1
|
Endothelial Dysfunction in Neurodegenerative Diseases. Int J Mol Sci 2023; 24:ijms24032909. [PMID: 36769234 PMCID: PMC9918222 DOI: 10.3390/ijms24032909] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 02/05/2023] Open
Abstract
The cerebral vascular system stringently regulates cerebral blood flow (CBF). The components of the blood-brain barrier (BBB) protect the brain from pathogenic infections and harmful substances, efflux waste, and exchange substances; however, diseases develop in cases of blood vessel injuries and BBB dysregulation. Vascular pathology is concurrent with the mechanisms underlying aging, Alzheimer's disease (AD), and vascular dementia (VaD), which suggests its involvement in these mechanisms. Therefore, in the present study, we reviewed the role of vascular dysfunction in aging and neurodegenerative diseases, particularly AD and VaD. During the development of the aforementioned diseases, changes occur in the cerebral blood vessel morphology and local cells, which, in turn, alter CBF, fluid dynamics, and vascular integrity. Chronic vascular inflammation and blood vessel dysregulation further exacerbate vascular dysfunction. Multitudinous pathogenic processes affect the cerebrovascular system, whose dysfunction causes cognitive impairment. Knowledge regarding the pathophysiology of vascular dysfunction in neurodegenerative diseases and the underlying molecular mechanisms may lead to the discovery of clinically relevant vascular biomarkers, which may facilitate vascular imaging for disease prevention and treatment.
Collapse
|
2
|
Var SR, Strell P, Johnson ST, Roman A, Vasilakos Z, Low WC. Transplanting Microglia for Treating CNS Injuries and Neurological Diseases and Disorders, and Prospects for Generating Exogenic Microglia. Cell Transplant 2023; 32:9636897231171001. [PMID: 37254858 PMCID: PMC10236244 DOI: 10.1177/09636897231171001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/18/2023] [Accepted: 04/05/2023] [Indexed: 06/01/2023] Open
Abstract
Microglia are associated with a wide range of both neuroprotective and neuroinflammatory functions in the central nervous system (CNS) during development and throughout lifespan. Chronically activated and dysfunctional microglia are found in many diseases and disorders, such as Alzheimer's disease, Parkinson's disease, and CNS-related injuries, and can accelerate or worsen the condition. Transplantation studies designed to replace and supplement dysfunctional microglia with healthy microglia offer a promising strategy for addressing microglia-mediated neuroinflammation and pathologies. This review will cover microglial involvement in neurological diseases and disorders and CNS-related injuries, current microglial transplantation strategies, and different approaches and considerations for generating exogenic microglia.
Collapse
Affiliation(s)
- Susanna R. Var
- Department of Neurosurgery, Medical
School, University of Minnesota, Minneapolis, MN, USA
- Stem Cell Institute, Medical School,
University of Minnesota, Minneapolis, MN, USA
| | - Phoebe Strell
- Stem Cell Institute, Medical School,
University of Minnesota, Minneapolis, MN, USA
- Department of Veterinary and Biomedical
Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Sether T. Johnson
- Department of Neurosurgery, Medical
School, University of Minnesota, Minneapolis, MN, USA
- Stem Cell Institute, Medical School,
University of Minnesota, Minneapolis, MN, USA
| | - Alex Roman
- Department of Neuroscience, University
of Minnesota, Minneapolis, MN, USA
| | - Zoey Vasilakos
- Stem Cell Institute, Medical School,
University of Minnesota, Minneapolis, MN, USA
- Department of Neuroscience, University
of Minnesota, Minneapolis, MN, USA
| | - Walter C. Low
- Department of Neurosurgery, Medical
School, University of Minnesota, Minneapolis, MN, USA
- Stem Cell Institute, Medical School,
University of Minnesota, Minneapolis, MN, USA
- Department of Veterinary and Biomedical
Sciences, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
3
|
Characterization of Human-Induced Neural Stem Cells and Derivatives following Transplantation into the Central Nervous System of a Nonhuman Primate and Rats. Stem Cells Int 2022; 2022:1396735. [PMID: 36618021 PMCID: PMC9812602 DOI: 10.1155/2022/1396735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 05/18/2022] [Accepted: 05/20/2022] [Indexed: 12/29/2022] Open
Abstract
Neural stem cells (NSCs) and derivatives are potential cellular sources to treat neurological diseases. In the current study, we reprogrammed human peripheral blood mononuclear cells into induced NSCs (iNSCs) and inserted GFP gene into the AAVS1 site for graft tracing. Targeted integration of GFP does not affect the proliferation and differentiation capacity of iNSCs. iNSC-GFP can be further differentiated into dopaminergic precursors (DAPs) and motor neuron precursors (MNPs), respectively. iNSCs were engrafted into the motor cortex and iNSC-DAPs into the striatum and substantia nigra (SN) of a nonhuman primate, respectively. The surviving iNSCs could respond to the microenvironment of the cortex and spontaneously differentiate into mature neurons that extended neurites. iNSC-DAPs survived well and matured into DA neurons following transplantation into the striatum and SN. iNSC-MNPs could also survive and turn into motor neurons after being engrafted into the spinal cord of rats. The results suggest that iNSCs and derivatives have a potential to be used for the treatment of neurological diseases.
Collapse
|
4
|
Liu C, Wang X, Huang W, Meng W, Su Z, Xing Q, Shi H, Zhang D, Zhou M, Zhao Y, Wang H, Pan G, Zhong X, Pei D, Guo Y. Hypoproliferative human neural progenitor cell xenografts survived extendedly in the brain of immunocompetent rats. Stem Cell Res Ther 2021; 12:376. [PMID: 34215315 PMCID: PMC8254296 DOI: 10.1186/s13287-021-02427-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 05/31/2021] [Indexed: 11/25/2022] Open
Abstract
Background There is a huge controversy about whether xenograft or allograft in the “immune-privileged” brain needs immunosuppression. In animal studies, the prevailing sophisticated use of immunosuppression or immunodeficient animal is detrimental for the recipients, which results in a short lifespan of animals, confounds functional behavioral readout of the graft benefits, and discourages long-term follow-up. Methods Neuron-restricted neural progenitor cells (NPCs) were derived from human embryonic stem cells (ESCs, including H1, its gene-modified cell lines for better visualization, and HN4), propagated for different passages, and then transplanted into the brain of immunocompetent rats without immunosuppressants. The graft survivals, their cell fates, and HLA expression levels were examined over time (up to 4 months after transplantation). We compared the survival capability of NPCs from different passages and in different transplantation sites (intra-parenchyma vs. para- and intra-cerebroventricle). The host responses to the grafts were also investigated. Results Our results show that human ESC-derived neuron-restricted NPCs survive extendedly in adult rat brain parenchyma with no need of immunosuppression whereas a late-onset graft rejection seems inevitable. Both donor HLA antigens and host MHC-II expression level remain relatively low with little change over time and cannot predict the late-onset rejection. The intra-/para-cerebroventricular human grafts are more vulnerable to the immune attack than the intrastriatal counterparts. Prevention of graft hyperplasia by using hypoproliferative late passaged human NPCs further significantly extends the graft survival time. Our new data also shows that a subpopulation of host microglia upregulate MHC-II expression in response to the human graft, but fail to present the human antigen to the host immune system, suggestive of the immune-isolation role of the blood–brain barrier (BBB). Conclusions The present study confirms the “immune privilege” of the brain parenchyma and, more importantly, unveils that choosing hypoproliferative NPCs for transplantation can benefit graft outcome in terms of both lower tumor-genic risk and the prolonged survival time without immunosuppression. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02427-1.
Collapse
Affiliation(s)
- Chunhua Liu
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, Guangdong Province, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, Guangdong Province, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GRMH-GDL), Guangzhou, 510005, China
| | - Xiaoyun Wang
- Guangdong Work Injury Rehabilitation Center, Guangzhou, 510440, China
| | - Wenhao Huang
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, Guangdong Province, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, Guangdong Province, China
| | - Wei Meng
- Guangdong Work Injury Rehabilitation Center, Guangzhou, 510440, China
| | - Zhenghui Su
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, Guangdong Province, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, Guangdong Province, China
| | - Qi Xing
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, Guangdong Province, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, Guangdong Province, China
| | - Heng Shi
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong, China
| | - Di Zhang
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, Guangdong Province, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, Guangdong Province, China
| | - Min Zhou
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, Guangdong Province, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, Guangdong Province, China
| | - Yifan Zhao
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, Guangdong Province, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, Guangdong Province, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GRMH-GDL), Guangzhou, 510005, China
| | - Haitao Wang
- CAS Key Laboratory of Brain Function and Disease, University of Science and Technology of China, Hefei, China
| | - Guangjin Pan
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, Guangdong Province, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, Guangdong Province, China
| | - Xiaofen Zhong
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, Guangdong Province, China. .,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, Guangdong Province, China.
