1
|
Medlyn MJ, Maeder E, Bradley C, Phatarpekar P, Ham H, Billadeau DD. MADD regulates natural killer cell degranulation through Rab27a activation. J Cell Sci 2024; 137:jcs261582. [PMID: 38506245 PMCID: PMC11058345 DOI: 10.1242/jcs.261582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 03/07/2024] [Indexed: 03/21/2024] Open
Abstract
Natural killer (NK) cells have the ability to lyse other cells through the release of lytic granules (LGs). This is in part mediated by the small GTPase Rab27a, which was first identified to play a crucial role in degranulation through the study of individuals harboring mutations in the gene encoding Rab27a. However, the guanine nucleotide exchange factor (GEF) regulating the activation of Rab27a in cytotoxic lymphocytes was unknown. Here, we show that knockout of MADD significantly decreased the levels of GTP-bound Rab27a in both resting and stimulated NK cells, and MADD-deficient NK cells and CD8+ T cells displayed severely reduced degranulation and cytolytic ability, similar to that seen with Rab27a deficiency. Although MADD colocalized with Rab27a on LGs and was enriched at the cytolytic synapse, the loss of MADD did not impact Rab27a association with LGs nor their recruitment to the cytolytic synapse. Together, our results demonstrate an important role for MADD in cytotoxic lymphocyte killing.
Collapse
Affiliation(s)
- Michael J. Medlyn
- Department of Immunology College of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Easton Maeder
- Division of Oncology Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Claire Bradley
- Department of Immunology College of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Hyoungjun Ham
- Division of Oncology Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Daniel D. Billadeau
- Department of Immunology College of Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Division of Oncology Research, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
2
|
Ham H, Medlyn M, Billadeau DD. Locked and Loaded: Mechanisms Regulating Natural Killer Cell Lytic Granule Biogenesis and Release. Front Immunol 2022; 13:871106. [PMID: 35558071 PMCID: PMC9088006 DOI: 10.3389/fimmu.2022.871106] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/29/2022] [Indexed: 11/22/2022] Open
Abstract
NK cell-mediated cytotoxicity is a critical element of our immune system required for protection from microbial infections and cancer. NK cells bind to and eliminate infected or cancerous cells via direct secretion of cytotoxic molecules toward the bound target cells. In this review, we summarize the current understanding of the molecular regulations of NK cell cytotoxicity, focusing on lytic granule development and degranulation processes. NK cells synthesize apoptosis-inducing proteins and package them into specialized organelles known as lytic granules (LGs). Upon activation of NK cells, LGs converge with the microtubule organizing center through dynein-dependent movement along microtubules, ultimately polarizing to the cytotoxic synapse where they subsequently fuse with the NK plasma membrane. From LGs biogenesis to degranulation, NK cells utilize several strategies to protect themselves from their own cytotoxic molecules. Additionally, molecular pathways that enable NK cells to perform serial killing are beginning to be elucidated. These advances in the understanding of the molecular pathways behind NK cell cytotoxicity will be important to not only improve current NK cell-based anti-cancer therapies but also to support the discovery of additional therapeutic opportunities.
Collapse
Affiliation(s)
- Hyoungjun Ham
- Division of Oncology Research, Mayo Clinic, Rochester, MN, United States
| | - Michael Medlyn
- Department of Immunology College of Medicine, Mayo Clinic, Rochester, MN, United States
| | - Daniel D Billadeau
- Division of Oncology Research, Mayo Clinic, Rochester, MN, United States.,Department of Immunology College of Medicine, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
3
|
Pathni A, Özçelikkale A, Rey-Suarez I, Li L, Davis S, Rogers N, Xiao Z, Upadhyaya A. Cytotoxic T Lymphocyte Activation Signals Modulate Cytoskeletal Dynamics and Mechanical Force Generation. Front Immunol 2022; 13:779888. [PMID: 35371019 PMCID: PMC8966475 DOI: 10.3389/fimmu.2022.779888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 02/23/2022] [Indexed: 11/20/2022] Open
Abstract
Cytotoxic T lymphocytes (CTLs) play an integral role in the adaptive immune response by killing infected cells. Antigen presenting cells (APCs), such as dendritic cells, present pathogenic peptides to the T cell receptor on the CTL surface and co-stimulatory signals required for complete activation. Activated CTLs secrete lytic granules containing enzymes that trigger target cell death at the CTL-target contact, also known as the immune synapse (IS). The actin and microtubule cytoskeletons are instrumental in the killing of CTL targets. Lytic granules are transported along microtubules to the IS, where granule secretion is facilitated by actin depletion and recovery. Furthermore, actomyosin contractility promotes target cell death by mediating mechanical force exertion at the IS. Recent studies have shown that inflammatory cytokines produced by APCs, such as interleukin-12 (IL-12), act as a third signal for CTL activation and enhance CTL proliferation and effector function. However, the biophysical mechanisms mediating such enhanced effector function remain unclear. We hypothesized that the third signal for CTL activation, IL-12, modulates cytoskeletal dynamics and force exertion at the IS, thus potentiating CTL effector function. Here, we used live cell total internal reflection fluorescence (TIRF) microscopy to study actomyosin and microtubule dynamics at the IS of murine primary CTLs activated in the presence of peptide-MHC and co-stimulation alone (two signals), or additionally with IL-12 (three signals). We found that three signal-activated CTLs have altered actin flows, myosin dynamics and microtubule growth rates as compared to two signal-activated CTLs. We further showed that lytic granules in three-signal activated CTLs are less clustered and have lower velocities than in two-signal activated CTLs. Finally, we used traction force microscopy to show that three signal-activated CTLs exert greater traction forces than two signal-activated CTLs. Our results demonstrate that activation of CTLs in the presence of IL-12 leads to differential modulation of the cytoskeleton, thereby augmenting the mechanical response of CTLs to their targets. This indicates a potential physical mechanism via which the third signal can enhance the CTL response.
