1
|
Enoki S, Tanaka K, Moriyama A, Hanya N, Mikami N, Suzuki S. Grape cytochrome P450 CYP90D1 regulates brassinosteroid biosynthesis and increases vegetative growth. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 196:993-1001. [PMID: 36898216 DOI: 10.1016/j.plaphy.2023.02.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 01/20/2023] [Accepted: 02/25/2023] [Indexed: 06/18/2023]
Abstract
Vine vigor or vegetative growth is an important factor related to berry quality and vinicultural training management, but brassinosteroid (BR)-induced molecular mechanisms underlying vine growth remain unclear. In this study, the hypothesis that the Vitis vinifera CYP90D1 gene VvCYP90D1, one of the genes for BR biosynthesis, plays a critical role in shoot elongation was tested. RNA sequencing analysis of shoots collected from the vigorous cultivar Koshu (KO) and the reference cultivar Pinot Noir (PN) 7 days after bud break showed higher expression levels of various genes in the BR biosynthesis pathway in KO than in PN. The VvCYP90D1 expression level in KO was highest in meristems, followed by internodes and leaves. Cluster analysis of amino acid sequences including those in other plant species showed that the isolated gene belonged to the CYP90D1 group. The vegetative growth and the endogenous BR (brassinolide; BL) content were significantly higher in VvCYP90D1-overexpressing Arabidopsis than in wild type. VvCYP90D1-overexpressing Arabidopsis treated with brassinazole (Brz), a BR biosynthesis inhibitor, showed recovery of vegetative growth. These results indicate that VvCYP90D1 in grapevine has a vegetative growth promoting effect via BR biosynthesis. Our findings on the mechanism of BR-induced grape shoot growth will contribute to the development of new shoot control techniques for grapevine.
Collapse
Affiliation(s)
- Shinichi Enoki
- Laboratory of Fruit Genetic Engineering, The Institute of Enology and Viticulture, University of Yamanashi, 1-13-1 Kofu, Yamanashi, 400-0005, Japan.
| | - Keisuke Tanaka
- NODAI Genome Research Center, Tokyo University of Agriculture, 1-1-1 Setagaya, Tokyo, 156-8502, Japan
| | - Ayane Moriyama
- Laboratory of Fruit Genetic Engineering, The Institute of Enology and Viticulture, University of Yamanashi, 1-13-1 Kofu, Yamanashi, 400-0005, Japan
| | - Norimichi Hanya
- Laboratory of Fruit Genetic Engineering, The Institute of Enology and Viticulture, University of Yamanashi, 1-13-1 Kofu, Yamanashi, 400-0005, Japan
| | - Norika Mikami
- Laboratory of Fruit Genetic Engineering, The Institute of Enology and Viticulture, University of Yamanashi, 1-13-1 Kofu, Yamanashi, 400-0005, Japan
| | - Shunji Suzuki
- Laboratory of Fruit Genetic Engineering, The Institute of Enology and Viticulture, University of Yamanashi, 1-13-1 Kofu, Yamanashi, 400-0005, Japan
| |
Collapse
|
2
|
Niu K, Zhu R, Wang Y, Zhao C, Ma H. 24-epibrassinolide improves cadmium tolerance and lateral root growth associated with regulating endogenous auxin and ethylene in Kentucky bluegrass. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114460. [PMID: 38321679 DOI: 10.1016/j.ecoenv.2022.114460] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 02/08/2024]
Abstract
The application of phytohormones is a viable technique to increase the efficiency of phytoremediation in heavy metal-contaminated soils. The objective of this study was to determine how the application of 24-epibrassinolide (EBR), a brassinosteroid analog, could regulate root growth and tolerance to cadmium (Cd) stress in Kentucky bluegrass. As a result, the number of lateral root primordia and total root length in the Cd-treated seedlings decreased by 33.1 % and 56.5 %, respectively. After the application of EBR, Cd accumulation in roots and leaves, and the negative effect of Cd on root growth were reduced under Cd stress. Additionally, the expression of the brassinosteroid signaling gene PpBRI1 was significantly upregulated by exogenous EBR. Moreover, exogenous EBR upregulated the expression of genes encoding antioxidant enzymes and improved the activity of antioxidant enzymes, thereby reduced oxidative stress in roots. Finally, targeted hormonomics analysis highlighted the utility of the application of EBR to alleviate the effect of Cd on the reduction in auxin (IAA) content and the increase in ethylene (ACC) content. These were known to be associated with the upregulation in the expression of auxin biosynthesis gene PpYUCCA1 and downregulation in the expression of ethylene biosynthesis gene PpACO1 in the roots treated with Cd stress. Overall, the application of EBR alleviated Cd-induced oxidative stress in addition to improving root elongation and lateral root growth crosstalk with auxin and ethylene in Kentucky bluegrass subjected to Cd stress. This study further highlights the potential role of brassinosteroids in improving the efficiency of phytoremediation for Cd-contaminated soils.
Collapse
Affiliation(s)
- Kuiju Niu
- College of Grassland Science, Gansu Agricultural University, Lanzhou 730070, China.
| | - Ruiting Zhu
- College of Grassland Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Yong Wang
- College of Grassland Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Chunxu Zhao
- College of Grassland Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Huiling Ma
- College of Grassland Science, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
3
|
Otani Y, Kawanishi M, Kamimura M, Sasaki A, Nakamura Y, Nakamura T, Okamoto S. Behavior and possible function of Arabidopsis BES1/BZR1 homolog 2 in brassinosteroid signaling. PLANT SIGNALING & BEHAVIOR 2022; 17:2084277. [PMID: 35695417 PMCID: PMC9196799 DOI: 10.1080/15592324.2022.2084277] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Affiliation(s)
- Yui Otani
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan
| | - Mika Kawanishi
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan
| | - Miyu Kamimura
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan
| | - Azusa Sasaki
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
| | - Yasushi Nakamura
- Department of Japanese Food Culture, Faculty of Letters, Kyoto Prefectural University, Kyoto, Japan
| | - Takako Nakamura
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
| | - Shigehisa Okamoto
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
4
|
Xin P, Schier J, Šefrnová Y, Kulich I, Dubrovsky JG, Vielle-Calzada JP, Soukup A. The Arabidopsis TETRATRICOPEPTIDE-REPEAT THIOREDOXIN-LIKE (TTL) family members are involved in root system formation via their interaction with cytoskeleton and cell wall remodeling. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:946-965. [PMID: 36270031 DOI: 10.1111/tpj.15980] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 08/30/2022] [Accepted: 09/09/2022] [Indexed: 05/21/2023]
Abstract
Lateral roots (LR) are essential components of the plant edaphic interface; contributing to water and nutrient uptake, biotic and abiotic interactions, stress survival, and plant anchorage. We have identified the TETRATRICOPEPTIDE-REPEAT THIOREDOXIN-LIKE 3 (TTL3) gene as being related to LR emergence and later development. Loss of function of TTL3 leads to a reduced number of emerged LR due to delayed development of lateral root primordia (LRP). This trait is further enhanced in the triple mutant ttl1ttl3ttl4. TTL3 interacts with microtubules and endomembranes, and is known to participate in the brassinosteroid (BR) signaling pathway. Both ttl3 and ttl1ttl3ttl4 mutants are less sensitive to BR treatment in terms of LR formation and primary root growth. The ability of TTL3 to modulate biophysical properties of the cell wall was established under restrictive conditions of hyperosmotic stress and loss of root growth recovery, which was enhanced in ttl1ttl3ttl4. Timing and spatial distribution of TTL3 expression is consistent with its role in development of LRP before their emergence and subsequent growth of LR. TTL3 emerged as a component of the root system morphogenesis regulatory network.