| | - Duanqing Pei
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, Guangdong Province, China. .,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, Guangdong Province, China. .,Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GRMH-GDL), Guangzhou, 510005, China.
| | - Yiping Guo
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, Guangdong Province, China. .,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, Guangdong Province, China. .,Drug Discovery Pipeline, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, Guangdong Province, China.
| |
Collapse
|
5
|
Wei N, Sun Z, Yu J, Jia Y, Zheng P, Tang H, Chen J. Immunological Responses to Transgene-Modified Neural Stem Cells After Transplantation. Front Immunol 2021; 12:697203. [PMID: 34248998 PMCID: PMC8262771 DOI: 10.3389/fimmu.2021.697203] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 06/08/2021] [Indexed: 02/05/2023] Open
Abstract
Neural stem cell (NSC) therapy is a promising therapeutic strategy for stroke. Researchers have frequently carried out genetic modification or gene editing of stem cells to improve survival or therapeutic function. However, NSC transplantation carries the risk of immune rejection, and genetic modification or gene-editing might further increase this risk. For instance, recent studies have reported on manipulating the stem cell genome and transplantation via the insertion of an exogenous gene derived from magnetotactic bacteria. However, whether transgene-modified stem cells are capable of inducing immunological reactions has not been explored. Although NSCs rarely express the major histocompatibility complex (MHC), they can still cause some immunological issues. To investigate whether transgene-modified NSCs aggravate immunological responses, we detected the changes in peripheral immune organs and intracerebral astrocytes, glial cells, and MHC-I and MHC-II molecules after the injection of GFP-labeled or mms6-GFP-labeled NSCs in a rat model. Xenogeneic human embryonic kidney (HEK-293T) cells were grafted as a positive control group. Our results indicated that xenogeneic cell transplantation resulted in a strong peripheral splenic response, increased astrocytes, enhanced microglial responses, and upregulation of MHC-I and MHC-II expression on the third day of transplantation. But they decreased obviously except Iba-1 positive cells and MHC-II expression. When injection of both mms6-GFP-labeled NSCs and GFP-labeled NSCs also induced similar responses as HEK-293T cells on the third days, but MHC-I and MHC-II expression decreased 3 weeks after transplantation. In addition, mms6 transgene-modified NSCs did not produce peripheral splenic response responses as well as astrocytes, microglial cells, MHC-I and MHC-II positive cells responses when compared with non-modified NSCs. The present study provides preliminary evidence that transgenic modification does not aggravate immunological responses in NSC transplantation.
Collapse
Affiliation(s)
- Naili Wei
- Department of Neurosurgery, The First Affiliated Hospital of Shantou University Medical College, Guangdong, China
| | - Zhenxing Sun
- Department of Neurosurgery, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Jimei Yu
- Department of Nursing, Huashan Hospital North, Fudan University, Shanghai, China
| | - Yanfei Jia
- Department of Neurosurgery, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Peiqi Zheng
- Department of Neurosurgery, The First Affiliated Hospital of Shantou University Medical College, Guangdong, China
| | - Hailiang Tang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
- *Correspondence: Hailiang Tang, ; Jian Chen,
| | - Jian Chen
- Department of Neurosurgery, The First Affiliated Hospital of Shantou University Medical College, Guangdong, China
- *Correspondence: Hailiang Tang, ; Jian Chen,
| |
Collapse
|
6
|
Liang ZH, Gu JJ, Yu WX, Guan YQ, Khater M, Li XB. Bone marrow mesenchymal stem cell transplantation downregulates plasma level and the microglia expression of transforming growth factor β1 in the acute phase of cerebral cortex ischemia. Chronic Dis Transl Med 2020; 6:270-280. [PMID: 33336172 PMCID: PMC7729118 DOI: 10.1016/j.cdtm.2020.05.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Indexed: 11/30/2022] Open
Abstract
Background Both bone marrow mesenchymal stem cell (BM-MSC) and transforming growth factor-β1 (TGF-β1) have a strong anti-inflammatory capacity in stroke. But their relationship has not been well addressed. In this study, we investigated how intravenous BM-MSC transplantation in rats effected the expression of TGF-β1 48 h post cerebral ischemia, and we analyzed the main cells that produce TGF-β1. Methods We used a distal middle cerebral artery occlusion (dMCAO) model in twenty Sprague–Dawley (SD) rats. The rats were randomly divided into two groups: the ischemic control group and the postischemic BM-MSC transplantation group. One hour after the dMCAO model was established, the rats were injected in the tail vein with either 1 ml saline or 1 × 106 BM-MSCs suspended in 1 ml saline. ELISAs were used to detect TGF-β1 content in the brain infarct core area, striatum and the plasma at 48 h after cerebral infarction. Immunofluorescent staining of brain tissue sections for TGF-β1, Iba-1, CD68 and NeuN was performed to determine the number and the proportion of double stained cells and to detect possible TGF-β1 producing cells in the brain tissue. Results Forty-eight hours after ischemia, the TGF-β1 content in the infarcted area of the BM-MSC transplantation group (23.94 ± 4.48 pg/ml) was significantly lower than it was in the ischemic control group (34.18 ± 4.32 pg/ml) (F = 13.534, P = 0.006). The TGF-β1 content in the rat plasma in the BM-MSC transplantation group (75.91 ± 12.53 pg/ml) was significantly lower than it was in the ischemic control group (131.18 ± 16.07 pg/ml) (F = 36.779, P = 0.0002), suggesting that after transplantation of BM-MSCs, TGF-β1 levels in the plasma decreased, but there was no significant change in the striatum area. Immunofluorescence staining showed that the total number of nucleated cells (1037.67 ± 222.16 cells/mm2) in the infarcted area after transplantation was significantly higher than that in the ischemic control group (391.67 ± 69.50 cells/mm2) (F = 92.421, P < 0.01); the number of TGF-β1+ cells after transplantation (35.00 ± 13.66 cells/mm2) was significantly reduced in comparison to that in the ischemic control group (72.33 ± 32.08 cells/mm2) (F = 37.680, P < 0.01). The number of TGF-β1+/Iba-1+ microglia cells in the transplantation group (3.67 ± 3.17 cells/mm2) was significantly reduced in comparison to that of the ischemic control group (13.67 ± 5.52 cells/mm2) (F = 29.641, P < 0.01). The proportion of TGF-β1+/Iba-1+ microglia cells out of all Iba-1+ microglia cells after transplantation (4.38 ± 3.18%) was significantly decreased compared with that in the ischemic control group (12.81 ± 4.86%) (F = 28.125, P < 0.01). Conclusions Iba-1+ microglia is one of the main cell types that express TGF-β1. Intravenous transplantation of BM-MSCs does not cooperate with TGF-β1+ cells in immune-regulation, but reduces the TGF-β1 content in the infarcted area and in the plasma at 48 h after cerebral infarction.
Collapse
Affiliation(s)
- Zhao-Hui Liang
- Department of Neurology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China.,Department of Neurology, Northern Jiangsu People's Hospital, Clinical Medical School of Yangzhou University, Yangzhou, Jiangsu 225001, China
| | - Jian-Juan Gu
- Department of Obstetrics and Gynecology, Northern Jiangsu People's Hospital, Clinical Medical School of Yangzhou University, Yangzhou, Jiangsu 225001, China
| | - Wen-Xiu Yu
- Department of Neurology, Northern Jiangsu People's Hospital, Clinical Medical School of Yangzhou University, Yangzhou, Jiangsu 225001, China
| | - Yun-Qian Guan
- Department of Cell Biology, Beijing Institute of Geriatrics, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Mostafa Khater
- Pharmacology and Toxicology Department, Augusta University, Georgia 30912, USA
| | - Xiao-Bo Li
- Department of Neurology, Northern Jiangsu People's Hospital, Clinical Medical School of Yangzhou University, Yangzhou, Jiangsu 225001, China
| |
Collapse
|
7
|
Chung YG, Seay M, Elsworth JD, Redmond DE. Generation of Pluripotent Stem Cells Using Somatic Cell Nuclear Transfer and Induced Pluripotent Somatic Cells from African Green Monkeys. Stem Cells Dev 2020; 29:1294-1307. [PMID: 32715987 DOI: 10.1089/scd.2020.0059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Patient-specific stem cells derived from somatic cell nuclear transfer (SCNT) embryos or from induced pluripotent stem cells (iPSCs) could be used to treat various diseases with minimal immune rejection. Many studies using these cells have been conducted in rats and mice; however, there exist numerous dissimilarities between the rodents and humans limiting the clinical predictive power and experimental utility of rodent experiments alone. Nonhuman primates (NHPs) share greater homology to human than rodents in all respects, including genomics, physiology, biochemistry, and the immune system. Thus, experimental data obtained from monkey studies would be more predictive for designing an effective cell replacement therapy in humans. Unfortunately, there are few iPSC lines and even fewer SCNT lines that have been derived in NHPs, hampering broader studies in regenerative medicine. One promising potential therapy would be the replacement of dopamine neurons that are lost in Parkinson's disease. After dopamine depletion by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), the African green monkey (Chlorocebus sabaeus) shows the most complete model of Parkinsonism compared with other species and brain pathology and behavioral changes are almost identical to those in humans after accidental exposure to MPTP. Therefore, we have developed a SCNT procedure to generate multiple pluripotent stem cell lines in this species for studies of possible treatment of Parkinsonism and for comparing with cells derived from iPSCs. Using 24 female monkeys as egg donors and 7 somatic cell donor monkeys, we have derived 11 SCNT embryonic stem cell lines that expressed typical stemness genes and formed all three germ layer derivatives. We also derived two iPSC lines using an episome-mediated reprogramming factor delivery system. This report describes the process for deriving these cell lines and proving their pluripotency for differentiation into various potentially therapeutic cells.
