1
|
Lopez-Cerda M, Lorenzo-Sanz L, da Silva-Diz V, Llop S, Penin RM, Bermejo JO, de Goeij-de Haas R, Piersma SR, Pham TV, Jimenez CR, Martin-Liberal J, Muñoz P. IGF1R signaling induces epithelial-mesenchymal plasticity via ITGAV in cutaneous carcinoma. J Exp Clin Cancer Res 2024; 43:211. [PMID: 39075581 PMCID: PMC11285232 DOI: 10.1186/s13046-024-03119-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 07/07/2024] [Indexed: 07/31/2024] Open
Abstract
BACKGROUND Early cutaneous squamous cell carcinomas (cSCCs) generally show epithelial differentiation features and good prognosis, whereas advanced cSCCs present mesenchymal traits associated with tumor relapse, metastasis, and poor survival. Currently, the mechanisms involved in cSCC progression are unclear, and the established markers are suboptimal for accurately predicting the clinical course of the disease. METHODS Using a mouse model of cSCC progression, expression microarray analysis, immunofluorescence and flow cytometry assays, we have identified a prognostic biomarker of tumor relapse, which has been evaluated in a cohort of cSCC patient samples. Phosphoproteomic analysis have revealed signaling pathways induced in epithelial plastic cancer cells that promote epithelial-mesenchymal plasticity (EMP) and tumor progression. These pathways have been validated by genetic and pharmacological inhibition assays. RESULTS We show that the emergence of epithelial cancer cells expressing integrin αV (ITGAV) promotes cSCC progression to a mesenchymal state. Consistently, ITGAV expression allows the identification of patients at risk of cSCC relapse above the currently employed clinical histopathological parameters. We also demonstrate that activation of insulin-like growth factor-1 receptor (IGF1R) pathway in epithelial cancer cells is necessary to induce EMP and mesenchymal state acquisition in response to tumor microenvironment-derived factors, while promoting ITGAV expression. Likewise, ITGAV knockdown in epithelial plastic cancer cells also blocks EMP acquisition, generating epithelial tumors. CONCLUSIONS Our results demonstrate that ITGAV is a prognostic biomarker of relapse in cSCCs that would allow improved patient stratification. ITGAV also collaborates with IGF1R to induce EMP in epithelial cancer cells and promotes cSCC progression, revealing a potential therapeutic strategy to block the generation of advanced mesenchymal cSCCs.
Collapse
Affiliation(s)
- Marta Lopez-Cerda
- Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), 08908, L'Hospitalet de Llobregat, Barcelona, Spain.
| | - Laura Lorenzo-Sanz
- Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), 08908, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Victoria da Silva-Diz
- Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), 08908, L'Hospitalet de Llobregat, Barcelona, Spain
- Rutgers Cancer Institute of New Jersey, Rutgers University, 08901, New Brunswick, NJ, USA
| | - Sandra Llop
- Medical Oncology Department, Catalan Institute of Oncology (ICO) L'Hospitalet, 08908, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Rosa M Penin
- Pathology Service, Bellvitge University Hospital/IDIBELL, 08908, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Josep Oriol Bermejo
- Plastic Surgery Unit, Bellvitge University Hospital/IDIBELL, 08908, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Richard de Goeij-de Haas
- OncoProteomics Laboratory, Department of Medical Oncology, Amsterdam UMC, 1081HV, Amsterdam, the Netherlands
| | - Sander R Piersma
- OncoProteomics Laboratory, Department of Medical Oncology, Amsterdam UMC, 1081HV, Amsterdam, the Netherlands
| | - Thang V Pham
- OncoProteomics Laboratory, Department of Medical Oncology, Amsterdam UMC, 1081HV, Amsterdam, the Netherlands
| | - Connie R Jimenez
- OncoProteomics Laboratory, Department of Medical Oncology, Amsterdam UMC, 1081HV, Amsterdam, the Netherlands
| | - Juan Martin-Liberal
- Medical Oncology Department, Catalan Institute of Oncology (ICO) L'Hospitalet, 08908, L'Hospitalet de Llobregat, Barcelona, Spain.
| | - Purificación Muñoz
- Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), 08908, L'Hospitalet de Llobregat, Barcelona, Spain.
| |
Collapse
|
2
|
Lorenzo-Sanz L, Lopez-Cerda M, da Silva-Diz V, Artés MH, Llop S, Penin RM, Bermejo JO, Gonzalez-Suarez E, Esteller M, Viñals F, Espinosa E, Oliva M, Piulats JM, Martin-Liberal J, Muñoz P. Cancer cell plasticity defines response to immunotherapy in cutaneous squamous cell carcinoma. Nat Commun 2024; 15:5352. [PMID: 38914547 PMCID: PMC11196727 DOI: 10.1038/s41467-024-49718-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 06/17/2024] [Indexed: 06/26/2024] Open
Abstract
Immune checkpoint blockade (ICB) approaches have changed the therapeutic landscape for many tumor types. However, half of cutaneous squamous cell carcinoma (cSCC) patients remain unresponsive or develop resistance. Here, we show that, during cSCC progression in male mice, cancer cells acquire epithelial/mesenchymal plasticity and change their immune checkpoint (IC) ligand profile according to their features, dictating the IC pathways involved in immune evasion. Epithelial cancer cells, through the PD-1/PD-L1 pathway, and mesenchymal cancer cells, through the CTLA-4/CD80 and TIGIT/CD155 pathways, differentially block antitumor immune responses and determine the response to ICB therapies. Accordingly, the anti-PD-L1/TIGIT combination is the most effective strategy for blocking the growth of cSCCs that contain both epithelial and mesenchymal cancer cells. The expression of E-cadherin/Vimentin/CD80/CD155 proteins in cSCC, HNSCC and melanoma patient samples predicts response to anti-PD-1/PD-L1 therapy. Collectively, our findings indicate that the selection of ICB therapies should take into account the epithelial/mesenchymal features of cancer cells.
Collapse
Affiliation(s)
- Laura Lorenzo-Sanz
- Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), 08908, L'Hospitalet de Llobregat, Barcelona, Spain.
| | - Marta Lopez-Cerda
- Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), 08908, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Victoria da Silva-Diz
- Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), 08908, L'Hospitalet de Llobregat, Barcelona, Spain
- Rutgers Cancer Institute of New Jersey, Rutgers University, 08901, New Brunswick, NJ, USA
| | - Marta H Artés
- Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), 08908, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Sandra Llop
- Medical Oncology Department, Catalan Institute of Oncology (ICO), 08908, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Rosa M Penin
- Pathology Service, Bellvitge University Hospital/IDIBELL, 08908, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Josep Oriol Bermejo
- Plastic Surgery Unit, Bellvitge University Hospital/IDIBELL, 08908, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Eva Gonzalez-Suarez
- Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), 08908, L'Hospitalet de Llobregat, Barcelona, Spain
- Molecular Oncology, Spanish National Cancer Research Centre (CNIO), 28029, Madrid, Spain
| | - Manel Esteller
- Josep Carreras Leukaemia Research Institute (IJC), 08916, Badalona, Barcelona, Spain
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), ISCIII, 28029, Madrid, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010, Barcelona, Spain
- Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona (UB), 08908, Barcelona, Spain
| | - Francesc Viñals
- Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), 08908, L'Hospitalet de Llobregat, Barcelona, Spain
- Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona (UB), 08908, Barcelona, Spain
- Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology (ICO)/IDIBELL, 08908, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Enrique Espinosa
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), ISCIII, 28029, Madrid, Spain
- Medical Oncology Department, La Paz University Hospital, Autonomous University of Madrid (UAM), 28046, Madrid, Spain
| | - Marc Oliva
- Medical Oncology Department, Catalan Institute of Oncology (ICO), 08908, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Josep M Piulats
- Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), 08908, L'Hospitalet de Llobregat, Barcelona, Spain
- Medical Oncology Department, Catalan Institute of Oncology (ICO), 08908, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Juan Martin-Liberal
- Medical Oncology Department, Catalan Institute of Oncology (ICO), 08908, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Purificación Muñoz
- Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), 08908, L'Hospitalet de Llobregat, Barcelona, Spain.
| |
Collapse
|
3
|
Kandhaya-Pillai R, Miro-Mur F, Alijotas-Reig J, Tchkonia T, Schwartz S, Kirkland JL, Oshima J. Key elements of cellular senescence involve transcriptional repression of mitotic and DNA repair genes through the p53-p16/RB-E2F-DREAM complex. Aging (Albany NY) 2023; 15:4012-4034. [PMID: 37219418 PMCID: PMC10258023 DOI: 10.18632/aging.204743] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 05/03/2023] [Indexed: 05/24/2023]
Abstract
Cellular senescence is a dynamic stress response process that contributes to aging. From initiation to maintenance, senescent cells continuously undergo complex molecular changes and develop an altered transcriptome. Understanding how the molecular architecture of these cells evolve to sustain their non-proliferative state will open new therapeutic avenues to alleviate or delay the consequences of aging. Seeking to understand these molecular changes, we studied the transcriptomic profiles of endothelial replication-induced senescence and senescence induced by the inflammatory cytokine, TNF-α. We previously reported gene expressional pattern, pathways, and the mechanisms associated with upregulated genes during TNF-α induced senescence. Here, we extend our work and find downregulated gene signatures of both replicative and TNF-α senescence were highly overlapped, involving the decreased expression of several genes associated with cell cycle regulation, DNA replication, recombination, repair, chromatin structure, cellular assembly, and organization. We identified multiple targets of p53/p16-RB-E2F-DREAM that are essential for proliferation, mitotic progression, resolving DNA damage, maintaining chromatin integrity, and DNA synthesis that were repressed in senescent cells. We show that repression of multiple target genes in the p53/p16-RB-E2F-DREAM pathway collectively contributes to the stability of the senescent arrest. Our findings show that the regulatory connection between DREAM and cellular senescence may play a potential role in the aging process.
Collapse
Affiliation(s)
- Renuka Kandhaya-Pillai
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
- Systemic Autoimmune Diseases Research Unit, Vall d’Hebron Research Institute (VHIR), Barcelona 08035, Spain
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
| | - Francesc Miro-Mur
- Systemic Autoimmune Diseases Research Unit, Vall d’Hebron Research Institute (VHIR), Barcelona 08035, Spain
| | - Jaume Alijotas-Reig
- Systemic Autoimmune Diseases Research Unit, Vall d’Hebron Research Institute (VHIR), Barcelona 08035, Spain
| | - Tamar Tchkonia
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
- Department of Physiology, Mayo Clinic, Rochester, MN 55905, USA
| | - Simo Schwartz
- Drug Delivery and Targeting Group, Clinical Biochemistry Department, Vall d’Hebron Hospital, Barcelona 08035, Spain
| | - James L. Kirkland
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
- Department of Physiology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Junko Oshima
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
4
|
Metastatic recurrence in colorectal cancer arises from residual EMP1+ cells. Nature 2022; 611:603-613. [DOI: 10.1038/s41586-022-05402-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 09/30/2022] [Indexed: 11/10/2022]
|
5
|
Mederos S, Sánchez-Ruiz A, Perea G. Protocol to downregulate GABAergic-astrocyte signaling via astrocyte-selective ablation of GABA B receptor in adult mice. STAR Protoc 2022; 3:101667. [PMID: 36103305 PMCID: PMC9483643 DOI: 10.1016/j.xpro.2022.101667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/07/2022] [Accepted: 08/03/2022] [Indexed: 01/25/2023] Open
Abstract
Here, we present a protocol to selectively downregulate GABAB receptor (GABABR) expression in astrocytes of mouse medial prefrontal cortex (mPFC). We first describe the procedure of surgeries and viral injections. We then detail genetic, histological, and functional characterizations of astrocytic GABABR ablation using RT-PCR, imaging, and behavioral assays. The use of GABAB flox mice can be easily adapted to generate astrocyte-selective GABABR ablation in different brain areas and postnatal stages, leading to local downregulation of GABAergic-astrocyte signaling without developmental issues. For complete details on the use and execution of this protocol, please refer to Mederos et al. (2021).
Collapse
Affiliation(s)
- Sara Mederos
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, London W1T 4JG, UK,Corresponding author
| | | | - Gertrudis Perea
- Neuron-Glia Networks Lab. Cajal Institute, CSIC, Madrid 28002, Spain,Corresponding author
| |
Collapse
|
6
|
Pascual G, Domínguez D, Elosúa-Bayes M, Beckedorff F, Laudanna C, Bigas C, Douillet D, Greco C, Symeonidi A, Hernández I, Gil SR, Prats N, Bescós C, Shiekhattar R, Amit M, Heyn H, Shilatifard A, Benitah SA. Dietary palmitic acid promotes a prometastatic memory via Schwann cells. Nature 2021; 599:485-490. [PMID: 34759321 DOI: 10.1038/s41586-021-04075-0] [Citation(s) in RCA: 121] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 09/30/2021] [Indexed: 11/09/2022]
Abstract
Fatty acid uptake and altered metabolism constitute hallmarks of metastasis1,2, yet evidence of the underlying biology, as well as whether all dietary fatty acids are prometastatic, is lacking. Here we show that dietary palmitic acid (PA), but not oleic acid or linoleic acid, promotes metastasis in oral carcinomas and melanoma in mice. Tumours from mice that were fed a short-term palm-oil-rich diet (PA), or tumour cells that were briefly exposed to PA in vitro, remained highly metastatic even after being serially transplanted (without further exposure to high levels of PA). This PA-induced prometastatic memory requires the fatty acid transporter CD36 and is associated with the stable deposition of histone H3 lysine 4 trimethylation by the methyltransferase Set1A (as part of the COMPASS complex (Set1A/COMPASS)). Bulk, single-cell and positional RNA-sequencing analyses indicate that genes with this prometastatic memory predominantly relate to a neural signature that stimulates intratumoural Schwann cells and innervation, two parameters that are strongly correlated with metastasis but are aetiologically poorly understood3,4. Mechanistically, tumour-associated Schwann cells secrete a specialized proregenerative extracellular matrix, the ablation of which inhibits metastasis initiation. Both the PA-induced memory of this proneural signature and its long-term boost in metastasis require the transcription factor EGR2 and the glial-cell-stimulating peptide galanin. In summary, we provide evidence that a dietary metabolite induces stable transcriptional and chromatin changes that lead to a long-term stimulation of metastasis, and that this is related to a proregenerative state of tumour-activated Schwann cells.
Collapse
Affiliation(s)
- Gloria Pascual
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
| | - Diana Domínguez
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Marc Elosúa-Bayes
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Felipe Beckedorff
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Carmelo Laudanna
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Claudia Bigas
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Delphine Douillet
- Department of Biochemistry and Molecular Genetics and Simpson Querrey Center for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Carolina Greco
- Center for Epigenetics and Metabolism, Department of Biological Chemistry, University of California, Irvine, CA, USA
| | - Aikaterini Symeonidi
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Inmaculada Hernández
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.,CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Sara Ruiz Gil
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Neus Prats
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Coro Bescós
- Department of Oral and Maxillofacial Surgery, Vall D'Hebron Hospital, Barcelona, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ramin Shiekhattar
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Moran Amit
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Holger Heyn
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Ali Shilatifard
- Department of Biochemistry and Molecular Genetics and Simpson Querrey Center for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| | - Salvador Aznar Benitah
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain. .,ICREA, Catalan Institution for Research and Advanced Studies, Barcelona, Spain.
| |
Collapse
|
7
|
Cornet-Bartolomé D, Barragán M, Zambelli F, Ferrer-Vaquer A, Tiscornia G, Balcells S, Rodriguez A, Grinberg D, Vassena R. Human oocyte meiotic maturation is associated with a specific profile of alternatively spliced transcript isoforms. Mol Reprod Dev 2021; 88:605-617. [PMID: 34374462 DOI: 10.1002/mrd.23526] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/03/2021] [Accepted: 07/31/2021] [Indexed: 12/12/2022]
Abstract
The transition from a transcriptionally active state (GV) to a transcriptionally inactive state (mature MII oocytes) is required for the acquisition of oocyte developmental competence. We hypothesize that the expression of specific genes at the in vivo matured (MII) stage could be modulated by posttranscriptional mechanisms, particularly regulation of alternative splicing (AS). In this study, we examined the transcriptional activity of GV oocytes after ovarian stimulation followed by oocyte pick-up and the landscape of alternatively spliced isoforms in human MII oocytes. Individual oocytes were processed and analyzed for transcriptional activity (GV), gene expression (GV and MII), and AS signatures (GV and MII) on HTA 2.0 microarrays. Samples were grouped according to maturation stage, and then subgrouped according to women's age and antral follicular count (AFC); array results were validated by quantitative polymerase chain reaction. Differentially expressed genes between GV and MII oocytes clustered mainly in biological processes related to mitochondrial metabolism. Interestingly, 16 genes that were related to the regulation of transcription and mitochondrial translation showed differences in alternatively spliced isoform profiles despite not being differentially expressed between groups. Altogether, our results contribute to our understanding of the role of AS in oocyte developmental competence acquisition.
