1
|
Yamashita A, Shichino Y, Fujii K, Koshidaka Y, Adachi M, Sasagawa E, Mito M, Nakagawa S, Iwasaki S, Takao K, Shiina N. ILF3 prion-like domain regulates gene expression and fear memory under chronic stress. iScience 2023; 26:106229. [PMID: 36876121 PMCID: PMC9982275 DOI: 10.1016/j.isci.2023.106229] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 01/11/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
The prion-like domain (PrLD) is a class of intrinsically disordered regions. Although its propensity to form condensates has been studied in the context of neurodegenerative diseases, the physiological role of PrLD remains unclear. Here, we investigated the role of PrLD in the RNA-binding protein NFAR2, generated by a splicing variant of the Ilf3 gene. Removal of the PrLD in mice did not impair the function of NFAR2 required for survival, but did affect the responses to chronic water immersion and restraint stress (WIRS). The PrLD was required for WIRS-sensitive nuclear localization of NFAR2 and WIRS-induced changes in mRNA expression and translation in the amygdala, a fear-related brain region. Consistently, the PrLD conferred resistance to WIRS in fear-associated memory formation. Our study provides insights into the PrLD-dependent role of NFAR2 for chronic stress adaptation in the brain.
Collapse
Affiliation(s)
- Akira Yamashita
- Laboratory of Neuronal Cell Biology, National Institute for Basic Biology, Okazaki, Aichi 444-8585, Japan
- Department of Basic Biology, The Graduate University for Advanced Studies, SOKENDAI, Okazaki, Aichi 444-8585, Japan
| | - Yuichi Shichino
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
| | - Kazuki Fujii
- Department of Behavioral Physiology, Faculty of Medicine, University of Toyama, Toyama 930-0194, Japan
- Life Science Research Center, University of Toyama, Toyama 930-0194, Japan
- Research Center for Idling Brain Science, University of Toyama, Toyama 930-0194, Japan
| | - Yumie Koshidaka
- Life Science Research Center, University of Toyama, Toyama 930-0194, Japan
| | - Mayumi Adachi
- Life Science Research Center, University of Toyama, Toyama 930-0194, Japan
| | - Eri Sasagawa
- Department of Behavioral Physiology, Graduate School of Innovative Life Science, University of Toyama, Toyama 930-0194, Japan
| | - Mari Mito
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
| | - Shinichi Nakagawa
- RNA Biology Laboratory, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo Hokkaido 060-0812, Japan
| | - Shintaro Iwasaki
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8561, Japan
| | - Keizo Takao
- Department of Behavioral Physiology, Faculty of Medicine, University of Toyama, Toyama 930-0194, Japan
- Life Science Research Center, University of Toyama, Toyama 930-0194, Japan
- Research Center for Idling Brain Science, University of Toyama, Toyama 930-0194, Japan
- Department of Behavioral Physiology, Graduate School of Innovative Life Science, University of Toyama, Toyama 930-0194, Japan
| | - Nobuyuki Shiina
- Laboratory of Neuronal Cell Biology, National Institute for Basic Biology, Okazaki, Aichi 444-8585, Japan
- Department of Basic Biology, The Graduate University for Advanced Studies, SOKENDAI, Okazaki, Aichi 444-8585, Japan
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi 444-8585, Japan
- Corresponding author
| |
Collapse
|
2
|
The Polyvalent Role of NF90 in RNA Biology. Int J Mol Sci 2022; 23:ijms232113584. [DOI: 10.3390/ijms232113584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/27/2022] [Accepted: 11/04/2022] [Indexed: 11/10/2022] Open
Abstract
Double-stranded RNA-binding proteins (dsRBPs) are major players in the regulation of gene expression patterns. Among them, Nuclear Factor 90 (NF90) has a plethora of well-known functions in viral infection, transcription, and translation as well as RNA stability and degradation. In addition, NF90 has been identified as a regulator of microRNA (miRNA) maturation by competing with Microprocessor for the binding of pri-miRNAs in the nucleus. NF90 was recently shown to control the biogenesis of a subset of human miRNAs, which ultimately influences, not only the abundance, but also the expression of the host gene and the fate of the mRNA target repertoire. Moreover, recent evidence suggests that NF90 is also involved in RNA-Induced Silencing Complex (RISC)-mediated silencing by binding to target mRNAs and controlling their translation and degradation. Here, we review the many, and growing, functions of NF90 in RNA biology, with a focus on the miRNA pathway and RISC-mediated gene silencing.
Collapse
|
3
|
Nucleus-translocated mitochondrial cytochrome c liberates nucleophosmin-sequestered ARF tumor suppressor by changing nucleolar liquid–liquid phase separation. Nat Struct Mol Biol 2022; 29:1024-1036. [DOI: 10.1038/s41594-022-00842-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 08/30/2022] [Indexed: 11/07/2022]
|
4
|
Evidence of RedOX Imbalance during Zika Virus Infection Promoting the Formation of Disulfide-Bond-Dependent Oligomers of the Envelope Protein. Viruses 2022; 14:v14061131. [PMID: 35746600 PMCID: PMC9227265 DOI: 10.3390/v14061131] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/09/2022] [Accepted: 05/18/2022] [Indexed: 02/01/2023] Open
Abstract
Flaviviruses replicate in membrane factories associated with the endoplasmic reticulum (ER). Significant levels of flavivirus viral protein accumulation contribute to ER stress. As a consequence, the host cell exhibits an Unfolded Protein Response (UPR), subsequently stimulating appropriate cellular responses such as adaptation, autophagy or apoptosis. The correct redox conditions of this compartment are essential to forming native disulfide bonds in proteins. Zika virus (ZIKV) has the ability to induce persistent ER stress leading to the activation of UPR pathways. In this study, we wondered whether ZIKV affects the redox balance and consequently the oxidative protein folding in the ER. We found that ZIKV replication influences the redox state, leading to the aggregation of the viral envelope protein as amyloid-like structures in the infected cells.