Collapse
Affiliation(s)
- Young Gie Chung
- Enolc, Inc., Farmington, Connecticut, USA.,Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut, USA.,Some of these data were presented in Poster 132.05 at the Society for Neuroscience, Chicago, Illinois, USA, 2019
| | - Montrell Seay
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut, USA.,Some of these data were presented in Poster 132.05 at the Society for Neuroscience, Chicago, Illinois, USA, 2019
| | - John D Elsworth
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut, USA.,Some of these data were presented in Poster 132.05 at the Society for Neuroscience, Chicago, Illinois, USA, 2019
| | - D Eugene Redmond
- Research Department, Axion Research Foundation, Hamden, Connecticut, USA.,Some of these data were presented in Poster 132.05 at the Society for Neuroscience, Chicago, Illinois, USA, 2019
| |
Collapse
|
8
|
Liu Z, Wang X, Jiang K, Ji X, Zhang YA, Chen Z. TNFα-induced Up-regulation of Ascl2 Affects the Differentiation and Proliferation of Neural Stem Cells. Aging Dis 2019; 10:1207-1220. [PMID: 31788333 PMCID: PMC6844591 DOI: 10.14336/ad.2018.1028] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 10/28/2018] [Indexed: 01/11/2023] Open
Abstract
The molecular mediators underlying the effects of inflammation on neural stem cells (NSCs) are not fully characterized. In this study, we identified Ascl2 as a downstream basic helix-loop-helix (bHLH) transcription factor in NSCs following exposure to TNFα. Under normal conditions, Ascl2 expression is inhibited at post-transcriptional levels by miR-26a, which targets the 3’ untranslated region (UTR) of Ascl2. Upon exposure to TNFα, miR-26a expression is reduced, which leads to up-regulation of Ascl2. Overexpression of Ascl2 promotes neuronal differentiation, reduces proliferation, and increases the level of cleaved CASPASE 3 in NSCs, as observed in the in vitro and in ovo experiments. Ascl2 may serve in NSCs as a standby factor that readily responds to TNFα, which is often induced in inflammatory situations. In a chronic inflammatory condition with consistent up-regulation of TNFα, overexpression of Ascl2 may inhibit neurogenesis as a net result.
Collapse
Affiliation(s)
- Zhongfeng Liu
- 1Cell Therapy Center, Beijing Institute of Geriatrics, Xuanwu Hospital, Capital Medical University, and Key Laboratory of Neurodegeneration, Ministry of Education, Beijing, China.,2Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China.,3Center of Parkinson's Disease, Beijing Institute for Brain Disorders, Beijing, China
| | - Xuan Wang
- 1Cell Therapy Center, Beijing Institute of Geriatrics, Xuanwu Hospital, Capital Medical University, and Key Laboratory of Neurodegeneration, Ministry of Education, Beijing, China.,2Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China.,3Center of Parkinson's Disease, Beijing Institute for Brain Disorders, Beijing, China
| | - Kewen Jiang
- 4Department of Neurology, the Children's Hospital School of Medicine, Zhejiang University, Hangzhou, China
| | - Xunming Ji
- 5Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Y Alex Zhang
- 1Cell Therapy Center, Beijing Institute of Geriatrics, Xuanwu Hospital, Capital Medical University, and Key Laboratory of Neurodegeneration, Ministry of Education, Beijing, China
| | - Zhiguo Chen
- 1Cell Therapy Center, Beijing Institute of Geriatrics, Xuanwu Hospital, Capital Medical University, and Key Laboratory of Neurodegeneration, Ministry of Education, Beijing, China.,2Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China.,3Center of Parkinson's Disease, Beijing Institute for Brain Disorders, Beijing, China
| |
Collapse
|
9
|
Harrison DJ, Roberton VH, Vinh NN, Brooks SP, Dunnett SB, Rosser AE. The Effect of Tissue Preparation and Donor Age on Striatal Graft Morphology in the Mouse. Cell Transplant 2019; 27:230-244. [PMID: 29637815 PMCID: PMC5898691 DOI: 10.1177/0963689717744788] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Huntington's disease (HD) is a progressive neurodegenerative disease in which striatal medium spiny neurons (MSNs) are lost. Neuronal replacement therapies aim to replace MSNs through striatal transplantation of donor MSN progenitors, which successfully improve HD-like deficits in rat HD models and have provided functional improvement in patients. Transplants in mouse models of HD are more variable and have lower cell survival than equivalent rat grafts, yet mice constitute the majority of transgenic HD models. Improving the quality and consistency of mouse transplants would open up access to this wider range of rodent models and facilitate research to increase understanding of graft mechanisms, which is essential to progress transplantation as a therapy for HD. Here we determined how donor age, cell preparation, and donor/host strain choice influenced the quality of primary embryonic grafts in quinolinic acid lesion mouse models of HD. Both a within-strain (W-S) and a between-strain (B-S) donor/host paradigm were used to compare transplants of donor tissues derived from mice at embryonic day E12 and E14 prepared either as dissociated suspensions or as minimally manipulated tissue pieces (TP). Good graft survival was observed, although graft volume and cellular composition were highly variable. The effect of cell preparation on grafts differed significantly depending on donor age, with E14 cell suspensions yielding larger grafts compared to TP. Conversely, TP were more effective when derived from E12 donor tissue. A W-S model produced larger grafts with greater MSN content, and while high levels of activated microglia were observed across all groups, a greater number was found in B-S transplants. In summary, we show that the effect of tissue preparation on graft morphology is contingent on the age of donor tissue used. The presence of microglial activation in all groups highlights the host immune response as an important consideration in mouse transplantation.
Collapse
Affiliation(s)
- David J Harrison
- 1 Brain Repair Group, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Victoria H Roberton
- 1 Brain Repair Group, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Ngoc-Nga Vinh
- 1 Brain Repair Group, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Simon P Brooks
- 1 Brain Repair Group, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Stephen B Dunnett
- 1 Brain Repair Group, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Anne E Rosser
- 1 Brain Repair Group, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
10
|
Yuan Y, Tang X, Bai YF, Wang S, An J, Wu Y, Xu ZQD, Zhang YA, Chen Z. Dopaminergic precursors differentiated from human blood-derived induced neural stem cells improve symptoms of a mouse Parkinson's disease model. Theranostics 2018; 8:4679-4694. [PMID: 30279731 PMCID: PMC6160767 DOI: 10.7150/thno.26643] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 08/09/2018] [Indexed: 11/18/2022] Open
Abstract
Autologous neural stem cells (NSCs) may offer a promising source for deriving dopaminergic (DA) cells for treatment of Parkinson's disease (PD). Methods: By using Sendai virus, human peripheral blood mononuclear cells (PBMNCs) were reprogrammed to induced NSCs (iNSCs), which were then differentiated to dopaminergic neurons in vitro. Whole-genome deep sequencing was performed to search for mutations that had accumulated during the reprogramming and expansion processes. To find the optimal differentiation stage of cells for transplantation, DA precursors obtained at various differentiation time points were tested by engraftment into brains of naïve immunodeficient mice. At last, the safety and efficacy of iNSC-derived DA precursors were tested by transplantation into the striatum of immunodeficient PD mouse models. Results: PBMNC-derived iNSCs showed similar characteristics to fetal NSCs, and were able to specifically differentiate to DA neurons with high efficiency in vitro. The sequencing data proved that no harmful SNVs, Indels and CNVs were generated during the reprogramming and expansion processes. DA precursors obtained between differentiation day 10 to 13 in vitro were most suitable for transplantation when a balanced graft survival and maturation were taken into account. Two weeks after transplantation of DA precursors into mouse PD models, the motor functions of PD mice started to improve, and continued to improve until the end of the experiments. No graft overgrowth or tumor was observed, and a significant number of A9-specific midbrain DA neurons were surviving in the striatum. Conclusion: This study confirmed the efficacy of iNSC-derived DA precursors in a mouse PD model, and emphasized the necessity of genomic sequencing and vigorous safety assessment before any clinical translation using iNSCs.
