1
|
Anker MS, Rashid AM, Butler J, Khan MS. Cardiac wasting in patients with cancer. Basic Res Cardiol 2025; 120:25-34. [PMID: 39311910 PMCID: PMC11790792 DOI: 10.1007/s00395-024-01079-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/15/2024] [Accepted: 08/28/2024] [Indexed: 02/04/2025]
Abstract
Patients with cancer face a significant risk of cardiovascular death, regardless of time since cancer diagnosis. Elderly patients are particularly more susceptible as cancer-associated cardiac complications present in advanced stage cancer. These patients may often present with symptoms observed in chronic heart failure (HF). Cardiac wasting, commonly observed in these patients, is a multifaceted syndrome characterized by systemic metabolic alterations and inflammatory processes that specifically affect cardiac function and structure. Experimental and clinical studies have demonstrated that cancer-associated cardiac wasting is linked with cardiac atrophy and altered cardiac morphology, which impairs cardiac function, particularly pertaining to the left ventricle. Therefore, this review aims to present a summary of epidemiologic data and pathophysiological mechanisms of cardiac wasting due to cancer, and future directions in this field.
Collapse
Affiliation(s)
- Markus S Anker
- German Centre for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany.
- Berlin Institute of Health Center for Regenerative Therapies (BCRT), Berlin, Germany.
- Department of Cardiology, Angiology and Intensive Care CBF, Deutsches Herzzentrum Der Charité, Berlin, Germany.
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12200, Berlin, Germany.
| | | | - Javed Butler
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
- Baylor Scott and White Research Institute, Baylor Scott and White Health, 3434 Live Oak Street, Dallas, TX, 75204, USA
| | - Muhammad Shahzeb Khan
- Baylor Scott and White Research Institute, Baylor Scott and White Health, 3434 Live Oak Street, Dallas, TX, 75204, USA.
- Department of Cardiology, Baylor Scott and White Heart Hospital Plano, Plano, TX, USA.
- Department of Medicine, Baylor College of Medicine, Temple, TX, USA.
| |
Collapse
|
2
|
Mierswa LC, Schipke J, Mühlfeld C. Obesity and hypoxia have differential effects on myocardial innervation in the right ventricle of the male mouse heart. J Anat 2025. [PMID: 39825711 DOI: 10.1111/joa.14221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 12/11/2024] [Accepted: 01/08/2025] [Indexed: 01/20/2025] Open
Abstract
Obesity, along with hypoxia, is known to be a risk factor for pulmonary hypertension (PH), which can lead to right ventricular hypertrophy and eventually heart failure. Both obesity and PH influence the autonomic nervous system (ANS), potentially aggravating changes in the right ventricle (RV). This study investigates the combined effects of obesity and hypoxia on the autonomic innervation of the RV in a mouse model. Male C57BL/6N mice were subjected to a control diet (CD) or a high-fat diet (HFD) for 30 weeks, with subsets of the mice exposed to chronic normobaric hypoxia (13% O2) during the final 3 weeks. Light and electron microscopic stereology was used to quantify various parameters of nerve fibres innervating the RV myocardium. HFD-induced obesity significantly increased the total length of nerve fibres and axons in the RV under normoxic conditions, indicating hyperinnervation. Quantitatively, the length density of nerve fibres per unit volume of RV (unit: x10-3 µm-2) was similar in CD (0.158 ± 0.04), CD-Hyp (0.176 ± 0.06) and HFD-Hyp (0.147 ± 0.05). In contrast, in HFD the length density of nerve fibres showed higher values 0.206 ± 0.054. The total length of nerve fibres increased by 67% from 2.61 m ± 0.77 m in CD to 4.37 m ± 1.51 m in HFD. The total length of axons increased by 80% from 8.87 m ± 2.75 m to 15.95 m ± 4.62 m. However, when obesity was combined with hypoxia, the total axon length was significantly reduced by 27% in HFD-Hyp compared with HFD. In addition, the mean number of axon profiles per nerve fibre profile decreased from 3.44 ± 0.68 in HFD to 2.95 ± 0.43 in HFD-Hyp. Interestingly, chronic hypoxia alone did not significantly alter RV innervation but led to RV hypertrophy, independent of the diet. The attenuation of obesity-induced hyperinnervation by hypoxia suggests a complex and potentially antagonistic interaction between these conditions. In conclusion, obesity induced by a HFD caused hyperinnervation of the RV, whereas chronic hypoxia alone did not significantly alter RV innervation. Surprisingly, chronic hypoxia attenuated the obesity-induced changes in RV innervation. These findings indicate that the effects of obesity and hypoxia-induced PH on RV innervation are distinct and potentially antagonistic.
Collapse
Affiliation(s)
- Louisa-Chiara Mierswa
- Hannover Medical School, Institute of Functional and Applied Anatomy, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Julia Schipke
- Hannover Medical School, Institute of Functional and Applied Anatomy, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Christian Mühlfeld
- Hannover Medical School, Institute of Functional and Applied Anatomy, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| |
Collapse
|
3
|
Stelter K, Alabssi A, Bonaterra GA, Schwarzbach H, Fendrich V, Slater EP, Kinscherf R, Hildebrandt W. Increased Myocardial MAO-A, Atrogin-1, and IL-1β Expression in Transgenic Mice with Pancreatic Carcinoma-Benefit of MAO-A Inhibition for Cardiac Cachexia. Biomedicines 2024; 12:2009. [PMID: 39335522 PMCID: PMC11428447 DOI: 10.3390/biomedicines12092009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/23/2024] [Accepted: 08/28/2024] [Indexed: 09/30/2024] Open
Abstract
Cancer cachexia (CC) continues to challenge clinicians by massively impairing patients' prognosis, mobility, and quality of life through skeletal muscle wasting. CC also includes cardiac cachexia as characterized by atrophy, compromised metabolism, innervation and function of the myocardium through factors awaiting clarification for therapeutic targeting. Because monoamine oxidase-A (MAO-A) is a myocardial source of H2O2 and implicated in myofibrillar protein catabolism and heart failure, we presently studied myocardial MAO-A expression, inflammatory cells, and capillarization together with transcripts of pro-inflammatory, -angiogenic, -apoptotic, and -proteolytic signals (by qRT-PCR) in a 3x-transgenic (LSL-KrasG12D/+; LSL-TrP53R172H/+; Pdx1-Cre) mouse model of orthotopic pancreatic ductal adenoarcinoma (PDAC) compared to wild-type (WT) mice. Moreover, we evaluated the effect of MAO-A inhibition by application of harmine hydrochloride (HH, 8 weeks, i.p., no sham control) on PDAC-related myocardial alterations. Myocardial MAO-A protein content was significantly increased (1.69-fold) in PDAC compared to WT mice. PDAC was associated with an increased percentage of atrogin-1+ (p < 0.001), IL-1β+ (p < 0.01), COX2+ (p < 0.001), and CD68+ (p > 0.05) cells and enhanced transcripts of pro-inflammatory IL-1β (2.47-fold), COX2 (1.53-fold), TNF (1.87-fold), and SOCS3 (1.64-fold). Moreover, PDAC was associated with a reduction in capillary density (-17%, p < 0.05) and transcripts of KDR (0.46-fold) but not of VEGFA, Notch1, or Notch3. Importantly, HH treatment largely reversed the PDAC-related increases in atrogin-1+, IL-1β+, and TNF+ cell fraction as well as in COX2, IL-1β, TNF, and SOCS3 transcripts, whereas capillary density and KDR transcripts failed to improve. In mice with PDAC, increased myocardial pro-atrophic/-inflammatory signals are attributable to increased expression of MAO-A, because they are significantly improved with MAO-A inhibition as a potential novel therapeutic option. The PDAC-related loss in myocardial capillary density may be due to other mechanisms awaiting evaluation with consideration of cardiomyocyte size, cardiac function and physical activity.
Collapse
Affiliation(s)
- Kira Stelter
- Institute for Anatomy and Cell Biology, Department of Medical Cell Biology, Philipps-University of Marburg, Robert-Koch-Str. 8, 35032 Marburg, Germany; (K.S.); (A.A.); (G.A.B.); (H.S.); (R.K.)
| | - Annalena Alabssi
- Institute for Anatomy and Cell Biology, Department of Medical Cell Biology, Philipps-University of Marburg, Robert-Koch-Str. 8, 35032 Marburg, Germany; (K.S.); (A.A.); (G.A.B.); (H.S.); (R.K.)
| | - Gabriel Alejandro Bonaterra
- Institute for Anatomy and Cell Biology, Department of Medical Cell Biology, Philipps-University of Marburg, Robert-Koch-Str. 8, 35032 Marburg, Germany; (K.S.); (A.A.); (G.A.B.); (H.S.); (R.K.)
| | - Hans Schwarzbach
- Institute for Anatomy and Cell Biology, Department of Medical Cell Biology, Philipps-University of Marburg, Robert-Koch-Str. 8, 35032 Marburg, Germany; (K.S.); (A.A.); (G.A.B.); (H.S.); (R.K.)
| | - Volker Fendrich
- Department of Visceral-, Thoracic- and Vascular Surgery, Philipps-University of Marburg, 35032 Marburg, Germany; (V.F.); (E.P.S.)
| | - Emily P. Slater
- Department of Visceral-, Thoracic- and Vascular Surgery, Philipps-University of Marburg, 35032 Marburg, Germany; (V.F.); (E.P.S.)
| | - Ralf Kinscherf
- Institute for Anatomy and Cell Biology, Department of Medical Cell Biology, Philipps-University of Marburg, Robert-Koch-Str. 8, 35032 Marburg, Germany; (K.S.); (A.A.); (G.A.B.); (H.S.); (R.K.)
| | - Wulf Hildebrandt
- Institute for Anatomy and Cell Biology, Department of Medical Cell Biology, Philipps-University of Marburg, Robert-Koch-Str. 8, 35032 Marburg, Germany; (K.S.); (A.A.); (G.A.B.); (H.S.); (R.K.)
| |
Collapse
|
4
|
Bas O, Erdemir AG, Onur MR, Ozer N, Sener YZ, Aksu S, Barista I, Guner G, Guven DC, Kertmen N, Aksoy S, Turker A, Dizdar O. Sarcopenia and anthracycline cardiotoxicity in patients with cancer. BMJ Support Palliat Care 2023; 13:453-461. [PMID: 34479960 DOI: 10.1136/bmjspcare-2021-003197] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 08/18/2021] [Indexed: 02/05/2023]
Abstract
BACKGROUND Several studies have suggested that sarcopenia is associated with an increased treatment toxicity in patients with cancer. The aim of this study is to evaluate the relationship between sarcopenia and anthracycline-related cardiotoxicity. METHODS Patients who received anthracycline-based chemotherapy between 2014 and 2018 and had baseline abdominal CT and baseline and follow-up echocardiography after anthracycline treatment were included. European Society of Cardiology ejection fraction criteria and American Society of Echocardiography diastolic dysfunction criteria were used for definition of cardiotoxicity. Sarcopenia was defined on the basis of skeletal muscle index (SMI) and psoas muscle index (PMI) calculated on CT images at L3 and L4 vertebra levels. RESULTS A total of 166 patients (75 men and 91 women) were included. Sarcopenia was determined in 33 patients (19.9%) according to L3-SMI, in 17 patients (10.2%) according to L4-SMI and in 45 patients (27.1%) according to PMI. 27 patients (16.3%) developed cardiotoxicity. PMI and L3-SMI were significantly associated with an increased risk of cardiotoxicity (L3-SMI: HR=3.27, 95% CI 1.32 to 8.11, p=0.01; PMI: HR=3.71, 95% CI 1.58 to 8.73, p=0.003). CONCLUSIONS This is the first study demonstrating a significant association between CT-diagnosed sarcopenia and anthracycline-related cardiotoxicity. Routine CT scans performed for cancer staging may help clinicians identify high-risk patients in whom closer follow-up or cardioprotective measures should be considered.
Collapse
Affiliation(s)
- Onur Bas
- Department of Internal Medicine, Hacettepe University, Ankara, Turkey
| | | | | | - Necla Ozer
- Department of Cardiology, Hacettepe University, Ankara, Turkey
| | | | - Salih Aksu
- Department of Hematology, Hacettepe University, Ankara, Turkey
| | - Ibrahim Barista
- Department of Medical Oncology, Hacettepe University, Ankara, Turkey
| | - Gurkan Guner
- Department of Medical Oncology, Hacettepe University Cancer Institute, Ankara, Turkey
| | - Deniz Can Guven
- Department of Medical Oncology, Hacettepe University Cancer Institute, Ankara, Turkey
| | - Neyran Kertmen
- Department of Medical Oncology, Hacettepe University Cancer Institute, Ankara, Turkey
| | - Sercan Aksoy
- Department of Medical Oncology, Hacettepe University Cancer Institute, Ankara, Turkey
| | - Alev Turker
- Department of Medical Oncology, Hacettepe University Cancer Institute, Ankara, Turkey
| | - Omer Dizdar
- Department of Medical Oncology, Hacettepe University Cancer Institute, Ankara, Turkey
| |
Collapse
|
5
|
Bagnall L, Grundmann O, Teolis MG, Yoon SJL. Biomarkers and mechanisms associated with cancer-induced cardiac cachexia: A systematic review. J Cachexia Sarcopenia Muscle 2023. [PMID: 37211636 PMCID: PMC10401532 DOI: 10.1002/jcsm.13267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/23/2023] Open
Affiliation(s)
- Lisa Bagnall
- James A. Haley Veterans' Hospital & Clinics, Tampa, Florida, USA
| | - Oliver Grundmann
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, Florida, USA
| | - Marilyn G Teolis
- James A. Haley Veterans' Hospital & Clinics, Tampa, Florida, USA
| | - Saun-Joo L Yoon
- Department of Biobehavioral Nursing Science, College of Nursing, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
6
|
Wang Y, An Z, Lin D, Jin W. Targeting cancer cachexia: Molecular mechanisms and clinical study. MedComm (Beijing) 2022; 3:e164. [PMID: 36105371 PMCID: PMC9464063 DOI: 10.1002/mco2.164] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/01/2022] [Accepted: 07/07/2022] [Indexed: 11/12/2022] Open
Abstract
Cancer cachexia is a complex systemic catabolism syndrome characterized by muscle wasting. It affects multiple distant organs and their crosstalk with cancer constitute cancer cachexia environment. During the occurrence and progression of cancer cachexia, interactions of aberrant organs with cancer cells or other organs in a cancer cachexia environment initiate a cascade of stress reactions and destroy multiple organs including the liver, heart, pancreas, intestine, brain, bone, and spleen in metabolism, neural, and immune homeostasis. The role of involved organs turned from inhibiting tumor growth into promoting cancer cachexia in cancer progression. In this review, we depicted the complicated relationship of cancer cachexia with the metabolism, neural, and immune homeostasis imbalance in multiple organs in a cancer cachexia environment and summarized the treatment progress in recent years. And we discussed the molecular mechanism and clinical study of cancer cachexia from the perspective of multiple organs metabolic, neurological, and immunological abnormalities. Updated understanding of cancer cachexia might facilitate the exploration of biomarkers and novel therapeutic targets of cancer cachexia.
