1
|
Hagenauer MH, Sannah Y, Hebda-Bauer EK, Rhoads C, O'Connor AM, Flandreau E, Watson SJ, Akil H. Resource: A curated database of brain-related functional gene sets (Brain.GMT). MethodsX 2024; 13:102788. [PMID: 39049932 PMCID: PMC11267058 DOI: 10.1016/j.mex.2024.102788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 05/31/2024] [Indexed: 07/27/2024] Open
Abstract
Transcriptional profiling has become a common tool for investigating the nervous system. During analysis, differential expression results are often compared to functional ontology databases, which contain curated gene sets representing well-studied pathways. This dependence can cause neuroscience studies to be interpreted in terms of functional pathways documented in better studied tissues (e.g., liver) and topics (e.g., cancer), and systematically emphasizes well-studied genes, leaving other findings in the obscurity of the brain "ignorome". To address this issue, we compiled a curated database of 918 gene sets related to nervous system function, tissue, and cell types ("Brain.GMT") that can be used within common analysis pipelines (GSEA, limma, edgeR) to interpret results from three species (rat, mouse, human). Brain.GMT includes brain-related gene sets curated from the Molecular Signatures Database (MSigDB) and extracted from public databases (GeneWeaver, Gemma, DropViz, BrainInABlender, HippoSeq) and published studies containing differential expression results. Although Brain.GMT is still undergoing development and currently only represents a fraction of available brain gene sets, "brain ignorome" genes are already better represented than in traditional Gene Ontology databases. Moreover, Brain.GMT substantially improves the quantity and quality of gene sets identified as enriched with differential expression in neuroscience studies, enhancing interpretation. •We compiled a curated database of 918 gene sets related to nervous system function, tissue, and cell types ("Brain.GMT").•Brain.GMT can be used within common analysis pipelines (GSEA, limma, edgeR) to interpret neuroscience transcriptional profiling results from three species (rat, mouse, human).•Although Brain.GMT is still undergoing development, it substantially improved the interpretation of differential expression results within our initial use cases.
Collapse
Affiliation(s)
- Megan H. Hagenauer
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yusra Sannah
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Cosette Rhoads
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109, USA
- National Institutes of Health, Bethesda, MD 20892, USA
| | - Angela M. O'Connor
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Stanley J. Watson
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Huda Akil
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
2
|
Hagenauer MH, Sannah Y, Hebda-Bauer EK, Rhoads C, O'Connor AM, Watson SJ, Akil H. Resource: A Curated Database of Brain-Related Functional Gene Sets (Brain.GMT). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.05.588301. [PMID: 38645214 PMCID: PMC11030436 DOI: 10.1101/2024.04.05.588301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Transcriptional profiling has become a common tool for investigating the nervous system. During analysis, differential expression results are often compared to functional ontology databases, which contain curated gene sets representing well-studied pathways. This dependence can cause neuroscience studies to be interpreted in terms of functional pathways documented in better studied tissues (e.g., liver) and topics (e.g., cancer), and systematically emphasizes well-studied genes, leaving other findings in the obscurity of the brain "ignorome". To address this issue, we compiled a curated database of 918 gene sets related to nervous system function, tissue, and cell types ("Brain.GMT") that can be used within common analysis pipelines (GSEA, limma, edgeR) to interpret results from three species (rat, mouse, human). Brain.GMT includes brain-related gene sets curated from the Molecular Signatures Database (MSigDB) and extracted from public databases (GeneWeaver, Gemma, DropViz, BrainInABlender, HippoSeq) and published studies containing differential expression results. Although Brain.GMT is still undergoing development and currently only represents a fraction of available brain gene sets, "brain ignorome" genes are already better represented than in traditional Gene Ontology databases. Moreover, Brain.GMT substantially improves the quantity and quality of gene sets identified as enriched with differential expression in neuroscience studies, enhancing interpretation.
Collapse
Affiliation(s)
- Megan H Hagenauer
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor; MI 48109, USA
| | - Yusra Sannah
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor; MI 48109, USA
| | - Elaine K Hebda-Bauer
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor; MI 48109, USA
| | - Cosette Rhoads
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor; MI 48109, USA
- National Institutes of Health, Bethesda, MD 20892, USA
| | - Angela M O'Connor
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor; MI 48109, USA
| | - Stanley J Watson
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor; MI 48109, USA
| | - Huda Akil
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor; MI 48109, USA
| |
Collapse
|
3
|
Colita D, Burdusel D, Glavan D, Hermann DM, Colită CI, Colita E, Udristoiu I, Popa-Wagner A. Molecular mechanisms underlying major depressive disorder and post-stroke affective disorders. J Affect Disord 2024; 344:149-158. [PMID: 37827260 DOI: 10.1016/j.jad.2023.10.037] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/24/2023] [Accepted: 10/08/2023] [Indexed: 10/14/2023]
Abstract
Two of the most common and incapacitating mental health disorders around the world are major depressive disorder (MDD) and post-stroke depression (PSD). MDD is thought to result from abnormal connectivity between the monoaminergic, glutamatergic, GABAergic, and/or cholinergic pathways. Additional factors include the roles of hormonal, immune, ageing, as well as the influence of cellular, molecular, and epigenetics in the development of mood disorders. This complexity of factors has been anticipated by the Swiss psychiatrists Paul Kielholz and Jules Angst who introduced a multimodal treatment of MDD. Depression is the predominant mood disorder, impacting around one-third of individuals who have experienced a stroke. MDD and PSD share common underlying biological mechanisms related to the disruption of monoaminergic pathways. The major contributor to PSD is the stroke lesion location, which can involve the disruption of the serotoninergic, dopaminergic, glutamatergic, GABAergic, or cholinergic pathways. Additionally, various other disorders such as mania, bipolar disorder, anxiety disorder, and apathy might occur post-stroke, although their prevalence is considerably lower. However, there are differences in the onset of MDD among mood disorders. Some mood disorders develop gradually and can persist for a lifetime, potentially culminating in suicide. In contrast, PSD has a rapid onset because of the severe disruption of neural pathways essential for mood behavior caused by the lesion. However, PSD might also spontaneously resolve several months after a stroke, though it is associated with higher mortality. This review also provides a brief overview of the treatments currently available in medical practice.
Collapse
Affiliation(s)
- Daniela Colita
- Doctoral School, University of Medicine and Pharmacy Carol Davila, 050474 Bucharest, Romania
| | - Daiana Burdusel
- Department of Psychiatry, University of Medicine and Pharmacy, 200349 Craiova, Romania; Chair of Vascular Neurology, Dementia and Ageing, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Daniela Glavan
- Department of Psychiatry, University of Medicine and Pharmacy, 200349 Craiova, Romania; Chair of Vascular Neurology, Dementia and Ageing, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Dirk M Hermann
- Chair of Vascular Neurology, Dementia and Ageing, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Cezar-Ivan Colită
- Doctoral School, University of Medicine and Pharmacy Carol Davila, 050474 Bucharest, Romania
| | - Eugen Colita
- Doctoral School, University of Medicine and Pharmacy Carol Davila, 050474 Bucharest, Romania
| | - Ion Udristoiu
- Department of Psychiatry, University of Medicine and Pharmacy, 200349 Craiova, Romania.
| | - Aurel Popa-Wagner
- Chair of Vascular Neurology, Dementia and Ageing, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany.
| |
Collapse
|
4
|
Zhang Y, Li Y, Chen X, Chen X, Chen C, Wang L, Dong X, Wang G, Gu R, Li F, Han F, Chen D. Discovery of 1-(Hetero)aryl-β-carboline Derivatives as IDO1/TDO Dual Inhibitors with Antidepressant Activity. J Med Chem 2022; 65:11214-11228. [PMID: 35938398 DOI: 10.1021/acs.jmedchem.2c00677] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Depression is the leading cause of global burden of disease and disability. Abnormalities in the kynurenine pathway of tryptophan degradation have been closely linked to the pathogenesis of depression. An integrative bioinformatics analysis demonstrated that indoleamine 2,3-dioxygenase 1 (IDO1) and tryptophan 2,3-dioxygenase (TDO) are potential targets for the development of antidepressants. A series of 1-(hetero)aryl-β-carboline derivatives were designed, synthesized, and evaluated as novel IDO1/TDO dual inhibitors. Among them, compound 28 displayed potent inhibition of both IDO1 (IC50 = 3.53 μM) and TDO (IC50 = 1.15 μM) and had an acceptable safety profile and pharmacokinetic properties. Compound 28 also rescued lipopolysaccharide-induced depressive-like behavior in mice. Further studies revealed that 28 likely had unique antidepressant mechanisms involving suppressing microglial activation, lowering IDO1 expression, and reducing proinflammatory cytokine and kynurenine levels in the mouse brain. Overall, this work provides practical guidance for the development of IDO1/TDO dual inhibitors to treat inflammation-induced depression.
Collapse
Affiliation(s)
- Yu Zhang
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, Drug Target and Drug Discovery Center, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Yingchun Li
- Department of Medicinal Chemistry, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Xiang Chen
- Department of Medicinal Chemistry, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Xuan Chen
- Department of Medicinal Chemistry, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Chao Chen
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Li Wang
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Xu Dong
- Department of Medicinal Chemistry, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Guoli Wang
- Department of Medicinal Chemistry, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Ruxin Gu
- Institute of Brain Science, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 211166, China
| | - Fei Li
- Department of Medicinal Chemistry, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Feng Han
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, Drug Target and Drug Discovery Center, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China.,Institute of Brain Science, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 211166, China.,Gusu School, Nanjing Medical University, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215002, China
| | - Dongyin Chen
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, Drug Target and Drug Discovery Center, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China.,Department of Medicinal Chemistry, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
5
|
Chen Q, Fang J, Shen H, Chen L, Shi M, Huang X, Miao Z, Gong Y. Roles, molecular mechanisms, and signaling pathways of TMEMs in neurological diseases. Am J Transl Res 2021; 13:13273-13297. [PMID: 35035675 PMCID: PMC8748174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 11/10/2021] [Indexed: 06/14/2023]
Abstract
Transmembrane protein family members (TMEMs) span the entire lipid bilayer and act as channels that allow the transport of specific substances through biofilms. The functions of most TMEMs are unexplored. Numerous studies have shown that TMEMs are involved in the pathophysiological processes of various nervous system diseases, but the specific mechanisms of TMEMs in the pathogenesis of diseases remain unclear. In this review, we discuss the expression, physiological functions, and molecular mechanisms of TMEMs in brain tumors, psychiatric disorders, abnormal motor activity, cobblestone lissencephaly, neuropathic pain, traumatic brain injury, and other disorders of the nervous system. Additionally, we propose that TMEMs may be used as prognostic markers and potential therapeutic targets in patients with various neurological diseases.
