1
|
Pérez-Mora S, Pérez-Ishiwara DG, Salgado-Hernández SV, Medel-Flores MO, Reyes-López CA, Rodríguez MA, Sánchez-Monroy V, Gómez-García MDC. Entamoeba histolytica: In Silico and In Vitro Oligomerization of EhHSTF5 Enhances Its Binding to the HSE of the EhPgp5 Gene Promoter. Int J Mol Sci 2024; 25:4218. [PMID: 38673804 PMCID: PMC11050682 DOI: 10.3390/ijms25084218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Throughout its lifecycle, Entamoeba histolytica encounters a variety of stressful conditions. This parasite possesses Heat Shock Response Elements (HSEs) which are crucial for regulating the expression of various genes, aiding in its adaptation and survival. These HSEs are regulated by Heat Shock Transcription Factors (EhHSTFs). Our research has identified seven such factors in the parasite, designated as EhHSTF1 through to EhHSTF7. Significantly, under heat shock conditions and in the presence of the antiamoebic compound emetine, EhHSTF5, EhHSTF6, and EhHSTF7 show overexpression, highlighting their essential role in gene response to these stressors. Currently, only EhHSTF7 has been confirmed to recognize the HSE as a promoter of the EhPgp5 gene (HSE_EhPgp5), leaving the binding potential of the other EhHSTFs to HSEs yet to be explored. Consequently, our study aimed to examine, both in vitro and in silico, the oligomerization, and binding capabilities of the recombinant EhHSTF5 protein (rEhHSTF5) to HSE_EhPgp5. The in vitro results indicate that the oligomerization of rEhHSTF5 is concentration-dependent, with its dimeric conformation showing a higher affinity for HSE_EhPgp5 than its monomeric state. In silico analysis suggests that the alpha 3 α-helix (α3-helix) of the DNA-binding domain (DBD5) of EhHSTF5 is crucial in binding to the major groove of HSE, primarily through hydrogen bonding and salt-bridge interactions. In summary, our results highlight the importance of oligomerization in enhancing the affinity of rEhHSTF5 for HSE_EhPgp5 and demonstrate its ability to specifically recognize structural motifs within HSE_EhPgp5. These insights significantly contribute to our understanding of one of the potential molecular mechanisms employed by this parasite to efficiently respond to various stressors, thereby enabling successful adaptation and survival within its host environment.
Collapse
Affiliation(s)
- Salvador Pérez-Mora
- Laboratorio de Biomedicina Molecular 1, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Mexico City 07320, Mexico; (S.P.-M.); (D.G.P.-I.); (S.V.S.-H.); (M.O.M.-F.)
| | - David Guillermo Pérez-Ishiwara
- Laboratorio de Biomedicina Molecular 1, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Mexico City 07320, Mexico; (S.P.-M.); (D.G.P.-I.); (S.V.S.-H.); (M.O.M.-F.)
| | - Sandra Viridiana Salgado-Hernández
- Laboratorio de Biomedicina Molecular 1, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Mexico City 07320, Mexico; (S.P.-M.); (D.G.P.-I.); (S.V.S.-H.); (M.O.M.-F.)
| | - María Olivia Medel-Flores
- Laboratorio de Biomedicina Molecular 1, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Mexico City 07320, Mexico; (S.P.-M.); (D.G.P.-I.); (S.V.S.-H.); (M.O.M.-F.)
| | - César Augusto Reyes-López
- Laboratorio de Bioquímica Estructural, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Mexico City 07320, Mexico;
| | - Mario Alberto Rodríguez
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN (Cinvestav), Mexico City 07360, Mexico;
| | - Virginia Sánchez-Monroy
- Sección de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico;
| | - María del Consuelo Gómez-García
- Laboratorio de Biomedicina Molecular 1, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Mexico City 07320, Mexico; (S.P.-M.); (D.G.P.-I.); (S.V.S.-H.); (M.O.M.-F.)
| |
Collapse
|
2
|
Sohmen B, Beck C, Frank V, Seydel T, Hoffmann I, Hermann B, Nüesch M, Grimaldo M, Schreiber F, Wolf S, Roosen‐Runge F, Hugel T. The Onset of Molecule-Spanning Dynamics in Heat Shock Protein Hsp90. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304262. [PMID: 37984887 PMCID: PMC10754087 DOI: 10.1002/advs.202304262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/06/2023] [Indexed: 11/22/2023]
Abstract
Protein dynamics have been investigated on a wide range of time scales. Nano- and picosecond dynamics have been assigned to local fluctuations, while slower dynamics have been attributed to larger conformational changes. However, it is largely unknown how fast (local) fluctuations can lead to slow global (allosteric) changes. Here, fast molecule-spanning dynamics on the 100 to 200 ns time scale in the heat shock protein 90 (Hsp90) are shown. Global real-space movements are assigned to dynamic modes on this time scale, which is possible by a combination of single-molecule fluorescence, quasi-elastic neutron scattering and all-atom molecular dynamics (MD) simulations. The time scale of these dynamic modes depends on the conformational state of the Hsp90 dimer. In addition, the dynamic modes are affected to various degrees by Sba1, a co-chaperone of Hsp90, depending on the location within Hsp90, which is in very good agreement with MD simulations. Altogether, this data is best described by fast molecule-spanning dynamics, which precede larger conformational changes in Hsp90 and might be the molecular basis for allostery. This integrative approach provides comprehensive insights into molecule-spanning dynamics on the nanosecond time scale for a multi-domain protein.
Collapse
Affiliation(s)
- Benedikt Sohmen
- Institute of Physical ChemistryUniversity of FreiburgAlbertstrasse 2179104FreiburgGermany
| | - Christian Beck
- Institute of Applied PhysicsUniversity of TübingenAuf der Morgenstelle 1072076TübingenGermany
- Science DivisionInstitut Max von Laue ‐ Paul Langevin71 avenue des MartyrsGrenoble38042France
| | - Veronika Frank
- Institute of Physical ChemistryUniversity of FreiburgAlbertstrasse 2179104FreiburgGermany
| | - Tilo Seydel
- Science DivisionInstitut Max von Laue ‐ Paul Langevin71 avenue des MartyrsGrenoble38042France
| | - Ingo Hoffmann
- Science DivisionInstitut Max von Laue ‐ Paul Langevin71 avenue des MartyrsGrenoble38042France
| | - Bianca Hermann
- Institute of Physical ChemistryUniversity of FreiburgAlbertstrasse 2179104FreiburgGermany
| | - Mark Nüesch
- Department of BiochemistryUniversity of ZurichWinterthurerstrasse 190CH‐8057ZurichSwitzerland
| | - Marco Grimaldo
- Science DivisionInstitut Max von Laue ‐ Paul Langevin71 avenue des MartyrsGrenoble38042France
| | - Frank Schreiber
- Institute of Applied PhysicsUniversity of TübingenAuf der Morgenstelle 1072076TübingenGermany
| | - Steffen Wolf
- Biomolecular Dynamics, Institute of PhysicsUniversity of FreiburgHermann‐Herder‐Strasse 379104FreiburgGermany
| | - Felix Roosen‐Runge
- Department of Biomedical Sciences and Biofilms‐Research Center for Biointerfaces (BRCB)Malmö University20506MalmöSweden
- Division of Physical ChemistryLund UniversityNaturvetarvägen 1422100LundSweden
| | - Thorsten Hugel
- Institute of Physical ChemistryUniversity of FreiburgAlbertstrasse 2179104FreiburgGermany
- Signalling Research Centers BIOSS and CIBSSUniversity of FreiburgSchänzlestrasse 1879104FreiburgGermany
| |
Collapse
|
3
|
Peng S, Matts R, Deng J. Structural basis of the key residue W320 responsible for Hsp90 conformational change. J Biomol Struct Dyn 2023; 41:9745-9755. [PMID: 36373326 PMCID: PMC10183053 DOI: 10.1080/07391102.2022.2146197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 11/06/2022] [Indexed: 11/16/2022]
Abstract
The 90-kDa heat shock protein (Hsp90) is a homodimeric molecular chaperone with ATPase activity, which has become an intensely studied target for the development of drugs for the treatment of cancer, neurodegenerative and infectious diseases. The equilibrium between Hsp90 dimers and oligomers is important for modulating its function. In the absence of ATP, the passive chaperone activity of Hsp90 dimers and oligomers has been shown to stabilize client proteins as a holdase, which enhances substrate binding and prevents irreversible aggregation and precipitation of the substrate proteins. In the presence of ATP and its associated cochaperones, Hsp90 homodimers act as foldases with the binding and hydrolysis of ATP driving conformational changes that mediate client folding. Crystal structures of both wild type and W320A mutant Hsp90αMC (middle/C-terminal domain) have been determined, which displayed a preference for hexameric and dimeric states, respectively. Structural analysis showed that W320 is a key residue for Hsp90 oligomerization by forming intermolecular interactions at the Hsp90 hexameric interface through cation-π interactions with R367. W320A substitution results in the formation of a more open conformation of Hsp90, which has not previously been reported, and the induction of a conformational change in the catalytic loop. The structures provide new insights into the mechanism by which W320 functions as a key switch for conformational changes in Hsp90 self-oligomerization, and binding cochaperones and client proteins.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Shuxia Peng
- Department of Biochemistry and Molecular biology, Oklahoma State University, 246 Noble Research Center, Stillwater, OK 74078, USA
| | - Robert Matts
- Department of Biochemistry and Molecular biology, Oklahoma State University, 246 Noble Research Center, Stillwater, OK 74078, USA
| | - Junpeng Deng
- Department of Biochemistry and Molecular biology, Oklahoma State University, 246 Noble Research Center, Stillwater, OK 74078, USA
| |
Collapse
|
4
|
Chiosis G, Digwal CS, Trepel JB, Neckers L. Structural and functional complexity of HSP90 in cellular homeostasis and disease. Nat Rev Mol Cell Biol 2023; 24:797-815. [PMID: 37524848 PMCID: PMC10592246 DOI: 10.1038/s41580-023-00640-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2023] [Indexed: 08/02/2023]
Abstract
Heat shock protein 90 (HSP90) is a chaperone with vital roles in regulating proteostasis, long recognized for its function in protein folding and maturation. A view is emerging that identifies HSP90 not as one protein that is structurally and functionally homogeneous but, rather, as a protein that is shaped by its environment. In this Review, we discuss evidence of multiple structural forms of HSP90 in health and disease, including homo-oligomers and hetero-oligomers, also termed epichaperomes, and examine the impact of stress, post-translational modifications and co-chaperones on their formation. We describe how these variations influence context-dependent functions of HSP90 as well as its interaction with other chaperones, co-chaperones and proteins, and how this structural complexity of HSP90 impacts and is impacted by its interaction with small molecule modulators. We close by discussing recent developments regarding the use of HSP90 inhibitors in cancer and how our new appreciation of the structural and functional heterogeneity of HSP90 invites a re-evaluation of how we discover and implement HSP90 therapeutics for disease treatment.
Collapse
Affiliation(s)
- Gabriela Chiosis
- Chemical Biology Program, Memorial Sloan Kettering Institute, New York, NY, USA.
- Department of Medicine, Memorial Sloan Kettering Institute, New York, NY, USA.
| | - Chander S Digwal
- Chemical Biology Program, Memorial Sloan Kettering Institute, New York, NY, USA
| | - Jane B Trepel
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Len Neckers
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA.
| |
Collapse
|
5
|
Joshi A, Ito T, Picard D, Neckers L. The Mitochondrial HSP90 Paralog TRAP1: Structural Dynamics, Interactome, Role in Metabolic Regulation, and Inhibitors. Biomolecules 2022; 12:biom12070880. [PMID: 35883436 PMCID: PMC9312948 DOI: 10.3390/biom12070880] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 02/04/2023] Open
Abstract
The HSP90 paralog TRAP1 was discovered more than 20 years ago; yet, a detailed understanding of the function of this mitochondrial molecular chaperone remains elusive. The dispensable nature of TRAP1 in vitro and in vivo further complicates an understanding of its role in mitochondrial biology. TRAP1 is more homologous to the bacterial HSP90, HtpG, than to eukaryotic HSP90. Lacking co-chaperones, the unique structural features of TRAP1 likely regulate its temperature-sensitive ATPase activity and shed light on the alternative mechanisms driving the chaperone’s nucleotide-dependent cycle in a defined environment whose physiological temperature approaches 50 °C. TRAP1 appears to be an important bioregulator of mitochondrial respiration, mediating the balance between oxidative phosphorylation and glycolysis, while at the same time promoting mitochondrial homeostasis and displaying cytoprotective activity. Inactivation/loss of TRAP1 has been observed in several neurodegenerative diseases while TRAP1 expression is reported to be elevated in multiple cancers and, as with HSP90, evidence of addiction to TRAP1 has been observed. In this review, we summarize what is currently known about this unique HSP90 paralog and why a better understanding of TRAP1 structure, function, and regulation is likely to enhance our understanding of the mechanistic basis of mitochondrial homeostasis.