Collapse
Affiliation(s)
- Yong‐Fei Wang
- The First Clinical Medical College of Lanzhou UniversityLanzhouChina
- Institute of Cancer NeuroscienceMedical Frontier Innovation Research CenterThe First Hospital of Lanzhou UniversityLanzhouChina
| | - Zi‐Yi An
- The First Clinical Medical College of Lanzhou UniversityLanzhouChina
- Institute of Cancer NeuroscienceMedical Frontier Innovation Research CenterThe First Hospital of Lanzhou UniversityLanzhouChina
| | - Dong‐Hai Lin
- Key Laboratory for Chemical Biology of Fujian ProvinceMOE Key Laboratory of Spectrochemical Analysis and InstrumentationCollege of Chemistry and Chemical EngineeringXiamen UniversityXiamenChina
| | - Wei‐Lin Jin
- The First Clinical Medical College of Lanzhou UniversityLanzhouChina
- Institute of Cancer NeuroscienceMedical Frontier Innovation Research CenterThe First Hospital of Lanzhou UniversityLanzhouChina
| |
Collapse
|
7
|
Geraldes V, Caldeira E, Afonso A, Machado F, Amaro-Leal Â, Laranjo S, Rocha I. Cardiovascular Dysautonomia in Patients with Breast Cancer. Open Cardiovasc Med J 2022. [DOI: 10.2174/18741924-v16-e2206271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Breast cancer is the most frequent malignant disease among women, being responsible for a considerable percentage of fatalities and comorbidities every year. Despite advances in early detection and therapy, evidence shows that breast cancer survivors are at increased risk of developing other chronic conditions, such as cardiovascular diseases.
Autonomic dysfunction is an emerging, but poorly understood topic that has been suggested as a risk factor for cardiovascular disease in breast cancer patients. It clinically manifests through persistently elevated heart rates and abnormal heart rate variability, even before any signs of cardiovascular dysfunction appear. Since changes in the left ventricular ejection fraction only manifest when myocardial injury has already occurred, it has been hypothesized that autonomic dysfunction can constitute an early biomarker of cardiovascular impairment in breast cancer patients.
This review focuses on the direct and indirect effects of cancer and its treatment on the autonomic nervous system in breast cancer patients. We highlight the mechanisms potentially involved in cancer and antineoplastic therapy-related autonomic imbalance and review the potential strategies to prevent and/or attenuate autonomic dysfunction.
There are gaps in the current knowledge; more research in this area is needed to identify the relevance of autonomic dysfunction and define beneficial interventions to prevent cardiovascular disease in breast cancer patients.
Collapse
|
8
|
Wiggs MP, Beaudry AG, Law ML. Cardiac Remodeling in Cancer-Induced Cachexia: Functional, Structural, and Metabolic Contributors. Cells 2022; 11:cells11121931. [PMID: 35741060 PMCID: PMC9221803 DOI: 10.3390/cells11121931] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/01/2022] [Accepted: 06/08/2022] [Indexed: 11/17/2022] Open
Abstract
Cancer cachexia is a syndrome of progressive weight loss and muscle wasting occurring in many advanced cancer patients. Cachexia significantly impairs quality of life and increases mortality. Cardiac atrophy and dysfunction have been observed in patients with cachexia, which may contribute to cachexia pathophysiology. However, relative to skeletal muscle, little research has been carried out to understand the mechanisms of cardiomyopathy in cachexia. Here, we review what is known clinically about the cardiac changes occurring in cachexia, followed by further discussion of underlying physiological and molecular mechanisms contributing to cachexia-induced cardiomyopathy. Impaired cardiac contractility and relaxation may be explained by a complex interplay of significant heart muscle atrophy and metabolic remodeling, including mitochondrial dysfunction. Because cardiac muscle has fundamental differences compared to skeletal muscle, understanding cardiac-specific effects of cachexia may bring light to unique therapeutic targets and ultimately improve clinical management for patients with cancer cachexia.
Collapse
Affiliation(s)
- Michael P. Wiggs
- Department of Health, Human Performance, and Recreation, Robbins College of Health and Human Sciences, Baylor University, Waco, TX 76706, USA; (M.P.W.); (A.G.B.)
| | - Anna G. Beaudry
- Department of Health, Human Performance, and Recreation, Robbins College of Health and Human Sciences, Baylor University, Waco, TX 76706, USA; (M.P.W.); (A.G.B.)
| | - Michelle L. Law
- Department of Human Sciences and Design, Robbins College of Health and Human Sciences, Baylor University, Waco, TX 76706, USA
- Correspondence: ; Tel.: +1-(254)-710-6003
| |
Collapse
|
9
|
Review of Mechanisms and Treatment of Cancer-Induced Cardiac Cachexia. Cells 2022; 11:cells11061040. [PMID: 35326491 PMCID: PMC8947347 DOI: 10.3390/cells11061040] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/14/2022] [Accepted: 03/17/2022] [Indexed: 11/18/2022] Open
Abstract
Cancer cachexia is a multifactorial, paraneoplastic syndrome that impacts roughly half of all cancer patients. It can negatively impact patient quality of life and prognosis by causing physical impairment, reducing chemotherapy tolerance, and precluding them as surgical candidates. While there is substantial research on cancer-induced skeletal muscle cachexia, there are comparatively fewer studies and therapies regarding cardiac cachexia in the setting of malignancy. A literature review was performed using the PubMed database to identify original articles pertaining to cancer-induced cardiac cachexia, including its mechanisms and potential therapeutic modalities. Seventy studies were identified by two independent reviewers based on inclusion and exclusion criteria. While there are multiple studies addressing the pathophysiology of cardiac-induced cancer cachexia, there are no studies evaluating therapeutic options in the clinical setting. Many treatment modalities including nutrition, heart failure medication, cancer drugs, exercise, and gene therapy have been explored in in vitro and mice models with varying degrees of success. While these may be beneficial in cancer patients, further prospective studies specifically focusing on the assessment and treatment of the cardiac component of cachexia are needed.
Collapse
|
10
|
Cedervall J, Herre M, Dragomir A, Rabelo-Melo F, Svensson A, Thålin C, Rosell A, Hjalmar V, Wallén H, Lindman H, Pejler G, Hagström E, Hultström M, Larsson A, Olsson AK. Neutrophil extracellular traps promote cancer-associated inflammation and myocardial stress. Oncoimmunology 2022; 11:2049487. [PMID: 35309730 PMCID: PMC8928831 DOI: 10.1080/2162402x.2022.2049487] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Cancer is associated with systemic pathologies that contribute to mortality, such as thrombosis and distant organ failure. The aim of this study was to investigate the potential role of neutrophil extracellular traps (NETs) in myocardial inflammation and tissue damage in treatment-naïve individuals with cancer. Mice with mammary carcinoma (MMTV-PyMT) had increased plasma levels of NETs measured as H3Cit-DNA complexes, paralleled with elevated coagulation, compared to healthy littermates. MMTV-PyMT mice displayed upregulation of pro-inflammatory markers in the heart, myocardial hypertrophy and elevated cardiac disease biomarkers in the blood, but not echocardiographic heart failure. Moreover, increased endothelial proliferation was observed in hearts from tumor-bearing mice. Removal of NETs by DNase I treatment suppressed the myocardial inflammation, expression of cardiac disease biomarkers and endothelial proliferation. Compared to a healthy control group, treatment-naïve cancer patients with different malignant disorders had increased NET formation, which correlated to plasma levels of the inflammatory marker CRP and the cardiac disease biomarkers NT-proBNP and sTNFR1, in agreement with the mouse data. Altogether, our data indicate that NETs contribute to inflammation and myocardial stress during malignancy. These findings suggest NETs as potential therapeutic targets to prevent cardiac inflammation and dysfunction in cancer patients.
Collapse
Affiliation(s)
- J. Cedervall
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Biomedical Center, Uppsala, Sweden
| | - M. Herre
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Biomedical Center, Uppsala, Sweden
| | - A. Dragomir
- Department of Immunology, Genetics and Pathology, Uppsala University, Rudbeck Laboratory, Uppsala, Sweden
| | - F. Rabelo-Melo
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Biomedical Center, Uppsala, Sweden
| | - A. Svensson
- Department of Medical Cell Biology, Integrative Physiology, Uppsala University, Uppsala, Sweden
- Department of Surgical Sciences, Anaesthesiology and Intensive Care Medicine, Uppsala University, Uppsala, Sweden
| | - C. Thålin
- Department of Clinical Sciences, Danderyd Hospital, Karolinska Institutet, Stockholm, Sweden
| | - A. Rosell
- Department of Clinical Sciences, Danderyd Hospital, Karolinska Institutet, Stockholm, Sweden
| | - V. Hjalmar
- Department of Clinical Sciences, Danderyd Hospital, Karolinska Institutet, Stockholm, Sweden
- Diagnostic Centre, Danderyd Hospital, Karolinska Institute, Stockholm, Sweden
| | - H. Wallén
- Department of Clinical Sciences, Danderyd Hospital, Karolinska Institutet, Stockholm, Sweden
| | - H. Lindman
- Department of Immunology, Genetics and Pathology, Uppsala University, Rudbeck Laboratory, Uppsala, Sweden
| | - G. Pejler
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Biomedical Center, Uppsala, Sweden
| | - E. Hagström
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - M. Hultström
- Department of Medical Cell Biology, Integrative Physiology, Uppsala University, Uppsala, Sweden
- Department of Surgical Sciences, Anaesthesiology and Intensive Care Medicine, Uppsala University, Uppsala, Sweden
| | - A. Larsson
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - AK. Olsson
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Biomedical Center, Uppsala, Sweden
| |
Collapse
|
11
|
Zhong R, Zhang F, Yang Z, Li Y, Xu Q, Lan H, Lang S, Cyganek L, Burgermeister E, El-Battrawy I, Zhou X, Akin I, Borggrefe M. Regulation of Ion Channel Function in Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes by Cancer Cell Secretion Through DNA Methylation. Front Cardiovasc Med 2022; 9:839104. [PMID: 35265687 PMCID: PMC8899119 DOI: 10.3389/fcvm.2022.839104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/28/2022] [Indexed: 12/24/2022] Open
Abstract
Background Cardiac dysfunction including arrhythmias appear frequently in patients with cancers, which are expected to be caused mainly by cardiotoxic effects of chemotherapy. Experimental studies investigating the effects of cancer cell secretion without chemotherapy on ion channel function in human cardiomyocytes are still lacking. Methods The human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) generated from three healthy donors were treated with gastrointestinal (GI) cancer (AGS and SW480 cells) medium for 48 h. The qPCR, patch-clamp, western blotting, immunostaining, dot blotting, bisulfite sequence, and overexpression of the ten-eleven translocation (TET) enzyme were performed for the study. Results After treated with cancer cell secretion, the maximum depolarization velocity and the action potential amplitude were reduced, the action potential duration prolonged, peak Na+ current, and the transient outward current were decreased, late Na+ and the slowly activating delayed rectifier K+ current were increased. Changes of mRNA and protein level of respective channels were detected along with altered DNA methylation level in CpG island in the promoter regions of ion channel genes and increased protein levels of DNA methyltransferases. Phosphoinositide 3-kinase (PI3K) inhibitor attenuated and transforming growth factor-β (TGF-β) mimicked the effects of cancer cell secretion. Conclusions GI cancer cell secretion could induce ion channel dysfunction, which may contribute to occurrence of arrhythmias in cancer patients. The ion channel dysfunction could result from DNA methylation of ion channel genes via activation of TGF-β/PI3K signaling. This study may provide new insights into pathogenesis of arrhythmia in cancer patients.