Collapse
Affiliation(s)
- Qinghong Chen
- Affiliated Hospital of Jiangxi University of Traditional Chinese MedicineNanchang 330006, Jiangxi, China
| | - Junlin Fang
- Department of Acupuncture and Moxibustion, Banan Hospital of Traditional Chinese MedicineChongqing 401320, China
| | - Hui Shen
- Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese MedicineSuzhou 215600, Jiangsu, China
| | - Liping Chen
- Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese MedicineSuzhou 215600, Jiangsu, China
| | - Mengying Shi
- Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese MedicineSuzhou 215600, Jiangsu, China
| | - Xianbao Huang
- Affiliated Hospital of Jiangxi University of Traditional Chinese MedicineNanchang 330006, Jiangxi, China
| | - Zhiwei Miao
- Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese MedicineSuzhou 215600, Jiangsu, China
| | - Yating Gong
- Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese MedicineSuzhou 215600, Jiangsu, China
| |
Collapse
|
6
|
Birt IA, Hagenauer MH, Clinton SM, Aydin C, Blandino P, Stead JD, Hilde KL, Meng F, Thompson RC, Khalil H, Stefanov A, Maras P, Zhou Z, Hebda-Bauer EK, Goldman D, Watson SJ, Akil H. Genetic Liability for Internalizing Versus Externalizing Behavior Manifests in the Developing and Adult Hippocampus: Insight From a Meta-analysis of Transcriptional Profiling Studies in a Selectively Bred Rat Model. Biol Psychiatry 2021; 89:339-355. [PMID: 32762937 PMCID: PMC7704921 DOI: 10.1016/j.biopsych.2020.05.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 04/29/2020] [Accepted: 05/19/2020] [Indexed: 01/05/2023]
Abstract
BACKGROUND For more than 16 years, we have selectively bred rats for either high or low levels of exploratory activity within a novel environment. These bred high-responder (bHR) and bred low-responder (bLR) rats model temperamental extremes, exhibiting large differences in internalizing and externalizing behaviors relevant to mood and substance use disorders. METHODS We characterized persistent differences in gene expression related to bHR/bLR phenotype across development and adulthood in the hippocampus, a region critical for emotional regulation, by meta-analyzing 8 transcriptional profiling datasets (microarray and RNA sequencing) spanning 43 generations of selective breeding (postnatal day 7: n = 22; postnatal day 14: n = 49; postnatal day 21: n = 21; adult: n = 46; all male). We cross-referenced expression differences with exome sequencing within our colony to pinpoint candidates likely to mediate the effect of selective breeding on behavioral phenotype. The results were compared with hippocampal profiling from other bred rat models. RESULTS Genetic and transcriptional profiling results converged to implicate multiple candidate genes, including two previously associated with metabolism and mood: Trhr and Ucp2. Results also highlighted bHR/bLR functional differences in the hippocampus, including a network essential for neurodevelopmental programming, proliferation, and differentiation, centering on Bmp4 and Mki67. Finally, we observed differential expression related to microglial activation, which is important for synaptic pruning, including 2 genes within implicated chromosomal regions: C1qa and Mfge8. CONCLUSIONS These candidate genes and functional pathways may direct bHR/bLR rats along divergent developmental trajectories and promote a widely different reactivity to the environment.
Collapse
Affiliation(s)
- Isabelle A. Birt
- Molecular and Behavioral Neuroscience Institute, University of
Michigan, Ann Arbor, Michigan
| | - Megan H. Hagenauer
- Molecular and Behavioral Neuroscience Institute, University of
Michigan, Ann Arbor, Michigan
| | | | - Cigdem Aydin
- Molecular and Behavioral Neuroscience Institute, University of
Michigan, Ann Arbor, Michigan
| | - Peter Blandino
- Molecular and Behavioral Neuroscience Institute, University of
Michigan, Ann Arbor, Michigan
| | - John D.H. Stead
- Department of Neuroscience, Carleton University, Ottawa, Ontario,
Canada
| | - Kathryn L. Hilde
- Molecular and Behavioral Neuroscience Institute, University of
Michigan, Ann Arbor, Michigan
| | - Fan Meng
- Molecular and Behavioral Neuroscience Institute, University of
Michigan, Ann Arbor, Michigan
| | - Robert C. Thompson
- Molecular and Behavioral Neuroscience Institute, University of
Michigan, Ann Arbor, Michigan
| | - Huzefa Khalil
- Molecular and Behavioral Neuroscience Institute, University of
Michigan, Ann Arbor, Michigan
| | - Alex Stefanov
- Molecular and Behavioral Neuroscience Institute, University of
Michigan, Ann Arbor, Michigan
| | - Pamela Maras
- Molecular and Behavioral Neuroscience Institute, University of
Michigan, Ann Arbor, Michigan
| | - Zhifeng Zhou
- National Institute on Alcohol Abuse and Alcoholism, National
Institutes of Health, Bethesda, Maryland
| | - Elaine K. Hebda-Bauer
- Molecular and Behavioral Neuroscience Institute, University of
Michigan, Ann Arbor, Michigan
| | - David Goldman
- National Institute on Alcohol Abuse and Alcoholism, National
Institutes of Health, Bethesda, Maryland
| | - Stanley J. Watson
- Molecular and Behavioral Neuroscience Institute, University of
Michigan, Ann Arbor, Michigan
| | - Huda Akil
- Molecular and Behavioral Neuroscience Institute, University of
Michigan, Ann Arbor, Michigan
| |
Collapse
|
7
|
Gene expression signature of antidepressant treatment response/non-response in Flinders Sensitive Line rats subjected to maternal separation. Eur Neuropsychopharmacol 2020; 31:69-85. [PMID: 31813757 DOI: 10.1016/j.euroneuro.2019.11.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/11/2019] [Accepted: 11/20/2019] [Indexed: 12/21/2022]
Abstract
Neurobiological underpinnings of treatment-resistant depression, a debilitating condition associated with significant functional impairment, have not been elucidated. Consequently, the aim of this study was to use animal models of response and resistance to antidepressant treatment, in an attempt to identify differences in associated transcriptional responses. Flinders Sensitive Line rats were subjected to maternal separation (MS) and chronically treated with Escitalopram or Nortriptyline. Antidepressants reduced immobility time in the forced swim test in non-MS rats, while lack of antidepressant behavioural response was observed in MS animals. We developed a novel bioinformatic algorithm that enabled identification of transcriptional signatures in hippocampus and pre-frontal cortex that discriminate vehicle- and antidepressant-treated subjects in both MS and non-MS rats. Functional annotation analysis showed that in antidepressant-responder rats the most enriched pathways included IQGAPs activation, toll-like receptor trafficking, energy metabolism, and regulation of endopeptidase activity. The analysis of interacting proteins implicated synaptic vesicles and neurotransmitter release, ubiquitin regulation, cytoskeleton organisation and carbohydrate metabolism. In contrast, in treatment-resistant MS rats, main expression changes were revealed in ribosomal proteins, inflammatory responses, transcriptional/epigenetic regulation, and small GTPases. Susceptibility signature shared Rtn1, Zdhhc5, Igsf6, and Sim1 genes with the latest depression GWAS meta-analysis, while antidepressant resistance signature shared Ctnnd1, Rbms3, Atp1a3, and Pla2r1 genes. In conclusion, this study demonstrated that distinct transcriptional signatures are associated with behavioural response or non-response to antidepressant treatment. The identification of genes involved in antidepressant response will increase the comprehension of the neurobiological underpinnings of treatment-resistant depression, thus contributing to identification of novel therapeutic targets.