Collapse
Affiliation(s)
- David Cornet-Bartolomé
- EUGIN, Barcelona, Spain.,Department of Genetics, Microbiology and Statistic, Universitat de Barcelona. CIBERER, IBUB, IRSJD, Barcelona, Spain
| | | | | | | | - Gustavo Tiscornia
- EUGIN, Barcelona, Spain.,Centro Ciencias del Mar, University of Algarve, Portugal
| | - Susanna Balcells
- Department of Genetics, Microbiology and Statistic, Universitat de Barcelona. CIBERER, IBUB, IRSJD, Barcelona, Spain
| | | | - Daniel Grinberg
- Department of Genetics, Microbiology and Statistic, Universitat de Barcelona. CIBERER, IBUB, IRSJD, Barcelona, Spain
| | | |
Collapse
|
8
|
Avgustinova A, Laudanna C, Pascual-García M, Rovira Q, Djurec M, Castellanos A, Urdiroz-Urricelqui U, Marchese D, Prats N, Van Keymeulen A, Heyn H, Vaquerizas JM, Benitah SA. Repression of endogenous retroviruses prevents antiviral immune response and is required for mammary gland development. Cell Stem Cell 2021; 28:1790-1804.e8. [PMID: 34010627 DOI: 10.1016/j.stem.2021.04.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 01/18/2021] [Accepted: 04/26/2021] [Indexed: 10/21/2022]
Abstract
The role of heterochromatin in cell fate specification during development is unclear. We demonstrate that loss of the lysine 9 of histone H3 (H3K9) methyltransferase G9a in the mammary epithelium results in de novo chromatin opening, aberrant formation of the mammary ductal tree, impaired stem cell potential, disrupted intraductal polarity, and loss of tissue function. G9a loss derepresses long terminal repeat (LTR) retroviral sequences (predominantly the ERVK family). Transcriptionally activated endogenous retroviruses generate double-stranded DNA (dsDNA) that triggers an antiviral innate immune response, and knockdown of the cytosolic dsDNA sensor Aim2 in G9a knockout (G9acKO) mammary epithelium rescues mammary ductal invasion. Mammary stem cell transplantation into immunocompromised or G9acKO-conditioned hosts shows partial dependence of the G9acKO mammary morphological defects on the inflammatory milieu of the host mammary fat pad. Thus, altering the chromatin accessibility of retroviral elements disrupts mammary gland development and stem cell activity through both cell-autonomous and non-autonomous mechanisms.
Collapse
Affiliation(s)
- Alexandra Avgustinova
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
| | - Carmelo Laudanna
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Mónica Pascual-García
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Quirze Rovira
- Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Magdolna Djurec
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Andres Castellanos
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Uxue Urdiroz-Urricelqui
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Domenica Marchese
- CNAG-CRG, Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Neus Prats
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | | | - Holger Heyn
- CNAG-CRG, Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Juan M Vaquerizas
- Max Planck Institute for Molecular Biomedicine, Münster, Germany; MRC London Institute of Medical Sciences, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Salvador Aznar Benitah
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain.
| |
Collapse
|
9
|
Ruebel ML, Zambelli F, Schall PZ, Barragan M, VandeVoort CA, Vassena R, Latham KE. Shared aspects of mRNA expression associated with oocyte maturation failure in humans and rhesus monkeys indicating compromised oocyte quality. Physiol Genomics 2021; 53:137-149. [PMID: 33554756 DOI: 10.1152/physiolgenomics.00155.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Oocyte maturation failure observed in assisted reproduction technology (ART) cycles can limit the number of quality oocytes obtained and present a pronounced barrier for some patients. The potential exists to use unmatured oocytes for ART through in vitro maturation. Understanding the molecular basis of oocyte maturation failure is pertinent to minimizing this loss of oocytes and considerations of whether such oocytes can be used safely for ART. We identified shared transcriptome abnormalities for rhesus monkey and human failed-to-mature (FTM) oocytes relative to healthy matured MII stage oocytes. We discovered that, although the number of shared affected genes was comparatively small, FTM oocytes in both species shared effects for several pathways and functions, including predicted activation of oxidative phosphorylation (OxPhos) with additional effects on mitochondrial function, lipid metabolism, transcription, nucleotide excision repair, endoplasmic reticulum stress, unfolded protein response, and cell viability. RICTOR emerged as a prominent upstream regulator with predicted inhibition across all analyses. Alterations in KDM5A, MTOR, MTORC1, INSR, CAB39L, and STK11 activities were implicated along with RICTOR in modulating mitochondrial activity and OxPhos. Defects in cell cycle progression were not a prominent feature of FTM oocytes. These results identify a common set of transcriptome abnormalities associated with oocyte maturation failure. While our results do not demonstrate causality, they indicate that fundamental aspects of cellular function are abnormal in FTM oocytes and raise significant concerns about the potential risks of using FTM oocytes for ART.
Collapse
Affiliation(s)
- Meghan L Ruebel
- Department of Animal Science and Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, Michigan
| | | | - Peter Z Schall
- Department of Animal Science and Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, Michigan
| | | | - Catherine A VandeVoort
- California National Primate Research Center, University of California, Davis, California.,Department of Obstetrics and Gynecology, University of California, Davis, California
| | | | - Keith E Latham
- Department of Animal Science and Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, Michigan
| |
Collapse
|
10
|
Ahlin S, Cefalo C, Bondia-Pons I, Trošt K, Capristo E, Marini L, Romero M, Zorzano A, Gastaldelli A, Mingrone G, Nolan JJ. Metabolite Changes After Metabolic Surgery - Associations to Parameters Reflecting Glucose Homeostasis and Lipid Levels. Front Endocrinol (Lausanne) 2021; 12:786952. [PMID: 34975758 PMCID: PMC8716486 DOI: 10.3389/fendo.2021.786952] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/16/2021] [Indexed: 12/25/2022] Open
Abstract
AIMS To test the hypothesis that adipose tissue gene expression patterns would be affected by metabolic surgery and we aimed to identify genes and metabolic pathways as well as metabolites correlating with metabolic changes following metabolic surgery. MATERIALS AND METHODS This observational study was conducted at the Obesity Unit at the Catholic University Hospital of the Sacred Heart in Rome, Italy. Fifteen patients, of which six patients underwent Roux-en-Y gastric bypass and nine patients underwent biliopancreatic diversion, were included. The participants underwent an oral glucose tolerance test and a hyperinsulinemic euglycemic clamp. Small polar metabolites were analyzed with a two-dimensional gas chromatography coupled to time-of-flight mass spectrometry (GC×GC-TOFMS). Gene expression analysis of genes related to metabolism of amino acids and fatty acids were analyzed in subcutaneous adipose tissue. All procedures were performed at study start and at follow-up (after 185.3 ± 72.9 days). RESULTS Twelve metabolites were significantly changed after metabolic surgery. Six metabolites were identified as 3-indoleacetic acid, 2-hydroxybutyric acid, valine, glutamic acid, 4-hydroxybenzeneacetic acid and alpha-tocopherol. The branched chain amino acids displayed a significant decrease together with a decrease in BCAT1 adipose tissue mRNA levels. Changes in the identified metabolites were associated to changes in lipid, insulin and glucose levels. CONCLUSIONS Our study has identified metabolites and metabolic pathways that are altered by metabolic surgery and may be used as biomarkers for metabolic improvement.
Collapse
Affiliation(s)
- Sofie Ahlin
- Department of Molecular and Clinical Medicine, Institute of Medicine, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
- Department of Medical and Surgery Sciences, Fondazione Policlinico Universitario A. Gemelli Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
- *Correspondence: Sofie Ahlin,
| | - Consuelo Cefalo
- Department of Medical and Surgery Sciences, Fondazione Policlinico Universitario A. Gemelli Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | | | - Kajetan Trošt
- Research Department, Steno Diabetes Center, Gentofte, Denmark
| | - Esmeralda Capristo
- Department of Medical and Surgery Sciences, Fondazione Policlinico Universitario A. Gemelli Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Luca Marini
- Department of Medical and Surgery Sciences, Fondazione Policlinico Universitario A. Gemelli Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Montserrat Romero
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- CIBERDEM, Centro de Investigación Biomédica en Red (CIBER) de Diabetes y Enfermedades Metabólicas Asociadas, Barcelona, Instituto de Salud Carlos III, Barcelona, Spain
| | - Antonio Zorzano
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- CIBERDEM, Centro de Investigación Biomédica en Red (CIBER) de Diabetes y Enfermedades Metabólicas Asociadas, Barcelona, Instituto de Salud Carlos III, Barcelona, Spain
| | - Amalia Gastaldelli
- Cardiometabolic Risk Laboratory, Institute of Clinical Physiology, Consiglio Nazionale delle Ricerche (CNR), Pisa, Italy
| | - Geltrude Mingrone
- Department of Medical and Surgery Sciences, Fondazione Policlinico Universitario A. Gemelli Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
- Department of Diabetes & Nutritional Sciences, Faculty of Life Sciences & Medicine, King’s College, London, United Kingdom
| | - John J. Nolan
- Research Department, Steno Diabetes Center, Gentofte, Denmark
- Department of Clinical Medicine, Trinity College, Dublin, Ireland
| |
Collapse
|
11
|
Mederos S, Sánchez-Puelles C, Esparza J, Valero M, Ponomarenko A, Perea G. GABAergic signaling to astrocytes in the prefrontal cortex sustains goal-directed behaviors. Nat Neurosci 2020; 24:82-92. [PMID: 33288910 DOI: 10.1038/s41593-020-00752-x] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 11/02/2020] [Indexed: 12/18/2022]
Abstract
GABA interneurons play a critical role in higher brain functions. Astrocytic glial cells interact with synapses throughout the whole brain and are recognized as regulatory elements of excitatory synaptic transmission. However, it is largely unknown how GABAergic interneurons and astrocytes interact and contribute to stable performance of complex behaviors. Here, we found that genetic ablation of GABAB receptors in medial prefrontal cortex astrocytes altered low-gamma oscillations and firing properties of cortical neurons, which affected goal-directed behaviors. Remarkably, working memory deficits were restored by optogenetic stimulation of astrocytes with melanopsin. Furthermore, melanopsin-activated astrocytes in wild-type mice enhanced the firing rate of cortical neurons and gamma oscillations, as well as improved cognition. Therefore, our work identifies astrocytes as a hub for controlling inhibition in cortical circuits, providing a novel pathway for the behaviorally relevant midrange time-scale regulation of cortical information processing and consistent goal-directed behaviors.
Collapse
Affiliation(s)
| | | | | | - Manuel Valero
- NYU Neuroscience Institute, New York University Langone Medical Center, New York, NY, USA
| | - Alexey Ponomarenko
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany.,NeuroCure Cluster of Excellence, Leibniz-Institut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | | |
Collapse
|
12
|
Aragona M, Sifrim A, Malfait M, Song Y, Van Herck J, Dekoninck S, Gargouri S, Lapouge G, Swedlund B, Dubois C, Baatsen P, Vints K, Han S, Tissir F, Voet T, Simons BD, Blanpain C. Mechanisms of stretch-mediated skin expansion at single-cell resolution. Nature 2020; 584:268-273. [PMID: 32728211 DOI: 10.1038/s41586-020-2555-7] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 06/19/2020] [Indexed: 02/06/2023]
Abstract
The ability of the skin to grow in response to stretching has been exploited in reconstructive surgery1. Although the response of epidermal cells to stretching has been studied in vitro2,3, it remains unclear how mechanical forces affect their behaviour in vivo. Here we develop a mouse model in which the consequences of stretching on skin epidermis can be studied at single-cell resolution. Using a multidisciplinary approach that combines clonal analysis with quantitative modelling and single-cell RNA sequencing, we show that stretching induces skin expansion by creating a transient bias in the renewal activity of epidermal stem cells, while a second subpopulation of basal progenitors remains committed to differentiation. Transcriptional and chromatin profiling identifies how cell states and gene-regulatory networks are modulated by stretching. Using pharmacological inhibitors and mouse mutants, we define the step-by-step mechanisms that control stretch-mediated tissue expansion at single-cell resolution in vivo.
Collapse
Affiliation(s)
- Mariaceleste Aragona
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles, Brussels, Belgium
| | - Alejandro Sifrim
- Department of Human Genetics, University of Leuven, KU Leuven, Leuven, Belgium.,Sanger Institute-EBI Single-Cell Genomics Centre, Wellcome Trust Sanger Institute, Hinxton, UK
| | - Milan Malfait
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles, Brussels, Belgium
| | - Yura Song
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles, Brussels, Belgium
| | - Jens Van Herck
- Department of Human Genetics, University of Leuven, KU Leuven, Leuven, Belgium.,Sanger Institute-EBI Single-Cell Genomics Centre, Wellcome Trust Sanger Institute, Hinxton, UK
| | - Sophie Dekoninck
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles, Brussels, Belgium
| | - Souhir Gargouri
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles, Brussels, Belgium
| | - Gaëlle Lapouge
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles, Brussels, Belgium
| | - Benjamin Swedlund
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles, Brussels, Belgium
| | - Christine Dubois
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles, Brussels, Belgium
| | - Pieter Baatsen
- Electron Microscopy Platform of VIB Bio Imaging Core, Leuven, Belgium
| | - Katlijn Vints
- Electron Microscopy Platform of VIB Bio Imaging Core, Leuven, Belgium
| | - Seungmin Han
- The Wellcome Trust-Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, UK.,Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Fadel Tissir
- Université Catholique de Louvain, Institute of Neuroscience, Developmental Neurobiology, Brussels, Belgium
| | - Thierry Voet
- Department of Human Genetics, University of Leuven, KU Leuven, Leuven, Belgium.,Sanger Institute-EBI Single-Cell Genomics Centre, Wellcome Trust Sanger Institute, Hinxton, UK
| | - Benjamin D Simons
- The Wellcome Trust-Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, UK. .,Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, UK. .,Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Cambridge, UK.
| | - Cédric Blanpain
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles, Brussels, Belgium. .,WELBIO, Université Libre de Bruxelles, Brussels, Belgium.
| |
Collapse
|
13
|
Morral C, Stanisavljevic J, Hernando-Momblona X, Mereu E, Álvarez-Varela A, Cortina C, Stork D, Slebe F, Turon G, Whissell G, Sevillano M, Merlos-Suárez A, Casanova-Martí À, Moutinho C, Lowe SW, Dow LE, Villanueva A, Sancho E, Heyn H, Batlle E. Zonation of Ribosomal DNA Transcription Defines a Stem Cell Hierarchy in Colorectal Cancer. Cell Stem Cell 2020; 26:845-861.e12. [PMID: 32396863 DOI: 10.1016/j.stem.2020.04.012] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 02/20/2020] [Accepted: 04/19/2020] [Indexed: 01/12/2023]
Abstract
Colorectal cancers (CRCs) are composed of an amalgam of cells with distinct genotypes and phenotypes. Here, we reveal a previously unappreciated heterogeneity in the biosynthetic capacities of CRC cells. We discover that the majority of ribosomal DNA transcription and protein synthesis in CRCs occurs in a limited subset of tumor cells that localize in defined niches. The rest of the tumor cells undergo an irreversible loss of their biosynthetic capacities as a consequence of differentiation. Cancer cells within the biosynthetic domains are characterized by elevated levels of the RNA polymerase I subunit A (POLR1A). Genetic ablation of POLR1A-high cell population imposes an irreversible growth arrest on CRCs. We show that elevated biosynthesis defines stemness in both LGR5+ and LGR5- tumor cells. Therefore, a common architecture in CRCs is a simple cell hierarchy based on the differential capacity to transcribe ribosomal DNA and synthesize proteins.
