1
|
Shi J, Leonardo TR, Han C, Bangash HI, Chen D, Trivedi HM, Chen L. L-Arginine Enhances Oral Keratinocyte Proliferation under High-Glucose Conditions via Upregulation of CYP1A1, SKP2, and SRSF5. Molecules 2023; 28:7020. [PMID: 37894498 PMCID: PMC10609441 DOI: 10.3390/molecules28207020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/02/2023] [Accepted: 10/05/2023] [Indexed: 10/29/2023] Open
Abstract
High glucose inhibits oral keratinocyte proliferation. Diabetes can lead to delayed oral wound healing and periodontal disease. L-Arginine, one of the most versatile amino acids, plays an important role in wound healing, organ maturation, and development. In this study, L-Arginine was found to enhance oral keratinocyte proliferation under high-glucose conditions. RNA sequencing analysis discovered a significant number of genes differentially upregulated following L-Arginine treatment under high-glucose conditions. Cytochrome P450 family 1 subfamily A member 1 (CYP1A1) was the most significantly upregulated gene at 24 and 48 h after L-Arginine treatment. Gene Ontology enrichment analysis found that cell proliferation- and mitosis-related biological processes, such as mitotic nuclear division, mRNA processing, and positive regulation of cell cycle processes, were significantly upregulated. Pathway enrichment analysis found that S-phase kinase-associated protein 2 (SKP2) and serine- and arginine-rich splicing factor 5 (SRSF5) were the top upregulated genes in cell cycle and spliceosome pathways, respectively. Indirect immunofluorescent cytochemistry confirmed increased protein levels of CYP1A1, SKP2, and SRSF5 after L-Arginine treatment. Knockdown of CYP1A1, SKP2, and SRSF5 abolished the enhanced proliferative effect of L-Arginine on oral keratinocytes under high-glucose conditions. In conclusion, L-Arginine enhances oral keratinocyte proliferation under high-glucose conditions via upregulation of CYP1A1, SKP2, and SRSF5, suggesting that supplemental L-Arginine in oral care products may be beneficial for oral tissue repair and regeneration.
Collapse
Affiliation(s)
- Junhe Shi
- NMPA Key Laboratory for Clinical Research and Evaluation of Traditional Chinese Medicine, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China;
- Department of Periodontics, College of Dentistry, University of Illinois Chicago, Chicago, IL 60612, USA; (T.R.L.); (C.H.); (H.I.B.)
- Center for Wound Healing and Tissue Regeneration, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Trevor R. Leonardo
- Department of Periodontics, College of Dentistry, University of Illinois Chicago, Chicago, IL 60612, USA; (T.R.L.); (C.H.); (H.I.B.)
- Center for Wound Healing and Tissue Regeneration, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Chen Han
- Department of Periodontics, College of Dentistry, University of Illinois Chicago, Chicago, IL 60612, USA; (T.R.L.); (C.H.); (H.I.B.)
- Center for Wound Healing and Tissue Regeneration, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Hiba I. Bangash
- Department of Periodontics, College of Dentistry, University of Illinois Chicago, Chicago, IL 60612, USA; (T.R.L.); (C.H.); (H.I.B.)
- Center for Wound Healing and Tissue Regeneration, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Dandan Chen
- Colgate-Palmolive Company, Piscataway, NJ 08854, USA; (D.C.); (H.M.T.)
| | - Harsh M. Trivedi
- Colgate-Palmolive Company, Piscataway, NJ 08854, USA; (D.C.); (H.M.T.)
| | - Lin Chen
- Department of Periodontics, College of Dentistry, University of Illinois Chicago, Chicago, IL 60612, USA; (T.R.L.); (C.H.); (H.I.B.)
- Center for Wound Healing and Tissue Regeneration, University of Illinois Chicago, Chicago, IL 60612, USA
| |
Collapse
|
2
|
Chang A, Chakiryan NH, Du D, Stewart PA, Zhang Y, Tian Y, Soupir AC, Bowers K, Fang B, Morganti A, Teer JK, Kim Y, Spiess PE, Chahoud J, Noble JD, Putney RM, Berglund AE, Robinson TJ, Koomen JM, Wang L, Manley BJ. Proteogenomic, Epigenetic, and Clinical Implications of Recurrent Aberrant Splice Variants in Clear Cell Renal Cell Carcinoma. Eur Urol 2022; 82:354-362. [PMID: 35718636 PMCID: PMC11075093 DOI: 10.1016/j.eururo.2022.05.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/24/2022] [Accepted: 05/24/2022] [Indexed: 02/01/2023]
Abstract
BACKGROUND Alternative mRNA splicing can be dysregulated in cancer, resulting in the generation of aberrant splice variants (SVs). Given the paucity of actionable genomic mutations in clear cell renal cell carcinoma (ccRCC), aberrant SVs may be an avenue to novel mechanisms of pathogenesis. OBJECTIVE To identify and characterize aberrant SVs enriched in ccRCC. DESIGN, SETTING, AND PARTICIPANTS Using RNA-seq data from the Cancer Cell Line Encyclopedia, we identified neojunctions uniquely expressed in ccRCC. Candidate SVs were then checked for expression across normal tissue in the Genotype-Tissue Expression Project and primary tumor tissue from The Cancer Genome Atlas (TCGA), Clinical Proteomic Tumor Analysis Consortium (CPTAC), and our institutional Total Cancer Care database. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS Clinicopathologic, genomic, and survival data were available for all cohorts. Epigenetic data were available for the TCGA and CPTAC cohorts. Proteomic data were available for the CPTAC cohort. The association of aberrant SV expression with these variables was examined using the Kruskal-Wallis test, pairwise t test, Spearman correlation test, and Cox regression analysis. RESULTS AND LIMITATIONS Our pipeline identified 16 ccRCC-enriched SVs. EGFR, HPCAL1-SV and RNASET2-SV expression was negatively correlated with gene-specific CpG methylation. We derived a survival risk score based primarily on the expression of five SVs (RNASET2, FGD1, PDZD2, COBLL1, and PTPN14), which was consistent and applicable across multiple cohorts on multivariate analysis. The splicing factor RBM4, which modulates splicing of HIF-1α, exhibited significantly lower expression at the protein level in the high-risk group, as defined by our SV-based score. CONCLUSIONS We describe 16 aberrant SVs enriched in ccRCC, many of which are associated with disease biology and/or clinical outcomes. This study provides a novel strategy for identifying and characterizing disease-specific aberrant SVs. PATIENT SUMMARY We describe a method to identify disease targets and biomarkers using transcriptomic analysis beyond somatic mutations or gene expression. Kidney tumors express unique splice variants that may provide additional prognostic information following surgery.
Collapse
Affiliation(s)
- Andrew Chang
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA.
| | - Nicholas H Chakiryan
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Dongliang Du
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Paul A Stewart
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Yonghong Zhang
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Yijun Tian
- Department of Tumor Biology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Alex C Soupir
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA; Department of Tumor Biology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Kiah Bowers
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Bin Fang
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Ashley Morganti
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Jamie K Teer
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Youngchul Kim
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Philippe E Spiess
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Jad Chahoud
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Jerald D Noble
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA; Department of Radiation Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Ryan M Putney
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Anders E Berglund
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Timothy J Robinson
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT, USA
| | - John M Koomen
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Liang Wang
- Department of Tumor Biology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Brandon J Manley
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA; Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| |
Collapse
|
3
|
Casuscelli J, Pal SK. Aberrant Splice Variants: A Novel Characterization of Clear Cell Renal Cell Carcinoma. Eur Urol 2022; 82:363-364. [DOI: 10.1016/j.eururo.2022.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 06/17/2022] [Indexed: 11/26/2022]
|
4
|
Liu Q, Fang L, Wu C. Alternative Splicing and Isoforms: From Mechanisms to Diseases. Genes (Basel) 2022; 13:genes13030401. [PMID: 35327956 PMCID: PMC8951537 DOI: 10.3390/genes13030401] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 11/16/2022] Open
Abstract
Alternative splicing of pre-mRNA is a key mechanism for increasing the complexity of proteins in humans, causing a diversity of expression of transcriptomes and proteomes in a tissue-specific manner. Alternative splicing is regulated by a variety of splicing factors. However, the changes and errors of splicing regulation caused by splicing factors are strongly related to many diseases, something which represents one of this study’s main interests. Further understanding of alternative splicing regulation mediated by cellular factors is also a prospective choice to develop specific drugs for targeting the dynamic RNA splicing process. In this review, we firstly concluded the basic principle of alternative splicing. Afterwards, we showed how splicing isoforms affect physiological activities through specific disease examples. Finally, the available treatment methods relative to adjusting splicing activities have been summarized.
Collapse
|
5
|
Leclair NK, Brugiolo M, Urbanski L, Lawson SC, Thakar K, Yurieva M, George J, Hinson JT, Cheng A, Graveley BR, Anczuków O. Poison Exon Splicing Regulates a Coordinated Network of SR Protein Expression during Differentiation and Tumorigenesis. Mol Cell 2020; 80:648-665.e9. [PMID: 33176162 PMCID: PMC7680420 DOI: 10.1016/j.molcel.2020.10.019] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/07/2020] [Accepted: 10/12/2020] [Indexed: 12/18/2022]
Abstract
The RNA isoform repertoire is regulated by splicing factor (SF) expression, and alterations in SF levels are associated with disease. SFs contain ultraconserved poison exon (PE) sequences that exhibit greater identity across species than nearby coding exons, but their physiological role and molecular regulation is incompletely understood. We show that PEs in serine-arginine-rich (SR) proteins, a family of 14 essential SFs, are differentially spliced during induced pluripotent stem cell (iPSC) differentiation and in tumors versus normal tissues. We uncover an extensive cross-regulatory network of SR proteins controlling their expression via alternative splicing coupled to nonsense-mediated decay. We define sequences that regulate PE inclusion and protein expression of the oncogenic SF TRA2β using an RNA-targeting CRISPR screen. We demonstrate location dependency of RS domain activity on regulation of TRA2β-PE using CRISPR artificial SFs. Finally, we develop splice-switching antisense oligonucleotides to reverse the increased skipping of TRA2β-PE detected in breast tumors, altering breast cancer cell viability, proliferation, and migration.