Collapse
|
5
|
Turpin J, Frumence E, Harrabi W, Haddad JG, El Kalamouni C, Desprès P, Krejbich-Trotot P, Viranaïcken W. Zika virus subversion of chaperone GRP78/BiP expression in A549 cells during UPR activation. Biochimie 2020; 175:99-105. [PMID: 32464166 DOI: 10.1016/j.biochi.2020.05.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 05/22/2020] [Accepted: 05/22/2020] [Indexed: 12/20/2022]
Abstract
Flaviviruses replicate in membranous factories associated with the endoplasmic reticulum (ER). Significant levels of flavivirus polyprotein integration contribute to ER stress and the host cell may exhibit an Unfolded Protein Response (UPR) to this protein accumulation, stimulating appropriate cellular responses such as adaptation, autophagy or cell death. These different stress responses support other antiviral strategies initiated by infected cells and can help to overcome viral infection. In epithelial A549 cells, a model currently used to study the flavivirus infection cycle and the host cell responses, all three pathways leading to UPR are activated during infection by Dengue virus (DENV), Yellow Fever virus (YFV) or West Nile virus (WNV). In the present study, we investigated the capacity of ZIKA virus (ZIKV) to induce ER stress in A549 cells. We observed that the cells respond to ZIKV infection by implementing an UPR through activation of the IRE1 and PERK pathway without activation of the ATF6 branch. By modulating the ER stress response, we found that UPR inducers significantly inhibit ZIKV replication. Interestingly, our findings provide evidence that ZIKV could manipulate the UPR to escape this host cell defence system by downregulating GRP78/BiP expression. This subversion of GRP78 expression could lead to unresolved and persistent ER stress which can be a benefit for virus growth.
Collapse
Affiliation(s)
- Jonathan Turpin
- Université de La Réunion, INSERM UMR 1187, CNRS 9192, IRD 249, PIMIT, Processus Infectieux en Milieu Insulaire Tropical, Plateforme CYROI, 2, Rue Maxime Rivière, 97490 Sainte-Clotilde, Ile de La Réunion, France
| | - Etienne Frumence
- Université de La Réunion, INSERM UMR 1187, CNRS 9192, IRD 249, PIMIT, Processus Infectieux en Milieu Insulaire Tropical, Plateforme CYROI, 2, Rue Maxime Rivière, 97490 Sainte-Clotilde, Ile de La Réunion, France
| | - Wissal Harrabi
- Université de La Réunion, INSERM UMR 1187, CNRS 9192, IRD 249, PIMIT, Processus Infectieux en Milieu Insulaire Tropical, Plateforme CYROI, 2, Rue Maxime Rivière, 97490 Sainte-Clotilde, Ile de La Réunion, France
| | - Juliano G Haddad
- Université de La Réunion, INSERM UMR 1187, CNRS 9192, IRD 249, PIMIT, Processus Infectieux en Milieu Insulaire Tropical, Plateforme CYROI, 2, Rue Maxime Rivière, 97490 Sainte-Clotilde, Ile de La Réunion, France
| | - Chaker El Kalamouni
- Université de La Réunion, INSERM UMR 1187, CNRS 9192, IRD 249, PIMIT, Processus Infectieux en Milieu Insulaire Tropical, Plateforme CYROI, 2, Rue Maxime Rivière, 97490 Sainte-Clotilde, Ile de La Réunion, France
| | - Philippe Desprès
- Université de La Réunion, INSERM UMR 1187, CNRS 9192, IRD 249, PIMIT, Processus Infectieux en Milieu Insulaire Tropical, Plateforme CYROI, 2, Rue Maxime Rivière, 97490 Sainte-Clotilde, Ile de La Réunion, France
| | - Pascale Krejbich-Trotot
- Université de La Réunion, INSERM UMR 1187, CNRS 9192, IRD 249, PIMIT, Processus Infectieux en Milieu Insulaire Tropical, Plateforme CYROI, 2, Rue Maxime Rivière, 97490 Sainte-Clotilde, Ile de La Réunion, France.
| | - Wildriss Viranaïcken
- Université de La Réunion, INSERM UMR 1187, CNRS 9192, IRD 249, PIMIT, Processus Infectieux en Milieu Insulaire Tropical, Plateforme CYROI, 2, Rue Maxime Rivière, 97490 Sainte-Clotilde, Ile de La Réunion, France.