Collapse
Affiliation(s)
- Pengfei Xin
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Vinicna 5, 128 44, Prague 2, Czech Republic
| | - Jakub Schier
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Vinicna 5, 128 44, Prague 2, Czech Republic
| | - Yvetta Šefrnová
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Vinicna 5, 128 44, Prague 2, Czech Republic
| | - Ivan Kulich
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Vinicna 5, 128 44, Prague 2, Czech Republic
| | - Joseph G Dubrovsky
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Av. Universidad, 2001, Cuernavaca, 62250, Morelos, Mexico
| | - Jean-Philippe Vielle-Calzada
- Group of Reproductive Development and Apomixis, UGA Laboratorio Nacional de Genómica para la Biodiversidad, CINVESTAV Irapuato, Guanajuato, 36821, Mexico
| | - Aleš Soukup
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Vinicna 5, 128 44, Prague 2, Czech Republic
| |
Collapse
|
5
|
Yang L, Yang L, Zhao C, Liu J, Tong C, Zhang Y, Cheng X, Jiang H, Shen J, Xie M, Liu S. Differential alternative splicing genes and isoform co-expression networks of Brassica napus under multiple abiotic stresses. FRONTIERS IN PLANT SCIENCE 2022; 13:1009998. [PMID: 36311064 PMCID: PMC9608124 DOI: 10.3389/fpls.2022.1009998] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Alternative splicing (AS) is an important regulatory process that affects plant development and stress responses by greatly increasing the complexity of transcriptome and proteome. To understand how the AS landscape of B. napus changes in response to abiotic stresses, we investigated 26 RNA-seq libraries, including control and treatments with cold, dehydration, salt, and abscisic acid (ABA) at two different time points, to perform comparative alternative splicing analysis. Apparently, AS events increased under all stresses except dehydration for 1 h, and intron retention was the most common AS mode. In addition, a total of 357 differential alternative splicing (DAS) genes were identified under four abiotic stresses, among which 81 DAS genes existed in at least two stresses, and 276 DAS genes were presented under only one stress. A weighted gene co-expression network analysis (WGCNA) based on the splicing isoforms, rather than the genes, pinpointed out 23 co-expression modules associated with different abiotic stresses. Among them, a number of significant hub genes were also found to be DAS genes, which encode key isoforms involved in responses to single stress or multiple stresses, including RNA-binding proteins, transcription factors, and other important genes, such as RBP45C, LHY, MYB59, SCL30A, RS40, MAJ23.10, and DWF4. The splicing isoforms of candidate genes identified in this study could be a valuable resource for improving tolerance of B. napus against multiple abiotic stresses.
Collapse
Affiliation(s)
- Lingli Yang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Li Yang
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
- Biosystematics Group, Wageningen University and Research, Wageningen, Netherlands
| | - Chuanji Zhao
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Jie Liu
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Chaobo Tong
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Yuanyuan Zhang
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Xiaohui Cheng
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Huifang Jiang
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Jinxiong Shen
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Meili Xie
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Shengyi Liu
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| |
Collapse
|
6
|
Han Y, Yang R, Zhang X, Wang Q, Wang B, Zheng X, Li Y, Prusky D, Bi Y. Brassinosteroid Accelerates Wound Healing of Potato Tubers by Activation of Reactive Oxygen Metabolism and Phenylpropanoid Metabolism. Foods 2022; 11:906. [PMID: 35406993 PMCID: PMC8997868 DOI: 10.3390/foods11070906] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/15/2022] [Accepted: 03/19/2022] [Indexed: 12/23/2022] Open
Abstract
Wound healing could effectively reduce the decay rate of potato tubers after harvest, but it took a long time to form typical and complete healing structures. Brassinosteroid (BR), as a sterol hormone, is important for enhancing plant resistance to abiotic and biotic stresses. However, it has not been reported that if BR affects wound healing of potato tubers. In the present study, we observed that BR played a positive role in the accumulation of lignin and suberin polyphenolic (SPP) at the wounds, and effectively reduced the weight loss and disease index of potato tubers (cv. Atlantic) during healing. At the end of healing, the weight loss and disease index of BR group was 30.8% and 23.1% lower than the control, respectively. Furthermore, BR activated the expression of StPAL, St4CL, StCAD genes and related enzyme activities in phenylpropanoid metabolism, and promoted the synthesis of lignin precursors and phenolic acids at the wound site, mainly by inducing the synthesis of caffeic acid, sinapic acid and cinnamyl alcohol. Meanwhile, the expression of StNOX was induced and the production of O2- and H2O2 was promoted, which mediated oxidative crosslinking of above phenolic acids and lignin precursors to form SPP and lignin. In addition, the expression level of StPOD was partially increased. In contrast, the inhibitor brassinazole inhibited phenylpropanoid metabolism and reactive oxygen metabolism, and demonstrated the function of BR hormone in healing in reverse. Taken together, the activation of reactive oxygen metabolism and phenylpropanoid metabolism by BR could accelerate the wound healing of potato tubers.
