1
|
Chen F, Zhao J, Meng F, He F, Ni J, Fu Y. The vascular contribution of apolipoprotein E to Alzheimer's disease. Brain 2024; 147:2946-2965. [PMID: 38748848 DOI: 10.1093/brain/awae156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 03/23/2024] [Accepted: 04/21/2024] [Indexed: 09/04/2024] Open
Abstract
Alzheimer's disease, the most prevalent form of dementia, imposes a substantial societal burden. The persistent inadequacy of disease-modifying drugs targeting amyloid plaques and neurofibrillary tangles suggests the contribution of alternative pathogenic mechanisms. A frequently overlooked aspect is cerebrovascular dysfunction, which may manifest early in the progression of Alzheimer's disease pathology. Mounting evidence underscores the pivotal role of the apolipoprotein E gene, particularly the apolipoprotein ε4 allele as the strongest genetic risk factor for late-onset Alzheimer's disease, in the cerebrovascular pathology associated with Alzheimer's disease. In this review, we examine the evidence elucidating the cerebrovascular impact of both central and peripheral apolipoprotein E on the pathogenesis of Alzheimer's disease. We present a novel three-hit hypothesis, outlining potential mechanisms that shed light on the intricate relationship among different pathogenic events. Finally, we discuss prospective therapeutics targeting the cerebrovascular pathology associated with apolipoprotein E and explore their implications for future research endeavours.
Collapse
Affiliation(s)
- Feng Chen
- Department of Neurology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Jing Zhao
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou 215123, China
| | - Fanxia Meng
- Department of Neurology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Fangping He
- Department of Neurology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Jie Ni
- Department of Neurology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Yuan Fu
- Department of Neurology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| |
Collapse
|
2
|
Jackson RJ, Hyman BT, Serrano-Pozo A. Multifaceted roles of APOE in Alzheimer disease. Nat Rev Neurol 2024; 20:457-474. [PMID: 38906999 DOI: 10.1038/s41582-024-00988-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2024] [Indexed: 06/23/2024]
Abstract
For the past three decades, apolipoprotein E (APOE) has been known as the single greatest genetic modulator of sporadic Alzheimer disease (AD) risk, influencing both the average age of onset and the lifetime risk of developing AD. The APOEε4 allele significantly increases AD risk, whereas the ε2 allele is protective relative to the most common ε3 allele. However, large differences in effect size exist across ethnoracial groups that are likely to depend on both global genetic ancestry and local genetic ancestry, as well as gene-environment interactions. Although early studies linked APOE to amyloid-β - one of the two culprit aggregation-prone proteins that define AD - in the past decade, mounting work has associated APOE with other neurodegenerative proteinopathies and broader ageing-related brain changes, such as neuroinflammation, energy metabolism failure, loss of myelin integrity and increased blood-brain barrier permeability, with potential implications for longevity and resilience to pathological protein aggregates. Novel mouse models and other technological advances have also enabled a number of therapeutic approaches aimed at either attenuating the APOEε4-linked increased AD risk or enhancing the APOEε2-linked AD protection. This Review summarizes this progress and highlights areas for future research towards the development of APOE-directed therapeutics.
Collapse
Affiliation(s)
- Rosemary J Jackson
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Bradley T Hyman
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- Massachusetts Alzheimer's Disease Research Center, Charlestown, MA, USA.
| | - Alberto Serrano-Pozo
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- Massachusetts Alzheimer's Disease Research Center, Charlestown, MA, USA.
| |
Collapse
|
3
|
Valdez-Gaxiola CA, Rosales-Leycegui F, Gaxiola-Rubio A, Moreno-Ortiz JM, Figuera LE. Early- and Late-Onset Alzheimer's Disease: Two Sides of the Same Coin? Diseases 2024; 12:110. [PMID: 38920542 PMCID: PMC11202866 DOI: 10.3390/diseases12060110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/04/2024] [Accepted: 05/18/2024] [Indexed: 06/27/2024] Open
Abstract
Early-onset Alzheimer's disease (EOAD), defined as Alzheimer's disease onset before 65 years of age, has been significantly less studied than the "classic" late-onset form (LOAD), although EOAD often presents with a more aggressive disease course, caused by variants in the APP, PSEN1, and PSEN2 genes. EOAD has significant differences from LOAD, including encompassing diverse phenotypic manifestations, increased genetic predisposition, and variations in neuropathological burden and distribution. Phenotypically, EOAD can be manifested with non-amnestic variants, sparing the hippocampi with increased tau burden. The aim of this article is to review the different genetic bases, risk factors, pathological mechanisms, and diagnostic approaches between EOAD and LOAD and to suggest steps to further our understanding. The comprehension of the monogenic form of the disease can provide valuable insights that may serve as a roadmap for understanding the common form of the disease.
Collapse
Affiliation(s)
- César A. Valdez-Gaxiola
- División de Genética, Centro de Investigación Biomédica de Occidente, IMSS, Guadalajara 44340, Jalisco, Mexico; (C.A.V.-G.); (F.R.-L.)
- Doctorado en Genética Humana, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Frida Rosales-Leycegui
- División de Genética, Centro de Investigación Biomédica de Occidente, IMSS, Guadalajara 44340, Jalisco, Mexico; (C.A.V.-G.); (F.R.-L.)
- Maestría en Ciencias del Comportamiento, Instituto de Neurociencias, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Abigail Gaxiola-Rubio
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico;
- Facultad de Medicina, Universidad Autónoma de Guadalajara, Zapopan 45129, Jalisco, Mexico
| | - José Miguel Moreno-Ortiz
- Doctorado en Genética Humana, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico
- Instituto de Genética Humana “Dr. Enrique Corona Rivera”, Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Luis E. Figuera
- División de Genética, Centro de Investigación Biomédica de Occidente, IMSS, Guadalajara 44340, Jalisco, Mexico; (C.A.V.-G.); (F.R.-L.)
- Doctorado en Genética Humana, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico
| |
Collapse
|
4
|
Dey A, Verma A, Bhaskar U, Sarkar B, Kallianpur M, Vishvakarma V, Das AK, Garai K, Mukherjee O, Ishii K, Tahara T, Maiti S. A Toxicogenic Interaction between Intracellular Amyloid-β and Apolipoprotein-E. ACS Chem Neurosci 2024; 15:1265-1275. [PMID: 38421952 DOI: 10.1021/acschemneuro.4c00048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024] Open
Abstract
Alzheimer's disease (AD) is associated with the aggregation of amyloid β (Aβ) and tau proteins. Why ApoE variants are significant genetic risk factors remains a major unsolved puzzle in understanding AD, although intracellular interactions with ApoE are suspected to play a role. Here, we show that specific changes in the fluorescence lifetime of fluorescently tagged small Aβ oligomers in rat brain cells correlate with the cellular ApoE content. An inhibitor of the Aβ-ApoE interaction suppresses these changes and concomitantly reduces Aβ toxicity in a dose-dependent manner. Single-molecule techniques show changes both in the conformation and in the stoichiometry of the oligomers. Neural stem cells derived from hiPSCs of Alzheimer's patients also exhibit these fluorescence lifetime changes. We infer that intracellular interaction with ApoE modifies the N-terminus of the Aβ oligomers, inducing changes in their stoichiometry, membrane affinity, and toxicity. These changes can be directly imaged in live cells and can potentially be used as a rapid and quantitative cellular assay for AD drug discovery.
Collapse
Affiliation(s)
- Arpan Dey
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India
| | - Aditi Verma
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India
| | - Uchit Bhaskar
- Institute of Stem Cell Science and Regenerative Medicine, Bangalore 560065, India
| | - Bidyut Sarkar
- Molecular Spectroscopy Laboratory, RIKEN, Wako, Saitama 3510198, Japan
| | - Mamata Kallianpur
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India
| | - Vicky Vishvakarma
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India
| | - Anand Kant Das
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India
| | - Kanchan Garai
- Tata Institute of Fundamental Research, Hyderabad 500107, India
| | - Odity Mukherjee
- Institute of Stem Cell Science and Regenerative Medicine, Bangalore 560065, India
| | - Kunihiko Ishii
- Molecular Spectroscopy Laboratory, RIKEN, Wako, Saitama 3510198, Japan
| | - Tahei Tahara
- Molecular Spectroscopy Laboratory, RIKEN, Wako, Saitama 3510198, Japan
| | - Sudipta Maiti
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India
| |
Collapse
|
5
|
Asiamah EA, Feng B, Guo R, Yaxing X, Du X, Liu X, Zhang J, Cui H, Ma J. The Contributions of the Endolysosomal Compartment and Autophagy to APOEɛ4 Allele-Mediated Increase in Alzheimer's Disease Risk. J Alzheimers Dis 2024; 97:1007-1031. [PMID: 38306054 DOI: 10.3233/jad-230658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Apolipoprotein E4 (APOE4), although yet-to-be fully understood, increases the risk and lowers the age of onset of Alzheimer's disease (AD), which is the major cause of dementia among elderly individuals. The endosome-lysosome and autophagy pathways, which are necessary for homeostasis in both neurons and glia, are dysregulated even in early AD. Nonetheless, the contributory roles of these pathways to developing AD-related pathologies in APOE4 individuals and models are unclear. Therefore, this review summarizes the dysregulations in the endosome-lysosome and autophagy pathways in APOE4 individuals and non-human models, and how these anomalies contribute to developing AD-relevant pathologies. The available literature suggests that APOE4 causes endosomal enlargement, increases endosomal acidification, impairs endosomal recycling, and downregulates exosome production. APOE4 impairs autophagy initiation and inhibits basal autophagy and autophagy flux. APOE4 promotes lysosome formation and trafficking and causes ApoE to accumulate in lysosomes. APOE4-mediated changes in the endosome, autophagosome and lysosome could promote AD-related features including Aβ accumulation, tau hyperphosphorylation, glial dysfunction, lipid dyshomeostasis, and synaptic defects. ApoE4 protein could mediate APOE4-mediated endosome-lysosome-autophagy changes. ApoE4 impairs vesicle recycling and endosome trafficking, impairs the synthesis of autophagy genes, resists being dissociated from its receptors and degradation, and forms a stable folding intermediate that could disrupt lysosome structure. Drugs such as molecular correctors that target ApoE4 molecular structure and enhance autophagy may ameliorate the endosome-lysosome-autophagy-mediated increase in AD risk in APOE4 individuals.
Collapse
Affiliation(s)
- Ernest Amponsah Asiamah
- Hebei Medical University-Galway University of Ireland Stem Cell Research Center, Hebei Medical University, Hebei, China
- Department of Biomedical Sciences, College of Health and Allied Sciences, University of Cape Coast, PMB UCC, Cape Coast, Ghana
| | - Baofeng Feng
- Hebei Medical University-Galway University of Ireland Stem Cell Research Center, Hebei Medical University, Hebei, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Hebei, China
- Hebei Technology Innovation Center for Stem Cell and Regenerative Medicine, Hebei, China
| | - Ruiyun Guo
- Hebei Medical University-Galway University of Ireland Stem Cell Research Center, Hebei Medical University, Hebei, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Hebei, China
| | - Xu Yaxing
- Hebei Medical University-Galway University of Ireland Stem Cell Research Center, Hebei Medical University, Hebei, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Hebei, China
| | - Xiaofeng Du
- Hebei Medical University-Galway University of Ireland Stem Cell Research Center, Hebei Medical University, Hebei, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Hebei, China
| | - Xin Liu
- Hebei Medical University-Galway University of Ireland Stem Cell Research Center, Hebei Medical University, Hebei, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Hebei, China
| | - Jinyu Zhang
- Hebei Medical University-Galway University of Ireland Stem Cell Research Center, Hebei Medical University, Hebei, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Hebei, China
| | - Huixian Cui
- Hebei Medical University-Galway University of Ireland Stem Cell Research Center, Hebei Medical University, Hebei, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Hebei, China
- Hebei Technology Innovation Center for Stem Cell and Regenerative Medicine, Hebei, China
| | - Jun Ma
- Hebei Medical University-Galway University of Ireland Stem Cell Research Center, Hebei Medical University, Hebei, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Hebei, China
- Hebei Technology Innovation Center for Stem Cell and Regenerative Medicine, Hebei, China
| |
Collapse
|
6
|
Sun YY, Wang Z, Huang HC. Roles of ApoE4 on the Pathogenesis in Alzheimer's Disease and the Potential Therapeutic Approaches. Cell Mol Neurobiol 2023; 43:3115-3136. [PMID: 37227619 PMCID: PMC10211310 DOI: 10.1007/s10571-023-01365-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 05/17/2023] [Indexed: 05/26/2023]
Abstract
The Apolipoprotein E ε4 (ApoE ε4) allele, encoding ApoE4, is the strongest genetic risk factor for late-onset Alzheimer's disease (LOAD). Emerging epidemiological evidence indicated that ApoE4 contributes to AD through influencing β-amyloid (Aβ) deposition and clearance. However, the molecular mechanisms of ApoE4 involved in AD pathogenesis remains unclear. Here, we introduced the structure and functions of ApoE isoforms, and then we reviewed the potential mechanisms of ApoE4 in the AD pathogenesis, including the effect of ApoE4 on Aβ pathology, and tau phosphorylation, oxidative stress; synaptic function, cholesterol transport, and mitochondrial dysfunction; sleep disturbances and cerebrovascular integrity in the AD brains. Furthermore, we discussed the available strategies for AD treatments that target to ApoE4. In general, this review overviews the potential roles of ApoE4 in the AD development and suggests some therapeutic approaches for AD. ApoE4 is genetic risk of AD. ApoE4 is involved in the AD pathogenesis. Aβ deposition, NFT, oxidative stress, abnormal cholesterol, mitochondrial dysfunction and neuroinflammation could be observed in the brains with ApoE4. Targeting the interaction of ApoE4 with the AD pathology is available strategy for AD treatments.