| |
Collapse
|
6
|
Turpin J, Frumence E, Desprès P, Viranaicken W, Krejbich-Trotot P. The ZIKA Virus Delays Cell Death Through the Anti-Apoptotic Bcl-2 Family Proteins. Cells 2019; 8:cells8111338. [PMID: 31671831 PMCID: PMC6912272 DOI: 10.3390/cells8111338] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/22/2019] [Accepted: 10/26/2019] [Indexed: 12/23/2022] Open
Abstract
Zika virus (ZIKV) is an emerging human mosquito-transmitted pathogen of global concern, known to be associated with complications such as congenital defects and neurological disorders in adults. ZIKV infection is associated with induction of cell death. However, previous studies suggest that the virally induced apoptosis occurs at a slower rate compared to the course of viral production. In this present study, we investigated the capacity of ZIKV to delay host cell apoptosis. We provide evidence that ZIKV has the ability to interfere with apoptosis whether it is intrinsically or extrinsically induced. In cells expressing viral replicon-type constructions, we show that this control is achieved through replication. Finally, our work highlights an important role for anti-apoptotic Bcl-2 family protein in the ability of ZIKV to control apoptotic pathways, avoiding premature cell death and thereby promoting virus replication in the host-cell.
Collapse
Affiliation(s)
- Jonathan Turpin
- PIMIT, Processus Infectieux en Milieu Insulaire Tropical, Université de La Réunion, INSERM UMR 1187, CNRS 9192, IRD 249, Plateforme CYROI, 97490 Sainte-Clotilde, Ile de La Réunion, France.
| | - Etienne Frumence
- PIMIT, Processus Infectieux en Milieu Insulaire Tropical, Université de La Réunion, INSERM UMR 1187, CNRS 9192, IRD 249, Plateforme CYROI, 97490 Sainte-Clotilde, Ile de La Réunion, France.
| | - Philippe Desprès
- PIMIT, Processus Infectieux en Milieu Insulaire Tropical, Université de La Réunion, INSERM UMR 1187, CNRS 9192, IRD 249, Plateforme CYROI, 97490 Sainte-Clotilde, Ile de La Réunion, France.
| | - Wildriss Viranaicken
- PIMIT, Processus Infectieux en Milieu Insulaire Tropical, Université de La Réunion, INSERM UMR 1187, CNRS 9192, IRD 249, Plateforme CYROI, 97490 Sainte-Clotilde, Ile de La Réunion, France.
| | - Pascale Krejbich-Trotot
- PIMIT, Processus Infectieux en Milieu Insulaire Tropical, Université de La Réunion, INSERM UMR 1187, CNRS 9192, IRD 249, Plateforme CYROI, 97490 Sainte-Clotilde, Ile de La Réunion, France.
| |
Collapse
|
7
|
Wu TH, Shi L, Lowe AW, Nicolls MR, Kao PN. Inducible expression of immediate early genes is regulated through dynamic chromatin association by NF45/ILF2 and NF90/NF110/ILF3. PLoS One 2019; 14:e0216042. [PMID: 31022259 PMCID: PMC6483252 DOI: 10.1371/journal.pone.0216042] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 04/14/2019] [Indexed: 12/11/2022] Open
Abstract
Immediate early gene (IEG) transcription is rapidly activated by diverse stimuli. This transcriptional regulation is assumed to involve constitutively expressed nuclear factors that are targets of signaling cascades initiated at the cell membrane. NF45 (encoded by ILF2) and its heterodimeric partner NF90/NF110 (encoded by ILF3) are chromatin-interacting proteins that are constitutively expressed and localized predominantly in the nucleus. Previously, NF90/NF110 chromatin immunoprecipitation followed by deep sequencing (ChIP-seq) in K562 erythroleukemia cells revealed its enriched association with chromatin at active promoters and strong enhancers. NF90/NF110 specifically occupied the promoters of IEGs. Here, ChIP in serum-starved HEK293 cells demonstrated that NF45 and NF90/NF110 pre-exist and specifically occupy the promoters of IEG transcription factors EGR1, FOS and JUN. Cellular stimulation with phorbol myristyl acetate increased NF90/NF110 chromatin association, while decreasing NF45 chromatin association at promoters of EGR1, FOS and JUN. In HEK293 cells stably transfected with doxycycline-inducible shRNA vectors targeting NF90/NF110 or NF45, doxycycline-mediated knockdown of NF90/NF110 or NF45 attenuated the inducible expression of EGR1, FOS, and JUN at the levels of transcription, RNA and protein. Dynamic chromatin association of NF45 and NF90/NF110 at IEG promoters are observed upon stimulation, and NF45 and NF90/NF110 contribute to inducible transcription of IEGs. NF45 and NF90/NF110 operate as chromatin regulators of the immediate early response.