Collapse
Affiliation(s)
- Abhinav Joshi
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute (NCI), Bethesda, MD 20892, USA; (A.J.); (T.I.)
| | - Takeshi Ito
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute (NCI), Bethesda, MD 20892, USA; (A.J.); (T.I.)
| | - Didier Picard
- Department of Molecular and Cellular Biology, Université de Genève, Sciences III, 30 Quai Ernest-Ansermet, CH-1211 Geneva, Switzerland;
| | - Len Neckers
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute (NCI), Bethesda, MD 20892, USA; (A.J.); (T.I.)
- Correspondence: ; Tel.: +1-240-858-3918
| |
Collapse
|
6
|
Repositioning of Quinazolinedione-Based Compounds on Soluble Epoxide Hydrolase (sEH) through 3D Structure-Based Pharmacophore Model-Driven Investigation. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123866. [PMID: 35744994 PMCID: PMC9228872 DOI: 10.3390/molecules27123866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/08/2022] [Accepted: 06/14/2022] [Indexed: 12/01/2022]
Abstract
The development of new bioactive compounds represents one of the main purposes of the drug discovery process. Various tools can be employed to identify new drug candidates against pharmacologically relevant biological targets, and the search for new approaches and methodologies often represents a critical issue. In this context, in silico drug repositioning procedures are required even more in order to re-evaluate compounds that already showed poor biological results against a specific biological target. 3D structure-based pharmacophoric models, usually built for specific targets to accelerate the identification of new promising compounds, can be employed for drug repositioning campaigns as well. In this work, an in-house library of 190 synthesized compounds was re-evaluated using a 3D structure-based pharmacophoric model developed on soluble epoxide hydrolase (sEH). Among the analyzed compounds, a small set of quinazolinedione-based molecules, originally selected from a virtual combinatorial library and showing poor results when preliminarily investigated against heat shock protein 90 (Hsp90), was successfully repositioned against sEH, accounting the related built 3D structure-based pharmacophoric model. The promising results here obtained highlight the reliability of this computational workflow for accelerating the drug discovery/repositioning processes.
Collapse
|
7
|
Peng S, Woodruff J, Pathak PK, Matts RL, Deng J. Crystal structure of the middle and C-terminal domains of Hsp90α labeled with a coumarin derivative reveals a potential allosteric binding site as a drug target. Acta Crystallogr D Struct Biol 2022; 78:571-585. [PMID: 35503206 PMCID: PMC9063849 DOI: 10.1107/s2059798322002261] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 02/26/2022] [Indexed: 12/01/2022] Open
Abstract
The 90 kDa heat-shock protein (Hsp90) is an abundant molecular chaperone that is essential to activate, stabilize and regulate the function of a plethora of client proteins. As drug targets for the treatment of cancer and neurodegenerative diseases, Hsp90 inhibitors that bind to the N-terminal ATP-binding site of Hsp90 have shown disappointing efficacy in clinical trials. Thus, allosteric regulation of the function of Hsp90 by compounds that interact with its middle and C-terminal (MC) domains is now being pursued as a mechanism to inhibit the ATPase activity and client protein-binding activity of Hsp90 without concomitant induction of the heat-shock response. Here, the crystal structure of the Hsp90αMC protein covalently linked to a coumarin derivative, MDCC {7-diethylamino-3-[N-(2-maleimidoethyl)carbamoyl]coumarin}, which is located in a hydrophobic pocket that is formed at the Hsp90αMC hexamer interface, is reported. MDCC binding leads to the hexamerization of Hsp90, and the stabilization and conformational changes of three loops that are critical for its function. A fluorescence competition assay demonstrated that other characterized coumarin and isoflavone-containing Hsp90 inhibitors compete with MDCC binding, suggesting that they could bind at a common site or that they might allosterically alter the structure of the MDCC binding site. This study provides insights into the mechanism by which the coumarin class of allosteric inhibitors potentially disrupt the function of Hsp90 by regulating its oligomerization and the burial of interaction sites involved in the ATP-dependent folding of Hsp90 clients. The hydrophobic binding pocket characterized here will provide new structural information for future drug design.
Collapse
Affiliation(s)
- Shuxia Peng
- Department of Biochemistry and Molecular Biology, Oklahoma State University, 246 Noble Research Center, Stillwater, OK 74078, USA
| | - Jeff Woodruff
- Department of Biochemistry and Molecular Biology, Oklahoma State University, 246 Noble Research Center, Stillwater, OK 74078, USA
| | - Prabhat Kumar Pathak
- Department of Biochemistry and Molecular Biology, Oklahoma State University, 246 Noble Research Center, Stillwater, OK 74078, USA
| | - Robert L. Matts
- Department of Biochemistry and Molecular Biology, Oklahoma State University, 246 Noble Research Center, Stillwater, OK 74078, USA
| | - Junpeng Deng
- Department of Biochemistry and Molecular Biology, Oklahoma State University, 246 Noble Research Center, Stillwater, OK 74078, USA
| |
Collapse
|
8
|
Tsolaki VDC, Georgiou-Siafis SK, Tsamadou AI, Tsiftsoglou SA, Samiotaki M, Panayotou G, Tsiftsoglou AS. Hemin accumulation and identification of a heme-binding protein clan in K562 cells by proteomic and computational analysis. J Cell Physiol 2021; 237:1315-1340. [PMID: 34617268 DOI: 10.1002/jcp.30595] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 09/19/2021] [Accepted: 09/22/2021] [Indexed: 11/08/2022]
Abstract
Heme (iron protoporphyrin IX) is an essential regulator conserved in all known organisms. We investigated the kinetics of intracellular accumulation of hemin (oxidized form) in human transformed proerythroid K562 cells using [14 C]-hemin and observed that it is time and temperature-dependent, affected by the presence of serum proteins, as well as the amphipathic/hydrophobic properties of hemin. Hemin-uptake exhibited saturation kinetics as a function of the concentration added, suggesting the involvement of a carrier-cell surface receptor-mediated process. The majority of intracellular hemin accumulated in the cytoplasm, while a substantial portion entered the nucleus. Cytosolic proteins isolated by hemin-agarose affinity column chromatography (HACC) were found to form stable complexes with [59 Fe]-hemin. The HACC fractionation and Liquid chromatography-mass spectrometry analysis of cytosolic, mitochondrial, and nuclear protein isolates from K562 cell extracts revealed the presence of a large number of hemin-binding proteins (HeBPs) of diverse ontologies, including heat shock proteins, cytoskeletal proteins, enzymes, and signaling proteins such as actinin a4, mitogen-activated protein kinase 1 as well as several others. The subsequent computational analysis of the identified HeBPs using HemoQuest confirmed the presence of various hemin/heme-binding motifs [C(X)nC, H, Y] in their primary structures and conformations. The possibility that these HeBPs contribute to a heme intracellular trafficking protein network involved in the homeostatic regulation of the pool and overall functions of heme is discussed.
Collapse
Affiliation(s)
- Vasiliki-Dimitra C Tsolaki
- Department of Pharmacy, Laboratory of Pharmacology, School of Health Sciences, Aristotle University of Thessaloniki (A.U.TH.), Thessaloniki, Greece
| | - Sofia K Georgiou-Siafis
- Department of Pharmacy, Laboratory of Pharmacology, School of Health Sciences, Aristotle University of Thessaloniki (A.U.TH.), Thessaloniki, Greece
| | - Athina I Tsamadou
- Department of Pharmacy, Laboratory of Pharmacology, School of Health Sciences, Aristotle University of Thessaloniki (A.U.TH.), Thessaloniki, Greece
| | - Stefanos A Tsiftsoglou
- Department of Pharmacy, Laboratory of Pharmacology, School of Health Sciences, Aristotle University of Thessaloniki (A.U.TH.), Thessaloniki, Greece
| | - Martina Samiotaki
- Institute of Bioinnovation, B.S.R.C. "Alexander Fleming", Vari, Attiki, Greece
| | - George Panayotou
- Institute of Bioinnovation, B.S.R.C. "Alexander Fleming", Vari, Attiki, Greece
| | - Asterios S Tsiftsoglou
- Department of Pharmacy, Laboratory of Pharmacology, School of Health Sciences, Aristotle University of Thessaloniki (A.U.TH.), Thessaloniki, Greece
| |
Collapse
|
9
|
Bellone M, Muñoz Camero C, Chini MG, Dal Piaz F, Hernandez V, Bifulco G, De Tommasi N, Braca A. Limonoids from Guarea guidonia and Cedrela odorata: Heat Shock Protein 90 (Hsp90) Modulator Properties of Chisomicine D. JOURNAL OF NATURAL PRODUCTS 2021; 84:724-737. [PMID: 33661631 PMCID: PMC8041370 DOI: 10.1021/acs.jnatprod.0c01217] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Indexed: 06/01/2023]
Abstract
Nine new limonoids (1-9) were isolated from the stem bark of Guarea guidonia (1-4) and Cedrela odorata (5-9). Their structures were elucidated using 1D and 2D NMR and MS data and chemical methods as three A2,B,D-seco-type limonoids (1-3), a mexicanolide (4), three nomilin-type (5-7) limonoids, and two limonol derivatives (8 and 9). A DFT/NMR procedure was used to define the relative configurations of 1 and 3. A surface plasmon resonance approach was used to screen the Hsp90 binding capability of the limonoids, and the A2,B,D-seco-type limonoid 8-hydro-(8S*,9S*)-dihydroxy-14,15-en-chisomicine A, named chisomicine D (1), demonstrated the highest affinity. By means of mass spectrometry data, biochemical and cellular assays, and molecular docking, 1 was found as a type of client-selective Hsp90 inhibitor binding to the C-terminus domain of the chaperone.
Collapse
Affiliation(s)
- Maria
Laura Bellone
- Dipartimento
di Farmacia, Università degli Studi
di Salerno, 84084 Fisciano (SA), Italy
- PhD
Program in Drug Discovery and Development, Department of Pharmacy, Università degli Studi di Salerno, 84084 Fisciano
(SA), Italy
| | | | - Maria Giovanna Chini
- Dipartimento
di Bioscienze e Territorio, Università
degli Studi del Molise, 86090 Pesche (IS), Italy
| | - Fabrizio Dal Piaz
- Dipartimento
di Farmacia, Università degli Studi
di Salerno, 84084 Fisciano (SA), Italy
- Dipartimento
di Medicina, Chirurgia e Odontoiatria “Scuola Medica Salernitana”, Università degli Studi di Salerno, 84084 Fisciano
(SA), Italy
| | - Vanessa Hernandez
- Departamento
de Farmacognosia y Medicamentos Organicos, Universidad de los Andes, Mérida, 5101, Venezuela
| | - Giuseppe Bifulco
- Dipartimento
di Farmacia, Università degli Studi
di Salerno, 84084 Fisciano (SA), Italy
| | - Nunziatina De Tommasi
- Dipartimento
di Farmacia, Università degli Studi
di Salerno, 84084 Fisciano (SA), Italy
| | - Alessandra Braca
- Dipartimento
di Farmacia, Università di Pisa, 56126 Pisa, Italy
- CISUP,
Centro per l’Integrazione della Strumentazione Scientifica, Università di Pisa, 56126 Pisa, Italy
| |
Collapse
|
10
|
Wei X, Jin T, Huang C, Jia N, Zhu W, Xu Y, Qian X. Monoarsenical-based chemical approaches for exploration of endogenous vicinal-dithiol-containing proteins (VDPs): From the design to their biological application. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
11
|
Corigliano MG, Sander VA, Sánchez López EF, Ramos Duarte VA, Mendoza Morales LF, Angel SO, Clemente M. Heat Shock Proteins 90 kDa: Immunomodulators and Adjuvants in Vaccine Design Against Infectious Diseases. Front Bioeng Biotechnol 2021; 8:622186. [PMID: 33553125 PMCID: PMC7855457 DOI: 10.3389/fbioe.2020.622186] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 12/15/2020] [Indexed: 02/03/2023] Open
Abstract
Heat shock proteins 90 kDa (Hsp90s) were originally identified as stress-responsive proteins and described to participate in several homeostatic processes. Additionally, extracellular Hsp90s have the ability to bind to surface receptors and activate cellular functions related to immune response (cytokine secretion, cell maturation, and antigen presentation), making them very attractive to be studied as immunomodulators. In this context, Hsp90s are proposed as new adjuvants in the design of novel vaccine formulations that require the induction of a cell-mediated immune response to prevent infectious diseases. In this review, we summarized the adjuvant properties of Hsp90s when they are either alone, complexed, or fused to a peptide to add light to the knowledge of Hsp90s as carriers and adjuvants in the design of vaccines against infectious diseases. Besides, we also discuss the mechanisms by which Hsp90s activate and modulate professional antigen-presenting cells.