Collapse
Affiliation(s)
- Yu-Ying Sun
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing, 100191 China
- Key Laboratory of Natural Products Development and Innovative Drug Research, Beijing Union University, Beijing, 100023 China
| | - Zhun Wang
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing, 100191 China
- Key Laboratory of Natural Products Development and Innovative Drug Research, Beijing Union University, Beijing, 100023 China
| | - Han-Chang Huang
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing, 100191 China
- Key Laboratory of Natural Products Development and Innovative Drug Research, Beijing Union University, Beijing, 100023 China
| |
Collapse
|
7
|
Gouilly D, Rafiq M, Nogueira L, Salabert AS, Payoux P, Péran P, Pariente J. Beyond the amyloid cascade: An update of Alzheimer's disease pathophysiology. Rev Neurol (Paris) 2023; 179:812-830. [PMID: 36906457 DOI: 10.1016/j.neurol.2022.12.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 10/02/2022] [Accepted: 12/02/2022] [Indexed: 03/13/2023]
Abstract
Alzheimer's disease (AD) is a multi-etiology disease. The biological system of AD is associated with multidomain genetic, molecular, cellular, and network brain dysfunctions, interacting with central and peripheral immunity. These dysfunctions have been primarily conceptualized according to the assumption that amyloid deposition in the brain, whether from a stochastic or a genetic accident, is the upstream pathological change. However, the arborescence of AD pathological changes suggests that a single amyloid pathway might be too restrictive or inconsistent with a cascading effect. In this review, we discuss the recent human studies of late-onset AD pathophysiology in an attempt to establish a general updated view focusing on the early stages. Several factors highlight heterogenous multi-cellular pathological changes in AD, which seem to work in a self-amplifying manner with amyloid and tau pathologies. Neuroinflammation has an increasing importance as a major pathological driver, and perhaps as a convergent biological basis of aging, genetic, lifestyle and environmental risk factors.
Collapse
Affiliation(s)
- D Gouilly
- Toulouse Neuroimaging Center, Toulouse, France.
| | - M Rafiq
- Toulouse Neuroimaging Center, Toulouse, France; Department of Cognitive Neurology, Epilepsy and Movement Disorders, CHU Toulouse Purpan, France
| | - L Nogueira
- Department of Cell Biology and Cytology, CHU Toulouse Purpan, France
| | - A-S Salabert
- Toulouse Neuroimaging Center, Toulouse, France; Department of Nuclear Medicine, CHU Toulouse Purpan, France
| | - P Payoux
- Toulouse Neuroimaging Center, Toulouse, France; Department of Nuclear Medicine, CHU Toulouse Purpan, France; Center of Clinical Investigation, CHU Toulouse Purpan (CIC1436), France
| | - P Péran
- Toulouse Neuroimaging Center, Toulouse, France
| | - J Pariente
- Toulouse Neuroimaging Center, Toulouse, France; Department of Cognitive Neurology, Epilepsy and Movement Disorders, CHU Toulouse Purpan, France; Center of Clinical Investigation, CHU Toulouse Purpan (CIC1436), France
| |
Collapse
|
8
|
Galkina OV, Vetrovoy OV, Krasovskaya IE, Eschenko ND. Role of Lipids in Regulation of Neuroglial Interactions. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:337-352. [PMID: 37076281 DOI: 10.1134/s0006297923030045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 03/28/2023]
Abstract
Lipids comprise an extremely heterogeneous group of compounds that perform a wide variety of biological functions. Traditional view of lipids as important structural components of the cell and compounds playing a trophic role is currently being supplemented by information on the possible participation of lipids in signaling, not only intracellular, but also intercellular. The review article discusses current data on the role of lipids and their metabolites formed in glial cells (astrocytes, oligodendrocytes, microglia) in communication of these cells with neurons. In addition to metabolic transformations of lipids in each type of glial cells, special attention is paid to the lipid signal molecules (phosphatidic acid, arachidonic acid and its metabolites, cholesterol, etc.) and the possibility of their participation in realization of synaptic plasticity, as well as in other possible mechanisms associated with neuroplasticity. All these new data can significantly expand our knowledge about the regulatory functions of lipids in neuroglial relationships.
Collapse
Affiliation(s)
- Olga V Galkina
- Biochemistry Department, Faculty of Biology, Saint-Petersburg State University, St. Petersburg, 199034, Russia.
| | - Oleg V Vetrovoy
- Biochemistry Department, Faculty of Biology, Saint-Petersburg State University, St. Petersburg, 199034, Russia
- Pavlov Institute of Physiology, Russian Academy of Sciences, St. Petersburg, 199034, Russia
| | - Irina E Krasovskaya
- Biochemistry Department, Faculty of Biology, Saint-Petersburg State University, St. Petersburg, 199034, Russia
| | - Nataliya D Eschenko
- Biochemistry Department, Faculty of Biology, Saint-Petersburg State University, St. Petersburg, 199034, Russia
| |
Collapse
|
9
|
Lipoprotein Metabolism, Protein Aggregation, and Alzheimer's Disease: A Literature Review. Int J Mol Sci 2023; 24:ijms24032944. [PMID: 36769268 PMCID: PMC9918279 DOI: 10.3390/ijms24032944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/28/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia. The physiopathology of AD is well described by the presence of two neuropathological features: amyloid plaques and tau neurofibrillary tangles. In the last decade, neuroinflammation and cellular stress have gained importance as key factors in the development and pathology of AD. Chronic cellular stress occurs in degenerating neurons. Stress Granules (SGs) are nonmembranous organelles formed as a response to stress, with a protective role; however, SGs have been noted to turn into pathological and neurotoxic features when stress is chronic, and they are related to an increased tau aggregation. On the other hand, correct lipid metabolism is essential to good function of the brain; apolipoproteins are highly associated with risk of AD, and impaired cholesterol efflux and lipid transport are associated with an increased risk of AD. In this review, we provide an insight into the relationship between cellular stress, SGs, protein aggregation, and lipid metabolism in AD.
Collapse
|
10
|
Lozupone M, Imbimbo BP, Balducci C, Lo Vecchio F, Bisceglia P, Latino RR, Leone M, Dibello V, Solfrizzi V, Greco A, Daniele A, Watling M, Seripa D, Panza F. Does the imbalance in the apolipoprotein E isoforms underlie the pathophysiological process of sporadic Alzheimer's disease? Alzheimers Dement 2023; 19:353-368. [PMID: 35900209 DOI: 10.1002/alz.12728] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 01/18/2023]
Abstract
Human apolipoprotein E (apoE) is a 299-amino acid secreted glycoprotein binding cholesterol and phospholipids, and with three common isoforms (APOE ε2, APOE ε3, and APOE ε4). The exact mechanism by which APOE gene variants increase/decrease Alzheimer's disease (AD) risk is not fully understood, but APOE isoforms differently affect brain homeostasis and neuroinflammation, blood-brain barrier (BBB) permeability, glial function, synaptogenesis, oral/gut microbiota, neural networks, amyloid beta (Aβ) deposition, and tau-mediated neurodegeneration. In this perspective, we propose a comprehensive interpretation of APOE-mediated effects within AD pathophysiology, describing some specific cellular, biochemical, and epigenetic mechanisms and updating the different APOE-targeting approaches being developed as potential AD therapies. Intracisternal adeno-associated viral-mediated delivery of APOE ε2 is being tested in AD APOE ε4/ε4 carriers, while APOE mimetics are being used in subjects with perioperative neurocognitive disorders. Other approaches including APOE ε4 antisense oligonucleotides, anti-APOE ε4 monoclonal antibodies, APOE ε4 structure correctors, and APOE-Aβ interaction inhibitors produced positive results in transgenic AD mouse models.
Collapse
Affiliation(s)
- Madia Lozupone
- Neurodegenerative Disease Unit, Department of Basic Medicine, Neuroscience, and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | | | - Claudia Balducci
- Department of Neuroscience, Istituto di Ricerche Farmacologiche "Mario Negri" IRCCS, Milan, Italy
| | - Filomena Lo Vecchio
- Research Laboratory, Complex Structure of Geriatrics, Department of Medical Sciences, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Foggia, Italy
| | - Paola Bisceglia
- Research Laboratory, Complex Structure of Geriatrics, Department of Medical Sciences, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Foggia, Italy
| | - Raffaela Rita Latino
- Complex Structure of Neurology, Department of Medical Sciences, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Foggia, Italy
| | - Maurizio Leone
- Complex Structure of Neurology, Department of Medical Sciences, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Foggia, Italy
| | - Vittorio Dibello
- Department of Orofacial Pain and Dysfunction, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Vincenzo Solfrizzi
- "Cesare Frugoni" Internal and Geriatric Medicine and Memory Unit, University of Bari "Aldo Moro, Bari, Italy
| | - Antonio Greco
- Research Laboratory, Complex Structure of Geriatrics, Department of Medical Sciences, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Foggia, Italy
| | - Antonio Daniele
- Department of Neuroscience, Catholic University of Sacred Heart, Rome, Italy.,Neurology Unit, IRCCS Fondazione Policlinico Universitario A. Gemelli, Rome, Italy
| | - Mark Watling
- CNS & Pain Department, TranScrip Ltd, Reading, UK
| | - Davide Seripa
- Hematology and Stem Cell Transplant Unit, "Vito Fazzi" Hospital, Lecce, Italy
| | - Francesco Panza
- Unit of Research Methodology and Data Sciences for Population Health, National Institute of Gastroenterology "Saverio de Bellis,", Research Hospital, Castellana Grotte, Bari, Italy
| |
Collapse
|
11
|
Torres-Mendoza BMG, Ortiz GG, Sánchez-Romero L, Delgado-Lara DLC, García Martínez MT, Mireles-Ramírez MA, Cruz Serrano JA, Pacheco Moisés FP. Dietary fish oil increases catalase activity in patients with probable Alzheimer's disease. NUTR HOSP 2022; 39:1364-1368. [PMID: 36327127 DOI: 10.20960/nh.04153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023] Open
Abstract
Background: Alzheimer's disease (AD) is a neurodegenerative disorder characterized by the presence of neuritic plaques and neurofibrillary tangles that finally result in synaptic and neuronal loss. Oxidative stress accompanies pathological changes in AD. Objective: to assess the efficacy of dietary omega 3 polyunsaturated fatty acids supplementation on the levels of proteins oxidation, hydroperoxides and enzymatic activities of catalase and superoxide dismutase in AD patients. Methods: clinical, controlled, randomized, double-blind trial. Patients consumed fish oil or placebo for one year. Oxidative stress markers were assessed in plasma using spectrophotometric methods. Results: carbonyl groups in proteins and hydroperoxides in plasma have similar values in both treatment groups at the beginning of the study. At six and 12 months of treatment, these values decreased significantly in the fish oil group, while in the placebo group no changes were observed in both oxidative stress markers. Catalase activity increased significantly at six and twelve months after treatment in patients treated with fish oil. While the superoxide dismutase activity was not modified in both study groups. Conclusions: patients who consume omega 3 polyunsaturated fatty acids at a stable dose of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) show decreased oxidation of proteins and lipids in plasma. In addition, an increase in catalase activity was detected. Thus, the presented data warrants further studies evaluating the antioxidant effect of omega 3 polyunsaturated fatty acids.
Collapse
Affiliation(s)
- Blanca M G Torres-Mendoza
- Neurosciences Division. Centro de Investigación Biomédica de Occidente (CIBO). Instituto Mexicano del Seguro Social (IMSS)
| | - Genaro Gabriel Ortiz
- Neurosciences Division. Centro de Investigación Biomédica de Occidente (CIBO). Instituto Mexicano del Seguro Social (IMSS)
| | - Lorenzo Sánchez-Romero
- Neurosciences Division. Centro de Investigación Biomédica de Occidente (CIBO). Instituto Mexicano del Seguro Social (IMSS)
| | - Daniela L C Delgado-Lara
- Department of Philosophical and Methodological Disciplines and Molecular Biology in Medicine HC. Centro Universitario de Ciencias de la Salud. Universidad de Guadalajara
| | - María T García Martínez
- Laboratory of Biochemistry. Department of Chemistry. Centro Universitario de Ciencias Exactas e Ingeniería. Universidad de Guadalajara
| | - Mario-Alberto Mireles-Ramírez
- Department of Neurology. High Speciality Medical Unit. Centro de Investigación Biomédica de Occidente (CIBO). Instituto Mexicano del Seguro Social (IMSS)
| | | | - Fermín Paul Pacheco Moisés
- Laboratory of Biochemistry. Department of Chemistry. Centro Universitario de Ciencias Exactas e Ingeniería. Universidad de Guadalajara
| |
Collapse
|
12
|
Gharibyan AL, Wasana Jayaweera S, Lehmann M, Anan I, Olofsson A. Endogenous Human Proteins Interfering with Amyloid Formation. Biomolecules 2022; 12:biom12030446. [PMID: 35327638 PMCID: PMC8946693 DOI: 10.3390/biom12030446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/08/2022] [Accepted: 03/11/2022] [Indexed: 01/09/2023] Open
Abstract
Amyloid formation is a pathological process associated with a wide range of degenerative disorders, including Alzheimer’s disease, Parkinson’s disease, and diabetes mellitus type 2. During disease progression, abnormal accumulation and deposition of proteinaceous material are accompanied by tissue degradation, inflammation, and dysfunction. Agents that can interfere with the process of amyloid formation or target already formed amyloid assemblies are consequently of therapeutic interest. In this context, a few endogenous proteins have been associated with an anti-amyloidogenic activity. Here, we review the properties of transthyretin, apolipoprotein E, clusterin, and BRICHOS protein domain which all effectively interfere with amyloid in vitro, as well as displaying a clinical impact in humans or animal models. Their involvement in the amyloid formation process is discussed, which may aid and inspire new strategies for therapeutic interventions.