Collapse
Affiliation(s)
- Clara Morral
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 10, 08028 Barcelona, Spain
| | - Jelena Stanisavljevic
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 10, 08028 Barcelona, Spain
| | - Xavier Hernando-Momblona
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 10, 08028 Barcelona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 08028 Barcelona, Spain
| | - Elisabetta Mereu
- CNAG-Centre for Genomic Regulation (CRG), BIST, Baldiri i Reixac 4, 08028 Barcelona, Spain
| | - Adrián Álvarez-Varela
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 10, 08028 Barcelona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 08028 Barcelona, Spain
| | - Carme Cortina
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 10, 08028 Barcelona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 08028 Barcelona, Spain
| | - Diana Stork
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 10, 08028 Barcelona, Spain
| | - Felipe Slebe
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 10, 08028 Barcelona, Spain
| | - Gemma Turon
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 10, 08028 Barcelona, Spain
| | - Gavin Whissell
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 10, 08028 Barcelona, Spain
| | - Marta Sevillano
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 10, 08028 Barcelona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 08028 Barcelona, Spain
| | - Anna Merlos-Suárez
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 10, 08028 Barcelona, Spain
| | - Àngela Casanova-Martí
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 10, 08028 Barcelona, Spain
| | - Catia Moutinho
- CNAG-Centre for Genomic Regulation (CRG), BIST, Baldiri i Reixac 4, 08028 Barcelona, Spain
| | - Scott W Lowe
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Lukas E Dow
- Department of Medicine, Weill-Cornell Medical College, New York, NY 10021, USA
| | - Alberto Villanueva
- Group of Chemoresistance and Predictive Factors, Subprogram Against Cancer Therapeutic Resistance (ProCURE), ICO, Oncobell Program, IDIBELL, L'Hospitalet del Llobregat, 08908 Barcelona, Spain
| | - Elena Sancho
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 10, 08028 Barcelona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 08028 Barcelona, Spain
| | - Holger Heyn
- CNAG-Centre for Genomic Regulation (CRG), BIST, Baldiri i Reixac 4, 08028 Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Eduard Batlle
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 10, 08028 Barcelona, Spain; ICREA, Passeig Lluís Companys 23, 08010 Barcelona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 08028 Barcelona, Spain.
| |
Collapse
|
14
|
Warrier S, Taelman J, Tilleman L, Van der Jeught M, Duggal G, Lierman S, Popovic M, Van Soom A, Peelman L, Van Nieuwerburgh F, Deforce D, Chuva de Sousa Lopes SM, De Sutter P, Heindryckx B. Transcriptional landscape changes during human embryonic stem cell derivation. Mol Hum Reprod 2019; 24:543-555. [PMID: 30239859 DOI: 10.1093/molehr/gay039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 09/14/2018] [Indexed: 01/06/2023] Open
Abstract
STUDY QUESTION What are the transcriptional changes occurring during the human embryonic stem cell (hESC) derivation process, from the inner cell mass (ICM) to post-ICM intermediate stage (PICMI) to hESC stage, that have downstream effects on pluripotency states and differentiation? SUMMARY ANSWER We reveal that although the PICMI is transcriptionally similar to the hESC profile and distinct from ICM, it exhibits upregulation of primordial germ cell (PGC) markers, dependence on leukemia inhibitory factor (LIF) signaling, upregulation of naïve pluripotency-specific signaling networks and appears to be an intermediate switching point from naïve to primed pluripotency. WHAT IS KNOWN ALREADY It is currently known that the PICMI exhibits markers of early and late-epiblast stage. It is suggested that hESCs acquire primed pluripotency features due to the upregulation of post-implantation genes in the PICMI which renders them predisposed towards differentiation cues. Despite this current knowledge, the transcriptional landscape changes during hESC derivation from ICM to hESC and the effect of PICMI on pluripotent state is still not well defined. STUDY DESIGN, SIZE, DURATION To gain insight into the signaling mechanisms that may govern the ICM to PICMI to hESC transition, comparative RNA sequencing (RNA-seq) analysis was performed on preimplantation ICMs, PICMIs and hESCs in biological and technical triplicates (n = 3). PARTICIPANTS/MATERIALS, SETTING, AND METHODS Primed hESCs (XX) were maintained in feeder-free culture conditions on Matrigel for two passages and approximately 50 cells were collected in biological and technical triplicates (n = 3). For ICM sample collection, Day 3, frozen-thawed human embryos were cultured up to day five blastocyst stage and only good quality blastocysts were subjected to laser-assisted micromanipulation for ICM collection (n = 3). Next, day six expanded blastocysts were cultured on mouse embryonic fibroblasts and manual dissection was performed on the PICMI outgrowths between post-plating Day 6 and Day 10 (n = 3). Sequencing of these samples was performed on NextSeq500 and statistical analysis was performed using edgeR (false discovery rate (FDR) < 0.05). MAIN RESULTS AND THE ROLE OF CHANCE Comparative RNA-seq data analysis revealed that 634 and 560 protein-coding genes were significantly up and downregulated in hESCs compared to ICM (FDR < 0.05), respectively. Upon ICM to PICMI transition, 471 genes were expressed significantly higher in the PICMI compared to ICM, while 296 genes were elevated in the ICM alone (FDR < 0.05). Principle component analysis showed that the ICM was completely distinct from the PICMI and hESCs while the latter two clustered in close proximity to each other. Increased expression of E-CADHERIN1 (CDH1) in ICM and intermediate levels in the PICMI was observed, while CDH2 was higher in hESCs, suggesting a role of extracellular matrix components in facilitating pluripotency transition during hESC derivation. The PICMI also showed regulation of naïve-specific LIF and bone morphogenetic protein signaling, differential regulation of primed pluripotency-specific fibroblast growth factor and NODAL signaling pathway components, upregulation of phosphatidylinositol 3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) pathway (PI3K/AKT/mTORC), as well as predisposition towards the germ cell lineage, further confirmed by gene ontology analysis. Hence, the data suggest that the PICMI may serve as an intermediate pluripotency stage which, when subjected to an appropriate culture niche, could aid in enhancing naïve hESC derivation and germ cell differentiation efficiency. LARGE-SCALE DATA Gene Expression Omnibus (GEO) Accession number GSE119378. LIMITATIONS, REASONS FOR CAUTION Owing to the limitation in sample availability, the sex of ICM and PICMI have not been taken into consideration. Obtaining cells from the ICM and maintaining them in culture is not feasible as it will hamper the formation of PICMI and hESC derivation. Single-cell quantitative real-time PCR on low ICM and PICMI cell numbers, although challenging due to limited availability of human embryos, will be advantageous to further corroborate the RNA-seq data on transcriptional changes during hESC derivation process. WIDER IMPLICATIONS OF THE FINDINGS We elucidate the dynamics of transcriptional network changes from the naïve ICM to the intermediate PICMI stage and finally the primed hESC lines. We provide an in-depth understanding of the PICMI and its role in conferring the type of pluripotent state which may have important downstream effects on differentiation, specifically towards the PGC lineage. This knowledge contributes to our limited understanding of the true nature of the human pluripotent state in vitro. STUDY FUNDING/COMPETING INTEREST(S) This research is supported by the Concerted Research Actions funding from Bijzonder Onderzoeksfonds University Ghent (BOF GOA 01G01112).The authors declare no conflict of interest.
Collapse
Affiliation(s)
- S Warrier
- Ghent-Fertility and Stem cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium
| | - J Taelman
- Ghent-Fertility and Stem cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium
| | - L Tilleman
- Laboratory for Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - M Van der Jeught
- Ghent-Fertility and Stem cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium
| | - G Duggal
- Ghent-Fertility and Stem cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium.,Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - S Lierman
- Ghent-Fertility and Stem cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium
| | - M Popovic
- Ghent-Fertility and Stem cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium
| | - A Van Soom
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - L Peelman
- Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - F Van Nieuwerburgh
- Laboratory for Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - D Deforce
- Laboratory for Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - S M Chuva de Sousa Lopes
- Ghent-Fertility and Stem cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium.,Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands
| | - P De Sutter
- Ghent-Fertility and Stem cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium
| | - B Heindryckx
- Ghent-Fertility and Stem cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
15
|
Vastagh C, Solymosi N, Farkas I, Liposits Z. Proestrus Differentially Regulates Expression of Ion Channel and Calcium Homeostasis Genes in GnRH Neurons of Mice. Front Mol Neurosci 2019; 12:137. [PMID: 31213979 PMCID: PMC6554425 DOI: 10.3389/fnmol.2019.00137] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 05/10/2019] [Indexed: 11/29/2022] Open
Abstract
In proestrus, the changing gonadal hormone milieu alters the physiological properties of GnRH neurons and contributes to the development of the GnRH surge. We hypothesized that proestrus also influences the expression of different ion channel genes in mouse GnRH neurons. Therefore, we performed gene expression profiling of GnRH neurons collected from intact, proestrous and metestrous GnRH-GFP transgenic mice, respectively. Proestrus changed the expression of 37 ion channel and 8 calcium homeostasis-regulating genes. Voltage-gated sodium channels responded with upregulation of three alpha subunits (Scn2a1, Scn3a, and Scn9a). Within the voltage-gated potassium channel class, Kcna1, Kcnd3, Kcnh3, and Kcnq2 were upregulated, while others (Kcna4, Kcnc3, Kcnd2, and Kcng1) underwent downregulation. Proestrus also had impact on inwardly rectifying potassium channel subunits manifested in enhanced expression of Kcnj9 and Kcnj10 genes, whereas Kcnj1, Kcnj11, and Kcnj12 subunit genes were downregulated. The two-pore domain potassium channels also showed differential expression with upregulation of Kcnk1 and reduced expression of three subunit genes (Kcnk7, Kcnk12, and Kcnk16). Changes in expression of chloride channels involved both the voltage-gated (Clcn3 and Clcn6) and the intracellular (Clic1) subtypes. Regarding the pore-forming alpha-1 subunits of voltage-gated calcium channels, two (Cacna1b and Cacna1h) were upregulated, while Cacna1g showed downregulation. The ancillary subunits were also differentially regulated (Cacna2d1, Cacna2d2, Cacnb1, Cacnb3, Cacnb4, Cacng5, Cacng6, and Cacng8). In addition, ryanodine receptor 1 (Ryr1) gene was downregulated, while a transient receptor potential cation channel (Trpm3) gene showed enhanced expression. Genes encoding proteins regulating the intracellular calcium homeostasis were also influenced (Calb1, Hpca, Hpcal1, Hpcal4, Cabp7, Cab 39l, and Cib2). The differential expression of genes coding for ion channel proteins in GnRH neurons at late proestrus indicates that the altering hormone milieu contributes to remodeling of different kinds of ion channels of GnRH neurons, which might be a prerequisite of enhanced cellular activity of GnRH neurons and the subsequent surge release of the neurohormone.
Collapse
Affiliation(s)
- Csaba Vastagh
- Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Norbert Solymosi
- Centre for Bioinformatics, University of Veterinary Medicine, Budapest, Hungary
| | - Imre Farkas
- Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Zsolt Liposits
- Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary.,Department of Neuroscience, Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| |
Collapse
|
16
|
Keiran N, Ceperuelo-Mallafré V, Calvo E, Hernández-Alvarez MI, Ejarque M, Núñez-Roa C, Horrillo D, Maymó-Masip E, Rodríguez MM, Fradera R, de la Rosa JV, Jorba R, Megia A, Zorzano A, Medina-Gómez G, Serena C, Castrillo A, Vendrell J, Fernández-Veledo S. SUCNR1 controls an anti-inflammatory program in macrophages to regulate the metabolic response to obesity. Nat Immunol 2019; 20:581-592. [PMID: 30962591 DOI: 10.1038/s41590-019-0372-7] [Citation(s) in RCA: 144] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 03/05/2019] [Indexed: 12/14/2022]
Abstract
Succinate is a signaling metabolite sensed extracellularly by succinate receptor 1 (SUNCR1). The accumulation of succinate in macrophages is known to activate a pro-inflammatory program; however, the contribution of SUCNR1 to macrophage phenotype and function has remained unclear. Here we found that activation of SUCNR1 had a critical role in the anti-inflammatory responses in macrophages. Myeloid-specific deficiency in SUCNR1 promoted a local pro-inflammatory phenotype, disrupted glucose homeostasis in mice fed a normal chow diet, exacerbated the metabolic consequences of diet-induced obesity and impaired adipose-tissue browning in response to cold exposure. Activation of SUCNR1 promoted an anti-inflammatory phenotype in macrophages and boosted the response of these cells to type 2 cytokines, including interleukin-4. Succinate decreased the expression of inflammatory markers in adipose tissue from lean human subjects but not that from obese subjects, who had lower expression of SUCNR1 in adipose-tissue-resident macrophages. Our findings highlight the importance of succinate-SUCNR1 signaling in determining macrophage polarization and assign a role to succinate in limiting inflammation.