Collapse
Affiliation(s)
- Aashli Pathni
- Biological Sciences Graduate Program, University of Maryland, College Park, MD, United States
| | - Altuğ Özçelikkale
- Institute for Physical Science and Technology, University of Maryland, College Park, MD, United States.,Department of Mechanical Engineering, Middle East Technical University, Ankara, Turkey
| | - Ivan Rey-Suarez
- Institute for Physical Science and Technology, University of Maryland, College Park, MD, United States
| | - Lei Li
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, United States
| | - Scott Davis
- Department of Physics, University of Maryland, College Park, MD, United States
| | - Nate Rogers
- Department of Physics, University of Maryland, College Park, MD, United States
| | - Zhengguo Xiao
- Biological Sciences Graduate Program, University of Maryland, College Park, MD, United States.,Department of Animal and Avian Sciences, University of Maryland, College Park, MD, United States
| | - Arpita Upadhyaya
- Biological Sciences Graduate Program, University of Maryland, College Park, MD, United States.,Institute for Physical Science and Technology, University of Maryland, College Park, MD, United States.,Department of Physics, University of Maryland, College Park, MD, United States
| |
Collapse
|
4
|
Ben-Shmuel A, Sabag B, Biber G, Barda-Saad M. The Role of the Cytoskeleton in Regulating the Natural Killer Cell Immune Response in Health and Disease: From Signaling Dynamics to Function. Front Cell Dev Biol 2021; 9:609532. [PMID: 33598461 PMCID: PMC7882700 DOI: 10.3389/fcell.2021.609532] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 01/11/2021] [Indexed: 01/13/2023] Open
Abstract
Natural killer (NK) cells are innate lymphoid cells, which play key roles in elimination of virally infected and malignant cells. The balance between activating and inhibitory signals derived from NK surface receptors govern the NK cell immune response. The cytoskeleton facilitates most NK cell effector functions, such as motility, infiltration, conjugation with target cells, immunological synapse assembly, and cytotoxicity. Though many studies have characterized signaling pathways that promote actin reorganization in immune cells, it is not completely clear how particular cytoskeletal architectures at the immunological synapse promote effector functions, and how cytoskeletal dynamics impact downstream signaling pathways and activation. Moreover, pioneering studies employing advanced imaging techniques have only begun to uncover the architectural complexity dictating the NK cell activation threshold; it is becoming clear that a distinct organization of the cytoskeleton and signaling receptors at the NK immunological synapse plays a decisive role in activation and tolerance. Here, we review the roles of the actin cytoskeleton in NK cells. We focus on how actin dynamics impact cytolytic granule secretion, NK cell motility, and NK cell infiltration through tissues into inflammatory sites. We will also describe the additional cytoskeletal components, non-muscle Myosin II and microtubules that play pivotal roles in NK cell activity. Furthermore, special emphasis will be placed on the role of the cytoskeleton in assembly of immunological synapses, and how mutations or downregulation of cytoskeletal accessory proteins impact NK cell function in health and disease.
Collapse
Affiliation(s)
- Aviad Ben-Shmuel
- Laboratory of Molecular and Applied Immunology, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Batel Sabag
- Laboratory of Molecular and Applied Immunology, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Guy Biber
- Laboratory of Molecular and Applied Immunology, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Mira Barda-Saad
- Laboratory of Molecular and Applied Immunology, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| |
Collapse
|
5
|
Phatarpekar PV, Billadeau DD. Molecular regulation of the plasma membrane-proximal cellular steps involved in NK cell cytolytic function. J Cell Sci 2020; 133:133/5/jcs240424. [PMID: 32086255 DOI: 10.1242/jcs.240424] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Natural killer (NK) cells, cytolytic lymphocytes of the innate immune system, play a crucial role in the immune response against infection and cancer. NK cells kill target cells through exocytosis of lytic granules that contain cytotoxic proteins, such as perforin and granzymes. Formation of a functional immune synapse, i.e. the interface between the NK cell and its target cell enhances lysis through accumulation of polymerized F-actin at the NK cell synapse, leading to convergence of lytic granules to the microtubule organizing center (MTOC) and its subsequent polarization along microtubules to deliver the lytic granules to the synapse. In this review, we focus on the molecular mechanisms regulating the cellular processes that occur after the lytic granules are delivered to the cytotoxic synapse. We outline how - once near the synapse - the granules traverse the clearings created by F-actin remodeling to dock, tether and fuse with the plasma membrane in order to secrete their lytic content into the synaptic cleft through exocytosis. Further emphasis is given to the role of Ca2+ mobilization during degranulation and, whenever applicable, we compare these mechanisms in NK cells and cytotoxic T lymphocytes (CTLs) as adaptive immune system effectors.
Collapse
Affiliation(s)
- Prasad V Phatarpekar
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Daniel D Billadeau
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| |
Collapse
|
6
|
Pal M, Schwab L, Yermakova A, Mace EM, Claus R, Krahl AC, Woiterski J, Hartwig UF, Orange JS, Handgretinger R, André MC. Tumor-priming converts NK cells to memory-like NK cells. Oncoimmunology 2017; 6:e1317411. [PMID: 28680749 PMCID: PMC5486172 DOI: 10.1080/2162402x.2017.1317411] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 03/17/2017] [Accepted: 04/03/2017] [Indexed: 12/25/2022] Open
Abstract
Fascinating earlier evidence suggests an intrinsic capacity of human natural killer (NK) cells to acquire adaptive immune features in the context of cytomegalovirus (CMV) infection or pro-inflammatory cytokine stimulation. Since the role of memory NK cells in cancer has so far remained elusive and adoptive NK cell transfer in relapsing pediatric acute B cell precursor leukemia (BCP-ALL) patients awaits improvement, we asked the question whether tumor-priming could promote the generation of memory NK cells with enhanced graft-vs.-leukemia (GvL) reactivity. Here, we provide substantial evidence that priming of naive human NK cells with pediatric acute B cell leukemia or acute myeloid leukemia specimens induces a functional conversion to tumor-induced memory-like (TIML)-NK cells displaying a heightened tumor-specific cytotoxicity and enhanced perforin synthesis. Cell cycles analyses reveal that tumor-priming sustainably alters the balance between NK cell activation and apoptosis in favor of survival. In addition, gene expression patterns differ between TIML- and cytokine-induced memory-like (CIML)-NK cells with the magnitude of regulated genes being distinctly higher in TIML-NK cells. As such, the tumor-induced conversion of NK cells triggers the emergence of a so far unacknowledged NK cell differentiation stage that might promote GvL effects in the context of adoptive cell transfer.
Collapse
Affiliation(s)
- Marina Pal
- University Children´s Hospital, Dep. of Pediatric Hematology and Oncology, Eberhard Karls University, Tuebingen, Germany
| | - Lisa Schwab
- University Children´s Hospital, Dep. of Pediatric Hematology and Oncology, Eberhard Karls University, Tuebingen, Germany
| | - Anastasiya Yermakova
- Center for Human Immunobiology, Feigin Center, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| | - Emily M. Mace
- Center for Human Immunobiology, Feigin Center, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| | - Rainer Claus
- Department of Medicine, Division of Hematology and Oncology, University of Freiburg Medical Center, Freiburg, Germany
| | - Ann-Christin Krahl
- University Children´s Hospital, Dep. of Pediatric Hematology and Oncology, Eberhard Karls University, Tuebingen, Germany
| | - Jeanette Woiterski
- University Children´s Hospital, Dep. of Pediatric Hematology and Oncology, Eberhard Karls University, Tuebingen, Germany
| | - Udo F. Hartwig
- University Medical Center, 3rd Department of Medicine Hematology, Internal Oncology and Pneumology, Johannes Gutenberg-University, Mainz, Germany
| | - Jordan S. Orange
- Center for Human Immunobiology, Feigin Center, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| | - Rupert Handgretinger
- University Children´s Hospital, Dep. of Pediatric Hematology and Oncology, Eberhard Karls University, Tuebingen, Germany
| | - Maya C. André
- University Children´s Hospital, Dep. of Pediatric Hematology and Oncology, Eberhard Karls University, Tuebingen, Germany
- University Children´s Hospital, Department of Pediatric Intensive Care, Basel, Switzerland
| |
Collapse
|
7
|
Mace EM, Orange JS. Insights into primary immune deficiency from quantitative microscopy. J Allergy Clin Immunol 2015; 136:1150-62. [PMID: 26078103 PMCID: PMC4641025 DOI: 10.1016/j.jaci.2015.03.049] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 03/30/2015] [Indexed: 12/22/2022]
Abstract
Recent advances in genomics-based technology have resulted in an increase in our understanding of the molecular basis of many primary immune deficiencies. Along with this increased knowledge comes an increased responsibility to understand the underlying mechanism of disease, and thus increasingly sophisticated technologies are being used to investigate the cell biology of human immune deficiencies. One such technology, which has itself undergone a recent explosion in innovation, is that of high-resolution microscopy and image analysis. These advances complement innovative studies that have previously shed light on critical cell biological processes that are perturbed by single-gene mutations in primary immune deficiency. Here we highlight advances made specifically in the following cell biological processes: (1) cytoskeletal-related processes; (2) cell signaling; (3) intercellular trafficking; and (4) cellular host defense.