Collapse
Affiliation(s)
- Anna L. Gharibyan
- Department of Clinical Microbiology, Umeå University, 901 87 Umeå, Sweden;
- Correspondence: (A.L.G.); (A.O.)
| | | | - Manuela Lehmann
- Department of Public Health and Clinical Medicine, Umeå University, 901 87 Umeå, Sweden; (M.L.); (I.A.)
| | - Intissar Anan
- Department of Public Health and Clinical Medicine, Umeå University, 901 87 Umeå, Sweden; (M.L.); (I.A.)
| | - Anders Olofsson
- Department of Clinical Microbiology, Umeå University, 901 87 Umeå, Sweden;
- Correspondence: (A.L.G.); (A.O.)
| |
Collapse
|
13
|
Jabeen K, Rehman K, Akash MSH. Genetic mutations of APOEε4 carriers in cardiovascular patients lead to the development of insulin resistance and risk of Alzheimer's disease. J Biochem Mol Toxicol 2021; 36:e22953. [PMID: 34757642 DOI: 10.1002/jbt.22953] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/11/2021] [Accepted: 11/01/2021] [Indexed: 12/19/2022]
Abstract
Type 2 diabetes mellitus and Alzheimer's disease (AD), both are chronic and progressive diseases. Many cardiovascular and genetic risk factors are considered responsible for the development of AD and diabetes mellitus (DM). Genetic risk factor such as apolipoprotein E (APOE) plays a critical role in the progression of AD. Specifically, APOEε4 is genetically the strongest isoform associated with neuronal insulin deficiency, altered lipid homeostasis, and metabolism, decreased glucose uptake, impaired gray matter volume, and cerebrovascular functions. In this article, we have summarized the mechanisms of cardiovascular disturbances associated with AD and DM, impact of amyloid-β aggregation, and neurofibrillary tangles formation in AD. Moreover, cardiovascular risk factors leading to insulin resistance (IR) and amyloid-β aggregation are highlighted along with the effects of APOE risk alleles on cerebral, lipid, and cholesterol metabolism leading to CVD-mediated IR. Correspondingly, the contribution of IR, genetic and cardiovascular risk factors in amyloid-β aggregation, which may lead to the late onset of AD and DM, has been also discussed. In short, IR is related to significantly lower cerebral glucose metabolism, which sequentially forecasts poorer memory performance. Hence, there will be more chances for neural glucose intolerance and impairment of cognitive function in cardiac patients, particularly APOEε4 carriers having IR. Hence, this review provides a better understanding of the corresponding crosstalk among different pathways. This will help to investigate the rational application of preventive measures against IR and cognitive dysfunction, specifically in APOEε4 carriers' cardio-metabolic patients.
Collapse
Affiliation(s)
- Komal Jabeen
- Department of Pharmacy, University of Agriculture, Faisalabad, Pakistan.,Institute of Physiology and Pharmacology, University of Agriculture, Faisalabad, Pakistan
| | - Kanwal Rehman
- Department of Pharmacy, University of Agriculture, Faisalabad, Pakistan
| | | |
Collapse
|
14
|
Amponsah AE, Feng B, Guo R, Zhang W, He J, Kong D, Dong T, Ma J, Cui H. Fragmentation of brain apolipoprotein E (ApoE) and its relevance in Alzheimer's disease. Rev Neurosci 2021; 31:589-603. [PMID: 32364519 DOI: 10.1515/revneuro-2019-0115] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 02/01/2020] [Indexed: 11/15/2022]
Abstract
Alzheimer's disease (AD) is a very common cause of dementia in the elderly. It is characterized by progressive amnesia and accretions of neurofibrillary tangles (NFTs) of neurons and senile plaques in the neuropil. After aging, the inheritance of the apolipoprotein E (ApoE) epsilon 4 (ε4) allele is the greatest risk factor for late-onset AD. The ApoE protein is the translated product of the ApoE gene. This protein undergoes proteolysis, and the resulting fragments colocalize with neurofibrillary tangles and amyloid plaques, and for that matter may be involved in AD onset and/or progression. Previous studies have reported the pathogenic potential of various ApoE fragments in AD pathophysiology. However, the pathways activated by the fragments are not fully understood. In this review, ApoE fragments obtained from post-mortem brains and body fluids, cerebrospinal fluid (CSF) and plasma, are discussed. Additionally, current knowledge about the process of fragmentation is summarized. Finally, the mechanisms by which these fragments are involved in AD pathogenesis and pathophysiology are discussed.
Collapse
Affiliation(s)
- Asiamah Ernest Amponsah
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China.,Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China
| | - Baofeng Feng
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China.,Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China
| | - Ruiyun Guo
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China.,Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China
| | - Wei Zhang
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China.,Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China
| | - Jingjing He
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China.,Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China
| | - Desheng Kong
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China.,Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China
| | - Tianyu Dong
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China.,Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China.,Human Anatomy Department, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
| | - Jun Ma
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China.,Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China.,China Human Anatomy Department, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
| | - Huixian Cui
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China.,Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China.,China Human Anatomy Department, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
| |
Collapse
|
15
|
Peoples N, Strang C. Complement Activation in the Central Nervous System: A Biophysical Model for Immune Dysregulation in the Disease State. Front Mol Neurosci 2021; 14:620090. [PMID: 33746710 PMCID: PMC7969890 DOI: 10.3389/fnmol.2021.620090] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 01/12/2021] [Indexed: 01/08/2023] Open
Abstract
Complement, a feature of the innate immune system that targets pathogens for phagocytic clearance and promotes inflammation, is tightly regulated to prevent damage to host tissue. This regulation is paramount in the central nervous system (CNS) since complement proteins degrade neuronal synapses during development, homeostasis, and neurodegeneration. We propose that dysregulated complement, particularly C1 or C3b, may errantly target synapses for immune-mediated clearance, therefore highlighting regulatory failure as a major potential mediator of neurological disease. First, we explore the mechanics of molecular neuroimmune relationships for the regulatory proteins: Complement Receptor 1, C1-Inhibitor, Factor H, and the CUB-sushi multiple domain family. We propose that biophysical and chemical principles offer clues for understanding mechanisms of dysregulation. Second, we describe anticipated effects to CNS disease processes (particularly Alzheimer's Disease) and nest our ideas within existing basic science, clinical, and epidemiological findings. Finally, we illustrate how the concepts presented within this manuscript provoke new ways of approaching age-old neurodegenerative processes. Every component of this model is testable by straightforward experimentation and highlights the untapped potential of complement dysregulation as a driver of CNS disease. This includes a putative role for complement-based neurotherapeutic agents and companion biomarkers.
Collapse
|
16
|
Lee JY, Marian OC, Don AS. Defective Lysosomal Lipid Catabolism as a Common Pathogenic Mechanism for Dementia. Neuromolecular Med 2021; 23:1-24. [PMID: 33550528 DOI: 10.1007/s12017-021-08644-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 01/11/2021] [Indexed: 02/06/2023]
Abstract
Dementia poses an ever-growing burden to health care and social services as life expectancies have grown across the world and populations age. The most common forms of dementia are Alzheimer's disease (AD), vascular dementia, frontotemporal dementia (FTD), and Lewy body dementia, which includes Parkinson's disease (PD) dementia and dementia with Lewy bodies (DLB). Genomic studies over the past 3 decades have identified variants in genes regulating lipid transporters and endosomal processes as major risk determinants for AD, with the most significant being inheritance of the ε4 allele of the APOE gene, encoding apolipoprotein E. A recent surge in research on lipid handling and metabolism in glia and neurons has established defective lipid clearance from endolysosomes as a central driver of AD pathogenesis. The most prevalent genetic risk factors for DLB are the APOE ε4 allele, and heterozygous loss of function mutations in the GBA gene, encoding the lysosomal catabolic enzyme glucocerebrosidase; whilst heterozygous mutations in the GRN gene, required for lysosomal catabolism of sphingolipids, are responsible for a significant proportion of FTD cases. Homozygous mutations in the GBA or GRN genes produce the lysosomal storage diseases Gaucher disease and neuronal ceroid lipofuscinosis. Research from mouse and cell culture models, and neuropathological evidence from lysosomal storage diseases, has established that impaired cholesterol or sphingolipid catabolism is sufficient to produce the pathological hallmarks of dementia, indicating that defective lipid catabolism is a common mechanism in the etiology of dementia.
Collapse
Affiliation(s)
- Jun Yup Lee
- Centenary Institute, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - Oana C Marian
- Centenary Institute, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - Anthony S Don
- Centenary Institute, The University of Sydney, Camperdown, NSW, 2006, Australia. .,NHMRC Clinical Trials Centre, The University of Sydney, Camperdown, NSW, 2006, Australia.
| |
Collapse
|
17
|
Serrano-Pozo A, Das S, Hyman BT. APOE and Alzheimer's disease: advances in genetics, pathophysiology, and therapeutic approaches. Lancet Neurol 2021; 20:68-80. [PMID: 33340485 PMCID: PMC8096522 DOI: 10.1016/s1474-4422(20)30412-9] [Citation(s) in RCA: 437] [Impact Index Per Article: 145.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/02/2020] [Accepted: 10/26/2020] [Indexed: 12/14/2022]
Abstract
The APOE ε4 allele remains the strongest genetic risk factor for sporadic Alzheimer's disease and the APOE ε2 allele the strongest genetic protective factor after multiple large scale genome-wide association studies and genome-wide association meta-analyses. However, no therapies directed at APOE are currently available. Although initial studies causally linked APOE with amyloid-β peptide aggregation and clearance, over the past 5 years our understanding of APOE pathogenesis has expanded beyond amyloid-β peptide-centric mechanisms to tau neurofibrillary degeneration, microglia and astrocyte responses, and blood-brain barrier disruption. Because all these pathological processes can potentially contribute to cognitive impairment, it is important to use this new knowledge to develop therapies directed at APOE. Several therapeutic approaches have been successful in mouse models expressing human APOE alleles, including increasing or reducing APOE levels, enhancing its lipidation, blocking the interactions between APOE and amyloid-β peptide, and genetically switching APOE4 to APOE3 or APOE2 isoforms, but translation to human clinical trials has proven challenging.
Collapse
Affiliation(s)
- Alberto Serrano-Pozo
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA; Massachusetts Alzheimer's Disease Research Center, Charlestown, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Sudeshna Das
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA; Massachusetts Alzheimer's Disease Research Center, Charlestown, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Bradley T Hyman
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA; Massachusetts Alzheimer's Disease Research Center, Charlestown, MA, USA; Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
18
|
Pillai JA, Kou L, Bena J, Penn L, Leverenz JB. Hypertension and Hypercholesterolemia Modify Dementia Risk in Relation to APOEɛ4 Status. J Alzheimers Dis 2021; 81:1493-1504. [PMID: 33967045 PMCID: PMC8239808 DOI: 10.3233/jad-201609] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND There is significant interest in understanding the role of modifiable vascular risk factors contributing to dementia risk across age groups. OBJECTIVE Risk of dementia onset was assessed in relation to vascular risk factors of hypertension and hypercholesterolemia among cognitively normal APOEɛ4 carriers and non-carriers. METHODS In a sample of prospectively characterized longitudinal cohort from the National Alzheimer's Coordinating Center database, 9,349 participants met criteria for normal cognition at baseline, had a CDR-Global (CDR-G) score of zero, and had concomitant data on APOEɛ4 status and medical co-morbidities including histories of hypertension and hypercholesterolemia. Multivariable Cox proportional hazards models adjusted for well-known potential confounders were used to compare dementia onset among APOEɛ4 carriers and non-carriers by young (≤65 years) and old (> 65 year) age groups. RESULTS 519 participants converted to dementia within an average follow up of 5.97 years. Among older APOEɛ4 carriers, hypercholesterolemia was related to lower risk of dementia (HR (95% CI), 0.68 (0.49-0.94), p = 0.02). Among older APOEɛ4 non-carriers, hypertension was related to higher risk of dementia (HR (95% CI), 1.44 (1.13-1.82), p = 0.003). These results were corroborated among a subset with autopsy data characterizing underlying neuropathology. Among younger participants, vascular risk factors did not impact dementia risk, likely from a lower frequency of vascular and Alzheimer's as etiologies of dementia among this cohort. CONCLUSION A history of hypercholesterolemia related to a lower risk of dementia among older APOEɛ4 carriers, while hypertension related to a higher risk of dementia among older APOEɛ4 non-carriers.