Collapse
Affiliation(s)
- Noelia Keiran
- Unitat de Recerca, Hospital Universitari de Tarragona Joan XXIII, Institut d´Investigació Sanitària Pere Virgili, Tarragona, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Victoria Ceperuelo-Mallafré
- Unitat de Recerca, Hospital Universitari de Tarragona Joan XXIII, Institut d´Investigació Sanitària Pere Virgili, Tarragona, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Enrique Calvo
- Unitat de Recerca, Hospital Universitari de Tarragona Joan XXIII, Institut d´Investigació Sanitària Pere Virgili, Tarragona, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Maria Isabel Hernández-Alvarez
- Unitat de Recerca, Hospital Universitari de Tarragona Joan XXIII, Institut d´Investigació Sanitària Pere Virgili, Tarragona, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain.,Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Miriam Ejarque
- Unitat de Recerca, Hospital Universitari de Tarragona Joan XXIII, Institut d´Investigació Sanitària Pere Virgili, Tarragona, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Catalina Núñez-Roa
- Unitat de Recerca, Hospital Universitari de Tarragona Joan XXIII, Institut d´Investigació Sanitària Pere Virgili, Tarragona, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Daniel Horrillo
- Departamento de Ciencias Básicas de la Salud, Área de Bioquímica y Biología Molecular, Universidad Rey Juan Carlos, Madrid, Spain
| | - Elsa Maymó-Masip
- Unitat de Recerca, Hospital Universitari de Tarragona Joan XXIII, Institut d´Investigació Sanitària Pere Virgili, Tarragona, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - M Mar Rodríguez
- Unitat de Recerca, Hospital Universitari de Tarragona Joan XXIII, Institut d´Investigació Sanitària Pere Virgili, Tarragona, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Rosa Fradera
- General and Digestive Surgery Service, Hospital St. Pau i Sta Tecla, Institut d´Investigació Sanitària Pere Virgili, Tarragona, Spain
| | - Juan Vladimir de la Rosa
- Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC-UAM, Madrid, Spain.,Unidad de Biomedicina (Unidad Asociada al CSIC), Instituto Universitario de Investigaciones Biomédicas y Sanitaria (IUBIS), Universidad de Las Palmas de Gran Canaria, Las Palmas, Spain
| | - Rosa Jorba
- General and Digestive Surgery Service, Hospital Universitari de Tarragona Joan XXIII, Institut d´Investigació Sanitària Pere Virgili, Tarragona, Spain
| | - Ana Megia
- Unitat de Recerca, Hospital Universitari de Tarragona Joan XXIII, Institut d´Investigació Sanitària Pere Virgili, Tarragona, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Antonio Zorzano
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain.,Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Departament de Bioquímica i Biomedicina Molecular, Facultat de Biología, Barcelona, Spain
| | - Gema Medina-Gómez
- Departamento de Ciencias Básicas de la Salud, Área de Bioquímica y Biología Molecular, Universidad Rey Juan Carlos, Madrid, Spain
| | - Carolina Serena
- Unitat de Recerca, Hospital Universitari de Tarragona Joan XXIII, Institut d´Investigació Sanitària Pere Virgili, Tarragona, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Antonio Castrillo
- Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC-UAM, Madrid, Spain.,Unidad de Biomedicina (Unidad Asociada al CSIC), Instituto Universitario de Investigaciones Biomédicas y Sanitaria (IUBIS), Universidad de Las Palmas de Gran Canaria, Las Palmas, Spain
| | - Joan Vendrell
- Unitat de Recerca, Hospital Universitari de Tarragona Joan XXIII, Institut d´Investigació Sanitària Pere Virgili, Tarragona, Spain. .,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain. .,Universitat Rovira i Virgili, Tarragona, Spain.
| | - Sonia Fernández-Veledo
- Unitat de Recerca, Hospital Universitari de Tarragona Joan XXIII, Institut d´Investigació Sanitària Pere Virgili, Tarragona, Spain. .,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
17
|
Loss of G9a preserves mutation patterns but increases chromatin accessibility, genomic instability and aggressiveness in skin tumours. Nat Cell Biol 2018; 20:1400-1409. [PMID: 30455462 DOI: 10.1038/s41556-018-0233-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 10/16/2018] [Indexed: 12/20/2022]
Abstract
Mutations in, and the altered expression of, epigenetic modifiers are pervasive in human tumours, making epigenetic factors attractive antitumour targets. The open-versus-closed chromatin state within the cells-of-origin of cancer correlates with the uneven distribution of mutations. However, the long-term effect of targeting epigenetic modifiers on mutability in patients with cancer is unclear. Here, we increased chromatin accessibility by deleting the histone H3 lysine 9 (H3K9) methyltransferase G9a in murine epidermis and show that this does not alter the single nucleotide variant burden or global genomic distribution in chemical mutagen-induced squamous tumours. G9a-depleted tumours develop after a prolonged latency compared with their wild-type counterparts, but are more aggressive and have an expanded cancer progenitor pool, pronounced genomic instability and frequent loss-of-function p53 mutations. Thus, we call for caution when assessing long-term therapeutic benefits of chromatin modifier inhibitors, which may promote more aggressive disease.
Collapse
|
18
|
A slow-cycling LGR5 tumour population mediates basal cell carcinoma relapse after therapy. Nature 2018; 562:434-438. [PMID: 30297799 PMCID: PMC6295195 DOI: 10.1038/s41586-018-0603-3] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 08/16/2018] [Indexed: 01/28/2023]
Abstract
Basal cell carcinoma (BCC) is the most frequent cancer in humans and results from constitutive activation of the Hedgehog pathway1. Several Smoothened inhibitors (Smoi) are used to treat Hedgehog-mediated malignancies, including BCC and medulloblastoma2. Vismodegib, a Smoi, leads to BCC shrinkage in the majority of the BCC patients3, but the mechanism by which it mediates BCC regression is currently unknown. Here, we used two different genetically engineered mouse models4 to investigate the mechanisms by which Smoi mediates tumor regression. We found that vismodegib mediates BCCs regression by inhibiting hair follicle-like fate and promoting the differentiation of tumour cells (TCs). However, a small population of TCs persists and is responsible for tumour relapse following treatment discontinuation, mimicking the situation found in humans5. In both mouse and human BCC, this persisting slow-cycling tumour population expresses Lgr5 and is characterised by active Wnt signalling. Lgr5 lineage ablation or Wnt signalling inhibition together with vismodegib leads to BCC eradication. Our study reveals that vismodegib induces tumour regression by promoting tumour differentiation, and demonstrates that the synergy between Wnt and Smoothened inhibitors constitutes a clinically relevant strategy to overcome tumour relapse in BCC.
Collapse
|
19
|
The Germline Linker Histone dBigH1 and the Translational Regulator Bam Form a Repressor Loop Essential for Male Germ Stem Cell Differentiation. Cell Rep 2018; 21:3178-3189. [PMID: 29241545 DOI: 10.1016/j.celrep.2017.11.060] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 08/31/2017] [Accepted: 11/15/2017] [Indexed: 12/13/2022] Open
Abstract
Drosophila spermatogenesis constitutes a paradigmatic system to study maintenance, proliferation, and differentiation of adult stem cell lineages. Each Drosophila testis contains 6-12 germ stem cells (GSCs) that divide asymmetrically to produce gonialblast cells that undergo four transit-amplifying (TA) spermatogonial divisions before entering spermatocyte differentiation. Mechanisms governing these crucial transitions are not fully understood. Here, we report the essential role of the germline linker histone dBigH1 during early spermatogenesis. Our results suggest that dBigH1 is a general silencing factor that represses Bam, a key regulator of spermatogonia proliferation that is silenced in spermatocytes. Reciprocally, Bam represses dBigH1 during TA divisions. This double-repressor mechanism switches dBigH1/Bam expression from off/on in spermatogonia to on/off in spermatocytes, regulating progression into spermatocyte differentiation. dBigH1 is also required for GSC maintenance and differentiation. These results show the critical importance of germline H1s for male GSC lineage differentiation, unveiling a regulatory interaction that couples transcriptional and translational repression.
Collapse
|
20
|
Rossi F, Molnar C, Hashiyama K, Heinen JP, Pampalona J, Llamazares S, Reina J, Hashiyama T, Rai M, Pollarolo G, Fernández-Hernández I, Gonzalez C. An in vivo genetic screen in Drosophila identifies the orthologue of human cancer/testis gene SPO11 among a network of targets to inhibit lethal(3)malignant brain tumour growth. Open Biol 2018; 7:rsob.170156. [PMID: 28855394 PMCID: PMC5577452 DOI: 10.1098/rsob.170156] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Accepted: 07/27/2017] [Indexed: 12/31/2022] Open
Abstract
Using transgenic RNAi technology, we have screened over 4000 genes to identify targets to inhibit malignant growth caused by the loss of function of lethal(3)malignant brain tumour in Drosophila in vivo. We have identified 131 targets, which belong to a wide range of gene ontologies. Most of these target genes are not significantly overexpressed in mbt tumours hence showing that, rather counterintuitively, tumour-linked overexpression is not a good predictor of functional requirement. Moreover, we have found that most of the genes upregulated in mbt tumours remain overexpressed in tumour-suppressed double-mutant conditions, hence revealing that most of the tumour transcriptome signature is not necessarily correlated with malignant growth. One of the identified target genes is meiotic W68 (mei-W68), the Drosophila orthologue of the human cancer/testis gene Sporulation-specific protein 11 (SPO11), the enzyme that catalyses the formation of meiotic double-strand breaks. We show that Drosophila mei-W68/SPO11 drives oncogenesis by causing DNA damage in a somatic tissue, hence providing the first instance in which a SPO11 orthologue is unequivocally shown to have a pro-tumoural role. Altogether, the results from this screen point to the possibility of investigating the function of human cancer relevant genes in a tractable experimental model organism like Drosophila.
Collapse
Affiliation(s)
- Fabrizio Rossi
- Cell Division Group, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain
| | - Cristina Molnar
- Cell Division Group, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain
| | - Kazuya Hashiyama
- Cell Division Group, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain
| | - Jan P Heinen
- Cell Division Group, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain
| | - Judit Pampalona
- Cell Division Group, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain
| | - Salud Llamazares
- Cell Division Group, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain
| | - José Reina
- Cell Division Group, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain
| | - Tomomi Hashiyama
- Cell Division Group, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain
| | - Madhulika Rai
- Cell Division Group, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain
| | - Giulia Pollarolo
- Cell Division Group, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain
| | - Ismael Fernández-Hernández
- Cell Division Group, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain
| | - Cayetano Gonzalez
- Cell Division Group, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain .,Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys, 08010 Barcelona, Spain
| |
Collapse
|
21
|
Early lineage segregation of multipotent embryonic mammary gland progenitors. Nat Cell Biol 2018; 20:666-676. [PMID: 29784918 PMCID: PMC5985933 DOI: 10.1038/s41556-018-0095-2] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 03/26/2018] [Indexed: 12/19/2022]
Abstract
The mammary gland (MG) is composed of basal cells (BCs) and luminal cells (LCs). While it is generally believed that MG arises from embryonic multipotent progenitors (EMPs), it remains unclear when lineage restriction occurs and what are the mechanisms responsible for the switch from multipotency to unipotency during MG morphogenesis. Here, we performed multicolor lineage tracing and assessed the fate of single progenitors and demonstrated the existence of a developmental switch from multipotency to unipotency during embryonic MG development. Molecular profiling and single cell RNA-seq revealed that EMPs express a unique hybrid basal and luminal signature and the factors associated with the different lineages. Sustained p63 expression in EMPs promotes unipotent BC fate and was sufficient to reprogram adult LCs into BCs by promoting an intermediate hybrid multipotent like state. Altogether, this study identifies the timing and the mechanisms mediating the early lineage segregation of multipotent progenitors during MG development.
Collapse
|
22
|
Barragán M, Pons J, Ferrer-Vaquer A, Cornet-Bartolomé D, Schweitzer A, Hubbard J, Auer H, Rodolosse A, Vassena R. The transcriptome of human oocytes is related to age and ovarian reserve. Mol Hum Reprod 2018; 23:535-548. [PMID: 28586423 DOI: 10.1093/molehr/gax033] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 06/03/2017] [Indexed: 11/13/2022] Open
Abstract
STUDY QUESTION How does the human oocyte transcriptome change with age and ovarian reserve? SUMMARY ANSWER Specific sets of human oocyte messenger RNAs (mRNAs) and non-coding RNAs (ncRNAs) are affected independently by age and ovarian reserve. WHAT IS KNOWN ALREADY Although it is well established that the ovarian reserve diminishes with increasing age, and that a woman's age is correlated with lower oocyte quality, the interplay of a diminished reserve and age on oocyte developmental competence is not clear. After maturation, oocytes are mostly transcriptionally quiescent, and developmental competence prior to embryonic genome activationrelies on maternal RNA and proteins. STUDY DESIGN, SIZE, DURATION A total of 36 vitrified/warmed MII oocytes from 30 women undergoing oocyte donation were included in this study, processed and analyzed individually. PARTICIPANTS/MATERIALS, SETTING, METHODS Total RNA from each oocyte was independently isolated, amplified, labeled, and hybridized on HTA 2.0 arrays (Affymetrix). Data were analyzed using TAC software, in four groups, each including nine oocytes, according to the woman's age and antral follicular count (AFC) (mean ± SD): Young with High AFC (YH; age 21 ± 1 years and 24 ± 3 follicles); Old with High AFC (OH; age 32 ± 2 years and 29 ± 7 follicles); Young with Low AFC (YL; age 24 ± 2 years and 8 ± 2 follicles); Old with Low AFC (OL; age 34 ± 1 years and 7 ± 1 follicles). qPCR was performed to validate arrays. MAIN RESULTS AND THE ROLE OF CHANCE We identified a set of 30 differentially expressed mRNAs when comparing oocytes from women with different ages and AFC. In addition, 168 non-coding RNAs (ncRNAs) were differentially expressed in relation to age and/or AFC. Few mRNAs have been identified as differentially expressed transcripts, and among ncRNAs, a set of Piwi-interacting RNAs clusters (piRNAs-c) and precursor microRNAs (pre-miRNAs) were identified as increased in high AFC and old groups, respectively. Our results indicate that age and ovarian reserve are associated with specific ncRNA profiles, suggesting that oocyte quality might be mediated by ncRNA pathways. LARGE SCALE DATA Data can be found via GEO accession number GSE87201. LIMITATIONS, REASONS FOR CAUTION The oldest woman included in the study was 35 years old, thus our results cannot readily be extrapolated to women older than 35 or infertile women. WIDER IMPLICATIONS OF THE FINDINGS We show, for the first time, that several non-coding RNAs, usually regulating DNA transcription, are differentially expressed in relation to age and/or ovarian reserve. Interestingly, the mRNA transcriptome of in vivo matured oocytes remains remarkably stable across ages and ovarian reserve, suggesting the possibility that changes in the non-coding transcriptome might regulate some post-transcriptional/translational mechanisms which might, in turn, affect oocyte developmental competence. STUDY FUNDING AND COMPETING INTEREST(S) This work was supported by intramural funding of Clinica EUGIN and by the Secretary for Universities and Research of the Ministry of Economy and Knowledge of the Government of Catalonia. J.H. and A.S. are employees of Affymetrix, otherwise there are no competing interests.
Collapse
Affiliation(s)
- M Barragán
- Clínica EUGIN, Travessera de les Corts 322, 08029 Barcelona, Spain
| | - J Pons
- Functional Genomics Core, Institute for Research in Biomedicine (IRB) Barcelona, Parc Científic de Barcelona, Baldiri Reixac 10, 08028 Barcelona, Spain
| | - A Ferrer-Vaquer
- Clínica EUGIN, Travessera de les Corts 322, 08029 Barcelona, Spain
| | | | - A Schweitzer
- Thermo Fisher Scientific, 3450 Central Expressway, Santa Clara, CA 95051, USA
| | - J Hubbard
- Thermo Fisher Scientific, 3450 Central Expressway, Santa Clara, CA 95051, USA
| | - H Auer
- Functional GenOmics Consulting, Bellavista 53, 08753 Pallejà, Spain
| | - A Rodolosse
- Functional Genomics Core, Institute for Research in Biomedicine (IRB) Barcelona, Parc Científic de Barcelona, Baldiri Reixac 10, 08028 Barcelona, Spain
| | - R Vassena
- Clínica EUGIN, Travessera de les Corts 322, 08029 Barcelona, Spain
| |
Collapse
|
23
|
Cortina C, Turon G, Stork D, Hernando-Momblona X, Sevillano M, Aguilera M, Tosi S, Merlos-Suárez A, Stephan-Otto Attolini C, Sancho E, Batlle E. A genome editing approach to study cancer stem cells in human tumors. EMBO Mol Med 2018; 9:869-879. [PMID: 28468934 PMCID: PMC5494503 DOI: 10.15252/emmm.201707550] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The analysis of stem cell hierarchies in human cancers has been hampered by the impossibility of identifying or tracking tumor cell populations in an intact environment. To overcome this limitation, we devised a strategy based on editing the genomes of patient-derived tumor organoids using CRISPR/Cas9 technology to integrate reporter cassettes at desired marker genes. As proof of concept, we engineered human colorectal cancer (CRC) organoids that carry EGFP and lineage-tracing cassettes knocked in the LGR5 locus. Analysis of LGR5-EGFP+ cells isolated from organoid-derived xenografts demonstrated that these cells express a gene program similar to that of normal intestinal stem cells and that they propagate the disease to recipient mice very efficiently. Lineage-tracing experiments showed that LGR5+ CRC cells self-renew and generate progeny over long time periods that undergo differentiation toward mucosecreting- and absorptive-like phenotypes. These genetic experiments confirm that human CRCs adopt a hierarchical organization reminiscent of that of the normal colonic epithelium. The strategy described herein may have broad applications to study cell heterogeneity in human tumors.