Collapse
|
8
|
Fracassi A, Marangoni M, Rosso P, Pallottini V, Fioramonti M, Siteni S, Segatto M. Statins and the Brain: More than Lipid Lowering Agents? Curr Neuropharmacol 2019; 17:59-83. [PMID: 28676012 PMCID: PMC6341496 DOI: 10.2174/1570159x15666170703101816] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 05/24/2017] [Accepted: 06/26/2017] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Statins represent a class of medications widely prescribed to efficiently treat dyslipidemia. These drugs inhibit 3-βhydroxy 3β-methylglutaryl Coenzyme A reductase (HMGR), the rate-limiting enzyme of mevalonate (MVA) pathway. Besides cholesterol, MVA pathway leads to the production of several other compounds, which are essential in the regulation of a plethora of biological activities, including in the central nervous system. For these reasons, statins are able to induce pleiotropic actions, and acquire increased interest as potential and novel modulators in brain processes, especially during pathological conditions. OBJECTIVE The purpose of this review is to summarize and examine the current knowledge about pharmacokinetic and pharmacodynamic properties of statins in the brain. In addition, effects of statin on brain diseases are discussed providing the most up-to-date information. METHODS Relevant scientific information was identified from PubMed database using the following keywords: statins and brain, central nervous system, neurological diseases, neurodegeneration, brain tumors, mood, stroke. RESULTS 315 scientific articles were selected and analyzed for the writing of this review article. Several papers highlighted that statin treatment is effective in preventing or ameliorating the symptomatology of a number of brain pathologies. However, other studies failed to demonstrate a neuroprotective effect. CONCLUSION Even though considerable research studies suggest pivotal functional outcomes induced by statin therapy, additional investigation is required to better determine the pharmacological effectiveness of statins in the brain, and support their clinical use in the management of different neuropathologies.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Marco Segatto
- Address correspondence to this author at the Department of Sense Organs, Sapienza University, viale del Policlinico 155, 00186 Rome, Italy; E-mail:
| |
Collapse
|
9
|
Gillentine MA, White JJ, Grochowski CM, Lupski JR, Schaaf CP, Calarge CA, Calarge CA. CHRNA7 copy number gains are enriched in adolescents with major depressive and anxiety disorders. J Affect Disord 2018; 239:247-252. [PMID: 30029151 PMCID: PMC6273479 DOI: 10.1016/j.jad.2018.07.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 05/15/2018] [Accepted: 07/07/2018] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Neuronal nicotinic acetylcholine receptors (nAChRs), specifically the α7 nAChR encoded by the gene CHRNA7, have been implicated in behavior regulation in animal models. In humans, copy number variants (CNVs) of CHRNA7 are found in a range of neuropsychiatric disorders, including mood and anxiety disorders. Here, we aimed to determine the prevalence of CHRNA7 CNVs among adolescents and young adults with major depressive disorder (MDD) and anxiety disorders. METHODS Twelve to 21 year-old participants with MDD and/or anxiety disorders (34% males, mean ± std age: 18.9 ± 1.8 years) were assessed for CHRNA7 copy number state using droplet digital PCR (ddPCR) and genomic quantitative PCR (qPCR). Demographic, anthropometric, and clinical data, including the Beck Anxiety Index (BAI), Beck Depression Inventory (BDI), and the Inventory of Depressive Symptoms (IDS) were collected and compared across individuals with and without a CHRNA7 CNV. RESULTS Of 205 individuals, five (2.4%) were found to carry a CHRNA7 gain, significantly higher than the general population. No CHRNA7 deletions were identified. Clinically, the individuals carrying CHRNA7 duplications did not differ significantly from copy neutral individuals with MDD and/or anxiety disorders. CONCLUSIONS CHRNA7 gains are relatively prevalent among young individuals with MDD and anxiety disorders (odds ratio = 4.032) without apparent distinguishing clinical features. Future studies should examine the therapeutic potential of α7 nAChR targeting drugs to ameliorate depressive and anxiety disorders.
Collapse
Affiliation(s)
- Madelyn A. Gillentine
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas.,Jan and Dan Neurological Research Institute, Texas Children’s Hospital, Houston, Texas
| | - Janson J. White
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | | | - James R. Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas.,Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas.,Texas Children’s Hospital, Houston, Texas
| | - Christian P. Schaaf
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas.,Jan and Dan Neurological Research Institute, Texas Children’s Hospital, Houston, Texas
| | - Chadi A. Calarge
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, Texas
| | - Chadi A Calarge
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX 77030, United States.
| |
Collapse
|
10
|
Carboni L, Marchetti L, Lauria M, Gass P, Vollmayr B, Redfern A, Jones L, Razzoli M, Malki K, Begni V, Riva MA, Domenici E, Caberlotto L, Mathé AA. Cross-species evidence from human and rat brain transcriptome for growth factor signaling pathway dysregulation in major depression. Neuropsychopharmacology 2018; 43:2134-2145. [PMID: 29950584 PMCID: PMC6098161 DOI: 10.1038/s41386-018-0117-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 05/19/2018] [Accepted: 06/01/2018] [Indexed: 01/10/2023]
Abstract
An enhanced understanding of the pathophysiology of depression would facilitate the discovery of new efficacious medications. To this end, we examined hippocampal transcriptional changes in rat models of disease and in humans to identify common disease signatures by using a new algorithm for signature-based clustering of expression profiles. The tool identified a transcriptomic signature comprising 70 probesets able to discriminate depression models from controls in both Flinders Sensitive Line and Learned Helplessness animals. To identify disease-relevant pathways, we constructed an expanded protein network based on signature gene products and performed functional annotation analysis. We applied the same workflow to transcriptomic profiles of depressed patients. Remarkably, a 171-probesets transcriptional signature which discriminated depressed from healthy subjects was identified. Rat and human signatures shared the SCARA5 gene, while the respective networks derived from protein-based significant interactions with signature genes contained 25 overlapping genes. The comparison between the most enriched pathways in the rat and human signature networks identified a highly significant overlap (p-value: 3.85 × 10-6) of 67 terms including ErbB, neurotrophin, FGF, IGF, and VEGF signaling, immune responses and insulin and leptin signaling. In conclusion, this study allowed the identification of a hippocampal transcriptional signature of resilient or susceptible responses in rat MDD models which overlapped with gene expression alterations observed in depressed patients. These findings are consistent with a loss of hippocampal neural plasticity mediated by altered levels of growth factors and increased inflammatory responses causing metabolic impairments as crucial factors in the pathophysiology of MDD.
Collapse
Affiliation(s)
- Lucia Carboni
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Bologna, Italy.
| | - Luca Marchetti
- The Microsoft Research - University of Trento Centre for Computational and Systems Biology, Rovereto, Trento, Italy
| | - Mario Lauria
- The Microsoft Research - University of Trento Centre for Computational and Systems Biology, Rovereto, Trento, Italy
- Department of Mathematics, University of Trento, Povo, Trento, Italy
| | - Peter Gass
- RG Animal Models in Psychiatry, Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Barbara Vollmayr
- RG Animal Models in Psychiatry, Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Amanda Redfern
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Lesley Jones
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Maria Razzoli
- Department of Integrative Biology and Physiology University of Minnesota, 2231 6th Street SE, Minneapolis, USA
| | - Karim Malki
- King's College London, at the Institute of Psychiatry, Psychology and Neuroscience (IOPPN), London, UK
| | - Veronica Begni
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Marco A Riva
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Enrico Domenici
- The Microsoft Research - University of Trento Centre for Computational and Systems Biology, Rovereto, Trento, Italy
- Laboratory of Neurogenomic Biomarkers, Centre for Integrative Biology (CIBIO), University of Trento, Povo, Trento, Italy
| | - Laura Caberlotto
- The Microsoft Research - University of Trento Centre for Computational and Systems Biology, Rovereto, Trento, Italy
- The Aptuit Center for Drug Discovery & Development, Via Fleming, 4, 37135, Verona, Italy
| | - Aleksander A Mathé
- Karolinska Institutet, Department of Clinical Neuroscience, Stockholm, Sweden
| |
Collapse
|
11
|
Sun L, Zhang Y, Zhang C. Distinct Expression and Prognostic Value of MS4A in Gastric Cancer. Open Med (Wars) 2018; 13:178-188. [PMID: 29756054 PMCID: PMC5941698 DOI: 10.1515/med-2018-0028] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Accepted: 03/15/2018] [Indexed: 12/20/2022] Open
Abstract
Gastric cancer has high malignancy and early metastasis, which lead to poor survival rate. In this study, we assessed the expressions and prognostic values of MS4A family, a newly recently discovered family, by two online dataset, GEPIA and Kaplan Meier-plotter. From these results eight members, MS4A2, MS4A6, MS4A7, MS4A8, MS4A14, MS4A15, TMEM176A and TMEM176B showed positive expression in gastric cancer or normal tissues, and these genes were screened for further analysis of prognostic values. We observed that low mRNA expressions of MS4A2, MS4A7, MS4A14, MS4A15, TMEM176A and TMEM176B were correlated with better overall survival (OS) in all gastric cancer patients, while high mRNA expression of MS4A6 was observed to be associated with good prognosis. MS4A8’s high mRNA level was correlated to better OS in diffuse gastric cancer patients. Further, we estimated prognostic values of MS4A family in gastric cancer patients with different clinic-pathological features, including clinical stages, differentiation level, lymph node status and HER2 status. Our results indicate that these eight MS4A members can estimate prognosis in patients with different pathological groups. In conclusion, MS4A family members are potential biomarkers, and may contribute to tumor progression in gastric cancer.
Collapse
Affiliation(s)
- Lei Sun
- Department of General Surgery, Zaozhuang Municipal Hospital, Zaozhuang, 277100, Shandong Province, China
| | - Yanli Zhang
- Medical Department, Maternity and Child Care Centers, Zaozhuang, 277100, Shandong Province, China
| | - Chao Zhang
- Department of General Surgery, Zaozhuang Municipal Hospital, 41# Longtou Road, Zaozhuang, 277100, Shandong Province, China, Tel. +86-632-3227241
| |
Collapse
|
12
|
Kos MZ, Carless MA, Peralta J, Curran JE, Quillen EE, Almeida M, Blackburn A, Blondell L, Roalf DR, Pogue-Geile MF, Gur RC, Göring HHH, Nimgaonkar VL, Gur RE, Almasy L. Exome sequences of multiplex, multigenerational families reveal schizophrenia risk loci with potential implications for neurocognitive performance. Am J Med Genet B Neuropsychiatr Genet 2017; 174:817-827. [PMID: 28902459 PMCID: PMC5760172 DOI: 10.1002/ajmg.b.32597] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 08/16/2017] [Indexed: 12/28/2022]
Abstract
Schizophrenia is a serious mental illness, involving disruptions in thought and behavior, with a worldwide prevalence of about one percent. Although highly heritable, much of the genetic liability of schizophrenia is yet to be explained. We searched for susceptibility loci in multiplex, multigenerational families affected by schizophrenia, targeting protein-altering variation with in silico predicted functional effects. Exome sequencing was performed on 136 samples from eight European-American families, including 23 individuals diagnosed with schizophrenia or schizoaffective disorder. In total, 11,878 non-synonymous variants from 6,396 genes were tested for their association with schizophrenia spectrum disorders. Pathway enrichment analyses were conducted on gene-based test results, protein-protein interaction (PPI) networks, and epistatic effects. Using a significance threshold of FDR < 0.1, association was detected for rs10941112 (p = 2.1 × 10-5 ; q-value = 0.073) in AMACR, a gene involved in fatty acid metabolism and previously implicated in schizophrenia, with significant cis effects on gene expression (p = 5.5 × 10-4 ), including brain tissue data from the Genotype-Tissue Expression project (minimum p = 6.0 × 10-5 ). A second SNP, rs10378 located in TMEM176A, also shows risk effects in the exome data (p = 2.8 × 10-5 ; q-value = 0.073). PPIs among our top gene-based association results (p < 0.05; n = 359 genes) reveal significant enrichment of genes involved in NCAM-mediated neurite outgrowth (p = 3.0 × 10-5 ), while exome-wide SNP-SNP interaction effects for rs10941112 and rs10378 indicate a potential role for kinase-mediated signaling involved in memory and learning. In conclusion, these association results implicate AMACR and TMEM176A in schizophrenia risk, whose effects may be modulated by genes involved in synaptic plasticity and neurocognitive performance.