Collapse
Affiliation(s)
- Nathan K Leclair
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA; Graduate Program in Genetics and Development, UConn Health, Farmington, CT, USA
| | - Mattia Brugiolo
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Laura Urbanski
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA; Graduate Program in Genetics and Development, UConn Health, Farmington, CT, USA
| | - Shane C Lawson
- Graduate Program in Genetics and Development, UConn Health, Farmington, CT, USA; Department of Genetics and Genome Sciences, UConn Health, Farmington, CT, USA
| | - Ketan Thakar
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Marina Yurieva
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Joshy George
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA; Institute for Systems Genomics, UConn Health, Farmington, CT, USA
| | - John Travis Hinson
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA; Department of Genetics and Genome Sciences, UConn Health, Farmington, CT, USA
| | - Albert Cheng
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA; Department of Genetics and Genome Sciences, UConn Health, Farmington, CT, USA; Institute for Systems Genomics, UConn Health, Farmington, CT, USA
| | - Brenton R Graveley
- Department of Genetics and Genome Sciences, UConn Health, Farmington, CT, USA; Institute for Systems Genomics, UConn Health, Farmington, CT, USA
| | - Olga Anczuków
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA; Department of Genetics and Genome Sciences, UConn Health, Farmington, CT, USA; Institute for Systems Genomics, UConn Health, Farmington, CT, USA.
| |
Collapse
|
6
|
Zhou Z, Gong Q, Lin Z, Wang Y, Li M, Wang L, Ding H, Li P. Emerging Roles of SRSF3 as a Therapeutic Target for Cancer. Front Oncol 2020; 10:577636. [PMID: 33072610 PMCID: PMC7544984 DOI: 10.3389/fonc.2020.577636] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 08/28/2020] [Indexed: 12/14/2022] Open
Abstract
Ser/Arg-rich (SR) proteins are RNA-binding proteins known as constitutive and alternative splicing (AS) regulators that regulate multiple aspects of the gene expression program. Ser/Arg-rich splicing factor 3 (SRSF3) is the smallest member of the SR protein family, and its level is controlled by multiple factors and involves complex mechanisms in eukaryote cells, whereas the aberrant expression of SRSF3 is associated with many human diseases, including cancer. Here, we review state-of-the-art research on SRSF3 in terms of its function, expression, and misregulation in human cancers. We emphasize the negative consequences of the overexpression of the SRSF3 oncogene in cancers, the pathways underlying SRSF3-mediated transformation, and implications of potential anticancer drugs by downregulation of SRSF3 expression for cancer therapy. Cumulative research on SRSF3 provides critical insight into its essential part in maintaining cellular processes, offering potential new targets for anti-cancer therapy.
Collapse
Affiliation(s)
- Zhixia Zhou
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Qi Gong
- Departments of Pediatrics, Second Clinical Medical College of Qingdao University, Qingdao, China
| | - Zhijuan Lin
- Key Laboratory for Immunology in Universities of Shandong Province, School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Yin Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Mengkun Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Lu Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Hongfei Ding
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Peifeng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
7
|
Yu B, Qu L, Wu T, Yan B, Kan X, Zhao X, Yang L, Li Y, Liu M, Tian L, Sun Y, Li Q. A Novel LncRNA, AC091729.7 Promotes Sinonasal Squamous Cell Carcinomas Proliferation and Invasion Through Binding SRSF2. Front Oncol 2020; 9:1575. [PMID: 32039035 PMCID: PMC6992602 DOI: 10.3389/fonc.2019.01575] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 12/31/2019] [Indexed: 01/31/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) play important roles in various biological progresses of carcinogenesis. However, the function of lncRNAs in human sinonasal squamous cell carcinoma (SNSCC) remains greatly unclear. In the current study, lncRNA AC091729.7 expression was examined in SNSCC samples by using microarray, RNA in situ hybridization (ISH) and real-time fluorescence quantitative PCR (qRT-PCR). Cell viability, colony-formation, wound-healing, and transwell assays were applied to SNSCC cells. Xenograft mouse models were employed to evaluate the role of AC091729.7 in growth of SNSCC in vivo. Human protein microarray (HuprotTM Protoarray) and RNA immunoprecipitation (RIP) were used for identifying AC091729.7 binding proteins in SNSCC. Results showed AC091729.7 was upregulated and closely connected with the survival of the SNSCC patients. Knockdown of AC091729.7 suppressed SNSCC cell migration, proliferation, invasion in vitro. Furthermore, downregulation of AC091729.7 could inhibit the growth of SNSCC in vivo. Moreover, Human protein microarray and RIP suggested that AC091729.7 directly combine with the serine/arginine rich splicing factor 2 (SRSF2). Our results suggest that in the cell progression of SNSCC, lncRNA AC091729.7 plays a carcinogenic role and serves as a novel biomarker and latent curative target in SNSCC patients.
Collapse
Affiliation(s)
- Boyu Yu
- Department of Otorhinolaryngology, Head and Neck Surgery, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Linmei Qu
- Department of Otorhinolaryngology, Head and Neck Surgery, The Fifth Affiliated Hospital, Harbin Medical University, Daqing, China
| | - Tianyi Wu
- Department of Otorhinolaryngology, Head and Neck Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Bingrui Yan
- Department of Otorhinolaryngology, Head and Neck Surgery, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Xuan Kan
- Department of Otorhinolaryngology, Head and Neck Surgery, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Xuehui Zhao
- Department of Otorhinolaryngology, Head and Neck Surgery, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Like Yang
- Department of Otorhinolaryngology, Head and Neck Surgery, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Yushan Li
- Department of Otorhinolaryngology, Head and Neck Surgery, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Ming Liu
- Department of Otorhinolaryngology, Head and Neck Surgery, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Linli Tian
- Department of Otorhinolaryngology, Head and Neck Surgery, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Yanan Sun
- Department of Otorhinolaryngology, Head and Neck Surgery, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Qiuying Li
- Department of Otorhinolaryngology, Head and Neck Surgery, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| |
Collapse
|
8
|
Jia K, Wu Y, Huang J, Wu H. Survival-Associated Alternative Splicing Events in Pan-Renal Cell Carcinoma. Front Oncol 2019; 9:1317. [PMID: 31850211 PMCID: PMC6902018 DOI: 10.3389/fonc.2019.01317] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 11/12/2019] [Indexed: 01/07/2023] Open
Abstract
Alternative splicing is an important modification process for the genome to generate mature mRNA by transcription, which has been found associated with survival in some tumors. However, systematic analysis of AS events in pan-renal cell carcinoma at the genome-wide level has been seldom conducted yet. In the current study, Upset plot and Venn plot were utilized to present the distribution characteristics of AS events. Those SREs were screened out with multivariate COX regression analyses, and functional enrichment analysis was performed to figure out potential pathways. ROC model was conducted to compare the efficiency of those potential SREs. A total of 2,169, 1,671, and 1,414 SREs were found in renal clear cell carcinoma (KIRC), renal chromophobe cell carcinoma (KICH), and renal papillary cell carcinoma (KIRP), respectively. Functional enrichment analysis results suggested possible mechanism such as changes in the branched-chain amino acid catabolic process due to SREs might play a key role in KIRC. The binary logistic regression equation based on the SREs had a good performance in each model compared to the single factor. The 5 year survival model presented that the AUC of the predicted probabilities in KIRC, KICH, and KIRP were 0.754, 1 and 0.841, and in the diagnostic model were 0.988, 0.970, and 0.999, respectively. Some AS types that were significantly different in pan-RCC and paracancerous tissues have also been discovered to play a role in carcinoma screening. To sum up, alternative splicing events significantly interfere with the prognosis of patients with pan-RCC and are capable as biomarkers for prognosis.
Collapse
Affiliation(s)
- Keren Jia
- Medical School of Nantong University, Nantong, China
| | - Yingcheng Wu
- Medical School of Nantong University, Nantong, China
| | - Jing Huang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Huiqun Wu
- Department of Medical Informatics, Medical School of Nantong University, Nantong, China
| |
Collapse
|
9
|
Yan J, Zhang D, Han Y, Wang Z, Ma C. Antitumor activity of SR splicing-factor 5 knockdown by downregulating pyruvate kinase M2 in non-small cell lung cancer cells. J Cell Biochem 2019; 120:17303-17311. [PMID: 31106485 DOI: 10.1002/jcb.28992] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 04/12/2019] [Indexed: 12/19/2022]
Abstract
SR splicing-factors (SRSFs) play a vital role in carcinogenesis. SRSF5 was demonstrated to be upregulated in lung cancer and identified as a novel prognostic indicator for small-cell lung cancer. However, the role of SRSF5 in the pathogenesis of non-small cell lung cancer (NSCLC) and the molecular mechanism involved are still undefined. The expression of SRSF5 in NSCLC cells was detected by quantitative real-time polymerase chain reaction and Western blot analysis. The proliferation of cells was evaluated by cell counting kit-8 and BrdU assays. Apoptosis was assessed by flow cytometry and Western blot analysis of apoptosis-associated proteins including B-cell lymphoma 2 (Bcl-2), Bax, and cytochrome C (Cyt C). Glycolysis was detected by determining glucose consumption, lactate production, and pyruvate kinase M2 (PKM2) expression. We found that SRSF5 messenger RNA and protein levels were elevated in NSCLC cells. SRSF5 knockdown inhibited the proliferation and Ki67 expression in NSCLC cells. SRSF5 silencing increased the apoptotic rate, upregulated Bax and Cyt C, and decreased Bcl-2 level in NSCLC cells. Moreover, Knockdown of SRSF5 repressed glycolysis in NSCLC cells via reducing PKM2 expression. Enhanced glycolysis by PKM2 overexpression attenuated the effects of SRSF5 silencing on NSCLC cell proliferation and apoptosis. Overall, knockdown of SRSF5 inhibited proliferative ability and induced apoptosis by suppressing PKM2 expression in NSCLC cells.
Collapse
Affiliation(s)
- Jiliang Yan
- Department of Clinical Laboratory, Kaifeng Central Hospital, Kaifeng, Henan, China
| | - Dongya Zhang
- Henan-Macquarie Uni Joint Center for Biomedical Innovation, Henan University, Kaifeng, Henan, China
| | - Yanjie Han
- Department of Clinical Laboratory, Kaifeng Central Hospital, Kaifeng, Henan, China
| | - Zhongjie Wang
- Henan-Macquarie Uni Joint Center for Biomedical Innovation, Henan University, Kaifeng, Henan, China
| | - Chunyan Ma
- Department of Clinical Laboratory, Kaifeng Central Hospital, Kaifeng, Henan, China
| |
Collapse
|
10
|
Genetic variations within alternative splicing associated genes are associated with breast cancer susceptibility in Chinese women. Gene 2019; 706:140-145. [DOI: 10.1016/j.gene.2019.05.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 05/06/2019] [Accepted: 05/08/2019] [Indexed: 11/20/2022]
|
11
|
Goemann IM, Marczyk VR, Romitti M, Wajner SM, Maia AL. Current concepts and challenges to unravel the role of iodothyronine deiodinases in human neoplasias. Endocr Relat Cancer 2018; 25:R625-R645. [PMID: 30400023 DOI: 10.1530/erc-18-0097] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 07/10/2018] [Indexed: 12/20/2022]
Abstract
Thyroid hormones (THs) are essential for the regulation of several metabolic processes and the energy consumption of the organism. Their action is exerted primarily through interaction with nuclear receptors controlling the transcription of thyroid hormone-responsive genes. Proper regulation of TH levels in different tissues is extremely important for the equilibrium between normal cellular proliferation and differentiation. The iodothyronine deiodinases types 1, 2 and 3 are key enzymes that perform activation and inactivation of THs, thus controlling TH homeostasis in a cell-specific manner. As THs seem to exert their effects in all hallmarks of the neoplastic process, dysregulation of deiodinases in the tumoral context can be critical to the neoplastic development. Here, we aim at reviewing the deiodinases expression in different neoplasias and exploit the mechanisms by which they play an essential role in human carcinogenesis. TH modulation by deiodinases and other classical pathways may represent important targets with the potential to oppose the neoplastic process.