Collapse
Affiliation(s)
- Carme Cortina
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Gemma Turon
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Diana Stork
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Xavier Hernando-Momblona
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Marta Sevillano
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Mònica Aguilera
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Sébastien Tosi
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Anna Merlos-Suárez
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Camille Stephan-Otto Attolini
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Elena Sancho
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Eduard Batlle
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain .,Institució Catalana de Recerca i Estudis Avançats (ICREA) and CIBER-ONC, Barcelona, Spain
| |
Collapse
|
24
|
Bauer WM, Aichelburg MC, Griss J, Skrabs C, Simonitsch-Klupp I, Schiefer AI, Kittler H, Jäger U, Zeyda M, Knobler R, Stingl G. Molecular classification of tumour cells in a patient with intravascular large B-cell lymphoma. Br J Dermatol 2017; 178:215-221. [PMID: 28733977 DOI: 10.1111/bjd.15841] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2017] [Indexed: 11/28/2022]
Abstract
BACKGROUND Intravascular large B-cell lymphoma (IVLBCL) is a rare type of extranodal LBCL. It is characterized by the proliferation of tumour cells exclusively intraluminally in small blood vessels of different organs. The clinical manifestation depends on the type of organ affected; additionally, a haemophagocytic syndrome can be observed in some patients. OBJECTIVES The aim was to further understand the nosology of this lymphoma as, due to its rarity and in spite of detailed immunohistochemical investigations, its exact nosology is only incompletely understood. METHODS We used microarray-based analysis of gene expression of tumour cells isolated from a patient with primary manifestation of the lymphoma in the skin and compared it with various other diffuse LBCLs (DLBCLs) as well as a previously published DLBCL classifier. RESULTS In unsupervised analyses, the tumour cells clustered together with non-germinal centre B-cell (non-GCB) DLBCL samples but were clearly distinct from GCB-DLBCL. Analogous to non-GCB DLBCL, molecular cell-of-origin classification revealed similarity to bone-marrow derived plasma cells. CONCLUSIONS The IVLBCL of this patient showed molecular similarity to non-GCB DLBCL. Due to the prognostic and increasingly also therapeutic relevance of molecular subtyping in DLBCL, this method, in addition to immunohistochemistry, should also be considered for the diagnosis of IVLBCL in the future.
Collapse
Affiliation(s)
- W M Bauer
- Department for Dermatology, Division of Immunology, Allergy and Infectious Diseases, Medical University of Vienna, Vienna, Austria
| | - M C Aichelburg
- Department for Dermatology, Division of Immunology, Allergy and Infectious Diseases, Medical University of Vienna, Vienna, Austria
| | - J Griss
- Department for Dermatology, Division of Immunology, Allergy and Infectious Diseases, Medical University of Vienna, Vienna, Austria
| | - C Skrabs
- Department of Internal Medicine I, Division of Haematology and Haemostaseology, Medical University of Vienna, Vienna, Austria
| | | | - A I Schiefer
- Department for Pathology, Medical University of Vienna, Vienna, Austria
| | - H Kittler
- Department for Dermatology, Division of General Dermatology, Medical University of Vienna, Vienna, Austria
| | - U Jäger
- Department of Internal Medicine I, Division of Haematology and Haemostaseology, Medical University of Vienna, Vienna, Austria
| | - M Zeyda
- Division of Endocrinology and Metabolism, Department of Medicine III, Medical University, of Vienna, Vienna, Austria
| | - R Knobler
- Department for Dermatology, Division of General Dermatology, Medical University of Vienna, Vienna, Austria
| | - G Stingl
- Department for Dermatology, Division of Immunology, Allergy and Infectious Diseases, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
25
|
Barriga FM, Montagni E, Mana M, Mendez-Lago M, Hernando-Momblona X, Sevillano M, Guillaumet-Adkins A, Rodriguez-Esteban G, Buczacki SJA, Gut M, Heyn H, Winton DJ, Yilmaz OH, Attolini CSO, Gut I, Batlle E. Mex3a Marks a Slowly Dividing Subpopulation of Lgr5+ Intestinal Stem Cells. Cell Stem Cell 2017; 20:801-816.e7. [PMID: 28285904 PMCID: PMC5774992 DOI: 10.1016/j.stem.2017.02.007] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 11/05/2016] [Accepted: 02/10/2017] [Indexed: 12/15/2022]
Abstract
Highly proliferative Lgr5+ stem cells maintain the intestinal epithelium and are thought to be largely homogeneous. Although quiescent intestinal stem cell (ISC) populations have been described, the identity and features of such a population remain controversial. Here we report unanticipated heterogeneity within the Lgr5+ ISC pool. We found that expression of the RNA-binding protein Mex3a labels a slowly cycling subpopulation of Lgr5+ ISCs that contribute to all intestinal lineages with distinct kinetics. Single-cell transcriptome profiling revealed that Lgr5+ cells adopt two discrete states, one of which is defined by a Mex3a expression program and relatively low levels of proliferation genes. During homeostasis, Mex3a+ cells continually shift into the rapidly dividing, self-renewing ISC pool. Chemotherapy and radiation preferentially target rapidly dividing Lgr5+ cells but spare the Mex3a-high/Lgr5+ population, helping to promote regeneration of the intestinal epithelium following toxic insults. Thus, Mex3a defines a reserve-like ISC population within the Lgr5+ compartment.
Collapse
Affiliation(s)
- Francisco M Barriga
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Elisa Montagni
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Miyeko Mana
- The David H. Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA 02139, USA; Department of Biology, MIT, Cambridge, MA 02139, USA
| | - Maria Mendez-Lago
- CNAG-CRG-Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, 08028 Barcelona, Spain; Universitat Pompeu Fabra (UPF), 08002 Barcelona, Spain
| | - Xavier Hernando-Momblona
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Marta Sevillano
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Amy Guillaumet-Adkins
- CNAG-CRG-Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, 08028 Barcelona, Spain; Universitat Pompeu Fabra (UPF), 08002 Barcelona, Spain
| | - Gustavo Rodriguez-Esteban
- CNAG-CRG-Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, 08028 Barcelona, Spain; Universitat Pompeu Fabra (UPF), 08002 Barcelona, Spain
| | - Simon J A Buczacki
- Cancer Research UK Cambridge Research Institute, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Marta Gut
- CNAG-CRG-Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, 08028 Barcelona, Spain; Universitat Pompeu Fabra (UPF), 08002 Barcelona, Spain
| | - Holger Heyn
- CNAG-CRG-Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, 08028 Barcelona, Spain; Universitat Pompeu Fabra (UPF), 08002 Barcelona, Spain
| | - Douglas J Winton
- Cancer Research UK Cambridge Research Institute, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Omer H Yilmaz
- The David H. Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA 02139, USA; Department of Biology, MIT, Cambridge, MA 02139, USA
| | - Camille Stephan-Otto Attolini
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Ivo Gut
- CNAG-CRG-Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, 08028 Barcelona, Spain; Universitat Pompeu Fabra (UPF), 08002 Barcelona, Spain
| | - Eduard Batlle
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028 Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluís Companys 23, 08010 Barcelona, Spain.
| |
Collapse
|
26
|
Aragona M, Dekoninck S, Rulands S, Lenglez S, Mascré G, Simons BD, Blanpain C. Defining stem cell dynamics and migration during wound healing in mouse skin epidermis. Nat Commun 2017; 8:14684. [PMID: 28248284 PMCID: PMC5339881 DOI: 10.1038/ncomms14684] [Citation(s) in RCA: 241] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 01/23/2017] [Indexed: 12/15/2022] Open
Abstract
Wound healing is essential to repair the skin after injury. In the epidermis, distinct stem cells (SCs) populations contribute to wound healing. However, how SCs balance proliferation, differentiation and migration to repair a wound remains poorly understood. Here, we show the cellular and molecular mechanisms that regulate wound healing in mouse tail epidermis. Using a combination of proliferation kinetics experiments and molecular profiling, we identify the gene signatures associated with proliferation, differentiation and migration in different regions surrounding the wound. Functional experiments show that SC proliferation, migration and differentiation can be uncoupled during wound healing. Lineage tracing and quantitative clonal analysis reveal that, following wounding, progenitors divide more rapidly, but conserve their homoeostatic mode of division, leading to their rapid depletion, whereas SCs become active, giving rise to new progenitors that expand and repair the wound. These results have important implications for tissue regeneration, acute and chronic wound disorders. Wound healing is essential to repair the skin after injury and distinct stem cells in the epidermis are known to contribute to the process. Here the authors perform molecular, functional and clonal analysis and reveal the individual contribution of stem cells coming from different epidermal compartments to the wound-healing process in mice.
Collapse
Affiliation(s)
| | | | - Steffen Rulands
- Cavendish Laboratory, Department of Physics, University of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0HE, UK
| | | | - Guilhem Mascré
- Université Libre de Bruxelles, IRIBHM, Brussels B-1070, Belgium
| | - Benjamin D Simons
- Cavendish Laboratory, Department of Physics, University of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0HE, UK.,The Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK.,Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge CB2 1QR, UK
| | - Cédric Blanpain
- Université Libre de Bruxelles, IRIBHM, Brussels B-1070, Belgium.,WELBIO, Université Libre de Bruxelles, Brussels B-1070, Belgium
| |
Collapse
|
27
|
Sanchez-Mut JV, Heyn H, Vidal E, Delgado-Morales R, Moran S, Sayols S, Sandoval J, Ferrer I, Esteller M, Gräff J. Whole genome grey and white matter DNA methylation profiles in dorsolateral prefrontal cortex. Synapse 2017; 71. [PMID: 28105729 DOI: 10.1002/syn.21959] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 01/10/2017] [Accepted: 01/11/2017] [Indexed: 12/11/2022]
Abstract
The brain's neocortex is anatomically organized into grey and white matter, which are mainly composed by neuronal and glial cells, respectively. The neocortex can be further divided in different Brodmann areas according to their cytoarchitectural organization, which are associated with distinct cortical functions. There is increasing evidence that brain development and function are governed by epigenetic processes, yet their contribution to the functional organization of the neocortex remains incompletely understood. Herein, we determined the DNA methylation patterns of grey and white matter of dorsolateral prefrontal cortex (Brodmann area 9), an important region for higher cognitive skills that is particularly affected in various neurological diseases. For avoiding interindividual differences, we analyzed white and grey matter from the same donor using whole genome bisulfite sequencing, and for validating their biological significance, we used Infinium HumanMethylation450 BeadChip and pyrosequencing in ten and twenty independent samples, respectively. The combination of these analysis indicated robust grey-white matter differences in DNA methylation. What is more, cell type-specific markers were enriched among the most differentially methylated genes. Interestingly, we also found an outstanding number of grey-white matter differentially methylated genes that have previously been associated with Alzheimer's, Parkinson's, and Huntington's disease, as well as Multiple and Amyotrophic lateral sclerosis. The data presented here thus constitute an important resource for future studies not only to gain insight into brain regional as well as grey and white matter differences, but also to unmask epigenetic alterations that might underlie neurological and neurodegenerative diseases.
Collapse
Affiliation(s)
- Jose Vicente Sanchez-Mut
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Brain Mind Institute, Lausanne, CH-1015, Switzerland
| | - Holger Heyn
- Single Cell Genomics Unit, Centre Nacional d'Anàlisi Genòmica, Barcelona, Catalonia, E-08028, Spain
| | - Enrique Vidal
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona E-08003, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Raúl Delgado-Morales
- Cancer Epigenetics Group, Cancer Epigenetics and Biology Program, Institut d'Investigació Biomedica de Bellvitge, Barcelona, E-08908, Spain.,Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Universiteitssingel 50, Maastricht, MD 6200, The Netherlands
| | - Sebastian Moran
- Cancer Epigenetics Group, Cancer Epigenetics and Biology Program, Institut d'Investigació Biomedica de Bellvitge, Barcelona, E-08908, Spain
| | - Sergi Sayols
- Bioinformatics Core Facility, Institute of Molecular Biology, Mainz, D-55128, Germany
| | - Juan Sandoval
- Biomarkers and Precision Medicine Unit, Health Research Institute La Fe, Valencia, 46026, Spain
| | - Isidre Ferrer
- Institute of Neuropathology, Bellvitge University Hospital, University of Barcelona, Centre for Biomedical Research on Neurodegenerative Diseases (CIBERNED), E-08908 Hospitalet de Llobregat, Spain
| | - Manel Esteller
- Cancer Epigenetics Group, Cancer Epigenetics and Biology Program, Institut d'Investigació Biomedica de Bellvitge, Barcelona, E-08908, Spain
| | - Johannes Gräff
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Brain Mind Institute, Lausanne, CH-1015, Switzerland
| |
Collapse
|
28
|
Pascual G, Avgustinova A, Mejetta S, Martín M, Castellanos A, Attolini CSO, Berenguer A, Prats N, Toll A, Hueto JA, Bescós C, Di Croce L, Benitah SA. Targeting metastasis-initiating cells through the fatty acid receptor CD36. Nature 2016; 541:41-45. [PMID: 27974793 DOI: 10.1038/nature20791] [Citation(s) in RCA: 917] [Impact Index Per Article: 114.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 11/16/2016] [Indexed: 12/14/2022]
Abstract
The fact that the identity of the cells that initiate metastasis in most human cancers is unknown hampers the development of antimetastatic therapies. Here we describe a subpopulation of CD44bright cells in human oral carcinomas that do not overexpress mesenchymal genes, are slow-cycling, express high levels of the fatty acid receptor CD36 and lipid metabolism genes, and are unique in their ability to initiate metastasis. Palmitic acid or a high-fat diet specifically boosts the metastatic potential of CD36+ metastasis-initiating cells in a CD36-dependent manner. The use of neutralizing antibodies to block CD36 causes almost complete inhibition of metastasis in immunodeficient or immunocompetent orthotopic mouse models of human oral cancer, with no side effects. Clinically, the presence of CD36+ metastasis-initiating cells correlates with a poor prognosis for numerous types of carcinomas, and inhibition of CD36 also impairs metastasis, at least in human melanoma- and breast cancer-derived tumours. Together, our results indicate that metastasis-initiating cells particularly rely on dietary lipids to promote metastasis.