Collapse
Affiliation(s)
- Emily M Mace
- Center for Human Immunobiology, Texas Children's Hospital and Baylor College of Medicine, Houston, Tex
| | - Jordan S Orange
- Center for Human Immunobiology, Texas Children's Hospital and Baylor College of Medicine, Houston, Tex.
| |
Collapse
|
8
|
Anton OM, Vielkind S, Peterson ME, Tagaya Y, Long EO. NK Cell Proliferation Induced by IL-15 Transpresentation Is Negatively Regulated by Inhibitory Receptors. THE JOURNAL OF IMMUNOLOGY 2015; 195:4810-21. [PMID: 26453750 DOI: 10.4049/jimmunol.1500414] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 09/18/2015] [Indexed: 01/04/2023]
Abstract
IL-15 bound to the IL-15Rα-chain (IL-15Rα) is presented in trans to cells bearing the IL-2Rβ-chain and common γ-chain. As IL-15 transpresentation occurs in the context of cell-to-cell contacts, it has the potential for regulation by and of other receptor-ligand interactions. In this study, human NK cells were tested for the sensitivity of IL-15 transpresentation to inhibitory receptors. Human cells expressing HLA class I ligands for inhibitory receptors KIR2DL1, KIR2DL2/3, or CD94-NKG2A were transfected with IL-15Rα. Proliferation of primary NK cells in response to transpresented IL-15 was reduced by engagement of either KIR2DL1 or KIR2DL2/3 by cognate HLA-C ligands. Inhibitory KIR-HLA-C interactions did not reduce the proliferation induced by soluble IL-15. Therefore, transpresentation of IL-15 is subject to downregulation by MHC class I-specific inhibitory receptors. Similarly, proliferation of the NKG2A(+) cell line NKL induced by IL-15 transpresentation was inhibited by HLA-E. Coengagement of inhibitory receptors, either KIR2DL1 or CD94-NKG2A, did not inhibit phosphorylation of Stat5 but inhibited selectively phosphorylation of Akt and S6 ribosomal protein. IL-15Rα was not excluded from, but was evenly distributed across, inhibitory synapses. These findings demonstrate a novel mechanism to attenuate IL-15-dependent NK cell proliferation and suggest that inhibitory NK cell receptors contribute to NK cell homeostasis.
Collapse
Affiliation(s)
- Olga M Anton
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852; and
| | - Susina Vielkind
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852; and
| | - Mary E Peterson
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852; and
| | - Yutaka Tagaya
- Division of Basic Science and Vaccine Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Eric O Long
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852; and
| |
Collapse
|
9
|
Jang JH, Huang Y, Zheng P, Jo MC, Bertolet G, Zhu MX, Qin L, Liu D. Imaging of Cell-Cell Communication in a Vertical Orientation Reveals High-Resolution Structure of Immunological Synapse and Novel PD-1 Dynamics. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2015; 195:1320-1330. [PMID: 26123352 DOI: 10.4049/jimmunol.1403143/-/dcsupplemental] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 05/23/2015] [Indexed: 05/26/2023]
Abstract
The immunological synapse (IS) is one of the most pivotal communication strategies in immune cells. Understanding the molecular basis of the IS provides critical information regarding how immune cells mount an effective immune response. Fluorescence microscopy provides a fundamental tool to study the IS. However, current imaging techniques for studying the IS cannot sufficiently achieve high resolution in real cell-cell conjugates. In this study, we present a new device that allows for high-resolution imaging of the IS with conventional confocal microscopy in a high-throughput manner. Combining micropits and single-cell trap arrays, we have developed a new microfluidic platform that allows visualization of the IS in vertically "stacked" cells. Using this vertical cell pairing (VCP) system, we investigated the dynamics of the inhibitory synapse mediated by an inhibitory receptor, programed death protein-1, and the cytotoxic synapse at the single-cell level. In addition to the technique innovation, we have demonstrated novel biological findings by this VCP device, including novel distribution of F-actin and cytolytic granules at the IS, programed death protein-1 microclusters at the NK IS, and kinetics of cytotoxicity. We propose that this high-throughput, cost-effective, easy-to-use VCP system, along with conventional imaging techniques, can be used to address a number of significant biological questions in a variety of disciplines.
Collapse
Affiliation(s)
- Joon Hee Jang
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030; Center for Human Immunobiology, Texas Children's Hospital, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030
| | - Yu Huang
- Center for Human Immunobiology, Texas Children's Hospital, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030; Department of Integrative Biology and Pharmacology, Graduate Program in Cell and Regulatory Biology, University of Texas Health Science Center at Houston, Houston, TX 77030
| | - Peilin Zheng
- Center for Human Immunobiology, Texas Children's Hospital, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030
| | - Myeong Chan Jo
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030
| | - Grant Bertolet
- Center for Human Immunobiology, Texas Children's Hospital, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030; Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030; and
| | - Michael Xi Zhu
- Department of Integrative Biology and Pharmacology, Graduate Program in Cell and Regulatory Biology, University of Texas Health Science Center at Houston, Houston, TX 77030
| | - Lidong Qin
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030; Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY 10065
| | - Dongfang Liu
- Center for Human Immunobiology, Texas Children's Hospital, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030; Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030; and
| |
Collapse
|
10
|
Jang JH, Huang Y, Zheng P, Jo MC, Bertolet G, Zhu MX, Qin L, Liu D. Imaging of Cell-Cell Communication in a Vertical Orientation Reveals High-Resolution Structure of Immunological Synapse and Novel PD-1 Dynamics. THE JOURNAL OF IMMUNOLOGY 2015; 195:1320-30. [PMID: 26123352 DOI: 10.4049/jimmunol.1403143] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 05/23/2015] [Indexed: 12/22/2022]
Abstract
The immunological synapse (IS) is one of the most pivotal communication strategies in immune cells. Understanding the molecular basis of the IS provides critical information regarding how immune cells mount an effective immune response. Fluorescence microscopy provides a fundamental tool to study the IS. However, current imaging techniques for studying the IS cannot sufficiently achieve high resolution in real cell-cell conjugates. In this study, we present a new device that allows for high-resolution imaging of the IS with conventional confocal microscopy in a high-throughput manner. Combining micropits and single-cell trap arrays, we have developed a new microfluidic platform that allows visualization of the IS in vertically "stacked" cells. Using this vertical cell pairing (VCP) system, we investigated the dynamics of the inhibitory synapse mediated by an inhibitory receptor, programed death protein-1, and the cytotoxic synapse at the single-cell level. In addition to the technique innovation, we have demonstrated novel biological findings by this VCP device, including novel distribution of F-actin and cytolytic granules at the IS, programed death protein-1 microclusters at the NK IS, and kinetics of cytotoxicity. We propose that this high-throughput, cost-effective, easy-to-use VCP system, along with conventional imaging techniques, can be used to address a number of significant biological questions in a variety of disciplines.