Collapse
Affiliation(s)
- Iuri Martin Goemann
- Thyroid Unit, Endocrine Division, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Vicente Rodrigues Marczyk
- Thyroid Unit, Endocrine Division, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Mirian Romitti
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire, Université Libre de Bruxelles, Brussels, Belgium
| | - Simone Magagnin Wajner
- Thyroid Unit, Endocrine Division, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Ana Luiza Maia
- Thyroid Unit, Endocrine Division, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
12
|
Yang S, Jia R, Bian Z. SRSF5 functions as a novel oncogenic splicing factor and is upregulated by oncogene SRSF3 in oral squamous cell carcinoma. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:1161-1172. [DOI: 10.1016/j.bbamcr.2018.05.017] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 05/25/2018] [Accepted: 05/26/2018] [Indexed: 10/25/2022]
|
13
|
Urbanski L, Leclair N, Anczuków O. Alternative-splicing defects in cancer: Splicing regulators and their downstream targets, guiding the way to novel cancer therapeutics. WILEY INTERDISCIPLINARY REVIEWS. RNA 2018; 9:e1476. [PMID: 29693319 PMCID: PMC6002934 DOI: 10.1002/wrna.1476] [Citation(s) in RCA: 241] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 02/27/2018] [Accepted: 03/01/2018] [Indexed: 12/14/2022]
Abstract
Defects in alternative splicing are frequently found in human tumors and result either from mutations in splicing-regulatory elements of specific cancer genes or from changes in the regulatory splicing machinery. RNA splicing regulators have emerged as a new class of oncoproteins and tumor suppressors, and contribute to disease progression by modulating RNA isoforms involved in the hallmark cancer pathways. Thus, dysregulation of alternative RNA splicing is fundamental to cancer and provides a potentially rich source of novel therapeutic targets. Here, we review the alterations in splicing regulatory factors detected in human tumors, as well as the resulting alternatively spliced isoforms that impact cancer hallmarks, and discuss how they contribute to disease pathogenesis. RNA splicing is a highly regulated process and, as such, the regulators are themselves tightly regulated. Differential transcriptional and posttranscriptional regulation of splicing factors modulates their levels and activities in tumor cells. Furthermore, the composition of the tumor microenvironment can also influence which isoforms are expressed in a given cell type and impact drug responses. Finally, we summarize current efforts in targeting alternative splicing, including global splicing inhibition using small molecules blocking the spliceosome or splicing-factor-modifying enzymes, as well as splice-switching RNA-based therapeutics to modulate cancer-specific splicing isoforms. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA Processing > Splicing Regulation/Alternative Splicing.
Collapse
|
14
|
Hamilton MJ, Girke T, Martinez E. Global isoform-specific transcript alterations and deregulated networks in clear cell renal cell carcinoma. Oncotarget 2018; 9:23670-23680. [PMID: 29805765 PMCID: PMC5955119 DOI: 10.18632/oncotarget.25330] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 04/19/2018] [Indexed: 11/25/2022] Open
Abstract
Extensive genome-wide analyses of deregulated gene expression have now been performed for many types of cancer. However, most studies have focused on deregulation at the gene-level, which may overlook the alterations of specific transcripts for a given gene. Clear cell renal cell carcinoma (ccRCC) is one of the best-characterized and most pervasive renal cancers, and ccRCCs are well-documented to have aberrant RNA processing. In the present study, we examine the extent of aberrant isoform-specific RNA expression by reporting a comprehensive transcript-level analysis, using the new kallisto-sleuth-RATs pipeline, investigating coding and non-coding differential transcript expression in ccRCC. We analyzed 50 ccRCC tumors and their matched normal samples from The Cancer Genome Altas datasets. We identified 7,339 differentially expressed transcripts and 94 genes exhibiting differential transcript isoform usage in ccRCC. Additionally, transcript-level coexpression network analyses identified vasculature development and the tricarboxylic acid cycle as the most significantly deregulated networks correlating with ccRCC progression. These analyses uncovered several uncharacterized transcripts, including lncRNAs FGD5-AS1 and AL035661.1, as potential regulators of the tricarboxylic acid cycle associated with ccRCC progression. As ccRCC still presents treatment challenges, our results provide a new resource of potential therapeutics targets and highlight the importance of exploring alternative methodologies in transcriptome-wide studies.
Collapse
Affiliation(s)
- Michael J. Hamilton
- Department of Biochemistry, University of California at Riverside, Riverside, CA, USA
| | - Thomas Girke
- Department of Botany and Plant Sciences, University of California at Riverside, Riverside, CA, USA
| | - Ernest Martinez
- Department of Biochemistry, University of California at Riverside, Riverside, CA, USA
| |
Collapse
|
15
|
Sokół E, Kędzierska H, Czubaty A, Rybicka B, Rodzik K, Tański Z, Bogusławska J, Piekiełko-Witkowska A. microRNA-mediated regulation of splicing factors SRSF1, SRSF2 and hnRNP A1 in context of their alternatively spliced 3'UTRs. Exp Cell Res 2018; 363:208-217. [PMID: 29331391 DOI: 10.1016/j.yexcr.2018.01.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 12/29/2017] [Accepted: 01/08/2018] [Indexed: 12/30/2022]
Abstract
SRSF1, SRSF2 and hnRNP A1 are splicing factors that regulate the expression of oncogenes and tumor suppressors. SRSF1 and SRSF2 contribute to the carcinogenesis in the kidney. Despite their importance, the mechanisms regulating their expression in cancer are not entirely understood. Here, we investigated the microRNA-mediated regulation of SRSF1, SRSF2 and hnRNP A1 in renal cancer. The expression of microRNAs predicted to target SRSF1, SRSF2 and hnRNP A1 was disturbed in renal tumors compared with controls. Using qPCR, Western blot/ICC and luciferase reporter system assays we identified microRNAs that contribute to the regulation of expression of SRSF1 (miR-10b-5p, miR-203a-3p), SRSF2 (miR-183-5p, miR-200c-3p), and hnRNP A1 (miR-135a-5p, miR-149-5p). Silencing of SRSF1 and SRSF2 enhanced the expression of their targeting microRNAs. miR-183-5p and miR-200c-3p affected the expression of SRSF2-target genes, TNFRSF1B, TNFRSF9, CRADD and TP53. 3'UTR variants of SRSF1 and SRSF2 differed by the presence of miRNA-binding sites. In conclusion, we identified a group of microRNAs that contribute to the regulation of expression of SRSF1, SRSF2 and hnRNP A1. The microRNAs targeting SRSF1 and SRSF2 are involved in a regulatory feedback loop. microRNAs miR-183-5p and miR-200c-3p that target SRSF2, affect the expression of genes involved in apoptotic regulation.
Collapse
Affiliation(s)
- Elżbieta Sokół
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland
| | - Hanna Kędzierska
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland
| | - Alicja Czubaty
- Department of Molecular Biology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Beata Rybicka
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland
| | - Katarzyna Rodzik
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland
| | - Zbigniew Tański
- Masovian Specialist Hospital in Ostrołęka, Ostrołęka, Poland
| | - Joanna Bogusławska
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland.
| | - Agnieszka Piekiełko-Witkowska
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland.
| |
Collapse
|
16
|
Carey KT, Wickramasinghe VO. Regulatory Potential of the RNA Processing Machinery: Implications for Human Disease. Trends Genet 2018; 34:279-290. [PMID: 29329719 DOI: 10.1016/j.tig.2017.12.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 11/14/2017] [Accepted: 12/14/2017] [Indexed: 12/14/2022]
Abstract
Splicing and nuclear export of mRNA are critical steps in the gene expression pathway. While RNA processing factors can perform general, essential functions for intron removal and bulk export of mRNA, emerging evidence highlights that the core RNA splicing and export machineries also display regulatory potential. Here, we discuss recent insights into how this regulatory potential can selectively alter gene expression and regulate important biological processes. We also highlight the participation of RNA processing pathways in the cellular response to DNA damage at multiple levels. These findings have important implications for the contribution of selective mRNA processing and export to the development of human cancers and neurodegenerative disorders.
Collapse
Affiliation(s)
- Kirstyn T Carey
- RNA Biology and Cancer Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
| | - Vihandha O Wickramasinghe
- RNA Biology and Cancer Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia.
| |
Collapse
|
17
|
Marques DS, Grativol J, Alves da Silva Peres R, da Rocha Matos A, Gimba ERP. Osteopontin-c isoform levels are associated with SR and hnRNP differential expression in ovarian cancer cell lines. Tumour Biol 2017; 39:1010428317725442. [PMID: 28936921 DOI: 10.1177/1010428317725442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Osteopontin-c splicing isoform activates ovarian cancer progression features. Imbalanced expression of splicing factors from serine/arginine -rich and heterogeneous ribonucleoproteins families has been correlated with the generation of oncogenic splicing isoforms. Our goal was to investigate whether there is any association between the transcriptional patterns of these splicing factors in ovarian cells and osteopontin-c expression levels. We also aimed to investigate the occurrence of these splicing factors binding sites inside osteopontin exon 4 and adjacent introns. To test associations between osteopontin-c and splicing factors expression patterns, we used an in vitro model in which OVCAR-3 cells overexpressing osteopontin-c (OVCAR-3/OPNc++) presented higher transcriptional levels of osteopontin-c than two other ovarian carcinoma cells (TOV-112D, SKOV-3) and ovarian non-tumoral cell lines (IOSE 364 and IOSE 385). The transcriptional levels of osteopontin-c, serine/arginine-rich, and hnRNP factors were evaluated using real-time polymerase chain reaction. Human Splice Finder software was used to search for putative splicing factor binding sites in osteopontin genomic regions. OVCAR-3/OPNc++ cells presented higher transcriptional levels of hnRNP than serine/arginine-rich when compared to TOV-112D, SKOV-3, and IOSE cells. TOV-112D and SKOV-3 cells also overexpressed hnRNP in relation to serine/arginine-rich transcripts. Putative binding sites for these splicing factors have been predicted on osteopontin exon 4 and their upstream and downstream intronic regions. Our data showed that higher osteopontin-c expression levels are associated with a predominance of hnRNP in relation to serine/arginine-rich transcripts and that osteopontin exon 4 and adjacent intronic sequences contain predicted binding sites for some of these tested splicing factors. In conclusion, differential expression of these splicing factors in ovarian cancer cells could be one of the putative mechanisms leading to aberrant splicing of the osteopontin primary transcript. Future work, aiming to control ovarian cancer progression by downregulating osteopontin-c levels, could include strategies that also regulate heterogeneous ribonucleoproteins and serine/arginine-rich expression levels in order to modulate osteopontin splicing.