Collapse
Affiliation(s)
- Gloria Pascual
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
| | - Alexandra Avgustinova
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
| | - Stefania Mejetta
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Mercè Martín
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
| | - Andrés Castellanos
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
| | - Camille Stephan-Otto Attolini
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
| | - Antoni Berenguer
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
| | - Neus Prats
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
| | - Agustí Toll
- IMIM, Department of Dermatology, Hospital del Mar, 08003 Barcelona
| | - Juan Antonio Hueto
- Vall D´Hebron Hospital, Barcelona, Department of Oral and Maxillofacial Surgery, Universitat Autònoma de Barcelona, Barcelona 08035 Spain
| | - Coro Bescós
- Vall D´Hebron Hospital, Barcelona, Department of Oral and Maxillofacial Surgery, Universitat Autònoma de Barcelona, Barcelona 08035 Spain
| | - Luciano Di Croce
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, 08003 Barcelona, Spain.,Catalan Institution for Research and Advanced Studies (ICREA), 08010 Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona 08002, Spain
| | - Salvador Aznar Benitah
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain.,Catalan Institution for Research and Advanced Studies (ICREA), 08010 Barcelona, Spain
| |
Collapse
|
29
|
Vastagh C, Rodolosse A, Solymosi N, Liposits Z. Altered Expression of Genes Encoding Neurotransmitter Receptors in GnRH Neurons of Proestrous Mice. Front Cell Neurosci 2016; 10:230. [PMID: 27774052 PMCID: PMC5054603 DOI: 10.3389/fncel.2016.00230] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 09/22/2016] [Indexed: 11/13/2022] Open
Abstract
Gonadotropin-releasing hormone (GnRH) neurons play a key role in the central regulation of reproduction. In proestrous female mice, estradiol triggers the pre-ovulatory GnRH surge, however, its impact on the expression of neurotransmitter receptor genes in GnRH neurons has not been explored yet. We hypothesized that proestrus is accompanied by substantial changes in the expression profile of genes coding for neurotransmitter receptors in GnRH neurons. We compared the transcriptome of GnRH neurons obtained from intact, proestrous, and metestrous female GnRH-GFP transgenic mice, respectively. About 1500 individual GnRH neurons were sampled from both groups and their transcriptome was analyzed using microarray hybridization and real-time PCR. In this study, changes in mRNA expression of genes involved in neurotransmitter signaling were investigated. Differential gene expression was most apparent in GABA-ergic (Gabbr1, Gabra3, Gabrb3, Gabrb2, Gabrg2), glutamatergic (Gria1, Gria2, Grin1, Grin3a, Grm1, Slc17a6), cholinergic (Chrnb2, Chrm4) and dopaminergic (Drd3, Drd4), adrenergic (Adra1b, Adra2a, Adra2c), adenosinergic (Adora2a, Adora2b), glycinergic (Glra), purinergic (P2rx7), and serotonergic (Htr1b) receptors. In concert with these events, expression of genes in the signaling pathways downstream to the receptors, i.e., G-proteins (Gnai1, Gnai2, Gnas), adenylate-cyclases (Adcy3, Adcy5), protein kinase A (Prkaca, Prkacb) protein kinase C (Prkca) and certain transporters (Slc1a4, Slc17a6, Slc6a17) were also changed. The marked differences found in the expression of genes involved in neurotransmitter signaling of GnRH neurons at pro- and metestrous stages of the ovarian cycle indicate the differential contribution of these neurotransmitter systems to the induction of the pre-ovulatory GnRH surge, the known prerequisite of the subsequent hormonal cascade inducing ovulation.
Collapse
Affiliation(s)
- Csaba Vastagh
- Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of SciencesBudapest, Hungary
| | - Annie Rodolosse
- Functional Genomics Core, Institute for Research in Biomedicine (IRB Barcelona)Barcelona, Spain
| | - Norbert Solymosi
- Department of Animal Hygiene, Herd-Health and Veterinary Ethology, University of Veterinary MedicineBudapest, Hungary
| | - Zsolt Liposits
- Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of SciencesBudapest, Hungary
- Department of Neuroscience, Faculty of Information Technology and Bionics, Pázmány Péter Catholic UniversityBudapest, Hungary
| |
Collapse
|
30
|
Expression of CD11c Is Associated with Unconventional Activated T Cell Subsets with High Migratory Potential. PLoS One 2016; 11:e0154253. [PMID: 27119555 PMCID: PMC4847787 DOI: 10.1371/journal.pone.0154253] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 04/11/2016] [Indexed: 11/19/2022] Open
Abstract
CD11c is an α integrin classically employed to define myeloid dendritic cells. Although there is little information about CD11c expression on human T cells, mouse models have shown an association of CD11c expression with functionally relevant T cell subsets. In the context of genital tract infection, we have previously observed increased expression of CD11c in circulating T cells from mice and women. Microarray analyses of activated effector T cells expressing CD11c derived from naïve mice demonstrated enrichment for natural killer (NK) associated genes. Here we find that murine CD11c+ T cells analyzed by flow cytometry display markers associated with non-conventional T cell subsets, including γδ T cells and invariant natural killer T (iNKT) cells. However, in women, only γδ T cells and CD8+ T cells were enriched within the CD11c fraction of blood and cervical tissue. These CD11c+ cells were highly activated and had greater interferon (IFN)-γ secretory capacity than CD11c- T cells. Furthermore, circulating CD11c+ T cells were associated with the expression of multiple adhesion molecules in women, suggesting that these cells have high tissue homing potential. These data suggest that CD11c expression distinguishes a population of circulating T cells during bacterial infection with innate capacity and mucosal homing potential.
Collapse
|
31
|
Mantikou E, Bruning O, Mastenbroek S, Repping S, Breit TM, de Jong M. Evaluation of ribonucleic acid amplification protocols for human oocyte transcriptome analysis. Fertil Steril 2016; 105:511-9.e4. [DOI: 10.1016/j.fertnstert.2015.10.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 10/14/2015] [Accepted: 10/26/2015] [Indexed: 12/31/2022]
|
32
|
da Silva-Diz V, Simón-Extremera P, Bernat-Peguera A, de Sostoa J, Urpí M, Penín RM, Sidelnikova DP, Bermejo O, Viñals JM, Rodolosse A, González-Suárez E, Moruno AG, Pujana MÁ, Esteller M, Villanueva A, Viñals F, Muñoz P. Cancer Stem-like Cells Act via Distinct Signaling Pathways in Promoting Late Stages of Malignant Progression. Cancer Res 2015; 76:1245-59. [DOI: 10.1158/0008-5472.can-15-1631] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 12/04/2015] [Indexed: 11/16/2022]
|
33
|
Transcriptomic Features of Bovine Blastocysts Derived by Somatic Cell Nuclear Transfer. G3-GENES GENOMES GENETICS 2015; 5:2527-38. [PMID: 26342001 PMCID: PMC4683625 DOI: 10.1534/g3.115.020016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Reprogramming incompletely occurs in most somatic cell nuclear transfer (SCNT) embryos, which results in misregulation of developmentally important genes and subsequent embryonic malfunction and lethality. Here we examined transcriptome profiles in single bovine blastocysts derived by in vitro fertilization (IVF) and SCNT. Different types of donor cells, cumulus cell and ear-skin fibroblast, were used to derive cSCNT and fSCNT blastocysts, respectively. SCNT blastocysts expressed 13,606 genes on average, similar to IVF (13,542). Correlation analysis found that both cSCNT and fSCNT blastocyst groups had transcriptomic features distinctive from the IVF group, with the cSCNT transcriptomes closer to the IVF ones than the fSCNT. Gene expression analysis identified 56 underrepresented and 78 overrepresented differentially expressed genes in both SCNT groups. A 400-kb locus harboring zinc-finger protein family genes in chromosome 18 were found coordinately down-regulated in fSCNT blastocysts, showing a feature of reprogramming-resistant regions. Probing into different categories of genes important for blastocyst development revealed that genes involved in trophectoderm development frequently were underrepresented, and those encoding epigenetic modifiers tended to be overrepresented in SCNT blastocysts. Our effort to identify reprogramming-resistant, differentially expressed genes can help map reprogramming error-prone loci onto the genome and elucidate how to handle the stochastic events of reprogramming to improve cloning efficiency.
Collapse
|
34
|
López-Malo M, García-Rios E, Melgar B, Sanchez MR, Dunham MJ, Guillamón JM. Evolutionary engineering of a wine yeast strain revealed a key role of inositol and mannoprotein metabolism during low-temperature fermentation. BMC Genomics 2015; 16:537. [PMID: 26194190 PMCID: PMC4509780 DOI: 10.1186/s12864-015-1755-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 07/07/2015] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Wine produced at low temperature is often considered to improve sensory qualities. However, there are certain drawbacks to low temperature fermentations: e.g. low growth rate, long lag phase, and sluggish or stuck fermentations. Selection and development of new Saccharomyces cerevisiae strains well adapted at low temperature is interesting for future biotechnological applications. This study aimed to select and develop wine yeast strains that well adapt to ferment at low temperature through evolutionary engineering, and to decipher the process underlying the obtained phenotypes. RESULTS We used a pool of 27 commercial yeast strains and set up batch serial dilution experiments to mimic wine fermentation conditions at 12 °C. Evolutionary engineering was accomplished by using the natural yeast mutation rate and mutagenesis procedures. One strain (P5) outcompeted the others under both experimental conditions and was able to impose after 200 generations. The evolved strains showed improved growth and low-temperature fermentation performance compared to the ancestral strain. This improvement was acquired only under inositol limitation. The transcriptomic comparison between the evolved and parental strains showed the greatest up-regulation in four mannoprotein coding genes, which belong to the DAN/TIR family (DAN1, TIR1, TIR4 and TIR3). Genome sequencing of the evolved strain revealed the presence of a SNP in the GAA1 gene and the construction of a site-directed mutant (GAA1 (Thr108)) in a derivative haploid of the ancestral strain resulted in improved fermentation performance. GAA1 encodes a GPI transamidase complex subunit that adds GPI, which is required for inositol synthesis, to newly synthesized proteins, including mannoproteins. CONCLUSIONS In this study we demonstrate the importance of inositol and mannoproteins in yeast adaptation at low temperature and the central role of the GAA1 gene by linking both metabolisms.
Collapse
Affiliation(s)
- María López-Malo
- Departamento de Biotecnología de los alimentos, Instituto de Agroquímica y Tecnología de los Alimentos (CSIC), Avda. Agustín Escardino, 7, E-46980, Paterna, Valencia, Spain
| | - Estéfani García-Rios
- Departamento de Biotecnología de los alimentos, Instituto de Agroquímica y Tecnología de los Alimentos (CSIC), Avda. Agustín Escardino, 7, E-46980, Paterna, Valencia, Spain
| | - Bruno Melgar
- Departamento de Biotecnología de los alimentos, Instituto de Agroquímica y Tecnología de los Alimentos (CSIC), Avda. Agustín Escardino, 7, E-46980, Paterna, Valencia, Spain
| | - Monica R Sanchez
- Department of Genome Sciences, University of Washington, Seattle, WA, 98195, USA
| | - Maitreya J Dunham
- Department of Genome Sciences, University of Washington, Seattle, WA, 98195, USA
| | - José Manuel Guillamón
- Departamento de Biotecnología de los alimentos, Instituto de Agroquímica y Tecnología de los Alimentos (CSIC), Avda. Agustín Escardino, 7, E-46980, Paterna, Valencia, Spain.
| |
Collapse
|
35
|
Sárvári M, Kalló I, Hrabovszky E, Solymosi N, Rodolosse A, Vastagh C, Auer H, Liposits Z. Hippocampal Gene Expression Is Highly Responsive to Estradiol Replacement in Middle-Aged Female Rats. Endocrinology 2015; 156:2632-45. [PMID: 25924104 DOI: 10.1210/en.2015-1109] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In the hippocampus, estrogens are powerful modulators of neurotransmission, synaptic plasticity and neurogenesis. In women, menopause is associated with increased risk of memory disturbances, which can be attenuated by timely estrogen therapy. In animal models of menopause, 17β-estradiol (E2) replacement improves hippocampus-dependent spatial memory. Here, we explored the effect of E2 replacement on hippocampal gene expression in a rat menopause model. Middle-aged ovariectomized female rats were treated continuously for 29 days with E2, and then, the hippocampal transcriptome was investigated with Affymetrix expression arrays. Microarray data were analyzed by Bioconductor packages and web-based softwares, and verified with quantitative PCR. At standard fold change selection criterion, 156 genes responded to E2. All alterations but 4 were transcriptional activation. Robust activation (fold change > 10) occurred in the case of transthyretin, klotho, claudin 2, prolactin receptor, ectodin, coagulation factor V, Igf2, Igfbp2, and sodium/sulfate symporter. Classification of the 156 genes revealed major groups, including signaling (35 genes), metabolism (31 genes), extracellular matrix (17 genes), and transcription (16 genes). We selected 33 genes for further studies, and all changes were confirmed by real-time PCR. The results suggest that E2 promotes retinoid, growth factor, homeoprotein, neurohormone, and neurotransmitter signaling, changes metabolism, extracellular matrix composition, and transcription, and induces protective mechanisms via genomic effects. We propose that these mechanisms contribute to effects of E2 on neurogenesis, neural plasticity, and memory functions. Our findings provide further support for the rationale to develop safe estrogen receptor ligands for the maintenance of cognitive performance in postmenopausal women.
Collapse
Affiliation(s)
- Miklós Sárvári
- Laboratory of Endocrine Neurobiology (M.S., I.K., E.H., C.V., Z.L.), Institute of Experimental Medicine, Hungarian Academy of Sciences, 1083 Budapest, Hungary; Faculty of Information Technology and Bionics (I.K., Z.L.), Pázmány Péter Catholic University, 1083 Budapest, Hungary; Faculty of Veterinary Science (N.S.), Szent István University, 1078 Budapest, Hungary; Functional Genomics Core (A.R.), Institute for Research in Biomedicine, 08028 Barcelona, Spain; and Functional Genomics Consulting (H.A.), 08780 Palleja, Spain
| | - Imre Kalló
- Laboratory of Endocrine Neurobiology (M.S., I.K., E.H., C.V., Z.L.), Institute of Experimental Medicine, Hungarian Academy of Sciences, 1083 Budapest, Hungary; Faculty of Information Technology and Bionics (I.K., Z.L.), Pázmány Péter Catholic University, 1083 Budapest, Hungary; Faculty of Veterinary Science (N.S.), Szent István University, 1078 Budapest, Hungary; Functional Genomics Core (A.R.), Institute for Research in Biomedicine, 08028 Barcelona, Spain; and Functional Genomics Consulting (H.A.), 08780 Palleja, Spain
| | - Erik Hrabovszky
- Laboratory of Endocrine Neurobiology (M.S., I.K., E.H., C.V., Z.L.), Institute of Experimental Medicine, Hungarian Academy of Sciences, 1083 Budapest, Hungary; Faculty of Information Technology and Bionics (I.K., Z.L.), Pázmány Péter Catholic University, 1083 Budapest, Hungary; Faculty of Veterinary Science (N.S.), Szent István University, 1078 Budapest, Hungary; Functional Genomics Core (A.R.), Institute for Research in Biomedicine, 08028 Barcelona, Spain; and Functional Genomics Consulting (H.A.), 08780 Palleja, Spain
| | - Norbert Solymosi
- Laboratory of Endocrine Neurobiology (M.S., I.K., E.H., C.V., Z.L.), Institute of Experimental Medicine, Hungarian Academy of Sciences, 1083 Budapest, Hungary; Faculty of Information Technology and Bionics (I.K., Z.L.), Pázmány Péter Catholic University, 1083 Budapest, Hungary; Faculty of Veterinary Science (N.S.), Szent István University, 1078 Budapest, Hungary; Functional Genomics Core (A.R.), Institute for Research in Biomedicine, 08028 Barcelona, Spain; and Functional Genomics Consulting (H.A.), 08780 Palleja, Spain
| | - Annie Rodolosse
- Laboratory of Endocrine Neurobiology (M.S., I.K., E.H., C.V., Z.L.), Institute of Experimental Medicine, Hungarian Academy of Sciences, 1083 Budapest, Hungary; Faculty of Information Technology and Bionics (I.K., Z.L.), Pázmány Péter Catholic University, 1083 Budapest, Hungary; Faculty of Veterinary Science (N.S.), Szent István University, 1078 Budapest, Hungary; Functional Genomics Core (A.R.), Institute for Research in Biomedicine, 08028 Barcelona, Spain; and Functional Genomics Consulting (H.A.), 08780 Palleja, Spain
| | - Csaba Vastagh
- Laboratory of Endocrine Neurobiology (M.S., I.K., E.H., C.V., Z.L.), Institute of Experimental Medicine, Hungarian Academy of Sciences, 1083 Budapest, Hungary; Faculty of Information Technology and Bionics (I.K., Z.L.), Pázmány Péter Catholic University, 1083 Budapest, Hungary; Faculty of Veterinary Science (N.S.), Szent István University, 1078 Budapest, Hungary; Functional Genomics Core (A.R.), Institute for Research in Biomedicine, 08028 Barcelona, Spain; and Functional Genomics Consulting (H.A.), 08780 Palleja, Spain
| | - Herbert Auer
- Laboratory of Endocrine Neurobiology (M.S., I.K., E.H., C.V., Z.L.), Institute of Experimental Medicine, Hungarian Academy of Sciences, 1083 Budapest, Hungary; Faculty of Information Technology and Bionics (I.K., Z.L.), Pázmány Péter Catholic University, 1083 Budapest, Hungary; Faculty of Veterinary Science (N.S.), Szent István University, 1078 Budapest, Hungary; Functional Genomics Core (A.R.), Institute for Research in Biomedicine, 08028 Barcelona, Spain; and Functional Genomics Consulting (H.A.), 08780 Palleja, Spain
| | - Zsolt Liposits
- Laboratory of Endocrine Neurobiology (M.S., I.K., E.H., C.V., Z.L.), Institute of Experimental Medicine, Hungarian Academy of Sciences, 1083 Budapest, Hungary; Faculty of Information Technology and Bionics (I.K., Z.L.), Pázmány Péter Catholic University, 1083 Budapest, Hungary; Faculty of Veterinary Science (N.S.), Szent István University, 1078 Budapest, Hungary; Functional Genomics Core (A.R.), Institute for Research in Biomedicine, 08028 Barcelona, Spain; and Functional Genomics Consulting (H.A.), 08780 Palleja, Spain
| |
Collapse
|
36
|
Zamudio-Vázquez R, Ivanova S, Moreno M, Hernandez-Alvarez MI, Giralt E, Bidon-Chanal A, Zorzano A, Albericio F, Tulla-Puche J. A new quinoxaline-containing peptide induces apoptosis in cancer cells by autophagy modulation. Chem Sci 2015; 6:4537-4549. [PMID: 29142702 PMCID: PMC5666514 DOI: 10.1039/c5sc00125k] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 05/18/2015] [Indexed: 12/14/2022] Open
Abstract
The most cytotoxic compound from a library of quinoxaline-containing peptides is endocyted into HeLa cells, accumulates in acidic compartments, and blocks autophagy by altering lysosomal function, leading to apoptosis activation.