Collapse
Affiliation(s)
- Ye Han
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China; (Y.H.); (R.Y.); (X.Z.); (Q.W.); (B.W.); (X.Z.); (Y.L.)
| | - Ruirui Yang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China; (Y.H.); (R.Y.); (X.Z.); (Q.W.); (B.W.); (X.Z.); (Y.L.)
| | - Xuejiao Zhang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China; (Y.H.); (R.Y.); (X.Z.); (Q.W.); (B.W.); (X.Z.); (Y.L.)
| | - Qihui Wang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China; (Y.H.); (R.Y.); (X.Z.); (Q.W.); (B.W.); (X.Z.); (Y.L.)
| | - Bin Wang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China; (Y.H.); (R.Y.); (X.Z.); (Q.W.); (B.W.); (X.Z.); (Y.L.)
| | - Xiaoyuan Zheng
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China; (Y.H.); (R.Y.); (X.Z.); (Q.W.); (B.W.); (X.Z.); (Y.L.)
| | - Yongcai Li
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China; (Y.H.); (R.Y.); (X.Z.); (Q.W.); (B.W.); (X.Z.); (Y.L.)
| | - Dov Prusky
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, Rishon LeZion 7505101, Israel;
| | - Yang Bi
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China; (Y.H.); (R.Y.); (X.Z.); (Q.W.); (B.W.); (X.Z.); (Y.L.)
| |
Collapse
|
7
|
Ma Y, Wolf S, Lohmann JU. Casting the Net-Connecting Auxin Signaling to the Plant Genome. Cold Spring Harb Perspect Biol 2021; 13:a040006. [PMID: 33903151 PMCID: PMC8559546 DOI: 10.1101/cshperspect.a040006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Auxin represents one of the most potent and most versatile hormonal signals in the plant kingdom. Built on a simple core of only a few dedicated components, the auxin signaling system plays important roles for diverse aspects of plant development, physiology, and defense. Key to the diversity of context-dependent functional outputs generated by cells in response to this small molecule are gene duplication events and sub-functionalization of signaling components on the one hand, and a deep embedding of the auxin signaling system into complex regulatory networks on the other hand. Together, these evolutionary innovations provide the mechanisms to allow each cell to display a highly specific auxin response that suits its individual requirements. In this review, we discuss the regulatory networks connecting auxin with a large number of diverse pathways at all relevant levels of the signaling system ranging from biosynthesis to transcriptional response.
Collapse
Affiliation(s)
- Yanfei Ma
- Department of Stem Cell Biology, Centre for Organismal Studies, Heidelberg University, D-69120 Heidelberg, Germany
| | - Sebastian Wolf
- Cell Wall Signalling Group, Centre for Organismal Studies, Heidelberg University, D-69120 Heidelberg, Germany
| | - Jan U Lohmann
- Department of Stem Cell Biology, Centre for Organismal Studies, Heidelberg University, D-69120 Heidelberg, Germany
| |
Collapse
|
8
|
Ackerman-Lavert M, Fridman Y, Matosevich R, Khandal H, Friedlander-Shani L, Vragović K, Ben El R, Horev G, Tarkowská D, Efroni I, Savaldi-Goldstein S. Auxin requirements for a meristematic state in roots depend on a dual brassinosteroid function. Curr Biol 2021; 31:4462-4472.e6. [PMID: 34418341 DOI: 10.1016/j.cub.2021.07.075] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 05/24/2021] [Accepted: 07/28/2021] [Indexed: 10/20/2022]
Abstract
Root meristem organization is maintained by an interplay between hormone signaling pathways that both interpret and determine their accumulation and distribution. The interacting hormones Brassinosteroids (BR) and auxin control the number of meristematic cells in the Arabidopsis root. BR was reported both to promote auxin signaling input and to repress auxin signaling output. Whether these contradicting molecular outcomes co-occur and what their significance in meristem function is remain unclear. Here, we established a dual effect of BR on auxin, with BR simultaneously promoting auxin biosynthesis and repressing auxin transcriptional output, which is essential for meristem maintenance. Blocking BR-induced auxin synthesis resulted in rapid BR-mediated meristem loss. Conversely, plants with reduced BR levels were resistant to a critical loss of auxin biosynthesis, maintaining their meristem morphology. In agreement, injured root meristems, which rely solely on local auxin synthesis, regenerated when both auxin and BR synthesis were inhibited. Use of BIN2 as a tool to selectively inhibit BR signaling yielded meristems with distinct phenotypes depending on the perturbed tissue: meristem reminiscent either of BR-deficient mutants or of high BR exposure. This enabled mapping of the BR-auxin interaction that maintains the meristem to the outer epidermis and lateral root cap tissues and demonstrated the essentiality of BR signaling in these tissues for meristem response to BR. BR activity in internal tissues however, proved necessary to control BR levels. Together, we demonstrate a basis for inter-tissue coordination and how a critical ratio between these hormones determines the meristematic state.
Collapse
Affiliation(s)
- M Ackerman-Lavert
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Y Fridman
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - R Matosevich
- Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - H Khandal
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - L Friedlander-Shani
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - K Vragović
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - R Ben El
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - G Horev
- Lorey I. Lokey Interdisciplinary Center for Life Sciences and Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - D Tarkowská
- Laboratory of Growth Regulators, Institute of Experimental Botany, Czech Academy of Sciences and Palacky University, Olomouc, Czech Republic
| | - I Efroni
- Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - S Savaldi-Goldstein
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel.
| |
Collapse
|
9
|
Kour J, Kohli SK, Khanna K, Bakshi P, Sharma P, Singh AD, Ibrahim M, Devi K, Sharma N, Ohri P, Skalicky M, Brestic M, Bhardwaj R, Landi M, Sharma A. Brassinosteroid Signaling, Crosstalk and, Physiological Functions in Plants Under Heavy Metal Stress. FRONTIERS IN PLANT SCIENCE 2021; 12:608061. [PMID: 33841453 PMCID: PMC8024700 DOI: 10.3389/fpls.2021.608061] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 01/27/2021] [Indexed: 05/05/2023]
Abstract
Brassinosteroids (BRs) are group of plant steroidal hormones that modulate developmental processes and also have pivotal role in stress management. Biosynthesis of BRs takes place through established early C-6 and late C-6 oxidation pathways and the C-22 hydroxylation pathway triggered by activation of the DWF4 gene that acts on multiple intermediates. BRs are recognized at the cell surface by the receptor kinases, BRI1 and BAK1, which relay signals to the nucleus through a phosphorylation cascade involving phosphorylation of BSU1 protein and proteasomal degradation of BIN2 proteins. Inactivation of BIN2 allows BES1/BZR1 to enter the nucleus and regulate the expression of target genes. In the whole cascade of signal recognition, transduction and regulation of target genes, BRs crosstalk with other phytohormones that play significant roles. In the current era, plants are continuously exposed to abiotic stresses and heavy metal stress is one of the major stresses. The present study reveals the mechanism of these events from biosynthesis, transport and crosstalk through receptor kinases and transcriptional networks under heavy metal stress.