Collapse
Affiliation(s)
- Durval Santos Marques
- 1 Programa de Pós Graduação em Ciências Biomédicas (Fisiologia e Farmacologia), Universidade Federal Fluminense, Rio de Janeiro, Brazil
| | - Jessica Grativol
- 2 Curso de Graduação em Enfermagem, Universidade Federal Fluminense, Rio de Janeiro, Brazil
| | | | - Aline da Rocha Matos
- 3 Laboratório de Vírus Respiratórios e do Sarampo, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Etel Rodrigues Pereira Gimba
- 4 Departamento de Ciências da Natureza (RCN), Instituto de Humanidades e Saúde (IHS), Universidade Federal Fluminense, Rio de Janeiro, Brazil.,5 Coordenação de Pesquisa, Programa de Pós Graduação Stricto Sensu em Oncologia do INCa, Instituto Nacional de Câncer (INCa), Rio de Janeiro, Brazil
| |
Collapse
|
18
|
Li Y, Sahni N, Pancsa R, McGrail DJ, Xu J, Hua X, Coulombe-Huntington J, Ryan M, Tychhon B, Sudhakar D, Hu L, Tyers M, Jiang X, Lin SY, Babu MM, Yi S. Revealing the Determinants of Widespread Alternative Splicing Perturbation in Cancer. Cell Rep 2017; 21:798-812. [PMID: 29045845 PMCID: PMC5689467 DOI: 10.1016/j.celrep.2017.09.071] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 08/10/2017] [Accepted: 09/21/2017] [Indexed: 12/25/2022] Open
Abstract
It is increasingly appreciated that alternative splicing plays a key role in generating functional specificity and diversity in cancer. However, the mechanisms by which cancer mutations perturb splicing remain unknown. Here, we developed a network-based strategy, DrAS-Net, to investigate more than 2.5 million variants across cancer types and link somatic mutations with cancer-specific splicing events. We identified more than 40,000 driver variant candidates and their 80,000 putative splicing targets deregulated in 33 cancer types and inferred their functional impact. Strikingly, tumors with splicing perturbations show reduced expression of immune system-related genes and increased expression of cell proliferation markers. Tumors harboring different mutations in the same gene often exhibit distinct splicing perturbations. Further stratification of 10,000 patients based on their mutation-splicing relationships identifies subtypes with distinct clinical features, including survival rates. Our work reveals how single-nucleotide changes can alter the repertoires of splicing isoforms, providing insights into oncogenic mechanisms for precision medicine.
Collapse
Affiliation(s)
- Yongsheng Li
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; College of Bioinformatics Science and Technology and Bio-Pharmaceutical Key Laboratory of Heilongjiang Province, Harbin Medical University, Harbin 150081, China
| | - Nidhi Sahni
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Graduate Program in Structural and Computational Biology and Molecular Biophysics, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Rita Pancsa
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Daniel J McGrail
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Juan Xu
- College of Bioinformatics Science and Technology and Bio-Pharmaceutical Key Laboratory of Heilongjiang Province, Harbin Medical University, Harbin 150081, China
| | - Xu Hua
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jasmin Coulombe-Huntington
- Institute for Research in Immunology and Cancer, Department of Medicine, University of Montreal, Montreal, Quebec H3C 3J7, Canada
| | - Michael Ryan
- In Silico Solutions, Falls Church, VA 22043, USA
| | - Boranai Tychhon
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Dhanistha Sudhakar
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Limei Hu
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Michael Tyers
- Institute for Research in Immunology and Cancer, Department of Medicine, University of Montreal, Montreal, Quebec H3C 3J7, Canada
| | - Xiaoqian Jiang
- Division of Biomedical Informatics, University of California at San Diego, La Jolla, CA 92093, USA
| | - Shiaw-Yih Lin
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - M Madan Babu
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| | - Song Yi
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
19
|
Chen J, Crutchley J, Zhang D, Owzar K, Kastan MB. Identification of a DNA Damage-Induced Alternative Splicing Pathway That Regulates p53 and Cellular Senescence Markers. Cancer Discov 2017; 7:766-781. [PMID: 28288992 DOI: 10.1158/2159-8290.cd-16-0908] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 10/14/2016] [Accepted: 03/09/2017] [Indexed: 01/10/2023]
Abstract
Cellular responses to DNA damage are critical determinants of cancer development and aging-associated pathogenesis. Here, we identify and characterize a DNA-damage response (DDR) pathway that regulates alternative splicing of numerous gene products, including the human tumor suppressor TP53, and controls DNA damage-induced cellular senescence. In brief, ionizing radiation (IR) inhibits the activity of SMG1, a phosphoinositide-3-kinase-like kinase family member, reducing the binding of SMG1 to a specific region near exon 9 of p53 precursor mRNA and promoting the binding of ribosomal protein L26 (RPL26) to p53 pre-mRNA. RPL26, in turn, is required for the recruitment of the serine/arginine-rich splicing factor SRSF7 to p53 pre-mRNA and generation of alternatively spliced p53β RNA. Disruption of this pathway via selective knockout of p53β by CRISPR/Cas9 or downregulation of pathway constituents significantly reduces IR-induced senescence markers, and cells lacking p53β expression fail to transcriptionally repress negative regulators of cellular senescence and aging.Significance: We identified a new component of the DDR pathway that regulates alternative splicing of messenger RNAs, including human TP53 mRNA. Modulation of this regulatory pathway affects DNA-damage induction of cellular senescence markers. Cancer Discov; 7(7); 766-81. ©2017 AACR.This article is highlighted in the In This Issue feature, p. 653.
Collapse
Affiliation(s)
- Jing Chen
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina.,Duke Cancer Institute, Duke University, Durham, North Carolina
| | - John Crutchley
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina.,Duke Cancer Institute, Duke University, Durham, North Carolina
| | - Dadong Zhang
- Duke Cancer Institute, Duke University, Durham, North Carolina
| | - Kouros Owzar
- Duke Cancer Institute, Duke University, Durham, North Carolina.,Department of Biostatistics and Bioinformatics, Duke University, Durham, North Carolina
| | - Michael B Kastan
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina. .,Duke Cancer Institute, Duke University, Durham, North Carolina
| |
Collapse
|
20
|
Boguslawska J, Sokol E, Rybicka B, Czubaty A, Rodzik K, Piekielko-Witkowska A. microRNAs target SRSF7 splicing factor to modulate the expression of osteopontin splice variants in renal cancer cells. Gene 2016; 595:142-149. [DOI: 10.1016/j.gene.2016.09.031] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 09/19/2016] [Accepted: 09/21/2016] [Indexed: 12/30/2022]
|
21
|
Kędzierska H, Popławski P, Hoser G, Rybicka B, Rodzik K, Sokół E, Bogusławska J, Tański Z, Fogtman A, Koblowska M, Piekiełko-Witkowska A. Decreased Expression of SRSF2 Splicing Factor Inhibits Apoptotic Pathways in Renal Cancer. Int J Mol Sci 2016; 17:ijms17101598. [PMID: 27690003 PMCID: PMC5085631 DOI: 10.3390/ijms17101598] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 08/31/2016] [Accepted: 09/05/2016] [Indexed: 12/14/2022] Open
Abstract
Serine and arginine rich splicing factor 2(SRSF2) belongs to the serine/arginine (SR)-rich family of proteins that regulate alternative splicing. Previous studies suggested that SRSF2 can contribute to carcinogenic processes. Clear cell renal cell carcinoma (ccRCC) is the most common subtype of kidney cancer, highly aggressive and difficult to treat, mainly due to resistance to apoptosis. In this study we hypothesized that SRSF2 contributes to the regulation of apoptosis in ccRCC. Using tissue samples obtained from ccRCC patients, as well as independent validation on The Cancer Genome Atlas (TCGA) data, we demonstrate for the first time that expression of SRSF2 is decreased in ccRCC tumours when compared to non-tumorous control tissues. Furthermore, by employing a panel of ccRCC-derived cell lines with silenced SRSF2 expression and qPCR arrays we show that SRSF2 contributes not only to splicing patterns but also to expression of multiple apoptotic genes, including new SRSF2 targets: DIABLO, BIRC5/survivin, TRAIL, BIM, MCL1, TNFRSF9, TNFRSF1B, CRADD, BCL2L2, BCL2A1, and TP53. We also identified a new splice variant of CFLAR, an inhibitor of caspase activity. These changes culminate in diminished caspase-9 activity and inhibition of apoptosis. In summary, we show for the first time that decreased expression of SRSF2 in ccRCC contributes to protection of cancer cells viability.
Collapse
Affiliation(s)
- Hanna Kędzierska
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland.
| | - Piotr Popławski
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland.
| | - Grażyna Hoser
- Laboratory of Flow Cytometry, Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland.
| | - Beata Rybicka
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland.
| | - Katarzyna Rodzik
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland.
| | - Elżbieta Sokół
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland.
| | - Joanna Bogusławska
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland.
| | - Zbigniew Tański
- Department of Urology, Regional Hospital, 07-410 Ostrołęka, Poland.
| | - Anna Fogtman
- Laboratory for Microarray Analysis, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland.
| | - Marta Koblowska
- Laboratory for Microarray Analysis, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland.
- Laboratory of Systems Biology, Faculty of Biology, University of Warsaw, 02-106 Warsaw, Poland.
| | | |
Collapse
|
22
|
Kim HR, Lee GO, Choi KH, Kim DK, Ryu JS, Hwang KE, Na KJ, Choi C, Kuh JH, Chung MJ, Lee MK, So HS, Yoon KH, Park MC, Na KS, Kim YS, Park DS. SRSF5: a novel marker for small-cell lung cancer and pleural metastatic cancer. Lung Cancer 2016; 99:57-65. [DOI: 10.1016/j.lungcan.2016.05.018] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 05/23/2016] [Accepted: 05/25/2016] [Indexed: 11/26/2022]
|
23
|
García-Recio EM, Pinto-Díez C, Pérez-Morgado MI, García-Hernández M, Fernández G, Martín ME, González VM. Characterization of MNK1b DNA Aptamers That Inhibit Proliferation in MDA-MB231 Breast Cancer Cells. MOLECULAR THERAPY. NUCLEIC ACIDS 2016; 5:e275. [PMID: 26730812 PMCID: PMC5012548 DOI: 10.1038/mtna.2015.50] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 11/19/2015] [Indexed: 02/08/2023]
Abstract
Elevated expression levels of eukaryotic initiation factor 4E (eIF4E) promote cancer development and progression. MAP kinase interacting kinases (MNKs) modulate the function of eIF4E through the phosphorylation that is necessary for oncogenic transformation. Therefore, pharmacologic MNK inhibitors may provide a nontoxic and effective anticancer strategy. MNK1b is a truncated isoform of MNK1a that is active in the absence of stimuli. Using in vitro selection, high-affinity DNA aptamers to MNK1b were selected from a library of ssDNA. Selection was monitored using the enzyme-linked oligonucleotide assay (ELONA), and the selected aptamer population was cloned and sequenced. Four groups of aptamers were identified, and the affinities of one representative for rMNK1b were determined using ELONA and quantitative polymerase chain reaction. Two aptamers, named apMNK2F and apMNK3R, had a lower Kd in the nmol/l range. The secondary structure of the selected aptamers was predicted using mFold, and the QGRS Mapper indicated the presence of potential G-quadruplex structures in both aptamers. The selected aptamers were highly specific against MNK1, showing higher affinity to MNK1b than to MNK1a. Interestingly, both aptamers were able to produce significant translation inhibition and prevent tumor cell proliferation and migration and colony formation in breast cancer cells. These results indicate that MNK1 aptamers have an attractive therapeutic potential.