Collapse
Affiliation(s)
- Rujia Zhong
- First Department of Medicine, Medical Faculty Mannheim, University Medical Centre Mannheim (UMM), University of Heidelberg, Mannheim, Germany
| | - Feng Zhang
- First Department of Medicine, Medical Faculty Mannheim, University Medical Centre Mannheim (UMM), University of Heidelberg, Mannheim, Germany
| | - Zhen Yang
- First Department of Medicine, Medical Faculty Mannheim, University Medical Centre Mannheim (UMM), University of Heidelberg, Mannheim, Germany
| | - Yingrui Li
- First Department of Medicine, Medical Faculty Mannheim, University Medical Centre Mannheim (UMM), University of Heidelberg, Mannheim, Germany
| | - Qiang Xu
- First Department of Medicine, Medical Faculty Mannheim, University Medical Centre Mannheim (UMM), University of Heidelberg, Mannheim, Germany
| | - Huan Lan
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Siegfried Lang
- First Department of Medicine, Medical Faculty Mannheim, University Medical Centre Mannheim (UMM), University of Heidelberg, Mannheim, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site, Mannheim, Germany
| | - Lukas Cyganek
- Stem Cell Unit, Clinic for Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site, Göttingen, Germany
| | - Elke Burgermeister
- Second Department of Medicine, Faculty of Medicine, University Medical Centre Mannheim (UMM), University of Heidelberg, Mannheim, Germany
| | - Ibrahim El-Battrawy
- First Department of Medicine, Medical Faculty Mannheim, University Medical Centre Mannheim (UMM), University of Heidelberg, Mannheim, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site, Mannheim, Germany
| | - Xiaobo Zhou
- First Department of Medicine, Medical Faculty Mannheim, University Medical Centre Mannheim (UMM), University of Heidelberg, Mannheim, Germany
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
- DZHK (German Center for Cardiovascular Research), Partner Site, Mannheim, Germany
- *Correspondence: Xiaobo Zhou
| | - Ibrahim Akin
- First Department of Medicine, Medical Faculty Mannheim, University Medical Centre Mannheim (UMM), University of Heidelberg, Mannheim, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site, Mannheim, Germany
| | - Martin Borggrefe
- First Department of Medicine, Medical Faculty Mannheim, University Medical Centre Mannheim (UMM), University of Heidelberg, Mannheim, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site, Mannheim, Germany
| |
Collapse
|
12
|
Cardiac Complications: The Understudied Aspect of Cancer Cachexia. Cardiovasc Toxicol 2022; 22:254-267. [PMID: 35171467 DOI: 10.1007/s12012-022-09727-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/03/2022] [Indexed: 12/17/2022]
Abstract
The global burden of cancer cachexia is increasing along with drastic increase in cancer patients. Cancer itself leads to cachexia, and cachexia development is associated with events like altered hemodynamics, and reduced functional capacity of the heart among others which lead to failure of the heart and are called cardiovascular complications associated with cancer cachexia. In some patients, the anti-cancer therapy also leads to this cardiovascular complications. So, in this review, an attempt is made to understand the mechanisms, pathophysiology of cardiovascular events in cachectic patients. Important processes which cause cardiovascular complications include alterations in the structure of the heart, loss of cardiac mass and functioning, cardiac fibrosis and cardiac remodeling, apoptosis, cardiac muscle atrophy, and mitochondrial alterations. Previously, the available treatment options were limited to nutraceuticals and physical exercise. Recently, studies with some prospective agents that can improve cardiac health have been reported, but whether their action is effective in cardiovascular complications associated with cancer cachexia is not known or are under trial.
Collapse
|
13
|
Guha A, Fradley MG, Dent SF, Weintraub NL, Lustberg MB, Alonso A, Addison D. Incidence, risk factors, and mortality of atrial fibrillation in breast cancer: a SEER-Medicare analysis. Eur Heart J 2022; 43:300-312. [PMID: 34791123 PMCID: PMC8914878 DOI: 10.1093/eurheartj/ehab745] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/29/2021] [Accepted: 10/13/2021] [Indexed: 12/13/2022] Open
Abstract
AIMS The national incidence, risk factors, and associated mortality of atrial fibrillation (AF) in breast cancer patients are unknown. METHODS AND RESULTS Using the Surveillance, Epidemiology, and End Results-Medicare-linked database, we identified females, ≥66 years old, with a new primary diagnosis of breast cancer from 2007 through 2014. These patients were individually matched 1:1 to Medicare enrolees without cancer, and each pair was followed for 1 year to identify a primary outcome of AF. Cumulative incidence was calculated using competing risk survival statistics. Following this, identifying risk factors of AF among breast cancer patients was conducted using the adjusted Cox proportional hazards model. Finally, Kaplan-Meier methods and adjusted Cox proportional hazards modelling were performed to estimate mortality in breast cancer patients with incident and prevalent AF. This study included 85 423 breast cancer patients. Among these 9425 (11.0%) had AF diagnosis prior to the breast cancer diagnosis. New-onset AF was diagnosed in 2993 (3.9%) patients in a 1-year period after the breast cancer diagnosis [incidence 3.3%, 95% confidence interval (CI) 3.0-3.5%, at 1 year; higher rate in the first 60 days (0.6%/month)]. Comparatively, the incidence of new-onset AF in matched non-cancer controls was 1.8% (95% CI 1.6-2.0%). Apart from traditional demographic and cardiovascular risk factors, breast cancer stage was strongly associated with the development of AF [American Joint Committee on Cancer (AJCC) Stage II/III/IV vs. I: adjusted hazard ratio (aHR) 1.51/2.63/4.21, respectively]. New-onset AF after breast cancer diagnosis (aHR 3.00) is associated with increased 1-year cardiovascular mortality. CONCLUSION AF incidence is significantly higher in women after a breast cancer diagnosis. Higher breast cancer stages at diagnos are significantly associated with a higher risk of AF. New-onset AF in the new breast cancer diagnosis setting increases 1-year cardiovascular mortality but not breast cancer-related mortality. KEY QUESTION What are the incidence, prevalence, risk factors and mortality outcomes of atrial fibrillation (AF) in a multi-ethnic representative United States cohort of breast cancer patients? KEY FINDING Annual incidence for AF is 3.9% with highest rate in the first 60 days after cancer diagnosis. Cancer stage and grade are the strongest risk factors for AF. New onset AF after breast cancer increases all-cause and cardiovascular mortality. TAKE HOME MESSAGE AF incidence is higher in breast cancer patients and is associated with later stage and grade at diagnosis of breast cancer. Involving cardio-oncology in those who develop AF after cancer diagnosis should be encouraged to improve their cardiovascular and overall prognosis.
Collapse
Affiliation(s)
- Avirup Guha
- Department of Medicine, Case Western Reserve
University, 11100 Euclid Ave, Cleveland, OH
44106, USA
- Cardio-Oncology Program, Division of Cardiology, The
Ohio State University Medical Center, 452 W. 10th Ave. Columbus,
OH 43210, USA
- Department of Medicine, Division of Cardiology, and
Vascular Biology Center, Medical College of Georgia at Augusta
University, 1460 Laney Walker Blvd, Augusta, GA 30912, USA
| | - Michael G Fradley
- Cardio-Oncology Program, Division of Cardiology,
Department of Internal Medicine, University of Pennsylvania, 3400
Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Susan F Dent
- Duke Cancer Institute, Duke
University, 2 Seeley Mudd, 10 Bryan Searle Drive, Durham, NC 27710,
USA
| | - Neal L Weintraub
- Department of Medicine, Division of Cardiology, and
Vascular Biology Center, Medical College of Georgia at Augusta
University, 1460 Laney Walker Blvd, Augusta, GA 30912, USA
| | - Maryam B Lustberg
- Breast Cancer Center, Smilow Cancer Hospital, Yale
University, 35 Park St, New Haven, CT 06511, USA
| | - Alvaro Alonso
- Department of Epidemiology, Rollins School of Public
Health, Emory University, 1518 Clifton Rd, Atlanta, GA 30322,
USA
| | - Daniel Addison
- Cardio-Oncology Program, Division of Cardiology, The
Ohio State University Medical Center, 452 W. 10th Ave. Columbus,
OH 43210, USA
- Division of Cancer Prevention and Control,
Department of Internal Medicine, College of Medicine, The Ohio State
University, 1590 N High St Suite 525, Columbus, OH 43201, USA
| |
Collapse
|
14
|
Vučić D, Bijelić N, Rođak E, Rajc J, Dumenčić B, Belovari T, Mihić D, Selthofer-Relatić K. Right Heart Morphology and Its Association With Excessive and Deficient Cardiac Visceral Adipose Tissue. CLINICAL MEDICINE INSIGHTS-CARDIOLOGY 2021; 15:11795468211041330. [PMID: 34602829 PMCID: PMC8485260 DOI: 10.1177/11795468211041330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 07/11/2021] [Indexed: 11/21/2022]
Abstract
Visceral adipose tissue is an independent risk factor for the development of atherosclerotic coronary disease, arterial hypertension, diabetes and metabolic syndrome. Right heart morphology often involves the presence of adipose tissue, which can be quantified by non-invasive imaging methods. The last decade brought a wealth of new insights into the function and morphology of adipose tissue, with great emphasis on its role in the pathogenesis of heart disease. Cardiac adipose tissue is involved in thermogenesis, mechanical protection of the heart and energy storage. However, it can also be an endocrine organ that synthesises numerous pro-inflammatory and anti-inflammatory cytokines, the effect of which is accomplished by paracrine and vasocrine mechanisms. Visceral adipose tissue has several compartments that differ in their embryological origin and vascularisation. Deficiency of cardiac adipose tissue, often due to chronic pathological conditions such as oncological diseases or chronic infectious diseases, predicts increased mortality and morbidity. To date, knowledge about the influence of visceral adipose tissue on cardiac morphology is limited, especially the effect on the morphology of the right heart in a state of excess or deficient visceral adipose tissue.
Collapse
Affiliation(s)
- Domagoj Vučić
- Department for Internal Medicine, Division of Cardiology, General Hospital Doctor Josip Benčević, Slavonski Brod, Croatia
| | - Nikola Bijelić
- Department for Histology and Embriology, Faculty of Medicine, University Josip Juraj Strossmayer in Osijek, Osijek, Croatia
| | - Edi Rođak
- Department for Histology and Embriology, Faculty of Medicine, University Josip Juraj Strossmayer in Osijek, Osijek, Croatia
| | - Jasmina Rajc
- Department for Pathology and Forensic Medicine, University Hospital Center Osijek, Osijek, Croatia.,Department for Pathology, Faculty of Medicine, University Josip Juraj Strossmayer in Osijek, Osijek, Croatia
| | - Boris Dumenčić
- Department for Pathology and Forensic Medicine, University Hospital Center Osijek, Osijek, Croatia.,Department for Pathology, Faculty of Medicine, University Josip Juraj Strossmayer in Osijek, Osijek, Croatia
| | - Tatjana Belovari
- Department for Histology and Embriology, Faculty of Medicine, University Josip Juraj Strossmayer in Osijek, Osijek, Croatia
| | - Damir Mihić
- Department of Intensive Care Medicine, University Center Hospital Osijek, Osijek, Croatia.,Department for Internal Medicine, Faculty of Medicine, University Josip Juraj Strossmayer in Osijek, Osijek, Croatia
| | - Kristina Selthofer-Relatić
- Department for Internal Medicine, Faculty of Medicine, University Josip Juraj Strossmayer in Osijek, Osijek, Croatia.,Department for Heart and Vascular Diseases, University Center Hospital Osijek, Osijek, Croatia
| |
Collapse
|
15
|
Han J, Harrison L, Patzelt L, Wu M, Junker D, Herzig S, Berriel Diaz M, Karampinos DC. Imaging modalities for diagnosis and monitoring of cancer cachexia. EJNMMI Res 2021; 11:94. [PMID: 34557972 PMCID: PMC8460705 DOI: 10.1186/s13550-021-00834-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 09/06/2021] [Indexed: 12/23/2022] Open
Abstract
Cachexia, a multifactorial wasting syndrome, is highly prevalent among advanced-stage cancer patients. Unlike weight loss in healthy humans, the progressive loss of body weight in cancer cachexia primarily implicates lean body mass, caused by an aberrant metabolism and systemic inflammation. This may lead to disease aggravation, poorer quality of life, and increased mortality. Timely detection is, therefore, crucial, as is the careful monitoring of cancer progression, in an effort to improve management, facilitate individual treatment and minimize disease complications. A detailed analysis of body composition and tissue changes using imaging modalities—that is, computed tomography, magnetic resonance imaging, (18F) fluoro-2-deoxy-d-glucose (18FDG) PET and dual-energy X-ray absorptiometry—shows great premise for charting the course of cachexia. Quantitative and qualitative changes to adipose tissue, organs, and muscle compartments, particularly of the trunk and extremities, could present important biomarkers for phenotyping cachexia and determining its onset in patients. In this review, we present and compare the imaging techniques that have been used in the setting of cancer cachexia. Their individual limitations, drawbacks in the face of clinical routine care, and relevance in oncology are also discussed.