Collapse
Affiliation(s)
- Joon Hee Jang
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030; Center for Human Immunobiology, Texas Children's Hospital, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030
| | - Yu Huang
- Center for Human Immunobiology, Texas Children's Hospital, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030; Department of Integrative Biology and Pharmacology, Graduate Program in Cell and Regulatory Biology, University of Texas Health Science Center at Houston, Houston, TX 77030
| | - Peilin Zheng
- Center for Human Immunobiology, Texas Children's Hospital, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030
| | - Myeong Chan Jo
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030
| | - Grant Bertolet
- Center for Human Immunobiology, Texas Children's Hospital, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030; Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030; and
| | - Michael Xi Zhu
- Department of Integrative Biology and Pharmacology, Graduate Program in Cell and Regulatory Biology, University of Texas Health Science Center at Houston, Houston, TX 77030
| | - Lidong Qin
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030; Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY 10065
| | - Dongfang Liu
- Center for Human Immunobiology, Texas Children's Hospital, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030; Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030; and
| |
Collapse
|
11
|
Schwingshackl A, Roan E, Teng B, Waters CM. TREK-1 Regulates Cytokine Secretion from Cultured Human Alveolar Epithelial Cells Independently of Cytoskeletal Rearrangements. PLoS One 2015; 10:e0126781. [PMID: 26001192 PMCID: PMC4441361 DOI: 10.1371/journal.pone.0126781] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 03/28/2015] [Indexed: 01/15/2023] Open
Abstract
Background TREK-1 deficient alveolar epithelial cells (AECs) secrete less IL-6, more MCP-1, and contain less F-actin. Whether these alterations in cytokine secretion and F-actin content are related remains unknown. We now hypothesized that cytokine secretion from TREK-1-deficient AECs was regulated by cytoskeletal rearrangements. Methods We determined F-actin and α-tubulin contents of control, TREK-1-deficient and TREK-1-overexpressing human A549 cells by confocal microscopy and western blotting, and measured IL-6 and MCP-1 levels using real-time PCR and ELISA. Results Cytochalasin D decreased the F-actin content of control cells. Jasplakinolide increased the F-actin content of TREK-1 deficient cells, similar to the effect of TREK-1 overexpression in control cells. Treatment of control and TREK-1 deficient cells with TNF-α, a strong stimulus for IL-6 and MCP-1 secretion, had no effect on F-actin structures. The combination of TNF-α+cytochalasin D or TNF-α+jasplakinolide had no additional effect on the F-actin content or architecture when compared to cytochalasin D or jasplakinolide alone. Although TREK-1 deficient AECs contained less F-actin at baseline, quantified biochemically, they contained more α-tubulin. Exposure to nocodazole disrupted α-tubulin filaments in control and TREK-1 deficient cells, but left the overall amount of α-tubulin unchanged. Although TNF-α had no effect on the F-actin or α-tubulin contents, it increased IL-6 and MCP-1 production and secretion from control and TREK-1 deficient cells. IL-6 and MCP-1 secretions from control and TREK-1 deficient cells after TNF-α+jasplakinolide or TNF-α+nocodazole treatment was similar to the effect of TNF-α alone. Interestingly, cytochalasin D decreased TNF-α-induced IL-6 but not MCP-1 secretion from control but not TREK-1 deficient cells. Conclusion Although cytochalasin D, jasplakinolide and nocodazole altered the F-actin and α-tubulin structures of control and TREK-1 deficient AEC, the changes in cytokine secretion from TREK-1 deficient cells cannot be explained by cytoskeletal rearrangements in these cells.
Collapse
Affiliation(s)
- Andreas Schwingshackl
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, United States of America
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN, United States of America
- * E-mail:
| | - Esra Roan
- Department of Biomedical Engineering, University of Memphis, Memphis, TN, United States of America
| | - Bin Teng
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - Christopher M. Waters
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN, United States of America
- Department of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States of America
| |
Collapse
|
12
|
Aged insulin granules display reduced microtubule-dependent mobility and are disposed within actin-positive multigranular bodies. Proc Natl Acad Sci U S A 2015; 112:E667-76. [PMID: 25646459 DOI: 10.1073/pnas.1409542112] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Insulin secretion is key for glucose homeostasis. Insulin secretory granules (SGs) exist in different functional pools, with young SGs being more mobile and preferentially secreted. However, the principles governing the mobility of age-distinct SGs remain undefined. Using the time-reporter insulin-SNAP to track age-distinct SGs we now show that their dynamics can be classified into three components: highly dynamic, restricted, and nearly immobile. Young SGs display all three components, whereas old SGs are either restricted or nearly immobile. Both glucose stimulation and F-actin depolymerization recruit a fraction of nearly immobile young, but not old, SGs for highly dynamic, microtubule-dependent transport. Moreover, F-actin marks multigranular bodies/lysosomes containing aged SGs. These data demonstrate that SGs lose their responsiveness to glucose stimulation and competence for microtubule-mediated transport over time while changing their relationship with F-actin.
Collapse
|
13
|
Toops KA, Tan LX, Jiang Z, Radu RA, Lakkaraju A. Cholesterol-mediated activation of acid sphingomyelinase disrupts autophagy in the retinal pigment epithelium. Mol Biol Cell 2014; 26:1-14. [PMID: 25378587 PMCID: PMC4279221 DOI: 10.1091/mbc.e14-05-1028] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
How autophagy is regulated in the postmitotic retinal pigment epithelium (RPE) is unclear. Visual cycle metabolites and cholesterol that accumulate in the RPE inhibit autophagic flux by activating acid sphingomyelinase (ASMase). Increased ceramide promotes tubulin acetylation, which prevents autophagosome traffic. ASMase inhibition restores RPE autophagy. Autophagy is an essential mechanism for clearing damaged organelles and proteins within the cell. As with neurodegenerative diseases, dysfunctional autophagy could contribute to blinding diseases such as macular degeneration. However, precisely how inefficient autophagy promotes retinal damage is unclear. In this study, we investigate innate mechanisms that modulate autophagy in the retinal pigment epithelium (RPE), a key site of insult in macular degeneration. High-speed live imaging of polarized adult primary RPE cells and data from a mouse model of early-onset macular degeneration identify a mechanism by which lipofuscin bisretinoids, visual cycle metabolites that progressively accumulate in the RPE, disrupt autophagy. We demonstrate that bisretinoids trap cholesterol and bis(monoacylglycero)phosphate, an acid sphingomyelinase (ASMase) cofactor, within the RPE. ASMase activation increases cellular ceramide, which promotes tubulin acetylation on stabilized microtubules. Live-imaging data show that autophagosome traffic and autophagic flux are inhibited in RPE with acetylated microtubules. Drugs that remove excess cholesterol or inhibit ASMase reverse this cascade of events and restore autophagosome motility and autophagic flux in the RPE. Because accumulation of lipofuscin bisretinoids and abnormal cholesterol homeostasis are implicated in macular degeneration, our studies suggest that ASMase could be a potential therapeutic target to ensure the efficient autophagy that maintains RPE health.