Collapse
Affiliation(s)
- Jaspreet Kour
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Sukhmeen Kaur Kohli
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Kanika Khanna
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Palak Bakshi
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Pooja Sharma
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Arun Dev Singh
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Mohd Ibrahim
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Kamini Devi
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Neerja Sharma
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Puja Ohri
- Department of Zoology, Guru Nanak Dev University, Amritsar, India
| | - Milan Skalicky
- Department of Botany and Plant Physiology, Czech University of Life Sciences Prague, Prague, Czechia
| | - Marian Brestic
- Department of Botany and Plant Physiology, Czech University of Life Sciences Prague, Prague, Czechia
- Department of Plant Physiology, Slovak University of Agriculture, Nitra, Slovakia
| | - Renu Bhardwaj
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Marco Landi
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Anket Sharma
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| |
Collapse
|
10
|
Henning PM, Shore JS, McCubbin AG. Transcriptome and Network Analyses of Heterostyly in Turnera subulata Provide Mechanistic Insights: Are S-Loci a Red-Light for Pistil Elongation? PLANTS 2020; 9:plants9060713. [PMID: 32503265 PMCID: PMC7356734 DOI: 10.3390/plants9060713] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/21/2020] [Accepted: 05/29/2020] [Indexed: 12/19/2022]
Abstract
Heterostyly employs distinct hermaphroditic floral morphs to enforce outbreeding. Morphs differ structurally in stigma/anther positioning, promoting cross-pollination, and physiologically blocking self-fertilization. Heterostyly is controlled by a self-incompatibility (S)-locus of a small number of linked S-genes specific to short-styled morph genomes. Turnera possesses three S-genes, namely TsBAHD (controlling pistil characters), TsYUC6, and TsSPH1 (controlling stamen characters). Here, we compare pistil and stamen transcriptomes of floral morphs of T. subulata to investigate hypothesized S-gene function(s) and whether hormonal differences might contribute to physiological incompatibility. We then use network analyses to identify genetic networks underpinning heterostyly. We found a depletion of brassinosteroid-regulated genes in short styled (S)-morph pistils, consistent with hypothesized brassinosteroid-inactivating activity of TsBAHD. In S-morph anthers, auxin-regulated genes were enriched, consistent with hypothesized auxin biosynthesis activity of TsYUC6. Evidence was found for auxin elevation and brassinosteroid reduction in both pistils and stamens of S- relative to long styled (L)-morph flowers, consistent with reciprocal hormonal differences contributing to physiological incompatibility. Additional hormone pathways were also affected, however, suggesting S-gene activities intersect with a signaling hub. Interestingly, distinct S-genes controlling pistil length, from three species with independently evolved heterostyly, potentially intersect with phytochrome interacting factor (PIF) network hubs which mediate red/far-red light signaling. We propose that modification of the activities of PIF hubs by the S-locus could be a common theme in the evolution of heterostyly.
Collapse
Affiliation(s)
- Paige M. Henning
- School of Biological Sciences, Washington State University, PO Box 644236, Pullman, WA 99164-4236, USA;
| | - Joel S. Shore
- Department of Biology, York University, 4700 Keele Street, Toronto, ON M3J1P3, Canada;
| | - Andrew G. McCubbin
- School of Biological Sciences, Washington State University, PO Box 644236, Pullman, WA 99164-4236, USA;
- Correspondence:
| |
Collapse
|
11
|
Otani Y, Tomonaga Y, Tokushige K, Kamimura M, Sasaki A, Nakamura Y, Nakamura T, Matsuo T, Okamoto S. Expression profiles of four BES1/ BZR1 homologous genes encoding bHLH transcription factors in Arabidopsis. JOURNAL OF PESTICIDE SCIENCE 2020; 45:95-104. [PMID: 32508516 PMCID: PMC7251199 DOI: 10.1584/jpestics.d20-001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 03/10/2020] [Indexed: 05/28/2023]
Abstract
Arabidopsis bHLH-type transcription factors-BRASSINOSTEROID INSENSITIVE 1-EMS-SUPPRESSOR 1 (BES1) and BRASSINAZOLE RESISTANT 1 (BZR1)-play key roles in brassinosteroid (BR) signaling. By contrast, the functions of the other four BES1/BZR1 homologs (BEH1-4) remain unknown. Here, we describe the detailed expression profiles of the BES1/BZR1 family genes. Their expressions were distinct regarding growth-stage dependence and organ specificity but exhibited some overlaps as well. Furthermore, their mRNA levels mostly remained unchanged responding to seven non-BR phytohormones. However, BEH1 and BEH2 were downregulated by brassinolide, suggesting a close association with the BR function. Additionally, BEH4 was ubiquitously expressed throughout the life of the plant but displayed some expression preference. For instance, BEH4 expression was limited to guard cells and the adjacent pavement cells in the leaf epidermis and was induced during growth progression in very young seedlings, suggesting that BEH4 is specifically regulated in certain contexts, although it is almost constitutively controlled.
Collapse
Affiliation(s)
- Yui Otani
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan
| | - Yusuke Tomonaga
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan
| | - Kenya Tokushige
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan
| | - Miyu Kamimura
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan
| | - Azusa Sasaki
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
| | - Yasushi Nakamura
- Department of Japanese Food Culture, Faculty of Letters, Kyoto Prefectural University, Kyoto, Japan
| | - Takako Nakamura
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
| | - Tomoaki Matsuo
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan
| | - Shigehisa Okamoto
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
12
|
Arieti RS, Staiger CJ. Auxin-induced actin cytoskeleton rearrangements require AUX1. THE NEW PHYTOLOGIST 2020; 226:441-459. [PMID: 31859367 PMCID: PMC7154765 DOI: 10.1111/nph.16382] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 12/10/2019] [Indexed: 05/06/2023]
Abstract
The actin cytoskeleton is required for cell expansion and implicated in cellular responses to the phytohormone auxin. However, the mechanisms that coordinate auxin signaling, cytoskeletal remodeling and cell expansion are poorly understood. Previous studies examined long-term actin cytoskeleton responses to auxin, but plants respond to auxin within minutes. Before this work, an extracellular auxin receptor - rather than the auxin transporter AUXIN RESISTANT 1 (AUX1) - was considered to precede auxin-induced cytoskeleton reorganization. In order to correlate actin array organization and dynamics with degree of cell expansion, quantitative imaging tools established baseline actin organization and illuminated individual filament behaviors in root epidermal cells under control conditions and after indole-3-acetic acid (IAA) application. We evaluated aux1 mutant actin organization responses to IAA and the membrane-permeable auxin 1-naphthylacetic acid (NAA). Cell length predicted actin organization and dynamics in control roots; short-term IAA treatments stimulated denser and more parallel, longitudinal arrays by inducing filament unbundling within minutes. Although AUX1 is necessary for full actin rearrangements in response to auxin, cytoplasmic auxin (i.e. NAA) stimulated a lesser response. Actin filaments became more 'organized' after IAA stopped elongation, refuting the hypothesis that 'more organized' actin arrays universally correlate with rapid growth. Short-term actin cytoskeleton response to auxin requires AUX1 and/or cytoplasmic auxin.