Collapse
Affiliation(s)
- Jagan A. Pillai
- Lou Ruvo Center for Brain Health, Cleveland Clinic, Cleveland, OH, USA
- Neurological Institute and Cleveland Clinic, Cleveland, OH, USA
- Department of Neurology, Cleveland Clinic, Cleveland, OH, USA
| | - Lei Kou
- Quantitative Health Sciences, Cleveland Clinic, Cleveland, OH, USA
| | - James Bena
- Quantitative Health Sciences, Cleveland Clinic, Cleveland, OH, USA
| | - Lisa Penn
- Lou Ruvo Center for Brain Health, Cleveland Clinic, Cleveland, OH, USA
| | - James B. Leverenz
- Lou Ruvo Center for Brain Health, Cleveland Clinic, Cleveland, OH, USA
- Neurological Institute and Cleveland Clinic, Cleveland, OH, USA
- Department of Neurology, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
19
|
Liput DJ, Nguyen TA, Augustin SM, Lee JO, Vogel SS. A Guide to Fluorescence Lifetime Microscopy and Förster's Resonance Energy Transfer in Neuroscience. CURRENT PROTOCOLS IN NEUROSCIENCE 2020; 94:e108. [PMID: 33232577 PMCID: PMC8274369 DOI: 10.1002/cpns.108] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Fluorescence lifetime microscopy (FLIM) and Förster's resonance energy transfer (FRET) are advanced optical tools that neuroscientists can employ to interrogate the structure and function of complex biological systems in vitro and in vivo using light. In neurobiology they are primarily used to study protein-protein interactions, to study conformational changes in protein complexes, and to monitor genetically encoded FRET-based biosensors. These methods are ideally suited to optically monitor changes in neurons that are triggered optogenetically. Utilization of this technique by neuroscientists has been limited, since a broad understanding of FLIM and FRET requires familiarity with the interactions of light and matter on a quantum mechanical level, and because the ultra-fast instrumentation used to measure fluorescent lifetimes and resonance energy transfer are more at home in a physics lab than in a biology lab. In this overview, we aim to help neuroscientists overcome these obstacles and thus feel more comfortable with the FLIM-FRET method. Our goal is to aid researchers in the neuroscience community to achieve a better understanding of the fundamentals of FLIM-FRET and encourage them to fully leverage its powerful ability as a research tool. Published 2020. U.S. Government.
Collapse
Affiliation(s)
- Daniel J. Liput
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland
- Laboratory of Molecular Physiology, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland
| | - Tuan A. Nguyen
- Laboratory of Biophotonics and Quantum Biology, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland
| | - Shana M. Augustin
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland
| | - Jeong Oen Lee
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland
| | - Steven S. Vogel
- Laboratory of Biophotonics and Quantum Biology, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland
- Corresponding author:
| |
Collapse
|
20
|
Chen Y, Strickland MR, Soranno A, Holtzman DM. Apolipoprotein E: Structural Insights and Links to Alzheimer Disease Pathogenesis. Neuron 2020; 109:205-221. [PMID: 33176118 DOI: 10.1016/j.neuron.2020.10.008] [Citation(s) in RCA: 147] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 01/02/2023]
Abstract
Apolipoprotein E (ApoE) is of great interest due to its role as a cholesterol/lipid transporter in the central nervous system (CNS) and as the most influential genetic risk factor for Alzheimer disease (AD). Work over the last four decades has given us important insights into the structure of ApoE and how this might impact the neuropathology and pathogenesis of AD. In this review, we highlight the history and progress in the structural and molecular understanding of ApoE and discuss how these studies on ApoE have illuminated the physiology of ApoE, receptor binding, and interaction with amyloid-β (Aβ). We also identify future areas of study needed to advance our understanding of how ApoE influences neurodegeneration.
Collapse
Affiliation(s)
- Yun Chen
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA; Hope Center for Neurological Disorders, Washington University in St. Louis, St. Louis, MO, USA; Knight Alzheimer's Disease Research Center, Washington University in St. Louis, St. Louis, MO, USA; The Division of Biology and Biomedical Sciences, Washington University in St. Louis, St. Louis, MO, USA; Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO, USA
| | - Michael R Strickland
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA; Hope Center for Neurological Disorders, Washington University in St. Louis, St. Louis, MO, USA; Knight Alzheimer's Disease Research Center, Washington University in St. Louis, St. Louis, MO, USA; The Division of Biology and Biomedical Sciences, Washington University in St. Louis, St. Louis, MO, USA
| | - Andrea Soranno
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, St. Louis, MO, USA; Center for Science & Engineering of Living Systems, Washington University in St. Louis, St. Louis, MO, USA
| | - David M Holtzman
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA; Center for Science & Engineering of Living Systems, Washington University in St. Louis, St. Louis, MO, USA; Knight Alzheimer's Disease Research Center, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
21
|
Iacono D, Feltis GC. Impact of Apolipoprotein E gene polymorphism during normal and pathological conditions of the brain across the lifespan. Aging (Albany NY) 2020; 11:787-816. [PMID: 30677746 PMCID: PMC6366964 DOI: 10.18632/aging.101757] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 01/05/2019] [Indexed: 12/12/2022]
Abstract
The central nervous system (CNS) is the cellular substrate for the integration of complex, dynamic, constant, and simultaneous interactions among endogenous and exogenous stimuli across the entire human lifespan. Numerous studies on aging-related brain diseases show that some genes identified as risk factors for some of the most common neurodegenerative diseases - such as the allele 4 of APOE gene (APOE4) for Alzheimer's disease (AD) - have a much earlier neuro-anatomical and neuro-physiological impact. The impact of APOE polymorphism appears in fact to start as early as youth and early-adult life. Intriguingly, though, those same genes associated with aging-related brain diseases seem to influence different aspects of the brain functioning much earlier actually, that is, even from the neonatal periods and earlier. The APOE4, an allele classically associated with later-life neurodegenerative disorders as AD, seems in fact to exert a series of very early effects on phenomena of neuroplasticity and synaptogenesis that begin from the earliest periods of life such as the fetal ones.We reviewed some of the findings supporting the hypothesis that APOE polymorphism is an early modifier of various neurobiological aspects across the entire human lifespan - from the in-utero to the centenarian life - during both normal and pathological conditions of the brain.
Collapse
Affiliation(s)
- Diego Iacono
- Neuropathology Research, Biomedical Research Institute of New Jersey (BRInj), Cedar Knolls, NJ 07927, USA.,MidAtlantic Neonatology Associates (MANA), Morristown, NJ 07960, USA.,Atlantic Neuroscience Institute, Atlantic Health System (AHS), Overlook Medical Center, Summit, NJ 07901, USA
| | - Gloria C Feltis
- Neuropathology Research, Biomedical Research Institute of New Jersey (BRInj), Cedar Knolls, NJ 07927, USA
| |
Collapse
|
22
|
Gharibyan AL, Islam T, Pettersson N, Golchin SA, Lundgren J, Johansson G, Genot M, Schultz N, Wennström M, Olofsson A. Apolipoprotein E Interferes with IAPP Aggregation and Protects Pericytes from IAPP-Induced Toxicity. Biomolecules 2020; 10:biom10010134. [PMID: 31947546 PMCID: PMC7022431 DOI: 10.3390/biom10010134] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/10/2020] [Accepted: 01/12/2020] [Indexed: 02/06/2023] Open
Abstract
Apolipoprotein E (ApoE) has become a primary focus of research after the discovery of its strong linkage to Alzheimer’s disease (AD), where the ApoE4 variant is the highest genetic risk factor for this disease. ApoE is commonly found in amyloid deposits of different origins, and its interaction with amyloid-β peptide (Aβ), the hallmark of AD, is well known. However, studies on the interaction of ApoEs with other amyloid-forming proteins are limited. Islet amyloid polypeptide (IAPP) is an amyloid-forming peptide linked to the development of type-2 diabetes and has also been shown to be involved in AD pathology and vascular dementia. Here we studied the impact of ApoE on IAPP aggregation and IAPP-induced toxicity on blood vessel pericytes. Using both in vitro and cell-based assays, we show that ApoE efficiently inhibits the amyloid formation of IAPP at highly substoichiometric ratios and that it interferes with both nucleation and elongation. We also show that ApoE protects the pericytes against IAPP-induced toxicity, however, the ApoE4 variant displays the weakest protective potential. Taken together, our results suggest that ApoE has a generic amyloid-interfering property and can be protective against amyloid-induced cytotoxicity, but there is a loss of function for the ApoE4 variant.
Collapse
Affiliation(s)
- Anna L. Gharibyan
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-901 87 Umeå, Sweden; (T.I.); (N.P.); (S.A.G.); (J.L.); (G.J.); (M.G.)
- Correspondence: (A.L.G.); (A.O.); Tel.: +46-73-912-54-94 (A.L.G.); +46-70-354-33-01 (A.O.)
| | - Tohidul Islam
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-901 87 Umeå, Sweden; (T.I.); (N.P.); (S.A.G.); (J.L.); (G.J.); (M.G.)
| | - Nina Pettersson
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-901 87 Umeå, Sweden; (T.I.); (N.P.); (S.A.G.); (J.L.); (G.J.); (M.G.)
| | - Solmaz A. Golchin
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-901 87 Umeå, Sweden; (T.I.); (N.P.); (S.A.G.); (J.L.); (G.J.); (M.G.)
| | - Johanna Lundgren
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-901 87 Umeå, Sweden; (T.I.); (N.P.); (S.A.G.); (J.L.); (G.J.); (M.G.)
| | - Gabriella Johansson
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-901 87 Umeå, Sweden; (T.I.); (N.P.); (S.A.G.); (J.L.); (G.J.); (M.G.)
| | - Mélany Genot
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-901 87 Umeå, Sweden; (T.I.); (N.P.); (S.A.G.); (J.L.); (G.J.); (M.G.)
| | - Nina Schultz
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, 21428 Malmö, Sweden; (N.S.); (M.W.)
| | - Malin Wennström
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, 21428 Malmö, Sweden; (N.S.); (M.W.)
| | - Anders Olofsson
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-901 87 Umeå, Sweden; (T.I.); (N.P.); (S.A.G.); (J.L.); (G.J.); (M.G.)
- Correspondence: (A.L.G.); (A.O.); Tel.: +46-73-912-54-94 (A.L.G.); +46-70-354-33-01 (A.O.)
| |
Collapse
|
23
|
Zhang Q, Deng J, Li YN, Gou Y, Yan XX, Li F, Pan AH. Perceptions and Attitudes toward Brain Donation among the Chinese People. ANATOMICAL SCIENCES EDUCATION 2020; 13:80-90. [PMID: 31022327 DOI: 10.1002/ase.1886] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 04/16/2019] [Accepted: 04/18/2019] [Indexed: 06/09/2023]
Abstract
Postmortem human brain donation is crucial to both anatomy education and research. The China Human Brain Banking Consortium was established recently to foster brain donation in China. The purpose of this study was to gain information about the public perception of and attitudes toward brain donation and to identify factors that may impact the willingness to participate in brain donation among the Chinese people. A specifically designed questionnaire was delivered to community residents in Changsha (the capital city of Hunan province) with a total of 1,249 completed forms returned and statistically analyzed. The majority of the participants considered that brain donation would help medical research and education, and 32.0% of respondents agreed that the brain donation would help change the traditional Chinese funeral belief in keeping the body intact after death. However, participants aged over 60 years old were less supportive of this concept. Among all participants, 63.7% stated that they were not knowledgeable about brain donation, while 26.4% explicitly expressed a willingness to participate in brain donation. Age, gender, monthly household income, and knowledge about brain donation significantly affected the willingness. Compared with other age groups, a higher proportion of participants aged over 60 years old preferred to be informed by a medical college. To promote brain donation in China, especially among the elderly, better communication of its medical benefits and a reinterpretation of the Confucius view of the human body should be provided. Efforts are also needed to provide appropriate forums and sources of brain donation information to targeted communities and society in general.