The synthesis of a new small library of quinoxaline-containing peptides is described. After cytotoxic evaluation in four human cancer cell lines, as well as detailed biological studies, it was found that the most active compound, RZ2, promotes the formation of acidic compartments, where it accumulates, blocking the progression of autophagy. Further disruption of the mitochondrial membrane potential and an increase in mitochondrial ROS was observed, causing cells to undergo apoptosis. Given its cytotoxic activity and protease-resistant features, RZ2 could be a potential drug candidate for cancer treatment and provide a basis for future research into the crosstalk between autophagy and apoptosis and its relevance in cancer therapy.
Collapse
Affiliation(s)
- Rubí Zamudio-Vázquez
- Institute for Research in Biomedicine , Baldiri Reixac 10 , 08028 Barcelona , Spain . ; ; ; ; Tel: +34 934037127.,CIBER-BBN , Networking Centre on Bioengineering , Biomaterials and Nanomedicine , Baldiri Reixac 10 , 08028 Barcelona , Spain
| | - Saška Ivanova
- Institute for Research in Biomedicine , Baldiri Reixac 10 , 08028 Barcelona , Spain . ; ; ; ; Tel: +34 934037127.,Department of Biochemistry and Molecular Biology , Faculty of Biology , University of Barcelona , Barcelona , Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM) , Instituto de Salud Carlos III , Barcelona , Spain
| | - Miguel Moreno
- Institute for Research in Biomedicine , Baldiri Reixac 10 , 08028 Barcelona , Spain . ; ; ; ; Tel: +34 934037127
| | - Maria Isabel Hernandez-Alvarez
- Institute for Research in Biomedicine , Baldiri Reixac 10 , 08028 Barcelona , Spain . ; ; ; ; Tel: +34 934037127.,Department of Biochemistry and Molecular Biology , Faculty of Biology , University of Barcelona , Barcelona , Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM) , Instituto de Salud Carlos III , Barcelona , Spain
| | - Ernest Giralt
- Institute for Research in Biomedicine , Baldiri Reixac 10 , 08028 Barcelona , Spain . ; ; ; ; Tel: +34 934037127.,Department of Organic Chemistry , Faculty of Chemistry , University of Barcelona , Barcelona , Spain
| | - Axel Bidon-Chanal
- Department of Physical Chemistry and Institute of Biomedicine (IBUB) , Faculty of Pharmacy , University of Barcelona , Santa Coloma de Gramenet , Spain
| | - Antonio Zorzano
- Institute for Research in Biomedicine , Baldiri Reixac 10 , 08028 Barcelona , Spain . ; ; ; ; Tel: +34 934037127.,Department of Biochemistry and Molecular Biology , Faculty of Biology , University of Barcelona , Barcelona , Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM) , Instituto de Salud Carlos III , Barcelona , Spain
| | - Fernando Albericio
- Institute for Research in Biomedicine , Baldiri Reixac 10 , 08028 Barcelona , Spain . ; ; ; ; Tel: +34 934037127.,CIBER-BBN , Networking Centre on Bioengineering , Biomaterials and Nanomedicine , Baldiri Reixac 10 , 08028 Barcelona , Spain.,Department of Organic Chemistry , Faculty of Chemistry , University of Barcelona , Barcelona , Spain.,School of Chemistry , Yachay Tech , Yachay City of Knowledge , Urcuquí 100119 , Ecuador
| | - Judit Tulla-Puche
- Institute for Research in Biomedicine , Baldiri Reixac 10 , 08028 Barcelona , Spain . ; ; ; ; Tel: +34 934037127.,CIBER-BBN , Networking Centre on Bioengineering , Biomaterials and Nanomedicine , Baldiri Reixac 10 , 08028 Barcelona , Spain
| |
Collapse
|
37
|
Vastagh C, Rodolosse A, Solymosi N, Farkas I, Auer H, Sárvári M, Liposits Z. Differential Gene Expression in Gonadotropin-Releasing Hormone Neurons of Male and Metestrous Female Mice. Neuroendocrinology 2015; 102:44-59. [PMID: 25925152 DOI: 10.1159/000430818] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 04/20/2015] [Indexed: 11/19/2022]
Abstract
BACKGROUND Gonadotropin-releasing hormone (GnRH) neurons play a pivotal role in the regulation of the hypothalamic-pituitary gonadal axis in a sex-specific manner. We hypothesized that the differences seen in reproductive functions of males and females are associated with a sexually dimorphic gene expression profile of GnRH neurons. METHODS AND RESULTS We compared the transcriptome of GnRH neurons obtained from intact metestrous female and male GnRH-green fluorescent protein transgenic mice. About 1,500 individual GnRH neurons from each sex were sampled with laser capture microdissection followed by whole-transcriptome amplification for gene expression profiling. Under stringent selection criteria (fold change >1.6, adjusted p value 0.01), Affymetrix Mouse Genome 430 PM array analysis identified 543 differentially expressed genes. Sexual dimorphism was most apparent in gene clusters associated with synaptic communication, signal transduction, cell adhesion, vesicular transport and cell metabolism. To validate microarray results, 57 genes were selected, and 91% of their differential expression was confirmed by real-time PCR. Similarly, 88% of microarray results were confirmed with PCR from independent samples obtained by patch pipette harvesting and pooling of 30 GnRH neurons from each sex. We found significant differences in the expression of genes involved in vesicle priming and docking (Syt1, Cplx1), GABAergic (Gabra3, Gabrb3, Gabrg2) and glutamatergic (Gria1, Grin1, Slc17a6) neurotransmission, peptide signaling (Sstr3, Npr2, Cxcr4) and the regulation of intracellular ion homeostasis (Cacna1, Cacnb1, Cacng5, Kcnq2, Kcnc1). CONCLUSION The striking sexual dimorphism of the GnRH neuron transcriptome we report here contributes to a better understanding of the differences in cellular mechanisms of GnRH neurons in the two sexes.
Collapse
Affiliation(s)
- Csaba Vastagh
- Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | | | | | | | | | | | | |
Collapse
|
38
|
Gámez-Pozo A, Pérez Carrión RM, Manso L, Crespo C, Mendiola C, López-Vacas R, Berges-Soria J, López IÁ, Margeli M, Calero JLB, Farre XG, Santaballa A, Ciruelos EM, Afonso R, Lao J, Catalán G, Gallego JVÁ, López JM, Bofill FJS, Borrego MR, Espinosa E, Vara JAF, Zamora P. The Long-HER study: clinical and molecular analysis of patients with HER2+ advanced breast cancer who become long-term survivors with trastuzumab-based therapy. PLoS One 2014; 9:e109611. [PMID: 25330188 PMCID: PMC4203741 DOI: 10.1371/journal.pone.0109611] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 09/11/2014] [Indexed: 12/18/2022] Open
Abstract
Background Trastuzumab improves survival outcomes in patients with HER2+ metastatic breast cancer. The Long-Her study was designed to identify clinical and molecular markers that could differentiate long-term survivors from patients having early progression after trastuzumab treatment. Methods Data were collected from women with HER2-positive metastatic breast cancer treated with trastuzumab that experienced a response or stable disease during at least 3 years. Patients having a progression in the first year of therapy with trastuzumab were used as a control. Genes related with trastuzumab resistance were identified and investigated for network and gene functional interrelation. Models predicting poor response to trastuzumab were constructed and evaluated. Finally, a mutational status analysis of selected genes was performed in HER2 positive breast cancer samples. Results 103 patients were registered in the Long-HER study, of whom 71 had obtained a durable complete response. Median age was 58 years. Metastatic disease was diagnosed after a median of 24.7 months since primary diagnosis. Metastases were present in the liver (25%), lungs (25%), bones (23%) and soft tissues (23%), with 20% of patients having multiple locations of metastases. Median duration of response was 55 months. The molecular analysis included 35 patients from the group with complete response and 18 patients in a control poor-response group. Absence of trastuzumab as part of adjuvant therapy was the only clinical factor associated with long-term survival. Gene ontology analysis demonstrated that PI3K pathway was associated with poor response to trastuzumab-based therapy: tumours in the control group usually had four or five alterations in this pathway, whereas tumours in the Long-HER group had two alterations at most. Conclusions Trastuzumab may provide a substantial long-term survival benefit in a selected group of patients. Whole genome expression analysis comparing long-term survivors vs. a control group predicted early progression after trastuzumab-based therapy. Multiple alterations in genes related to the PI3K-mTOR pathway seem to be required to confer resistance to this therapy.
Collapse
Affiliation(s)
- Angelo Gámez-Pozo
- Instituto de Genética Médica y Molecular (INGEMM) – IdiPAZ, Hospital La Paz, Madrid, Spain
| | | | - Luis Manso
- Medical Oncology Department, Hospital 12 de Octubre, Madrid, Spain
| | - Carmen Crespo
- Medical Oncology Department, Hospital Ramón y Cajal, Madrid, Spain
| | - Cesar Mendiola
- Medical Oncology Department, Hospital 12 de Octubre, Madrid, Spain
| | - Rocío López-Vacas
- Instituto de Genética Médica y Molecular (INGEMM) – IdiPAZ, Hospital La Paz, Madrid, Spain
| | - Julia Berges-Soria
- Instituto de Genética Médica y Molecular (INGEMM) – IdiPAZ, Hospital La Paz, Madrid, Spain
| | - Isabel Álvarez López
- Medical Oncology Department, Hospital de Donostia, San Sebastián, Pais Vasco, Spain
| | - Mireia Margeli
- Medical Oncology Department, Hospital Germans Trias i Pujol, Badalona, Barcelona, Spain
| | | | | | - Ana Santaballa
- Medical Oncology Department, Hospital La Fe, Valencia, Spain
| | - Eva M. Ciruelos
- Medical Oncology Department, Hospital 12 de Octubre, Madrid, Spain
| | - Ruth Afonso
- Medical Oncology Department, Hospital Nuestra Señora de la Candelaria, Santa Cruz de Tenerife, Spain
| | - Juan Lao
- Medical Oncology Department, Hospital Miguel Servet, Zaragoza, Spain
| | - Gustavo Catalán
- Medical Oncology Department, Hospital Son Llàtzer, Palma de Mallorca, Spain
| | | | - José Miramón López
- Medical Oncology Department, Hospital Serranía de Ronda, Ronda, Málaga, Spain
| | | | | | | | - Juan A. Fresno Vara
- Instituto de Genética Médica y Molecular (INGEMM) – IdiPAZ, Hospital La Paz, Madrid, Spain
| | - Pilar Zamora
- Medical Oncology Department, Hospital La Paz, Madrid, Spain
- * E-mail:
| |
Collapse
|
39
|
Martorell Ò, Barriga FM, Merlos-Suárez A, Stephan-Otto Attolini C, Casanova J, Batlle E, Sancho E, Casali A. Iro/IRX transcription factors negatively regulate Dpp/TGF-β pathway activity during intestinal tumorigenesis. EMBO Rep 2014; 15:1210-8. [PMID: 25296644 DOI: 10.15252/embr.201438622] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Activating mutations in Wnt and EGFR/Ras signaling pathways are common in colorectal cancer (CRC). Remarkably, clonal co-activation of these pathways in the adult Drosophila midgut induces "tumor-like" overgrowths. Here, we show that, in these clones and in CRC cell lines, Dpp/TGF-β acts as a tumor suppressor. Moreover, we discover that the Iroquois/IRX-family-protein Mirror downregulates the transcription of core components of the Dpp pathway, reducing its tumor suppressor activity. We also show that this genetic interaction is conserved in human CRC cells, where the Iro/IRX proteins IRX3 and IRX5 diminish the response to TGF-β. IRX3 and IRX5 are upregulated in human adenomas, and their levels correlate inversely with the gene expression signature of response to TGF-β. In addition, Irx5 expression confers a growth advantage in the presence of TGF-β, but is selected against in its absence. Together, our results identify a set of Iro/IRX proteins as conserved negative regulators of Dpp/TGF-β activity. We propose that during the characteristic adenoma-to-carcinoma transition of human CRC, the activity of IRX proteins could reduce the sensitivity to the cytostatic effect of TGF-β, conferring a growth advantage to tumor cells prior to the acquisition of mutations in TGF-β pathway components.
Collapse
Affiliation(s)
- Òscar Martorell
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona, Spain Institut de Biologia Molecular de Barcelona (IBMB-CSIC), Barcelona, Spain
| | | | | | | | - Jordi Casanova
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona, Spain Institut de Biologia Molecular de Barcelona (IBMB-CSIC), Barcelona, Spain
| | - Eduard Batlle
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona, Spain Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Elena Sancho
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona, Spain
| | - Andreu Casali
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona, Spain
| |
Collapse
|
40
|
Early lineage restriction in temporally distinct populations of Mesp1 progenitors during mammalian heart development. Nat Cell Biol 2014; 16:829-40. [PMID: 25150979 DOI: 10.1038/ncb3024] [Citation(s) in RCA: 195] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 07/10/2014] [Indexed: 12/16/2022]
Abstract
Cardiac development arises from two sources of mesoderm progenitors, the first heart field (FHF) and the second (SHF). Mesp1 has been proposed to mark the most primitive multipotent cardiac progenitors common for both heart fields. Here, using clonal analysis of the earliest prospective cardiovascular progenitors in a temporally controlled manner during early gastrulation, we found that Mesp1 progenitors consist of two temporally distinct pools of progenitors restricted to either the FHF or the SHF. FHF progenitors were unipotent, whereas SHF progenitors were either unipotent or bipotent. Microarray and single-cell PCR with reverse transcription analysis of Mesp1 progenitors revealed the existence of molecularly distinct populations of Mesp1 progenitors, consistent with their lineage and regional contribution. Together, these results provide evidence that heart development arises from distinct populations of unipotent and bipotent cardiac progenitors that independently express Mesp1 at different time points during their specification, revealing that the regional segregation and lineage restriction of cardiac progenitors occur very early during gastrulation.