Collapse
Affiliation(s)
- Kimberly A Toops
- Department of Ophthalmology and Visual Sciences, School of Medicine and Public Health, McPherson Eye Research Institute, and
| | - Li Xuan Tan
- Department of Ophthalmology and Visual Sciences, School of Medicine and Public Health, Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53706
| | - Zhichun Jiang
- Jules Stein Eye Institute, University of California, Los Angeles, Los Angeles, CA 90024
| | - Roxana A Radu
- Jules Stein Eye Institute, University of California, Los Angeles, Los Angeles, CA 90024
| | - Aparna Lakkaraju
- Department of Ophthalmology and Visual Sciences, School of Medicine and Public Health, McPherson Eye Research Institute, and Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53706
| |
Collapse
|
14
|
Lagrue K, Carisey A, Oszmiana A, Kennedy PR, Williamson DJ, Cartwright A, Barthen C, Davis DM. The central role of the cytoskeleton in mechanisms and functions of the NK cell immune synapse. Immunol Rev 2014; 256:203-21. [PMID: 24117823 DOI: 10.1111/imr.12107] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Natural killer (NK) cells discriminate between healthy and unhealthy target cells through a balance of activating and inhibitory signals at direct intercellular contacts called immune synapses. Rearrangements in the cellular cytoskeleton have long been known to be critical in assembly of immune synapses. Here, through bringing together the vast literature on this subject, the number of different ways in which the cytoskeleton is important becomes evident. The dynamics of filamentous actin are critical in (i) creating the nanometer-scale organization of NK cell receptors, (ii) establishing cellular polarity, (iii) coordinating immune receptor and integrin-mediated signaling, and (iv) directing secretion of lytic granules and cytokines. The microtubule network also is important in the delivery of lytic granules and vesicles containing cytokines to the immune synapse. Together, these data establish that the cytoskeleton acts as a central regulator of this complex and dynamic process - and an enormous amount of NK cell biology is controlled through the cytoskeleton.
Collapse
Affiliation(s)
- Kathryn Lagrue
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, Manchester, UK; Division of Cell and Molecular Biology, Imperial College, London, UK
| | | | | | | | | | | | | | | |
Collapse
|
15
|
The herpes virus Fc receptor gE-gI mediates antibody bipolar bridging to clear viral antigens from the cell surface. PLoS Pathog 2014; 10:e1003961. [PMID: 24604090 PMCID: PMC3946383 DOI: 10.1371/journal.ppat.1003961] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 01/16/2014] [Indexed: 11/19/2022] Open
Abstract
The Herpes Simplex Virus 1 (HSV-1) glycoprotein gE-gI is a transmembrane Fc receptor found on the surface of infected cells and virions that binds human immunoglobulin G (hIgG). gE-gI can also participate in antibody bipolar bridging (ABB), a process by which the antigen-binding fragments (Fabs) of the IgG bind a viral antigen while the Fc binds to gE-gI. IgG Fc binds gE-gI at basic, but not acidic, pH, suggesting that IgG bound at extracellular pH by cell surface gE-gI would dissociate and be degraded in acidic endosomes/lysosomes if endocytosed. The fate of viral antigens associated with gE-gI-bound IgG had been unknown: they could remain at the cell surface or be endocytosed with IgG. Here, we developed an in vitro model system for ABB and investigated the trafficking of ABB complexes using 4-D confocal fluorescence imaging of ABB complexes with transferrin or epidermal growth factor, well-characterized intracellular trafficking markers. Our data showed that cells expressing gE-gI and the viral antigen HSV-1 gD endocytosed anti-gD IgG and gD in a gE-gI-dependent process, resulting in lysosomal localization. These results suggest that gE-gI can mediate clearance of infected cell surfaces of anti-viral host IgG and viral antigens to evade IgG-mediated responses, representing a general mechanism for viral Fc receptors in immune evasion and viral pathogenesis.
Collapse
|
16
|
Mace EM, Dongre P, Hsu HT, Sinha P, James AM, Mann SS, Forbes LR, Watkin LB, Orange JS. Cell biological steps and checkpoints in accessing NK cell cytotoxicity. Immunol Cell Biol 2014; 92:245-55. [PMID: 24445602 PMCID: PMC3960583 DOI: 10.1038/icb.2013.96] [Citation(s) in RCA: 147] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 11/06/2013] [Indexed: 12/11/2022]
Abstract
Natural killer (NK) cell-mediated cytotoxicity is governed by the formation of a lytic immune synapse in discrete regulated steps, which give rise to an extensive array of cellular checkpoints in accessing NK cell-mediated cytolytic defense. Appropriate progression through these cell biological steps is critical for the directed secretion of specialized secretory lysosomes and subsequent target cell death. Here we highlight recent discoveries in the formation of the NK cell cytolytic synapse as well as the molecular steps and cell biological checkpoints required for this essential host defense process.
Collapse
Affiliation(s)
- Emily M Mace
- Center for Human Immunobiology, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| | - Prachi Dongre
- Center for Human Immunobiology, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| | - Hsiang-Ting Hsu
- Center for Human Immunobiology, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| | - Papiya Sinha
- Center for Human Immunobiology, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| | | | - Shaina S Mann
- Case Western Reserve Medical School, Cleveland, OH, USA
| | - Lisa R Forbes
- Center for Human Immunobiology, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| | - Levi B Watkin
- Center for Human Immunobiology, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| | - Jordan S Orange
- Center for Human Immunobiology, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| |
Collapse
|
17
|
Ham H, Billadeau DD. Human immunodeficiency syndromes affecting human natural killer cell cytolytic activity. Front Immunol 2014; 5:2. [PMID: 24478771 PMCID: PMC3896857 DOI: 10.3389/fimmu.2014.00002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 01/03/2014] [Indexed: 12/30/2022] Open
Abstract
Natural killer (NK) cells are lymphocytes of the innate immune system that secrete cytokines upon activation and mediate the killing of tumor cells and virus-infected cells, especially those that escape the adaptive T cell response caused by the down regulation of MHC-I. The induction of cytotoxicity requires that NK cells contact target cells through adhesion receptors, and initiate activation signaling leading to increased adhesion and accumulation of F-actin at the NK cell cytotoxic synapse. Concurrently, lytic granules undergo minus-end directed movement and accumulate at the microtubule-organizing center through the interaction with microtubule motor proteins, followed by polarization of the lethal cargo toward the target cell. Ultimately, myosin-dependent movement of the lytic granules toward the NK cell plasma membrane through F-actin channels, along with soluble N-ethylmaleimide-sensitive factor attachment protein receptor-dependent fusion, promotes the release of the lytic granule contents into the cleft between the NK cell and target cell resulting in target cell killing. Herein, we will discuss several disease-causing mutations in primary immunodeficiency syndromes and how they impact NK cell-mediated killing by disrupting distinct steps of this tightly regulated process.