Collapse
Affiliation(s)
- Qi Zhang
- Xiangya Brain Bank, School of Basic Medical Science, Central South University, Changsha, Hunan, People's Republic of China
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan, People's Republic of China
| | - Jing Deng
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, Hunan, People's Republic of China
| | - Ya-Nan Li
- Xiangya Brain Bank, School of Basic Medical Science, Central South University, Changsha, Hunan, People's Republic of China
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan, People's Republic of China
| | - Yue Gou
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan, People's Republic of China
| | - Xiao-Xin Yan
- Xiangya Brain Bank, School of Basic Medical Science, Central South University, Changsha, Hunan, People's Republic of China
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan, People's Republic of China
| | - Fang Li
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan, People's Republic of China
| | - Ai-Hua Pan
- Xiangya Brain Bank, School of Basic Medical Science, Central South University, Changsha, Hunan, People's Republic of China
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan, People's Republic of China
| |
Collapse
|
24
|
Huynh TPV, Wang C, Tran AC, Tabor GT, Mahan TE, Francis CM, Finn MB, Spellman R, Manis M, Tanzi RE, Ulrich JD, Holtzman DM. Lack of hepatic apoE does not influence early Aβ deposition: observations from a new APOE knock-in model. Mol Neurodegener 2019; 14:37. [PMID: 31623648 PMCID: PMC6796484 DOI: 10.1186/s13024-019-0337-1] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 08/30/2019] [Indexed: 11/23/2022] Open
Abstract
Background The apolipoprotein E (APOE) gene is the strongest genetic risk factor for late-onset Alzheimer disease (AD). ApoE is produced by both astrocytes and microglia in the brain, whereas hepatocytes produce the majority of apoE found in the periphery. Studies using APOE knock-in and transgenic mice have demonstrated a strong isoform-dependent effect of apoE on the accumulation of amyloid-β (Aβ) deposition in the brain in the form of both Aβ-containing amyloid plaques and cerebral amyloid angiopathy. However, the specific contributions of different apoE pools to AD pathogenesis remain unknown. Methods We have begun to address these questions by generating new lines of APOE knock-in (APOE-KI) mice (ε2/ε2, ε3/ε3, and ε4/ε4) where the exons in the coding region of APOE are flanked by loxP sites, allowing for cell type-specific manipulation of gene expression. We assessed these mice both alone and after crossing them with mice with amyloid deposition in the brain. Using biochemical and histological methods. We also investigated how removal of APOE expression from hepatocytes affected cerebral amyloid deposition. Results As in other APOE knock-in mice, apoE protein was present predominantly in astrocytes in the brain under basal conditions and was also detected in reactive microglia surrounding amyloid plaques. Primary cultured astrocytes and microglia from the APOE-KI mice secreted apoE in lipoprotein particles of distinct size distribution upon native gel analysis with microglial particles being substantially smaller than the HDL-like particles secreted by astrocytes. Crossing of APP/PS1 transgenic mice to the different APOE-KI mice recapitulated the previously described isoform-specific effect (ε4 > ε3) on amyloid plaque and Aβ accumulation. Deletion of APOE in hepatocytes did not alter brain apoE levels but did lead to a marked decrease in plasma apoE levels and changes in plasma lipid profile. Despite these changes in peripheral apoE and on plasma lipids, cerebral accumulation of amyloid plaques in APP/PS1 mice was not affected. Conclusions Altogether, these new knock-in strains offer a novel and dynamic tool to study the role of APOE in AD pathogenesis in a spatially and temporally controlled manner. Electronic supplementary material The online version of this article (10.1186/s13024-019-0337-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tien-Phat V Huynh
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA.,Medical Scientist Training Program (MSTP), Washington University School of Medicine, St. Louis, MO, USA
| | - Chao Wang
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Ainsley C Tran
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - G Travis Tabor
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA.,Medical Scientist Training Program (MSTP), Washington University School of Medicine, St. Louis, MO, USA
| | - Thomas E Mahan
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Caroline M Francis
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Mary Beth Finn
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Rebecca Spellman
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Melissa Manis
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Rudolph E Tanzi
- McCance Center for Brain Health and Genetics and Aging Research Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Jason D Ulrich
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - David M Holtzman
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
25
|
Mouchard A, Boutonnet MC, Mazzocco C, Biendon N, Macrez N. ApoE-fragment/Aβ heteromers in the brain of patients with Alzheimer's disease. Sci Rep 2019; 9:3989. [PMID: 30850702 PMCID: PMC6408522 DOI: 10.1038/s41598-019-40438-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 02/13/2019] [Indexed: 11/09/2022] Open
Abstract
Identification of endogenous pathological amyloid β peptides (Aβ) forms in the brains of patients with Alzheimer’s disease (AD) is still unclear. In healthy brain, Aβ can associate with Apolipoprotein E (ApoE) which is involved in its metabolism and clearance. In the brain of patients with AD, ApoE is cleaved and produces ApoE fragments. We studied the forms of Aβ and their interaction with the ApoE fragments in post-mortem brains from control and AD patients by western blots and co-immunoprecipitation. Three Aβ-containing peptides and three ApoE fragments were specifically found in the brain of AD patients. Co-immunoprecipitations showed that ApoE fragments and Aβ1–42 peptides are co-partners in heteromers of 18 and 16 kDa while ApoE-fragments and Aβ peptides of 12 kDa did not interact with each other. Formation of the 18 kDa ApoE-fragment/Aβ heteromers is specifically increased in ApoE4 carriers and is a strong brain marker of AD while 16 kDa ApoE-fragment/Aβ and Aβ 12 kDa correlate to memory deficit. These data show that in patients with AD, ApoE fragmentation generates peptides that trap Aβ in the brain. Inhibiting the fragmentation or targeting ApoE fragments could be exploited to define strategies to detect or reverse AD.
Collapse
Affiliation(s)
- Amandine Mouchard
- Bordeaux University, Institut des Maladies Neurodégénératives, UMR, 5293, Bordeaux, France.,CNRS, Institut des Maladies Neurodégénératives, UMR, 5293, Bordeaux, France
| | - Marie-Charlotte Boutonnet
- Bordeaux University, Institut des Maladies Neurodégénératives, UMR, 5293, Bordeaux, France.,CNRS, Institut des Maladies Neurodégénératives, UMR, 5293, Bordeaux, France
| | - Claire Mazzocco
- Bordeaux University, Institut des Maladies Neurodégénératives, UMR, 5293, Bordeaux, France.,CNRS, Institut des Maladies Neurodégénératives, UMR, 5293, Bordeaux, France
| | - Nathalie Biendon
- Bordeaux University, Institut des Maladies Neurodégénératives, UMR, 5293, Bordeaux, France.,CNRS, Institut des Maladies Neurodégénératives, UMR, 5293, Bordeaux, France
| | - Nathalie Macrez
- Bordeaux University, Institut des Maladies Neurodégénératives, UMR, 5293, Bordeaux, France. .,CNRS, Institut des Maladies Neurodégénératives, UMR, 5293, Bordeaux, France.
| | | |
Collapse
|
26
|
Kara E, Marks JD, Roe AD, Commins C, Fan Z, Calvo-Rodriguez M, Wegmann S, Hudry E, Hyman BT. A flow cytometry-based in vitro assay reveals that formation of apolipoprotein E (ApoE)-amyloid beta complexes depends on ApoE isoform and cell type. J Biol Chem 2018; 293:13247-13256. [PMID: 29950521 DOI: 10.1074/jbc.ra117.001388] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 05/21/2018] [Indexed: 11/06/2022] Open
Abstract
Apolipoprotein E (ApoE) is a secreted apolipoprotein with three isoforms, E2, E3, and E4, that binds to lipids and facilitates their transport in the extracellular environment of the brain and the periphery. The E4 allele is a major genetic risk factor for the sporadic form of Alzheimer's disease (AD), and studies of human brain and mouse models have revealed that E4 significantly exacerbates the deposition of amyloid beta (Aβ). It has been suggested that this deposition could be attributed to the formation of soluble ApoE isoform-specific ApoE-Aβ complexes. However, previous studies have reported conflicting results regarding the directionality and strength of those interactions. In this study, using a series of flow cytometry assays that maintain the physiological integrity of ApoE-Aβ complexes, we systematically assessed the association of Aβ with ApoE2, E3, or E4. We used ApoE secreted from HEK cells or astrocytes overexpressing ApoE fused with a GFP tag. As a source of soluble Aβ peptide, we used synthetic Aβ40 or Aβ42 or physiological Aβ secreted from CHO cell lines overexpressing WT or V717F variant amyloid precursor protein (APP). We observed significant interactions between the different ApoE isoforms and Aβ, with E4 interacting with Aβ more strongly than the E2 and E3 isoforms. We also found subtle differences depending on the Aβ type and the ApoE-producing cell type. In conclusion, these results indicate that the strength of the ApoE-Aβ association depends on the source of Aβ or ApoE.
Collapse
Affiliation(s)
- Eleanna Kara
- From the Alzheimer's Disease Research Laboratory, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129
| | - Jordan D Marks
- From the Alzheimer's Disease Research Laboratory, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129
| | - Allyson D Roe
- From the Alzheimer's Disease Research Laboratory, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129
| | - Caitlin Commins
- From the Alzheimer's Disease Research Laboratory, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129
| | - Zhanyun Fan
- From the Alzheimer's Disease Research Laboratory, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129
| | - Maria Calvo-Rodriguez
- From the Alzheimer's Disease Research Laboratory, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129
| | - Susanne Wegmann
- From the Alzheimer's Disease Research Laboratory, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129
| | - Eloise Hudry
- From the Alzheimer's Disease Research Laboratory, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129
| | - Bradley T Hyman
- From the Alzheimer's Disease Research Laboratory, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129
| |
Collapse
|
27
|
ApoE isoforms and carboxyl-terminal-truncated apoE4 forms affect neuronal BACE1 levels and Aβ production independently of their cholesterol efflux capacity. Biochem J 2018; 475:1839-1859. [DOI: 10.1042/bcj20180068] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 04/25/2018] [Accepted: 05/02/2018] [Indexed: 01/14/2023]
Abstract
The β-site amyloid precursor protein-cleaving enzyme 1 (BACE1) initiates the production of amyloid-β peptide (Aβ), which is central to the pathogenesis of Alzheimer's disease (AD). Changes in brain cholesterol homeostasis have been suggested to affect Aβ metabolism. Cholesterol homeostasis is maintained in the brain by apolipoprotein E (apoE). The apoE4 isoform constitutes the major risk factor for AD. Here, we investigated the effect of apoE forms on Aβ generation and on BACE1 levels. We also examined the potential involvement in these processes of cholesterol transporters ABCG1 and ABCG4 or the lipoprotein receptor SR-BI, which are implicated in cholesterol efflux to apoE. It was found that reconstituted lipoprotein-associated apoE isoforms promoted the increase of Aβ production and oligomerization and of BACE1 levels in human neuroblastoma SK-N-SH cells, with an apoE4 ≥ apoE3 > apoE2 potency rank order. Progressive carboxyl-terminal apoE4 deletions between residues 230–299 decreased the protein's ability to increase BACE1, while further truncations up to residue 166 prevented apoE4 from increasing BACE1 and Aβ levels in SK-N-SH and primary mouse neuronal cells. ABCG1, but not ABCG4 or SR-BI, moderately increased Aβ production and BACE1 levels in SK-N-SH cells. All apoE forms affected Aβ production/oligomerization and BACE1 levels in a pattern that did not follow that of their capacity to promote ABCG1, ABCG4 or SR-BI-mediated cholesterol efflux. Overall, our data indicate that apoE-containing lipoprotein particles can have a direct effect on BACE1 levels and Aβ secretion and possibly contribute to AD pathogenetic processes, independently of their capacity to promote cholesterol efflux.
Collapse
|
28
|
Gylys KH, Bilousova T. Flow Cytometry Analysis and Quantitative Characterization of Tau in Synaptosomes from Alzheimer's Disease Brains. Methods Mol Biol 2018; 1523:273-284. [PMID: 27975256 DOI: 10.1007/978-1-4939-6598-4_16] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2023]
Abstract
Synaptosomes, resealed nerve terminals that form when tissue is homogenized in isotonic medium, are a model system that has been a key source of knowledge about neurotransmission. Synaptosomes contain mitochondria, cytoskeletal proteins, and release neurotransmitters; many have postsynaptic elements. Cryopreservation at the time of autopsy makes it possible to prepare synaptosomes from human samples. Flow cytometry is a powerful analytic technique that precisely measures fluorescence on a cell-by-cell basis, and also indicates particle size and complexity with a routine parameter that measures light scattering. We describe here a procedure for flow cytometry analysis of tau in synaptosomes, a procedure that enables (1) "purification" of synaptosomes from the P-2 fraction (crude synaptosomes) by gating on particle size, and (2) quantitative measure of tau immunofluorescence in individual terminals. Application of flow cytometry to study of synaptosomes has yielded important information, not possible with routine biochemistry, about synaptic pathology in Alzheimer's disease.
Collapse
Affiliation(s)
- Karen Hoppens Gylys
- UCLA School of Nursing and Mary S. Easton Center for Alzheimer's Research at UCLA, Box 956919, Factor Building, Los Angeles, CA, 90095-6919, USA.
| | - Tina Bilousova
- UCLA School of Nursing and Mary S. Easton Center for Alzheimer's Research at UCLA, Box 956919, Factor Building, Los Angeles, CA, 90095-6919, USA
| |
Collapse
|
29
|
Kara E, Marks JD, Fan Z, Klickstein JA, Roe AD, Krogh KA, Wegmann S, Maesako M, Luo CC, Mylvaganam R, Berezovska O, Hudry E, Hyman BT. Isoform- and cell type-specific structure of apolipoprotein E lipoparticles as revealed by a novel Forster resonance energy transfer assay. J Biol Chem 2017; 292:14720-14729. [PMID: 28684412 DOI: 10.1074/jbc.m117.784264] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 06/14/2017] [Indexed: 11/06/2022] Open
Abstract
Apolipoprotein E (apoE) has an important role in the pathogenesis of Alzheimer's disease with its three isoforms having distinct effects on disease risk. Here, we assessed the conformational differences between those isoforms using a novel flow cytometry-Forster resonance energy transfer (FRET) assay. We showed that the conformation of intracellular apoE within HEK cells and astrocytes adopts a directional pattern; in other words, E4 adopts the most closed conformation, E2 adopts the most open conformation, and E3 adopts an intermediate conformation. However, this pattern was not maintained upon secretion of apoE from astrocytes. Intermolecular interactions between apoE molecules were isoform-specific, indicating a great diversity in the structure of apoE lipoparticles. Finally, we showed that secreted E4 is the most lipidated isoform in astrocytes, suggesting that increased lipidation acts as a folding chaperone enabling E4 to adopt a closed conformation. In conclusion, this study gives insights into apoE biology and establishes a robust screening system to monitor apoE conformation.