Collapse
Affiliation(s)
- Mark Z. Kos
- South Texas Diabetes and Obesity Institute, The University of Texas
Rio Grande Valley, San Antonio and Brownsville, TX, USA
| | - Melanie A. Carless
- Department of Genetics, Texas Biomedical Research Institute, San
Antonio, TX, USA
| | - Juan Peralta
- South Texas Diabetes and Obesity Institute, The University of Texas
Rio Grande Valley, San Antonio and Brownsville, TX, USA
| | - Joanne E. Curran
- South Texas Diabetes and Obesity Institute, The University of Texas
Rio Grande Valley, San Antonio and Brownsville, TX, USA
| | - Ellen E. Quillen
- Department of Genetics, Texas Biomedical Research Institute, San
Antonio, TX, USA
| | - Marcio Almeida
- South Texas Diabetes and Obesity Institute, The University of Texas
Rio Grande Valley, San Antonio and Brownsville, TX, USA
| | - August Blackburn
- South Texas Diabetes and Obesity Institute, The University of Texas
Rio Grande Valley, San Antonio and Brownsville, TX, USA
| | - Lucy Blondell
- South Texas Diabetes and Obesity Institute, The University of Texas
Rio Grande Valley, San Antonio and Brownsville, TX, USA
| | - David R. Roalf
- Department of Psychiatry, University of Pennsylvania School of
Medicine, Philadelphia, PA, USA
| | | | - Ruben C. Gur
- Department of Psychiatry, University of Pennsylvania School of
Medicine, Philadelphia, PA, USA
| | - Harald H. H. Göring
- South Texas Diabetes and Obesity Institute, The University of Texas
Rio Grande Valley, San Antonio and Brownsville, TX, USA
| | | | - Raquel E. Gur
- Department of Psychiatry, University of Pennsylvania School of
Medicine, Philadelphia, PA, USA
| | - Laura Almasy
- Departments of Genetics, University of Pennsylvania School of
Medicine, Philadelphia, PA, USA
| |
Collapse
|
13
|
Lener MS, Kadriu B, Zarate CA. Ketamine and Beyond: Investigations into the Potential of Glutamatergic Agents to Treat Depression. Drugs 2017; 77:381-401. [PMID: 28194724 PMCID: PMC5342919 DOI: 10.1007/s40265-017-0702-8] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Clinical and preclinical studies suggest that dysfunction of the glutamatergic system is implicated in mood disorders such as major depressive disorder and bipolar depression. In clinical studies of individuals with major depressive disorder and bipolar depression, rapid reductions in depressive symptoms have been observed in response to subanesthetic-dose ketamine, an agent whose mechanism of action involves the modulation of glutamatergic signaling. The findings from these studies have prompted the repurposing and/or development of other glutamatergic modulators for antidepressant efficacy, both as monotherapy or as an adjunct to conventional monoaminergic antidepressants. This review highlights the evidence supporting the antidepressant effects of subanesthetic-dose ketamine as well as other glutamatergic modulators, such as D-cycloserine, riluzole, CP-101,606, CERC-301 (previously known as MK-0657), basimglurant, JNJ-40411813, dextromethorphan, nitrous oxide, GLYX-13, and esketamine.
Collapse
Affiliation(s)
- Marc S Lener
- Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Building 10/CRC, Room 7-5545, Bethesda, MD, USA.
| | - Bashkim Kadriu
- Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Building 10/CRC, Room 7-5545, Bethesda, MD, USA
| | - Carlos A Zarate
- Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Building 10/CRC, Room 7-5545, Bethesda, MD, USA
| |
Collapse
|
14
|
Du Jardin KG, Müller HK, Sanchez C, Wegener G, Elfving B. Gene expression related to serotonergic and glutamatergic neurotransmission is altered in the flinders sensitive line rat model of depression: Effect of ketamine. Synapse 2016; 71:37-45. [PMID: 27589698 DOI: 10.1002/syn.21940] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 08/09/2016] [Accepted: 08/24/2016] [Indexed: 11/11/2022]
Abstract
Major depressive disorder (MDD) is associated with dysfunctional serotonergic and glutamatergic neurotransmission, and the genetic animal model of depression Flinders Sensitive Line (FSL) rats display alterations in these systems relatively to their control strain Flinders Resistant Line (FRL). However, changes on transcript level related to serotonergic and glutamatergic signaling have only been sparsely studied in this model. The non-competitive N-methyl-D-aspartate (NMDA) receptor antagonist ketamine has fast-onset antidepressant properties, and recent data implicate serotonergic neurotransmission in ketamine's antidepressant-like activities in rodents. Here, we investigated the transcript levels of 40 genes involved in serotonergic and glutamatergic neurotransmission in FSL and FRL rats in response to a single dose of ketamine (15 mg/kg; 90 min prior to euthanization). Using real-time quantitative polymerase chain reaction, we studied the effect of ketamine in the hippocampus, whereas strain differences were investigated in both hippocampus and frontal cortex. The expression of genes involved in serotonergic and glutamatergic neurotransmission were unaffected by a single dose of ketamine in the hippocampus. Relative to FRL rats, FSL rats displayed enhanced hippocampal transcript levels of 5-ht2c , and P11, whereas the expression was reduced for 5-ht2a , Nr2a, and Mglur2. In the frontal cortex, we found higher transcript levels of 5-ht2c and Mglur2, whereas the expression of 5-ht2a was reduced in FSL rats. Thus, ketamine is not associated with hippocampal alterations in serotonergic or glutamatergic genes at 90 min after an antidepressant dose. Furthermore, FSL rats display serotonergic and glutamatergic abnormalities on gene expression level that partly may resemble findings in MDD patients.
Collapse
Affiliation(s)
- Kristian Gaarn Du Jardin
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Skovagervej 2, Risskov, Denmark
| | - Heidi Kaastrup Müller
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Skovagervej 2, Risskov, Denmark
| | - Connie Sanchez
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Skovagervej 2, Risskov, Denmark.,Lundbeck US LLC, 215 College Rd, Paramus, New Jersey
| | - Gregers Wegener
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Skovagervej 2, Risskov, Denmark
| | - Betina Elfving
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Skovagervej 2, Risskov, Denmark
| |
Collapse
|
15
|
Wei YB, Melas PA, Villaescusa JC, Liu JJ, Xu N, Christiansen SH, Elbrønd-Bek H, Woldbye DPD, Wegener G, Mathé AA, Lavebratt C. MicroRNA 101b Is Downregulated in the Prefrontal Cortex of a Genetic Model of Depression and Targets the Glutamate Transporter SLC1A1 (EAAT3) in Vitro. Int J Neuropsychopharmacol 2016; 19:pyw069. [PMID: 27507301 PMCID: PMC5203758 DOI: 10.1093/ijnp/pyw069] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Accepted: 08/02/2016] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) are small regulatory molecules that cause translational repression by base pairing with target mRNAs. Cumulative evidence suggests that changes in miRNA expression may in part underlie the pathophysiology and treatment of neuropsychiatric disorders, including major depressive disorder (MDD). METHODS A miRNA expression assay that can simultaneously detect 423 rat miRNAs (miRBase v.17) was used to profile the prefrontal cortex (PFC) of a genetic rat model of MDD (the Flinders Sensitive Line [FSL]) and the controls, the Flinders Resistant Line (FRL). Gene expression data from the PFC of FSL/FRL animals (GEO accession no. GSE20388) were used to guide mRNA target selection. Luciferase reporter assays were used to verify miRNA targets in vitro. RESULTS We identified 23 miRNAs that were downregulated in the PFC of the FSL model compared with controls. Interestingly, one of the identified miRNAs (miR-101b) is highly conserved between rat and human and was recently found to be downregulated in the PFC of depressed suicide subjects. Using a combination of in silico and in vitro analyses, we found that miR-101b targets the neuronal glutamate transporter SLC1A1 (also known as EAAC1 or EAAT3). Accordingly, both mRNA and protein levels of SLC1A1 were found to be upregulated in the PFC of the FSL model. CONCLUSIONS Besides providing a list of novel miRNAs associated with depression-like states, this preclinical study replicated the human association of miR-101 with depression. In addition, since one of the targets of miR-101b appears to be a glutamate transporter, our preclinical data support the hypothesis of a glutamatergic dysregulation being implicated in the etiology of depression.