Collapse
Affiliation(s)
- Eva M García-Recio
- Laboratory of Aptamers, Servicio de Bioquímica-Investigación, IRYCIS-Hospital Ramón y Cajal, Madrid, Spain
| | - Celia Pinto-Díez
- Laboratory of Aptamers, Servicio de Bioquímica-Investigación, IRYCIS-Hospital Ramón y Cajal, Madrid, Spain
| | - M Isabel Pérez-Morgado
- Laboratory of Aptamers, Servicio de Bioquímica-Investigación, IRYCIS-Hospital Ramón y Cajal, Madrid, Spain
| | - Marta García-Hernández
- Aptus Biotech SL, c/ Faraday, 7, Parque Científico de Madrid, Campus de Cantoblanco, Madrid, Spain
| | - Gerónimo Fernández
- Aptus Biotech SL, c/ Faraday, 7, Parque Científico de Madrid, Campus de Cantoblanco, Madrid, Spain
| | - M Elena Martín
- Laboratory of Aptamers, Servicio de Bioquímica-Investigación, IRYCIS-Hospital Ramón y Cajal, Madrid, Spain
| | - Víctor M González
- Laboratory of Aptamers, Servicio de Bioquímica-Investigación, IRYCIS-Hospital Ramón y Cajal, Madrid, Spain
- Laboratory of Aptamers, Servicio de Bioquímica-Investigación, IRYCIS-Hospital Ramón y Cajal, Madrid, Spain. E-mail:
| |
Collapse
|
24
|
Liu H, Hu X, Zhu Y, Jiang G, Chen S. Up-regulation of SRPK1 in non-small cell lung cancer promotes the growth and migration of cancer cells. Tumour Biol 2015; 37:7287-93. [PMID: 26666824 DOI: 10.1007/s13277-015-4510-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 11/25/2015] [Indexed: 12/15/2022] Open
Abstract
Dys-regulation of serine-arginine protein kinase 1 (SRPK1) has been reported in non-small cell lung cancer (NSCLC). However, its functions in the progression of NSCLC remain poorly understood. In this study, the expression of SRPK1 in NSCLC tissues was determined using real-time PCR, and the roles of SRPK1 in the progression of NSCLC were investigated. It was found that both the mRNA level and the protein level of SRPK1 were up-regulated in NSCLC tissues. Forced expression of SRPK1 promoted the growth and migration of NSCLC cells, while knocking down the expression of SRPK1 inhibited the growth, migration, and tumorigenicity of NSCLC cells. Mechanism studies showed that SRPK1 activated the transcriptional activity of beta-catenin/T-cell factor (TCF) complex, and knocking down the expression of SRPK1 attenuated the expression of target genes of beta-catenin/T-cell factor (TCF) complex. In addition, silencing the expression of SRPK1 down-regulated the phosphorylation of GSK3beta. Taken together, SRPK1 might play an oncogenic role in NSCLC, and SRPK1 might be a therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Hongcheng Liu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, 507 Zhengmin Road, Shanghai, 200433, China.
| | - Xuefei Hu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, 507 Zhengmin Road, Shanghai, 200433, China
| | - Yuming Zhu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, 507 Zhengmin Road, Shanghai, 200433, China
| | - Gening Jiang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, 507 Zhengmin Road, Shanghai, 200433, China
| | - Sheng Chen
- Department of Thoracic Surgery, Huai'an First People's Hospital, Huai'an, China.
| |
Collapse
|
25
|
Mohammad RM, Muqbil I, Lowe L, Yedjou C, Hsu HY, Lin LT, Siegelin MD, Fimognari C, Kumar NB, Dou QP, Yang H, Samadi AK, Russo GL, Spagnuolo C, Ray SK, Chakrabarti M, Morre JD, Coley HM, Honoki K, Fujii H, Georgakilas AG, Amedei A, Niccolai E, Amin A, Ashraf SS, Helferich WG, Yang X, Boosani CS, Guha G, Bhakta D, Ciriolo MR, Aquilano K, Chen S, Mohammed SI, Keith WN, Bilsland A, Halicka D, Nowsheen S, Azmi AS. Broad targeting of resistance to apoptosis in cancer. Semin Cancer Biol 2015; 35 Suppl:S78-S103. [PMID: 25936818 PMCID: PMC4720504 DOI: 10.1016/j.semcancer.2015.03.001] [Citation(s) in RCA: 556] [Impact Index Per Article: 55.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 03/04/2015] [Accepted: 03/04/2015] [Indexed: 12/15/2022]
Abstract
Apoptosis or programmed cell death is natural way of removing aged cells from the body. Most of the anti-cancer therapies trigger apoptosis induction and related cell death networks to eliminate malignant cells. However, in cancer, de-regulated apoptotic signaling, particularly the activation of an anti-apoptotic systems, allows cancer cells to escape this program leading to uncontrolled proliferation resulting in tumor survival, therapeutic resistance and recurrence of cancer. This resistance is a complicated phenomenon that emanates from the interactions of various molecules and signaling pathways. In this comprehensive review we discuss the various factors contributing to apoptosis resistance in cancers. The key resistance targets that are discussed include (1) Bcl-2 and Mcl-1 proteins; (2) autophagy processes; (3) necrosis and necroptosis; (4) heat shock protein signaling; (5) the proteasome pathway; (6) epigenetic mechanisms; and (7) aberrant nuclear export signaling. The shortcomings of current therapeutic modalities are highlighted and a broad spectrum strategy using approaches including (a) gossypol; (b) epigallocatechin-3-gallate; (c) UMI-77 (d) triptolide and (e) selinexor that can be used to overcome cell death resistance is presented. This review provides a roadmap for the design of successful anti-cancer strategies that overcome resistance to apoptosis for better therapeutic outcome in patients with cancer.
Collapse
Affiliation(s)
- Ramzi M Mohammad
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, United States; Interim translational Research Institute, Hamad Medical Corporation, Doha, Qatar.
| | - Irfana Muqbil
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, United States
| | - Leroy Lowe
- Getting to Know Cancer, Truro, Nova Scotia, Canada
| | - Clement Yedjou
- C-SET, [Jackson, #229] State University, Jackson, MS, United States
| | - Hsue-Yin Hsu
- Department of Life Sciences, Tzu-Chi University, Hualien, Taiwan
| | - Liang-Tzung Lin
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Markus David Siegelin
- Department of Pathology and Cell Biology, Columbia University, New York City, NY, United States
| | - Carmela Fimognari
- Dipartimento di Scienze per la Qualità della Vita Alma Mater Studiorum-Università di Bologna, Italy
| | - Nagi B Kumar
- Moffit Cancer Center, University of South Florida College of Medicine, Tampa, FL, United States
| | - Q Ping Dou
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, United States; Departments of Pharmacology and Pathology, Karmanos Cancer Institute, Detroit MI, United States
| | - Huanjie Yang
- The School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | | | - Gian Luigi Russo
- Institute of Food Sciences National Research Council, Avellino, Italy
| | - Carmela Spagnuolo
- Institute of Food Sciences National Research Council, Avellino, Italy
| | - Swapan K Ray
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Mrinmay Chakrabarti
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, SC, United States
| | - James D Morre
- Mor-NuCo, Inc, Purdue Research Park, West Lafayette, IN, United States
| | - Helen M Coley
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, United Kingdom
| | - Kanya Honoki
- Department of Orthopedic Surgery, Nara Medical University, Kashihara, Japan
| | - Hiromasa Fujii
- Department of Orthopedic Surgery, Nara Medical University, Kashihara, Japan
| | - Alexandros G Georgakilas
- Department of Physics, School of Applied Mathematical and Physical Sciences, National Technical University of Athens, Zografou 15780, Athens, Greece
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, university of florence, Italy
| | - Elena Niccolai
- Department of Experimental and Clinical Medicine, university of florence, Italy
| | - Amr Amin
- Department of Biology, College of Science, UAE University, United Arab Emirates; Faculty of Science, Cairo University, Egypt
| | - S Salman Ashraf
- Department of Chemistry, College of Science, UAE University, United Arab Emirates
| | - William G Helferich
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Xujuan Yang
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Chandra S Boosani
- Department of BioMedical Sciences, School of Medicine Creighton University, Omaha NE, United States
| | - Gunjan Guha
- School of Chemical and Bio Technology, SASTRA University, Thanjavur, India
| | - Dipita Bhakta
- School of Chemical and Bio Technology, SASTRA University, Thanjavur, India
| | | | - Katia Aquilano
- Department of Biology, University of Rome "Tor Vergata", Italy
| | - Sophie Chen
- Ovarian and Prostate Cancer Research Trust Laboratory, Guildford, Surrey, United Kingdom
| | - Sulma I Mohammed
- Department of Comparative Pathobiology and Purdue University Center for Cancer Research, Purdue, West Lafayette, IN, United States
| | - W Nicol Keith
- Institute of Cancer Sciences, University of Glasgow, Glasgow, Ireland
| | - Alan Bilsland
- Institute of Cancer Sciences, University of Glasgow, Glasgow, Ireland
| | - Dorota Halicka
- Department of Pathology, New York Medical College, Valhalla, NY, United States
| | - Somaira Nowsheen
- Mayo Graduate School, Mayo Medical School, Mayo Clinic Medical Scientist Training Program, Rochester, MN, United States
| | - Asfar S Azmi
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, United States
| |
Collapse
|
26
|
Nadiminty N, Tummala R, Liu C, Lou W, Evans CP, Gao AC. NF-κB2/p52:c-Myc:hnRNPA1 Pathway Regulates Expression of Androgen Receptor Splice Variants and Enzalutamide Sensitivity in Prostate Cancer. Mol Cancer Ther 2015; 14:1884-95. [PMID: 26056150 DOI: 10.1158/1535-7163.mct-14-1057] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 05/29/2015] [Indexed: 02/02/2023]
Abstract
Castration-resistant prostate cancer (CRPC) remains dependent on androgen receptor (AR) signaling. Alternative splicing of the AR to generate constitutively active, ligand-independent variants is one of the principal mechanisms that promote the development of resistance to next-generation antiandrogens such as enzalutamide. Here, we demonstrate that the splicing factor heterogeneous nuclear RNA-binding protein A1 (hnRNPA1) plays a pivotal role in the generation of AR splice variants such as AR-V7. hnRNPA1 is overexpressed in prostate tumors compared with benign prostates, and its expression is regulated by NF-κB2/p52 and c-Myc. CRPC cells resistant to enzalutamide exhibit higher levels of NF-κB2/p52, c-Myc, hnRNPA1, and AR-V7. Levels of hnRNPA1 and AR-V7 are positively correlated with each other in prostate cancer. The regulatory circuit involving NF-κB2/p52, c-Myc, and hnRNPA1 plays a central role in the generation of AR splice variants. Downregulation of hnRNPA1 and consequently of AR-V7 resensitizes enzalutamide-resistant cells to enzalutamide, indicating that enhanced expression of hnRNPA1 may confer resistance to AR-targeted therapies by promoting the generation of splice variants. These findings may provide a rationale for cotargeting these pathways to achieve better efficacy through AR blockade.