Collapse
Affiliation(s)
- Eleanna Kara
- From the Alzheimer's Disease Research Laboratory, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129 and
| | - Jordan D Marks
- From the Alzheimer's Disease Research Laboratory, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129 and
| | - Zhanyun Fan
- From the Alzheimer's Disease Research Laboratory, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129 and
| | - Jacob A Klickstein
- From the Alzheimer's Disease Research Laboratory, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129 and
| | - Allyson D Roe
- From the Alzheimer's Disease Research Laboratory, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129 and
| | - Kelly A Krogh
- From the Alzheimer's Disease Research Laboratory, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129 and
| | - Susanne Wegmann
- From the Alzheimer's Disease Research Laboratory, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129 and
| | - Masato Maesako
- From the Alzheimer's Disease Research Laboratory, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129 and
| | - Christina C Luo
- Molecular Pathology, Massachusetts General Hospital, Charlestown, Massachusetts 02129
| | - Ravi Mylvaganam
- Molecular Pathology, Massachusetts General Hospital, Charlestown, Massachusetts 02129
| | - Oksana Berezovska
- From the Alzheimer's Disease Research Laboratory, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129 and
| | - Eloise Hudry
- From the Alzheimer's Disease Research Laboratory, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129 and
| | - Bradley T Hyman
- From the Alzheimer's Disease Research Laboratory, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129 and
| |
Collapse
|
30
|
Bruce KD, Zsombok A, Eckel RH. Lipid Processing in the Brain: A Key Regulator of Systemic Metabolism. Front Endocrinol (Lausanne) 2017; 8:60. [PMID: 28421037 PMCID: PMC5378716 DOI: 10.3389/fendo.2017.00060] [Citation(s) in RCA: 149] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 03/17/2017] [Indexed: 12/25/2022] Open
Abstract
Metabolic disorders, particularly aberrations in lipid homeostasis, such as obesity, type 2 diabetes mellitus, and hypertriglyceridemia often manifest together as the metabolic syndrome (MetS). Despite major advances in our understanding of the pathogenesis of these disorders, the prevalence of the MetS continues to rise. It is becoming increasingly apparent that intermediary metabolism within the central nervous system is a major contributor to the regulation of systemic metabolism. In particular, lipid metabolism within the brain is tightly regulated to maintain neuronal structure and function and may signal nutrient status to modulate metabolism in key peripheral tissues such as the liver. There is now a growing body of evidence to suggest that fatty acid (FA) sensing in hypothalamic neurons via accumulation of FAs or FA metabolites may signal nutritional sufficiency and may decrease hepatic glucose production, lipogenesis, and VLDL-TG secretion. In addition, recent studies have highlighted the existence of liver-related neurons that have the potential to direct such signals through parasympathetic and sympathetic nervous system activity. However, to date whether these liver-related neurons are FA sensitive remain to be determined. The findings discussed in this review underscore the importance of the autonomic nervous system in the regulation of systemic metabolism and highlight the need for further research to determine the key features of FA neurons, which may serve as novel therapeutic targets for the treatment of metabolic disorders.
Collapse
Affiliation(s)
- Kimberley D. Bruce
- University of Colorado School of Medicine, Division of Endocrinology, Metabolism and Diabetes, Aurora, CO, USA
- *Correspondence: Kimberley D. Bruce,
| | - Andrea Zsombok
- Department of Physiology, School of Medicine, Tulane University, New Orleans, LA, USA
| | - Robert H. Eckel
- University of Colorado School of Medicine, Division of Endocrinology, Metabolism and Diabetes, Aurora, CO, USA
| |
Collapse
|
31
|
Chu Q, Diedrich JK, Vaughan JM, Donaldson CJ, Nunn MF, Lee KF, Saghatelian A. HtrA1 Proteolysis of ApoE In Vitro Is Allele Selective. J Am Chem Soc 2016; 138:9473-8. [PMID: 27379525 PMCID: PMC5063305 DOI: 10.1021/jacs.6b03463] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Apolipoprotein E (ApoE) belongs to a large class of proteins that solubilize lipids for physiological transport. Humans have three different APOE alleles, APOE ε2, APOE ε3, and APOE ε4, and genetic studies identified ApoE4 as the strongest genetic risk factor for Alzheimer's disease (AD). People who are homozygous for ApoE4 (i.e., ApoE4/E4) are an order of magnitude more likely to develop late-onset AD (LOAD) than ApoE3/E3 carriers. Several differences between ApoE3 and ApoE4 may contribute to AD including the observation that ApoE4 is degraded to a greater extent than ApoE3 in the human brain. Experiments with high-temperature requirement serine peptidase A1 (HtrA1), which is found in the nervous system, demonstrate that HtrA1 is an allele-selective ApoE-degrading enzyme that degrades ApoE4 more quickly than ApoE3. This activity is specific to HtrA1, as similar assays with HtrA2 showed minimal ApoE4 proteolysis and trypsin had no preference between ApoE4 and ApoE3. HtrA1 has also been reported to cleave the tau protein (Tau) and the amyloid protein precursor (APP) to hinder the formation of toxic amyloid deposits associated with AD. Competition assays with ApoE4, ApoE3, and Tau revealed that ApoE4 inhibits Tau degradation. Thus, the identification of ApoE4 as an in vitro HtrA1 substrate suggests a potential biochemical mechanism that links ApoE4 regulation of AD proteins such as Tau.
Collapse
Affiliation(s)
- Qian Chu
- The Salk Institute for Biological Studies, Clayton Foundation Laboratories for Peptide Biology, 10010 N. Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Jolene K. Diedrich
- The Salk Institute for Biological Studies, Clayton Foundation Laboratories for Peptide Biology, 10010 N. Torrey Pines Rd, La Jolla, CA 92037, USA
- Department of Chemical Physiology, The Scripps Research Institute, 10550 N. Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Joan M. Vaughan
- The Salk Institute for Biological Studies, Clayton Foundation Laboratories for Peptide Biology, 10010 N. Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Cynthia J. Donaldson
- The Salk Institute for Biological Studies, Clayton Foundation Laboratories for Peptide Biology, 10010 N. Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Michael F. Nunn
- The Salk Institute for Biological Studies, Clayton Foundation Laboratories for Peptide Biology, 10010 N. Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Kuo-Fen Lee
- The Salk Institute for Biological Studies, Clayton Foundation Laboratories for Peptide Biology, 10010 N. Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Alan Saghatelian
- The Salk Institute for Biological Studies, Clayton Foundation Laboratories for Peptide Biology, 10010 N. Torrey Pines Rd, La Jolla, CA 92037, USA
| |
Collapse
|
32
|
The ability of apolipoprotein E fragments to promote intraneuronal accumulation of amyloid beta peptide 42 is both isoform and size-specific. Sci Rep 2016; 6:30654. [PMID: 27476701 PMCID: PMC4967930 DOI: 10.1038/srep30654] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 07/07/2016] [Indexed: 11/15/2022] Open
Abstract
The apolipoprotein (apo) E4 isoform is the strongest risk factor for late-onset Alzheimer’s disease (AD). ApoE4 is more susceptible to proteolysis than apoE2 and apoE3 isoforms and carboxyl-terminal truncated apoE4 forms have been found in AD patients’ brain. We have previously shown that a specific apoE4 fragment, apoE4-165, promotes amyloid-peptide beta 42 (Aβ42) accumulation in human neuroblastoma SK-N-SH cells and increased intracellular reactive oxygen species formation, two events considered to occur early in AD pathogenesis. Here, we show that these effects are allele-dependent and absolutely require the apoE4 background. Furthermore, the exact length of the fragment is critical since longer or shorter length carboxyl-terminal truncated apoE4 forms do not elicit the same effects. Structural and thermodynamic analyses showed that apoE4-165 has a compact structure, in contrast to other carboxyl-terminal truncated apoE4 forms that are instead destabilized. Compared however to other allelic backgrounds, apoE4-165 is structurally distinct and less thermodynamically stable suggesting that the combination of a well-folded structure with structural plasticity is a unique characteristic of this fragment. Overall, our findings suggest that the ability of apoE fragments to promote Aβ42 intraneuronal accumulation is specific for both the apoE4 isoform and the particular structural and thermodynamic properties of the fragment.
Collapse
|
33
|
Mahley RW. Apolipoprotein E: from cardiovascular disease to neurodegenerative disorders. J Mol Med (Berl) 2016; 94:739-46. [PMID: 27277824 PMCID: PMC4921111 DOI: 10.1007/s00109-016-1427-y] [Citation(s) in RCA: 280] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 05/04/2016] [Accepted: 05/11/2016] [Indexed: 12/18/2022]
Abstract
Apolipoprotein (apo) E was initially described as a lipid transport protein and major ligand for low density lipoprotein (LDL) receptors with a role in cholesterol metabolism and cardiovascular disease. It has since emerged as a major risk factor (causative gene) for Alzheimer's disease and other neurodegenerative disorders. Detailed understanding of the structural features of the three isoforms (apoE2, apoE3, and apoE4), which differ by only a single amino acid interchange, has elucidated their unique functions. ApoE2 and apoE4 increase the risk for heart disease: apoE2 increases atherogenic lipoprotein levels (it binds poorly to LDL receptors), and apoE4 increases LDL levels (it binds preferentially to triglyceride-rich, very low density lipoproteins, leading to downregulation of LDL receptors). ApoE4 also increases the risk for neurodegenerative diseases, decreases their age of onset, or alters their progression. ApoE4 likely causes neurodegeneration secondary to its abnormal structure, caused by an interaction between its carboxyl- and amino-terminal domains, called domain interaction. When neurons are stressed or injured, they synthesize apoE to redistribute cholesterol for neuronal repair or remodeling. However, because of its altered structure, neuronal apoE4 undergoes neuron-specific proteolysis, generating neurotoxic fragments (12-29 kDa) that escape the secretory pathway and cause mitochondrial dysfunction and cytoskeletal alterations, including tau phosphorylation. ApoE4-associated pathology can be prevented by small-molecule structure correctors that block domain interaction by converting apoE4 to a molecule that resembles apoE3 both structurally and functionally. Structure correctors are a potential therapeutic approach to reduce apoE4 pathology in both cardiovascular and neurological disorders.
Collapse
Affiliation(s)
- Robert W Mahley
- Gladstone Institute of Neurological Disease, 1650 Owens Street, San Francisco, CA, 94158, USA.
- Departments of Pathology and Medicine, University of California, San Francisco, CA, 94143, USA.
| |
Collapse
|
34
|
Xu H, Perreau VM, Dent KA, Bush AI, Finkelstein DI, Adlard PA. Iron Regulates Apolipoprotein E Expression and Secretion in Neurons and Astrocytes. J Alzheimers Dis 2016; 51:471-87. [DOI: 10.3233/jad-150797] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- He Xu
- The Florey Institute of Neuroscience and Mental Health, Melbourne, Victoria, Australia
- The Department of Tissue Engineering, School of Fundamental Science, China Medical University, Shenyang North New Area, Shenyang, Liaoning Province, P.R. China
| | - Victoria M. Perreau
- The Florey Institute of Neuroscience and Mental Health, Melbourne, Victoria, Australia
| | - Krista A. Dent
- The Florey Institute of Neuroscience and Mental Health, Melbourne, Victoria, Australia
| | - Ashley I. Bush
- The Florey Institute of Neuroscience and Mental Health, Melbourne, Victoria, Australia
| | - David I. Finkelstein
- The Florey Institute of Neuroscience and Mental Health, Melbourne, Victoria, Australia
| | - Paul A. Adlard
- The Florey Institute of Neuroscience and Mental Health, Melbourne, Victoria, Australia
| |
Collapse
|
35
|
Bamburg JR, Bernstein BW. Actin dynamics and cofilin-actin rods in alzheimer disease. Cytoskeleton (Hoboken) 2016; 73:477-97. [PMID: 26873625 DOI: 10.1002/cm.21282] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 02/04/2016] [Accepted: 02/05/2016] [Indexed: 12/18/2022]
Abstract
Cytoskeletal abnormalities and synaptic loss, typical of both familial and sporadic Alzheimer disease (AD), are induced by diverse stresses such as neuroinflammation, oxidative stress, and energetic stress, each of which may be initiated or enhanced by proinflammatory cytokines or amyloid-β (Aβ) peptides. Extracellular Aβ-containing plaques and intracellular phospho-tau-containing neurofibrillary tangles are postmortem pathologies required to confirm AD and have been the focus of most studies. However, AD brain, but not normal brain, also have increased levels of cytoplasmic rod-shaped bundles of filaments composed of ADF/cofilin-actin in a 1:1 complex (rods). Cofilin, the major ADF/cofilin isoform in mammalian neurons, severs actin filaments at low cofilin/actin ratios and stabilizes filaments at high cofilin/actin ratios. It binds cooperatively to ADP-actin subunits in F-actin. Cofilin is activated by dephosphorylation and may be oxidized in stressed neurons to form disulfide-linked dimers, required for bundling cofilin-actin filaments into stable rods. Rods form within neurites causing synaptic dysfunction by sequestering cofilin, disrupting normal actin dynamics, blocking transport, and exacerbating mitochondrial membrane potential loss. Aβ and proinflammatory cytokines induce rods through a cellular prion protein-dependent activation of NADPH oxidase and production of reactive oxygen species. Here we review recent advances in our understanding of cofilin biochemistry, rod formation, and the development of cognitive deficits. We will then discuss rod formation as a molecular pathway for synapse loss that may be common between all three prominent current AD hypotheses, thus making rods an attractive therapeutic target. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- James R Bamburg
- Department of Biochemistry and Molecular Biology and the Molecular, Cellular and Integrative Neuroscience Program, Colorado State University, Fort Collins, CO.
| | - Barbara W Bernstein
- Department of Biochemistry and Molecular Biology and the Molecular, Cellular and Integrative Neuroscience Program, Colorado State University, Fort Collins, CO
| |
Collapse
|
36
|
Endogenous Apolipoprotein E (ApoE) Fragmentation Is Linked to Amyloid Pathology in Transgenic Mouse Models of Alzheimer’s Disease. Mol Neurobiol 2016; 54:319-327. [DOI: 10.1007/s12035-015-9674-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 12/18/2015] [Indexed: 01/03/2023]
|
37
|
Dafnis I, Metso J, Zannis VI, Jauhiainen M, Chroni A. Influence of Isoforms and Carboxyl-Terminal Truncations on the Capacity of Apolipoprotein E To Associate with and Activate Phospholipid Transfer Protein. Biochemistry 2015; 54:5856-66. [PMID: 26337529 DOI: 10.1021/acs.biochem.5b00681] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Phospholipid transfer protein (PLTP), a main protein in lipid and lipoprotein metabolism, exists in high-activity (HA-PLTP) and low-activity (LA-PLTP) forms in human plasma. Proper phospholipid transfer activity of PLTP is modulated by interactions with various apolipoproteins (apo) including apoE. The domains of apoE involved in interactions with PLTP are not known. Here we analyzed the capacity of recombinant apoE isoforms and apoE4 mutants with progressive carboxyl-terminal deletions to bind to and activate HA-PLTP and LA-PLTP. Our analyses demonstrated that lipid-free apoE isoforms bind to both HA-PLTP and LA-PLTP, resulting in phospholipid transfer activation, with apoE3 inducing the highest PLTP activation. The isoform-specific differences in apoE/PLTP binding and PLTP activation were abolished following apoE lipidation. Lipid-free apoE4[Δ(260-299)], apoE4[Δ(230-299)], apoE4[Δ(203-299)], and apoE4[Δ(186-299)] activated HA-PLTP by 120-160% compared to full-length apoE4. Lipid-free apoE4[Δ(186-299)] also activated LA-PLTP by 85% compared to full-length apoE4. All lipidated truncated apoE4 forms displayed a similar effect on HA-PLTP and LA-PLTP activity as full-length apoE4. Strikingly, lipid-free or lipidated full-length apoE4 and apoE4[Δ(186-299)] demonstrated similar binding capacity to LA-PLTP and HA-PLTP. Biophysical studies showed that the carboxyl-terminal truncations of apoE4 resulted in small changes of the structural or thermodynamic properties of lipidated apoE4, that were much less pronounced compared to changes observed previously for lipid-free apoE4. Overall, our findings show an isoform-dependent binding to and activation of PLTP by lipid-free apoE. Furthermore, the domain of apoE4 required for PLTP activation resides within its amino-terminal 1-185 region. The apoE/PLTP interactions can be modulated by the conformation and lipidation state of apoE.