Collapse
Affiliation(s)
- Mariana G Corigliano
- Unidad Biotecnológica 6-UB6, Laboratorio de Molecular Farming y Vacunas, INTECH, UNSAM-CONICET, Chascomús, Argentina
| | - Valeria A Sander
- Unidad Biotecnológica 6-UB6, Laboratorio de Molecular Farming y Vacunas, INTECH, UNSAM-CONICET, Chascomús, Argentina
| | - Edwin F Sánchez López
- Unidad Biotecnológica 6-UB6, Laboratorio de Molecular Farming y Vacunas, INTECH, UNSAM-CONICET, Chascomús, Argentina
| | - Víctor A Ramos Duarte
- Unidad Biotecnológica 6-UB6, Laboratorio de Molecular Farming y Vacunas, INTECH, UNSAM-CONICET, Chascomús, Argentina
| | - Luisa F Mendoza Morales
- Unidad Biotecnológica 6-UB6, Laboratorio de Molecular Farming y Vacunas, INTECH, UNSAM-CONICET, Chascomús, Argentina
| | - Sergio O Angel
- Unidad Biotecnológica 2-UB2, Laboratorio de Parasitología Molecular, INTECH, UNSAM-CONICET, Chascomús, Argentina
| | - Marina Clemente
- Unidad Biotecnológica 6-UB6, Laboratorio de Molecular Farming y Vacunas, INTECH, UNSAM-CONICET, Chascomús, Argentina
| |
Collapse
|
12
|
De Vita S, Terracciano S, Bruno I, Chini MG. From Natural Compounds to Bioactive Molecules through NMR and
In Silico
Methodologies. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000469] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Simona De Vita
- Department of Pharmacy University of Salerno Via Giovanni Paolo II, n°132 84084 Fisciano (SA) Italy
| | - Stefania Terracciano
- Department of Pharmacy University of Salerno Via Giovanni Paolo II, n°132 84084 Fisciano (SA) Italy
| | - Ines Bruno
- Department of Pharmacy University of Salerno Via Giovanni Paolo II, n°132 84084 Fisciano (SA) Italy
| | - Maria Giovanna Chini
- Department of Biosciences and Territory University of Molise C.da Fonte Lappone‐ 86090 Pesche (IS) Italy
| |
Collapse
|
13
|
Milani A, Basirnejad M, Bolhassani A. Heat-shock proteins in diagnosis and treatment: an overview of different biochemical and immunological functions. Immunotherapy 2020; 11:215-239. [PMID: 30730280 DOI: 10.2217/imt-2018-0105] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Heat-shock proteins (HSPs) have been involved in different functions including chaperone activity, protein folding, apoptosis, autophagy and immunity. The HSP families have powerful effects on the stimulation of innate immune responses through Toll-like receptors and scavenger receptors. Moreover, HSP-mediated phagocytosis directly enhances the processing and presentation of internalized antigens via the endocytic pathway in adaptive immune system. These properties of HSPs have been used for development of prophylactic and therapeutic vaccines against infectious and noninfectious diseases. Several studies also demonstrated the relationship between HSPs and drug resistance as well as their use as a novel biomarker for detecting tumors in patients. The present review describes different roles of HSPs in biology and medicine especially biochemical and immunological aspects.
Collapse
Affiliation(s)
- Alireza Milani
- Department of Hepatitis & AIDS, Pasteur Institute of Iran, Tehran, Iran.,Iranian Comprehensive Hemophilia Care Center, Tehran, Iran
| | | | - Azam Bolhassani
- Department of Hepatitis & AIDS, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
14
|
Discovery of 5-aryl-3-thiophen-2-yl-1H-pyrazoles as a new class of Hsp90 inhibitors in hepatocellular carcinoma. Bioorg Chem 2020; 94:103433. [DOI: 10.1016/j.bioorg.2019.103433] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 10/09/2019] [Accepted: 11/11/2019] [Indexed: 12/20/2022]
|
15
|
Abosheasha MA, Abd El Khalik EAM, El-Gowily AH. Indispensable Role of Protein Turnover in Autophagy, Apoptosis and Ubiquitination Pathways. HEAT SHOCK PROTEINS 2020:447-468. [DOI: 10.1007/7515_2020_31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
16
|
Umme Hani, Kandagalla S, Sharath BS, Jyothsna K, Manjunatha H. Network Pharmacology Approach Uncovering Pathways Involved in Targeting Hsp90 Through Curcumin and Epigallocatechin to Control Inflammation. Curr Drug Discov Technol 2019; 18:127-138. [PMID: 31820701 DOI: 10.2174/1570163816666191210145652] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 10/07/2019] [Accepted: 10/15/2019] [Indexed: 11/22/2022]
Abstract
AIMS To fetch pathways involved in targetting Hsp90 through Curcumin and Epigallocatechin through Network pharmacological approach. BACKGROUND Hsp90 is a molecular chaperone involved in stabilizing inflammatory protein which may lead to chronic diseases. The herbal compounds Curcumin and Epigallocatechin processing antiinflammatory properties are known to follow a common pathway and control the expression of Hsp90. OBJECTIVE To collect the gene targets of Hsp90, Curcumin and Epigallocatechin in order to understand protein-protein interactions of gene targets by constructing the interactome to identify the hub proteins. Hub proteins docking was performed with curcumin and epigallocatechin. Finally, hub proteins involvement with various human diseases were identified. METHODS The gene targets of Hsp90, Curcumin and Epigallocatechin were obtained from there respective databases. Protein-protein interactions of Pkcδ-Nrf2 and Tlr4 pathway gene targets were collected from String database. Protein interaction network was constructed and merged to get intercession network in cytoscape and Cluego was used to predict the disease related target genes. Docking of ligands to target proteins was carried out using Autodock vina tool. RESULT The main key regulators of Curcumin and Epigallocatechin were identified particularly from Pkcδ-Nrf2 and Tlr4 pathway. CONCLUSION The combined action of Curcumin and Epigallocatechin can reduce the expression of Hsp90 eventually controlling the inflammation.
Collapse
Affiliation(s)
- Umme Hani
- Department of Biotechnology, Janana Sahyadri, Kuvempu University, Shankaraghatta, Shivamogga, Karnataka 577451, India
| | - Shivananda Kandagalla
- Department of Biotechnology, Janana Sahyadri, Kuvempu University, Shankaraghatta, Shivamogga, Karnataka 577451, India
| | - B S Sharath
- Department of Biotechnology, Janana Sahyadri, Kuvempu University, Shankaraghatta, Shivamogga, Karnataka 577451, India
| | - K Jyothsna
- Department of Biotechnology, Janana Sahyadri, Kuvempu University, Shankaraghatta, Shivamogga, Karnataka 577451, India
| | - Hanumanthappa Manjunatha
- Department of Biotechnology, Janana Sahyadri, Kuvempu University, Shankaraghatta, Shivamogga, Karnataka 577451, India
| |
Collapse
|
17
|
D'Ambola M, Fiengo L, Chini MG, Cotugno R, Bader A, Bifulco G, Braca A, De Tommasi N, Dal Piaz F. Fusicoccane Diterpenes from Hypoestes forsskaolii as Heat Shock Protein 90 (Hsp90) Modulators. JOURNAL OF NATURAL PRODUCTS 2019; 82:539-549. [PMID: 30839211 DOI: 10.1021/acs.jnatprod.8b00924] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Ten new (1-10) and six known (11-16) fusicoccane diterpenes were isolated from the roots of Hypoestes forsskaolii. The structural characterization of 1-10 was performed by spectroscopic analysis, including 1D and 2D NMR, ECD, and HRESIMS experiments. From a perspective of obtaining potential Hsp90α inhibitors, the isolates were screened by surface plasmon resonance measurements and their cytotoxic activity was assayed using Jurkat and HeLa cancer cells. Compound 6, 18-hydroxyhypoestenone, was shown to be the most active compound against Hsp90, and its interactions were studied also by biochemical and cellular assays and by molecular docking.
Collapse
Affiliation(s)
- Massimiliano D'Ambola
- Dipartimento di Farmacia , Università degli Studi di Salerno , Via Giovanni Paolo II 132 , 84084 Fisciano ( SA ), Italy
| | - Lorenzo Fiengo
- Dipartimento di Farmacia , Università degli Studi di Salerno , Via Giovanni Paolo II 132 , 84084 Fisciano ( SA ), Italy
| | - Maria Giovanna Chini
- Dipartimento di Farmacia , Università degli Studi di Salerno , Via Giovanni Paolo II 132 , 84084 Fisciano ( SA ), Italy
| | - Roberta Cotugno
- Dipartimento di Farmacia , Università degli Studi di Salerno , Via Giovanni Paolo II 132 , 84084 Fisciano ( SA ), Italy
| | - Ammar Bader
- Department of Pharmacognosy, Faculty of Pharmacy , Umm Al-Qura University , 21955 Makkah , Saudi Arabia
| | - Giuseppe Bifulco
- Dipartimento di Farmacia , Università degli Studi di Salerno , Via Giovanni Paolo II 132 , 84084 Fisciano ( SA ), Italy
| | - Alessandra Braca
- Dipartimento di Farmacia , Università di Pisa , Via Bonanno 33 , 56126 Pisa , Italy
- Centro Interdipartimentale di Ricerca "Nutraceutica e Alimentazione per la Salute" , Università di Pisa , Via del Borghetto 80 , 56124 Pisa , Italy
| | - Nunziatina De Tommasi
- Dipartimento di Farmacia , Università degli Studi di Salerno , Via Giovanni Paolo II 132 , 84084 Fisciano ( SA ), Italy
| | - Fabrizio Dal Piaz
- Dipartimento di Farmacia , Università degli Studi di Salerno , Via Giovanni Paolo II 132 , 84084 Fisciano ( SA ), Italy
- Dipartimento di Medicina, Chirurgia e Odontoiatria "Scuola Medica Salernitana" , Università degli Studi di Salerno , Via Giovanni Paolo II 132 , 84084 Fisciano ( SA ), Italy
| |
Collapse
|
18
|
Lepvrier E, Thomas D, Garnier C. Hsp90 Quaternary Structures and the Chaperone Cycle: Highly Flexible Dimeric and Oligomeric Structures and Their Regulation by Co-Chaperones. CURR PROTEOMICS 2018. [DOI: 10.2174/1570164615666180522095147] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Proposed models of the function of Hsp90 are characterised by high flexibility of the dimeric
state and conformational changes regulated by both nucleotide binding and hydrolysis, and by
co-chaperone interactions. In addition to its dimeric state, Hsp90 self-associates upon particular stimuli.
The Hsp90 dimer is the building block up to the hexamer that we named “cosy nest”, and the dodecamer
results from the association of two hexamers. Oligomers exhibit chaperone activity, but their
exact mechanism of action has not yet been determined. One of the best ways to elucidate how oligomers
might operate is to study their interactions with co-chaperone proteins known to regulate the
Hsp90 chaperone cycle, such as p23 and Aha1. In this review, we summarise recent results and conclude
that Hsp90 oligomers are key players in the chaperone cycle. Crucible-shaped quaternary structures
likely provide an ideal environment for client protein accommodation and folding, as is the case
for other Hsp families. Confirmation of the involvement of Hsp90 oligomers in the chaperone cycle
and a better understanding of their functionality will allow us to address some of the more enigmatic
aspects of Hsp90 activity. Utilising this knowledge, future work will highlight how Hsp90 oligomers
and co-chaperones cooperate to build the structures required to fold or refold numerous different client
proteins.