Collapse
|
11
|
Mangale V, McIntyre LL, Walsh CM, Loring JF, Lane TE. Promoting remyelination through cell transplantation therapies in a model of viral-induced neurodegenerative disease. Dev Dyn 2018; 248:43-52. [PMID: 30067309 DOI: 10.1002/dvdy.24658] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 07/05/2018] [Accepted: 07/05/2018] [Indexed: 12/17/2022] Open
Abstract
Multiple sclerosis (MS) is a central nervous system (CNS) disease characterized by chronic neuroinflammation, demyelination, and axonal damage. Infiltration of activated lymphocytes and myeloid cells are thought to be primarily responsible for white matter damage and axonopathy. Several United States Food and Drug Administration-approved therapies exist that impede activated lymphocytes from entering the CNS thereby limiting new lesion formation in patients with relapse-remitting forms of MS. However, a significant challenge within the field of MS research is to develop effective and sustained therapies that allow for axonal protection and remyelination. In recent years, there has been increasing evidence that some kinds of stem cells and their derivatives seem to be able to mute neuroinflammation as well as promote remyelination and axonal integrity. Intracranial infection of mice with the neurotropic JHM strain of mouse hepatitis virus (JHMV) results in immune-mediated demyelination and axonopathy, making this an excellent model to interrogate the therapeutic potential of stem cell derivatives in evoking remyelination. This review provides a succinct overview of our recent findings using intraspinal injection of mouse CNS neural progenitor cells and human neural precursors into JHMV-infected mice. JHMV-infected mice receiving these cells display extensive remyelination associated with axonal sparing. In addition, we discuss possible mechanisms associated with sustained clinical recovery. Developmental Dynamics 248:43-52, 2019. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Vrushali Mangale
- Division of Microbiology & Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah
| | - Laura L McIntyre
- Department of Molecular Biology & Biochemistry, Sue & Bill Gross Stem Cell Center, University of California, Irvine, California
| | - Craig M Walsh
- Department of Molecular Biology & Biochemistry, Sue & Bill Gross Stem Cell Center, University of California, Irvine, California
| | - Jeanne F Loring
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California
| | - Thomas E Lane
- Division of Microbiology & Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah.,Department of Bioengineering, University of Utah, Salt Lake City, Utah.,Immunology, Inflammation, and Infectious Disease Initiative, University of Utah, Salt Lake City, Utah
| |
Collapse
|
12
|
McGuiness JA, Scheinert RB, Asokan A, Stadler VC, Lee CS, Rani A, Kumar A, Foster TC, Ormerod BK. Indomethacin Increases Neurogenesis across Age Groups and Improves Delayed Probe Trial Difference Scores in Middle-Aged Rats. Front Aging Neurosci 2017; 9:280. [PMID: 28928652 PMCID: PMC5591789 DOI: 10.3389/fnagi.2017.00280] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 08/11/2017] [Indexed: 01/20/2023] Open
Abstract
We tested whether indomethacin or rosiglitazone treatment could rejuvenate spatial ability and hippocampal neurogenesis in aging rats. Young (4 mo; n = 30), middle-aged (12 mo; n = 31), and aged (18 mo; n = 31) male Fischer 344 rats were trained and then tested in a rapid acquisition water maze task and then fed vehicle (500 μl strawberry milk), indomethacin (2.0 mg/ml), or rosiglitazone (8.0 mg/ml) twice daily for the remainder of the experiment. A week after drug treatment commenced, the rats were given 3 daily BrdU (50 mg/kg) injections to test whether age-related declines in neurogenesis were reversed. One week after the final BrdU injection (~2.5 weeks after the 1st water maze session), the rats were trained to a find novel hidden water maze platform location, tested on 15 min and 24 h probe trials and then killed 24 h later. During the first water maze session, young rats outperformed aged rats but all rats learned information about the hidden platform location. Middle-aged and aged rats exhibited better memory probe trial performances than young rats in the 2nd water maze session and indomethacin improved memory probe trial performances on the 2nd vs. 1st water maze session in middle-aged rats. Middle-aged rats with more new neurons had fewer phagocytic microglia and exhibited better hidden platform training trial performances on the 2nd water maze session. Regardless of age, indomethacin increased new hippocampal neuron numbers and both rosiglitazone and indomethacin increased subependymal neuroblasts/neuron densities. Taken together, our results suggest the feasibility of studying the effects of longer-term immunomodulation on age-related declines in cognition and neurogenesis.
Collapse
Affiliation(s)
- James A. McGuiness
- Department of Neuroscience, University of FloridaGainesville, FL, United States
- McKnight Brain Institute, University of FloridaGainesville, FL, United States
| | - Rachel B. Scheinert
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of FloridaGainesville, FL, United States
| | - Aditya Asokan
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of FloridaGainesville, FL, United States
| | - Vivien-Charlott Stadler
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of FloridaGainesville, FL, United States
| | - Christian S. Lee
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of FloridaGainesville, FL, United States
| | - Asha Rani
- Department of Neuroscience, University of FloridaGainesville, FL, United States
- McKnight Brain Institute, University of FloridaGainesville, FL, United States
| | - Ashok Kumar
- Department of Neuroscience, University of FloridaGainesville, FL, United States
- McKnight Brain Institute, University of FloridaGainesville, FL, United States
| | - Thomas C. Foster
- Department of Neuroscience, University of FloridaGainesville, FL, United States
- McKnight Brain Institute, University of FloridaGainesville, FL, United States
| | - Brandi K. Ormerod
- Department of Neuroscience, University of FloridaGainesville, FL, United States
- McKnight Brain Institute, University of FloridaGainesville, FL, United States
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of FloridaGainesville, FL, United States
| |
Collapse
|
13
|
Mangale V, Marro BS, Plaisted WC, Walsh CM, Lane TE. Neural precursor cells derived from induced pluripotent stem cells exhibit reduced susceptibility to infection with a neurotropic coronavirus. Virology 2017; 511:49-55. [PMID: 28822268 PMCID: PMC5623645 DOI: 10.1016/j.virol.2017.08.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 07/28/2017] [Accepted: 08/02/2017] [Indexed: 12/17/2022]
Abstract
The present study examines the susceptibility of mouse induced pluripotent stem cell-derived neural precursor cells (iPSC-NPCs) to infection with the neurotropic JHM strain of mouse hepatitis virus (JHMV). Similar to NPCs derived from striatum of day 1 postnatal GFP-transgenic mice (GFP-NPCs), iPSC-derived NPCs (iPSC-NPCs) are able to differentiate into terminal neural cell types and express MHC class I and II in response to IFN-γ treatment. However, in contrast to postnatally-derived NPCs, iPSC-NPCs express low levels of carcinoembryonic antigen-cell adhesion molecule 1a (CEACAM1a), the surface receptor for JHMV, and are less susceptible to infection and virus-induced cytopathic effects. The relevance of this in terms of therapeutic application of NPCs resistant to viral infection is discussed. The neurotropic virus JHMV infects and kills mouse post-natal neural progenitor cells (NPCs). This study examines if JHMV infects mouse inducible pluripotent stem cell-derived NPCs. iPSC-NPCs are less susceptible to infection with JHMV and subsequent lytic effects.
Collapse
Affiliation(s)
- Vrushali Mangale
- Department of Pathology, Division of Microbiology & Immunology University of Utah, Salt Lake City, UT 84112, United States
| | - Brett S Marro
- Department of Molecular Biology & Biochemistry and Institute for Immunology, University of California, Irvine 92697, United States
| | - Warren C Plaisted
- Department of Molecular Biology & Biochemistry and Institute for Immunology, University of California, Irvine 92697, United States
| | - Craig M Walsh
- Department of Molecular Biology & Biochemistry and Institute for Immunology, University of California, Irvine 92697, United States
| | - Thomas E Lane
- Department of Pathology, Division of Microbiology & Immunology University of Utah, Salt Lake City, UT 84112, United States.
| |
Collapse
|
14
|
Chen Z. Cell Therapy for Parkinson's Disease: New Hope from Reprogramming Technologies. Aging Dis 2015; 6:499-503. [PMID: 26618051 DOI: 10.14336/ad.2014.1201] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Accepted: 12/01/2014] [Indexed: 12/16/2022] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disease with the major pathology being the progressive loss of dopaminergic (DA) midbrain neurons in the substantia nigra. As early as in the 1980s, open-label clinical trials employing fetal ventral mesencephalon (fVM) tissues have demonstrated significant efficacy for PD treatment, which led to two NIH-sponsored double-blind placebo-controlled clinical trials. However, both trials showed only mild outcome. Retrospective analysis revealed several possible reasons that include patient selection, heterogeneity of grafts, immune recognition of grafts, lack of standardization of transplantation procedure and uneven distribution of grafts. Recent years have seen advances in reprogramming technologies which may provide solutions to the problems associated with fVM tissues. Induced pluripotent stem cells (iPSCs) and induced neural stem cells (iNSCs) hold promise for generating clinical grade DA neural cells that are safe, homogeneous, scalable and standardizable. These new technologies may bring back clinical trials using cell therapy for PD treatment in the future.