Collapse
Affiliation(s)
- Ioannis Dafnis
- Institute of Biosciences and Applications, National Center for Scientific Research "Demokritos" , Agia Paraskevi 15310, Athens, Greece
| | - Jari Metso
- Genomics and Biomarkers Unit, Biomedicum, National Institute for Health and Welfare , Helsinki 00290, Finland
| | - Vassilis I Zannis
- Departments of Medicine and Biochemistry, Molecular Genetics, Whitaker Cardiovascular Institute, Boston University School of Medicine , Boston, Massachusetts 02118, United States
| | - Matti Jauhiainen
- Genomics and Biomarkers Unit, Biomedicum, National Institute for Health and Welfare , Helsinki 00290, Finland
| | - Angeliki Chroni
- Institute of Biosciences and Applications, National Center for Scientific Research "Demokritos" , Agia Paraskevi 15310, Athens, Greece
| |
Collapse
|
38
|
Xu H, Gupta VB, Martins IJ, Martins RN, Fowler CJ, Bush AI, Finkelstein DI, Adlard PA. Zinc affects the proteolytic stability of Apolipoprotein E in an isoform-dependent way. Neurobiol Dis 2015; 81:38-48. [PMID: 26117305 DOI: 10.1016/j.nbd.2015.06.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Revised: 05/26/2015] [Accepted: 06/21/2015] [Indexed: 11/29/2022] Open
Abstract
The pathological role of zinc in Alzheimer's disease (AD) is not yet fully elucidated, but there is strong evidence that zinc homeostasis is impaired in the AD brain and that this contributes to disease pathogenesis. In this study we examined the effects of zinc on the proteolysis of synthetic Apolipoprotein E (ApoE), a protein whose allelic variants differentially contribute to the onset/progression of disease. We have demonstrated that zinc promotes the proteolysis (using plasma kallikrein, thrombin and chymotrypsin) of synthetic ApoE in an isoform-specific way (E4>E2 and E3), resulting in more ApoE fragments, particularly for ApoE4. In the absence of exogenous proteases there was no effect of metal modulation on either lipidated or non-lipidated ApoE isoforms. Thus, increased zinc in the complex milieu of the ageing and AD brain could reduce the level of normal full-length ApoE and increase other forms that are involved in neurodegeneration. We further examined human plasma samples from people with different ApoE genotypes. Consistent with previous studies, plasma ApoE levels varied according to different genotypes, with ApoE2 carriers showing the highest total ApoE levels and ApoE4 carriers the lowest. The levels of plasma ApoE were not affected by either the addition of exogenous metals (copper, zinc or iron) or by chelation. Taken together, our study reveals that zinc may contribute to the pathogenesis of AD by affecting the proteolysis of ApoE, which to some extent explains why APOE4 carriers are more susceptible to AD.
Collapse
Affiliation(s)
- He Xu
- The Florey Institute of Neuroscience and Mental Health, Melbourne, Victoria 3010, Australia
| | - Veer B Gupta
- Centre of Excellence for Alzheimer's Disease Research and Care, School of Medical Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup, 6027 WA, Australia
| | - Ian J Martins
- Centre of Excellence for Alzheimer's Disease Research and Care, School of Medical Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup, 6027 WA, Australia
| | - Ralph N Martins
- Centre of Excellence for Alzheimer's Disease Research and Care, School of Medical Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup, 6027 WA, Australia
| | - Christopher J Fowler
- The Florey Institute of Neuroscience and Mental Health, Melbourne, Victoria 3010, Australia
| | - Ashley I Bush
- The Florey Institute of Neuroscience and Mental Health, Melbourne, Victoria 3010, Australia
| | - David I Finkelstein
- The Florey Institute of Neuroscience and Mental Health, Melbourne, Victoria 3010, Australia
| | - Paul A Adlard
- The Florey Institute of Neuroscience and Mental Health, Melbourne, Victoria 3010, Australia.
| |
Collapse
|
39
|
Deroo S, Stengel F, Mohammadi A, Henry N, Hubin E, Krammer EM, Aebersold R, Raussens V. Chemical cross-linking/mass spectrometry maps the amyloid β peptide binding region on both apolipoprotein E domains. ACS Chem Biol 2015; 10:1010-6. [PMID: 25546376 DOI: 10.1021/cb500994j] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Apolipoprotein E (apoE) binds the amyloid β peptide (Aβ), one of the major culprits in Alzheimer's disease development. The formation of apoE:Aβ complexes is implicated in both Aβ clearance and fibrillization. However, the binding interface between apoE and Aβ is poorly defined despite substantial previous research efforts, and the exact role of apoE in the pathology of Alzheimer's disease remains largely elusive. Here, we compared the three main isoforms of apoE (E2, E3, and E4) for their interaction with Aβ1-42 in an early stage of aggregation and at near physiological conditions. Using electron microscopy and Western blots, we showed that all three isoforms are able to prevent Aβ fibrillization and form a noncovalent complex, with one molecule of Aβ bound per apoE. Using chemical cross-linking coupled to mass spectrometry, we further examined the interface of interaction between apoE2/3/4 and Aβ. Multiple high-confidence intermolecular apoE2/3/4:Aβ cross-links confirmed that Lys16 is located in the region of Aβ binding to apoE2/3/4. Further, we demonstrated that both N- and C-terminal domains of apoE2/3/4 are interacting with Aβ. The cross-linked sites were mapped onto and evaluated in light of a recent structure of apoE. Our results support binding of the hydrophobic Aβ at the apoE domain-domain interaction interface, which would explain how apoE is able to stabilize Aβ and thereby prevent its subsequent aggregation.
Collapse
Affiliation(s)
- Stéphanie Deroo
- †Center for Structural Biology and Bioinformatics, Université Libre de Bruxelles, Brussels, Belgium
| | - Florian Stengel
- ‡Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Azadeh Mohammadi
- †Center for Structural Biology and Bioinformatics, Université Libre de Bruxelles, Brussels, Belgium
| | - Nicolas Henry
- †Center for Structural Biology and Bioinformatics, Université Libre de Bruxelles, Brussels, Belgium
| | - Ellen Hubin
- ∥Nanobiophysics Group, MIRA Institute for Biomedical Technology and Technical Medicine, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
- ⊥Structural Biology Brussels, Department of Biotechnology, and Structural Biology Research Center, VIB, Vrije Universiteit Brussel, Brussels, Belgium
| | - Eva-Maria Krammer
- †Center for Structural Biology and Bioinformatics, Université Libre de Bruxelles, Brussels, Belgium
| | - Ruedi Aebersold
- ‡Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
- §Faculty of Science, University of Zurich, Zurich, Switzerland
| | - Vincent Raussens
- †Center for Structural Biology and Bioinformatics, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
40
|
Chakrabarty P, Li A, Ceballos-Diaz C, Eddy JA, Funk CC, Moore B, DiNunno N, Rosario AM, Cruz PE, Verbeeck C, Sacino A, Nix S, Janus C, Price ND, Das P, Golde TE. IL-10 alters immunoproteostasis in APP mice, increasing plaque burden and worsening cognitive behavior. Neuron 2015; 85:519-33. [PMID: 25619653 DOI: 10.1016/j.neuron.2014.11.020] [Citation(s) in RCA: 277] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Revised: 10/24/2014] [Accepted: 11/20/2014] [Indexed: 01/27/2023]
Abstract
Anti-inflammatory strategies are proposed to have beneficial effects in Alzheimer's disease. To explore how anti-inflammatory cytokine signaling affects Aβ pathology, we investigated the effects of adeno-associated virus (AAV2/1)-mediated expression of Interleukin (IL)-10 in the brains of APP transgenic mouse models. IL-10 expression resulted in increased Aβ accumulation and impaired memory in APP mice. A focused transcriptome analysis revealed changes consistent with enhanced IL-10 signaling and increased ApoE expression in IL-10-expressing APP mice. ApoE protein was selectively increased in the plaque-associated insoluble cellular fraction, likely because of direct interaction with aggregated Aβ in the IL-10-expressing APP mice. Ex vivo studies also show that IL-10 and ApoE can individually impair glial Aβ phagocytosis. Our observations that IL-10 has an unexpected negative effect on Aβ proteostasis and cognition in APP mouse models demonstrate the complex interplay between innate immunity and proteostasis in neurodegenerative diseases, an interaction we call immunoproteostasis.
Collapse
Affiliation(s)
- Paramita Chakrabarty
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA.
| | - Andrew Li
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| | - Carolina Ceballos-Diaz
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| | - James A Eddy
- Institute for Systems Biology, 401 Terry Avenue N, Seattle, WA 98109, USA
| | - Cory C Funk
- Institute for Systems Biology, 401 Terry Avenue N, Seattle, WA 98109, USA
| | - Brenda Moore
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| | - Nadia DiNunno
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| | - Awilda M Rosario
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| | - Pedro E Cruz
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| | - Christophe Verbeeck
- Department of Neuroscience, Mayo Clinic College of Medicine, Jacksonville, FL 32224, USA
| | - Amanda Sacino
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| | - Sarah Nix
- Department of Neuroscience, Mayo Clinic College of Medicine, Jacksonville, FL 32224, USA
| | - Christopher Janus
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| | - Nathan D Price
- Institute for Systems Biology, 401 Terry Avenue N, Seattle, WA 98109, USA
| | - Pritam Das
- Department of Neuroscience, Mayo Clinic College of Medicine, Jacksonville, FL 32224, USA
| | - Todd E Golde
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|
41
|
Sun Y, Periasamy A. Localizing protein-protein interactions in living cells using fluorescence lifetime imaging microscopy. Methods Mol Biol 2015; 1251:83-107. [PMID: 25391796 DOI: 10.1007/978-1-4939-2080-8_6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
In the past decade, advances in fluorescence lifetime imaging have extensively applied in the life sciences, from fundamental biological investigations to advanced clinical diagnosis. Fluorescence lifetime imaging microscopy (FLIM) is now routinely used in the biological sciences to monitor dynamic signaling events inside living cells, e.g., Protein-Protein interactions. In this chapter, we describe the calibration of both time-correlated single-photon counting (TCSPC) and frequency domain (FD) FLIM systems and the acquisition and analysis of FLIM-FRET data for investigating Protein-Protein interactions in living cells.
Collapse
Affiliation(s)
- Yuansheng Sun
- W.M. Keck Center for Cellular Imaging, Biology, University of Virginia, B005 Physical and Life Sciences Building, White Head Road, Charlottesville, VA, 22904, USA
| | | |
Collapse
|
42
|
Huang Y, Mahley RW. Apolipoprotein E: structure and function in lipid metabolism, neurobiology, and Alzheimer's diseases. Neurobiol Dis 2014; 72 Pt A:3-12. [PMID: 25173806 PMCID: PMC4253862 DOI: 10.1016/j.nbd.2014.08.025] [Citation(s) in RCA: 477] [Impact Index Per Article: 47.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 08/06/2014] [Accepted: 08/20/2014] [Indexed: 12/01/2022] Open
Abstract
Apolipoprotein (apo) E is a multifunctional protein with central roles in lipid metabolism, neurobiology, and neurodegenerative diseases. It has three major isoforms (apoE2, apoE3, and apoE4) with different effects on lipid and neuronal homeostasis. A major function of apoE is to mediate the binding of lipoproteins or lipid complexes in the plasma or interstitial fluids to specific cell-surface receptors. These receptors internalize apoE-containing lipoprotein particles; thus, apoE participates in the distribution/redistribution of lipids among various tissues and cells of the body. In addition, intracellular apoE may modulate various cellular processes physiologically or pathophysiologically, including cytoskeletal assembly and stability, mitochondrial integrity and function, and dendritic morphology and function. Elucidation of the functional domains within this protein and of the three-dimensional structure of the major isoforms of apoE has contributed significantly to our understanding of its physiological and pathophysiological roles at a molecular level. It is likely that apoE, with its multiple cellular origins and multiple structural and biophysical properties, is involved widely in processes of lipid metabolism and neurobiology, possibly encompassing a variety of disorders of neuronal repair, remodeling, and degeneration by interacting with different factors through various pathways.