Collapse
Affiliation(s)
- Ya Bin Wei
- Department of Molecular Medicine and Surgery, Neurogenetics Unit (Drs Wei, Melas, Liu, and Lavebratt), Center for Molecular Medicine (Drs Wei, Melas, Villaescusa, Liu, Xu, and Lavebratt), Department of Clinical Neuroscience (Drs Melas and Mathé), Department of Molecular Biochemistry and Biophysics, Neurogenetics Unit (Dr Villaescusa), and Department of Medicine (Dr Xu), Karolinska Institutet, Stockholm, Sweden; Department of Neuroscience and Pharmacology, Laboratory for Neural Plasticity, University of Copenhagen, Denmark (Drs Christiansen, Elbrønd-Bek, and Woldbye); Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark (Dr Wegener); Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa (Dr Wegener).
| | - Philippe A Melas
- Department of Molecular Medicine and Surgery, Neurogenetics Unit (Drs Wei, Melas, Liu, and Lavebratt), Center for Molecular Medicine (Drs Wei, Melas, Villaescusa, Liu, Xu, and Lavebratt), Department of Clinical Neuroscience (Drs Melas and Mathé), Department of Molecular Biochemistry and Biophysics, Neurogenetics Unit (Dr Villaescusa), and Department of Medicine (Dr Xu), Karolinska Institutet, Stockholm, Sweden; Department of Neuroscience and Pharmacology, Laboratory for Neural Plasticity, University of Copenhagen, Denmark (Drs Christiansen, Elbrønd-Bek, and Woldbye); Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark (Dr Wegener); Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa (Dr Wegener)
| | - J Carlos Villaescusa
- Department of Molecular Medicine and Surgery, Neurogenetics Unit (Drs Wei, Melas, Liu, and Lavebratt), Center for Molecular Medicine (Drs Wei, Melas, Villaescusa, Liu, Xu, and Lavebratt), Department of Clinical Neuroscience (Drs Melas and Mathé), Department of Molecular Biochemistry and Biophysics, Neurogenetics Unit (Dr Villaescusa), and Department of Medicine (Dr Xu), Karolinska Institutet, Stockholm, Sweden; Department of Neuroscience and Pharmacology, Laboratory for Neural Plasticity, University of Copenhagen, Denmark (Drs Christiansen, Elbrønd-Bek, and Woldbye); Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark (Dr Wegener); Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa (Dr Wegener)
| | - Jia Jia Liu
- Department of Molecular Medicine and Surgery, Neurogenetics Unit (Drs Wei, Melas, Liu, and Lavebratt), Center for Molecular Medicine (Drs Wei, Melas, Villaescusa, Liu, Xu, and Lavebratt), Department of Clinical Neuroscience (Drs Melas and Mathé), Department of Molecular Biochemistry and Biophysics, Neurogenetics Unit (Dr Villaescusa), and Department of Medicine (Dr Xu), Karolinska Institutet, Stockholm, Sweden; Department of Neuroscience and Pharmacology, Laboratory for Neural Plasticity, University of Copenhagen, Denmark (Drs Christiansen, Elbrønd-Bek, and Woldbye); Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark (Dr Wegener); Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa (Dr Wegener)
| | - Ning Xu
- Department of Molecular Medicine and Surgery, Neurogenetics Unit (Drs Wei, Melas, Liu, and Lavebratt), Center for Molecular Medicine (Drs Wei, Melas, Villaescusa, Liu, Xu, and Lavebratt), Department of Clinical Neuroscience (Drs Melas and Mathé), Department of Molecular Biochemistry and Biophysics, Neurogenetics Unit (Dr Villaescusa), and Department of Medicine (Dr Xu), Karolinska Institutet, Stockholm, Sweden; Department of Neuroscience and Pharmacology, Laboratory for Neural Plasticity, University of Copenhagen, Denmark (Drs Christiansen, Elbrønd-Bek, and Woldbye); Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark (Dr Wegener); Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa (Dr Wegener)
| | - Søren Hofman Christiansen
- Department of Molecular Medicine and Surgery, Neurogenetics Unit (Drs Wei, Melas, Liu, and Lavebratt), Center for Molecular Medicine (Drs Wei, Melas, Villaescusa, Liu, Xu, and Lavebratt), Department of Clinical Neuroscience (Drs Melas and Mathé), Department of Molecular Biochemistry and Biophysics, Neurogenetics Unit (Dr Villaescusa), and Department of Medicine (Dr Xu), Karolinska Institutet, Stockholm, Sweden; Department of Neuroscience and Pharmacology, Laboratory for Neural Plasticity, University of Copenhagen, Denmark (Drs Christiansen, Elbrønd-Bek, and Woldbye); Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark (Dr Wegener); Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa (Dr Wegener)
| | - Heidi Elbrønd-Bek
- Department of Molecular Medicine and Surgery, Neurogenetics Unit (Drs Wei, Melas, Liu, and Lavebratt), Center for Molecular Medicine (Drs Wei, Melas, Villaescusa, Liu, Xu, and Lavebratt), Department of Clinical Neuroscience (Drs Melas and Mathé), Department of Molecular Biochemistry and Biophysics, Neurogenetics Unit (Dr Villaescusa), and Department of Medicine (Dr Xu), Karolinska Institutet, Stockholm, Sweden; Department of Neuroscience and Pharmacology, Laboratory for Neural Plasticity, University of Copenhagen, Denmark (Drs Christiansen, Elbrønd-Bek, and Woldbye); Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark (Dr Wegener); Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa (Dr Wegener)
| | - David Paul Drucker Woldbye
- Department of Molecular Medicine and Surgery, Neurogenetics Unit (Drs Wei, Melas, Liu, and Lavebratt), Center for Molecular Medicine (Drs Wei, Melas, Villaescusa, Liu, Xu, and Lavebratt), Department of Clinical Neuroscience (Drs Melas and Mathé), Department of Molecular Biochemistry and Biophysics, Neurogenetics Unit (Dr Villaescusa), and Department of Medicine (Dr Xu), Karolinska Institutet, Stockholm, Sweden; Department of Neuroscience and Pharmacology, Laboratory for Neural Plasticity, University of Copenhagen, Denmark (Drs Christiansen, Elbrønd-Bek, and Woldbye); Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark (Dr Wegener); Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa (Dr Wegener)
| | - Gregers Wegener
- Department of Molecular Medicine and Surgery, Neurogenetics Unit (Drs Wei, Melas, Liu, and Lavebratt), Center for Molecular Medicine (Drs Wei, Melas, Villaescusa, Liu, Xu, and Lavebratt), Department of Clinical Neuroscience (Drs Melas and Mathé), Department of Molecular Biochemistry and Biophysics, Neurogenetics Unit (Dr Villaescusa), and Department of Medicine (Dr Xu), Karolinska Institutet, Stockholm, Sweden; Department of Neuroscience and Pharmacology, Laboratory for Neural Plasticity, University of Copenhagen, Denmark (Drs Christiansen, Elbrønd-Bek, and Woldbye); Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark (Dr Wegener); Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa (Dr Wegener)
| | - Aleksander A Mathé
- Department of Molecular Medicine and Surgery, Neurogenetics Unit (Drs Wei, Melas, Liu, and Lavebratt), Center for Molecular Medicine (Drs Wei, Melas, Villaescusa, Liu, Xu, and Lavebratt), Department of Clinical Neuroscience (Drs Melas and Mathé), Department of Molecular Biochemistry and Biophysics, Neurogenetics Unit (Dr Villaescusa), and Department of Medicine (Dr Xu), Karolinska Institutet, Stockholm, Sweden; Department of Neuroscience and Pharmacology, Laboratory for Neural Plasticity, University of Copenhagen, Denmark (Drs Christiansen, Elbrønd-Bek, and Woldbye); Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark (Dr Wegener); Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa (Dr Wegener)
| | - Catharina Lavebratt
- Department of Molecular Medicine and Surgery, Neurogenetics Unit (Drs Wei, Melas, Liu, and Lavebratt), Center for Molecular Medicine (Drs Wei, Melas, Villaescusa, Liu, Xu, and Lavebratt), Department of Clinical Neuroscience (Drs Melas and Mathé), Department of Molecular Biochemistry and Biophysics, Neurogenetics Unit (Dr Villaescusa), and Department of Medicine (Dr Xu), Karolinska Institutet, Stockholm, Sweden; Department of Neuroscience and Pharmacology, Laboratory for Neural Plasticity, University of Copenhagen, Denmark (Drs Christiansen, Elbrønd-Bek, and Woldbye); Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark (Dr Wegener); Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa (Dr Wegener)
| |
Collapse
|
16
|
van Zyl PJ, Dimatelis JJ, Russell VA. Behavioural and biochemical changes in maternally separated Sprague-Dawley rats exposed to restraint stress. Metab Brain Dis 2016; 31:121-33. [PMID: 26555398 DOI: 10.1007/s11011-015-9757-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 10/27/2015] [Indexed: 01/26/2023]
Abstract
Early life adversity has been associated with the development of various neuropsychiatric disorders in adulthood such as depression and anxiety. The aim of this study was to determine if stress during adulthood can exaggerate the depression-/anxiety-like behaviour observed in the widely accepted maternally separated (MS) Sprague-Dawley (SD) rat model of depression. A further aim was to determine whether the behavioural changes were accompanied by changes in hippocampal brain-derived neurotrophic factor (BDNF) and the protein profile of the prefrontal cortex (PFC). Depression-/anxiety-like behaviour was measured in the elevated plus maze, open field and forced swim test (FST) in the MS SD rats exposed to chronic restraint stress in adulthood. As expected, MS increased immobility of SD rats in the FST but restraint stress did not enhance this effect of MS on SD rats. A proteomic analysis of the PFC revealed a decrease in actin-related proteins in MS and non-separated rats subjected to restraint stress as well as a decrease in mitochondrial energy-related proteins in the stressed rat groups. Since MS during early development causes a disruption in the hypothalamic-pituitary-adrenal axis and long-term changes in the response to subsequent stress, it may have prevented restraint stress from exerting its effects on behaviour. Moreover, the decrease in proteins related to mitochondrial energy metabolism in MS rats with or without subsequent restraint stress may be related to stress per se and not depression-like behaviour, because rats subjected to restraint stress displayed similar decreases in energy-related proteins and spent less time immobile in the FST than control rats.
Collapse
Affiliation(s)
- P J van Zyl
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925, South Africa.
| | - J J Dimatelis
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925, South Africa
| | - V A Russell
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925, South Africa
| |
Collapse
|
17
|
Lin E, Tsai SJ. Genome-wide microarray analysis of gene expression profiling in major depression and antidepressant therapy. Prog Neuropsychopharmacol Biol Psychiatry 2016; 64:334-40. [PMID: 25708651 DOI: 10.1016/j.pnpbp.2015.02.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 02/13/2015] [Accepted: 02/15/2015] [Indexed: 12/21/2022]
Abstract
Major depressive disorder (MDD) is a serious health concern worldwide. Currently there are no predictive tests for the effectiveness of any particular antidepressant in an individual patient. Thus, doctors must prescribe antidepressants based on educated guesses. With the recent advent of scientific research, genome-wide gene expression microarray studies are widely utilized to analyze hundreds of thousands of biomarkers by high-throughput technologies. In addition to the candidate-gene approach, the genome-wide approach has recently been employed to investigate the determinants of MDD as well as antidepressant response to therapy. In this review, we mainly focused on gene expression studies with genome-wide approaches using RNA derived from peripheral blood cells. Furthermore, we reviewed their limitations and future directions with respect to the genome-wide gene expression profiling in MDD pathogenesis as well as in antidepressant therapy.