Collapse
Affiliation(s)
- Ting-Hsuan Wu
- Pulmonary and Critical Care Medicine, Stanford University School of Medicine, Stanford, California, United States of America
- Biomedical Informatics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Lingfang Shi
- Pulmonary and Critical Care Medicine, Stanford University School of Medicine, Stanford, California, United States of America
| | - Anson W. Lowe
- Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Mark R. Nicolls
- Pulmonary and Critical Care Medicine, Stanford University School of Medicine, Stanford, California, United States of America
| | - Peter N. Kao
- Pulmonary and Critical Care Medicine, Stanford University School of Medicine, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|
8
|
El Kalamouni C, Frumence E, Bos S, Turpin J, Nativel B, Harrabi W, Wilkinson DA, Meilhac O, Gadea G, Desprès P, Krejbich-Trotot P, Viranaïcken W. Subversion of the Heme Oxygenase-1 Antiviral Activity by Zika Virus. Viruses 2018; 11:v11010002. [PMID: 30577437 PMCID: PMC6356520 DOI: 10.3390/v11010002] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 12/13/2018] [Accepted: 12/18/2018] [Indexed: 12/11/2022] Open
Abstract
Heme oxygenase-1 (HO-1), a rate-limiting enzyme involved in the degradation of heme, is induced in response to a wide range of stress conditions. HO-1 exerts antiviral activity against a broad range of viruses, including the Hepatitis C virus, the human immunodeficiency virus, and the dengue virus by inhibiting viral growth. It has been reported that HO-1 displays antiviral activity against the Zika virus (ZIKV) but the mechanisms of viral inhibition remain largely unknown. Using a ZIKV RNA replicon with the Green Fluorescent Protein (GFP) as a reporter protein, we were able to show that HO-1 expression resulted in the inhibition of viral RNA replication. Conversely, we observed a decrease in HO-1 expression in cells replicating the ZIKV RNA replicon. The study of human cells infected with ZIKV showed that the HO-1 expression level was significantly lower once viral replication was established, thereby limiting the antiviral effect of HO-1. Our work highlights the capacity of ZIKV to thwart the anti-replicative activity of HO-1 in human cells. Therefore, the modulation of HO-1 as a novel therapeutic strategy against ZIKV infection may display limited effect.
Collapse
Affiliation(s)
- Chaker El Kalamouni
- Université de La Réunion, INSERM UMR 1187, CNRS 9192, IRD 249 UMR PIMIT, Processus Infectieux en Milieu Insulaire Tropical, Plateforme CYROI, 2, rue Maxime Rivière, F-97490 Sainte-Clotilde, France.
| | - Etienne Frumence
- Université de La Réunion, INSERM UMR 1187, CNRS 9192, IRD 249 UMR PIMIT, Processus Infectieux en Milieu Insulaire Tropical, Plateforme CYROI, 2, rue Maxime Rivière, F-97490 Sainte-Clotilde, France.
| | - Sandra Bos
- Université de La Réunion, INSERM UMR 1187, CNRS 9192, IRD 249 UMR PIMIT, Processus Infectieux en Milieu Insulaire Tropical, Plateforme CYROI, 2, rue Maxime Rivière, F-97490 Sainte-Clotilde, France.
| | - Jonathan Turpin
- Université de La Réunion, INSERM UMR 1187, CNRS 9192, IRD 249 UMR PIMIT, Processus Infectieux en Milieu Insulaire Tropical, Plateforme CYROI, 2, rue Maxime Rivière, F-97490 Sainte-Clotilde, France.
| | - Brice Nativel
- Université de la Réunion, Inserm, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), F-97490 Sainte-Clotilde, France.
| | - Wissal Harrabi
- Université de La Réunion, INSERM UMR 1187, CNRS 9192, IRD 249 UMR PIMIT, Processus Infectieux en Milieu Insulaire Tropical, Plateforme CYROI, 2, rue Maxime Rivière, F-97490 Sainte-Clotilde, France.
| | - David A Wilkinson
- Université de La Réunion, INSERM UMR 1187, CNRS 9192, IRD 249 UMR PIMIT, Processus Infectieux en Milieu Insulaire Tropical, Plateforme CYROI, 2, rue Maxime Rivière, F-97490 Sainte-Clotilde, France.
| | - Olivier Meilhac
- Université de la Réunion, Inserm, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), F-97490 Sainte-Clotilde, France.
- CHU de La Réunion, Saint-Denis de La Réunion, F-97400 Bellepierre, France.
| | - Gilles Gadea
- Université de La Réunion, INSERM UMR 1187, CNRS 9192, IRD 249 UMR PIMIT, Processus Infectieux en Milieu Insulaire Tropical, Plateforme CYROI, 2, rue Maxime Rivière, F-97490 Sainte-Clotilde, France.
| | - Philippe Desprès
- Université de La Réunion, INSERM UMR 1187, CNRS 9192, IRD 249 UMR PIMIT, Processus Infectieux en Milieu Insulaire Tropical, Plateforme CYROI, 2, rue Maxime Rivière, F-97490 Sainte-Clotilde, France.
| | - Pascale Krejbich-Trotot
- Université de La Réunion, INSERM UMR 1187, CNRS 9192, IRD 249 UMR PIMIT, Processus Infectieux en Milieu Insulaire Tropical, Plateforme CYROI, 2, rue Maxime Rivière, F-97490 Sainte-Clotilde, France.
| | - Wildriss Viranaïcken
- Université de La Réunion, INSERM UMR 1187, CNRS 9192, IRD 249 UMR PIMIT, Processus Infectieux en Milieu Insulaire Tropical, Plateforme CYROI, 2, rue Maxime Rivière, F-97490 Sainte-Clotilde, France.