Collapse
Affiliation(s)
- Yadong Huang
- Gladstone Institute of Neurological Disease, University of California, San Francisco 94158, USA; Gladstone Institute of Cardiovascular Disease, University of California, San Francisco 94158, USA; Department of Neurology, University of California, San Francisco 94158, USA; Department of Pathology, University of California, San Francisco 94158, USA.
| | - Robert W Mahley
- Gladstone Institute of Neurological Disease, University of California, San Francisco 94158, USA; Gladstone Institute of Cardiovascular Disease, University of California, San Francisco 94158, USA; Department of Pathology, University of California, San Francisco 94158, USA; Department of Medicine, University of California, San Francisco 94158, USA
| |
Collapse
|
43
|
APOE2 enhances neuroprotection against Alzheimer's disease through multiple molecular mechanisms. Mol Psychiatry 2014; 19:1243-50. [PMID: 24492349 DOI: 10.1038/mp.2013.194] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 11/13/2013] [Accepted: 12/16/2013] [Indexed: 11/09/2022]
Abstract
The common APOE2 gene variant is neuroprotective against Alzheimer's disease (AD) and reduces risk by nearly 50%. However, the mechanisms by which APOE2 confers neuroprotection are largely unknown. Here we showed that ApoE protein abundance in human postmortem cortex follows an isoform-dependent pattern (E2>E3>E4). We also identified a unique downstream transcriptional profile determined by microarray and characterized by downregulation of long-term potentiation (LTP) related transcripts and upregulation of extracellular matrix (ECM)/integrin-related transcripts in E2 cases and corroborated this finding at the protein level by demonstrating increases in ECM collagens and laminins. In vivo studies of healthy older individuals demonstrated a unique and advantageous biomarker signature in E2 carriers. APOE2 also reduced the risk of mild cognitive impairment to AD conversion by half. Our findings suggest that ApoE2 protein abundance, coupled with its inability to bind to LDLRs, may act to increase amyloid-beta (Ab) clearance. In addition, increased ECM and reduced LTP-related expression results in diminished activity-dependent Ab secretion and/or excitotoxicity, and thus also promotes neuroprotection.
Collapse
|
44
|
Application of Factor Analysis in Imaging Mass Spectrometric Data Analysis. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2014. [DOI: 10.1016/s1872-2040(14)60757-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
45
|
Xu H, Finkelstein DI, Adlard PA. Interactions of metals and Apolipoprotein E in Alzheimer's disease. Front Aging Neurosci 2014; 6:121. [PMID: 24971061 PMCID: PMC4054654 DOI: 10.3389/fnagi.2014.00121] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 05/27/2014] [Indexed: 12/14/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common form of dementia, which is characterized by the neuropathological accumulation of extracellular amyloid plaques and intracellular neurofibrillary tangles (NFTs). Clinically, patients will endure a gradual erosion of memory and other higher order cognitive functions. Whilst the underlying etiology of the disease remains to be definitively identified, a body of work has developed over the last two decades demonstrating that AD plasma/serum and brain are characterized by a dyshomeostasis in a number of metal ions. Furthermore, these metals (such as zinc, copper and iron) play roles in the regulation of the levels of AD-related proteins, including the amyloid precursor protein (APP) and tau. It is becoming apparent that metals also interact with other proteins, including apolipoprotein E (ApoE). The Apolipoprotein E gene (APOE) is critically associated with AD, with APOE4 representing the strongest genetic risk factor for the development of late-onset AD. In this review we will summarize the evidence supporting a role for metals in the function of ApoE and its consequent role in the pathogenesis of AD.
Collapse
Affiliation(s)
- He Xu
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne Melbourne, VIC, Australia
| | - David I Finkelstein
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne Melbourne, VIC, Australia
| | - Paul A Adlard
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne Melbourne, VIC, Australia
| |
Collapse
|
46
|
Hauser PS, Ryan RO. Impact of apolipoprotein E on Alzheimer's disease. Curr Alzheimer Res 2014; 10:809-17. [PMID: 23919769 DOI: 10.2174/15672050113109990156] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Revised: 05/10/2013] [Accepted: 05/12/2013] [Indexed: 11/22/2022]
Abstract
A key feature of Alzheimer's disease (AD) is deposition of extracellular amyloid plaque comprised chiefly of the amyloid β (Aβ) peptide. Studies of Aβ have shown that it may be catabolized by proteolysis or cleared from brain via members of the low-density lipoprotein receptor family. Alternatively, Aβ can undergo a conformational transition from α-helix to β-sheet, a conformer that displays a propensity to self-associate, oligomerize and form fibrils. Furthermore, β- sheet conformers catalyze conversion of other α-helical Aβ peptides to β-sheet, feeding the oligomer and fibril assembly process. A factor that influences the fate of Aβ in the extracellular space is apolipoprotein (apo) E. Polymorphism at position 112 or 158 in apoE give rise to three major isoforms. One isoform in particular, apoE4 (Arg at 112 and 158), has generated considerable interest since the discovery that it is the major genetic risk factor for development of late onset AD. Despite this striking correlation, the molecular mechanism underlying apoE4's association with AD remains unclear. A tertiary structural feature distinguishing apoE4 from apoE2 and apoE3, termed domain interaction, is postulated to affect the conformation and orientation of its' two independently folded domains. This feature has the potential to influence apoE4's interaction with Aβ, its sensitivity to proteolysis or its lipid accrual and receptor binding activities. Thus, domain interaction may constitute the principal molecular feature of apoE4 that predisposes carriers to late onset AD. By understanding the contribution of apoE4 to AD at the molecular level new therapeutic or prevention strategies will emerge.
Collapse
Affiliation(s)
- Paul S Hauser
- Children's Hospital Oakland Research Institute, 5700 Martin Luther King Jr. Way, Oakland, CA 94609 USA.
| | | |
Collapse
|
47
|
Tamboli IY, Heo D, Rebeck GW. Extracellular proteolysis of apolipoprotein E (apoE) by secreted serine neuronal protease. PLoS One 2014; 9:e93120. [PMID: 24675880 PMCID: PMC3968057 DOI: 10.1371/journal.pone.0093120] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 03/02/2014] [Indexed: 12/20/2022] Open
Abstract
Under normal conditions, brain apolipoprotein E (apoE) is secreted and lipidated by astrocytes, then taken up by neurons via receptor mediated endocytosis. Free apoE is either degraded in intraneuronal lysosomal compartments or released. Here we identified a novel way by which apoE undergoes proteolysis in the extracellular space via a secreted neuronal protease. We show that apoE is cleaved in neuronal conditioned media by a secreted serine protease. This apoE cleavage was inhibited by PMSF and α1-antichymotrypsin, but not neuroserpin-1 or inhibitors of thrombin and cathepsin G, supporting its identity as a chymotrypsin like protease. In addition, apoE incubation with purified chymotrypsin produced a similar pattern of apoE fragments. Analysis of apoE fragments by mass spectrometry showed cleavages occurring at the C-terminal side of apoE tryptophan residues, further supporting our identification of cleavage by chymotrypsin like protease. Hippocampal neurons were more efficient in mediating this apoE cleavage than cortical neurons. Proteolysis of apoE4 generated higher levels of low molecular weight fragments compared to apoE3. Primary glial cultures released an inhibitor of this proteolytic activity. Together, these studies reveal novel mechanism by which apoE can be regulated and therefore could be useful in designing apoE directed AD therapeutic approaches.
Collapse
Affiliation(s)
- Irfan Y. Tamboli
- Department of Neuroscience, Georgetown University, Washington DC., United States of America
| | - Dongeun Heo
- Department of Neuroscience, Georgetown University, Washington DC., United States of America
| | - G. William Rebeck
- Department of Neuroscience, Georgetown University, Washington DC., United States of America
| |
Collapse
|
48
|
Argyri L, Dafnis I, Theodossiou TA, Gantz D, Stratikos E, Chroni A. Molecular basis for increased risk for late-onset Alzheimer disease due to the naturally occurring L28P mutation in apolipoprotein E4. J Biol Chem 2014; 289:12931-45. [PMID: 24644280 DOI: 10.1074/jbc.m113.538124] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The apolipoprotein (apo) E4 isoform has consistently emerged as a susceptibility factor for late-onset Alzheimer disease (AD), although the exact mechanism is not clear. A rare apoE4 mutant, apoE4[L28P] Pittsburgh, burdens carriers with an added risk for late-onset AD and may be a useful tool for gaining insights into the role of apoE4 in disease pathogenesis. Toward this end, we evaluated the effect of the L28P mutation on the structural and functional properties of apoE4. ApoE4[L28P] was found to have significantly perturbed thermodynamic properties, to have reduced helical content, and to expose a larger portion of the hydrophobic surface to the solvent. Furthermore, this mutant is thermodynamically destabilized and more prone to proteolysis. When interacting with lipids, apoE4[L28P] formed populations of lipoprotein particles with structural defects. The structural perturbations brought about by the mutation were accompanied by aberrant functions associated with the pathogenesis of AD. Specifically, apoE4[L28P] promoted the cellular uptake of extracellular amyloid β peptide 42 (Aβ42) by human neuroblastoma SK-N-SH cells as well as by primary mouse neuronal cells and led to increased formation of intracellular reactive oxygen species that persisted for at least 24 h. Furthermore, lipoprotein particles containing apoE4[L28P] induced intracellular reactive oxygen species formation and reduced SK-N-SH cell viability. Overall, our findings suggest that the L28P mutation leads to significant structural and conformational perturbations in apoE4 and can induce functional defects associated with neuronal Aβ42 accumulation and oxidative stress. We propose that these structural and functional changes underlie the observed added risk for AD development in carriers of apoE4[L28P].
Collapse
Affiliation(s)
- Letta Argyri
- From the Institute of Biosciences and Applications
| | | | | | | | | | | |
Collapse
|
49
|
Swaminathan S, Risacher SL, Yoder KK, West JD, Shen L, Kim S, Inlow M, Foroud T, Jagust WJ, Koeppe RA, Mathis CA, Shaw LM, Trojanowski JQ, Soares H, Aisen PS, Petersen RC, Weiner MW, Saykin AJ. Association of plasma and cortical amyloid beta is modulated by APOE ε4 status. Alzheimers Dement 2014; 10:e9-e18. [PMID: 23541187 PMCID: PMC3750076 DOI: 10.1016/j.jalz.2013.01.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 01/10/2013] [Accepted: 01/16/2013] [Indexed: 10/27/2022]
Abstract
BACKGROUND Apolipoprotein E (APOE) ε4 allele's role as a modulator of the relationship between soluble plasma amyloid beta (Aβ) and fibrillar brain Aβ measured by Pittsburgh compound B positron emission tomography ([(11)C]PiB PET) has not been assessed. METHODS Ninety-six Alzheimer's Disease Neuroimaging Initiative participants with [(11)C]PiB scans and plasma Aβ1-40 and Aβ1-42 measurements at the time of PET scanning were included. Regional and voxelwise analyses of [(11)C]PiB data were used to determine the influence of APOE ε4 allele on association of plasma Aβ1-40, Aβ1-42, and Aβ1-40/Aβ1-42 with [(11)C]PiB uptake. RESULTS In APOE ε4- but not ε4+ participants, positive relationships between plasma Aβ1-40/Aβ1-42 and [(11)C]PiB uptake were observed. Modeling the interaction of APOE and plasma Aβ1-40/Aβ1-42 improved the explained variance in [(11)C]PiB binding compared with using APOE and plasma Aβ1-40/Aβ1-42 as separate terms. CONCLUSIONS The results suggest that plasma Aβ is a potential Alzheimer's disease biomarker and highlight the importance of genetic variation in interpretation of plasma Aβ levels.
Collapse
Affiliation(s)
- Shanker Swaminathan
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Shannon L Risacher
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Karmen K Yoder
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
| | - John D West
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Li Shen
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA; Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Sungeun Kim
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA; Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Mark Inlow
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Mathematics, Rose-Hulman Institute of Technology, Terre Haute, IN, USA
| | - Tatiana Foroud
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA; Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - William J Jagust
- Helen Wills Neuroscience Institute, University of California at Berkeley, Berkeley, CA, USA
| | - Robert A Koeppe
- Division of Nuclear Medicine, Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | - Chester A Mathis
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Leslie M Shaw
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - John Q Trojanowski
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | | | - Paul S Aisen
- Department of Neurosciences, University of California at San Diego, San Diego, CA, USA
| | - Ronald C Petersen
- Department of Neurology, Mayo Clinic and Foundation, Rochester, MN, USA
| | - Michael W Weiner
- Department of Veterans Affairs Medical Center, Center for Imaging of Neurodegenerative Diseases, San Francisco, CA, USA
| | - Andrew J Saykin
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA; Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
50
|
Yang Y, Song W. Molecular links between Alzheimer's disease and diabetes mellitus. Neuroscience 2013; 250:140-50. [PMID: 23867771 DOI: 10.1016/j.neuroscience.2013.07.009] [Citation(s) in RCA: 148] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 07/03/2013] [Indexed: 01/07/2023]
Abstract
Substantial epidemiological evidence shows an increased risk for developing Alzheimer's disease (AD) in people with diabetes. Yet the underlying molecular mechanisms still remain to be elucidated. This article reviews the current studies on common pathological processes of Alzheimer's disease and diabetes with particular focus on potential mechanisms through which diabetes affects the initiation and progression of Alzheimer's disease. Impairment of insulin signaling, inflammation, oxidative stress, mitochondrial dysfunction, advanced glycation end products, APOEε4 and cholesterol appear to be important mediators and are likely to act synergistically in promoting AD pathology.
Collapse
Affiliation(s)
- Y Yang
- Townsend Family Laboratories, Department of Psychiatry, Brain Research Center, Graduate Program in Neuroscience, The University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada
| | | |
Collapse
|