Collapse
Affiliation(s)
- Jessie Han
- Department of Diagnostic and Interventional Radiology, Klinikum Rechts Der Isar, TUM School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany.
| | - Luke Harrison
- Institute for Diabetes and Cancer, Helmholtz Center Munich, 85764, Neuherberg, Germany.,German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany
| | - Lisa Patzelt
- Department of Diagnostic and Interventional Radiology, Klinikum Rechts Der Isar, TUM School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - Mingming Wu
- Department of Diagnostic and Interventional Radiology, Klinikum Rechts Der Isar, TUM School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - Daniela Junker
- Department of Diagnostic and Interventional Radiology, Klinikum Rechts Der Isar, TUM School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - Stephan Herzig
- Institute for Diabetes and Cancer, Helmholtz Center Munich, 85764, Neuherberg, Germany.,German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany.,Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine 1, Heidelberg University Hospital, Heidelberg, Germany.,Chair of Molecular Metabolic Control, Technical University of Munich, Munich, Germany
| | - Mauricio Berriel Diaz
- Institute for Diabetes and Cancer, Helmholtz Center Munich, 85764, Neuherberg, Germany.,German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany
| | - Dimitrios C Karampinos
- Department of Diagnostic and Interventional Radiology, Klinikum Rechts Der Isar, TUM School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| |
Collapse
|
16
|
Mühlfeld C. Stereology and three-dimensional reconstructions to analyze the pulmonary vasculature. Histochem Cell Biol 2021; 156:83-93. [PMID: 34272602 PMCID: PMC8397636 DOI: 10.1007/s00418-021-02013-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2021] [Indexed: 02/05/2023]
Abstract
The pulmonary vasculature consists of a large arterial and venous tree with a vast alveolar capillary network (ACN) in between. Both conducting blood vessels and the gas-exchanging capillaries are part of important human lung diseases, including bronchopulmonary dysplasia, pulmonary hypertension and chronic obstructive pulmonary disease. Morphological tools to investigate the different parts of the pulmonary vasculature quantitatively and in three dimensions are crucial for a better understanding of the contribution of the blood vessels to the pathophysiology and effects of lung diseases. In recent years, new stereological methods and imaging techniques have expanded the analytical tool box and therefore the conclusive power of morphological analyses of the pulmonary vasculature. Three of these developments are presented and discussed in this review article, namely (1) stereological quantification of the number of capillary loops, (2) serial block-face scanning electron microscopy of the ACN and (3) labeling of branching generations in light microscopic sections based on arterial tree segmentations of micro-computed tomography data sets of whole lungs. The implementation of these approaches in research work requires expertise in lung preparation, multimodal imaging at different scales, an advanced IT infrastructure and expertise in image analysis. However, they are expected to provide important data that cannot be obtained by previously existing methodology.
Collapse
Affiliation(s)
- Christian Mühlfeld
- Institute of Functional and Applied Anatomy, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany. .,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany. .,Research Core Unit Electron Microscopy, Hannover Medical School, 30625, Hannover, Germany.
| |
Collapse
|
17
|
Anker MS, Sanz AP, Zamorano JL, Mehra MR, Butler J, Riess H, Coats AJS, Anker SD. Advanced cancer is also a heart failure syndrome: a hypothesis. Eur J Heart Fail 2021; 23:140-144. [PMID: 33247608 DOI: 10.1002/ejhf.2071] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/11/2020] [Accepted: 11/25/2020] [Indexed: 12/15/2022] Open
Abstract
We present the hypothesis that advanced stage cancer is also a heart failure syndrome. It can develop independently of or in addition to cardiotoxic effects of anti-cancer therapies. This includes an increased risk of ventricular arrhythmias. We suggest the pathophysiologic link for these developments includes generalized muscle wasting (i.e. sarcopenia) due to tissue homeostasis changes leading to cardiac wasting associated cardiomyopathy. Cardiac wasting with thinning of the ventricular wall increases ventricular wall stress, even in the absence of ventricular dilatation. In addition, arrhythmias may be facilitated by cellular wasting processes affecting structure and function of electrical cells and conduction pathways. We submit that in some patients with advanced cancer (but not terminal cancer), heart failure therapy or defibrillators may be relevant treatment options. The key points in selecting patients for such therapies may be the predicted life expectancy, quality of life at intervention time, symptomatic burden, and consequences for further anti-cancer therapies. The cause of death in advanced cancer is difficult to ascertain and consensus on event definitions in cancer is not established yet. Clinical investigations on this are called for. Broader ethical considerations must be taken into account when aiming to target cardiovascular problems in cancer patients. We suggest that focused attention to evaluating cardiac wasting and arrhythmias in cancer will herald a further evolution in the rapidly expanding field of cardio-oncology.
Collapse
Affiliation(s)
- Markus S Anker
- Department of Cardiology & Berlin Institute of Health Center for Regenerative Therapies (BCRT), German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Charité-Universitätsmedizin Berlin (Campus CVK), Berlin, Germany.,Department of Cardiology, Charité Universitätsmedizin Berlin (Campus CBF), Berlin, Germany
| | | | | | - Mandeep R Mehra
- Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Javed Butler
- Division of Cardiology, Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Hanno Riess
- Department for Hematology, Oncology and Tumor Immunology (Campus CCM), Charite, University Medicine, Berlin, Germany
| | | | - Stefan D Anker
- Department of Cardiology & Berlin Institute of Health Center for Regenerative Therapies (BCRT), German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Charité-Universitätsmedizin Berlin (Campus CVK), Berlin, Germany
| |
Collapse
|
18
|
Anker MS, von Haehling S, Coats AJS, Riess H, Eucker J, Porthun J, Butler J, Karakas M, Haverkamp W, Landmesser U, Anker SD. Ventricular tachycardia, premature ventricular contractions, and mortality in unselected patients with lung, colon, or pancreatic cancer: a prospective study. Eur J Heart Fail 2021; 23:145-153. [PMID: 33222388 DOI: 10.1002/ejhf.2059] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 11/11/2020] [Accepted: 11/15/2020] [Indexed: 12/15/2022] Open
Abstract
AIMS Many cancer patients die due to cardiovascular disease and sudden death, but data on ventricular arrhythmia prevalence and prognostic importance are not known. METHODS AND RESULTS Between 2005 and 2010, we prospectively enrolled 120 unselected patients with lung, colon, or pancreatic cancer due to one of three diagnoses: colorectal (n = 33), pancreatic (n = 54), or non-small cell lung cancer (n = 33). All were free of manifest cardiovascular disease. They were compared to 43 healthy controls similar in age and sex distribution. Each participant underwent 24 h electrocardiogram recording and cancer patients were followed for up to 12.5 years for survival (median 21 months). Ninety-six cancer patients (80%) died during follow-up [5-year survival: 27% (95% confidence interval 19-35%)]. Non-sustained ventricular tachycardia (NSVT) was more frequent in cancer patients vs. controls (8% vs. 0%, P = 0.021). The number of premature ventricular contractions (PVCs) over 24 h was not increased in cancer patients vs. controls (median 4 vs. 9, P = 0.2). In multivariable analysis, NSVT [hazard ratio (HR) 2.44, P = 0.047] and PVCs (per 100, HR 1.021, P = 0.047) were both significant predictors of mortality, independent of other univariable mortality predictors including tumour stage, cancer type, potassium concentration, prior surgery, prior cardiotoxic chemotherapy, and haemoglobin. In patients with colorectal and pancreatic cancer, ≥50 PVCs/24 h predicted mortality (HR 2.30, P = 0.0024), and was identified in 18% and 26% of patients, respectively. CONCLUSIONS Non-sustained ventricular tachycardia is more frequent in unselected patients with colorectal, pancreatic, and non-small cell lung cancer and together with PVCs predict long-term mortality. This raises the prospect of cardiovascular mortality being a target for future treatment interventions in selected cancers.
Collapse
Affiliation(s)
- Markus S Anker
- Division of Cardiology and Metabolism, Department of Cardiology (CVK), Charité University Medicine Berlin, Berlin, Germany.,Berlin Institute of Health Center for Regenerative Therapies (BCRT), Berlin, Germany.,German Centre for Cardiovascular Research (DZHK) partner site Berlin, Berlin, Germany.,Department of Cardiology (CBF), Charité University Medicine Berlin, Berlin, Germany
| | - Stephan von Haehling
- Department of Cardiology and Pneumology, University of Göttingen Medical Center, Göttingen, Germany
| | | | - Hanno Riess
- Department of Hematology and Oncology, Charité - Campus Virchow-Klinikum (CVK), Berlin, Germany
| | - Jan Eucker
- Department of Hematology and Oncology, Benjamin Franklin Campus, Charité University of Medicine Berlin, Berlin, Germany
| | - Jan Porthun
- Norwegian University of Science and Technology, Campus Gjøvik (NTNU-Gjøvik), Norway
| | - Javed Butler
- Department of Medicine, University of Mississippi Medical Center, Jackons, MS, USA
| | - Mahir Karakas
- Clinic for General and Interventional Cardiology, University Heart Center Hamburg, Hamburg, Germany.,Partner Site Hamburg/Kiel/Lübeck, German Center for Cardiovascular Research, Hamburg, Germany
| | - Wilhelm Haverkamp
- Division of Cardiology and Metabolism, Department of Cardiology (CVK), Charité University Medicine Berlin, Berlin, Germany
| | - Ulf Landmesser
- German Centre for Cardiovascular Research (DZHK) partner site Berlin, Berlin, Germany.,Department of Cardiology (CBF), Charité University Medicine Berlin, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| | - Stefan D Anker
- Division of Cardiology and Metabolism, Department of Cardiology (CVK), Charité University Medicine Berlin, Berlin, Germany
| |
Collapse
|
19
|
Fradley MG, Beckie TM, Brown SA, Cheng RK, Dent SF, Nohria A, Patton KK, Singh JP, Olshansky B. Recognition, Prevention, and Management of Arrhythmias and Autonomic Disorders in Cardio-Oncology: A Scientific Statement From the American Heart Association. Circulation 2021; 144:e41-e55. [PMID: 34134525 DOI: 10.1161/cir.0000000000000986] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
With the advent of novel cancer therapeutics and improved screening, more patients are surviving a cancer diagnosis or living longer with advanced disease. Many of these treatments have associated cardiovascular toxicities that can manifest in both an acute and a delayed fashion. Arrhythmias are an increasingly identified complication with unique management challenges in the cancer population. The purpose of this scientific statement is to summarize the current state of knowledge regarding arrhythmia identification and treatment in patients with cancer. Atrial tachyarrhythmias, particularly atrial fibrillation, are most common, but ventricular arrhythmias, including those related to treatment-induced QT prolongation, and bradyarrhythmias can also occur. Despite increased recognition, dedicated prospective studies evaluating true incidence are lacking. Moreover, few studies have addressed appropriate prevention and treatment strategies. As such, this scientific statement serves to mobilize the cardio-oncology, electrophysiology, and oncology communities to develop clinical and scientific collaborations that will improve the care of patients with cancer who have arrhythmias.
Collapse
|
20
|
Anker MS, Sanz AP, Zamorano JL, Mehra MR, Butler J, Riess H, Coats AJS, Anker SD. Advanced cancer is also a heart failure syndrome: a hypothesis. J Cachexia Sarcopenia Muscle 2021; 12:533-537. [PMID: 33734609 PMCID: PMC8200419 DOI: 10.1002/jcsm.12694] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
We present the hypothesis that advanced stage cancer is also a heart failure syndrome. It can develop independently of or in addition to cardiotoxic effects of anti-cancer therapies. This includes an increased risk of ventricular arrhythmias. We suggest the pathophysiologic link for these developments includes generalized muscle wasting (i.e. sarcopenia) due to tissue homeostasis changes leading to cardiac wasting associated cardiomyopathy. Cardiac wasting with thinning of the ventricular wall increases ventricular wall stress, even in the absence of ventricular dilatation. In addition, arrhythmias may be facilitated by cellular wasting processes affecting structure and function of electrical cells and conduction pathways. We submit that in some patients with advanced cancer (but not terminal cancer), heart failure therapy or defibrillators may be relevant treatment options. The key points in selecting patients for such therapies may be the predicted life expectancy, quality of life at intervention time, symptomatic burden, and consequences for further anti-cancer therapies. The cause of death in advanced cancer is difficult to ascertain and consensus on event definitions in cancer is not established yet. Clinical investigations on this are called for. Broader ethical considerations must be taken into account when aiming to target cardiovascular problems in cancer patients. We suggest that focused attention to evaluating cardiac wasting and arrhythmias in cancer will herald a further evolution in the rapidly expanding field of cardio-oncology.
Collapse
Affiliation(s)
- Markus S Anker
- Department of Cardiology & Berlin Institute of Health Center for Regenerative Therapies (BCRT), German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Charité-Universitätsmedizin Berlin (Campus CVK), Berlin, Germany.,Department of Cardiology, Charité Universitätsmedizin Berlin (Campus CBF), Berlin, Germany
| | | | | | - Mandeep R Mehra
- Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Javed Butler
- Division of Cardiology, Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Hanno Riess
- Department for Hematology, Oncology and Tumor Immunology (Campus CCM), Charite, University Medicine, Berlin, Germany
| | | | - Stefan D Anker
- Department of Cardiology & Berlin Institute of Health Center for Regenerative Therapies (BCRT), German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Charité-Universitätsmedizin Berlin (Campus CVK), Berlin, Germany
| |
Collapse
|
21
|
Spontaneous Non-Sustained Ventricular Tachycardia and Premature Ventricular Contractions and Their Prognostic Relevance in Patients with Cancer in Routine Care. Cancers (Basel) 2021; 13:cancers13102303. [PMID: 34065780 PMCID: PMC8151948 DOI: 10.3390/cancers13102303] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/24/2021] [Accepted: 03/27/2021] [Indexed: 01/19/2023] Open
Abstract
Aims: It is largely unknown whether cancer patients seen in routine care show ventricular arrhythmias in 24 h electrocardiograms (ECGs), and whether when they are detected they carry prognostic relevance. Methods and Results: We included 261 consecutive cancer patients that were referred to the department of cardiology for 24 h ECG examination and 35 healthy controls of similar age and sex in the analysis. To reduce selection bias, cancer patients with known left ventricular ejection fraction <45% were not included in the analysis. Non-sustained ventricular tachycardia (NSVT) episodes of either ≥3 and ≥4 beats duration were more frequent in cancer patients than controls (17% vs. 0%, p = 0.0008; 10% vs. 0%, p = 0.016). Premature ventricular contractions (PVCs)/24 h were not more frequent in cancer patients compared to controls (median (IQR), 26 (2-360) vs. 9 (1-43), p = 0.06; ≥20 PVCs 53% vs. 37%, p = 0.07). During follow-up, (up to 7.2 years, median 15 months) of the cancer patients, 158 (61%) died (1-/3-/5-year mortality rates: 45% [95%CI 39-51%], 66% [95%CI 59-73%], 73% [95%CI 64-82%]). Both non-sustained ventricular tachycardia of ≥4 beats and ≥20 PVCs/24 h independently predicted mortality in univariate and multivariate survival analyses, adjusted for all other univariate predictors of mortality as well as relevant clinical factors, including cancer stage and type, performance status (ECOG), prior potentially cardiotoxic anti-cancer drug therapy, coronary artery disease, potassium concentration, and haemoglobin (multivariate adjusted hazard ratios: NSVT ≥4 beats [HR 1.76, p = 0.022], ≥20 PVCs/24 h [HR 1.63, p < 0.0064]). Conclusions: NSVT ≥4 beats and ≥20 PVCs/day seen in routine 24 h ECGs of patients with cancer carry prognostic relevance.