Collapse
Affiliation(s)
- Zhiguo Chen
- 1 Cell Therapy Center, Xuanwu Hospital, Capital Medical University, and Key Laboratory of Neurodegeneration, Ministry of Education, Beijing, 100053, China ; 2 Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China ; 3 Center of Parkinson's Disease, Beijing Institute for Brain Disorders, Beijing, China
| |
Collapse
|
15
|
Srivastava AK, Bulte CA, Shats I, Walczak P, Bulte JWM. Co-transplantation of syngeneic mesenchymal stem cells improves survival of allogeneic glial-restricted precursors in mouse brain. Exp Neurol 2015; 275 Pt 1:154-61. [PMID: 26515691 DOI: 10.1016/j.expneurol.2015.10.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Revised: 10/16/2015] [Accepted: 10/24/2015] [Indexed: 12/21/2022]
Abstract
Loss of functional cells from immunorejection during the early post-transplantation period is an important factor that reduces the efficacy of stem cell-based therapies. Recent studies have shown that transplanted mesenchymal stem cells (MSCs) can exert therapeutic effects by secreting anti-inflammatory and pro-survival trophic factors. We investigated whether co-transplantation of MSCs could improve the survival of other transplanted therapeutic cells. Allogeneic glial-restricted precursors (GRPs) were isolated from the brain of a firefly luciferase transgenic FVB mouse (at E13.5 stage) and intracerebrally transplanted, either alone, or together with syngeneic MSCs in immunocompetent BALB/c mice (n=20) or immunodeficient Rag2(-/-) mice as survival control (n=8). No immunosuppressive drug was given to any animal. Using bioluminescence imaging (BLI) as a non-invasive readout of cell survival, we found that co-transplantation of MSCs significantly improved (p<0.05) engrafted GRP survival. No significant change in signal intensities was observed in immunodeficient Rag2(-/-) mice, with transplanted cells surviving in both the GRP only and the GRP+MSC group. In contrast, on day 21 post-transplantation, we observed a 94.2% decrease in BLI signal intensity in immunocompetent mice transplanted with GRPs alone versus 68.1% in immunocompetent mice co-transplanted with MSCs and GRPs (p<0.05). Immunohistochemical analysis demonstrated a lower number of infiltrating CD45, CD11b(+) and CD8(+) cells, reduced astrogliosis, and a higher number of FoxP3(+) cells at the site of transplantation for the immunocompetent mice receiving MSCs. The present study demonstrates that co-transplantation of MSCs can be used to create a microenvironment that is more conducive to the survival of allogeneic GRPs.
Collapse
Affiliation(s)
- Amit K Srivastava
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Camille A Bulte
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Irina Shats
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Piotr Walczak
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Radiology, Faculty of Medical Sciences, University of Warmia and Mazury, Olsztyn, Poland
| | - Jeff W M Bulte
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Chemical & Biomolecular Engineering, The Johns Hopkins University Whiting School of Engineering, Baltimore, MD 21218, USA; Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
16
|
Scheinert RB, Asokan A, Rani A, Kumar A, Foster TC, Ormerod BK. Some hormone, cytokine and chemokine levels that change across lifespan vary by cognitive status in male Fischer 344 rats. Brain Behav Immun 2015; 49:216-32. [PMID: 26093306 PMCID: PMC4567443 DOI: 10.1016/j.bbi.2015.06.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Revised: 05/26/2015] [Accepted: 06/08/2015] [Indexed: 12/21/2022] Open
Abstract
We trained and tested young (6-8months; n=13), middle-aged (12-14months; n=41), and aged (22-24months; n=24) male Fischer 344 rats in a rapid acquisition water maze task and then quantified 27 stress hormones, cytokines and chemokines in their serum, hippocampi and frontal cortices using bead assay kits and xMAP technology. Middle-aged and aged rats learned the location of the hidden platform over training trials more slowly than their young counterparts. After training, young rats outperformed middle-aged and aged rats on both immediate and 24h retention probe trials and about half of the middle-aged and aged (aging) rats exhibited impaired performances when tested on the retention probe trial 24h later. The concentrations of many serum, hippocampal and cortical analytes changed with age often in networks that may represent age-sensitive signaling pathways and the concentrations of some of these analytes correlated with water maze learning and/or memory scores. Serum GRO/KC and RANTES levels, hippocampal GM-CSF levels and cortical IL-9 and RANTES levels were significantly higher in rats categorized as memory-impaired versus elite agers based upon their 24h probe trial performances. Our data add to the emerging picture of how age-related changes in immune and neuroimmune system signaling impacts cognition.
Collapse
Affiliation(s)
- Rachel B Scheinert
- National Institute of Mental Health, NIH, Bethesda, MD, USA; J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Aditya Asokan
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Asha Rani
- Department of Neuroscience, University of Florida, Gainesville, FL, USA; McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Ashok Kumar
- Department of Neuroscience, University of Florida, Gainesville, FL, USA; McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Thomas C Foster
- Department of Neuroscience, University of Florida, Gainesville, FL, USA; McKnight Brain Institute, University of Florida, Gainesville, FL, USA.
| | - Brandi K Ormerod
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA; Department of Neuroscience, University of Florida, Gainesville, FL, USA; McKnight Brain Institute, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
17
|
Boltze J, Arnold A, Walczak P, Jolkkonen J, Cui L, Wagner DC. The Dark Side of the Force - Constraints and Complications of Cell Therapies for Stroke. Front Neurol 2015; 6:155. [PMID: 26257702 PMCID: PMC4507146 DOI: 10.3389/fneur.2015.00155] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 06/23/2015] [Indexed: 12/16/2022] Open
Abstract
Cell therapies are increasingly recognized as a promising option to augment the limited therapeutic arsenal available to fight ischemic stroke. During the last two decades, cumulating preclinical evidence has indicated a substantial efficacy for most cell treatment paradigms and first clinical trials are currently underway to assess safety and feasibility in patients. However, the strong and still unmet demand for novel stroke treatment options and exciting findings reported from experimental studies may have drawn our attention away from potential side effects related to cell therapies and the ways by which they are commonly applied. This review summarizes common and less frequent adverse events that have been discovered in preclinical and clinical investigations assessing cell therapies for stroke. Such adverse events range from immunological and neoplastic complications over seizures to cell clotting and cell-induced embolism. It also describes potential complications of clinically applicable administration procedures, detrimental interactions between therapeutic cells, and the pathophysiological environment that they are placed into, as well as problems related to cell manufacturing. Virtually each therapeutic intervention comes at a certain risk for complications. Side effects do therefore not generally compromise the value of cell treatments for stroke, but underestimating such complications might severely limit therapeutic safety and efficacy of cell treatment protocols currently under development. On the other hand, a better understanding will provide opportunities to further improve existing therapeutic strategies and might help to define those circumstances, under which an optimal effect can be realized. Hence, the review eventually discusses strategies and recommendations allowing us to prevent or at least balance potential complications in order to ensure the maximum therapeutic benefit at minimum risk for stroke patients.
Collapse
Affiliation(s)
- Johannes Boltze
- Department of Cell Therapy, Fraunhofer-Institute for Cell Therapy and Immunology , Leipzig , Germany ; Translational Center for Regenerative Medicine, University of Leipzig , Leipzig , Germany
| | - Antje Arnold
- Division of MR Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine , Baltimore, MD , USA ; Institute for Cell Engineering, Johns Hopkins University , Baltimore, MD , USA
| | - Piotr Walczak
- Division of MR Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine , Baltimore, MD , USA ; Institute for Cell Engineering, Johns Hopkins University , Baltimore, MD , USA
| | - Jukka Jolkkonen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland , Kuopio , Finland
| | - Lili Cui
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland , Kuopio , Finland
| | - Daniel-Christoph Wagner
- Department of Cell Therapy, Fraunhofer-Institute for Cell Therapy and Immunology , Leipzig , Germany
| |
Collapse
|
18
|
Marro BS, Blanc CA, Loring JF, Cahalan MD, Lane TE. Promoting remyelination: utilizing a viral model of demyelination to assess cell-based therapies. Expert Rev Neurother 2015; 14:1169-79. [PMID: 25245576 DOI: 10.1586/14737175.2014.955854] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease of the CNS. While a broad range of therapeutics effectively reduce the incidence of focal white matter inflammation and plaque formation for patients with relapse-remitting forms of MS, a challenge within the field is to develop therapies that allow for axonal protection and remyelination. In the last decade, growing interest has focused on utilizing neural precursor cells (NPCs) to promote remyelination. To understand how NPCs function in chronic demyelinating environments, several excellent pre-clinical mouse models have been developed. One well accepted model is infection of susceptible mice with neurotropic variants of mouse hepatitis virus (MHV) that undergo chronic demyelination exhibiting clinical and histopathologic similarities to MS patients. Combined with the possibility that an environmental agent such as a virus could trigger MS, the MHV model of demyelination presents a relevant mouse model to assess the therapeutic potential of NPCs transplanted into an environment in which inflammatory-mediated demyelination is established.