| |
Collapse
|
9
|
Bos S, Viranaicken W, Turpin J, El-Kalamouni C, Roche M, Krejbich-Trotot P, Desprès P, Gadea G. The structural proteins of epidemic and historical strains of Zika virus differ in their ability to initiate viral infection in human host cells. Virology 2018; 516:265-273. [PMID: 29395111 DOI: 10.1016/j.virol.2017.12.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 12/04/2017] [Accepted: 12/06/2017] [Indexed: 11/30/2022]
Abstract
Mosquito-borne Zika virus (ZIKV) recently emerged in South Pacific islands and Americas where large epidemics were documented. In the present study, we investigated the contribution of the structural proteins C, prM and E in the permissiveness of human host cells to epidemic strains of ZIKV. To this end, we evaluated the capacity of the epidemic strain BeH819015 to infect epithelial A549 and neuronal SH-SY5Y cells in comparison to the African historical MR766 strain. For that purpose, we generated a molecular clone of BeH819015 and a chimeric clone of MR766 which contains the BeH819015 structural protein region. We showed that ZIKV containing BeH819015 structural proteins was much less efficient in cell-attachment leading to a reduced susceptibility of A549 and SH-SY5Y cells to viral infection. Our data illustrate a previously underrated role for C, prM, and E in ZIKV epidemic strain ability to initiate viral infection in human host cells.
Collapse
Affiliation(s)
- Sandra Bos
- Université de la Réunion, INSERM U1187, CNRS UMR 9192, IRD UMR 249, Unité Mixte Processus Infectieux en Milieu Insulaire Tropical, Plateforme Technologique CYROI, 94791 Sainte Clotilde, La Réunion, France
| | - Wildriss Viranaicken
- Université de la Réunion, INSERM U1187, CNRS UMR 9192, IRD UMR 249, Unité Mixte Processus Infectieux en Milieu Insulaire Tropical, Plateforme Technologique CYROI, 94791 Sainte Clotilde, La Réunion, France
| | - Jonathan Turpin
- Université de la Réunion, INSERM U1187, CNRS UMR 9192, IRD UMR 249, Unité Mixte Processus Infectieux en Milieu Insulaire Tropical, Plateforme Technologique CYROI, 94791 Sainte Clotilde, La Réunion, France
| | - Chaker El-Kalamouni
- Université de la Réunion, INSERM U1187, CNRS UMR 9192, IRD UMR 249, Unité Mixte Processus Infectieux en Milieu Insulaire Tropical, Plateforme Technologique CYROI, 94791 Sainte Clotilde, La Réunion, France
| | - Marjolaine Roche
- Université de la Réunion, INSERM U1187, CNRS UMR 9192, IRD UMR 249, Unité Mixte Processus Infectieux en Milieu Insulaire Tropical, Plateforme Technologique CYROI, 94791 Sainte Clotilde, La Réunion, France
| | - Pascale Krejbich-Trotot
- Université de la Réunion, INSERM U1187, CNRS UMR 9192, IRD UMR 249, Unité Mixte Processus Infectieux en Milieu Insulaire Tropical, Plateforme Technologique CYROI, 94791 Sainte Clotilde, La Réunion, France
| | - Philippe Desprès
- Université de la Réunion, INSERM U1187, CNRS UMR 9192, IRD UMR 249, Unité Mixte Processus Infectieux en Milieu Insulaire Tropical, Plateforme Technologique CYROI, 94791 Sainte Clotilde, La Réunion, France.
| | - Gilles Gadea
- Université de la Réunion, INSERM U1187, CNRS UMR 9192, IRD UMR 249, Unité Mixte Processus Infectieux en Milieu Insulaire Tropical, Plateforme Technologique CYROI, 94791 Sainte Clotilde, La Réunion, France.
| |
Collapse
|
10
|
Sankovski E, Karro K, Sepp M, Kurg R, Ustav M, Abroi A. Characterization of the nuclear matrix targeting sequence (NMTS) of the BPV1 E8/E2 protein--the shortest known NMTS. Nucleus 2016. [PMID: 26218798 DOI: 10.1080/19491034.2015.1074359] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Technological advantages in sequencing and proteomics have revealed the remarkable diversity of alternative protein isoforms. Typically, the localization and functions of these isoforms are unknown and cannot be predicted. Also the localization signals leading to particular subnuclear compartments have not been identified and thus, predicting alternative functions due to alternative subnuclear localization is limited only to very few subnuclear compartments. Knowledge of the localization and function of alternative protein isoforms allows for a greater understanding of cellular complexity. In this article, we characterize a short and well-defined signal targeting the bovine papillomavirus type 1 E8/E2 protein to the nuclear matrix. The targeting signal comprises the peptide coded by E8 ORF, which is spliced together with part of the E2 ORF to generate the E8/E2 mRNA. Localization to the nuclear matrix correlates well with the transcription repression activities of E8/E2; a single point mutation directs the E8/E2 protein into the nucleoplasm, and transcription repression activity is lost. Our data prove that adding as few as ˜10 amino acids by alternative transcription/alternative splicing drastically alters the function and subnuclear localization of proteins. To our knowledge, E8 is the shortest known nuclear matrix targeting signal.