Collapse
Affiliation(s)
- Eugene Lin
- Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan; Vita Genomics, Inc., Taipei, Taiwan
| | - Shih-Jen Tsai
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan; Division of Psychiatry, National Yang-Ming University, Taipei, Taiwan.
| |
Collapse
|
18
|
Oldenburg J, Watzka M, Bevans CG. VKORC1 and VKORC1L1: Why do Vertebrates Have Two Vitamin K 2,3-Epoxide Reductases? Nutrients 2015; 7:6250-80. [PMID: 26264021 PMCID: PMC4555119 DOI: 10.3390/nu7085280] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 07/08/2015] [Accepted: 07/15/2015] [Indexed: 01/01/2023] Open
Abstract
Among all cellular life on earth, with the exception of yeasts, fungi, and some prokaryotes, VKOR family homologs are ubiquitously encoded in nuclear genomes, suggesting ancient and important biological roles for these enzymes. Despite single gene and whole genome duplications on the largest evolutionary timescales, and the fact that most gene duplications eventually result in loss of one copy, it is surprising that all jawed vertebrates (gnathostomes) have retained two paralogous VKOR genes. Both VKOR paralogs function as entry points for nutritionally acquired and recycled K vitamers in the vitamin K cycle. Here we present phylogenetic evidence that the human paralogs likely arose earlier than gnathostomes, possibly in the ancestor of crown chordates. We ask why gnathostomes have maintained these paralogs throughout evolution and present a current summary of what we know. In particular, we look to published studies about tissue- and developmental stage-specific expression, enzymatic function, phylogeny, biological roles and associated pathways that together suggest subfunctionalization as a major influence in evolutionary fixation of both paralogs. Additionally, we investigate on what evolutionary timescale the paralogs arose and under what circumstances in order to gain insight into the biological raison d’être for both VKOR paralogs in gnathostomes.
Collapse
Affiliation(s)
- Johannes Oldenburg
- Institute of Experimental Haematology and Transfusion Medicine, University Clinic Bonn, Bonn 53105, Germany.
| | - Matthias Watzka
- Institute of Experimental Haematology and Transfusion Medicine, University Clinic Bonn, Bonn 53105, Germany.
| | | |
Collapse
|
19
|
Identification of genes and gene pathways associated with major depressive disorder by integrative brain analysis of rat and human prefrontal cortex transcriptomes. Transl Psychiatry 2015; 5:e519. [PMID: 25734512 PMCID: PMC4429169 DOI: 10.1038/tp.2015.15] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 12/22/2014] [Accepted: 01/12/2015] [Indexed: 12/20/2022] Open
Abstract
Despite moderate heritability estimates, progress in uncovering the molecular substrate underpinning major depressive disorder (MDD) has been slow. In this study, we used prefrontal cortex (PFC) gene expression from a genetic rat model of MDD to inform probe set prioritization in PFC in a human post-mortem study to uncover genes and gene pathways associated with MDD. Gene expression differences between Flinders sensitive (FSL) and Flinders resistant (FRL) rat lines were statistically evaluated using the RankProd, non-parametric algorithm. Top ranking probe sets in the rat study were subsequently used to prioritize orthologous selection in a human PFC in a case-control post-mortem study on MDD from the Stanley Brain Consortium. Candidate genes in the human post-mortem study were then tested against a matched control sample using the RankProd method. A total of 1767 probe sets were differentially expressed in the PFC between FSL and FRL rat lines at (q⩽0.001). A total of 898 orthologous probe sets was found on Affymetrix's HG-U95A chip used in the human study. Correcting for the number of multiple, non-independent tests, 20 probe sets were found to be significantly dysregulated between human cases and controls at q⩽0.05. These probe sets tagged the expression profile of 18 human genes (11 upregulated and seven downregulated). Using an integrative rat-human study, a number of convergent genes that may have a role in pathogenesis of MDD were uncovered. Eighty percent of these genes were functionally associated with a key stress response signalling cascade, involving NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells), AP-1 (activator protein 1) and ERK/MAPK, which has been systematically associated with MDD, neuroplasticity and neurogenesis.
Collapse
|
20
|
Expression of inflammatory markers in a genetic rodent model of depression. Behav Brain Res 2015; 281:348-57. [DOI: 10.1016/j.bbr.2014.09.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 08/20/2014] [Accepted: 09/15/2014] [Indexed: 12/11/2022]
|
21
|
Effects of L-theanine on posttraumatic stress disorder induced changes in rat brain gene expression. ScientificWorldJournal 2014; 2014:419032. [PMID: 25165739 PMCID: PMC4137547 DOI: 10.1155/2014/419032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Revised: 04/11/2014] [Accepted: 05/13/2014] [Indexed: 01/02/2023] Open
Abstract
Posttraumatic stress disorder (PTSD) is characterized by the occurrence of a traumatic event that is beyond the normal range of human experience. The future of PTSD treatment may specifically target the molecular mechanisms of PTSD. In the US, approximately 20% of adults report taking herbal products to treat medical illnesses. L-theanine is the amino acid in green tea primarily responsible for relaxation effects. No studies have evaluated the potential therapeutic properties of herbal medications on gene expression in PTSD. We evaluated gene expression in PTSD-induced changes in the amygdala and hippocampus of Sprague-Dawley rats. The rats were assigned to PTSD-stressed and nonstressed groups that received either saline, midazolam, L-theanine, or L-theanine + midazolam. Amygdala and hippocampus tissue samples were analyzed for changes in gene expression. One-way ANOVA was used to detect significant difference between groups in the amygdala and hippocampus. Of 88 genes examined, 17 had a large effect size greater than 0.138. Of these, 3 genes in the hippocampus and 5 genes in the amygdala were considered significant (P < 0.05) between the groups. RT-PCR analysis revealed significant changes between groups in several genes implicated in a variety of disorders ranging from PTSD, anxiety, mood disorders, and substance dependence.
Collapse
|
22
|
Malki K, Keers R, Tosto MG, Lourdusamy A, Carboni L, Domenici E, Uher R, McGuffin P, Schalkwyk LC. The endogenous and reactive depression subtypes revisited: integrative animal and human studies implicate multiple distinct molecular mechanisms underlying major depressive disorder. BMC Med 2014; 12:73. [PMID: 24886127 PMCID: PMC4046519 DOI: 10.1186/1741-7015-12-73] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 04/10/2014] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Traditional diagnoses of major depressive disorder (MDD) suggested that the presence or absence of stress prior to onset results in either 'reactive' or 'endogenous' subtypes of the disorder, respectively. Several lines of research suggest that the biological underpinnings of 'reactive' or 'endogenous' subtypes may also differ, resulting in differential response to treatment. We investigated this hypothesis by comparing the gene-expression profiles of three animal models of 'reactive' and 'endogenous' depression. We then translated these findings to clinical samples using a human post-mortem mRNA study. METHODS Affymetrix mouse whole-genome oligonucleotide arrays were used to measure gene expression from hippocampal tissues of 144 mice from the Genome-based Therapeutic Drugs for Depression (GENDEP) project. The study used four inbred mouse strains and two depressogenic 'stress' protocols (maternal separation and Unpredictable Chronic Mild Stress) to model 'reactive' depression. Stress-related mRNA differences in mouse were compared with a parallel mRNA study using Flinders Sensitive and Resistant rat lines as a model of 'endogenous' depression. Convergent genes differentially expressed across the animal studies were used to inform candidate gene selection in a human mRNA post-mortem case control study from the Stanley Brain Consortium. RESULTS In the mouse 'reactive' model, the expression of 350 genes changed in response to early stresses and 370 in response to late stresses. A minimal genetic overlap (less than 8.8%) was detected in response to both stress protocols, but 30% of these genes (21) were also differentially regulated in the 'endogenous' rat study. This overlap is significantly greater than expected by chance. The VAMP-2 gene, differentially expressed across the rodent studies, was also significantly altered in the human study after correcting for multiple testing. CONCLUSIONS Our results suggest that 'endogenous' and 'reactive' subtypes of depression are associated with largely distinct changes in gene-expression. However, they also suggest that the molecular signature of 'reactive' depression caused by early stressors differs considerably from that of 'reactive' depression caused by late stressors. A small set of genes was consistently dysregulated across each paradigm and in post-mortem brain tissue of depressed patients suggesting a final common pathway to the disorder. These genes included the VAMP-2 gene, which has previously been associated with Axis-I disorders including MDD, bipolar depression, schizophrenia and with antidepressant treatment response. We also discuss the implications of our findings for disease classification, personalized medicine and case-control studies of MDD.