Collapse
Affiliation(s)
| | - Ramakumar Tummala
- Department of Urology, University of California at Davis, Sacramento, California
| | - Chengfei Liu
- Department of Urology, University of California at Davis, Sacramento, California
| | - Wei Lou
- Department of Urology, University of California at Davis, Sacramento, California
| | - Christopher P Evans
- Department of Urology, University of California at Davis, Sacramento, California. Comprehensive Cancer Center, University of California at Davis, Sacramento, California
| | - Allen C Gao
- Department of Urology, University of California at Davis, Sacramento, California. Comprehensive Cancer Center, University of California at Davis, Sacramento, California.
| |
Collapse
|
27
|
Kavunja HW, Voss PG, Wang JL, Huang X. Identification of Lectins from Metastatic Cancer Cells through Magnetic Glyconanoparticles. Isr J Chem 2015; 55:423-436. [PMID: 27110035 PMCID: PMC4838199 DOI: 10.1002/ijch.201400156] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Cancer cells can have characteristic carbohydrate binding properties. Previously, it was shown that a highly metastatic melanoma cell line B16F10 bound to galacto-side-functionalized nanoparticles much stronger than the corresponding less metastatic B16F1 cells. To better understand the carbohydrate binding properties of cancer cells, herein, we report the isolation and characterization of endogenous galactose binding proteins from B16F10 cells using magnetic glyconanoparticles. The galactose-coated magnetic glyconanoparticles could bind with lectins present in the cells and be isolated through magnet-mediated separation. Through Western blot and mass spectrometry, the arginine/serine rich splicing factor Sfrs1 was identified as a galactose-selective endogenous lectin, overexpressed in B16F10 cells, compared with B16F1 cells. In addition, galactin-3 was found in higher amounts in B16F10 cells. Finally, the glyconanoparticles exhibited a superior efficiency in lectin isolation, from both protein mixtures and live cells, than the corresponding more traditional microparticles functionalized with carbohydrates. Thus, the magnetic glyconanoparticles present a useful tool for discovery of endogenous lectins, as well as binding partners of lectins, without prior knowledge of protein identities.
Collapse
Affiliation(s)
- Herbert W. Kavunja
- Department of Chemistry, Chemistry Building, Room 426, 578 S. Shaw Lane, Michigan State University, East Lansing, MI 48824 (USA)
| | - Patricia G. Voss
- Department of Biochemistry and Molecular Biology, Biochemistry Building, Room 402, 603 Wilson Road, Michigan State University, East Lansing, MI 48824 (USA)
| | - John L. Wang
- Department of Biochemistry and Molecular Biology, Biochemistry Building, Room 402, 603 Wilson Road, Michigan State University, East Lansing, MI 48824 (USA)
| | - Xuefei Huang
- Department of Chemistry, Chemistry Building, Room 426, 578 S. Shaw Lane, Michigan State University, East Lansing, MI 48824 (USA)
| |
Collapse
|
28
|
Moon H, Cho S, Loh TJ, Oh HK, Jang HN, Zhou J, Kwon YS, Liao DJ, Jun Y, Eom S, Ghigna C, Biamonti G, Green MR, Zheng X, Shen H. SRSF2 promotes splicing and transcription of exon 11 included isoform in Ron proto-oncogene. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:1132-40. [PMID: 25220236 DOI: 10.1016/j.bbagrm.2014.09.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2014] [Revised: 08/21/2014] [Accepted: 09/02/2014] [Indexed: 02/03/2023]
Abstract
The product of proto-oncogene Ron is a human receptor for the macrophage-stimulating protein (MSP). Upon activation, Ron is able to induce cell dissociation, migration and matrix invasion. Exon 11 skipping of Ron pre-mRNA produces Ron△165 protein that is constitutively active even in the absence of its ligand. Here we show that knockdown of SRSF2 promotes the decrease of exon 11 inclusion, whereas overexpression of SRSF2 promotes exon 11 inclusion. We demonstrate that SRSF2 promotes exon 11 inclusion through splicing and transcription procedure. We also present evidence that reduced expression of SRSF2 induces a decrease in the splicing of both introns 10 and 11; by contrast, overexpression of SRSF2 induces an increase in the splicing of introns 10 and 11. Through mutation analysis, we show that SRSF2 functionally targets and physically interacts with CGAG sequence on exon 11. In addition, we reveal that the weak strength of splice sites of exon 11 is not required for the function of SRSF2 on the splicing of Ron exon 11. Our results indicate that SRSF2 promotes exon 11 inclusion of Ron proto-oncogene through targeting exon 11. Our study provides a novel mechanism by which Ron is expressed.
Collapse
Affiliation(s)
- Heegyum Moon
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712, Republic of Korea
| | - Sunghee Cho
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712, Republic of Korea
| | - Tiing Jen Loh
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712, Republic of Korea
| | - Hyun Kyung Oh
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712, Republic of Korea
| | - Ha Na Jang
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712, Republic of Korea
| | - Jianhua Zhou
- JiangSu Key Laboratory of Neuroregeneration, Nantong University, Nantong, China
| | - Young-Soo Kwon
- Department of Bioscience & Biotechnology, Sejong University, Seoul 143-747, Republic of Korea
| | - D Joshua Liao
- Hormel Institute, University of Minnesota, Austin, MN, USA
| | - Youngsoo Jun
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712, Republic of Korea
| | - Soohyun Eom
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712, Republic of Korea
| | - Claudia Ghigna
- Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche, via Abbiategrasso 207, 27100 Pavia, Italy
| | - Giuseppe Biamonti
- Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche, via Abbiategrasso 207, 27100 Pavia, Italy
| | - Michael R Green
- Howard Hughes Medical Institute and Programs in Gene Function and Expression and Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Xuexiu Zheng
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712, Republic of Korea
| | - Haihong Shen
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712, Republic of Korea.
| |
Collapse
|
29
|
Wojcicka A, Piekielko–Witkowska A, Kedzierska H, Rybicka B, Poplawski P, Boguslawska J, Master A, Nauman A. Epigenetic regulation of thyroid hormone receptor beta in renal cancer. PLoS One 2014; 9:e97624. [PMID: 24849932 PMCID: PMC4029725 DOI: 10.1371/journal.pone.0097624] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 04/23/2014] [Indexed: 12/21/2022] Open
Abstract
Thyroid hormone receptor beta (THRB) gene is commonly deregulated in cancers and, as strengthened by animal models, postulated to play a tumor-suppressive role. Our previous studies revealed downregulation of THRB in clear cell renal cell carcinoma (ccRCC), but the culpable mechanisms have not been fully elucidated. Since epigenetic regulation is a common mechanism influencing the expression of tumor suppressors, we hypothesized that downregulation of THRB in renal cancer results from epigenetic aberrances, including CpG methylation and microRNA-dependent silencing. Our study revealed that ccRCC tumors exhibited a 56% decrease in THRB and a 37% increase in DNA methyltransferase 1 (DNMT1) expression when compared with paired non-neoplastic control samples. However, THRB CpG methylation analysis performed using BSP, SNaPshot and MSP-PCR consistently revealed no changes in methylation patterns between matched tumor and control samples. In silico analysis resulted in identification of four microRNAs (miR-155, miR-425, miR-592, and miR-599) as potentially targeting THRB transcript. Luciferase assay showed direct binding of miR-155 and miR-425 to 3′UTR of THRB, and subsequent in vivo analyses revealed that transfection of UOK171 cell line with synthetic miR-155 or miR-425 resulted in decreased expression of endogenous TRHB by 22% and 64%, respectively. Finally, real-time PCR analysis showed significant upregulation of miR-155 (354%) and miR-425 (162%) in ccRCC when compared with matched controls. Moreover, microRNA levels were negatively correlated with the amount of THRB transcript in tissue samples. We conclude that CpG methylation is not the major mechanism contributing to decreased THRB expression in ccRCC. In contrast, THRB is targeted by microRNAs miR-155 and miR-425, whose increased expression may be responsible for downregulation of THRB in ccRCC tumors.
Collapse
Affiliation(s)
- Anna Wojcicka
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, Warsaw, Poland
- Genomic Medicine, Department of General, Transplant and Liver Surgery, Medical University of Warsaw, Warsaw, Poland
| | | | - Hanna Kedzierska
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Beata Rybicka
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Piotr Poplawski
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Joanna Boguslawska
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Adam Master
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Alicja Nauman
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, Warsaw, Poland
- * E-mail:
| |
Collapse
|
30
|
Martínez-Montiel N, Rosas-Murrieta N, Martínez-Contreras R. [Alternative splicing regulation: implications in cancer diagnosis and treatment]. Med Clin (Barc) 2014; 144:317-23. [PMID: 24725854 DOI: 10.1016/j.medcli.2014.02.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 02/07/2014] [Accepted: 02/13/2014] [Indexed: 12/31/2022]
Abstract
The accurate expression of the genetic information is regulated by processes like mRNA splicing, proposed after the discoveries of Phil Sharp and Richard Roberts, who demonstrated the existence of intronic sequences, present in almost every structural eukaryotic gene, which should be precisely removed. This intron removal is called "splicing", which generates different proteins from a single mRNA, with different or even antagonistic functions. We currently know that alternative splicing is the most important source of protein diversity, given that 70% of the human genes undergo splicing and that mutations causing defects in this process could originate up to 50% of genetic diseases, including cancer. When these defects occur in genes involved in cell adhesion, proliferation and cell cycle regulation, there is an impact on cancer progression, rising the opportunity to diagnose and treat some types of cancer according to a particular splicing profile.