Collapse
Affiliation(s)
- Eléonore Lepvrier
- Structure et Dynamique des Macromolecules, UMR-CNRS 6026, Interactions Cellulaires et Moleculaires, Universite de Rennes 1, Campus Beaulieu, 35042 Rennes Cedex, France
| | - Daniel Thomas
- Structure et Dynamique des Macromolecules, UMR-CNRS 6026, Interactions Cellulaires et Moleculaires, Universite de Rennes 1, Campus Beaulieu, 35042 Rennes Cedex, France
| | - Cyrille Garnier
- Universite de Rennes 1, Campus de Beaulieu, F-35042 Rennes Cedex, France
| |
Collapse
|
19
|
Bhatia S, Diedrich D, Frieg B, Ahlert H, Stein S, Bopp B, Lang F, Zang T, Kröger T, Ernst T, Kögler G, Krieg A, Lüdeke S, Kunkel H, Rodrigues Moita AJ, Kassack MU, Marquardt V, Opitz FV, Oldenburg M, Remke M, Babor F, Grez M, Hochhaus A, Borkhardt A, Groth G, Nagel-Steger L, Jose J, Kurz T, Gohlke H, Hansen FK, Hauer J. Targeting HSP90 dimerization via the C terminus is effective in imatinib-resistant CML and lacks the heat shock response. Blood 2018; 132:307-320. [PMID: 29724897 PMCID: PMC6225350 DOI: 10.1182/blood-2017-10-810986] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 04/19/2018] [Indexed: 12/12/2022] Open
Abstract
Heat shock protein 90 (HSP90) stabilizes many client proteins, including the BCR-ABL1 oncoprotein. BCR-ABL1 is the hallmark of chronic myeloid leukemia (CML) in which treatment-free remission (TFR) is limited, with clinical and economic consequences. Thus, there is an urgent need for novel therapeutics that synergize with current treatment approaches. Several inhibitors targeting the N-terminal domain of HSP90 are under investigation, but side effects such as induction of the heat shock response (HSR) and toxicity have so far precluded their US Food and Drug Administration approval. We have developed a novel inhibitor (aminoxyrone [AX]) of HSP90 function by targeting HSP90 dimerization via the C-terminal domain. This was achieved by structure-based molecular design, chemical synthesis, and functional preclinical in vitro and in vivo validation using CML cell lines and patient-derived CML cells. AX is a promising potential candidate that induces apoptosis in the leukemic stem cell fraction (CD34+CD38-) as well as the leukemic bulk (CD34+CD38+) of primary CML and in tyrosine kinase inhibitor (TKI)-resistant cells. Furthermore, BCR-ABL1 oncoprotein and related pro-oncogenic cellular responses are downregulated, and targeting the HSP90 C terminus by AX does not induce the HSR in vitro and in vivo. We also probed the potential of AX in other therapy-refractory leukemias. Therefore, AX is the first peptidomimetic C-terminal HSP90 inhibitor with the potential to increase TFR in TKI-sensitive and refractory CML patients and also offers a novel therapeutic option for patients with other types of therapy-refractory leukemia because of its low toxicity profile and lack of HSR.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/chemistry
- Antineoplastic Agents/pharmacology
- Binding Sites
- Biomarkers, Tumor
- Cell Cycle/drug effects
- Cell Line, Tumor
- Cell Survival/drug effects
- Disease Models, Animal
- Drug Resistance, Neoplasm/drug effects
- Fusion Proteins, bcr-abl/antagonists & inhibitors
- Fusion Proteins, bcr-abl/chemistry
- HSP90 Heat-Shock Proteins/antagonists & inhibitors
- HSP90 Heat-Shock Proteins/chemistry
- HSP90 Heat-Shock Proteins/metabolism
- Heat-Shock Response/drug effects
- Humans
- Imatinib Mesylate/chemistry
- Imatinib Mesylate/pharmacology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Mice
- Models, Molecular
- Molecular Conformation
- Molecular Structure
- Protein Binding
- Protein Interaction Domains and Motifs
- Protein Kinase Inhibitors/chemistry
- Protein Kinase Inhibitors/pharmacology
- Protein Multimerization/drug effects
- Spectrum Analysis
- Structure-Activity Relationship
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Sanil Bhatia
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, and
| | - Daniela Diedrich
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Benedikt Frieg
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- John von Neumann Institute for Computing, Jülich Supercomputing Centre, Institute for Complex Systems-Structural Biochemistry (ICS-6), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Heinz Ahlert
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, and
| | - Stefan Stein
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt, Germany
| | - Bertan Bopp
- Institute for Pharmaceutical and Medicinal Chemistry, PharmaCampus, Westphalian Wilhelms University, Münster, Germany
| | - Franziska Lang
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, and
| | - Tao Zang
- Institute for Physical Biology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Complex Systems, Structural Biochemistry (ICS-6), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Tobias Kröger
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Thomas Ernst
- Hematology/Oncology, Internal Medicine II, Jena University Hospital, Jena, Germany
| | - Gesine Kögler
- Institute for Transplantation Diagnostics and Cell Therapeutics and
| | - Andreas Krieg
- Department of Surgery (A), Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Steffen Lüdeke
- Institute of Pharmaceutical Sciences, University of Freiburg, Freiburg, Germany
| | - Hana Kunkel
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt, Germany
| | - Ana J Rodrigues Moita
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Matthias U Kassack
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Viktoria Marquardt
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, and
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Neuropathology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Division of Pediatric Neuro-Oncogenomics, German Cancer Consortium, partner site University Hospital Düsseldorf, Düsseldorf, Germany
| | - Friederike V Opitz
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, and
| | - Marina Oldenburg
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, and
| | - Marc Remke
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, and
- Institute of Neuropathology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Division of Pediatric Neuro-Oncogenomics, German Cancer Consortium, partner site University Hospital Düsseldorf, Düsseldorf, Germany
| | - Florian Babor
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, and
| | - Manuel Grez
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt, Germany
| | - Andreas Hochhaus
- Hematology/Oncology, Internal Medicine II, Jena University Hospital, Jena, Germany
| | - Arndt Borkhardt
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, and
| | - Georg Groth
- Institute for Biochemical Plant Physiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; and
| | - Luitgard Nagel-Steger
- Institute for Physical Biology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Complex Systems, Structural Biochemistry (ICS-6), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Joachim Jose
- Institute for Pharmaceutical and Medicinal Chemistry, PharmaCampus, Westphalian Wilhelms University, Münster, Germany
| | - Thomas Kurz
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Holger Gohlke
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- John von Neumann Institute for Computing, Jülich Supercomputing Centre, Institute for Complex Systems-Structural Biochemistry (ICS-6), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Finn K Hansen
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Leipzig University, Leipzig, Germany
| | - Julia Hauer
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, and
| |
Collapse
|
20
|
Roe MS, Wahab B, Török Z, Horváth I, Vigh L, Prodromou C. Dihydropyridines Allosterically Modulate Hsp90 Providing a Novel Mechanism for Heat Shock Protein Co-induction and Neuroprotection. Front Mol Biosci 2018; 5:51. [PMID: 29930942 PMCID: PMC6000670 DOI: 10.3389/fmolb.2018.00051] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 05/22/2018] [Indexed: 12/11/2022] Open
Abstract
Chaperones play a pivotal role in protein homeostasis, but with age their ability to clear aggregated and damaged protein from cells declines. Tau pathology is a driver of a variety of neurodegenerative disease and in Alzheimer's disease (AD) it appears to be precipitated by the formation of amyloid-β (Aβ) aggregates. Aβ-peptide appears to trigger Tau hyperphosphorylation, formation of neurofibrillary tangles and neurotoxicity. Recently, dihydropyridine derivatives were shown to upregulate the heat shock response (HSR) and provide a neuroprotective effect in an APPxPS1 AD mouse model. The HSR response was only seen in diseased cells and consequently these compounds were defined as co-inducers since they upregulate chaperones and co-chaperones only when a pathological state is present. We show for compounds tested herein, that they target predominantly the C-terminal domain of Hsp90, but show some requirement for its middle-domain, and that binding stimulates the chaperones ATPase activity. We identify the site for LA1011 binding and confirm its identification by mutagenesis. We conclude, that binding compromises Hsp90's ability to chaperone, by modulating its ATPase activity, which consequently induces the HSR in diseased cells. Collectively, this represents the mechanism by which the normalization of neurofibrillary tangles, preservation of neurons, reduced tau pathology, reduced amyloid plaque, and increased dendritic spine density in the APPxPS1 Alzheimer's mouse model is initiated. Such dihydropyridine derivatives therefore represent potential pharmaceutical candidates for the therapy of neurodegenerative disease, such as AD.
Collapse
Affiliation(s)
- Mark S Roe
- Genome Damage and Stability Centre, University of Sussex, Brighton, United Kingdom
| | - Ben Wahab
- Sussex Drug Discovery Centre, University of Sussex, Brighton, United Kingdom
| | - Zsolt Török
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences (HAS), Szeged, Hungary
| | - Ibolya Horváth
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences (HAS), Szeged, Hungary
| | - László Vigh
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences (HAS), Szeged, Hungary
| | | |
Collapse
|
21
|
Srisutthisamphan K, Jirakanwisal K, Ramphan S, Tongluan N, Kuadkitkan A, Smith DR. Hsp90 interacts with multiple dengue virus 2 proteins. Sci Rep 2018. [PMID: 29523827 PMCID: PMC5844963 DOI: 10.1038/s41598-018-22639-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Infections with the mosquito-borne dengue virus (DENV) remain a significant public health challenge. In the absence of a commercial therapeutic to treat DENV infection, a greater understanding of the processes of cellular replication is required. The abundant cellular chaperone protein heat shock protein 90 (Hsp90) has been shown to play a proviral role in the replication cycle of several viruses, predominantly through the stabilization of specific viral proteins. To investigate any potential role of Hsp90 in DENV infection the interaction between Hsp90 and DENV proteins was determined through co-immunoprecipitation experiments. Six DENV proteins namely envelope (E) and nonstructural (NS) proteins NS1, NS2B, NS3, NS4B and NS5 were shown to interact with Hsp90, and four of these proteins (E, NS1, NS3 and NS5) were shown to colocalize to a variable extent with Hsp90. Despite the extensive interactions between Hsp90 and DENV proteins, inhibition of the activity of Hsp90 had a relatively minor effect on DENV replication, with inhibition of Hsp90 resulting in a decrease of cellular E protein (but not nonstructural proteins) coupled with an increase of E protein in the medium and an increased virus titer. Collectively these results indicate that Hsp90 has a slight anti-viral effect in DENV infection.
Collapse
Affiliation(s)
| | - Krit Jirakanwisal
- Institute of Molecular Biosciences, Mahidol University, Bangkok, Thailand
| | - Suwipa Ramphan
- Institute of Molecular Biosciences, Mahidol University, Bangkok, Thailand
| | - Natthida Tongluan
- Institute of Molecular Biosciences, Mahidol University, Bangkok, Thailand
| | - Atichat Kuadkitkan
- Institute of Molecular Biosciences, Mahidol University, Bangkok, Thailand
| | - Duncan R Smith
- Institute of Molecular Biosciences, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
22
|
Stetz G, Verkhivker GM. Functional Role and Hierarchy of the Intermolecular Interactions in Binding of Protein Kinase Clients to the Hsp90–Cdc37 Chaperone: Structure-Based Network Modeling of Allosteric Regulation. J Chem Inf Model 2018; 58:405-421. [DOI: 10.1021/acs.jcim.7b00638] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Gabrielle Stetz
- Graduate Program
in Computational and Data Sciences, Department of Computational Sciences,
Schmid College of Science and Technology, Chapman University, One University Drive, Orange, California 92866, United States
| | - Gennady M. Verkhivker
- Graduate Program
in Computational and Data Sciences, Department of Computational Sciences,
Schmid College of Science and Technology, Chapman University, One University Drive, Orange, California 92866, United States
- Chapman University School of Pharmacy, Irvine, California 92618, United States
| |
Collapse
|
23
|
Discovery of new molecular entities able to strongly interfere with Hsp90 C-terminal domain. Sci Rep 2018; 8:1709. [PMID: 29374167 PMCID: PMC5786060 DOI: 10.1038/s41598-017-14902-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 10/19/2017] [Indexed: 01/22/2023] Open
Abstract
Heat shock protein 90 (Hsp90) is an ATP dependent molecular chaperone deeply involved in the complex network of cellular signaling governing some key functions, such as cell proliferation and survival, invasion and angiogenesis. Over the past years the N-terminal protein domain has been fully investigated as attractive strategy against cancer, but despite the many efforts lavished in the field, none of the N-terminal binders (termed "classical inhibitors"), currently in clinical trials, have yet successfully reached the market, because of the detrimental heat shock response (HSR) that showed to induce; thus, recently, the selective inhibition of Hsp90 C-terminal domain has powerfully emerged as a more promising alternative strategy for anti-cancer therapy, not eliciting this cell rescue cascade. However, the structural complexity of the target protein and, mostly, the lack of a co-crystal structure of C-terminal domain-ligand, essential to drive the identification of new hits, represent the largest hurdles in the development of new selective C-terminal inhibitors. Continuing our investigations on the identification of new anticancer drug candidates, by using an orthogonal screening approach, here we describe two new potent C-terminal inhibitors able to induce cancer cell death and a considerable down-regulation of Hsp90 client oncoproteins, without triggering the undesired heat shock response.
Collapse
|
24
|
Goode KM, Petrov DP, Vickman RE, Crist SA, Pascuzzi PE, Ratliff TL, Davisson VJ, Hazbun TR. Targeting the Hsp90 C-terminal domain to induce allosteric inhibition and selective client downregulation. Biochim Biophys Acta Gen Subj 2017; 1861:1992-2006. [PMID: 28495207 DOI: 10.1016/j.bbagen.2017.05.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 04/20/2017] [Accepted: 05/05/2017] [Indexed: 02/07/2023]
Abstract
BACKGROUND Inhibition of Hsp90 is desirable due to potential downregulation of oncogenic clients. Early generation inhibitors bind to the N-terminal domain (NTD) but C-terminal domain (CTD) inhibitors are a promising class because they do not induce a heat shock response. Here we present a new structural class of CTD binding molecules with a unique allosteric inhibition mechanism. METHODS A hit molecule, NSC145366, and structurally similar probes were assessed for inhibition of Hsp90 activities. A ligand-binding model was proposed indicating a novel Hsp90 CTD binding site. Client protein downregulation was also determined. RESULTS NSC145366 interacts with the Hsp90 CTD and has anti-proliferative activity in tumor cell lines (GI50=0.2-1.9μM). NSC145366 increases Hsp90 oligomerization resulting in allosteric inhibition of NTD ATPase activity (IC50=119μM) but does not compete with NTD or CTD-ATP binding. Treatment of LNCaP prostate tumor cells resulted in selective client protein downregulation including AR and BRCA1 but without a heat shock response. Analogs had similar potencies in ATPase and chaperone activity assays and variable effects on oligomerization. In silico modeling predicted a binding site at the CTD dimer interface distinct from the nucleotide-binding site. CONCLUSIONS A set of symmetrical scaffold molecules with bisphenol A cores induced allosteric inhibition of Hsp90. Experimental evidence and molecular modeling suggest that the binding site is independent of the CTD-ATP site and consistent with unique induction of allosteric effects. GENERAL SIGNIFICANCE Allosteric inhibition of Hsp90 via a mechanism used by the NSC145366-based probes is a promising avenue for selective oncogenic client downregulation.