Collapse
Affiliation(s)
- Ruthie S. Arieti
- Department of Biological SciencesPurdue UniversityWest LafayetteIN47907‐2064USA
- Purdue University Interdisciplinary Life Sciences Graduate Program (PULSe)Purdue UniversityWest LafayetteIN47907USA
- Center for Plant BiologyPurdue UniversityWest LafayetteIN47907USA
| | - Christopher J. Staiger
- Department of Biological SciencesPurdue UniversityWest LafayetteIN47907‐2064USA
- Center for Plant BiologyPurdue UniversityWest LafayetteIN47907USA
- Department of Botany and Plant PathologyPurdue UniversityWest LafayetteIN47907USA
| |
Collapse
|
13
|
Wolf S. Deviating from the Beaten Track: New Twists in Brassinosteroid Receptor Function. Int J Mol Sci 2020; 21:ijms21051561. [PMID: 32106564 PMCID: PMC7084826 DOI: 10.3390/ijms21051561] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/21/2020] [Accepted: 02/22/2020] [Indexed: 12/15/2022] Open
Abstract
A key feature of plants is their plastic development tailored to the environmental conditions. To integrate environmental signals with genetic growth regulatory programs, plants rely on a number of hormonal pathways, which are intimately connected at multiple levels. Brassinosteroids (BRs), a class of plant sterol hormones, are perceived by cell surface receptors and trigger responses instrumental in tailoring developmental programs to environmental cues. Arguably, BR signalling is one of the best-characterized plant signalling pathways, and the molecular composition of the core signal transduction cascade seems clear. However, BR research continues to reveal new twists to re-shape our view on this key signalling circuit. Here, exciting novel findings pointing to the plasma membrane as a key site for BR signalling modulation and integration with other pathways are reviewed and new inputs into the BR signalling pathway and emerging “non-canonical” functions of the BR receptor complex are highlighted. Together, this new evidence underscores the complexity of plant signalling integration and serves as a reminder that highly-interconnected signalling pathways frequently comprise non-linear aspects which are difficult to convey in classical conceptual models.
Collapse
Affiliation(s)
- Sebastian Wolf
- Centre for Organismal Studies (COS) Heidelberg, INF230, 69120 Heidelberg, Germany
| |
Collapse
|
14
|
Galstyan A, Nemhauser JL. Auxin promotion of seedling growth via ARF5 is dependent on the brassinosteroid-regulated transcription factors BES1 and BEH4. PLANT DIRECT 2019; 3:e00166. [PMID: 31508562 PMCID: PMC6722427 DOI: 10.1002/pld3.166] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 08/06/2019] [Accepted: 08/09/2019] [Indexed: 05/21/2023]
Abstract
Seedlings must continually calibrate their growth in response to the environment. Auxin and brassinosteroids (BRs) are plant hormones that work together to control growth responses during photomorphogenesis. We used our previous analysis of promoter architecture in an auxin and BR target gene to guide our investigation into the broader molecular bases and biological relevance of transcriptional co-regulation by these hormones. We found that the auxin-regulated transcription factor Auxin Responsive Factor 5 (ARF5) and the brassinosteroid-regulated transcription factor BRI1-EMS-Suppressor 1/Brassinazole Resistant 2 (BES1) co-regulated a subset of growth-promoting genes via conserved bipartite cis-regulatory elements. Moreover, ARF5 binding to DNA could be enriched by increasing BES1 levels. The evolutionary loss of bipartite elements in promoters results in loss of hormone responsiveness. We also identified another member of the BES1/BZR1 family called BEH4 that acts partially redundantly with BES1 to regulate seedling growth. Double mutant analysis showed that BEH4 and not BZR1 were required alongside BES1 for normal auxin response during early seedling development. We propose that an ARF5-BES1/BEH4 transcriptional module acts to promote growth via modulation of a diverse set of growth-associated genes.
Collapse
Affiliation(s)
- Anahit Galstyan
- Department of BiologyUniversity of WashingtonSeattleWAUSA
- Present address:
Max Planck Institute for Plant Breeding ResearchCarl‐von‐Linné‐Weg 10Cologne50829Germany
| | | |
Collapse
|
15
|
Sakaguchi J, Matsushita T, Watanabe Y. DWARF4 accumulation in root tips is enhanced via blue light perception by cryptochromes. PLANT, CELL & ENVIRONMENT 2019; 42:1615-1629. [PMID: 30620085 DOI: 10.1111/pce.13510] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 09/20/2018] [Accepted: 12/12/2018] [Indexed: 05/20/2023]
Abstract
Brassinosteroid (BR) signalling is known to be coordinated with light signalling in above ground tissue. Many studies focusing on the shade avoidance response in above ground tissue or hypocotyl elongation in darkness have revealed the contribution of the BR signalling pathway to these processes. We previously analysed the expression of DWARF 4 (DWF4), a key BR biosynthesis enzyme, and revealed that light perception in above ground tissues triggered DWF4 accumulation in root tips. To determine the required wavelength of light and photoreceptors responsible for this regulation, we studied DWF4-GUS marker plants grown in several monochromatic light conditions. We revealed that monochromatic blue LED light could induce DWF4 accumulation in primary root tips and root growth as much as white light, whereas monochromatic red LED could not. Consistent with this, a cryptochrome1/2 double mutant showed retarded root growth under white light whereas a phytochromeA/B double mutant did not. Taken together, our data strongly indicated that blue light signalling was important for DWF4 accumulation in root tips and root growth. Furthermore, DWF4 accumulation patterns in primary root tips were not altered by auxin or sugar treatment. Therefore, we hypothesize that blue light signalling from the shoot tissue is different from auxin and sugar signalling.