Collapse
|
22
|
Labib D, Satriano A, Dykstra S, Hansen R, Mikami Y, Guzzardi DG, Slavikova Z, Feuchter P, Flewitt J, Rivest S, Sandonato R, Lydell CP, Howarth AG, Kolman L, Clarke B, Paterson DI, Oudit GY, Pituskin E, Cheung WY, Lee J, White JA. Effect of Active Cancer on the Cardiac Phenotype: A Cardiac Magnetic Resonance Imaging-Based Study of Myocardial Tissue Health and Deformation in Patients With Chemotherapy-Naïve Cancer. J Am Heart Assoc 2021; 10:e019811. [PMID: 33878890 PMCID: PMC8200726 DOI: 10.1161/jaha.120.019811] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Background The overlap between cancer and cardiovascular care continues to expand, with intersections emerging before, during, and following cancer therapies. To date, emphasis has been placed on how cancer therapeutics influence downstream cardiac health. However, whether active malignancy itself influences chamber volumes, function, or overall myocardial tissue health remains uncertain. We sought to perform a comprehensive cardiovascular magnetic resonance‐based evaluation of cardiac health in patients with chemotherapy‐naïve cancer with comparison with a healthy volunteer population. Methods and Results Three‐hundred and eighty‐one patients with active breast cancer or lymphoma before cardiotoxic chemotherapy exposure were recruited in addition to 102 healthy volunteers. Both cohorts underwent standardized cardiovascular magnetic resonance imaging with quantification of chamber volumes, ejection fraction, and native myocardial T1. Left ventricular mechanics were incrementally assessed using three‐dimensional myocardial deformation analysis, providing global longitudinal, circumferential, radial, and principal peak‐systolic strain amplitude and systolic strain rate. The mean age of patients with cancer was 53.8±13.4 years; 79% being women. Despite similar left ventricular ejection fraction, patients with cancer showed smaller chambers, increased strain amplitude, and systolic strain rate in both conventional and principal directions, and elevated native T1 versus sex‐matched healthy volunteers. Adjusting for age, sex, hypertension, and diabetes mellitus, the presence of cancer remained associated with these cardiovascular magnetic resonance parameters. Conclusions The presence of cancer is independently associated with alterations in cardiac chamber size, function, and objective markers of tissue health. Dedicated research is warranted to elucidate pathophysiologic mechanisms underlying these findings and to explore their relevance to the management of patients with cancer referred for cardiotoxic therapies.
Collapse
Affiliation(s)
- Dina Labib
- Stephenson Cardiac Imaging Centre Libin Cardiovascular Institute of Alberta University of Calgary Alberta Canada.,Department of Cardiovascular Medicine Cairo University Cairo Egypt
| | - Alessandro Satriano
- Stephenson Cardiac Imaging Centre Libin Cardiovascular Institute of Alberta University of Calgary Alberta Canada
| | - Steven Dykstra
- Stephenson Cardiac Imaging Centre Libin Cardiovascular Institute of Alberta University of Calgary Alberta Canada
| | - Reis Hansen
- Stephenson Cardiac Imaging Centre Libin Cardiovascular Institute of Alberta University of Calgary Alberta Canada
| | - Yoko Mikami
- Stephenson Cardiac Imaging Centre Libin Cardiovascular Institute of Alberta University of Calgary Alberta Canada
| | - David G Guzzardi
- Stephenson Cardiac Imaging Centre Libin Cardiovascular Institute of Alberta University of Calgary Alberta Canada
| | - Zdenka Slavikova
- Stephenson Cardiac Imaging Centre Libin Cardiovascular Institute of Alberta University of Calgary Alberta Canada
| | - Patricia Feuchter
- Stephenson Cardiac Imaging Centre Libin Cardiovascular Institute of Alberta University of Calgary Alberta Canada
| | - Jacqueline Flewitt
- Stephenson Cardiac Imaging Centre Libin Cardiovascular Institute of Alberta University of Calgary Alberta Canada
| | - Sandra Rivest
- Stephenson Cardiac Imaging Centre Libin Cardiovascular Institute of Alberta University of Calgary Alberta Canada
| | - Rosa Sandonato
- Stephenson Cardiac Imaging Centre Libin Cardiovascular Institute of Alberta University of Calgary Alberta Canada
| | - Carmen P Lydell
- Stephenson Cardiac Imaging Centre Libin Cardiovascular Institute of Alberta University of Calgary Alberta Canada.,Department of Diagnostic Imaging Cumming School of Medicine University of Calgary Alberta Canada
| | - Andrew G Howarth
- Stephenson Cardiac Imaging Centre Libin Cardiovascular Institute of Alberta University of Calgary Alberta Canada.,Department of Cardiac Sciences Cumming School of Medicine University of Calgary Alberta Canada
| | - Louis Kolman
- Stephenson Cardiac Imaging Centre Libin Cardiovascular Institute of Alberta University of Calgary Alberta Canada
| | - Brian Clarke
- Department of Cardiac Sciences Cumming School of Medicine University of Calgary Alberta Canada
| | - D Ian Paterson
- Department of Medicine University of Alberta Edmonton Alberta Canada.,Mazankowski Alberta Heart InstituteUniversity of Alberta Edmonton Alberta Canada
| | - Gavin Y Oudit
- Department of Medicine University of Alberta Edmonton Alberta Canada.,Mazankowski Alberta Heart InstituteUniversity of Alberta Edmonton Alberta Canada
| | - Edith Pituskin
- Department of Oncology University of Alberta Edmonton Alberta Canada
| | - Winson Y Cheung
- Departments of Medicine and Oncology Cumming School of Medicine University of Calgary Alberta Canada
| | - Joon Lee
- Department of Cardiac Sciences Cumming School of Medicine University of Calgary Alberta Canada.,Department of Community Health Sciences Cumming School of Medicine University of Calgary Alberta Canada
| | - James A White
- Stephenson Cardiac Imaging Centre Libin Cardiovascular Institute of Alberta University of Calgary Alberta Canada.,Department of Diagnostic Imaging Cumming School of Medicine University of Calgary Alberta Canada.,Department of Cardiac Sciences Cumming School of Medicine University of Calgary Alberta Canada
| |
Collapse
|
23
|
Berardi E, Madaro L, Lozanoska-Ochser B, Adamo S, Thorrez L, Bouche M, Coletti D. A Pound of Flesh: What Cachexia Is and What It Is Not. Diagnostics (Basel) 2021; 11:diagnostics11010116. [PMID: 33445790 PMCID: PMC7828214 DOI: 10.3390/diagnostics11010116] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 01/11/2021] [Indexed: 12/18/2022] Open
Abstract
Body weight loss, mostly due to the wasting of skeletal muscle and adipose tissue, is the hallmark of the so-called cachexia syndrome. Cachexia is associated with several acute and chronic disease states such as cancer, chronic obstructive pulmonary disease (COPD), heart and kidney failure, and acquired and autoimmune diseases and also pharmacological treatments such as chemotherapy. The clinical relevance of cachexia and its impact on patients’ quality of life has been neglected for decades. Only recently did the international community agree upon a definition of the term cachexia, and we are still awaiting the standardization of markers and tests for the diagnosis and staging of cancer-related cachexia. In this review, we discuss cachexia, considering the evolving use of the term for diagnostic purposes and the implications it has for clinical biomarkers, to provide a comprehensive overview of its biology and clinical management. Advances and tools developed so far for the in vitro testing of cachexia and drug screening will be described. We will also evaluate the nomenclature of different forms of muscle wasting and degeneration and discuss features that distinguish cachexia from other forms of muscle wasting in the context of different conditions.
Collapse
Affiliation(s)
- Emanuele Berardi
- Department of Development and Regeneration, KU Leuven Campus Kulak, 8500 Kortrijk, Belgium; (E.B.); (L.T.)
- Faculty of Rehabilitation Sciences, REVAL, Hasselt University (UHasselt), 3590 Diepenbeek, Belgium
| | - Luca Madaro
- DAHFMO Unit of Histology and Medical Embryology, Sapienza University of Rome, 00161 Rome, Italy; (L.M.); (B.L.-O.); (S.A.); (D.C.)
| | - Biliana Lozanoska-Ochser
- DAHFMO Unit of Histology and Medical Embryology, Sapienza University of Rome, 00161 Rome, Italy; (L.M.); (B.L.-O.); (S.A.); (D.C.)
| | - Sergio Adamo
- DAHFMO Unit of Histology and Medical Embryology, Sapienza University of Rome, 00161 Rome, Italy; (L.M.); (B.L.-O.); (S.A.); (D.C.)
| | - Lieven Thorrez
- Department of Development and Regeneration, KU Leuven Campus Kulak, 8500 Kortrijk, Belgium; (E.B.); (L.T.)
| | - Marina Bouche
- DAHFMO Unit of Histology and Medical Embryology, Sapienza University of Rome, 00161 Rome, Italy; (L.M.); (B.L.-O.); (S.A.); (D.C.)
- Correspondence: ; Tel.: +39-(6)-4976-6755/6573
| | - Dario Coletti
- DAHFMO Unit of Histology and Medical Embryology, Sapienza University of Rome, 00161 Rome, Italy; (L.M.); (B.L.-O.); (S.A.); (D.C.)
- Biological Adaptation and Ageing, CNRS UMR 8256, Inserm U1164, Institut de Biologie Paris-Seine, Sorbonne Université, 75006 Paris, France
| |
Collapse
|
24
|
Obrezan AG, Shcherbakova NV. [Pathogenetic mechanisms of development of myocardial pathology in patients with malignant tumors: the current state of the problem]. ACTA ACUST UNITED AC 2020; 60:142-154. [PMID: 32345210 DOI: 10.18087/cardio.2020.2.n985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 12/23/2019] [Indexed: 11/18/2022]
Abstract
The myocardium, which has a high metabolic activity, responds to metabolic disorders and energy imbalance induced by a growing malignant tumor. In addition, the tumor itself can produce substances that directly affect metabolic processes and the life cycle of cells not involved in the neoplastic process, including cardiomyocytes. This review summarized and systematized current data on individual aspects of detrimental effects of oncogenes and tumor-related factors on the heart muscle and morpho-functional changes in the cardiovascular system of oncology patients. Also, the authors described in detail development of these pathogenetic mechanisms.
Collapse
Affiliation(s)
- A G Obrezan
- St. Petersburg State University, SOGAZ International Medical Center, St. Petersburg
| | | |
Collapse
|
25
|
Berent TE, Dorschner JM, Meyer T, Craig TA, Wang X, Kunz H, Jatoi A, Lanza IR, Chen H, Kumar R. Impaired cardiac performance, protein synthesis, and mitochondrial function in tumor-bearing mice. PLoS One 2019; 14:e0226440. [PMID: 31851697 PMCID: PMC6919625 DOI: 10.1371/journal.pone.0226440] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 11/26/2019] [Indexed: 02/07/2023] Open
Abstract
Background To understand the underlying mechanisms of cardiac dysfunction in cancer, we examined cardiac function, protein synthesis, mitochondrial function and gene expression in a model of heart failure in mice injected with Lewis lung carcinoma (LLC1) cells. Experimental design Seven week-old C57BL/J6 male and female mice were injected with LLC1 cells or vehicle. Cardiac ejection fraction, ventricular wall and septal thickness were reduced in male, but not female, tumor-bearing mice compared to vehicle-injected control mice. Cardiac protein synthesis was reduced in tumor-bearing male mice compared to control mice (p = 0.025). Aspect ratio and form factor of cardiac mitochondria from the tumor-bearing mice were increased compared control mice (p = 0.042 and p = 0.0032, respectively) indicating a more fused mitochondrial network in the hearts of tumor-bearing mice. In cultured cardiomyocytes maximal oxygen consumption and mitochondrial reserve capacity were reduced in cells exposed to tumor cell-conditioned medium compared to non-conditioned medium (p = 0.0059, p = 0.0010). Whole transcriptome sequencing of cardiac ventricular muscle from tumor-bearing vs. control mice showed altered expression of 1648 RNA transcripts with a false discovery rate of less than 0.05. Of these, 54 RNA transcripts were reduced ≤ 0.5 fold, and 3 RNA transcripts were increased by ≥1.5-fold in tumor-bearing mouse heart compared to control. Notably, the expression of mRNAs for apelin (Apln), the apelin receptor (Aplnr), the N-myc proto-oncogene, early growth protein (Egr1), and the transcription factor Sox9 were reduced by >50%, whereas the mRNA for growth arrest and DNA-damage-inducible, beta (Gadd45b) is increased >2-fold, in ventricular tissue from tumor-bearing mice compared to control mice. Conclusions Lung tumor cells induce heart failure in male mice in association with reduced protein synthesis, mitochondrial function, and the expression of the mRNAs for inotropic and growth factors. These data provide new mechanistic insights into cancer-associated heart failure that may help unlock treatment options for this condition.