Collapse
Affiliation(s)
- Kourtney M Goode
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA
| | - Dino P Petrov
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA
| | - Renee E Vickman
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA
| | - Scott A Crist
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA
| | - Pete E Pascuzzi
- Purdue University Libraries Purdue University, West Lafayette, IN 47907, USA; Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| | - Tim L Ratliff
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA; Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| | - V Jo Davisson
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA; Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| | - Tony R Hazbun
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA; Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
25
|
Simon B, Huang X, Ju H, Sun G, Yang M. Synthesis and characterization of photoaffinity labelling reagents towards the Hsp90 C-terminal domain. Org Biomol Chem 2017; 15:1597-1605. [DOI: 10.1039/c6ob02097f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The synthesis of diazirine type photoaffinity labelling reagents to probe the Hsp90 C-terminal domain binding pocket and the structure–activity relationship. The structure illustrates probe positions only.
Collapse
Affiliation(s)
- Binto Simon
- Department of Pharmaceutical & Biological Chemistry
- The School of Pharmacy
- University College London
- London WC1N 1AX
- UK
| | - Xuexia Huang
- Department of Pharmaceutical & Biological Chemistry
- The School of Pharmacy
- University College London
- London WC1N 1AX
- UK
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210023
- P.R. China
| | - Guoxuan Sun
- Department of Pharmaceutical & Biological Chemistry
- The School of Pharmacy
- University College London
- London WC1N 1AX
- UK
| | - Min Yang
- Department of Pharmaceutical & Biological Chemistry
- The School of Pharmacy
- University College London
- London WC1N 1AX
- UK
| |
Collapse
|
26
|
Roy SS, Kapoor M. In silico identification and computational analysis of the nucleotide binding site in the C-terminal domain of Hsp90. J Mol Graph Model 2016; 70:253-274. [PMID: 27771574 DOI: 10.1016/j.jmgm.2016.10.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 10/02/2016] [Indexed: 12/28/2022]
Abstract
Hsp90 contains two distinct Nucleotide Binding Sites (NBS), in its N-terminal domain (NTD) and C-terminal domain (CTD), respectively. The NTD site belongs to the GHKL super-family of ATPases and has been the subject of extensive characterization. However, a structure of the nucleotide-bound form of CTD is still unavailable. In this study molecular modeling was employed to incorporate experimental data using partial constructs of the CTD, from work published by many research groups, onto existing structural models of its apo- form. Our attempts to locate potential nucleotide ligand-binding sites or cavities yielded one major candidate-a structurally unconventional site-exhibiting the requisite shape and volume for accommodation of tri-phosphate nucleotides. Its structure was refined by molecular dynamics (MD)-based techniques. We reproducibly docked the Mg2+ complexed form of ATP, GTP, CTP, TTP and UTP to this putative NBS. These docking simulations and calculated ligand-binding scores are in general agreement with published data about experimentally measured binding to the CTD. The overall pattern of interactions between residues lining the site and docked nucleotides is conserved and broadly similar to that of other nucleotide-binding sites. Our docking simulations suggest that nucleotide binding stabilizes the only structurally labile region, thereby providing a rationale for the increased resistance to thermal denaturation and proteolysis. The docked nucleotides do not intrude onto the surface of residues involved in dimerization or chaperoning. Our molecular modeling permitted recognition of larger structural changes in the nucleotide-bound CTD dimer, including stabilization of helix-2 in both chains and intra- and inter- chain interactions between three residues (I613, Q617, R620).
Collapse
Affiliation(s)
- Samir S Roy
- Department of Biological Sciences, The University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada
| | - Manju Kapoor
- Department of Biological Sciences, The University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada.
| |
Collapse
|
27
|
Xu Y, Wallace MAG, Fitzgerald MC. Thermodynamic Analysis of the Geldanamycin-Hsp90 Interaction in a Whole Cell Lysate Using a Mass Spectrometry-Based Proteomics Approach. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2016; 27:1670-1676. [PMID: 27530778 DOI: 10.1007/s13361-016-1457-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 07/14/2016] [Accepted: 07/16/2016] [Indexed: 06/06/2023]
Abstract
Geldanamycin is a natural product with well-established and potent anti-cancer activities. Heat shock protein 90 (Hsp90) is the known target of geldanamycin, which directly binds to Hsp90's N-terminal ATP binding domain and inhibits Hsp90's ATPase activity. The affinity of geldanamycin for Hsp90 has been measured in multiple studies. However, there have been large discrepancies between the reported dissociation constants (i.e., Kd values), which have ranged from low nanomolar to micromolar. Here the stability of proteins from rates of oxidation (SPROX) technique was used in combination with an isobaric mass tagging strategy to measure the binding affinity of geldanamycin to unpurified Hsp90 in an MCF-7 cell lysate. The Kd values determined here were dependent on how long geldanamycin was equilibrated with the lysate prior to SPROX analysis. The Kd values determined using equilibration times of 0.5 and 24 h were 1 and 0.03 μM, respectively. These Kd values, which are similar to those previously reported in a geldanamycin-Hsp90 binding study that involved the use of a fluorescently labeled geldanamycin analogue, establish that the slow-tight binding behavior previously observed for the fluorescently labeled geldanamycin analogue is not an artifact of the fluorescent label, but rather an inherent property of the geldanamycin-Hsp90 binding interaction. The slow-tight binding property of this complex may be related to time-dependent conformational changes in Hsp90 and/or to time-dependent chemical changes in geldanamycin, both of which have been previously proposed to explain the slow-tight binding behavior of the geldanamycin-Hsp90 complex. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Yingrong Xu
- Pfizer, Inc., Groton, CT, 06340, USA
- Department of Chemistry, Duke University, Durham, NC, 27708, USA
| | - M Ariel Geer Wallace
- National Exposure Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27709, USA
- Department of Chemistry, Duke University, Durham, NC, 27708, USA
| | | |
Collapse
|
28
|
Travers TS, Harlow L, Rosas IO, Gochuico BR, Mikuls TR, Bhattacharya SK, Camacho CJ, Ascherman DP. Extensive Citrullination Promotes Immunogenicity of HSP90 through Protein Unfolding and Exposure of Cryptic Epitopes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2016; 197:1926-36. [PMID: 27448590 PMCID: PMC5061338 DOI: 10.4049/jimmunol.1600162] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 06/16/2016] [Indexed: 12/29/2022]
Abstract
Post-translational protein modifications such as citrullination have been linked to the breach of immune tolerance and clinical autoimmunity. Previous studies from our laboratory support this concept, demonstrating that autoantibodies targeting citrullinated isoforms of heat shock protein 90 (HSP90) are associated with rheumatoid arthritis complicated by interstitial lung disease. To further explore the relationship between citrullination and structural determinants of HSP90 immunogenicity, we employed a combination of ELISA-based epitope profiling, computational modeling, and mass-spectrometric sequencing of peptidylarginine deiminase (PAD)-modified protein. Remarkably, ELISAs involving selected citrullinated HSP90β/α peptides identified a key epitope corresponding to an internal Arg residue (R502 [HSP90β]/R510 [HSP90α]) that is normally buried within the crystal structure of native/unmodified HSP90. In vitro time/dose-response experiments reveal an ordered pattern of PAD-mediated deimination events culminating in citrullination of R502/R510. Conventional as well as scaled molecular dynamics simulations further demonstrate that citrullination of selected Arg residues leads to progressive disruption of HSP90 tertiary structure, promoting exposure of R502/R510 to PAD modification and subsequent autoantibody binding. Consistent with this process, ELISAs incorporating variably deiminated HSP90 as substrate Ag indicate a direct relationship between the degree of citrullination and the level of ex vivo Ab recognition. Overall, these data support a novel structural paradigm whereby citrullination-induced shifts in protein structure generate cryptic epitopes capable of bypassing B cell tolerance in the appropriate genetic context.
Collapse
Affiliation(s)
- Timothy S. Travers
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
| | - Lisa Harlow
- Department of Medicine, Division of Rheumatology, University of Miami Miller School of Medicine, Miami, Florida 33136
| | - Ivan O. Rosas
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Boston, Massachusetts 02115
| | | | - Ted R. Mikuls
- Department of Medicine, Division of Rheumatology, University of Nebraska Medical Center, Omaha, Nebraska 68198
| | - Sanjoy K. Bhattacharya
- Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, Florida 33136
| | - Carlos J. Camacho
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
| | - Dana P. Ascherman
- Department of Medicine, Division of Rheumatology, University of Miami Miller School of Medicine, Miami, Florida 33136
| |
Collapse
|
29
|
Chini MG, Malafronte N, Vaccaro MC, Gualtieri MJ, Vassallo A, Vasaturo M, Castellano S, Milite C, Leone A, Bifulco G, De Tommasi N, Dal Piaz F. Identification of Limonol Derivatives as Heat Shock Protein 90 (Hsp90) Inhibitors through a Multidisciplinary Approach. Chemistry 2016; 22:13236-50. [DOI: 10.1002/chem.201602242] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Indexed: 01/23/2023]
Affiliation(s)
- Maria G. Chini
- Department of Pharmacy; University of Salerno; Via Giovanni Paolo II 132 84084 Fisciano Italy
| | - Nicola Malafronte
- Department of Pharmacy; University of Salerno; Via Giovanni Paolo II 132 84084 Fisciano Italy
| | - Maria C. Vaccaro
- Department of Pharmacy; University of Salerno; Via Giovanni Paolo II 132 84084 Fisciano Italy
| | - Maria J. Gualtieri
- Department of Pharmacy; University of Salerno; Via Giovanni Paolo II 132 84084 Fisciano Italy
- Department of Pharmacognosy and Organic Drug; University of Los Andes; Sector Campo de Oro, detrás del IAHULA 5101 Mérida Venezuela
| | - Antonio Vassallo
- Department of Science; University of Basilicata; Viale dell'Ateneo Lucano 10 85100 Potenza Italy
| | - Michele Vasaturo
- Department of Pharmacy; University of Salerno; Via Giovanni Paolo II 132 84084 Fisciano Italy
- PhD Program in Drug Discovery and Development; University of Salerno; Via Giovanni Paolo II 132 84084 Fisciano Italy
| | - Sabrina Castellano
- Department of Pharmacy; University of Salerno; Via Giovanni Paolo II 132 84084 Fisciano Italy
- Department of Medicine and Surgery; University of Salerno; Via Allende 84081 Baronissi Italy
| | - Ciro Milite
- Department of Pharmacy; University of Salerno; Via Giovanni Paolo II 132 84084 Fisciano Italy
| | - Antonietta Leone
- Department of Pharmacy; University of Salerno; Via Giovanni Paolo II 132 84084 Fisciano Italy
| | - Giuseppe Bifulco
- Department of Pharmacy; University of Salerno; Via Giovanni Paolo II 132 84084 Fisciano Italy
| | - Nunziatina De Tommasi
- Department of Pharmacy; University of Salerno; Via Giovanni Paolo II 132 84084 Fisciano Italy
| | - Fabrizio Dal Piaz
- Department of Pharmacy; University of Salerno; Via Giovanni Paolo II 132 84084 Fisciano Italy
- Department of Medicine and Surgery; University of Salerno; Via Allende 84081 Baronissi Italy
| |
Collapse
|
30
|
Li D, Li C, Li L, Chen S, Wang L, Li Q, Wang X, Lei X, Shen Z. Natural Product Kongensin A is a Non-Canonical HSP90 Inhibitor that Blocks RIP3-dependent Necroptosis. Cell Chem Biol 2016; 23:257-266. [PMID: 27028885 DOI: 10.1016/j.chembiol.2015.08.018] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 08/23/2015] [Accepted: 08/25/2015] [Indexed: 12/22/2022]
Abstract
RIP3-dependent necroptosis has recently garnered significant interest because of the unique signaling mechanisms and pathologic functions involved in this process. Accordingly, a number of chemical screens have identified several effective small-molecule inhibitors that specifically block necroptosis. Here, we report the discovery that kongensin A (KA), a natural product isolated from Croton kongensis, is a potent inhibitor of necroptosis and an inducer of apoptosis. Using a new bioorthogonal ligation method (TQ ligation), we reveal that the direct cellular target of KA is heat shock protein 90 (HSP90). Further studies demonstrate that KA covalently binds to a previously uncharacterized cysteine 420 in the middle domain of HSP90 and dissociates HSP90 from its cochaperone CDC37, which leads to inhibition of RIP3-dependent necroptosis and promotion of apoptosis in multiple cancer cell lines. Collectively, our findings demonstrate that KA is an effective HSP90 inhibitor that has potential anti-necroptosis and anti-inflammation applications.