Collapse
Affiliation(s)
- Karim Malki
- King’s College London, MRC Social, Genetic and Developmental Psychiatry Centre, at Institute of Psychiatry, SGDP Research Centre (PO80), De Crespigny Park, Denmark Hill, London SE5 8AF, UK
| | - Robert Keers
- King’s College London, MRC Social, Genetic and Developmental Psychiatry Centre, at Institute of Psychiatry, SGDP Research Centre (PO80), De Crespigny Park, Denmark Hill, London SE5 8AF, UK
| | - Maria Grazia Tosto
- King’s College London, MRC Social, Genetic and Developmental Psychiatry Centre, at Institute of Psychiatry, SGDP Research Centre (PO80), De Crespigny Park, Denmark Hill, London SE5 8AF, UK
- Department of Psychology, University of York, York, UK
| | | | - Lucia Carboni
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Enrico Domenici
- Center of Excellence for Drug Discovery in Neuroscience, GlaxoSmithKline Medicines Research Centre, Verona, Italy
- Current address: Pharma Research and Early Development, F. Hoffmann–La Roche, Basel, Switzerland
| | - Rudolf Uher
- King’s College London, MRC Social, Genetic and Developmental Psychiatry Centre, at Institute of Psychiatry, SGDP Research Centre (PO80), De Crespigny Park, Denmark Hill, London SE5 8AF, UK
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
| | - Peter McGuffin
- King’s College London, MRC Social, Genetic and Developmental Psychiatry Centre, at Institute of Psychiatry, SGDP Research Centre (PO80), De Crespigny Park, Denmark Hill, London SE5 8AF, UK
| | - Leonard C Schalkwyk
- King’s College London, MRC Social, Genetic and Developmental Psychiatry Centre, at Institute of Psychiatry, SGDP Research Centre (PO80), De Crespigny Park, Denmark Hill, London SE5 8AF, UK
| |
Collapse
|
23
|
Segatto M, Manduca A, Lecis C, Rosso P, Jozwiak A, Swiezewska E, Moreno S, Trezza V, Pallottini V. Simvastatin treatment highlights a new role for the isoprenoid/cholesterol biosynthetic pathway in the modulation of emotional reactivity and cognitive performance in rats. Neuropsychopharmacology 2014; 39:841-54. [PMID: 24108067 PMCID: PMC3924519 DOI: 10.1038/npp.2013.284] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 10/02/2013] [Accepted: 10/03/2013] [Indexed: 11/09/2022]
Abstract
The aim of the present work was to shed light on the role played by the isoprenoid/cholesterol biosynthetic pathway in the modulation of emotional reactivity and memory consolidation in rodents through the inhibition of the key and rate-limiting enzyme 3-hydroxy 3-methylglutaryl Coenzyme A reductase (HMGR) both in vivo and in vitro with simvastatin. Three-month-old male Wistar rats treated for 21 days with simvastatin or vehicle were tested in the social interaction, elevated plus-maze, and inhibitory avoidance tasks; after behavioral testing, the amygdala, hippocampus, prefrontal cortex, dorsal, and ventral striatum were dissected out for biochemical assays. In order to delve deeper into the molecular mechanisms underlying the observed effects, primary rat hippocampal neurons were used. Our results show that HMGR inhibition by simvastatin induces anxiogenic-like effects in the social interaction but not in the elevated plus-maze test, and improves memory consolidation in the inhibitory avoidance task. These effects are accompanied by imbalances in the activity of specific prenylated proteins, Rab3 and RhoA, involved in neurotransmitter release, and synaptic plasticity, respectively. Taken together, the present findings indicate that the isoprenoid/cholesterol biosynthetic pathway is critically involved in the physiological modulation of both emotional and cognitive processes in rodents.
Collapse
Affiliation(s)
- Marco Segatto
- Department of Science, University Roma Tre, Viale Marconi, Rome, Italy
| | - Antonia Manduca
- Department of Science, University Roma Tre, Viale Marconi, Rome, Italy
| | - Claudio Lecis
- Department of Science, University Roma Tre, Viale Marconi, Rome, Italy
| | - Pamela Rosso
- Department of Science, University Roma Tre, Viale Marconi, Rome, Italy
| | - Adam Jozwiak
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Warsaw, Poland
| | - Ewa Swiezewska
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Warsaw, Poland
| | - Sandra Moreno
- Department of Science, University Roma Tre, Viale Marconi, Rome, Italy
| | - Viviana Trezza
- Department of Science, University Roma Tre, Viale Marconi, Rome, Italy
| | | |
Collapse
|
24
|
Knapp DJ, Daws LC, Overstreet DH. Behavioral Characteristics of Pharmacologically Selected Lines of Rats: Relevance to Depression. ACTA ACUST UNITED AC 2014. [DOI: 10.4236/wjns.2014.43026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
25
|
McBride WJ, Kimpel MW, McClintick JN, Ding ZM, Hyytia P, Colombo G, Liang T, Edenberg HJ, Lumeng L, Bell RL. Gene expression within the extended amygdala of 5 pairs of rat lines selectively bred for high or low ethanol consumption. Alcohol 2013; 47:517-29. [PMID: 24157127 DOI: 10.1016/j.alcohol.2013.08.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 08/30/2013] [Accepted: 08/30/2013] [Indexed: 11/25/2022]
Abstract
The objectives of this study were to determine innate differences in gene expression in 2 regions of the extended amygdala between 5 different pairs of lines of male rats selectively bred for high or low ethanol consumption: a) alcohol-preferring (P) vs. alcohol-non-preferring (NP) rats, b) high-alcohol-drinking (HAD) vs. low-alcohol-drinking (LAD) rats (replicate line-pairs 1 and 2), c) ALKO alcohol (AA) vs. nonalcohol (ANA) rats, and d) Sardinian alcohol-preferring (sP) vs. Sardinian alcohol-nonpreferring (sNP) rats, and then to determine if these differences are common across the line-pairs. Microarray analysis revealed up to 1772 unique named genes in the nucleus accumbens shell (AcbSh) and 494 unique named genes in the central nucleus of the amygdala (CeA) that significantly differed [False Discovery Rate (FDR) = 0.10; fold-change at least 1.2] in expression between the individual line-pairs. Analysis using Gene Ontology (GO) and Ingenuity Pathways information indicated significant categories and networks in common for up to 3 or 4 line-pairs, but not for all 5 line-pairs. However, there were almost no individual genes in common within these categories and networks. ANOVAs of the combined data for the 5 line-pairs indicated 1014 and 731 significant (p < 0.01) differences in expression of named genes in the AcbSh and CeA, respectively. There were 4-6 individual named genes that significantly differed across up to 3 line-pairs in both regions; only 1 gene (Gsta4 in the CeA) differed in as many as 4 line-pairs. Overall, the findings suggest that a) some biological categories or networks (e.g., cell-to-cell signaling, cellular stress response, cellular organization, etc.) may be in common for subsets of line-pairs within either the AcbSh or CeA, and b) regulation of different genes and/or combinations of multiple biological systems may be contributing to the disparate alcohol drinking behaviors of these line-pairs.
Collapse
|
26
|
Loubinoux I, Kronenberg G, Endres M, Schumann-Bard P, Freret T, Filipkowski RK, Kaczmarek L, Popa-Wagner A. Post-stroke depression: mechanisms, translation and therapy. J Cell Mol Med 2013; 16:1961-9. [PMID: 22348642 PMCID: PMC3822966 DOI: 10.1111/j.1582-4934.2012.01555.x] [Citation(s) in RCA: 229] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The interaction between depression and stroke is highly complex. Post-stroke depression (PSD) is among the most frequent neuropsychiatric consequences of stroke. Depression also negatively impacts stroke outcome with increased morbidity, mortality and poorer functional recovery. Antidepressants such as the commonly prescribed selective serotonin reuptake inhibitors improve stroke outcome, an effect that may extend far beyond depression, e.g., to motor recovery. The main biological theory of PSD is the amine hypothesis. Conceivably, ischaemic lesions interrupt the projections ascending from midbrain and brainstem, leading to a decreased bioavailability of the biogenic amines – serotonin (5HT), dopamine (DA) and norepinephrine (NE). Acetylcholine would also be involved. So far, preclinical and translational research on PSD is largely lacking. The implementation and characterization of suitable animal models is clearly a major prerequisite for deeper insights into the biological basis of post-stroke mood disturbances. Equally importantly, experimental models may also pave the way for the discovery of novel therapeutic targets. If we cannot prevent stroke, we shall try to limit its long-term consequences. This review therefore presents animal models of PSD and summarizes potential underlying mechanisms including genomic signatures, neurotransmitter and neurotrophin signalling, hippocampal neurogenesis, cellular plasticity in the ischaemic lesion, secondary degenerative changes, activation of the hypothalamo-pituitary-adrenal (HPA) axis and neuroinflammation. As stroke is a disease of the elderly, great clinical benefit may especially accrue from deciphering and targeting basic mechanisms underlying PSD in aged animals.
Collapse
Affiliation(s)
- Isabelle Loubinoux
- INSERM, Cerebral imaging and neurological handicaps UMR825, Toulouse, France
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Wilhelm CJ, Choi D, Huckans M, Manthe L, Loftis JM. Adipocytokine signaling is altered in Flinders sensitive line rats, and adiponectin correlates in humans with some symptoms of depression. Pharmacol Biochem Behav 2012; 103:643-51. [PMID: 23153628 DOI: 10.1016/j.pbb.2012.11.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 10/27/2012] [Accepted: 11/03/2012] [Indexed: 10/27/2022]
Abstract
Major depression is a complex multi-factorial disorder with a lifetime diagnosis of nearly 1 out of 6. We used the Flinders Sensitive Line (FSL) of rats, a model of depression, and the parent Sprague-Dawley (SD) rats to identify genes, gene ontology categories and pathways associated with depression. Depression-like behavior was verified in the FSL line by forced swim testing, with FSL animals exhibiting greater immobility compared to SD rats. RNA samples from the hippocampus were isolated from a group of experimentally naïve FSL and SD rats for microarray analysis. Microarray analysis yielded a total of 361 genes that were differentially regulated between FSL and SD rats, with catechol-O-methyltransferase (COMT) being the most up-regulated. The genes that were differentially regulated between FSL and SD rats were subjected to bioinformatic analysis using the Database for Annotation, Visualization and Integrated Discovery (DAVID), which yielded several gene ontology categories that were overrepresented. Subsequent pathway analysis indicated dysregulation of the adipocytokine signaling pathway. To test the translational impact of this pathway, metabolic factors and psychiatric symptoms were evaluated in a sample of human research participants. Results from our human subjects indicated that anxiety and a subset of depressive symptoms were correlated with adiponectin levels (but not leptin levels). Our results and those of others suggest that disruption of the adipocytokine signaling pathway may be a critical component of the depressive-like behaviors observed in the FSL rats and may also be an important indicator of depressive and anxiety symptoms in humans.