Collapse
Affiliation(s)
- Jun Sakaguchi
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, 153-8902, Japan
| | | | - Yuichiro Watanabe
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, 153-8902, Japan
| |
Collapse
|
16
|
Arro J, Yang Y, Song GQ, Zhong GY. RNA-Seq reveals new DELLA targets and regulation in transgenic GA-insensitive grapevines. BMC PLANT BIOLOGY 2019; 19:80. [PMID: 30777012 PMCID: PMC6379989 DOI: 10.1186/s12870-019-1675-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 02/07/2019] [Indexed: 05/30/2023]
Abstract
BACKGROUND Gibberellins (GAs) and their regulator DELLA are involved in many aspects of plant growth and development and most of our current knowledge in the DELLA-facilitated GA signaling was obtained from the studies of annual species. To understand GA-DELLA signaling in perennial species, we created ten GA-insensitive transgenic grapevines carrying a DELLA mutant allele (Vvgai1) in the background of Vitis vinifera 'Thompson Seedless' and conducted comprehensive analysis of their RNA expression profiles in the shoot, leaf and root tissues. RESULTS The transgenic lines showed varying degrees of dwarf stature and other typical DELLA mutant phenotypes tightly correlated with the levels of Vvgai1 expression. A large number of differentially expressed genes (DEGs) were identified in the shoot, leaf and root tissues of the transgenic lines and these DEGs were involved in diverse biological processes; many of the DEGs showed strong tissue specificity and about 30% them carried a DELLA motif. We further discovered unexpected expression patterns of several key flowering induction genes VvCO, VvCOL1 and VvTFL1. CONCLUSIONS Our results not only confirmed many previous DELLA study findings in annual species, but also revealed new DELLA targets and responses in grapevine, including the roles of homeodomain transcription factors as potential co-regulators with DELLA in controlling the development of grapevine which uniquely possess both vegetative and reproductive meristems at the same time. The contrasting responses of some key flowering induction pathway genes provides new insights into the divergence of GA-DELLA regulations between annual and perennial species in GA-DELLA signaling.
Collapse
Affiliation(s)
- Jie Arro
- USDA-ARS Grape Genetics Research Unit, Geneva, NY 14456 USA
| | - Yingzhen Yang
- USDA-ARS Grape Genetics Research Unit, Geneva, NY 14456 USA
| | - Guo-Qing Song
- Department of Horticulture, Michigan State University, East Lansing, MI 48823 USA
| | - Gan-Yuan Zhong
- USDA-ARS Grape Genetics Research Unit, Geneva, NY 14456 USA
| |
Collapse
|
17
|
Zheng L, Zhao C, Mao J, Song C, Ma J, Zhang D, Han M, An N. Genome-wide identification and expression analysis of brassinosteroid biosynthesis and metabolism genes regulating apple tree shoot and lateral root growth. JOURNAL OF PLANT PHYSIOLOGY 2018; 231:68-85. [PMID: 30223145 DOI: 10.1016/j.jplph.2018.09.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 09/04/2018] [Accepted: 09/05/2018] [Indexed: 05/21/2023]
Abstract
In plants, brassinosteroid biosynthesis and metabolism genes affect endogenous brassinosteroid metabolic processes as well as stem and root growth. However, there is little information available regarding these genes in apple. In this study, 22 brassinosteroid biosynthesis and metabolism genes were identified in apple (Malus domestica). These genes were named according to their chromosomal locations and the Arabidopsis thaliana homologs. Their conserved characteristic domains, evolutionary relationships, syntenic relationships, chemical characteristics, gene/protein structures, interactions among the encoded proteins, promoter sequences, and functions were investigated. These 22 genes were clustered with their A. thaliana homologs based on bioinformatics analyses, which suggested they are functionally similar in apple and A. thaliana. Tissue-specific expression levels revealed that most of these genes are important for stem growth and development, while several of these genes affect lateral root formation. The transcription patterns of these genes in shoot tips were investigated following diverse treatments [brassinosteroid (shoot tips and roots), brassinazole, auxin, and temperature]. Gene expression levels were also examined in different grafting combinations ('Nagafu No. 2'/Malling 9 and 'Nagafu No. 2'/'Nagafu No. 2') and shoot varieties ('Yanfu No. 6' and 'Nagafu No. 2'). The results indicated that these genes may be involved in apple stem and root growth. The comprehensive genome-wide analysis of brassinosteroid biosynthesis and metabolism genes presented herein may be useful for breeding new apple cultivars with increased vigor. The data also represent a rich genetic resource for future apple gene functional investigations that may have implications for the genetic improvement of apple tree species.
Collapse
Affiliation(s)
- Liwei Zheng
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Caide Zhao
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jiangping Mao
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chunhui Song
- College of Horticulture, Henan Agricultural University, Zhengzhou, Henan 450002, China
| | - Juanjuan Ma
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Dong Zhang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Mingyu Han
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Na An
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China; College of Life Science, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
18
|
Ruan Y, Halat LS, Khan D, Jancowski S, Ambrose C, Belmonte MF, Wasteneys GO. The Microtubule-Associated Protein CLASP Sustains Cell Proliferation through a Brassinosteroid Signaling Negative Feedback Loop. Curr Biol 2018; 28:2718-2729.e5. [DOI: 10.1016/j.cub.2018.06.048] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 04/19/2018] [Accepted: 06/20/2018] [Indexed: 12/18/2022]
|
19
|
Li BF, Yu SX, Hu LQ, Zhang YJ, Zhai N, Xu L, Lin WH. Simple Culture Methods and Treatment to Study Hormonal Regulation of Ovule Development. FRONTIERS IN PLANT SCIENCE 2018; 9:784. [PMID: 29967629 PMCID: PMC6015908 DOI: 10.3389/fpls.2018.00784] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 05/23/2018] [Indexed: 05/02/2023]
Abstract
Ovule development is one of the most important processes in the reproductive development of higher plants and is a determinant of seed quality and quantity. Phytohormones play key roles in this process since loss-of-function mutants in hormone signaling show defective ovule phenotypes and reduced fertility. However, it is difficult to distinguish the direct effects of hormones on ovule development because it is parts of reproductive development and the defective phenotypes would be the indirect effects following the defective vegetative development. The treatment of hormones is a direct method to investigate the hormonal regulation of ovule development, but ovule is embedded inside several layers of floral organs, and traditional methods for hormone (or inhibitor) treatments have various limitations. We have developed simple methods to apply treatments to the flowers in a living plant, where an inflorescence apex is immersed into a solution in an inverted tube. We have also developed a specific system to culture and treat excised flowers/pistils. These procedures will be useful for research on the hormonal regulation of ovule development. We provide examples of how treatments with brassinosteroids (BR) and BR biosynthesis inhibitor. We cultured and treated plant materials using our newly developed methods, and observed the morphology of wild type ovules and fluorescence signals in a marker line to monitor the progress of ovule development. The results demonstrate BR promotes ovule development and our new methods are efficient and repeatable.