Collapse
Affiliation(s)
- Taylor E Berent
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Jessica M Dorschner
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Thomas Meyer
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Theodore A Craig
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Xuewei Wang
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Hawley Kunz
- Division of Endocrinology, Department of Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Aminah Jatoi
- Department of Medical Oncology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Ian R Lanza
- Division of Endocrinology, Department of Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Horng Chen
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Rajiv Kumar
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, Minnesota, United States of America.,Division of Endocrinology, Department of Medicine, Mayo Clinic, Rochester, Minnesota, United States of America.,Department of Biochemistry and Molecular Biology; Mayo Clinic, Rochester, Minnesota, United States of America
| |
Collapse
|
26
|
Kirkham AA, Beaudry RI, Paterson DI, Mackey JR, Haykowsky MJ. Curing breast cancer and killing the heart: A novel model to explain elevated cardiovascular disease and mortality risk among women with early stage breast cancer. Prog Cardiovasc Dis 2019; 62:116-126. [PMID: 30797800 DOI: 10.1016/j.pcad.2019.02.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 02/03/2019] [Indexed: 12/13/2022]
Abstract
Due to advances in prevention, early detection and treatment, early breast cancer mortality has decreased by nearly 40% during the last four decades. Yet, the risk of cardiovascular disease (CVD) mortality is significantly elevated following a breast cancer diagnosis, and it is a leading cause of death in this population. This review will discuss the most recent evidence for risks, pathology, mechanisms, and prevention of CVD morbidity and mortality in women with breast cancer. This evidence will be synthesized into a new model 'the compounding risk and protection model.' This model proposes that the balance between risk factors (i.e., older age, pre-existing traditional CVD risk factors and shared biologic pathways for CVD and cancer such as inflammation, as well as treatment-related and lifestyle toxicity) and potential protection factors (i.e., lifelong non-smoking, regular physical activity, a healthy diet rich in fruits and vegetables, and management of body weight and stress, heart failure therapy) determine the individual risk of CVD morbidity and mortality after diagnosis of early breast cancer.
Collapse
Affiliation(s)
- Amy A Kirkham
- Department of Biomedical Engineering, University of Alberta, Edmonton, Canada
| | - Rhys I Beaudry
- Integrated Cardiovascular Exercise Physiology and Rehabilitation Laboratory, College of Nursing and Health Innovation, The University of Texas at Arlington, Arlington, USA
| | - D Ian Paterson
- Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, Canada
| | - John R Mackey
- Department of Oncology, University of Alberta, Edmonton, Canada; Medical Oncology, Cross Cancer Institute, Edmonton, Canada
| | - Mark J Haykowsky
- Integrated Cardiovascular Exercise Physiology and Rehabilitation Laboratory, College of Nursing and Health Innovation, The University of Texas at Arlington, Arlington, USA.
| |
Collapse
|
27
|
Abstract
Cachexia is a systemic condition that occurs during many neoplastic diseases, such as cancer. Cachexia in cancer is characterized by loss of body weight and muscle and by adipose tissue wasting and systemic inflammation. Cancer cachexia is often associated with anorexia and increased energy expenditure. Even though the cachectic condition severely affects skeletal muscle, a tissue that accounts for ~40% of total body weight, it represents a multi-organ syndrome that involves tissues and organs such as white adipose tissue, brown adipose tissue, bone, brain, liver, gut and heart. Indeed, evidence suggests that non-muscle tissues and organs, as well as tumour tissues, secrete soluble factors that act on skeletal muscle to promote wasting. In addition, muscle tissue also releases various factors that can interact with the metabolism of other tissues during cancer. In this Review, we examine the effect of non-muscle tissues and inter-tissue communication in cancer cachexia and discuss studies aimed at developing novel therapeutic strategies for the condition.
Collapse
Affiliation(s)
- Josep M Argilés
- Cancer Research Group, Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
- Institut de Biomedicina de la Universitat de Barcelona, Barcelona, Spain
| | | | - Francisco J López-Soriano
- Cancer Research Group, Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
- Institut de Biomedicina de la Universitat de Barcelona, Barcelona, Spain
| | - Silvia Busquets
- Cancer Research Group, Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain.
- Institut de Biomedicina de la Universitat de Barcelona, Barcelona, Spain.
| |
Collapse
|
28
|
Schmidt SF, Rohm M, Herzig S, Berriel Diaz M. Cancer Cachexia: More Than Skeletal Muscle Wasting. Trends Cancer 2018; 4:849-860. [DOI: 10.1016/j.trecan.2018.10.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 10/01/2018] [Accepted: 10/02/2018] [Indexed: 12/21/2022]
|
29
|
Antunes J, Ferreira RM, Moreira-Gonçalves D. Exercise Training as Therapy for Cancer-Induced Cardiac Cachexia. Trends Mol Med 2018; 24:709-727. [DOI: 10.1016/j.molmed.2018.06.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 06/04/2018] [Accepted: 06/05/2018] [Indexed: 12/27/2022]
|
30
|
Kirkham AA, Pituskin E, Paterson DI. Does Cancer Affect Cardiac Function Prior to Cancer Therapy Exposure? Can J Cardiol 2018; 34:234-235. [DOI: 10.1016/j.cjca.2017.12.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 12/19/2017] [Indexed: 10/18/2022] Open
|
31
|
Tadic M, Genger M, Baudisch A, Kelle S, Cuspidi C, Belyavskiy E, Burkhardt F, Venneri L, Attanasio P, Pieske B. Left Ventricular Strain in Chemotherapy-Naive and Radiotherapy-Naive Patients With Cancer. Can J Cardiol 2017; 34:281-287. [PMID: 29395702 DOI: 10.1016/j.cjca.2017.11.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 11/26/2017] [Accepted: 11/26/2017] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND We sought to investigate left ventricular (LV) function and mechanics in patients with cancer before they received chemotherapy or radiotherapy, as well as the relationship between cancer and reduced LV multidirectional strain in the whole study population. METHODS The retrospective study involved 122 chemotherapy- and radiotherapy-naive patients with cancer and 45 age- and sex-matched controls with a cardiovascular risk profile similar to that of the patients with cancer. All the patients underwent echocardiographic examination before introduction of chemotherapy or radiotherapy. RESULTS LV longitudinal (-19.1% ± 2.1% vs -17.8% ± 3.5%; P = 0.022), circumferential (-22.9% ± 3.5% vs -20.1% ± 4.1%; P < 0.001), and radial (40.5% ± 8.8% vs 35.2% ± 10.7%; P = 0.004) strain was significantly lower in the patients with cancer than in the control group. Endocardial and midmyocardial longitudinal LV strain was significantly reduced in the patients with cancer compared with the controls, whereas epicardial longitudinal strain was similar between these groups. Endocardial, midmyocardial, and epicardial circumferential strain was significantly lower in the chemotherapy- or radiotherapy-naive patients with cancer than in the controls. Cancer was associated with reduced longitudinal (odds ratio [OR], 9.0; 95% confidence interval [CI], 2.20-23.50; P < 0.001), reduced circumferential (OR, 7.1; 95% CI, 3.80-20.40; P < 0.001), and reduced radial strain (OR, 7.2; 95% CI, 3.41-25.10; P < 0.001) independent of age, sex, body mass index, diabetes, and hypertension. CONCLUSIONS LV mechanics was impaired in the patients with cancer compared with the controls even before initiation of chemotherapy and radiotherapy. Cancer and hypertension were associated with reduced LV multidirectional strain independent of other clinical parameters. The present results indicate that cancer itself potentially induces cardiac remodelling independent of chemotherapy and radiotherapy.
Collapse
Affiliation(s)
- Marijana Tadic
- Department of Cardiology, Charité-University-Medicine Berlin, Campus Virchow Klinikum (CVK), Berlin, Germany.
| | - Martin Genger
- Department of Cardiology, Charité-University-Medicine Berlin, Campus Virchow Klinikum (CVK), Berlin, Germany
| | - Ana Baudisch
- Department of Cardiology, Charité-University-Medicine Berlin, Campus Virchow Klinikum (CVK), Berlin, Germany
| | - Sebastian Kelle
- Department of Cardiology, DeutschesHerzzentrum Berlin (DHZB), Berlin, Germany
| | - Cesare Cuspidi
- Clinical Research Unit, University of Milan-Bicocca and Istituto Auxologico Italiano, Meda, Italy
| | - Evgeny Belyavskiy
- Department of Cardiology, Charité-University-Medicine Berlin, Campus Virchow Klinikum (CVK), Berlin, Germany
| | - Franziska Burkhardt
- Department of Cardiology, Charité-University-Medicine Berlin, Campus Virchow Klinikum (CVK), Berlin, Germany
| | - Lucia Venneri
- Department of Echocardiography, Royal Brompton Hospital, London, United Kingdom
| | - Philipp Attanasio
- Department of Cardiology, Charité-University-Medicine Berlin, Campus Virchow Klinikum (CVK), Berlin, Germany
| | - Burkert Pieske
- Department of Cardiology, Charité-University-Medicine Berlin, Campus Virchow Klinikum (CVK), Berlin, Germany; Deutsches Zentrum für Herz-Kreislauf-Forschung (DZHK), Standort Berlin/Charité, Berlin, Germany; Department of Cardiology, DeutschesHerzzentrum Berlin (DHZB), Berlin, Germany
| |
Collapse
|
32
|
Belloum Y, Rannou-Bekono F, Favier FB. Cancer-induced cardiac cachexia: Pathogenesis and impact of physical activity (Review). Oncol Rep 2017; 37:2543-2552. [PMID: 28393216 DOI: 10.3892/or.2017.5542] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 01/30/2017] [Indexed: 11/06/2022] Open
Abstract
Cachexia is a wasting syndrome observed in many patients suffering from several chronic diseases including cancer. In addition to the progressive loss of skeletal muscle mass, cancer cachexia results in cardiac function impairment. During the severe stage of the disease, patients as well as animals bearing cancer cells display cardiac atrophy. Cardiac energy metabolism is also impeded with disruption of mitochondrial homeostasis and reduced oxidative capacity, although the available data remain equivocal. The release of inflammatory cytokines by tumor is a key mechanism in the initiation of heart failure. Oxidative stress, which results from the combination of chemotherapy, inadequate antioxidant consumption and chronic inflammation, will further foster heart failure. Protein catabolism is due to the concomitant activation of proteolytic systems and inhibition of protein synthesis, both processes being triggered by the deactivation of the Akt/mammalian target of rapamycin pathway. The reduction in oxidative capacity involves AMP-activated protein kinase and peroxisome proliferator-activated receptor gamma coactivator 1α dysregulation. The nuclear factor-κB transcription factor plays a prominent role in the coordination of these alterations. Physical exercise appears as an interesting non-pharmaceutical way to counteract cancer cachexia-induced-heart failure. Indeed, aerobic training has anti-inflammatory effects, increases anti-oxidant defenses, prevents atrophy and promotes oxidative metabolism. The present review points out the importance of better understanding the concurrent structural and metabolic changes within the myocardium during cancer and the protective effects of exercise against cardiac cachexia.
Collapse
Affiliation(s)
| | - Françoise Rannou-Bekono
- EA 1274, Laboratoire 'Mouvement, Sport, Santé', Université de Rennes 2-ENS Rennes, Bruz 35170, France
| | | |
Collapse
|
33
|
Ye F, Kaneko H, Hayashi Y, Takayama K, Hwang SJ, Nishizawa Y, Kimoto R, Nagasaka Y, Tsunekawa T, Matsuura T, Yasukawa T, Kondo T, Terasaki H. Malondialdehyde induces autophagy dysfunction and VEGF secretion in the retinal pigment epithelium in age-related macular degeneration. Free Radic Biol Med 2016; 94:121-34. [PMID: 26923802 DOI: 10.1016/j.freeradbiomed.2016.02.027] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 02/19/2016] [Accepted: 02/22/2016] [Indexed: 11/22/2022]
Abstract
Age-related macular degeneration (AMD) is a major cause of blindness in developed countries and is closely related to oxidative stress, which leads to lipid peroxidation. Malondialdehyde (MDA) is a major byproduct of polyunsaturated fatty acid (PUFA) peroxidation. Increased levels of MDA have been reported in eyes of AMD patients. However, little is known about the direct relationship between MDA and AMD. Here we show the biological importance of MDA in AMD pathogenesis. We first confirmed that MDA levels were significantly increased in eyes of AMD patients. In ARPE-19 cells, a human retinal pigment epithelial cell line, MDA treatment induced vascular endothelial growth factor (VEGF) expression alternation, cell junction disruption, and autophagy dysfunction that was also observed in eyes of AMD patients. The MDA-induced VEGF increase was inhibited by autophagy-lysosomal inhibitors. Intravitreal MDA injection in mice increased laser-induced choroidal neovascularization (laser-CNV) volumes. In a mouse model fed a high-linoleic acid diet for 3 months, we found a significant increase in MDA levels, autophagic activity, and laser-CNV volumes. Our study revealed an important role of MDA, which acts not only as a marker but also as a causative factor of AMD pathogenesis-related autophagy dysfunction. Furthermore, higher dietary intake of linoleic acid promoted CNV progression in mice with increased MDA levels.