Collapse
Affiliation(s)
- Clare J Wilhelm
- Research and Development Service, Portland Veterans Affairs Medical Center, Portland, OR 97239, United States
| | | | | | | | | |
Collapse
|
28
|
Dexamethasone stimulated gene expression in peripheral blood is a sensitive marker for glucocorticoid receptor resistance in depressed patients. Neuropsychopharmacology 2012; 37:1455-64. [PMID: 22237309 PMCID: PMC3327850 DOI: 10.1038/npp.2011.331] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Although gene expression profiles in peripheral blood in major depression are not likely to identify genes directly involved in the pathomechanism of affective disorders, they may serve as biomarkers for this disorder. As previous studies using baseline gene expression profiles have provided mixed results, our approach was to use an in vivo dexamethasone challenge test and to compare glucocorticoid receptor (GR)-mediated changes in gene expression between depressed patients and healthy controls. Whole genome gene expression data (baseline and following GR-stimulation with 1.5 mg dexamethasone p.o.) from two independent cohorts were analyzed to identify gene expression pattern that would predict case and control status using a training (N=18 cases/18 controls) and a test cohort (N=11/13). Dexamethasone led to reproducible regulation of 2670 genes in controls and 1151 transcripts in cases. Several genes, including FKBP5 and DUSP1, previously associated with the pathophysiology of major depression, were found to be reliable markers of GR-activation. Using random forest analyses for classification, GR-stimulated gene expression outperformed baseline gene expression as a classifier for case and control status with a correct classification of 79.1 vs 41.6% in the test cohort. GR-stimulated gene expression performed best in dexamethasone non-suppressor patients (88.7% correctly classified with 100% sensitivity), but also correctly classified 77.3% of the suppressor patients (76.7% sensitivity), when using a refined set of 19 genes. Our study suggests that in vivo stimulated gene expression in peripheral blood cells could be a promising molecular marker of altered GR-functioning, an important component of the underlying pathology, in patients suffering from depressive episodes.
Collapse
|
29
|
Neumann ID, Wegener G, Homberg JR, Cohen H, Slattery DA, Zohar J, Olivier JDA, Mathé AA. Animal models of depression and anxiety: What do they tell us about human condition? Prog Neuropsychopharmacol Biol Psychiatry 2011; 35:1357-75. [PMID: 21129431 DOI: 10.1016/j.pnpbp.2010.11.028] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Revised: 10/24/2010] [Accepted: 11/19/2010] [Indexed: 01/07/2023]
Abstract
While modern neurobiology methods are necessary they are not sufficient to elucidate etiology and pathophysiology of affective disorders and develop new treatments. Achievement of these goals is contingent on applying cutting edge methods on appropriate disease models. In this review, the authors present four rodent models with good face-, construct-, and predictive-validity: the Flinders Sensitive rat line (FSL); the genetically "anxious" High Anxiety-like Behavior (HAB) line; the serotonin transporter knockout 5-HTT(-/-) rat and mouse lines; and the post-traumatic stress disorder (PTSD) model induced by exposure to predator scent, that they have employed to investigate the nature of depression and anxiety.
Collapse
Affiliation(s)
- I D Neumann
- Dept of Behavioural Neuroendocrinology, Faculty of Biology and Preclinical Medicine, University of Regensburg, Regensburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Escitalopram modulates neuron-remodelling proteins in a rat gene-environment interaction model of depression as revealed by proteomics. Part I: genetic background. Int J Neuropsychopharmacol 2011; 14:796-833. [PMID: 21054914 DOI: 10.1017/s1461145710001318] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The wide-scale analysis of protein expression provides a powerful strategy for the molecular exploration of complex pathophysiological mechanisms, such as the response to antidepressants. Using a 2D proteomic approach we investigated the Flinders Sensitive Line (FSL), a genetically selected rat model of depression, and the control Flinders Resistant Line (FRL). To evaluate gene-environment interactions, FSL and FRL pups were separated from their mothers for 3 h (maternal separation, MS), as early-life trauma is considered an important antecedent of depression. All groups were treated with either escitalopram (Esc) admixed to food (25 mg/kg.d) or vehicle for 1 month. At the week 3, forced swim tests were performed. Protein extracts from prefrontal/frontal cortex and hippocampus were separated by 2D electrophoresis. Proteins displaying statistically significant differences in expression levels were identified by mass spectrometry. Immobility time values in the forced swim test were higher in FSL rats and reduced by antidepressant treatment. Moreover, the Esc-induced reduction in immobility time was not detected in MS rats. The impact of genetic background in response to Esc was specifically investigated here. Bioinformatics analyses highlighted gene ontology terms showing tighter associations with the modulated proteins. Esc modulated protein belonging to cytoskeleton organization in FSL; carbohydrate metabolism and intracellular transport in FRL. Proteins differently modulated in the two strains after MS and Esc play a role in cytoskeleton organization, vesicle-mediated transport, apoptosis regulation and macromolecule catabolism. These findings suggest pathways involved in neuronal remodelling as molecular correlates of response to antidepressants in a model of vulnerability.
Collapse
|
31
|
Kao CF, Fang YS, Zhao Z, Kuo PH. Prioritization and evaluation of depression candidate genes by combining multidimensional data resources. PLoS One 2011; 6:e18696. [PMID: 21494644 PMCID: PMC3071871 DOI: 10.1371/journal.pone.0018696] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Accepted: 03/08/2011] [Indexed: 12/22/2022] Open
Abstract
Background Large scale and individual genetic studies have suggested numerous susceptible genes for depression in the past decade without conclusive results. There is a strong need to review and integrate multi-dimensional data for follow up validation. The present study aimed to apply prioritization procedures to build-up an evidence-based candidate genes dataset for depression. Methods Depression candidate genes were collected in human and animal studies across various data resources. Each gene was scored according to its magnitude of evidence related to depression and was multiplied by a source-specific weight to form a combined score measure. All genes were evaluated through a prioritization system to obtain an optimal weight matrix to rank their relative importance with depression using the combined scores. The resulting candidate gene list for depression (DEPgenes) was further evaluated by a genome-wide association (GWA) dataset and microarray gene expression in human tissues. Results A total of 5,055 candidate genes (4,850 genes from human and 387 genes from animal studies with 182 being overlapped) were included from seven data sources. Through the prioritization procedures, we identified 169 DEPgenes, which exhibited high chance to be associated with depression in GWA dataset (Wilcoxon rank-sum test, p = 0.00005). Additionally, the DEPgenes had a higher percentage to express in human brain or nerve related tissues than non-DEPgenes, supporting the neurotransmitter and neuroplasticity theories in depression. Conclusions With comprehensive data collection and curation and an application of integrative approach, we successfully generated DEPgenes through an effective gene prioritization system. The prioritized DEPgenes are promising for future biological experiments or replication efforts to discoverthe underlying molecular mechanisms for depression.
Collapse
Affiliation(s)
- Chung-Feng Kao
- Department of Public Health and Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Yu-Sheng Fang
- Institute of Clinical Medicine, School of Medicine, National Cheng-Kung University, Tainan, Taiwan
| | - Zhongming Zhao
- Departments of Biomedical Informatics and Psychiatry, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Po-Hsiu Kuo
- Department of Public Health and Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
- Institute of Clinical Medicine, School of Medicine, National Cheng-Kung University, Tainan, Taiwan
- Research Center for Genes, Environment and Human Health, National Taiwan University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
32
|
Regulation of cytoskeleton machinery, neurogenesis and energy metabolism pathways in a rat gene-environment model of depression revealed by proteomic analysis. Neuroscience 2011; 176:349-80. [DOI: 10.1016/j.neuroscience.2010.12.043] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Accepted: 12/09/2010] [Indexed: 11/15/2022]
|
33
|
Cao Y, Staropoli JF, Biswas S, Espinola JA, MacDonald ME, Lee JM, Cotman SL. Distinct early molecular responses to mutations causing vLINCL and JNCL presage ATP synthase subunit C accumulation in cerebellar cells. PLoS One 2011; 6:e17118. [PMID: 21359198 PMCID: PMC3040763 DOI: 10.1371/journal.pone.0017118] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Accepted: 01/21/2011] [Indexed: 11/30/2022] Open
Abstract
Variant late-infantile neuronal ceroid lipofuscinosis (vLINCL), caused by CLN6 mutation, and juvenile neuronal ceroid lipofuscinosis (JNCL), caused by CLN3 mutation, share clinical and pathological features, including lysosomal accumulation of mitochondrial ATP synthase subunit c, but the unrelated CLN6 and CLN3 genes may initiate disease via similar or distinct cellular processes. To gain insight into the NCL pathways, we established murine wild-type and CbCln6(nclf/nclf) cerebellar cells and compared them to wild-type and CbCln3(Δex7/8/Δex7/8) cerebellar cells. CbCln6(nclf/nclf) cells and CbCln3(Δex7/8/Δex7/8) cells both displayed abnormally elongated mitochondria and reduced cellular ATP levels and, as cells aged to confluence, exhibited accumulation of subunit c protein in Lamp 1-positive organelles. However, at sub-confluence, endoplasmic reticulum PDI immunostain was decreased only in CbCln6(nclf/nclf) cells, while fluid-phase endocytosis and LysoTracker® labeled vesicles were decreased in both CbCln6(nclf/nclf) and CbCln3(Δex7/8/Δex7/8) cells, though only the latter cells exhibited abnormal vesicle subcellular distribution. Furthermore, unbiased gene expression analyses revealed only partial overlap in the cerebellar cell genes and pathways that were altered by the Cln3(Δex7/8) and Cln6(nclf) mutations. Thus, these data support the hypothesis that CLN6 and CLN3 mutations trigger distinct processes that converge on a shared pathway, which is responsible for proper subunit c protein turnover and neuronal cell survival.
Collapse
Affiliation(s)
- Yi Cao
- Molecular Neurogenetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - John F. Staropoli
- Molecular Neurogenetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Sunita Biswas
- Molecular Neurogenetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Janice A. Espinola
- Molecular Neurogenetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Marcy E. MacDonald
- Molecular Neurogenetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Jong-Min Lee
- Molecular Neurogenetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Susan L. Cotman
- Molecular Neurogenetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| |
Collapse
|