Collapse
|
11
|
Murphy J, Hall WW, Ratner L, Sheehy N. Novel interactions between the HTLV antisense proteins HBZ and APH-2 and the NFAR protein family: Implications for the HTLV lifecycles. Virology 2016; 494:129-42. [PMID: 27110706 DOI: 10.1016/j.virol.2016.04.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 04/07/2016] [Accepted: 04/08/2016] [Indexed: 01/17/2023]
Abstract
The human T-cell leukaemia virus type 1 and type 2 (HTLV-1/HTLV-2) antisense proteins HBZ and APH-2 play key roles in the HTLV lifecycles and persistence in the host. Nuclear Factors Associated with double-stranded RNA (NFAR) proteins NF90/110 function in the lifecycles of several viruses and participate in host innate immunity against infection and oncogenesis. Using GST pulldown and co-immunoprecipitation assays we demonstrate specific novel interactions between HBZ/APH-2 and NF90/110 and characterised the protein domains involved. Moreover we show that NF90/110 significantly enhance Tax mediated LTR activation, an effect that was abolished by HBZ but enhanced by APH-2. Additionally we found that HBZ and APH-2 modulate the promoter activity of survivin and are capable of antagonising NF110-mediated survivin activation. Thus interactions between HTLV antisense proteins and the NFAR protein family have an overall positive impact on HTLV infection. Hence NFARs may represent potential therapeutic targets in HTLV infected cells.
Collapse
Affiliation(s)
- Jane Murphy
- Centre for Research in Infectious Diseases, School of Medicine and Medical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - William W Hall
- Centre for Research in Infectious Diseases, School of Medicine and Medical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Lee Ratner
- Department of Medicine, Division of Molecular Oncology, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| | - Noreen Sheehy
- Centre for Research in Infectious Diseases, School of Medicine and Medical Science, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
12
|
Frumence E, Roche M, Krejbich-Trotot P, El-Kalamouni C, Nativel B, Rondeau P, Missé D, Gadea G, Viranaicken W, Desprès P. The South Pacific epidemic strain of Zika virus replicates efficiently in human epithelial A549 cells leading to IFN-β production and apoptosis induction. Virology 2016; 493:217-26. [PMID: 27060565 DOI: 10.1016/j.virol.2016.03.006] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 02/29/2016] [Accepted: 03/08/2016] [Indexed: 12/13/2022]
Abstract
Zika virus (ZIKV) is an emerging flavivirus since the first epidemics in South Pacific in 2007. The recent finding that ZIKV is now circulating in Western Hemisphere and can be associated to severe human diseases, warrants the need for its study. Here we evaluate the susceptibility of human lung epithelial A549 cells to South Pacific epidemic strain of ZIKV isolated in 2013. We showed that ZIKV growth in A549 cells is greatly efficient. ZIKV infection resulted in the secretion of IFN-β followed by the expression of pro-inflammatory cytokines such as IL-1β, and transcriptional activity of IFIT genes. At the maximum of virus progeny production, ZIKV triggers mitochondrial apoptosis through activation of caspases-3 and -9. Whereas at early infection times, the rapid release of IFN-β which exerts an antiviral effect against ZIKV might delay apoptosis in infected cells.
Collapse
Affiliation(s)
- Etienne Frumence
- Université de la Réunion, UM 134 Processus Infectieux en Milieu Insulaire Tropical (PIMIT), INSERM U1187, CNRS UMR9192, IRD UMR249. Plateforme Technologique CYROI, 97490 Sainte Clotilde, France
| | - Marjolaine Roche
- Université de la Réunion, UM 134 Processus Infectieux en Milieu Insulaire Tropical (PIMIT), INSERM U1187, CNRS UMR9192, IRD UMR249. Plateforme Technologique CYROI, 97490 Sainte Clotilde, France
| | - Pascale Krejbich-Trotot
- Université de la Réunion, UM 134 Processus Infectieux en Milieu Insulaire Tropical (PIMIT), INSERM U1187, CNRS UMR9192, IRD UMR249. Plateforme Technologique CYROI, 97490 Sainte Clotilde, France
| | - Chaker El-Kalamouni
- Université de la Réunion, UM 134 Processus Infectieux en Milieu Insulaire Tropical (PIMIT), INSERM U1187, CNRS UMR9192, IRD UMR249. Plateforme Technologique CYROI, 97490 Sainte Clotilde, France
| | - Brice Nativel
- Université de la Réunion, UMR Diabète Athérothrombose Thérapies Réunion Océan Indien (DeTROI), INSERM U1188, Plateforme Technologique CYROI, 97490 Sainte Clotilde, France
| | - Philippe Rondeau
- Université de la Réunion, UMR Diabète Athérothrombose Thérapies Réunion Océan Indien (DeTROI), INSERM U1188, Plateforme Technologique CYROI, 97490 Sainte Clotilde, France
| | - Dorothée Missé
- Laboratoire MIVEGEC, UMR 224 IRD/CNRS/UM, 34394 Montpellier, France
| | - Gilles Gadea
- Université de la Réunion, UM 134 Processus Infectieux en Milieu Insulaire Tropical (PIMIT), INSERM U1187, CNRS UMR9192, IRD UMR249. Plateforme Technologique CYROI, 97490 Sainte Clotilde, France
| | - Wildriss Viranaicken
- Université de la Réunion, UM 134 Processus Infectieux en Milieu Insulaire Tropical (PIMIT), INSERM U1187, CNRS UMR9192, IRD UMR249. Plateforme Technologique CYROI, 97490 Sainte Clotilde, France.