Collapse
Affiliation(s)
- Dianrong Li
- Graduate Program, Beijing Normal University, Beijing 100875, China; National Institute of Biological Sciences, 7 Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China
| | - Chao Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center, and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Lin Li
- National Institute of Biological Sciences, 7 Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China
| | - She Chen
- National Institute of Biological Sciences, 7 Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China
| | - Lei Wang
- National Institute of Biological Sciences, 7 Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China
| | - Qiang Li
- National Institute of Biological Sciences, 7 Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China
| | - Xiaodong Wang
- National Institute of Biological Sciences, 7 Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China; Collaborative Innovation Center of Systems Biomedicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200240, China
| | - Xiaoguang Lei
- National Institute of Biological Sciences, 7 Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China; Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center, and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China.
| | - Zhirong Shen
- National Institute of Biological Sciences, 7 Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China; Collaborative Innovation Center of Systems Biomedicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200240, China.
| |
Collapse
|
31
|
Terracciano S, Foglia A, Chini MG, Vaccaro MC, Russo A, Piaz FD, Saturnino C, Riccio R, Bifulco G, Bruno I. New dihydropyrimidin-2(1H)-one based Hsp90 C-terminal inhibitors. RSC Adv 2016. [DOI: 10.1039/c6ra17235k] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The inhibition of the C-terminal domain of heat shock protein 90 (Hsp90) is emerging as a novel strategy for cancer therapy, therefore the identification of a new class of C-terminal inhibitors is strongly required.
Collapse
Affiliation(s)
- S. Terracciano
- Department of Pharmacy
- University of Salerno
- Fisciano
- Italy
| | - A. Foglia
- Department of Pharmacy
- University of Salerno
- Fisciano
- Italy
| | - M. G. Chini
- Department of Pharmacy
- University of Salerno
- Fisciano
- Italy
| | - M. C. Vaccaro
- Department of Pharmacy
- University of Salerno
- Fisciano
- Italy
| | - A. Russo
- Department of Pharmacy
- University of Salerno
- Fisciano
- Italy
| | - F. Dal Piaz
- Department of Pharmacy
- University of Salerno
- Fisciano
- Italy
- Department of Medicine and Surgery University of Salerno
| | - C. Saturnino
- Department of Pharmacy
- University of Salerno
- Fisciano
- Italy
| | - R. Riccio
- Department of Pharmacy
- University of Salerno
- Fisciano
- Italy
| | - G. Bifulco
- Department of Pharmacy
- University of Salerno
- Fisciano
- Italy
| | - I. Bruno
- Department of Pharmacy
- University of Salerno
- Fisciano
- Italy
| |
Collapse
|
32
|
Teracciano S, Chini MG, Vaccaro MC, Strocchia M, Foglia A, Vassallo A, Saturnino C, Riccio R, Bifulco G, Bruno I. Identification of the key structural elements of a dihydropyrimidinone core driving toward more potent Hsp90 C-terminal inhibitors. Chem Commun (Camb) 2016; 52:12857-12860. [DOI: 10.1039/c6cc06379a] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Dramatic improvement in the biological activity of DHPM derivatives as a new class of Hsp90 C-terminal inhibitors for cancer therapy.
Collapse
|
33
|
Lo HF, Chen BE, Lin MG, Chi MC, Wang TF, Lin LL. Gene expression and molecular characterization of a chaperone protein HtpG from Bacillus licheniformis. Int J Biol Macromol 2015; 85:179-91. [PMID: 26743745 DOI: 10.1016/j.ijbiomac.2015.12.080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 12/24/2015] [Accepted: 12/24/2015] [Indexed: 11/16/2022]
Abstract
Heat shock protein 90 (Hsp90/HtpG) is a highly abundant and ubiquitous ATP-dependent molecular chaperone consisting of three flexibly linked regions, an N-terminal nucleotide-binding domain, middle domain, and a C-terminal domain. Here the putative htpG gene of Bacillus licheniformis was cloned and heterologously expressed in Escherichia coli M15 cells. Native-gel electrophoresis, size exclusion chromatography, and cross-linking analysis revealed that the recombinant protein probably exists as a mixture of monomer, dimer and other oligomers in solution. The optimal conditions for the ATPase activity of B. licheniformis HtpG (BlHtpG) were 45°C and pH 7.0 in the presence of 0.5mM Mg(2+) ions. The molecular architecture of this protein was stable at higher temperatures with a transition point (Tm) of 45°C at neutral pH, whereas the Tm value was reduced to 40.8°C at pH 10.5. Acrylamide quenching experiment further indicated that the dynamic quenching constant (Ksv) of BlHtpG became larger at higher pH values. BlHtpG also experienced a significant change in the protein conformation upon the addition of ATP and organic solvents. Collectively, our experiment data may provide insights into the molecular properties of BlHtpG and identify the alteration of protein structure to forfeit the ATPase activity at alkaline conditions.
Collapse
Affiliation(s)
- Hui-Fen Lo
- Department of Food Science and Technology, Hungkuang University, 1018 Taiwan Boulevard, Shalu District, Taichung 43302, Taiwan
| | - Bo-En Chen
- Department of Applied Chemistry, National Chiayi University, 300 Syuefu Road, Chiayi 60004, Taiwan
| | - Min-Guan Lin
- Institute of Molecular Biology, Academia Sinica, Nangang District, Taipei 11529, Taiwan
| | - Meng-Chun Chi
- Department of Applied Chemistry, National Chiayi University, 300 Syuefu Road, Chiayi 60004, Taiwan
| | - Tzu-Fan Wang
- Department of Chemistry, National Cheng Kung University, Tainan 701, Taiwan.
| | - Long-Liu Lin
- Department of Applied Chemistry, National Chiayi University, 300 Syuefu Road, Chiayi 60004, Taiwan.
| |
Collapse
|
34
|
Strocchia M, Terracciano S, Chini MG, Vassallo A, Vaccaro MC, Dal Piaz F, Leone A, Riccio R, Bruno I, Bifulco G. Targeting the Hsp90 C-terminal domain by the chemically accessible dihydropyrimidinone scaffold. Chem Commun (Camb) 2015; 51:3850-3. [PMID: 25656927 DOI: 10.1039/c4cc10074c] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Hsp90 C-terminal ligands are potential new anti-cancer drugs alternative to the more studied N-terminal inhibitors. Here we report the identification of a new dihydropyrimidinone binding the C-terminus, which is not structurally related to other well-known natural and nature-inspired inhibitors of this second druggable Hsp90 site.
Collapse
Affiliation(s)
- Maria Strocchia
- Department of Pharmacy, University of Salerno, via Giovanni Paolo II, 132, 84084, Fisciano, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Lepvrier E, Nigen M, Moullintraffort L, Chat S, Allegro D, Barbier P, Thomas D, Nazabal A, Garnier C. Hsp90 oligomerization process: How can p23 drive the chaperone machineries? BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1854:1412-24. [PMID: 26151834 DOI: 10.1016/j.bbapap.2015.07.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 06/28/2015] [Accepted: 07/02/2015] [Indexed: 01/16/2023]
Abstract
The 90-kDa heat shock protein (Hsp90) is a highly flexible dimer that is able to self-associate in the presence of divalent cations or under heat shock. In a previous work, we focused on the Mg2+-induced oligomerization process of Hsp90, and characterized the oligomers. Combining analytical ultracentrifugation, size-exclusion chromatography coupled to multi-angle laser light scattering and high-mass matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, we studied the interaction of p23 with both Hsp90 dimer and oligomers. Even if p23 predominantly binds the Hsp90 dimer, we demonstrated, for the first time, that p23 is also able to interact with Hsp90 oligomers, shifting the Hsp90 dimer-oligomers equilibrium toward dimer. Our results showed that the Hsp90:p23 binding stoichiometry decreases with the Hsp90 oligomerization degree. Therefore, we propose a model in which p23 would act as a "protein wedge" regarding the Hsp90 dimer closure and the Hsp90 oligomerization process.
Collapse
Affiliation(s)
- Eléonore Lepvrier
- Translation and Folding, UMR-CNRS 6290, Université de Rennes 1, Campus Beaulieu, 35042 Rennes Cedex, France
| | - Michaël Nigen
- UMR1208 Ingénierie des Agropolymères et Technologies Emergentes INRA-Montpellier SupAgro-CIRAD-Université Montpellier, 2 Place Pierre Viala, F-34060 Montpellier, France
| | - Laura Moullintraffort
- Translation and Folding, UMR-CNRS 6290, Université de Rennes 1, Campus Beaulieu, 35042 Rennes Cedex, France
| | - Sophie Chat
- Translation and Folding, UMR-CNRS 6290, Université de Rennes 1, Campus Beaulieu, 35042 Rennes Cedex, France
| | - Diane Allegro
- Aix-Marseille Université, INSERM UMR 911, Centre de Recherche en Oncologie biologique et Onco-pharmacologie, 13385 Marseille Cedex 5, France
| | - Pascale Barbier
- Aix-Marseille Université, INSERM UMR 911, Centre de Recherche en Oncologie biologique et Onco-pharmacologie, 13385 Marseille Cedex 5, France
| | - Daniel Thomas
- Translation and Folding, UMR-CNRS 6290, Université de Rennes 1, Campus Beaulieu, 35042 Rennes Cedex, France
| | | | - Cyrille Garnier
- Translation and Folding, UMR-CNRS 6290, Université de Rennes 1, Campus Beaulieu, 35042 Rennes Cedex, France.
| |
Collapse
|
36
|
Sarkar A, Dai Y, Haque MM, Seeger F, Ghosh A, Garcin ED, Montfort WR, Hazen SL, Misra S, Stuehr DJ. Heat Shock Protein 90 Associates with the Per-Arnt-Sim Domain of Heme-free Soluble Guanylate Cyclase: IMplications for Enzyme Maturation. J Biol Chem 2015; 290:21615-28. [PMID: 26134567 DOI: 10.1074/jbc.m115.645515] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Indexed: 11/06/2022] Open
Abstract
Heat shock protein 90 (hsp90) drives heme insertion into the β1 subunit of soluble guanylate cyclase (sGC) β1, which enables it to associate with a partner sGCα1 subunit and mature into a nitric oxide (NO)-responsive active form. We utilized fluorescence polarization measurements and hydrogen-deuterium exchange mass spectrometry to define molecular interactions between the specific human isoforms hsp90β and apo-sGCβ1. hsp90β and its isolated M domain, but not its isolated N and C domains, bind with low micromolar affinity to a heme-free, truncated version of sGCβ1 (sGCβ1(1-359)-H105F). Surprisingly, hsp90β and its M domain bound to the Per-Arnt-Sim (PAS) domain of apo-sGC-β1(1-359), which lies adjacent to its heme-binding (H-NOX) domain. The interaction specifically involved solvent-exposed regions in the hsp90β M domain that are largely distinct from sites utilized by other hsp90 clients. The interaction strongly protected two regions of the sGCβ1 PAS domain and caused local structural relaxation in other regions, including a PAS dimerization interface and a segment in the H-NOX domain. Our results suggest a means by which the hsp90β interaction could prevent apo-sGCβ1 from associating with its partner sGCα1 subunit while enabling structural changes to assist heme insertion into the H-NOX domain. This mechanism would parallel that in other clients like the aryl hydrocarbon receptor and HIF1α, which also interact with hsp90 through their PAS domains to control protein partner and small ligand binding interactions.
Collapse
Affiliation(s)
| | - Yue Dai
- From the Departments of Pathobiology
| | | | - Franziska Seeger
- the Department of Chemistry and Biochemistry, University of Maryland at Baltimore County, Baltimore, Maryland 21250, and
| | | | - Elsa D Garcin
- the Department of Chemistry and Biochemistry, University of Maryland at Baltimore County, Baltimore, Maryland 21250, and
| | - William R Montfort
- the Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721
| | | | - Saurav Misra
- Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| | | |
Collapse
|
37
|
Lepvrier E, Moullintraffort L, Nigen M, Goude R, Allegro D, Barbier P, Peyrot V, Thomas D, Nazabal A, Garnier C. Hsp90 Oligomers Interacting with the Aha1 Cochaperone: An Outlook for the Hsp90 Chaperone Machineries. Anal Chem 2015; 87:7043-51. [PMID: 26076190 DOI: 10.1021/acs.analchem.5b00051] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The 90-kDa heat shock protein (Hsp90) is a highly flexible dimer able to self-associate in the presence of divalent cations or under heat shock. This study investigated the relationship between Hsp90 oligomers and the Hsp90 cochaperone Aha1 (activator of Hsp90 ATPase). The interactions of Aha1 with Hsp90 dimers and oligomers were evaluated by ultracentrifugation, size-exclusion chromatography coupled to multiangle laser light scattering and high-mass matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Hsp90 dimer was able to bind up to four Aha1 molecules, and Hsp90 oligomers are also able to interact with Aha1. The binding of Aha1 did not interfere with the Hsp90 oligomerization process. Except for Hsp90 dimer, the stoichiometry of the interaction remained constant, at 2 Aha1 molecules per Hsp90 dimer, regardless of the degree of Hsp90 oligomerization. Moreover, Aha1 predominantly bound to Hsp90 oligomers. Thus, the ability of Hsp90 oligomers to bind the Aha1 ATPase activator reinforces their role within the Hsp90 chaperone machineries.