Collapse
Affiliation(s)
- Nancy Martínez-Montiel
- Laboratorio de Ecología Molecular Microbiana, Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | - Nora Rosas-Murrieta
- Laboratorio de Bioquímica y Biología Molecular, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | - Rebeca Martínez-Contreras
- Laboratorio de Ecología Molecular Microbiana, Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, México.
| |
Collapse
|
31
|
Chen J, Weiss WA. Alternative splicing in cancer: implications for biology and therapy. Oncogene 2014; 34:1-14. [PMID: 24441040 DOI: 10.1038/onc.2013.570] [Citation(s) in RCA: 195] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 11/26/2013] [Accepted: 11/26/2013] [Indexed: 12/11/2022]
Abstract
Alternative splicing has critical roles in normal development and can promote growth and survival in cancer. Aberrant splicing, the production of noncanonical and cancer-specific mRNA transcripts, can lead to loss-of-function in tumor suppressors or activation of oncogenes and cancer pathways. Emerging data suggest that aberrant splicing products and loss of canonically spliced variants correlate with stage and progression in malignancy. Here, we review the splicing landscape of TP53, BARD1 and AR to illuminate roles for alternative splicing in cancer. We also examine the intersection between alternative splicing pathways and novel therapeutic approaches.
Collapse
Affiliation(s)
- J Chen
- 1] Biomedical Sciences Graduate Program, University of California, San Francisco, CA, USA [2] Department of Neurology, University of California, San Francisco, CA, USA
| | - W A Weiss
- 1] Department of Neurology, University of California, San Francisco, CA, USA [2] Department of Neurological Surgery and Pediatrics, University of California, San Francisco, CA, USA
| |
Collapse
|
32
|
Kim J, Park RY, Chen JK, Kim J, Jeong S, Ohn T. Splicing factor SRSF3 represses the translation of programmed cell death 4 mRNA by associating with the 5'-UTR region. Cell Death Differ 2013; 21:481-90. [PMID: 24292556 DOI: 10.1038/cdd.2013.171] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 10/18/2013] [Accepted: 10/18/2013] [Indexed: 12/21/2022] Open
Abstract
Serine/arginine-rich splicing factor 3 (SRSF3), a member of the serine/arginine (SR)-rich family of proteins, regulates both alternative splicing of pre-mRNA and export of mature mRNA from the nucleus. Although its role in nuclear mRNA processing is well understood, the mechanism by which it alters the fate of cytoplasmic mRNA molecules remains elusive. Here, we provide evidence that SRSF3 not only regulates the alternative splicing pattern of programmed cell death 4 (PDCD4) mRNA, but also modulates its translational efficiency in the cytoplasm by lowering translation levels. We observed a marked increase in PDCD4 mRNA in translating polysome fractions upon silencing of SRSF3, and, conversely, ectopic overexpression of SRSF3 shifted PDCD4 mRNA into non-translating ribosomal fractions. In live cells, SRSF3 colocalized with PDCD4 mRNA in P-bodies (PBs), where translationally silenced mRNAs are deposited, and this localization was abrogated upon SRSF3 silencing. Furthermore, using two different reporter systems, we showed that SRSF3 interacts directly with PDCD4 mRNA and mediates translational repression by binding to the 5'-untranslated region (5'-UTR). In summary, our data suggest that the oncogenic potential of SRSF3 might be realized, in part, through the translational repression of PDCD4 mRNA.
Collapse
Affiliation(s)
- J Kim
- National Research Lab for RNA Cell Biology, Department of Molecular Biology, Dankook University, Yongin, Republic of Korea
| | - R Y Park
- Department of Cellular & Molecular Medicine, College of Medicine, Chosun University, Chosun, Republic of Korea
| | - J-K Chen
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, USA
| | - J Kim
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, USA
| | - S Jeong
- National Research Lab for RNA Cell Biology, Department of Molecular Biology, Dankook University, Yongin, Republic of Korea
| | - T Ohn
- Department of Cellular & Molecular Medicine, College of Medicine, Chosun University, Chosun, Republic of Korea
| |
Collapse
|
33
|
Bonomi S, di Matteo A, Buratti E, Cabianca DS, Baralle FE, Ghigna C, Biamonti G. HnRNP A1 controls a splicing regulatory circuit promoting mesenchymal-to-epithelial transition. Nucleic Acids Res 2013; 41:8665-79. [PMID: 23863836 PMCID: PMC3794575 DOI: 10.1093/nar/gkt579] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 06/10/2013] [Accepted: 06/10/2013] [Indexed: 12/12/2022] Open
Abstract
Epithelial-to-mesenchymal transition (EMT) is an embryonic program used by cancer cells to acquire invasive capabilities becoming metastatic. ΔRon, a constitutively active isoform of the Ron tyrosine kinase receptor, arises from skipping of Ron exon 11 and provided the first example of an alternative splicing variant causatively linked to the activation of tumor EMT. Splicing of exon 11 is controlled by two adjacent regulatory elements, a silencer and an enhancer of splicing located in exon 12. The alternative splicing factor and oncoprotein SRSF1 directly binds to the enhancer, induces the production of ΔRon and activates EMT leading to cell locomotion. Interestingly, we now find an important role for hnRNP A1 in controlling the activity of the Ron silencer. HnRNP A1 is able to antagonize the binding of SRSF1 and prevent exon skipping. Notably, hnRNP A1, by inhibiting the production of ΔRon, activates the reversal program, namely the mesenchymal-to-epithelial transition, which instead occurs at the final metastasis sites. Also, hnRNP A1 affects Ron splicing by regulating the expression level of hnRNP A2/B1, which similarly to SRSF1 can promote ΔRon production. These results shed light on how splicing regulation contributes to the tumor progression and provide potential targets to develop anticancer therapies.
Collapse
Affiliation(s)
- Serena Bonomi
- Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche (IGM-CNR), 27100 Pavia, Italy, International Centre for Genetic Engineering and Biotechnology, 34012 Trieste, Italy and Division of Regenerative Medicine, Stem Cells, and Gene Therapy, Dulbecco Telethon Institute at San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Anna di Matteo
- Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche (IGM-CNR), 27100 Pavia, Italy, International Centre for Genetic Engineering and Biotechnology, 34012 Trieste, Italy and Division of Regenerative Medicine, Stem Cells, and Gene Therapy, Dulbecco Telethon Institute at San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Emanuele Buratti
- Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche (IGM-CNR), 27100 Pavia, Italy, International Centre for Genetic Engineering and Biotechnology, 34012 Trieste, Italy and Division of Regenerative Medicine, Stem Cells, and Gene Therapy, Dulbecco Telethon Institute at San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Daphne S. Cabianca
- Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche (IGM-CNR), 27100 Pavia, Italy, International Centre for Genetic Engineering and Biotechnology, 34012 Trieste, Italy and Division of Regenerative Medicine, Stem Cells, and Gene Therapy, Dulbecco Telethon Institute at San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Francisco E. Baralle
- Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche (IGM-CNR), 27100 Pavia, Italy, International Centre for Genetic Engineering and Biotechnology, 34012 Trieste, Italy and Division of Regenerative Medicine, Stem Cells, and Gene Therapy, Dulbecco Telethon Institute at San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Claudia Ghigna
- Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche (IGM-CNR), 27100 Pavia, Italy, International Centre for Genetic Engineering and Biotechnology, 34012 Trieste, Italy and Division of Regenerative Medicine, Stem Cells, and Gene Therapy, Dulbecco Telethon Institute at San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Giuseppe Biamonti
- Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche (IGM-CNR), 27100 Pavia, Italy, International Centre for Genetic Engineering and Biotechnology, 34012 Trieste, Italy and Division of Regenerative Medicine, Stem Cells, and Gene Therapy, Dulbecco Telethon Institute at San Raffaele Scientific Institute, 20132 Milan, Italy
| |
Collapse
|
34
|
Genomics and epigenomics of clear cell renal cell carcinoma: recent developments and potential applications. Cancer Lett 2013; 341:111-26. [PMID: 23933176 DOI: 10.1016/j.canlet.2013.08.006] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Revised: 07/12/2013] [Accepted: 08/02/2013] [Indexed: 12/21/2022]
Abstract
Majority of clear cell renal cell carcinomas (ccRCCs) are diagnosed in the advanced metastatic stage resulting in dramatic decrease of patient survival. Thereby, early detection and monitoring of the disease may improve prognosis and treatment results. Recent technological advances enable the identification of genetic events associated with ccRCC and reveal significant molecular heterogeneity of ccRCC tumors. This review summarizes recent findings in ccRCC genomics and epigenomics derived from chromosomal aberrations, DNA sequencing and methylation, mRNA, miRNA expression profiling experiments. We provide a molecular insight into ccRCC pathology and recapitulate possible clinical applications of genomic alterations as predictive and prognostic biomarkers.
Collapse
|
35
|
Alternative splicing of iodothyronine deiodinases in pituitary adenomas. Regulation by oncoprotein SF2/ASF. Biochim Biophys Acta Mol Basis Dis 2013; 1832:763-72. [PMID: 23462647 DOI: 10.1016/j.bbadis.2013.02.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Revised: 02/14/2013] [Accepted: 02/15/2013] [Indexed: 11/22/2022]
Abstract
Pituitary tumors belong to the group of most common neoplasms of the sellar region. Iodothyronine deiodinase types 1 (DIO1) and 2 (DIO2) are enzymes contributing to the levels of locally synthesized T3, a hormone regulating key physiological processes in the pituitary, including its development, cellular proliferation, and hormone secretion. Previous studies revealed that the expression of deiodinases in pituitary tumors is variable and, moreover, there is no correlation between mRNA and protein products of the particular gene, suggesting the potential role of posttranscriptional regulatory mechanisms. In this work we hypothesized that one of such mechanisms could be the alternative splicing. Therefore, we analyzed expression and sequences of DIO1 and DIO2 splicing variants in 30 pituitary adenomas and 9 non-tumorous pituitary samples. DIO2 mRNA was expressed as only two mRNA isoforms. In contrast, nine splice variants of DIO1 were identified. Among them, five were devoid of exon 3. In silico sequence analysis of DIO1 revealed multiple putative binding sites for splicing factor SF2/ASF, of which the top-ranked sites were located in exon 3. Silencing of SF2/ASF in pituitary tumor GH3 cells resulted in change of ratio between DIO1 isoforms with or without exon 3, favoring the expression of variants without exon 3. The expression of SF2/ASF mRNA in pituitary tumors was increased when compared with non-neoplastic control samples. In conclusion, we provide a new mechanism of posttranscriptional regulation of DIO1 and show deregulation of DIO1 expression in pituitary adenoma, possibly resulting from disturbed expression of SF2/ASF.