Collapse
Affiliation(s)
- Hyoungjun Ham
- Department of Immunology, College of Medicine, Mayo Clinic , Rochester, MN , USA
| | - Daniel D Billadeau
- Department of Immunology, College of Medicine, Mayo Clinic , Rochester, MN , USA ; Division of Oncology Research and Schulze Center for Novel Therapeutics, College of Medicine, Mayo Clinic , Rochester, MN , USA
| |
Collapse
|
18
|
Tuli A, Thiery J, James AM, Michelet X, Sharma M, Garg S, Sanborn KB, Orange JS, Lieberman J, Brenner MB. Arf-like GTPase Arl8b regulates lytic granule polarization and natural killer cell-mediated cytotoxicity. Mol Biol Cell 2013; 24:3721-35. [PMID: 24088571 PMCID: PMC3842998 DOI: 10.1091/mbc.e13-05-0259] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 09/11/2013] [Accepted: 09/25/2013] [Indexed: 11/30/2022] Open
Abstract
Natural killer (NK) lymphocytes contain lysosome-related organelles (LROs), known as lytic granules, which upon formation of immune synapse with the target cell, polarize toward the immune synapse to deliver their contents to the target cell membrane. Here, we identify a small GTP-binding protein, ADP-ribosylation factor-like 8b (Arl8b), as a critical factor required for NK cell-mediated cytotoxicity. Our findings indicate that Arl8b drives the polarization of lytic granules and microtubule-organizing centers (MTOCs) toward the immune synapse between effector NK lymphocytes and target cells. Using a glutathione S-transferase pull-down approach, we identify kinesin family member 5B (KIF5B; the heavy chain of kinesin-1) as an interaction partner of Arl8b from NK cell lysates. Previous studies showed that interaction between kinesin-1 and Arl8b is mediated by SifA and kinesin-interacting protein (SKIP) and the tripartite complex drives the anterograde movement of lysosomes. Silencing of both KIF5B and SKIP in NK cells, similar to Arl8b, led to failure of MTOC-lytic granule polarization to the immune synapse, suggesting that Arl8b and kinesin-1 together control this critical step in NK cell cytotoxicity.
Collapse
Affiliation(s)
- Amit Tuli
- Division of Rheumatology, Immunology and Allergy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
- Division of Cell Biology and Immunology, Institute of Microbial Technology, Chandigarh 160036, India
| | - Jerome Thiery
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115
- Institut National de la Santé et de la Recherche Médicale, Unité 753, Institut Gustave Roussy, Villejuif 75654, France
| | - Ashley M. James
- Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| | - Xavier Michelet
- Division of Rheumatology, Immunology and Allergy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| | - Mahak Sharma
- Division of Rheumatology, Immunology and Allergy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
- Department of Biological Sciences, Indian Institute of Science Education and Research, Mohali 140306, India
| | - Salil Garg
- Division of Rheumatology, Immunology and Allergy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| | - Keri B. Sanborn
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115
- Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| | - Jordan S. Orange
- Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
- Immunology, Allergy and Rheumatology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX 77030
| | - Judy Lieberman
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115
| | - Michael B. Brenner
- Division of Rheumatology, Immunology and Allergy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
19
|
Krzewski K, Cullinane AR. Evidence for defective Rab GTPase-dependent cargo traffic in immune disorders. Exp Cell Res 2013; 319:2360-7. [PMID: 23810987 PMCID: PMC3759575 DOI: 10.1016/j.yexcr.2013.06.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 06/17/2013] [Accepted: 06/19/2013] [Indexed: 01/21/2023]
Abstract
A fully functional immune system is essential to protect the body against pathogens and other diseases, including cancer. Vesicular trafficking provides the correct localization of proteins within all cell types, but this process is most exquisitely controlled and coordinated in immune cells because of their specialized organelles and their requirement to respond to selected stimuli. More than 60 Rab GTPases play important roles in protein trafficking, but only five Rab-encoding genes have been associated with inherited human disorders, and only one of these (Rab27a) causes an immune defect. Mutations in RAB27A cause Griscelli Syndrome type 2 (GS2), an autosomal recessive disorder of pigmentation and severe immune deficiency. In lymphocytes, Munc13-4 is an effector of Rab27a, and mutations in the gene encoding this protein (UNC13D) cause Familial Hemophagocytic Lymphohistiocytosis Type 3 (FHL3). The immunological features of GS2 and FHL3 include neutropenia, thrombocytopenia, and immunodeficiency due to impaired function of cytotoxic lymphocytes. The small number of disorders caused by mutations in genes encoding Rabs could be due to their essential functions, where defects in these genes could be lethal. However, with the increasing use of next generation sequencing technologies, more mutations in genes encoding Rabs may be identified in the near future.
Collapse
Affiliation(s)
- Konrad Krzewski
- Receptor Cell Biology Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Andrew R. Cullinane
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
20
|
Mace EM, Orange JS. New views of the human NK cell immunological synapse: recent advances enabled by super- and high-resolution imaging techniques. Front Immunol 2013; 3:421. [PMID: 23316204 PMCID: PMC3540402 DOI: 10.3389/fimmu.2012.00421] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 12/20/2012] [Indexed: 12/31/2022] Open
Abstract
Imaging technology has undergone rapid growth with the development of super resolution microscopy, which enables resolution below the diffraction barrier of light (~200 nm). In addition, new techniques for single molecule imaging are being added to the cell biologist's arsenal. Immunologists have exploited these techniques to advance understanding of NK biology, particularly that of the immune synapse. The immune synapse's relatively small size and complex architecture combined with its exquisitely controlled signaling milieu have made it a challenge to visualize. In this review we highlight and discuss new insights into NK cell immune synapse formation and regulation revealed by cutting edge imaging techniques, including super-resolution microscopy, high-resolution total internal reflection microscopy, and Förster resonance energy transfer.