Collapse
|
41
|
Conserved mechanisms of tumorigenesis in the Drosophila adult midgut. PLoS One 2014; 9:e88413. [PMID: 24516653 PMCID: PMC3916428 DOI: 10.1371/journal.pone.0088413] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 01/06/2014] [Indexed: 11/19/2022] Open
Abstract
Whereas the series of genetic events leading to colorectal cancer (CRC) have been well established, the precise functions that these alterations play in tumor progression and how they disrupt intestinal homeostasis remain poorly characterized. Activation of the Wnt/Wg signaling pathway by a mutation in the gene APC is the most common trigger for CRC, inducing benign lesions that progress to carcinomas due to the accumulation of other genetic alterations. Among those, Ras mutations drive tumour progression in CRC, as well as in most epithelial cancers. As mammalian and Drosophila's intestines share many similarities, we decided to explore the alterations induced in the Drosophila midgut by the combined activation of the Wnt signaling pathway with gain of function of Ras signaling in the intestinal stem cells. Here we show that compound Apc-Ras clones, but not clones bearing the individual mutations, expand as aggressive intestinal tumor-like outgrowths. These lesions reproduce many of the human CRC hallmarks such as increased proliferation, blockade of cell differentiation and cell polarity and disrupted organ architecture. This process is followed by expression of tumoral markers present in human lesions. Finally, a metabolic behavioral assay shows that these flies suffer a progressive deterioration in intestinal homeostasis, providing a simple readout that could be used in screens for tumor modifiers or therapeutic compounds. Taken together, our results illustrate the conservation of the mechanisms of CRC tumorigenesis in Drosophila, providing an excellent model system to unravel the events that, upon mutation in Apc and Ras, lead to CRC initiation and progression.
Collapse
|
42
|
Wu AR, Neff NF, Kalisky T, Dalerba P, Treutlein B, Rothenberg ME, Mburu FM, Mantalas GL, Sim S, Clarke MF, Quake SR. Quantitative assessment of single-cell RNA-sequencing methods. Nat Methods 2014; 11:41-6. [PMID: 24141493 PMCID: PMC4022966 DOI: 10.1038/nmeth.2694] [Citation(s) in RCA: 508] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 09/25/2013] [Indexed: 12/24/2022]
Abstract
Interest in single-cell whole-transcriptome analysis is growing rapidly, especially for profiling rare or heterogeneous populations of cells. We compared commercially available single-cell RNA amplification methods with both microliter and nanoliter volumes, using sequence from bulk total RNA and multiplexed quantitative PCR as benchmarks to systematically evaluate the sensitivity and accuracy of various single-cell RNA-seq approaches. We show that single-cell RNA-seq can be used to perform accurate quantitative transcriptome measurement in individual cells with a relatively small number of sequencing reads and that sequencing large numbers of single cells can recapitulate bulk transcriptome complexity.
Collapse
Affiliation(s)
- Angela R Wu
- Department of Bioengineering, Stanford University, Stanford, California, USA
| | - Norma F Neff
- Department of Bioengineering, Stanford University, Stanford, California, USA
| | - Tomer Kalisky
- 1] Department of Bioengineering, Stanford University, Stanford, California, USA. [2]
| | - Piero Dalerba
- 1] Department of Medicine, Division of Oncology, Stanford University Medical Center, Stanford, California, USA. [2] Institute for Stem Cell Biology and Regenerative Medicine, Stanford University Medical Center, Stanford, California, USA. [3] The Ludwig Cancer Center, Stanford University Medical Center, Stanford, California, USA
| | - Barbara Treutlein
- Department of Bioengineering, Stanford University, Stanford, California, USA
| | - Michael E Rothenberg
- Department of Medicine, Division of Gastroenterology and Hepatology, Stanford University Medical Center, Stanford, California, USA
| | - Francis M Mburu
- 1] Department of Bioengineering, Stanford University, Stanford, California, USA. [2] Howard Hughes Medical Institute, Stanford, California, USA
| | - Gary L Mantalas
- Department of Bioengineering, Stanford University, Stanford, California, USA
| | - Sopheak Sim
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University Medical Center, Stanford, California, USA
| | - Michael F Clarke
- 1] Department of Medicine, Division of Oncology, Stanford University Medical Center, Stanford, California, USA. [2] Institute for Stem Cell Biology and Regenerative Medicine, Stanford University Medical Center, Stanford, California, USA. [3] The Ludwig Cancer Center, Stanford University Medical Center, Stanford, California, USA
| | - Stephen R Quake
- 1] Department of Bioengineering, Stanford University, Stanford, California, USA. [2] Howard Hughes Medical Institute, Stanford, California, USA. [3] Department of Applied Physics, Stanford University, Stanford, California, USA
| |
Collapse
|
43
|
Defining the genomic signature of totipotency and pluripotency during early human development. PLoS One 2013; 8:e62135. [PMID: 23614026 PMCID: PMC3629124 DOI: 10.1371/journal.pone.0062135] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 03/19/2013] [Indexed: 11/25/2022] Open
Abstract
The genetic mechanisms governing human pre-implantation embryo development and the in vitro counterparts, human embryonic stem cells (hESCs), still remain incomplete. Previous global genome studies demonstrated that totipotent blastomeres from day-3 human embryos and pluripotent inner cell masses (ICMs) from blastocysts, display unique and differing transcriptomes. Nevertheless, comparative gene expression analysis has revealed that no significant differences exist between hESCs derived from blastomeres versus those obtained from ICMs, suggesting that pluripotent hESCs involve a new developmental progression. To understand early human stages evolution, we developed an undifferentiation network signature (UNS) and applied it to a differential gene expression profile between single blastomeres from day-3 embryos, ICMs and hESCs. This allowed us to establish a unique signature composed of highly interconnected genes characteristic of totipotency (61 genes), in vivo pluripotency (20 genes), and in vitro pluripotency (107 genes), and which are also proprietary according to functional analysis. This systems biology approach has led to an improved understanding of the molecular and signaling processes governing human pre-implantation embryo development, as well as enabling us to comprehend how hESCs might adapt to in vitro culture conditions.
Collapse
|
44
|
CD41 expression marks myeloid-biased adult hematopoietic stem cells and increases with age. Blood 2013; 121:4463-72. [PMID: 23564910 DOI: 10.1182/blood-2012-09-457929] [Citation(s) in RCA: 237] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The hematopoietic stem cell (HSC) compartment is heterogeneous, yet our understanding of the identities of different HSC subtypes is limited. Here we show that platelet integrin CD41 (αIIb), currently thought to only transiently mark fetal HSCs, is expressed on an adult HSC subtype that accumulates with age. CD41+ HSCs were largely quiescent and exhibited myeloerythroid and megakaryocyte gene priming, governed by Gata1, whereas CD41- HSCs were more proliferative and exhibited lymphoid gene priming. When isolated without the use of blocking antibodies, CD41+ HSCs possessed long-term repopulation capacity on serial transplantations and showed a marked myeloid bias compared with CD41- HSCs, which yielded a more lymphoid-biased progeny. CD41-knockout (KO) mice displayed multilineage hematopoietic defects coupled with decreased quiescence and survival of HSCs, suggesting that CD41 is functionally relevant for HSC maintenance and hematopoietic homeostasis. Transplantation experiments indicated that CD41-KO-associated defects are long-term transplantable, HSC-derived and, in part, mediated through the loss of platelet mass leading to decreases in HSC exposure to important platelet released cytokines, such as transforming growth factor β1. In summary, our data provide a novel marker to identify a myeloid-biased HSC subtype that becomes prevalent with age and highlights the dogma of HSC regulation by their progeny.
Collapse
|
45
|
Torres-Martin M, Lassaletta L, San-Roman-Montero J, De Campos JM, Isla A, Gavilan J, Melendez B, Pinto GR, Burbano RR, Castresana JS, Rey JA. Microarray analysis of gene expression in vestibular schwannomas reveals SPP1/MET signaling pathway and androgen receptor deregulation. Int J Oncol 2013; 42:848-62. [PMID: 23354516 PMCID: PMC3597452 DOI: 10.3892/ijo.2013.1798] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 01/04/2013] [Indexed: 11/06/2022] Open
Abstract
Vestibular schwannomas are benign neoplasms that arise from the vestibular nerve. The hallmark of these tumors is the biallelic inactivation of neurofibromin 2 (NF2). Transcriptomic alterations, such as the neuregulin 1 (NRG1)/ErbB2 pathway, have been described in schwannomas. In this study, we performed a whole transcriptome analysis in 31 vestibular schwannomas and 9 control nerves in the Affymetrix Gene 1.0 ST platform, validated by quantitative real-time PCR (qRT-PCR) using TaqMan Low Density arrays. We performed a mutational analysis of NF2 by PCR/denaturing high-performance liquid chromatography (dHPLC) and multiplex ligation-dependent probe amplification (MLPA), as well as a microsatellite marker analysis of the loss of heterozygosity (LOH) of chromosome 22q. The microarray analysis demonstrated that 1,516 genes were deregulated and 48 of the genes were validated by qRT-PCR. At least 2 genetic hits (allelic loss and/or gene mutation) in NF2 were found in 16 tumors, seven cases showed 1 hit and 8 tumors showed no NF2 alteration. MET and associated genes, such as integrin, alpha 4 (ITGA4)/B6, PLEXNB3/SEMA5 and caveolin-1 (CAV1) showed a clear deregulation in vestibular schwannomas. In addition, androgen receptor (AR) downregulation may denote a hormonal effect or cause in this tumor. Furthermore, the osteopontin gene (SPP1), which is involved in merlin protein degradation, was upregulated, which suggests that this mechanism may also exert a pivotal role in schwannoma merlin depletion. Finally, no major differences were observed among tumors of different size, histological type or NF2 status, which suggests that, at the mRNA level, all schwannomas, regardless of their molecular and clinical characteristics, may share common features that can be used in their treatment.
Collapse
Affiliation(s)
- Miguel Torres-Martin
- Research Unit, La Paz University Hospital, Hospital La Paz Institute for Health Research (IdiPAZ), 28046 Madrid, Spain.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
The detection of circulating tumor cells (CTC) aids in diagnosis of disease, prognosis, disease recurrence, and therapeutic response. The molecular aspects of metastasis are reviewed including its relevance in the identification and characterization of putative markers that may be useful in the detection thereof. Also discussed are methods for CTC enrichment using molecular strategies. The clinical application of CTC in the metastatic disease process is also summarized.
Collapse
|
47
|
Two methods for full-length RNA sequencing for low quantities of cells and single cells. Proc Natl Acad Sci U S A 2012; 110:594-9. [PMID: 23267071 DOI: 10.1073/pnas.1217322109] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The ability to determine the gene expression pattern in low quantities of cells or single cells is important for resolving a variety of problems in many biological disciplines. A robust description of the expression signature of a single cell requires determination of the full-length sequence of the expressed mRNAs in the cell, yet existing methods have either 3' biased or variable transcript representation. Here, we report our protocols for the amplification and high-throughput sequencing of very small amounts of RNA for sequencing using procedures of either semirandom primed PCR or phi29 DNA polymerase-based DNA amplification, for the cDNA generated with oligo-dT and/or random oligonucleotide primers. Unlike existing methods, these protocols produce relatively uniformly distributed sequences covering the full length of almost all transcripts independent of their sizes, from 1,000 to 10 cells, and even with single cells. Both protocols produced satisfactory detection/coverage of the abundant mRNAs from a single K562 erythroleukemic cell or a single dorsal root ganglion neuron. The phi29-based method produces long products with less noise, uses an isothermal reaction, and is simple to practice. The semirandom primed PCR procedure is more sensitive and reproducible at low transcript levels or with low quantities of cells. These methods provide tools for mRNA sequencing or RNA sequencing when only low quantities of cells, a single cell, or even degraded RNA are available for profiling.
Collapse
|
48
|
Hypoxia increases mouse satellite cell clone proliferation maintaining both in vitro and in vivo heterogeneity and myogenic potential. PLoS One 2012; 7:e49860. [PMID: 23166781 PMCID: PMC3500318 DOI: 10.1371/journal.pone.0049860] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2012] [Accepted: 10/18/2012] [Indexed: 12/25/2022] Open
Abstract
Satellite cells (SCs) are essential for postnatal muscle growth and regeneration, however, their expansion potential in vitro is limited. Recently, hypoxia has been used to enhance proliferative abilities in vitro of various primary cultures. Here, by isolating SCs from single mouse hindlimb skeletal myofibers, we were able to distinguish two subpopulations of clonally cultured SCs (Low Proliferative Clones - LPC - and High Proliferative Clones - HPC), which, as shown in rat skeletal muscle, were present at a fixed proportion. In addition, culturing LPC and HPC at a low level of oxygen we observed a two fold increased proliferation both for LPC and HPC. LPC showed higher myogenic regulatory factor (MRF) expression than HPC, particularly under the hypoxic condition. Notably, a different myogenic potential between LPC and HPC was retained in vivo: green fluorescent protein (GFP)+LPC transplantation in cardiotoxin-injured Tibialis Anterior led to a higher number of new GFP+muscle fibers per transplanted cell than GFP+HPC. Interestingly, the in vivo myogenic potential of a single cell from an LPC is similar if cultured both in normoxia and hypoxia. Therefore, starting from a single satellite cell, hypoxia allows a larger expansion of LPC than normal O2 conditions, obtaining a consistent amount of cells for transplantation, but maintaining their myogenic regeneration potential.
Collapse
|
49
|
von Teichman A, Storz M, Dettwiler S, Moch H, Schraml P. Whole genome and transcriptome amplification: practicable tools for sustainable tissue biobanking? Virchows Arch 2012; 461:571-80. [PMID: 23007645 DOI: 10.1007/s00428-012-1315-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Revised: 08/24/2012] [Accepted: 09/03/2012] [Indexed: 12/18/2022]
Abstract
The use of whole genome amplification (WGA) and whole transcriptome amplification (WTA) techniques enables the enrichment of DNA and RNA from very small amounts of tissue. Here, we tested the suitability of WGA and WTA for tumor tissue biobanking. DNA and RNA from 13 standardized and seven non-standardized frozen and 12 formalin-fixed, paraffin-embedded (FFPE) clear cell renal cell carcinoma specimens (>9 years old) served to test the robustness of the WGA and WTA products by reidentifying von Hippel-Lindau (VHL) gene mutations known to exist in these samples. The enrichment of DNA and RNA from frozen tissue was up to 1,291-fold and 423-fold, respectively. The sizes and yields (10- to 73-fold) of the amplified DNA obtained from the 12 FFPE samples were generally lower. The quality of the RNA from the FFPE samples was too low to reliably perform WTA. Our results demonstrate that frozen tumor tissue is very suitable for WGA and WTA. All 20 VHL mutations were verified with WGA. Notably, we were able to show that 18 of the 20 (90 %) VHL mutations are also transcribed. In FFPE tumor tissue, 8 of 12 cases (67 %) showed the expected mutations after the first WGA. Accurate WTA with FFPE material is sophisticated and strongly depends on the modification and degradation status of the fixed tissue. We conclude that for sustainable tissue biobanking, the use of WGA and WTA is a unique opportunity to provide researchers with sufficient amounts of nucleic acids, preferably from limited frozen tissue material.
Collapse
Affiliation(s)
- Adriana von Teichman
- Institute of Surgical Pathology, University Hospital Zurich, Schmelzbergstrasse 12, 8091 Zurich, Switzerland
| | | | | | | | | |
Collapse
|
50
|
Buskens CJ, Groot Koerkamp B, Bemelman WA, Punt CJA. Role of Circulating Tumor Cells in Metastatic Colorectal Cancer: Clinical Challenges and Opportunities. CURRENT COLORECTAL CANCER REPORTS 2012. [DOI: 10.1007/s11888-012-0129-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|