Collapse
Affiliation(s)
- Brett S Marro
- Department of Molecular Biology and Biochemistry, University of California, Irvine 92697, USA
| | | | | | | | | |
Collapse
|
19
|
Weinger JG, Plaisted WC, Maciejewski SM, Lanier LL, Walsh CM, Lane TE. Activating receptor NKG2D targets RAE-1-expressing allogeneic neural precursor cells in a viral model of multiple sclerosis. Stem Cells 2015; 32:2690-701. [PMID: 24898518 DOI: 10.1002/stem.1760] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 04/25/2014] [Accepted: 04/25/2014] [Indexed: 12/11/2022]
Abstract
Transplantation of major histocompatibility complex-mismatched mouse neural precursor cells (NPCs) into mice persistently infected with the neurotropic JHM strain of mouse hepatitis virus (JHMV) results in rapid rejection that is mediated, in part, by T cells. However, the contribution of the innate immune response to allograft rejection in a model of viral-induced neurological disease has not been well defined. Herein, we demonstrate that the natural killer (NK) cell-expressing-activating receptor NKG2D participates in transplanted allogeneic NPC rejection in mice persistently infected with JHMV. Cultured NPCs derived from C57BL/6 (H-2(b) ) mice express the NKG2D ligand retinoic acid early precursor transcript (RAE)-1 but expression was dramatically reduced upon differentiation into either glia or neurons. RAE-1(+) NPCs were susceptible to NK cell-mediated killing whereas RAE-1(-) cells were resistant to lysis. Transplantation of C57BL/6-derived NPCs into JHMV-infected BALB/c (H-2(d) ) mice resulted in infiltration of NKG2D(+) CD49b(+) NK cells and treatment with blocking antibody specific for NKG2D increased survival of allogeneic NPCs. Furthermore, transplantation of differentiated RAE-1(-) allogeneic NPCs into JHMV-infected BALB/c mice resulted in enhanced survival, highlighting a role for the NKG2D/RAE-1 signaling axis in allograft rejection. We also demonstrate that transplantation of allogeneic NPCs into JHMV-infected mice resulted in infection of the transplanted cells suggesting that these cells may be targets for infection. Viral infection of cultured cells increased RAE-1 expression, resulting in enhanced NK cell-mediated killing through NKG2D recognition. Collectively, these results show that in a viral-induced demyelination model, NK cells contribute to rejection of allogeneic NPCs through an NKG2D signaling pathway.
Collapse
Affiliation(s)
- Jason G Weinger
- Department of Molecular Biology & Biochemistry; Sue and Bill Gross Stem Cell Center, University of California, Irvine, California, USA
| | | | | | | | | | | |
Collapse
|
20
|
Wu J, Sheng C, Liu Z, Jia W, Wang B, Li M, Fu L, Ren Z, An J, Sang L, Song G, Wu Y, Xu Y, Wang S, Chen Z, Zhou Q, Zhang YA. Lmx1a enhances the effect of iNSCs in a PD model. Stem Cell Res 2014; 14:1-9. [PMID: 25460246 DOI: 10.1016/j.scr.2014.10.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Revised: 09/30/2014] [Accepted: 10/10/2014] [Indexed: 12/20/2022] Open
Abstract
Lmx1a plays a central role in the specification of dopaminergic (DA) neurons, which potentially could be employed as a key factor for trans-differentiation to DA neurons. In our previous study, we have converted somatic cells directly into neural stem cell-like cells, namely induced neural stem cells (iNSCs), which further can be differentiated into subtypes of neurons and glia in vitro. In the present study, we continued to test whether these iNSCs have therapeutic effects when transplanted into a mouse model of Parkinson's disease (PD), especially when Lmx1a was introduced into these iNSCs under a Nestin enhancer. iNSCs that over-expressed Lmx1a (iNSC-Lmx1a) gave rise to an increased yield of dopaminergic neurons and secreted a higher level of dopamine in vitro. When transplanted into mouse models of PD, both groups of mice showed decreased ipsilateral rotations; yet mice that received iNSC-Lmx1a vs. iNSC-GFP exhibited better recovery. Although few iNSCs survived 11weeks after transplantation, the improved motor performance in iNSC-Lmx1a group did correlate with a greater tyrosine hydroxylase (TH) signal abundance in the lesioned area of striatum, suggesting that iNSCs may have worked through a non-autonomous manner to enhance the functions of remaining endogenous dopaminergic neurons in brain.
Collapse
Affiliation(s)
- Jianyu Wu
- Cell Therapy Center, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Key Laboratory of Neurodegeneration, Ministry of Education, Beijing, China; Center of Parkinson's Disease, Beijing Institute for Brain Disorders, Beijing, China; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
| | - Chao Sheng
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhongfeng Liu
- Cell Therapy Center, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Key Laboratory of Neurodegeneration, Ministry of Education, Beijing, China
| | - Weili Jia
- Cell Therapy Center, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Key Laboratory of Neurodegeneration, Ministry of Education, Beijing, China
| | - Bin Wang
- Cell Therapy Center, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Key Laboratory of Neurodegeneration, Ministry of Education, Beijing, China
| | - Mo Li
- Cell Therapy Center, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Key Laboratory of Neurodegeneration, Ministry of Education, Beijing, China
| | - Linlin Fu
- Cell Therapy Center, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Key Laboratory of Neurodegeneration, Ministry of Education, Beijing, China
| | - Zhenhua Ren
- Cell Therapy Center, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Key Laboratory of Neurodegeneration, Ministry of Education, Beijing, China
| | - Jing An
- Cell Therapy Center, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Key Laboratory of Neurodegeneration, Ministry of Education, Beijing, China
| | - Lisi Sang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Gongru Song
- Cell Therapy Center, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Key Laboratory of Neurodegeneration, Ministry of Education, Beijing, China
| | - Yanchuan Wu
- Key Laboratory of Neurodegeneration, Ministry of Education, Beijing, China; Central Laboratory, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Yanling Xu
- Cell Therapy Center, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Key Laboratory of Neurodegeneration, Ministry of Education, Beijing, China
| | - Shuyan Wang
- Cell Therapy Center, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Key Laboratory of Neurodegeneration, Ministry of Education, Beijing, China
| | - Zhiguo Chen
- Cell Therapy Center, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Key Laboratory of Neurodegeneration, Ministry of Education, Beijing, China; Center of Parkinson's Disease, Beijing Institute for Brain Disorders, Beijing, China; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
| | - Qi Zhou
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Y Alex Zhang
- Cell Therapy Center, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Key Laboratory of Neurodegeneration, Ministry of Education, Beijing, China.
| |
Collapse
|
21
|
Immunological barriers to stem cell therapy in the central nervous system. Stem Cells Int 2014; 2014:507905. [PMID: 25165476 PMCID: PMC4138731 DOI: 10.1155/2014/507905] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 07/16/2014] [Indexed: 12/21/2022] Open
Abstract
The central nervous system is vulnerable to many neurodegenerative disorders such as Alzheimer's disease that result in the extensive loss of neuronal cells. Stem cells have the ability to differentiate into many types of cells, which make them ideal for treating such disorders. Although stem cell therapy has shown some promising results in animal models for many brain disorders it has yet to translate into the clinic. A major hurdle to the translation of stem cell therapy into the clinic is the immune response faced by stem cell transplants. Here, we focus on immunological and related hurdles to stem cell therapies for central nervous system disorders.
Collapse
|
22
|
Phillips LK, Gould EA, Babu H, Krams SM, Palmer TD, Martinez OM. Natural killer cell-activating receptor NKG2D mediates innate immune targeting of allogeneic neural progenitor cell grafts. Stem Cells 2014; 31:1829-39. [PMID: 23733329 DOI: 10.1002/stem.1422] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 01/10/2013] [Indexed: 12/25/2022]
Abstract
Cell replacement therapy holds promise for a number of untreatable neurological or psychiatric diseases but the immunogenicity of cellular grafts remains controversial. Emerging stem cell and reprogramming technologies can be used to generate autologous grafts that minimize immunological concerns but autologous grafts may carry an underlying genetic vulnerability that reduces graft efficacy or survival. Healthy allogeneic grafts are an attractive and commercially scalable alternative if immunological variables can be controlled. Stem cells and immature neural progenitor cells (NPC) do not express major histocompatibility complex (MHC) antigens and can evade adaptive immune surveillance. Nevertheless, in an experimental murine model, allogeneic NPCs do not survive and differentiate as well as syngeneic grafts, even when traditional immunosuppressive treatments are used. In this study, we show that natural killer (NK) cells recognize the lack of self-MHC antigens on NPCs and pose a barrier to NPC transplantation. NK cells readily target both syngeneic and allogeneic NPC, and killing is modulated primarily by NK-inhibiting "self" class I MHC and NK-activating NKG2D-ligand expression. The absence of NKG2D signaling in NK cells significantly improves NPC-derived neuron survival and differentiation. These data illustrate the importance of innate immune mechanisms in graft outcome and the potential value of identifying and targeting NK cell-activating ligands that may be expressed by stem cell derived grafts.