Collapse
Affiliation(s)
- Fuxiang Ye
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Hiroki Kaneko
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan.
| | - Yumi Hayashi
- Department of Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya 461-8673, Japan; Institute for Advanced Research, Nagoya University, Nagoya 464-8601, Japan
| | - Kei Takayama
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Shiang-Jyi Hwang
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan; Laboratory of Bell Research Center-Department of Obstetrics and Gynecology Collaborative Research, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Yuji Nishizawa
- Department of Biomedical Sciences, Chubu University, Kasugai, Aichi 487-8501, Japan
| | - Reona Kimoto
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Yosuke Nagasaka
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Taichi Tsunekawa
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Toshiyuki Matsuura
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Tsutomu Yasukawa
- Department of Ophthalmology, Nagoya City University School of Medicine, Nagoya 467-8601, Japan
| | - Takaaki Kondo
- Department of Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya 461-8673, Japan
| | - Hiroko Terasaki
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| |
Collapse
|
34
|
Zheng Y, Chen H, Li X, Sun Y. Pay attention to cardiac remodeling in cancer cachexia. Support Care Cancer 2016; 24:3253-9. [PMID: 27108265 DOI: 10.1007/s00520-016-3222-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 04/17/2016] [Indexed: 01/21/2023]
Abstract
Cancer cachexia is a complex and multifaceted disease state characterized by fatigue, weakness, and loss of skeletal muscle and adipose tissue. Recently, the profound negative effects of cancer cachexia on cardiac tissue draw much attention, which is likely to contribute to mortality in tumor-bearing animals. The mechanism of cardiac remodeling is not so clear and involved with a series of molecular alterations. In cancer cachexia model, progressive loss of left ventricular mass and decrease in myocardial function is observed and cardiac autonomic functions are altered. Levels of several emerging cardiovascular neurohormones are found elevating in patients with cancer, but it is still controversial whether the changes could reflect the heart injury accurately. The remedy for cardiac remodeling has been explored. It is showed that exercise can modulate signaling pathways activated by wasting cytokines and impact on the resulting outcomes on heart adaptation. Some drugs, such as bisoprolol, spironolactone, perindopril, tandospirone, and simvastatin, can mitigate adverse effects of the tumor on the heart and prolong survival.
Collapse
Affiliation(s)
- Yawen Zheng
- Department of Oncology, Jinan Central Hospital, Shandong University, No. 105, Jie Fang Road, Jinan, Shandong, 250013, People's Republic of China
| | - Han Chen
- Soochow University College of Medicine, Suzhou, Jiangsu, 215000, China
| | - Xiaoqing Li
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310029, China
| | - Yuping Sun
- Department of Oncology, Jinan Central Hospital, Shandong University, No. 105, Jie Fang Road, Jinan, Shandong, 250013, People's Republic of China.
| |
Collapse
|
35
|
Ataxin-10 is part of a cachexokine cocktail triggering cardiac metabolic dysfunction in cancer cachexia. Mol Metab 2015; 5:67-78. [PMID: 26909315 PMCID: PMC4735665 DOI: 10.1016/j.molmet.2015.11.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 11/11/2015] [Accepted: 11/18/2015] [Indexed: 12/23/2022] Open
Abstract
Objectives Cancer cachexia affects the majority of tumor patients and significantly contributes to high mortality rates in these subjects. Despite its clinical importance, the identity of tumor-borne signals and their impact on specific peripheral organ systems, particularly the heart, remain mostly unknown. Methods and results By combining differential colon cancer cell secretome profiling with large-scale cardiomyocyte phenotyping, we identified a signature panel of seven “cachexokines”, including Bridging integrator 1, Syntaxin 7, Multiple inositol-polyphosphate phosphatase 1, Glucosidase alpha acid, Chemokine ligand 2, Adamts like 4, and Ataxin-10, which were both sufficient and necessary to trigger cardiac atrophy and aberrant fatty acid metabolism in cardiomyocytes. As a prototypical example, engineered secretion of Ataxin-10 from non-cachexia-inducing cells was sufficient to induce cachexia phenotypes in cardiomyocytes, correlating with elevated Ataxin-10 serum levels in murine and human cancer cachexia models. Conclusions As Ataxin-10 serum levels were also found to be elevated in human cachectic cancer patients, the identification of Ataxin-10 as part of a cachexokine cocktail now provides a rational approach towards personalized predictive, diagnostic and therapeutic measures in cancer cachexia. Cancer cachexia induces remodeling of the heart. Tumor-borne secreted factors mediate cardiomyocyte atrophy. Selective cachexokines, including Bin1, Stx7, Minpp1, Gaa, Ccl2, Adamtsl4, and Atxn10 provoke aberrant cardiac FA metabolism. Ataxin-10 levels are elevated under cachectic conditions in mice and tumor patients.
Collapse
|
36
|
Nonmuscle Tissues Contribution to Cancer Cachexia. Mediators Inflamm 2015; 2015:182872. [PMID: 26523094 PMCID: PMC4615210 DOI: 10.1155/2015/182872] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 03/26/2015] [Indexed: 01/05/2023] Open
Abstract
Cachexia is a syndrome associated with cancer, characterized by body weight loss, muscle and adipose tissue wasting, and inflammation, being often associated with anorexia. In spite of the fact that muscle tissue represents more than 40% of body weight and seems to be the main tissue involved in the wasting that occurs during cachexia, recent developments suggest that tissues/organs such as adipose (both brown and white), brain, liver, gut, and heart are directly involved in the cachectic process and may be responsible for muscle wasting. This suggests that cachexia is indeed a multiorgan syndrome. Bearing all this in mind, the aim of the present review is to examine the impact of nonmuscle tissues in cancer cachexia.
Collapse
|
37
|
Shum AMY, Fung DCY, Corley SM, McGill MC, Bentley NL, Tan TC, Wilkins MR, Polly P. Cardiac and skeletal muscles show molecularly distinct responses to cancer cachexia. Physiol Genomics 2015; 47:588-99. [PMID: 26395599 DOI: 10.1152/physiolgenomics.00128.2014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 09/18/2015] [Indexed: 12/22/2022] Open
Abstract
Cancer cachexia is a systemic, paraneoplastic syndrome seen in patients with advanced cancer. There is growing interest in the altered muscle pathophysiology experienced by cachectic patients. This study reports the microarray analysis of gene expression in cardiac and skeletal muscle in the colon 26 (C26) carcinoma mouse model of cancer cachexia. A total of 268 genes were found to be differentially expressed in cardiac muscle tissue, compared with nontumor-bearing controls. This was fewer than the 1,533 genes that changed in cachectic skeletal muscle. In addition to different numbers of genes changing, different cellular functions were seen to change in each tissue. The cachectic heart showed signs of inflammation, similar to cachectic skeletal muscle, but did not show the upregulation of ubiquitin-dependent protein catabolic processes or downregulation of genes involved in cellular energetics and muscle regeneration that characterizes skeletal muscle cachexia. Quantitative PCR was used to investigate a subset of inflammatory genes in the cardiac and skeletal muscle of independent cachectic samples; this revealed that B4galt1, C1s, Serpina3n, and Vsig4 were significantly upregulated in cardiac tissue, whereas C1s and Serpina3n were significantly upregulated in skeletal tissue. Our skeletal muscle microarray results were also compared with those from three published microarray studies and found to be consistent in terms of the genes differentially expressed and the functional processes affected. Our study highlights that skeletal and cardiac muscles are affected differently in the C26 mouse model of cachexia and that therapeutic strategies cannot assume that both muscle types will show a similar response.
Collapse
Affiliation(s)
- Angie M Y Shum
- Inflammation and Infection Research Centre, University of New South Wales Australia, New South Wales, Australia; Department of Pathology, School of Medical Sciences, Faculty of Medicine, University of New South Wales Australia, New South Wales, Australia
| | - David C Y Fung
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales Australia, New South Wales, Australia
| | - Susan M Corley
- New South Wales Systems Biology Initiative, University of New South Wales Australia, New South Wales, Australia; School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales Australia, New South Wales, Australia
| | - Max C McGill
- Inflammation and Infection Research Centre, University of New South Wales Australia, New South Wales, Australia; Department of Pathology, School of Medical Sciences, Faculty of Medicine, University of New South Wales Australia, New South Wales, Australia
| | - Nicholas L Bentley
- Inflammation and Infection Research Centre, University of New South Wales Australia, New South Wales, Australia; Mitochondrial Bioenergetics Group, Department of Pharmacology, School of Medical Sciences, Faculty of Medicine, University of New South Wales Australia, New South Wales, Australia
| | - Timothy C Tan
- Inflammation and Infection Research Centre, University of New South Wales Australia, New South Wales, Australia; Blacktown Clinical School and Blacktown Hospital, Blacktown, New South Wales, Australia; and Cardiac Ultrasound Laboratory, Massachusetts General Hospital, Boston, Massachusetts
| | - Marc R Wilkins
- New South Wales Systems Biology Initiative, University of New South Wales Australia, New South Wales, Australia; School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales Australia, New South Wales, Australia
| | - Patsie Polly
- Inflammation and Infection Research Centre, University of New South Wales Australia, New South Wales, Australia; Department of Pathology, School of Medical Sciences, Faculty of Medicine, University of New South Wales Australia, New South Wales, Australia;
| |
Collapse
|
38
|
Schipke J, Banmann E, Nikam S, Voswinckel R, Kohlstedt K, Loot AE, Fleming I, Mühlfeld C. The number of cardiac myocytes in the hypertrophic and hypotrophic left ventricle of the obese and calorie-restricted mouse heart. J Anat 2015; 225:539-47. [PMID: 25322944 DOI: 10.1111/joa.12236] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2014] [Indexed: 11/27/2022] Open
Abstract
Changes in body mass due to varying amounts of calorie intake occur frequently with obesity and anorexia/cachexia being at opposite sides of the scale. Here, we tested whether a high-fat diet or calorie restriction (CR) decreases the number of cardiac myocytes and affects their volume. Ten 6-8-week-old mice were randomly assigned to a normal (control group, n = 5) or high-fat diet (obesity group, n = 5) for 28 weeks. Ten 8-week-old mice were randomly assigned to a normal (control group, n = 5) or CR diet (CR group, n = 5) for 7 days. The left ventricles of the hearts were prepared for light and electron microscopy, and analysed by design-based stereology. In CR, neither the number of cardiac myocytes, the relationship between one- and multinucleate myocytes nor their mean volume were significantly different between the groups. In contrast, in the obese mice we observed a significant increase in cell size combined with a lower number of cardiomyocytes (P < 0.05 in the one-sided U-test) and an increase in the mean number of nuclei per myocyte. The mean volume of myofibrils and mitochondria per cardiac myocyte reflected the hypertrophic and hypotrophic remodelling in obesity and CR, respectively, but were only significant in the obese mice, indicating a more profound effect of the obesity protocol than in the CR experiments. Taken together, our data indicate that long-lasting obesity is associated with a loss of cardiomyocytes of the left ventricle, but that short-term CR does not alter the number of cardiomyocytes.
Collapse
Affiliation(s)
- Julia Schipke
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Toledo M, Springer J, Busquets S, Tschirner A, López-Soriano FJ, Anker SD, Argilés JM. Formoterol in the treatment of experimental cancer cachexia: effects on heart function. J Cachexia Sarcopenia Muscle 2014; 5:315-20. [PMID: 25167857 PMCID: PMC4248407 DOI: 10.1007/s13539-014-0153-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 06/02/2014] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND AND AIMS Formoterol is a highly potent β2-adrenoceptor-selective agonist, which is a muscle growth promoter in many animal species, resulting in skeletal muscle hypertrophy. Previous studies carried out in our laboratory have shown that formoterol treatment in tumour-bearing animals resulted in an amelioration of muscle loss through different mechanisms that include muscle apoptosis and proteolysis. METHODS The study presented involved rats bearing the Yoshida AH-130 ascites tumour model-which induces a high degree of cachexia-treated with the beta-2 agonist formoterol (0.3 mg/kg BW). RESULTS The administration of formoterol to cachectic tumour-bearing rats resulted in a significant reduction of muscle weight loss. The treatment also increased lean body mass and body water. The treatment, however, did not influence heart weight, which was much decreased as a result of tumour burden. Untreated tumour-bearing rats showed important changes in parameters related with heart function:, left ventricle (LV) ejection fraction, fractional shortening, LV diameter and volume (diastolic) and LV stroke volume, LV mass and posterior wall thickness (PWT) (both systolic and diastolic). The administration of formoterol affected LV diameter and volume, LV stroke volume and LV mass. CONCLUSIONS The results suggest that formoterol treatment, in addition to reducing muscle wasting, does not negatively alter heart function-in fact, some cardiac parameters are improved-in animals affected by cancer cachexia.
Collapse
Affiliation(s)
- Míriam Toledo
- Cancer Research Group, Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona, Diagonal 643, 08028, Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
40
|
Argilés JM, Busquets S, Stemmler B, López-Soriano FJ. Cancer cachexia: understanding the molecular basis. Nat Rev Cancer 2014; 14:754-62. [PMID: 25291291 DOI: 10.1038/nrc3829] [Citation(s) in RCA: 921] [Impact Index Per Article: 83.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cancer cachexia is a devastating, multifactorial and often irreversible syndrome that affects around 50-80% of cancer patients, depending on the tumour type, and that leads to substantial weight loss, primarily from loss of skeletal muscle and body fat. Since cachexia may account for up to 20% of cancer deaths, understanding the underlying molecular mechanisms is essential. The occurrence of cachexia in cancer patients is dependent on the patient response to tumour progression, including the activation of the inflammatory response and energetic inefficiency involving the mitochondria. Interestingly, crosstalk between different cell types ultimately seems to result in muscle wasting. Some of the recent progress in understanding the molecular mechanisms of cachexia may lead to new therapeutic approaches.