Collapse
Affiliation(s)
- Eléonore Lepvrier
- †Translation and Folding, UMR-CNRS 6290, Université de Rennes 1, Campus Beaulieu, 263 Avenue du Général Leclerc, 35042 Rennes, Cedex, France
| | - Laura Moullintraffort
- †Translation and Folding, UMR-CNRS 6290, Université de Rennes 1, Campus Beaulieu, 263 Avenue du Général Leclerc, 35042 Rennes, Cedex, France
| | - Michaël Nigen
- ‡UMR1208 Ingénierie des Agropolymères et Technologies Emergentes INRA-Montpellier SupAgro-CIRAD, Université Montpellier, 2 Place Pierre Viala, F-34060 Montpellier, France
| | - Renan Goude
- §Microbiologie risques infectieux, EA 1254, Université de Rennes 1, Campus Beaulieu, 35042 Rennes, Cedex, France
| | - Diane Allegro
- ∥Aix-Marseille Université, INSERM UMR 911, Centre de Recherche en Oncologie biologique et Onco-pharmacologie, 13385 Marseille, Cedex 5, France
| | - Pascale Barbier
- ∥Aix-Marseille Université, INSERM UMR 911, Centre de Recherche en Oncologie biologique et Onco-pharmacologie, 13385 Marseille, Cedex 5, France
| | - Vincent Peyrot
- ∥Aix-Marseille Université, INSERM UMR 911, Centre de Recherche en Oncologie biologique et Onco-pharmacologie, 13385 Marseille, Cedex 5, France
| | - Daniel Thomas
- †Translation and Folding, UMR-CNRS 6290, Université de Rennes 1, Campus Beaulieu, 263 Avenue du Général Leclerc, 35042 Rennes, Cedex, France
| | | | - Cyrille Garnier
- †Translation and Folding, UMR-CNRS 6290, Université de Rennes 1, Campus Beaulieu, 263 Avenue du Général Leclerc, 35042 Rennes, Cedex, France
| |
Collapse
|
38
|
Solárová Z, Mojžiš J, Solár P. Hsp90 inhibitor as a sensitizer of cancer cells to different therapies (review). Int J Oncol 2014; 46:907-26. [PMID: 25501619 DOI: 10.3892/ijo.2014.2791] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 10/22/2014] [Indexed: 11/06/2022] Open
Abstract
Hsp90 is a molecular chaperone that maintains the structural and functional integrity of various client proteins involved in signaling and many other functions of cancer cells. The natural inhibitors, ansamycins influence the Hsp90 chaperone function by preventing its binding to client proteins and resulting in their proteasomal degradation. N- and C-terminal inhibitors of Hsp90 and their analogues are widely tested as potential anticancer agents in vitro, in vivo as well as in clinical trials. It seems that Hsp90 competitive inhibitors target different tumor types at nanomolar concentrations and might have therapeutic benefit. On the contrary, some Hsp90 inhibitors increased toxicity and resistance of cancer cells induced by heat shock response, and through the interaction of survival signals, that occured as side effects of treatments, could be very effectively limited via combination of therapies. The aim of our review was to collect the data from experimental and clinical trials where Hsp90 inhibitor was combined with other therapies in order to prevent resistance as well as to potentiate the cytotoxic and/or antiproliferative effects.
Collapse
Affiliation(s)
- Zuzana Solárová
- Department of Pharmacology, Faculty of Medicine, P.J. Šafárik University, 040 01 Košice, Slovak Republic
| | - Ján Mojžiš
- Department of Pharmacology, Faculty of Medicine, P.J. Šafárik University, 040 01 Košice, Slovak Republic
| | - Peter Solár
- Laboratory of Cell Biology, Institute of Biology and Ecology, Faculty of Science, P.J. Šafárik University, 040 01 Košice, Slovak Republic
| |
Collapse
|
39
|
New crystal structures of HSC-70 ATP binding domain confirm the role of individual binding pockets and suggest a new method of inhibition. Biochimie 2014; 108:186-92. [PMID: 25433210 DOI: 10.1016/j.biochi.2014.11.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 11/15/2014] [Indexed: 11/22/2022]
Abstract
In recent years the chaperone HSC-70 has become a target for drug design with a strong focus in anticancer therapies. In our study of possible inhibitors of HSC-70 enzymatic activity we screened compounds by NMR as well as X-ray crystallography. As part of our screening efforts we crystallized the human HSC-70 ATP binding domain and obtained novel crystal forms in addition to known structures. The new crystal structures highlight the mobility of the entire domain previously described by NMR, which was linked to its chaperone activity but not yet demonstrated by X-ray crystallography. Conformational changes across the entire molecule have been elucidated in response to the binding of small molecule ligands and show a pattern of mobility consistent with postulated signal transduction modes between the nucleotide binding domain (NBD) and the substrate binding domain (SBD). In addition, two crystal structures contained glycerol bound at a new site. Binding studies performed with glycerol analogs proved inhibitory properties of the site, which were further characterized by isothermal calorimetry and in silico docking studies. The presence of two binding pockets enabled us to explore a novel method of inhibition by compounds that bridge the adjacent phosphate and glycerol binding sites. Finally, an example of such a bridged inhibitor is proposed.
Collapse
|
40
|
Potential C-terminal-domain inhibitors of heat shock protein 90 derived from a C-terminal peptide helix. Bioorg Med Chem 2014; 22:3989-93. [PMID: 24984936 DOI: 10.1016/j.bmc.2014.06.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 05/24/2014] [Accepted: 06/02/2014] [Indexed: 12/30/2022]
Abstract
Hsp90 is a molecular chaperone implicated in many diseases including cancer and neurodegenerative disease. Most inhibitors target the ATPase site in Hsp90's N-terminal domain, with relatively few inhibitors of other domains reported to date. Here, we show that peptides derived from a short helix at the C-terminus of Hsp90 show micromolar activity as Hsp90 inhibitors in vitro. These inhibitors do not block the N-terminal domain's ATP-binding site, and thus are likely to bind at the C-terminal domain. Substitutions and helix stapling were applied to demonstrate structure-activity relationships and improve activity. These helical peptides will help guide the design of a new class of inhibitors of Hsp90's C-terminal domain.
Collapse
|
41
|
Song D, Li LS, Arsenault PR, Tan Q, Bigham AW, Heaton-Johnson KJ, Master SR, Lee FS. Defective Tibetan PHD2 binding to p23 links high altitude adaption to altered oxygen sensing. J Biol Chem 2014; 289:14656-65. [PMID: 24711448 PMCID: PMC4031521 DOI: 10.1074/jbc.m113.541227] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 03/14/2014] [Indexed: 12/11/2022] Open
Abstract
The Tibetan population has adapted to the chronic hypoxia of high altitude. Tibetans bear a genetic signature in the prolyl hydroxylase domain protein 2 (PHD2/EGLN1) gene, which encodes for the central oxygen sensor of the hypoxia-inducible factor (HIF) pathway. Recent studies have focused attention on two nonsynonymous coding region substitutions, D4E and C127S, both of which are markedly enriched in the Tibetan population. These amino acids reside in a region of PHD2 that harbors a zinc finger, which we have previously discovered binds to a Pro-Xaa-Leu-Glu (PXLE) motif in the HSP90 cochaperone p23, thereby recruiting PHD2 to the HSP90 pathway to facilitate HIF-α hydroxylation. We herein report that the Tibetan PHD2 haplotype (D4E/C127S) strikingly diminishes the interaction of PHD2 with p23, resulting in impaired PHD2 down-regulation of the HIF pathway. The defective binding to p23 depends on both the D4E and C127S substitutions. We also identify a PXLE motif in HSP90 itself that can mediate binding to PHD2 but find that this interaction is maintained with the D4E/C127S PHD2 haplotype. We propose that the Tibetan PHD2 variant is a loss of function (hypomorphic) allele, leading to augmented HIF activation to facilitate adaptation to high altitude.
Collapse
Affiliation(s)
- Daisheng Song
- From the Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104 and
| | - Lin-sheng Li
- From the Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104 and
| | - Patrick R Arsenault
- From the Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104 and
| | - Qiulin Tan
- From the Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104 and
| | - Abigail W Bigham
- the Department of Anthropology, University of Michigan, Ann Arbor, Michigan 48109
| | - Katherine J Heaton-Johnson
- From the Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104 and
| | - Stephen R Master
- From the Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104 and
| | - Frank S Lee
- From the Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104 and
| |
Collapse
|
42
|
Ciglia E, Vergin J, Reimann S, Smits SHJ, Schmitt L, Groth G, Gohlke H. Resolving hot spots in the C-terminal dimerization domain that determine the stability of the molecular chaperone Hsp90. PLoS One 2014; 9:e96031. [PMID: 24760083 PMCID: PMC3997499 DOI: 10.1371/journal.pone.0096031] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 04/02/2014] [Indexed: 12/24/2022] Open
Abstract
Human heat shock protein of 90 kDa (hHsp90) is a homodimer that has an essential role in facilitating malignant transformation at the molecular level. Inhibiting hHsp90 function is a validated approach for treating different types of tumors. Inhibiting the dimerization of hHsp90 via its C-terminal domain (CTD) should provide a novel way to therapeutically interfere with hHsp90 function. Here, we predicted hot spot residues that cluster in the CTD dimerization interface by a structural decomposition of the effective energy of binding computed by the MM-GBSA approach and confirmed these predictions using in silico alanine scanning with DrugScore(PPI). Mutation of these residues to alanine caused a significant decrease in the melting temperature according to differential scanning fluorimetry experiments, indicating a reduced stability of the mutant hHsp90 complexes. Size exclusion chromatography and multi-angle light scattering studies demonstrate that the reduced stability of the mutant hHsp90 correlates with a lower complex stoichiometry due to the disruption of the dimerization interface. These results suggest that the identified hot spot residues can be used as a pharmacophoric template for identifying and designing small-molecule inhibitors of hHsp90 dimerization.
Collapse
Affiliation(s)
- Emanuele Ciglia
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-University, Düsseldorf, Germany
| | - Janina Vergin
- Institute for Biochemical Plant Physiology, Heinrich-Heine-University, Düsseldorf, Germany
| | - Sven Reimann
- Institute of Biochemistry, Heinrich-Heine-University, Düsseldorf, Germany
| | - Sander H. J. Smits
- Institute of Biochemistry, Heinrich-Heine-University, Düsseldorf, Germany
| | - Lutz Schmitt
- Institute of Biochemistry, Heinrich-Heine-University, Düsseldorf, Germany
| | - Georg Groth
- Institute for Biochemical Plant Physiology, Heinrich-Heine-University, Düsseldorf, Germany
| | - Holger Gohlke
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-University, Düsseldorf, Germany
| |
Collapse
|
43
|
Hunter MC, O’Hagan KL, Kenyon A, Dhanani KCH, Prinsloo E, Edkins AL. Hsp90 binds directly to fibronectin (FN) and inhibition reduces the extracellular fibronectin matrix in breast cancer cells. PLoS One 2014; 9:e86842. [PMID: 24466266 PMCID: PMC3899338 DOI: 10.1371/journal.pone.0086842] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 12/16/2013] [Indexed: 12/30/2022] Open
Abstract
Heat shock protein 90 (Hsp90) has been identified in the extracellular space and has been shown to chaperone a finite number of extracellular proteins involved in cell migration and invasion. We used chemical cross-linking and immunoprecipitation followed by tandem mass spectrometry (MS/MS) to isolate a complex containing Hsp90 and the matrix protein fibronectin (FN) from breast cancer cells. Further analysis showed direct binding of Hsp90 to FN using an in vitro co-immunoprecipitation assay, a solid phase binding assay and surface plasmon resonance (SPR) spectroscopy. Confocal microscopy showed regions of co-localisation of Hsp90 and FN in breast cancer cell lines. Exogenous Hsp90β was shown to increase the formation of extracellular FN matrix in the Hs578T cell line, whilst knockdown or inhibition of Hsp90 led to a reduction in the levels of both soluble and insoluble FN and could be partially rescued by addition of exogenous Hsp90β. Treatment of cells with novobiocin led to internalization of FN into vesicles that were positive for the presence of the lysosomal marker, LAMP-1. Taken together, the direct interaction between FN and Hsp90, as well as the decreased levels of both soluble and insoluble FN upon Hsp90 inhibition or knockdown, suggested that FN may be a new client protein for Hsp90 and that Hsp90 was involved in FN matrix assembly and/or stability. The identification of FN as a putative client protein of Hsp90 suggests a role for Hsp90 in FN matrix stability, which is important for a number of fundamental cellular processes including embryogenesis, wound healing, cell migration and metastasis.