| | - Philippe Desprès
- Université de la Réunion, UM 134 Processus Infectieux en Milieu Insulaire Tropical (PIMIT), INSERM U1187, CNRS UMR9192, IRD UMR249. Plateforme Technologique CYROI, 97490 Sainte Clotilde, France.
| |
Collapse
|
13
|
Identification and characterization of nuclear and nucleolar localization signals in the adeno-associated virus serotype 2 assembly-activating protein. J Virol 2014; 89:3038-48. [PMID: 25552709 DOI: 10.1128/jvi.03125-14] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
UNLABELLED Assembly-activating protein (AAP) of adeno-associated virus serotype 2 (AAV2) is a nucleolar-localizing protein that plays a critical role in transporting the viral capsid VP3 protein to the nucleolus for assembly. Here, we identify and characterize AAV2 AAP (AAP2) nuclear (NLS) and nucleolar (NoLS) localization signals near the carboxy-terminal region of AAP2 (amino acid positions 144 to 184) (AAP2(144-184)). This region contains five basic-amino-acid-rich (BR) clusters, KSKRSRR (AAP2BR1), RRR (AAP2BR2), RFR (AAP2BR3), RSTSSR (AAP2BR4), and RRIK (AAP2BR5), from the amino terminus to the carboxy terminus. We created 30 AAP2BR mutants by arginine/lysine-to-alanine mutagenesis or deletion of AAP2BRs and 8 and 1 green fluorescent protein (GFP)-AAP2BR and β-galactosidase-AAP2BR fusion proteins, respectively, and analyzed their intracellular localization in HeLa cells by immunofluorescence microscopy. The results showed that AAP2(144-184) has redundant multipartite NLSs and that any combinations of 4 AAP2BRs, but not 3 or less, can constitute a functional NLS-NoLS; AAP2BR1 and AAP2BR2 play the most influential role for nuclear localization, but either one of the two AAP2BRs is dispensable if all 4 of the other AAP2BRs are present, resulting in 3 different, overlapping NLS motifs; and the NoLS is shared redundantly among the five AAP2BRs and functions in a context-dependent manner. AAP2BR mutations not only resulted in aberrant intracellular localization, but also attenuated AAP2 protein expression to various degrees, and both of these abnormalities have a significant negative impact on capsid production. Thus, this study reveals the organization of the intermingling NLSs and NoLSs in AAP2 and provides insights into their functional roles in capsid assembly. IMPORTANCE Adeno-associated virus (AAV) has become a popular and successful vector for in vivo gene therapy; however, its biology has yet to be fully understood. In this regard, the recent discovery of the assembly-activating protein (AAP), a nonstructural, nucleolar-localizing AAV protein essential for viral capsid assembly, has provided us a new opportunity to better understand the fundamental processes required for virion formation. Here, we identify clusters of basic amino acids in the carboxy terminus of AAP from AAV serotype 2 (AAV2) that act as nuclear and nucleolar localization signals. We also demonstrate their importance in maintaining AAP expression levels and efficient production of viral capsids. Insights into the functions of AAP can elucidate the requirements and process for AAV capsid assembly, which may lead to improved vector production for use in gene therapy. This study also contributes to the growing body of work on nuclear and nucleolar localization signals.
Collapse
|
14
|
Castella S, Bernard R, Corno M, Fradin A, Larcher JC. Ilf3 and NF90 functions in RNA biology. WILEY INTERDISCIPLINARY REVIEWS-RNA 2014; 6:243-56. [PMID: 25327818 DOI: 10.1002/wrna.1270] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 09/09/2014] [Accepted: 09/17/2014] [Indexed: 12/24/2022]
Abstract
Double-stranded RNA-binding proteins (DRBPs) are known to regulate many processes of RNA metabolism due, among others, to the presence of double-stranded RNA (dsRNA)-binding motifs (dsRBMs). Among these DRBPs, Interleukin enhancer-binding factor 3 (Ilf3) and Nuclear Factor 90 (NF90) are two ubiquitous proteins generated by mutually exclusive and alternative splicings of the Ilf3 gene. They share common N-terminal and central sequences but display specific C-terminal regions. They present a large heterogeneity generated by several post-transcriptional and post-translational modifications involved in their subcellular localization and biological functions. While Ilf3 and NF90 were first identified as activators of gene expression, they are also implicated in cellular processes unrelated to RNA metabolism such as regulation of the cell cycle or of enzymatic activites. The implication of Ilf3 and NF90 in RNA biology will be discussed with a focus on eukaryote transcription and translation regulation, on viral replication and translation as well as on noncoding RNA field.
