbivores can modify selection on these traits in each light environment. In a temperate rainforest, we examined phenotypic selection on functional traits in seedlings of the pioneer tree Aristotelia chilensis growing in sun (canopy gap) and shade (forest understory) and subjected to either natural herbivory or herbivore exclusion. We found differential selection on functional traits depending on light environment. In sun, there was positive directional selection on photosynthetic rate and relative growth rate (RGR), indicating that selection favors competitive ability in a high-resource environment. Seedlings with high specific leaf area (SLA) and intermediate RGR were selected in shade, suggesting that light capture and conservative resource use are favored in the understory. Herbivores reduced the strength of positive directional selection acting on SLA in shade. We provide the first demonstration that natural herbivory rates can change the strength of selection on plant ecophysiological traits, that is, attributes whose main function is resource uptake. Research addressing the evolution of shade tolerance should incorporate the selective role of herbivores.
Collapse
|
27
|
Attenuation of the jasmonate burst, plant defensive traits, and resistance to specialist monarch caterpillars on shaded common milkweed (Asclepias syriaca). J Chem Ecol 2012; 38:893-901. [PMID: 22661306 DOI: 10.1007/s10886-012-0145-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 05/03/2012] [Accepted: 05/03/2012] [Indexed: 01/08/2023]
Abstract
Plant responses to herbivory and light competition are often in opposing directions, posing a potential conflict for plants experiencing both stresses. For sun-adapted species, growing in shade typically makes plants more constitutively susceptible to herbivores via reduced structural and chemical resistance traits. Nonetheless, the impact of light environment on induced resistance has been less well-studied, especially in field experiments that link physiological mechanisms to ecological outcomes. Accordingly, we studied induced resistance of common milkweed (Asclepias syriaca, a sun-adapted plant), and linked hormonal responses, resistance traits, and performance of specialist monarch caterpillars (Danaus plexippus) in varying light environments. In natural populations, plants growing under forest-edge shade showed reduced levels of resistance traits (lower leaf toughness, cardenolides, and trichomes) and enhanced light-capture traits (higher specific leaf area, larger leaves, and lower carbon-to-nitrogen ratio) compared to paired plants in full sun. In a field experiment repeated over two years, only milkweeds growing in full sun exhibited induced resistance to monarchs, whereas plants growing in shade were constitutively more susceptible and did not induce resistance. In a more controlled field experiment, plant hormones were higher in the sun (jasmonic acid, salicylic acid, abscisic acid, indole acidic acid) and were induced by herbivory (jasmonic acid and abscisic acid). In particular, the jasmonate burst following herbivory was halved in plants raised in shaded habitats, and this correspondingly reduced latex induction (but not cardenolide induction). Thus, we provide a mechanistic basis for the attenuation of induced plant resistance in low resource environments. Additionally, there appears to be specificity in these interactions, with light-mediated impacts on jasmonate-induction being stronger for latex exudation than cardenolides.
Collapse
|
28
|
Differential growth responses in seedlings of ten species of Dipterocarpaceae to experimental shading and defoliation. JOURNAL OF TROPICAL ECOLOGY 2012. [DOI: 10.1017/s0266467412000326] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Abstract:The responses of plants to shade and foliar herbivory jointly affect growth rates and community assembly. We grew 600 seedlings of ten species of the economically important Dipterocarpaceae in experimental gradients of shading (0.3–47.0% of full sunlight) and defoliation (0, 25%, 50% or 75% of leaf area removed). We assessed stem diameters initially, after 2 and 4 mo, and calculated relative growth rates (RGR) with a linear model. Shading interacted with defoliation, reducing RGR by 21.6% in shaded conditions and 8.9% in well-lit conditions. We tested three hypotheses for interspecific trade-offs in growth responses to shading and defoliation. They could be positively related, because both reduce a plant's access to carbon, or inversely related because of trade-offs between herbivore resistance and tolerance. We observed, however, that species varied in their response to shading, but not defoliation, precluding an interspecific trade-off and suggesting that plants tolerate shade and herbivory with differing strategies. Shading most strongly reduced the growth of species with less-dense wood and larger seeds. The strong and variable growth responses to shade, contrasted with the weak and uniform responses to defoliation, suggest that variation in light availability more strongly affects the growth of tropical tree seedlings, and thus community assembly, than does variation in herbivory.
Collapse
|
29
|
Salgado-Luarte C, Gianoli E. Herbivory may modify functional responses to shade in seedlings of a light-demanding tree species. Funct Ecol 2010. [DOI: 10.1111/j.1365-2435.2010.01763.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|