Collapse
Affiliation(s)
- Lori K Phillips
- Program in Immunology Stanford University School of Medicine University of Colorado, Boulder, Colorado, USA
| | | | | | | | | | | |
Collapse
|
23
|
Plaisted WC, Weinger JG, Walsh CM, Lane TE. T cell mediated suppression of neurotropic coronavirus replication in neural precursor cells. Virology 2013; 449:235-43. [PMID: 24418558 PMCID: PMC3894587 DOI: 10.1016/j.virol.2013.11.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 09/17/2013] [Accepted: 11/14/2013] [Indexed: 02/02/2023]
Abstract
Neural precursor cells (NPCs) are the subject of intense investigation for their potential to treat neurodegenerative disorders, yet the consequences of neuroinvasive virus infection of NPCs remain unclear. This study demonstrates that NPCs support replication following infection by the neurotropic JHM strain of mouse hepatitis virus (JHMV). JHMV infection leads to increased cell death and dampens IFN-γ-induced MHC class II expression. Importantly, cytokines secreted by CD4+ T cells inhibit JHMV replication in NPCs, and CD8+ T cells specifically target viral peptide-pulsed NPCs for lysis. Furthermore, treatment with IFN-γ inhibits JHMV replication in a dose-dependent manner. Together, these findings suggest that T cells play a critical role in controlling replication of a neurotropic virus in NPCs, a finding which has important implications when considering immune modulation for NPC-based therapies for treatment of human neurologic diseases. Murine neural precursor cells are infected by JHMV in a CEACAM1a-dependent manner. Peptide-pulsed NPCs are targeted for lysis by virus-specific CD8+ T cells. JHMV replication in NPCs is suppressed by CD4+ T cells through IFN-γ secretion. IFN-γ dampens CEACAM1a expression and JHMV protein production in NPCs.
Collapse
Affiliation(s)
- Warren C Plaisted
- Department of Molecular Biology & Biochemistry, University of California, Irvine 92697-3900, USA; Sue and Bill Gross Stem Cell Center, University of California, Irvine 92697-3900, USA
| | - Jason G Weinger
- Department of Molecular Biology & Biochemistry, University of California, Irvine 92697-3900, USA; Sue and Bill Gross Stem Cell Center, University of California, Irvine 92697-3900, USA
| | - Craig M Walsh
- Department of Molecular Biology & Biochemistry, University of California, Irvine 92697-3900, USA; Sue and Bill Gross Stem Cell Center, University of California, Irvine 92697-3900, USA; Multiple Sclerosis Research Center, University of California, Irvine 92697-3900, USA; Institute for Immunology, University of California, Irvine 92697-3900, USA
| | - Thomas E Lane
- Department of Molecular Biology & Biochemistry, University of California, Irvine 92697-3900, USA; Sue and Bill Gross Stem Cell Center, University of California, Irvine 92697-3900, USA; Multiple Sclerosis Research Center, University of California, Irvine 92697-3900, USA; Institute for Immunology, University of California, Irvine 92697-3900, USA.
| |
Collapse
|
24
|
Autologous transplantation of GDNF-expressing mesenchymal stem cells protects against MPTP-induced damage in cynomolgus monkeys. Sci Rep 2013; 3:2786. [PMID: 24071770 PMCID: PMC4070584 DOI: 10.1038/srep02786] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 09/11/2013] [Indexed: 12/27/2022] Open
Abstract
Glial cell-derived neurotrophic factor (GDNF) has shown beneficial effects in models of Parkinson's disease. The mild results observed in the double-blind clinical trial by intraputamenal infusion of recombinant GDNF proteins warrant a search for alternative delivery methods. In this study, we investigated the function of autologous mesenchymal stem cells (MSCs) expressing GDNF (GDNF-MSCs) for protection against MPTP-induced injury in cynomolgus monkeys. MSCs were obtained from the bone marrow of individual monkeys and gene-modified to express GDNF. Following unilateral engraftment of GDNF-MSCs into the striatum and substantia nigra, the animals were challenged with MPTP to induce a stable systemic Parkinsonian state. The motor functions were spared in the contralateral limbs of monkeys receiving GDNF-MSCs, but not in those receiving MSCs alone. In the striatum of the grafted hemisphere, dopamine levels were higher and dopamine uptake was enhanced. The results suggest that autologous MSCs may be a safe vehicle to deliver GDNF for enhancing nigro-striatum functions.
Collapse
|
25
|
Chen Z, Palmer TD. Differential roles of TNFR1 and TNFR2 signaling in adult hippocampal neurogenesis. Brain Behav Immun 2013; 30:45-53. [PMID: 23402793 PMCID: PMC3641155 DOI: 10.1016/j.bbi.2013.01.083] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2012] [Revised: 01/18/2013] [Accepted: 01/25/2013] [Indexed: 01/02/2023] Open
Abstract
Tumor necrosis factor alpha (TNFα) is a potent inhibitor of neurogenesis in vitro but here we show that TNFα signaling has both positive and negative effects on neurogenesis in vivo and is required to moderate the negative impact of cranial irradiation on hippocampal neurogenesis. In vitro, basal levels of TNFα signaling through TNFR2 are required for normal neural progenitor cell proliferation while basal signaling through TNFR1 impairs neural progenitor proliferation. TNFR1 also mediates further reductions in proliferation and elevated cell death following exposure to recombinant TNFα. In vivo, TNFR1(-/-) and TNFα(-/-) animals have elevated baseline neurogenesis in the hippocampus, whereas absence of TNFR2 decreases baseline neurogenesis. TNFα is also implicated in defects in neurogenesis that follow radiation injury but we find that loss of TNFR1 has no protective effects on neurogenesis and loss of TNFα or TNFR2 worsened the effects of radiation injury on neurogenesis. We conclude that the immunomodulatory signaling of TNFα mediated by TNFR2 is more significant to radiation injury outcome than the proinflammatory signaling mediated through TNFR1.
Collapse
Affiliation(s)
- Zhiguo Chen
- Stanford University, Institute for Stem Cell Biology and Regenerative Medicine, Lorry I. Lokey Stem Cell Building, G1141, 265 Campus Drive, Stanford, CA 94305, United States.
| | - Theo D. Palmer
- Stanford University, Institute for Stem Cell Biology and Regenerative Medicine, Lorry I. Lokey Stem Cell Building, G1141, 265 Campus Drive, Stanford, CA 94305
| |
Collapse
|
26
|
Jafari M, Haist V, Baumgärtner W, Wagner S, Stein VM, Tipold A, Wendt H, Potschka H. Impact of Theiler's virus infection on hippocampal neuronal progenitor cells: differential effects in two mouse strains. Neuropathol Appl Neurobiol 2013; 38:647-64. [PMID: 22288387 DOI: 10.1111/j.1365-2990.2012.01256.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIMS Disease-associated alterations in hippocampal neurogenesis are discussed as an important factor contributing to long-term consequences of central nervous system diseases. Therefore, the study aimed to determine the impact of Theiler's murine encephalomyelitis virus infection on hippocampal cell proliferation, neuronal progenitor cells and neurogenesis as well as the influence of microglia on respective disease-associated alterations. METHODS The impact of the infection was evaluated in two mouse strains which differ in the disease course, with an acute polioencephalitis followed by virus elimination in C57BL/6 mice and a chronic demyelinating disease in SJL/J mice. RESULTS Infection with the low neurovirulent BeAn strain did not exert significant acute effects regardless of the mouse strain. In the chronic phase, the number of neuronal progenitor cells and early postmitotic neurones was significantly reduced in infected SJL/J mice, whereas no long-term alterations were observed in C57BL/6 mice. A contrasting course of microglia activation was observed in the two mouse strains, with an early increase in the number of activated microglia cells in SJL/J mice and a delayed increase in C57BL/6 mice. Quantitative analysis did not confirm a correlation between the number of activated microglia and the number of neuronal progenitor cells and early postmitotic neurones. However, flow cytometric analyses revealed alterations in the functional state of microglial cells which might have affected the generation of neuronal progenitor cells. CONCLUSIONS Theiler's murine encephalomyelitis virus infection can exert delayed effects on the hippocampal neuronal progenitor population with long-term alterations evident 3 months following infection. These alterations proved to depend on strain susceptibility and might contribute to detrimental consequences of virus encephalitis such as cognitive impairment.