Collapse
Affiliation(s)
- Bu-Fan Li
- Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Shi-Xia Yu
- Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Li-Qin Hu
- Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yan-Jie Zhang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Ning Zhai
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lin Xu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Wen-Hui Lin
- Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
20
|
Brassinosteroid signaling-dependent root responses to prolonged elevated ambient temperature. Nat Commun 2017; 8:309. [PMID: 28827608 PMCID: PMC5567177 DOI: 10.1038/s41467-017-00355-4] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Accepted: 06/16/2017] [Indexed: 01/09/2023] Open
Abstract
Due to their sessile nature, plants have to cope with and adjust to their fluctuating environment. Temperature elevation stimulates the growth of Arabidopsis aerial parts. This process is mediated by increased biosynthesis of the growth-promoting hormone auxin. How plant roots respond to elevated ambient temperature is however still elusive. Here we present strong evidence that temperature elevation impinges on brassinosteroid hormone signaling to alter root growth. We show that elevated temperature leads to increased root elongation, independently of auxin or factors known to drive temperature-mediated shoot growth. We further demonstrate that brassinosteroid signaling regulates root responses to elevated ambient temperature. Increased growth temperature specifically impacts on the level of the brassinosteroid receptor BRI1 to downregulate brassinosteroid signaling and mediate root elongation. Our results establish that BRI1 integrates temperature and brassinosteroid signaling to regulate root growth upon long-term changes in environmental conditions associated with global warming.Moderate heat stimulates the growth of Arabidopsis shoots in an auxin-dependent manner. Here, Martins et al. show that elevated ambient temperature modifies root growth by reducing the BRI1 brassinosteroid-receptor protein level and downregulating brassinosteroid signaling.
Collapse
|
21
|
Que F, Wang GL, Xu ZS, Wang F, Xiong AS. Transcriptional Regulation of Brassinosteroid Accumulation during Carrot Development and the Potential Role of Brassinosteroids in Petiole Elongation. FRONTIERS IN PLANT SCIENCE 2017; 8:1356. [PMID: 28848570 PMCID: PMC5554516 DOI: 10.3389/fpls.2017.01356] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Accepted: 07/20/2017] [Indexed: 05/17/2023]
Abstract
It is widely known that brassinosteroids (BRs) are involved in various physiological processes during plant growth and development. Roles of BRs have been reported in many plants. However, relevant report is yet not found in carrot. Carrot is a nutrient-rich vegetable from the Apiaceae family. Here, we measured the bioactive contents of BRs at five successive stages and analyzed the expression profiles of genes involved in BR biosynthesis, signaling pathway and catabolism. We found that most biosynthesis regulated genes had higher expression level at the first development stage of carrot and the catabolism gene BAS1/CYP734A1 had significantly high expression level at the first stage in carrot roots and petioles. In addition, we treated carrot plants with exogenous 24-epibrassinolide (24-EBL) and examined the morphological changes after treating. Compared with control plants, carrot plants treated with 24-EBL had higher plant height, more number of petioles and heavier aboveground weight. The expression levels of DcBRI1, DcBZR1, and DcBSU1 in the petioles were significantly up-regulated by treating with exogenous 24-EBL. The expression profiles of DcCYP734A1 were all significantly up-regulated in the three organs when treated with 0.5 mg/L 24-EBL. The elongation of carrot petioles can be promoted by treating with exogenous 24-EBL. These results indicate that BRs playing potential roles during the growth and development of carrot.
Collapse
Affiliation(s)
- Feng Que
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural UniversityNanjing, China
| | - Guang-Long Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural UniversityNanjing, China
| | - Zhi-Sheng Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural UniversityNanjing, China
| | - Feng Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural UniversityNanjing, China
| | - Ai-Sheng Xiong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural UniversityNanjing, China
| |
Collapse
|
22
|
Hirano K, Yoshida H, Aya K, Kawamura M, Hayashi M, Hobo T, Sato-Izawa K, Kitano H, Ueguchi-Tanaka M, Matsuoka M. SMALL ORGAN SIZE 1 and SMALL ORGAN SIZE 2/DWARF AND LOW-TILLERING Form a Complex to Integrate Auxin and Brassinosteroid Signaling in Rice. MOLECULAR PLANT 2017; 10:590-604. [PMID: 28069545 DOI: 10.1016/j.molp.2016.12.013] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 12/20/2016] [Accepted: 12/27/2016] [Indexed: 05/21/2023]
Abstract
Although auxin and brassinosteroid (BR) synergistically control various plant responses, the molecular mechanism underlying the auxin-BR crosstalk is not well understood. We previously identified SMOS1, an auxin-regulated APETALA2-type transcription factor, as the causal gene of the small organ size 1 (smos1) mutant that is characterized by a decreased final size of various organs in rice. In this study, we identified another smos mutant, smos2, which shows the phenotype indistinguishable from smos1. SMOS2 was identical to the previously reported DWARF AND LOW-TILLERING (DLT), which encodes a GRAS protein involved in BR signaling. SMOS1 and SMOS2/DLT physically interact to cooperatively enhance transcriptional transactivation activity in yeast and in rice nuclei. Consistently, the expression of OsPHI-1, a direct target of SMOS1, is upregulated only when SMOS1 and SMOS2/DLT proteins are both present in rice cells. Taken together, our results suggest that SMOS1 and SMOS2/DLT form a keystone complex on auxin-BR signaling crosstalk in rice.
Collapse
Affiliation(s)
- Ko Hirano
- Bioscience and Biotechnology Center, Nagoya University, Nagoya 464-8601, Japan.
| | - Hideki Yoshida
- Bioscience and Biotechnology Center, Nagoya University, Nagoya 464-8601, Japan
| | - Koichiro Aya
- Bioscience and Biotechnology Center, Nagoya University, Nagoya 464-8601, Japan
| | - Mayuko Kawamura
- Bioscience and Biotechnology Center, Nagoya University, Nagoya 464-8601, Japan
| | - Makoto Hayashi
- Bioscience and Biotechnology Center, Nagoya University, Nagoya 464-8601, Japan
| | - Tokunori Hobo
- Bioscience and Biotechnology Center, Nagoya University, Nagoya 464-8601, Japan
| | - Kanna Sato-Izawa
- Bioscience and Biotechnology Center, Nagoya University, Nagoya 464-8601, Japan
| | - Hidemi Kitano
- Bioscience and Biotechnology Center, Nagoya University, Nagoya 464-8601, Japan
| | | | - Makoto Matsuoka
- Bioscience and Biotechnology Center, Nagoya University, Nagoya 464-8601, Japan
| |
Collapse
|
23
|
Tian H, Lv B, Ding T, Bai M, Ding Z. Auxin-BR Interaction Regulates Plant Growth and Development. FRONTIERS IN PLANT SCIENCE 2017; 8:2256. [PMID: 29403511 PMCID: PMC5778104 DOI: 10.3389/fpls.2017.02256] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 12/27/2017] [Indexed: 05/20/2023]
Abstract
Plants develop a high flexibility to alter growth, development, and metabolism to adapt to the ever-changing environments. Multiple signaling pathways are involved in these processes and the molecular pathways to transduce various developmental signals are not linear but are interconnected by a complex network and even feedback mutually to achieve the final outcome. This review will focus on two important plant hormones, auxin and brassinosteroid (BR), based on the most recent progresses about these two hormone regulated plant growth and development in Arabidopsis, and highlight the cross-talks between these two phytohormones.