Collapse
Affiliation(s)
- Sandrine Castella
- Laboratoire de Biologie du développement, Institut de Biologie Paris-Seine, Sorbonne Universités, UPMC Univ Paris 06, Paris, France; Laboratoire de Biologie du développement, Institut de Biologie Paris-Seine, CNRS, UMR 7622, Paris, France
| | | | | | | | | |
Collapse
|
15
|
Nativel B, Marimoutou M, Thon-Hon VG, Gunasekaran MK, Andries J, Stanislas G, Planesse C, Da Silva CR, Césari M, Iwema T, Gasque P, Viranaicken W. Soluble HMGB1 is a novel adipokine stimulating IL-6 secretion through RAGE receptor in SW872 preadipocyte cell line: contribution to chronic inflammation in fat tissue. PLoS One 2013; 8:e76039. [PMID: 24073286 PMCID: PMC3779194 DOI: 10.1371/journal.pone.0076039] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 08/23/2013] [Indexed: 11/18/2022] Open
Abstract
Low-grade inflammation (LGI) is a central phenomenon in the genesis of obesity and insulin-resistance characterized by IL-6 in human serum. Whereas this LGI was initially thought to be mainly attributed to macrophage activation, it is now known that pre-adipocytes and adipocytes secrete several adipokines including IL-6 and participate to LGI and associated pathologies. In macrophages, HMGB1 is a nuclear yet secreted protein and acts as a cytokine to drive the production of inflammatory molecules through RAGE and TLR2/4. In this paper we tested the secretion of HMGB1 and the auto- and paracrine contribution to fat inflammation using the human preadipocyte cell line SW872 as a model. We showed that 1) human SW872 secreted actively HMGB1, 2) IL-6 production was positively linked to high levels of secreted HMGB1, 3) recombinant HMGB1 boosted IL-6 expression and this effect was mediated by the receptor RAGE and did not involve TLR2 or TLR4. These results suggest that HMGB1 is a major adipokine contributing to LGI implementation and maintenance, and can be considered as a target to develop news therapeutics in LGI associated pathologies such as obesity and type II diabetes.
Collapse
Affiliation(s)
- Brice Nativel
- Groupe de Recherche Immunopathologie et maladies Infectieuses, Université de La Réunion, Réunion, France
| | - Mery Marimoutou
- Groupe d’Etude sur l’Inflammation Chronique et l’Obésité, Université de La Réunion, Réunion, France
| | - Vincent G. Thon-Hon
- Groupe de Recherche Immunopathologie et maladies Infectieuses, Université de La Réunion, Réunion, France
| | - Manoj Kumar Gunasekaran
- Groupe d’Etude sur l’Inflammation Chronique et l’Obésité, Université de La Réunion, Réunion, France
| | - Jessica Andries
- Groupe de Recherche Immunopathologie et maladies Infectieuses, Université de La Réunion, Réunion, France
| | - Giovédie Stanislas
- Groupe de Recherche Immunopathologie et maladies Infectieuses, Université de La Réunion, Réunion, France
| | - Cynthia Planesse
- Groupe d’Etude sur l’Inflammation Chronique et l’Obésité, Université de La Réunion, Réunion, France
| | | | - Maya Césari
- Groupe d’Etude sur l’Inflammation Chronique et l’Obésité, Université de La Réunion, Réunion, France
| | - Thomas Iwema
- Groupe de Recherche Immunopathologie et maladies Infectieuses, Université de La Réunion, Réunion, France
| | - Philippe Gasque
- Groupe de Recherche Immunopathologie et maladies Infectieuses, Université de La Réunion, Réunion, France
| | - Wildriss Viranaicken
- Groupe de Recherche Immunopathologie et maladies Infectieuses, Université de La Réunion, Réunion, France
- * E-mail:
| |
Collapse
|
16
|
Chaumet A, Castella S, Gasmi L, Fradin A, Clodic G, Bolbach G, Poulhe R, Denoulet P, Larcher JC. Proteomic analysis of interleukin enhancer binding factor 3 (Ilf3) and nuclear factor 90 (NF90) interactome. Biochimie 2013; 95:1146-57. [PMID: 23321469 DOI: 10.1016/j.biochi.2013.01.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 01/04/2013] [Indexed: 11/17/2022]
Abstract
Interleukin enhancer binding factor 3 (Ilf3) and Nuclear Factor 90 (NF90) are two ubiquitous proteins generated by alternative splicing from the ILF3 gene that provides each protein with a long and identical N-terminal domain of 701 amino acids and a specific C-terminal domain of 210 and 15 amino acids, respectively. They exhibit a high polymorphism due to their posttranscriptional and posttranslational modifications. Ilf3 and NF90 functions remain unclear although they have been described as RNA binding proteins but have been implicated in a large scale of cellular phenomena depending on the nature of their interacting partners, the composition of their protein complexes and their subcellular localization. In order to better understand the functions of Ilf3 and NF90, we have investigated their protein partners by an affinity chromatography approach. In this report, we have identified six partners of Ilf3 and NF90 that interact with their double-stranded RNA binding motifs: hnRNP A/B, hnRNP A2/B1, hnRNP A3, hnRNP D, hnRNP Q and PSF. These hnRNP are known to be implicated in mRNA stabilization, transport and/or translation regulation whereas PSF is a splicing factor. Furthermore, Ilf3, NF90 and most of their identified partners have been shown to be present in large complexes. Altogether, these data suggest an implication of Ilf3 and NF90 in mRNA metabolism. This work allows to establish a link between Ilf3 and NF90 functions, as RNA binding proteins, and their interacting partners implicated in these functions.
Collapse
Affiliation(s)
- Alexandre Chaumet
- Laboratoire de Biologie du Développement, UMR 7622 CNRS, UPMC Univ Paris 06, 9 quai Saint Bernard, 75252 Paris Cedex 05, France
| | | | | | | | | | | | | | | | | |
Collapse
|