Collapse
Affiliation(s)
- M Jafari
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University, Munich, Germany
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Weinger JG, Weist BM, Plaisted WC, Klaus SM, Walsh CM, Lane TE. MHC mismatch results in neural progenitor cell rejection following spinal cord transplantation in a model of viral-induced demyelination. Stem Cells 2013; 30:2584-95. [PMID: 22969049 DOI: 10.1002/stem.1234] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Transplantation of syngeneic neural progenitor cells (NPCs) into mice persistently infected with the JHM strain of mouse hepatitis virus (JHMV) results in enhanced differentiation into oligodendrocyte progenitor cells that is associated with remyelination, axonal sparing, and clinical improvement. Whether allogeneic NPCs are tolerated or induce immune-mediated rejection is controversial and poorly defined under neuroinflammatory demyelinating conditions. We have used the JHMV-induced demyelination model to evaluate the antigenicity of transplanted allogeneic NPCs within the central nervous system (CNS) of mice with established immune-mediated demyelination. Cultured NPCs constitutively expressed the costimulatory molecules CD80/CD86, and IFN-γ treatment induced expression of MHC class I and II antigens. Injection of allogeneic C57BL/6 NPCs (H-2b background) led to a delayed type hypersensitivity response in BALB/c (H-2d background) mice associated with T-cell proliferation and IFN-γ secretion following coculture with allogeneic NPCs. Transplantation of MHC-mismatched NPCs into JHMV-infected mice resulted in increased transcripts encoding the T-cell chemoattractant chemokines CXCL9 and CXCL10 that correlated with increased T-cell infiltration that was associated with NPC rejection. Treatment of MHC-mismatched mice with T-cell subset-specific depleting antibodies increased survival of allogeneic NPCs without affecting commitment to an oligodendrocyte lineage. Collectively, these results show that allogeneic NPCs are antigenic, and T-cells contribute to rejection following transplantation into an inflamed CNS suggesting that immunomodulatory treatments may be necessary to prolong survival of allogeneic cells.
Collapse
Affiliation(s)
- Jason G Weinger
- Department of Molecular Biology and BiochemistryUniversity of California, Irvine, California 92697-3900, USA
| | | | | | | | | | | |
Collapse
|
28
|
Janowski M, Engels C, Gorelik M, Lyczek A, Bernard S, Bulte JWM, Walczak P. Survival of neural progenitors allografted into the CNS of immunocompetent recipients is highly dependent on transplantation site. Cell Transplant 2013; 23:253-62. [PMID: 23294627 DOI: 10.3727/096368912x661328] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Allografts continue to be used in clinical neurotransplantation studies; hence, it is crucial to understand the mechanisms that govern allograft tolerance. We investigated the impact of transplantation site within the brain on graft survival. Mouse [Friend leukemia virus, strain B (FVB)] glial precursors, transfected with luciferase, were injected (3 × 10(5)) into the forceps minor (FM) or striatum (STR). Immunodeficient rag2(-/-) and immunocompetent BALB/c mice were used as recipients. Magnetic resonance imaging (MRI) confirmed that cells were precisely deposited at the selected coordinates. The graft viability was assessed noninvasively with bioluminescent imaging (BLI) for a period of 16 days. Regardless of implantation site, all grafts (n = 10) deposited in immunodeficient animals revealed excellent survival. In contrast, immunocompetent animals only accepted grafts at the STR site (n = 10), whereas all the FM grafts were rejected (n = 10). To investigate the factors that led to rejection of FM grafts, with acceptance of STR grafts, another group of animals (n = 19) was sacrificed during the prerejection period, on day 5. Near-infrared fluorescence imaging with IRDye 800CW-polyethylene glycol probe displayed similar blood-brain barrier disruption at both graft locations. The morphological distribution of FM grafts was cylindrical, parallel to the needle track, whereas cells transplanted into the STR accumulated along the border between the STR and the corpus callosum. There was significantly less infiltration by both innate and adaptive immune cells in the STR grafts, especially along the calloso-striatal border. With allograft survival being dependent on the transplantation site, the anatomical coordinates of the graft target should always be taken into account as it may determine the success or failure of therapy.
Collapse
Affiliation(s)
- M Janowski
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Garcia I, Kim C, Arenkiel BR. Genetic strategies to investigate neuronal circuit properties using stem cell-derived neurons. Front Cell Neurosci 2012; 6:59. [PMID: 23264761 PMCID: PMC3524522 DOI: 10.3389/fncel.2012.00059] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Accepted: 11/30/2012] [Indexed: 01/28/2023] Open
Abstract
The mammalian brain is anatomically and functionally complex, and prone to diverse forms of injury and neuropathology. Scientists have long strived to develop cell replacement therapies to repair damaged and diseased nervous tissue. However, this goal has remained unrealized for various reasons, including nascent knowledge of neuronal development, the inability to track and manipulate transplanted cells within complex neuronal networks, and host graft rejection. Recent advances in embryonic stem cell (ESC) and induced pluripotent stem cell (iPSC) technology, alongside novel genetic strategies to mark and manipulate stem cell-derived neurons, now provide unprecedented opportunities to investigate complex neuronal circuits in both healthy and diseased brains. Here, we review current technologies aimed at generating and manipulating neurons derived from ESCs and iPSCs toward investigation and manipulation of complex neuronal circuits, ultimately leading to the design and development of novel cell-based therapeutic approaches.
Collapse
Affiliation(s)
- Isabella Garcia
- Program in Developmental Biology, Baylor College of Medicine Houston, TX, USA ; Medical Scientist Training Program, Baylor College of Medicine Houston, TX, USA
| | | | | |
Collapse
|
30
|
Chacon MA, Boulanger LM. MHC class I protein is expressed by neurons and neural progenitors in mid-gestation mouse brain. Mol Cell Neurosci 2012; 52:117-27. [PMID: 23147111 DOI: 10.1016/j.mcn.2012.11.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Revised: 10/09/2012] [Accepted: 11/02/2012] [Indexed: 02/04/2023] Open
Abstract
Proteins of the major histocompatibility complex class I (MHCI) are known for their role in the vertebrate adaptive immune response, and are required for normal postnatal brain development and plasticity. However, it remains unknown if MHCI proteins are present in the mammalian brain before birth. Here, we show that MHCI proteins are widely expressed in the developing mouse central nervous system at mid-gestation (E9.5-10.5). MHCI is strongly expressed in several regions of the prenatal brain, including the neuroepithelium and olfactory placode. MHCI is expressed by neural progenitors at these ages, as identified by co-expression in cells positive for neuron-specific class III β-tubulin (Tuj1) or for Pax6, a marker of neural progenitors in the dorsal neuroepithelium. MHCI is also co-expressed with nestin, a marker of neural stem/progenitor cells, in olfactory placode, but the co-localization is less extensive in other regions. MHCI is detected in the small population of post-mitotic neurons that are present at this early stage of brain development, as identified by co-expression in cells positive for neuronal microtubule-associated protein-2 (MAP2). Thus MHCI protein is expressed during the earliest stages of neuronal differentiation in the mammalian brain. MHCI expression in neurons and neural progenitors at mid-gestation, prior to the maturation of the adaptive immune system, is consistent with MHCI performing non-immune functions in prenatal brain development. These results raise the possibility that disruption of the levels and/or patterns of MHCI expression in the prenatal brain could contribute to the pathogenesis of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Marcelo A Chacon
- Department of Molecular Biology and Princeton Neuroscience Institute, Princeton University, 123 Lewis Thomas Laboratories, Washington Road, Princeton, NJ 08544, USA
| | | |
Collapse
|
31
|
Elias PZ, Spector M. Implantation of a collagen scaffold seeded with adult rat hippocampal progenitors in a rat model of penetrating brain injury. J Neurosci Methods 2012; 209:199-211. [PMID: 22698665 DOI: 10.1016/j.jneumeth.2012.06.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2012] [Revised: 04/24/2012] [Accepted: 06/05/2012] [Indexed: 10/28/2022]
Abstract
Penetrating brain injury (PBI) is a complex central nervous system injury in which mechanical damage to brain parenchyma results in hemorrhage, ischemia, broad areas of necrosis, and eventually cavitation. The permanent loss of brain tissue affords the possibility of treatment using a biomaterial scaffold to fill the lesion site and potentially deliver pharmacological or cellular therapeutic agents. The administration of cellular therapy may be of benefit in both mitigating the secondary injury process and promoting regeneration through replacement of certain cell populations. This study investigated the survival and differentiation of adult rat hippocampal neural progenitor cells delivered by a collagen scaffold in a rat model of PBI. The cell-scaffold construct was implanted 1 week after injury and was observed to remain intact with open pores upon analysis 4 weeks later. Implanted neural progenitors were found to have survived within the scaffold, and also to have migrated into the surrounding brain. Differentiated phenotypes included astrocytes, oligodendrocytes, vascular endothelial cells, and possibly macrophages. The demonstrated multipotency of this cell population in vivo in the context of traumatic brain injury has implications for regenerative therapies, but additional stimulation appears necessary to promote neuronal differentiation outside normally neurogenic regions.
Collapse
Affiliation(s)
- Paul Z Elias
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | | |
Collapse
|