Collapse
Affiliation(s)
- Josep M Argilés
- Cancer Research Group, Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain; and Institut de Biomedicina de la Universitat de Barcelona, 08028 Barcelona, Spain
| | - Sílvia Busquets
- Cancer Research Group, Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain; and Institut de Biomedicina de la Universitat de Barcelona, 08028 Barcelona, Spain
| | | | - Francisco J López-Soriano
- Cancer Research Group, Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain; and Institut de Biomedicina de la Universitat de Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
41
|
Clark YY, Wold LE, Szalacha LA, McCarthy DO. Ubiquinol reduces muscle wasting but not fatigue in tumor-bearing mice. Biol Res Nurs 2014; 17:321-9. [PMID: 25230747 DOI: 10.1177/1099800414543822] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE Fatigue is the most common and distressing symptom reported by cancer patients during and after treatment. Tumor growth increases oxidative stress and cytokine production, which causes skeletal muscle wasting and cardiac dysfunction. The purpose of this study was to determine whether treatment with the antioxidant ubiquinol improves muscle mass, cardiac function, and behavioral measures of fatigue in tumor-bearing mice. METHOD Adult female mice were inoculated with colon26 tumor cells. Half the control and tumor-bearing mice were administered ubiquinol (500 mg/kg/day) in their drinking water. Voluntary wheel running (i.e., voluntary running activity [VRA]) and grip strength were measured at Days 0, 8, 14, and 17 of tumor growth. Cardiac function was measured using echocardiography on Day 18 or 19. Biomarkers of inflammation, protein degradation, and oxidative stress were measured in serum and heart and gastrocnemius tissue. RESULTS VRA and grip strength progressively declined in tumor-bearing mice. Muscle mass and myocardial diastolic function were decreased, and expression of proinflammatory cytokines was increased in serum and muscle and heart tissue on Day 19 of tumor growth. Oxidative stress was present only in the heart, while biomarkers of protein degradation were increased only in the gastrocnemius muscle. Ubiquinol increased muscle mass in the tumor-bearing and control animals but had no effect on the expression of biomarkers of inflammation, protein degradation, or oxidative stress or on behavioral measures of fatigue.
Collapse
Affiliation(s)
- Yvonne Y Clark
- Pain Evaluation and Management Center of Ohio, Dayton, OH, USA
| | - Loren E Wold
- College of Nursing, The Ohio State University, Columbus, OH, USA
| | - Laura A Szalacha
- College of Nursing, The Ohio State University, Columbus, OH, USA
| | | |
Collapse
|
42
|
Kazemi-Bajestani SMR, Becher H, Fassbender K, Chu Q, Baracos VE. Concurrent evolution of cancer cachexia and heart failure: bilateral effects exist. J Cachexia Sarcopenia Muscle 2014; 5:95-104. [PMID: 24627226 PMCID: PMC4053562 DOI: 10.1007/s13539-014-0137-y] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Accepted: 02/10/2014] [Indexed: 12/12/2022] Open
Abstract
Cancer cachexia is defined as a multifactorial syndrome of involuntary weight loss characterized by an ongoing loss of skeletal muscle mass and progressive functional impairment. It is postulated that cardiac dysfunction/atrophy parallels skeletal muscle atrophy in cancer cachexia. Cardiotoxic chemotherapy may additionally result in cardiac dysfunction and heart failure in some cancer patients. Heart failure thus may be a consequence of either ongoing cachexia or chemotherapy-induced cardiotoxicity; at the same time, heart failure can result in cachexia, especially muscle wasting. Therefore, the subsequent heart failure and cardiac cachexia can exacerbate the existing cancer-induced cachexia. We discuss these bilateral effects between cancer cachexia and heart failure in cancer patients. Since cachectic patients are more susceptible to chemotherapy-induced toxicity overall, this may also include increased cardiotoxicity of antineoplastic agents. Patients with cachexia could thus be doubly unfortunate, with cachexia-related cardiac dysfunction/heart failure and increased susceptibility to cardiotoxicity during treatment. Cardiovascular risk factors as well as pre-existing heart failure seem to exacerbate cardiac susceptibility against cachexia and increase the rate of cardiac cachexia. Hence, chemotherapy-induced cardiotoxicity, cardiovascular risk factors, and pre-existing heart failure may accelerate the vicious cycle of cachexia-heart failure. The impact of cancer cachexia on cardiac dysfunction/heart failure in cancer patients has not been thoroughly studied. A combination of serial echocardiography for detection of cachexia-induced cardiac remodeling and computed tomography image analysis for detection of skeletal muscle wasting would appear a practical and non-invasive approach to develop an understanding of cardiac structural/functional alterations that are directly related to cachexia.
Collapse
Affiliation(s)
| | - Harald Becher
- />Department of Medicine, Division of Cardiology, Alberta Cardiovascular and Stroke Research Centre, University of Alberta, Edmonton, Canada
| | - Konrad Fassbender
- />Department of Oncology, Division of Palliative Care Medicine, University of Alberta, Edmonton, Canada
| | - Quincy Chu
- />Department of Oncology, Division of Medical Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Canada
| | - Vickie E. Baracos
- />Department of Oncology, Division of Palliative Care Medicine, University of Alberta, Edmonton, Canada
| |
Collapse
|
43
|
Schipke J, Mayhew TM, Mühlfeld C. Allometry of left ventricular myocardial innervation. J Anat 2014; 224:518-26. [PMID: 24325466 PMCID: PMC4098685 DOI: 10.1111/joa.12151] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/20/2013] [Indexed: 11/30/2022] Open
Abstract
Body mass (BM) of terrestrial mammalian species ranges from a few grams in the case of the Etruscan shrew to a few tonnes for an elephant. The mass-specific metabolic rate, as well as heart rate, decrease with increasing BM, whereas heart mass is proportional to BM. In the present study, we investigated the scaling behaviour of several compartments of the left ventricular myocardium, notably its innervation, capillaries and cardiomyocytes. Myocardial samples were taken from 10 mammalian species with BM between approximately 2 g and 900 kg. Samples were analysed by design-based stereology and electron microscopy and the resulting data were subjected to linear regression and correlation analyses. The total length of nerve fibres (axons) in the left ventricle increased from 0.017 km (0.020 km) in the shrew to 7237 km (13,938 km) in the horse. The innervation density was similar among species but the mean number of axons per nerve fibre profile increased with rising BM. The total length of capillaries increased from 0.119 km (shrew) to 10,897 km (horse). The volume of cardiomyocytes was 0.017 cm(3) in the shrew and 1818 cm(3) in the horse. Scaling of the data against BM indicated a higher degree of complexity of the axon tree in larger animals and an allometric relationship between total length of nerve fibres/axons and BM. In contrast, the density of nerve fibres is independent of BM. It seems that the structural components of the autonomic nervous system in the heart are related to BM and heart mass rather than to functional parameters such as metabolic rate.
Collapse
Affiliation(s)
- Julia Schipke
- Institute of Functional and Applied Anatomy, Hannover Medical School, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL)Hannover, Germany
| | - Terry M Mayhew
- School of Biomedical Sciences, Queen's Medical Centre, University of NottinghamNottingham, UK
| | - Christian Mühlfeld
- Institute of Functional and Applied Anatomy, Hannover Medical School, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL)Hannover, Germany
- Cluster of Excellence REBIRTH (From Regenerative Biology to Reconstructive Therapy)Hannover, Germany
- Institute of Anatomy and Cell Biology, University of GießenGießen, Germany
| |
Collapse
|
44
|
Effects of Lewis lung carcinoma and B16 melanoma on the innervation of the mouse trachea. Auton Neurosci 2014; 183:106-10. [PMID: 24698491 DOI: 10.1016/j.autneu.2014.03.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 03/04/2014] [Accepted: 03/12/2014] [Indexed: 12/17/2022]
Abstract
Cancer patients often suffer from dyspnea the pathogenesis of which is incompletely understood. Both dyspnea and pulmonary diseases are closely linked to airway innervation. Recently, it was shown that Lewis lung carcinoma induces cardiac hypoinnervation in the mouse. We hypothesized that airway innervation undergoes similar changes as myocardial innervation and that this effect occurs in different mouse models of cancer. C57Bl6 mice were randomly assigned to subcutaneous injection of Lewis lung carcinoma cells (LLC, n=6), B16 melanoma cells (B16, n=6), or saline (control group, C, n=10). After 16 or 21 days, respectively, the trachea was processed for light and electron microscopic design-based stereology and the volume, surface area and length of axons ramifying in the tracheal wall were estimated. Body weight was reduced both in LLC and B16 vs. C. Hypoinnervation was present in both tumor groups compared to controls as volume and surface area of axons were significantly reduced in LLC and B16. However, the total length of tracheal axons and the mean number of axons per nerve fiber were reduced only in LLC but not in B16 compared to C indicating a differentially pronounced effect of cancer on tracheal innervation. In conclusion, reduced innervation of the trachea was observed in two different murine tumor models. These findings add to the pathophysiological concepts explaining cancer-related dyspnea and open new perspectives of treating this symptom.
Collapse
|
45
|
Postmortem heart weight: relation to body size and effects of cardiovascular disease and cancer. Cardiovasc Pathol 2014; 23:5-11. [DOI: 10.1016/j.carpath.2013.09.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 08/29/2013] [Accepted: 09/03/2013] [Indexed: 11/22/2022] Open
|
46
|
Cancer cachexia alters intracellular surfactant metabolism but not total alveolar surface area. Histochem Cell Biol 2012; 138:803-13. [DOI: 10.1007/s00418-012-0995-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/29/2012] [Indexed: 12/19/2022]
|
47
|
Gruber C, Kohlstedt K, Loot AE, Fleming I, Kummer W, Mühlfeld C. Stereological characterization of left ventricular cardiomyocytes, capillaries, and innervation in the nondiabetic, obese mouse. Cardiovasc Pathol 2011; 21:346-54. [PMID: 22197049 DOI: 10.1016/j.carpath.2011.11.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Revised: 09/13/2011] [Accepted: 11/03/2011] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Obesity is associated with left ventricular hypertrophy and dysfunction, but little is known about the structural remodeling of cardiomyocytes, capillaries, and nerve fibers in this state. We hypothesized that all three compartments should show quantitative structural alterations. METHODS Ten C57Bl6 mice were randomly assigned to a control or obesity group. Lean mice received standard chow, whereas obese mice received a high-fat Western diet. After 28 weeks, the mice were sacrificed, and the hearts were prepared for design-based stereology using light and electron microscopy. RESULTS Body mass and left ventricular mass were significantly elevated in obese vs. control mice. The left ventricular hypertrophy was accompanied by a significant increase in cardiomyocyte lipid droplets and total myocyte volume. The volume fractions of myofibrils, free sarcoplasm, and mitochondria did not differ between the groups. The total length of capillaries was significantly enhanced in obese vs. control mice, whereas the total length of axons ramifying between cardiomyocytes was not different. CONCLUSIONS Obesity is associated with significant structural alterations in cardiomyocytes and capillaries, whereas no structural changes in the myocardial innervation were observed. The structural characteristics in obese mice do not provide a clear basis for functional changes observed in obesity-related cardiac hypertrophy.
Collapse
Affiliation(s)
- Carina Gruber
- Institute of Anatomy and Cell Biology, Justus-Liebig-Universität Giessen, Aulweg 123, 35385 Giessen, Germany
| | | | | | | | | | | |
Collapse
|
48
|
Gruber C, Nink N, Nikam S, Magdowski G, Kripp G, Voswinckel R, Mühlfeld C. Myocardial remodelling in left ventricular atrophy induced by caloric restriction. J Anat 2011; 220:179-85. [PMID: 22077432 DOI: 10.1111/j.1469-7580.2011.01453.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Changes in body weight due to changes in food intake are reflected by corresponding changes in the cardiac phenotype. Despite a growing body of literature on cardiac hypertrophy associated with obesity, little is known on the atrophic remodelling of the heart associated with calorie restriction. We hypothesized that, besides the cardiomyocyte compartment, capillaries and nerve fibres are involved in the atrophic process. C57Bl6 mice were kept on normal diet (control group) or at a calorie-restricted diet for 3 or 7 days (n = 5 each). At the end of the protocol, mice were killed and the hearts were processed for light and electron microscopic stereological analysis of cardiomyocytes, capillaries and nerve fibres. Body, heart and left ventricular weight were significantly reduced in the calorie-restricted animals at 7 days. Most morphological parameters were not significantly different at 3 days compared with the control group, but at 7 days most of them were significantly reduced. Specifically, the total length of capillaries, the volume of cardiomyocytes as well as their subcellular compartments and the interstitium were proportionally reduced during caloric restriction. No differences were observed in the total length or the mean diameter of axons between the cardiomyocytes. Our data indicate that diet-induced left ventricular atrophy leads to a proportional atrophic process of cardiomyocytes and capillaries. The innervation is not involved in the atrophic process.
Collapse
Affiliation(s)
- Carina Gruber
- Institute of Anatomy and Cell Biology, Justus-Liebig-University Giessen, Aulweg, Giessen, Germany
| | | | | | | | | | | | | |
Collapse
|