Collapse
Affiliation(s)
- Morgan C. Hunter
- Biomedical Biotechnology Research Unit, Department of Biochemistry, Microbiology and Biotechnology, Rhodes University, Grahamstown, Eastern Cape, South Africa
| | - Kyle L. O’Hagan
- Biomedical Biotechnology Research Unit, Department of Biochemistry, Microbiology and Biotechnology, Rhodes University, Grahamstown, Eastern Cape, South Africa
| | - Amy Kenyon
- Biomedical Biotechnology Research Unit, Department of Biochemistry, Microbiology and Biotechnology, Rhodes University, Grahamstown, Eastern Cape, South Africa
| | - Karim C. H. Dhanani
- Biomedical Biotechnology Research Unit, Department of Biochemistry, Microbiology and Biotechnology, Rhodes University, Grahamstown, Eastern Cape, South Africa
| | - Earl Prinsloo
- Biomedical Biotechnology Research Unit, Department of Biochemistry, Microbiology and Biotechnology, Rhodes University, Grahamstown, Eastern Cape, South Africa
| | - Adrienne L. Edkins
- Biomedical Biotechnology Research Unit, Department of Biochemistry, Microbiology and Biotechnology, Rhodes University, Grahamstown, Eastern Cape, South Africa
- * E-mail:
| |
Collapse
|
44
|
Wahyudi H, Wang Y, McAlpine SR. Dimerization of a heat shock protein 90 inhibitor enhances inhibitory activity. Org Biomol Chem 2014; 12:765-73. [DOI: 10.1039/c3ob41722k] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
45
|
Park D, Xie BW, Van Beek ER, Blankevoort V, Que I, Löwik CWGM, Hogg PJ. Optical Imaging of Treatment-Related Tumor Cell Death Using a Heat Shock Protein-90 Alkylator. Mol Pharm 2013; 10:3882-91. [DOI: 10.1021/mp4003464] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Danielle Park
- Lowy
Cancer Research Centre and Prince of Wales Clinical School, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Bang-Wen Xie
- Experimental
Molecular Imaging, Department of Radiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Ermond R. Van Beek
- Experimental
Molecular Imaging, Department of Radiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Vicky Blankevoort
- Experimental
Molecular Imaging, Department of Radiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Ivo Que
- Experimental
Molecular Imaging, Department of Radiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Clemens W. G. M. Löwik
- Experimental
Molecular Imaging, Department of Radiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Philip J. Hogg
- Lowy
Cancer Research Centre and Prince of Wales Clinical School, University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|
46
|
Cha JY, Ahn G, Kim JY, Kang SB, Kim MR, Su'udi M, Kim WY, Son D. Structural and functional differences of cytosolic 90-kDa heat-shock proteins (Hsp90s) in Arabidopsis thaliana. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2013; 70:368-373. [PMID: 23827697 DOI: 10.1016/j.plaphy.2013.05.039] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Accepted: 05/20/2013] [Indexed: 06/02/2023]
Abstract
The seven members of the 90-kDa heat shock protein (Hsp90) family encode highly conserved molecular chaperones essential for cell survival in Arabidopsis thaliana. Hsp90 are abundant proteins, localized in different compartments with AtHsp90.1-4 in the cytosol and AtHsp90.5-7 in different organelles. Among the AtHsp90, AtHsp90.1, is stress-inducible and shares comparatively low sequence identity with the constitutively expressed AtHsp90.2-4. Even though abundant information is available on mammalian cytosolic Hsp90 proteins, it is unknown whether cytosolic Hsp90 proteins display different structural and functional properties. We have now analyzed two A. thalianas cytosolic Hsp90s, AtHsp90.1 and AtHsp90.3, for functional divergence. AtHsp90.3 showed higher holdase chaperone activity than AtHsp90.1, although both AtHsp90s exhibited effective chaperone activity. Size-exclusion chromatography revealed different oligomeric states distinguishing the two Hsp90 proteins. While AtHsp90.1 exists in several oligomeric states, including monomers, dimers and higher oligomers, AtHsp90.3 exists predominantly in a high oligomeric state. High oligomeric state of AtHsp90.1 showed higher holdase chaperone activity than the respective monomer or dimer states. When high oligomeric forms of AtHsp90.1 and AtHsp90.3 are reduced by DTT, activity was reduced compared to that found in the native high oligomeric state. In addition, ATP-dependent foldase chaperone activity of AtHsp90.3 was higher with strong intrinsic ATPase activity than that of AtHsp90.1. As a conclusion, the two A. thaliana cytosolic Hsp90 proteins display different functional activities depending on structural differences, implying functional divergence although the proteins are localized to the same sub-cellular organelle.
Collapse
Affiliation(s)
- Joon-Yung Cha
- Division of Applied Life Science (BK21 and WCU Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Blacklock K, Verkhivker GM. Differential modulation of functional dynamics and allosteric interactions in the Hsp90-cochaperone complexes with p23 and Aha1: a computational study. PLoS One 2013; 8:e71936. [PMID: 23977182 PMCID: PMC3747073 DOI: 10.1371/journal.pone.0071936] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 07/10/2013] [Indexed: 12/27/2022] Open
Abstract
Allosteric interactions of the molecular chaperone Hsp90 with a large cohort of cochaperones and client proteins allow for molecular communication and event coupling in signal transduction networks. The integration of cochaperones into the Hsp90 system is driven by the regulatory mechanisms that modulate the progression of the ATPase cycle and control the recruitment of the Hsp90 clientele. In this work, we report the results of computational modeling of allosteric regulation in the Hsp90 complexes with the cochaperones p23 and Aha1. By integrating protein docking, biophysical simulations, modeling of allosteric communications, protein structure network analysis and the energy landscape theory we have investigated dynamics and stability of the Hsp90-p23 and Hsp90-Aha1 interactions in direct comparison with the extensive body of structural and functional experiments. The results have revealed that functional dynamics and allosteric interactions of Hsp90 can be selectively modulated by these cochaperones via specific targeting of the regulatory hinge regions that could restrict collective motions and stabilize specific chaperone conformations. The protein structure network parameters have quantified the effects of cochaperones on conformational stability of the Hsp90 complexes and identified dynamically stable communities of residues that can contribute to the strengthening of allosteric interactions. According to our results, p23-mediated changes in the Hsp90 interactions may provide "molecular brakes" that could slow down an efficient transmission of the inter-domain allosteric signals, consistent with the functional role of p23 in partially inhibiting the ATPase cycle. Unlike p23, Aha1-mediated acceleration of the Hsp90-ATPase cycle may be achieved via modulation of the equilibrium motions that facilitate allosteric changes favoring a closed dimerized form of Hsp90. The results of our study have shown that Aha1 and p23 can modulate the Hsp90-ATPase activity and direct the chaperone cycle by exerting the precise control over structural stability, global movements and allosteric communications in Hsp90.
Collapse
Affiliation(s)
- Kristin Blacklock
- School of Computational Sciences and Crean School of Health and Life Sciences, Schmid College of Science and Technology, Chapman University, Orange, California, United States of America
| | - Gennady M. Verkhivker
- School of Computational Sciences and Crean School of Health and Life Sciences, Schmid College of Science and Technology, Chapman University, Orange, California, United States of America
- Department of Pharmacology, University of California San Diego, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
48
|
Huang ZM, Wu J, Jia ZC, Tian Y, Tang J, Tang Y, Wang Y, Wu YZ, Ni B. Identification of interacting proteins of retinoid-related orphan nuclear receptor gamma in HepG2 cells. BMB Rep 2012; 45:331-6. [PMID: 22732217 DOI: 10.5483/bmbrep.2012.45.6.249] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The retinoid-related orphan nuclear receptor gamma (ROR γ) plays critical roles in regulation of development, immunity and metabolism. As transcription factor usually forms a protein complex to function, thus capturing and dissecting of the ROR γ protein complex will be helpful for exploring the mechanisms underlying those functions. After construction of the recombinant tandem affinity purification (TAP) plasmid, pMSCVpuro ROR γ-CTAP(SG), the nuclear localization of ROR γ-CTAP(SG) fusion protein was verified. Following isolation of ROR γ protein complex by TAP strategy, seven candidate interacting proteins were identified. Finally, the heat shock protein 90 (HSP90) and receptor-interacting protein 140 (RIP140) were confirmed to interplay with ROR γ by co-immunoprecipitation. Interference of HSP90 or/and RIP140 genes resulted in dramatically decreased expression of CYP2C8 gene, the ROR γ target gene. Data from this study demonstrate that HSP90 and RIP140 proteins interact with ROR γ protein in a complex format and function as co-activators in the ROR γ-mediated regulatory processes of HepG2 cells.
Collapse
Affiliation(s)
- Ze-Min Huang
- Institute of Immunology, PLA, Third Military Medical University, Chongqing 400038, China
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Dal Piaz F, Vassallo A, Chini MG, Cordero FM, Cardona F, Pisano C, Bifulco G, De Tommasi N, Brandi A. Natural iminosugar (+)-lentiginosine inhibits ATPase and chaperone activity of hsp90. PLoS One 2012; 7:e43316. [PMID: 22916240 PMCID: PMC3423353 DOI: 10.1371/journal.pone.0043316] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Accepted: 07/19/2012] [Indexed: 01/04/2023] Open
Abstract
Heat shock protein 90 (Hsp90) is a significant target in the development of rational cancer therapy due to its role at the crossroads of multiple signaling pathways associated with cell proliferation and cell viability. The relevance of Hsp90 as a therapeutic target for numerous diseases states has prompted the identification and optimization of novel Hsp90 inhibitors as an emerging therapeutic strategy. We performed a screening aimed to identify novel Hsp90 inhibitors among several natural compounds and we focused on the iminosugar (+)-lentiginosine, a natural amyloglucosidases inhibitor, for its peculiar bioactivity profile. Characterization of Hsp90 inhibition was performed using a panel of chemical and biological approaches, including limited proteolysis, biochemical and cellular assays. Our result suggested that the middle domain of Hsp90, as opposed to its ATP-binding pocket, is a promising binding site for new classes of Hsp90 inhibitors with multi-target anti-cancer potential.
Collapse
Affiliation(s)
- Fabrizio Dal Piaz
- Dipartimento di Scienze Farmaceutiche e Biomediche, Università di Salerno, Fisciano, Italy
| | - Antonio Vassallo
- Dipartimento di Chimica, Università degli Studi della Basilicata, Potenza, Italy
| | - Maria Giovanna Chini
- Dipartimento di Scienze Farmaceutiche e Biomediche, Università di Salerno, Fisciano, Italy
| | - Franca M. Cordero
- Departimento di Chimica “Ugo Schiff”, Università of Firenze, Sesto Fiorentino, Italy
| | - Francesca Cardona
- Departimento di Chimica “Ugo Schiff”, Università of Firenze, Sesto Fiorentino, Italy
| | | | - Giuseppe Bifulco
- Dipartimento di Scienze Farmaceutiche e Biomediche, Università di Salerno, Fisciano, Italy
| | - Nunziatina De Tommasi
- Dipartimento di Scienze Farmaceutiche e Biomediche, Università di Salerno, Fisciano, Italy
- * E-mail:
| | - Alberto Brandi
- Departimento di Chimica “Ugo Schiff”, Università of Firenze, Sesto Fiorentino, Italy
| |
Collapse
|
50
|
Ciocca DR, Arrigo AP, Calderwood SK. Heat shock proteins and heat shock factor 1 in carcinogenesis and tumor development: an update. Arch Toxicol 2012; 87:19-48. [PMID: 22885793 DOI: 10.1007/s00204-012-0918-z] [Citation(s) in RCA: 194] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 07/25/2012] [Indexed: 12/20/2022]
Abstract
Heat shock proteins (HSP) are a subset of the molecular chaperones, best known for their rapid and abundant induction by stress. HSP genes are activated at the transcriptional level by heat shock transcription factor 1 (HSF1). During the progression of many types of cancer, this heat shock transcriptional regulon becomes co-opted by mechanisms that are currently unclear, although evidently triggered in the emerging tumor cell. Concerted activation of HSF1 and the accumulation of HSPs then participate in many of the traits that permit the malignant phenotype. Thus, cancers of many histologies exhibit activated HSF1 and increased HSP levels that may help to deter tumor suppression and evade therapy in the clinic. We review here the extensive work that has been carried out and is still in progress aimed at (1) understanding the oncogenic mechanisms by which HSP genes are switched on, (2) determining the roles of HSF1/HSP in malignant transformation and (3) discovering approaches to therapy based on disrupting the influence of the HSF1-controlled transcriptome in cancer.
Collapse
Affiliation(s)
- Daniel R Ciocca
- Oncology Laboratory, Institute of Experimental Medicine and Biology of Cuyo (IMBECU), Scientific and Technological Center (CCT), CONICET, 5500 Mendoza, Argentina.
| | - Andre Patrick Arrigo
- Apoptosis Cancer and Development, Cancer Research Center of Lyon (CRCL), UMR INSERM 1052-CNRS 5286, Claude Bernard University, Lyon-1, Cheney A Building, Centre Regional Léon Bérard, 28, rue Laennec 69008 LYON, France. ;
| | - Stuart K Calderwood
- Molecular and Cellular Radiation Oncology, Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Boston, MA02215
| |
Collapse
|