Collapse
Affiliation(s)
- Emily M. Mace
- Baylor College of MedicineHouston, TX, USA
- Texas Children’s Hospital Center for Human ImmunobiologyHouston, TX, USA
| | - Jordan S. Orange
- Baylor College of MedicineHouston, TX, USA
- Texas Children’s Hospital Center for Human ImmunobiologyHouston, TX, USA
| |
Collapse
|
21
|
Mace EM, Wu WW, Ho T, Mann SS, Hsu HT, Orange JS. NK cell lytic granules are highly motile at the immunological synapse and require F-actin for post-degranulation persistence. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2012; 189:4870-80. [PMID: 23066148 PMCID: PMC3558996 DOI: 10.4049/jimmunol.1201296] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The formation of a dynamic, actin-rich immunological synapse (IS) and the polarization of cytolytic granules toward target cells are essential to the cytotoxic function of NK cells. Following polarization, lytic granules navigate through the pervasive actin network at the IS to degranulate and secrete their toxic contents onto target cells. We examined lytic granule motility and persistence at the cell cortex of activated human NK cells, using high-resolution total internal reflection microscopy and highly quantitative analysis techniques. We illustrate that lytic granules are dynamic and observe substantial motility at the plane of the cell cortex prior to, but not after, degranulation. We also show that there is no significant change in granule motility in the presence of Latrunculin A (which induces actin depolymerization), when added after granule polarization, but that there is a significant decrease in lytic granule persistence subsequent to degranulation. Thus, we show that lytic granules are highly dynamic at the cytolytic human NK cell IS prior to degranulation and that the persistence of granules at the cortex following exocytosis requires the integrity of the synaptic actin network.
Collapse
Affiliation(s)
- Emily M. Mace
- Baylor College of Medicine, Houston, Texas, United States of America
| | - Winona W. Wu
- University of Pennsylvania College of Arts and Science, Philadelphia, Pennsylvania, United States of America
| | - Tina Ho
- University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Shaina S. Mann
- University of Pennsylvania College of Arts and Science, Philadelphia, Pennsylvania, United States of America
| | - Hsiang-Ting Hsu
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, USA
| | - Jordan S. Orange
- Baylor College of Medicine, Houston, Texas, United States of America
- Texas Children’s Hospital, Houston, Texas, United States of America
| |
Collapse
|
22
|
Krzewski K, Coligan JE. Human NK cell lytic granules and regulation of their exocytosis. Front Immunol 2012; 3:335. [PMID: 23162553 PMCID: PMC3494098 DOI: 10.3389/fimmu.2012.00335] [Citation(s) in RCA: 144] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 10/22/2012] [Indexed: 12/16/2022] Open
Abstract
Natural killer (NK) cells form a subset of lymphocytes that play a key role in immuno-surveillance and host defense against cancer and viral infections. They recognize stressed cells through a variety of germline-encoded activating cell surface receptors and utilize their cytotoxic ability to eliminate abnormal cells. Killing of target cells is a complex, multi-stage process that concludes in the directed secretion of lytic granules, containing perforin and granzymes, at the immunological synapse. Upon delivery to a target cell, perforin mediates generation of pores in membranes of target cells, allowing granzymes to access target cell cytoplasm and induce apoptosis. Therefore, lytic granules of NK cells are indispensable for normal NK cell cytolytic function. Indeed, defects in lytic granule secretion lead or are related to serious and often fatal diseases, such as familial hemophagocytic lymphohistiocytosis (FHL) type 2–5 or Griscelli syndrome type 2. A number of reports highlight the role of several proteins involved in lytic granule release and NK cell-mediated killing of tumor cells. This review focuses on lytic granules of human NK cells and the advancements in understanding the mechanisms controlling their exocytosis.
Collapse
Affiliation(s)
- Konrad Krzewski
- Receptor Cell Biology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health Rockville, MD, USA
| | | |
Collapse
|
23
|
Elstak ED, Neeft M, Nehme NT, Callebaut I, de Saint Basile G, van der Sluijs P. Munc13-4*rab27 complex tethers secretory lysosomes at the plasma membrane. Commun Integr Biol 2012; 5:64-7. [PMID: 22482013 DOI: 10.4161/cib.18015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Natural Killer (NK) cells and Cytotoxic T lymphocytes (CTL) are critical for the immune response against virus infections or transformed cells. They kill target cells via polarized exocytosis of lytic proteins from secretory lysosomes (SL). Rab27a and munc13-4 interact directly and are required for target cell killing. How they cooperate in the intricate degranulation process is not known. We identified critical residues in munc13-4 for rab27 interaction and tested binding mutants in several complementation assays. In a rat mast cell line we replaced endogenous munc13-4 with ectopically expressed munc13-4 constructs. Unlike wild type munc13-4, binding mutants fail to rescue β-hexosaminidase secretion. In accord, expression of binding mutants in CTL of Familial Hemophagocytic Lymphohistiocytosis type 3 patients, does not rescue CD107 appearance on the plasma membrane. Total Internal Reflection Fluorescence (TIRF) imaging shows that munc13-4*rab27a restricts motility of SL in the subapical cytoplasm. We propose that rab27*munc13-4 tethers SL to the plasma membrane, a requirement for formation of a cognate SNARE complex for fusion.
Collapse
|
24
|
Ehlers M, Papewalis C, Stenzel W, Jacobs B, Meyer KL, Deenen R, Willenberg HS, Schinner S, Thiel A, Scherbaum WA, Ullrich E, Zitvogel L, Schott M. Immunoregulatory natural killer cells suppress autoimmunity by down-regulating antigen-specific CD8+ T cells in mice. Endocrinology 2012; 153:4367-79. [PMID: 22733969 DOI: 10.1210/en.2012-1247] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Natural killer (NK) cells belong to the innate immune system. Besides their role in antitumor immunity, NK cells also regulate the activity of other cells of the immune system, including dendritic cells, macrophages, and T cells, and may, therefore, be involved in autoimmune processes. The aim of the present study was to clarify the role of NK cells within this context. Using two mouse models for type 1 diabetes mellitus, a new subset of NK cells with regulatory function was identified. These cells were generated from conventional NK cells by incubation with IL-18 and are characterized by the expression of the surface markers CD117 (also known as c-Kit, stem cell factor receptor) and programmed death (PD)-ligand 1. In vitro analyses demonstrated a direct lysis activity of IL-18-stimulated NK cells against activated insulin-specific CD8(+) T cells in a PD-1/PD-ligand 1-dependent manner. Flow cytometry analyses revealed a large increase of splenic and lymphatic NK1.1(+)/c-Kit(+) NK cells in nonobese diabetic mice at 8 wk of age, the time point of acceleration of adaptive cytotoxic immunity. Adoptive transfer of unstimulated and IL-18-stimulated NK cells into streptozotocin-treated mice led to a delayed diabetes development and partial disease prevention in the group treated with IL-18-stimulated NK cells. Consistent with these data, mild diabetes was associated with increased numbers of NK1.1(+)/c-Kit(+) NK cells within the islets. Our results demonstrate a direct link between innate and adaptive immunity in autoimmunity with newly identified immunoregulatory NK cells displaying a potential role as immunosuppressors.