Collapse
|
36
|
Abnormal expression of the pre-mRNA splicing regulators SRSF1, SRSF2, SRPK1 and SRPK2 in non small cell lung carcinoma. PLoS One 2012; 7:e46539. [PMID: 23071587 PMCID: PMC3468597 DOI: 10.1371/journal.pone.0046539] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Accepted: 08/31/2012] [Indexed: 01/15/2023] Open
Abstract
Splicing abnormalities frequently occur in cancer. A key role as splice site choice regulator is played by the members of the SR (Ser/Arg-rich) family of proteins. We recently demonstrated that SRSF2 is involved in cisplatin-mediated apoptosis of human lung carcinoma cell lines. In this study, by using immunohistochemistry, we demonstrate that the SR proteins SRSF1 and SRSF2 are overexpressed in 63% and 65% of lung adenocarcinoma (ADC) as well as in 68% and 91% of squamous cell lung carcinoma (SCC), respectively, compared to normal lung epithelial cells. In addition, we show that SRSF2 overexpression correlates with high level of phosphorylated SRSF2 in both ADC (p<0.0001) and SCC (p = 0.02), indicating that SRSF2 mostly accumulates under a phosphorylated form in lung tumors. Consistently, we further show that the SR-phosphorylating kinases SRPK1 and SRPK2 are upregulated in 92% and 94% of ADC as well as in 72% and 68% of SCC, respectively. P-SRSF2 and SRPK2 scores are correlated in ADC (p = 0.01). Using lung adenocarcinoma cell lines, we demonstrate that SRSF1 overexpression leads to a more invasive phenotype, evidenced by activation of PI3K/AKT and p42/44MAPK signaling pathways, increased growth capacity in soft agar, acquisition of mesenchymal markers such as E cadherin loss, vimentin and fibronectin gain, and increased resistance to chemotherapies. Finally, we provide evidence that high levels of SRSF1 and P-SRSF2 proteins are associated with extensive stage (III–IV) in ADC. Taken together, these results indicate that a global deregulation of pre-mRNA splicing regulators occurs during lung tumorigenesis and does not predict same outcome in both Non Small Cell Lung Carcinoma histological sub-types, likely contributing to a more aggressive phenotype in adenocarcinoma.
Collapse
|
37
|
Alternative transcription and alternative splicing in cancer. Pharmacol Ther 2012; 136:283-94. [PMID: 22909788 DOI: 10.1016/j.pharmthera.2012.08.005] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 08/01/2012] [Indexed: 01/27/2023]
Abstract
In recent years, the notion of "one gene makes one protein that functions in one signaling pathway" in mammalian cells has been shown to be overly simplistic. Recent genome-wide studies suggest that at least half of the human genes, including many therapeutic target genes, produce multiple protein isoforms through alternative splicing and alternative usage of transcription initiation and/or termination. For example, alternative splicing of the vascular endothelial growth factor gene (VEGFA) produces multiple protein isoforms, which display either pro-angiogenic or anti-angiogenic activities. Similarly, for the majority of human genes, the inclusion or exclusion of exonic sequences enhances the generation of transcript variants and/or protein isoforms that can vary in structure and functional properties. Many of the isoforms produced in this manner are tightly regulated during normal development but are misregulated in cancer cells. Altered expression of transcript variants and protein isoforms for numerous genes is linked with disease and its prognosis, and cancer cells manipulate regulatory mechanisms to express specific isoforms that confer drug resistance and survival advantages. Emerging insights indicate that modulating the expression of transcript and protein isoforms of a gene may hold the key to impeding tumor growth and act as a model for efficient targeting of disease-associated genes at the isoform level. This review highlights the role and regulation of alternative transcription and splicing mechanisms in generating the transcriptome, and the misuse and diagnostic/prognostic potential of alternative transcription and splicing in cancer.
Collapse
|
38
|
Ma K, He Y, Zhang H, Fei Q, Niu D, Wang D, Ding X, Xu H, Chen X, Zhu J. DNA methylation-regulated miR-193a-3p dictates resistance of hepatocellular carcinoma to 5-fluorouracil via repression of SRSF2 expression. J Biol Chem 2011; 287:5639-49. [PMID: 22117060 DOI: 10.1074/jbc.m111.291229] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Chemoresistance prevents effective cancer therapy and is rarely predictable prior to treatment, particularly for hepatocellular carcinoma (HCC). Following the chemoresistance profiling of eight HCC cell lines to each of nine chemotherapeutics, two cell lines (QGY-7703 as a sensitive and SMMC-7721 as a resistant cell line to 5-fluorouracil (5-FU) treatment) were systematically studied for mechanistic insights underpinning HCC 5-FU chemoresistance. Genomic profiling at both DNA methylation and microRNA (miR) levels and subsequent mechanistic studies illustrate a new mechanism for how DNA methylation-regulated miR-193a-3p dictates the 5-FU resistance of HCC cells via repression of serine/arginine-rich splicing factor 2 (SRSF2) expression. In turn, SRSF2 preferentially up-regulates the proapoptotic splicing form of caspase 2 (CASP2L) and sensitizes HCC cells to 5-FU. Forced changes of miR-193a-3p level reverse all of the phenotypic features examined, including cell proliferation, cell cycle progression, and 5-FU sensitivity, in cell culture and in nude mice. Importantly, the siRNA-mediated repression of SRSF2 phenocopies all of the miR-193a-3p mimic-triggered changes in QGY-7703. This newly identified miR-193a-3p-SRSF2 axis highlights a new set of companion diagnostics required for optimal 5-FU therapy of HCC, which involve assaying both the DNA methylation state of the miR-193a gene and the expression of miR-193a-3p and SRSF2 and the relative level of the proapoptotic versus antiapoptotic splicing forms of caspase 2 in clinical samples.
Collapse
Affiliation(s)
- Kelong Ma
- Shanghai Medical College, Fudan University, Shanghai 200032, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
Numerous studies
report splicing alterations in a multitude of
cancers by using gene-by-gene analysis. However,
understanding of the role of alternative
splicing in cancer is now reaching a new level,
thanks to the use of novel technologies allowing
the analysis of splicing at a large-scale level.
Genome-wide analyses of alternative splicing
indicate that splicing alterations can affect
the products of gene networks involved in key
cellular programs. In addition, many splicing
variants identified as being misregulated in
cancer are expressed in normal tissues. These
observations suggest that splicing programs
contribute to specific cellular programs that
are altered during cancer initiation and
progression. Supporting this model, recent
studies have identified splicing factors
controlling cancer-associated splicing programs.
The characterization of splicing programs and
their regulation by splicing factors will allow
a better understanding of the genetic mechanisms
involved in cancer initiation and progression
and the development of new therapeutic
targets.
Collapse
|
40
|
Abstract
Thyroid hormones (TH) regulate key cellular processes, including proliferation, differentiation, and apoptosis in virtually all human cells. Disturbances in TH pathway and the resulting deregulation of these processes have been linked with neoplasia. The concentrations of TH in peripheral tissues are regulated via the activity of iodothyronine deiodinases. There are 3 types of these enzymes: type 1 and type 2 deiodinases are involved in TH activation while type 3 deiodinase inactivates TH. Expression and activity of iodothyronine deiodinases are disturbed in different types of neoplasia. According to the limited number of studies in cancer cell lines and mouse models changes in intratumoral and extratumoral T3 concentrations may influence proliferation rate and metastatic progression. Recent findings showing that increased expression of type 3 deiodinases may lead to enhanced tumoral proliferation support the idea that deiodinating enzymes have the potential to influence cancer progression. This review summarizes the observations of impaired expression and activity in different cancer types, published to date, and the mechanisms behind these alterations, including impaired regulation via TH receptors, transforming growth factor-β, and Sonic-hedgehog pathway. Possible roles of deiodinases as cancer markers and potential modulators of tumor progression are also discussed.
Collapse
Affiliation(s)
- A Piekiełko-Witkowska
- Department of Biochemistry and Molecular Biology, The Medical Centre of Postgraduate Education, Warsaw, Poland.
| | | |
Collapse
|
41
|
Boguslawska J, Wojcicka A, Piekielko-Witkowska A, Master A, Nauman A. MiR-224 targets the 3'UTR of type 1 5'-iodothyronine deiodinase possibly contributing to tissue hypothyroidism in renal cancer. PLoS One 2011; 6:e24541. [PMID: 21912701 PMCID: PMC3166326 DOI: 10.1371/journal.pone.0024541] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Accepted: 08/12/2011] [Indexed: 02/07/2023] Open
Abstract
Type 1 iodothyronine deiodinase (DIO1) catalyses the conversion of prohormone thyroxine to the active thyroid hormone 3,3′,5-triiodothyronine (T3), important regulator of cell proliferation and differentiation. DIO1 expression is reduced in the most common type of kidney neoplasia, clear cell Renal Cell Carcinoma (ccRCC). MicroRNAs are small, non-coding RNAs that regulate gene expression at posttranscriptional levels. The aim of this study was to analyze the potential regulation of DIO1 expression by microRNAs in ccRCC. Bioinformatic analysis revealed that 3′UTR of the human DIO1 gene transcript contains miR-224 and miR-383 target sites, which are conserved across mammalian species. Semi-quantitative real-time PCR was used to analyze the expression of miR-224 and miR-383 in 32 samples of ccRCC tumors (T) and in 32 matched control (C) samples. We observed statistically significant (p = 0.0002) more than four fold increase in miR-224 expression and nearly two fold increase in miR-383 expression in samples T compared to samples C. Tumor specific changes in expression of miR-224 negatively correlated with changes in DIO1 expression and intracellular T3 concentration. Transfection of HeLa cell line with miR-224 and miR-383 suppressed the activity of a luciferase reporter containing the 3′UTR of DIO1. This was abolished when constructs mutated at the miR-224 and miR-383 target sites were used instead, indicating that miR-224 and miR-383 directly bind to DIO1 3′UTR. Finally, induced expression of miR-224 in Caki-2 cells resulted in significant (p<0.01) reduction of DIO1 mRNA. This study provides a novel miRNA-mediated regulatory mechanism of DIO1 expression in ccRCC.
Collapse
Affiliation(s)
- Joanna Boguslawska
- Department of Biochemistry and Molecular Biology, The Medical Centre of Postgraduate Education, Warsaw, Poland
| | - Anna Wojcicka
- Department of Biochemistry and Molecular Biology, The Medical Centre of Postgraduate Education, Warsaw, Poland
| | | | - Adam Master
- Department of Biochemistry and Molecular Biology, The Medical Centre of Postgraduate Education, Warsaw, Poland
| | - Alicja Nauman
- Department of Biochemistry and Molecular Biology, The Medical Centre of Postgraduate Education, Warsaw, Poland
- * E-mail:
| |
Collapse
|
42
|
Xu J, Dou T, Liu C, Fu M, Huang Y, Gu S, Zhou Y, Xie Y. The evolution of alternative splicing exons in vascular endothelial growth factor A. Gene 2011; 487:143-50. [PMID: 21782909 DOI: 10.1016/j.gene.2011.06.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Revised: 06/12/2011] [Accepted: 06/18/2011] [Indexed: 12/13/2022]
Abstract
The C-terminus alternative splicing in VEGFA (vascular endothelial growth factor A) is known for its impact on physiological and pathological angiogenesis. Based on our prediction and RT-PCR verification, we identified anti-angiogenic VEGFA165b isoforms in mouse and rabbit for the first time. We also found that the relative expression level of VEGFA165b isoform had been increasing from rodents to human, and exon8b may have experienced a minor-to-major form exon conversion, possibly correlated with its gain-of-function. It is suggested that introduction of alternative splicing exons (esp. exon6 and exon8b) made important contributions to the transcriptional diversity of VEGFA and played a crucial role in the evolution of its regulatory mechanism.
Collapse
Affiliation(s)
- Jiaxi Xu
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|