Collapse
Affiliation(s)
- Margret Ehlers
- Division of Endocrinology, University Hospital Duesseldorf, Moorenstrasse 5, 40225 Duesseldorf, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Zografou S, Basagiannis D, Papafotika A, Shirakawa R, Horiuchi H, Auerbach D, Fukuda M, Christoforidis S. A complete Rab screening reveals novel insights in Weibel-Palade body exocytosis. J Cell Sci 2012; 125:4780-90. [PMID: 22899725 DOI: 10.1242/jcs.104174] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Weibel-Palade bodies (WPBs) are endothelial-cell-specific organelles that, upon fusion with the plasma membrane, release cargo molecules that are essential in blood vessel abnormalities, such as thrombosis and inflammation, as well as in angiogenesis. Despite the importance of WPBs, the basic mechanisms that mediate their secretion are only poorly understood. Rab GTPases play fundamental role in the trafficking of intracellular organelles. Yet, the only known WPB-associated Rabs are Rab27a and Rab3d. To determine the full spectrum of WPB-associated Rabs we performed a complete Rab screening by analysing the localisation of all Rabs in WPBs and their involvement in the secretory process in endothelial cells. Apart from Rab3 and Rab27, we identified three additional Rabs, Rab15 (a previously reported endocytic Rab), Rab33 and Rab37, on the WPB limiting membrane. A knockdown approach using siRNAs showed that among these five WPB Rabs only Rab3, Rab27 and Rab15 are required for exocytosis. Intriguingly, we found that Rab15 cooperates with Rab27a in WPB secretion. Furthermore, a specific effector of Rab27, Munc13-4, appears to be also an effector of Rab15 and is required for WPB exocytosis. These data indicate that WPB secretion requires the coordinated function of a specific group of Rabs and that, among them, Rab27a and Rab15, as well as their effector Munc13-4, cooperate to drive exocytosis.
Collapse
Affiliation(s)
- Sofia Zografou
- Institute of Molecular Biology and Biotechnology, Department of Ioannina/Foundation for Research and Technology Hellas, Ioannina, Greece
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
Lymphocyte cytotoxicity is essential in immune defense. In this issue of Blood, Kurowska and colleagues define a Rab27a/Slp3/kinesin-1 complex that facilitates anterograde microtubule transport of lytic granules, representing a critical step in lymphocyte granule exocytosis and cytotoxicity.
Collapse
|
27
|
Sanchez-Ruiz Y, Valitutti S, Dupre L. Stepwise maturation of lytic granules during differentiation and activation of human CD8+ T lymphocytes. PLoS One 2011; 6:e27057. [PMID: 22073254 PMCID: PMC3208563 DOI: 10.1371/journal.pone.0027057] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2011] [Accepted: 10/10/2011] [Indexed: 11/25/2022] Open
Abstract
During differentiation, cytotoxic T lymphocytes (CTL) acquire their killing potential through the biogenesis and maturation of lytic granules that are secreted upon target cell recognition. How lytic granule load in lytic molecules evolves during CTL differentiation and which subsets of lytic granules are secreted following activation remains to be investigated. We set up a flow cytometry approach to analyze single lytic granules isolated from primary human CTL according to their size and molecular content. During CTL in vitro differentiation, a relatively homogeneous population of lytic granules appeared through the progressive loading of Granzyme B, Perforin and Granzyme A within LAMP1+ lysosomes. PMA/ionomycin-induced lytic granule exocytosis was preceded by a rapid association of the docking molecule Rab27a to approximately half of the lytic granules. Activated CTL were found to limit exocytosis by sparing lytic granules including some associated to Rab27a. Our study provides a quantification of key steps of lytic granule biogenesis and highlights the potential of flow cytometry to study organelle composition and dynamics.
Collapse
Affiliation(s)
- Yovan Sanchez-Ruiz
- INSERM, U1043, Toulouse, France
- CNRS, U5282, Toulouse, France
- Université Toulouse III Paul-Sabatier, Centre de Physiopathologie de Toulouse Purpan, Toulouse, France
| | - Salvatore Valitutti
- INSERM, U1043, Toulouse, France
- CNRS, U5282, Toulouse, France
- Université Toulouse III Paul-Sabatier, Centre de Physiopathologie de Toulouse Purpan, Toulouse, France
| | - Loic Dupre
- INSERM, U1043, Toulouse, France
- CNRS, U5282, Toulouse, France
- Université Toulouse III Paul-Sabatier, Centre de Physiopathologie de Toulouse Purpan, Toulouse, France
- * E-mail:
| |
Collapse
|
28
|
Wood SM, Ljunggren HG, Bryceson YT. Insights into NK cell biology from human genetics and disease associations. Cell Mol Life Sci 2011; 68:3479-93. [PMID: 21874350 PMCID: PMC11115003 DOI: 10.1007/s00018-011-0799-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 08/08/2011] [Accepted: 08/08/2011] [Indexed: 12/29/2022]
Abstract
Rare human primary immunodeficiency disorders with extreme susceptibility to infections in infancy have provided important insights into immune function. Increasingly, however, primary immunodeficiencies are also recognized as a cause of other more common, often discrete, infectious susceptibilities. In a wider context, loss-of-function mutations in immune genes may also cause disorders of immune regulation and predispose to cancer. Here, we review the associations between human diseases and mutations in genetic elements affecting natural killer (NK) cell development and function. Although many such genetic aberrations significantly reduce NK cell numbers or severely impair NK cell responses, inferences regarding the role of NK cells in disease are confounded by the fact that most mutations also affect the development or function of other cell types. Still, data suggest an important role for NK cells in diseases ranging from classical immunodeficiency syndromes with susceptibility to viruses and other intracellular pathogens to cancer, autoimmunity, and hypersensitivity reactions.
Collapse
Affiliation(s)
- Stephanie M Wood
- Department of Medicine, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, 14186 Stockholm, Sweden.
| | | | | |
Collapse
|
29
|
Liu D, Martina JA, Wu XS, Hammer JA, Long EO. Two modes of lytic granule fusion during degranulation by natural killer cells. Immunol Cell Biol 2011; 89:728-38. [PMID: 21483445 PMCID: PMC3257049 DOI: 10.1038/icb.2010.167] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Lytic granules in cytotoxic lymphocytes, which include T cells and natural killer (NK) cells, are secretory lysosomes that release their content upon fusion with the plasma membrane (PM), a process known as degranulation. Although vesicle exocytosis has been extensively studied in endocrine and neuronal cells, much less is known about the fusion of lytic granules in cytotoxic lymphocytes. Here, we used total internal reflection fluorescence microscopy to examine lytic granules labeled with fluorescently tagged Fas ligand (FasL) in the NK cell line NKL stimulated with phorbol ester and ionomycin and in primary NK cells activated by physiological receptor–ligand interactions. Two fusion modes were observed: complete fusion, characterized by loss of granule content and rapid diffusion of FasL at the PM; and incomplete fusion, characterized by transient fusion pore opening and retention of FasL at the fusion site. The pH-sensitive green fluorescence protein (pHluorin) fused to the lumenal domain of FasL was used to visualize fusion pore opening with a time resolution of 30 ms. Upon incomplete fusion, pHluorin emission lasted several seconds in the absence of noticeable diffusion. Thus, we conclude that lytic granules in NK cells undergo both complete and incomplete fusion with the PM, and propose that incomplete fusion may promote efficient recycling of lytic granule membrane after the release of cytotoxic effector molecules.
Collapse
Affiliation(s)
- Dongfang Liu
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA.
| | | | | | | | | |
Collapse
|