Collapse
Affiliation(s)
- Huiyu Tian
- *Correspondence: Mingyi Bai, Zhaojun Ding, Huiyu Tian,
| | | | | | - Mingyi Bai
- *Correspondence: Mingyi Bai, Zhaojun Ding, Huiyu Tian,
| | - Zhaojun Ding
- *Correspondence: Mingyi Bai, Zhaojun Ding, Huiyu Tian,
| |
Collapse
|
24
|
Youn JH, Kim MK, Kim EJ, Son SH, Lee JE, Jang MS, Kim TW, Kim SK. ARF7 increases the endogenous contents of castasterone through suppression of BAS1 expression in Arabidopsis thaliana. PHYTOCHEMISTRY 2016; 122:34-44. [PMID: 26608667 DOI: 10.1016/j.phytochem.2015.11.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 11/05/2015] [Accepted: 11/12/2015] [Indexed: 05/20/2023]
Abstract
Homeostasis of brassinosteroids (BRs) maintained by the balance between their biosynthesis and inactivation is important to coordinate the diverse physiological and developmental responses of plants. Although BR signaling regulates the endogenous levels of BRs via negative feedback regulation, it remains largely unknown how the biosynthesis and inactivation of BR are triggered. BAS1 encodes CYP734A1, which inactivates the biologically active BRs via C-26 hydroxylation and is down-regulated by a BR-responsive transcription factor, BZR1. Here it is demonstrated that the expression of the BAS1 gene is regulated by auxin response factors (ARFs) in Arabidopsis thaliana. Two successive E-box motifs on the BAS1 promoter function as BZR1 binding sites and are essential for BR-regulated BAS1 expression. The expression of BAS1 is increased in the arf7 and arf7arf19 mutants. The endogenous level of bioactive BR, castasterone, is greatly decreased in those mutants. ARF7 can bind to the E-box motifs of the BAS1 promoter where BZR1 binds, suggesting that ARF7 and BZR1 mutually compete for the same cis-element of the BAS1 promoter. Additionally, ARF7 directly interacts with BZR1, which inhibits their DNA binding activities and regulation of BAS1 expression. In conclusion, auxin signaling via ARF7 directly modulates the expression of BAS1 by competition with BZR1, thereby increasing the level of castasterone and promoting growth and development in A. thaliana.
Collapse
Affiliation(s)
- Ji-Hyun Youn
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul 156-756, Republic of Korea
| | - Min Kyun Kim
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul 156-756, Republic of Korea
| | - Eun-Ji Kim
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 133-791, Republic of Korea
| | - Seung-Hyun Son
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul 156-756, Republic of Korea
| | - Ji Eun Lee
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul 156-756, Republic of Korea
| | - Mun-Seok Jang
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul 156-756, Republic of Korea
| | - Tae-Wuk Kim
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 133-791, Republic of Korea; Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul 133-791, Republic of Korea.
| | - Seong-Ki Kim
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul 156-756, Republic of Korea.
| |
Collapse
|
25
|
Wei Z, Li J. Brassinosteroids Regulate Root Growth, Development, and Symbiosis. MOLECULAR PLANT 2016; 9:86-100. [PMID: 26700030 DOI: 10.1016/j.molp.2015.12.003] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Revised: 10/29/2015] [Accepted: 12/07/2015] [Indexed: 05/19/2023]
Abstract
Brassinosteroids (BRs) are natural plant hormones critical for growth and development. BR deficient or signaling mutants show significantly shortened root phenotypes. However, for a long time, it was thought that these phenotypes were solely caused by reduced cell elongation in the mutant roots. Functions of BRs in regulating root development have been largely neglected. Nonetheless, recent detailed analyses, revealed that BRs are not only involved in root cell elongation but are also involved in many aspects of root development, such as maintenance of meristem size, root hair formation, lateral root initiation, gravitropic response, mycorrhiza formation, and nodulation in legume species. In this review, current findings on the functions of BRs in mediating root growth, development, and symbiosis are discussed.
Collapse
Affiliation(s)
- Zhuoyun Wei
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jia Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
26
|
De Smet S, Cuypers A, Vangronsveld J, Remans T. Gene Networks Involved in Hormonal Control of Root Development in Arabidopsis thaliana: A Framework for Studying Its Disturbance by Metal Stress. Int J Mol Sci 2015; 16:19195-224. [PMID: 26287175 PMCID: PMC4581294 DOI: 10.3390/ijms160819195] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Accepted: 08/01/2015] [Indexed: 01/23/2023] Open
Abstract
Plant survival under abiotic stress conditions requires morphological and physiological adaptations. Adverse soil conditions directly affect root development, although the underlying mechanisms remain largely to be discovered. Plant hormones regulate normal root growth and mediate root morphological responses to abiotic stress. Hormone synthesis, signal transduction, perception and cross-talk create a complex network in which metal stress can interfere, resulting in root growth alterations. We focus on Arabidopsis thaliana, for which gene networks in root development have been intensively studied, and supply essential terminology of anatomy and growth of roots. Knowledge of gene networks, mechanisms and interactions related to the role of plant hormones is reviewed. Most knowledge has been generated for auxin, the best-studied hormone with a pronounced primary role in root development. Furthermore, cytokinins, gibberellins, abscisic acid, ethylene, jasmonic acid, strigolactones, brassinosteroids and salicylic acid are discussed. Interactions between hormones that are of potential importance for root growth are described. This creates a framework that can be used for investigating the impact of abiotic stress factors on molecular mechanisms related to plant hormones, with the limited knowledge of the effects of the metals cadmium, copper and zinc on plant hormones and root development included as case example.
Collapse
Affiliation(s)
- Stefanie De Smet
- Centre for Environmental Sciences, Environmental Biology, Hasselt University, Agoralaan Gebouw D, 3590 Diepenbeek, Belgium.
| | - Ann Cuypers
- Centre for Environmental Sciences, Environmental Biology, Hasselt University, Agoralaan Gebouw D, 3590 Diepenbeek, Belgium.
| | - Jaco Vangronsveld
- Centre for Environmental Sciences, Environmental Biology, Hasselt University, Agoralaan Gebouw D, 3590 Diepenbeek, Belgium.
| | - Tony Remans
- Centre for Environmental Sciences, Environmental Biology, Hasselt University, Agoralaan Gebouw D, 3590 Diepenbeek, Belgium.
| |
Collapse
|
27
|
Tamaki H, Reguera M, Abdel-Tawab YM, Takebayashi Y, Kasahara H, Blumwald E. Targeting Hormone-Related Pathways to Improve Grain Yield in Rice: A Chemical Approach. PLoS One 2015; 10:e0131213. [PMID: 26098557 PMCID: PMC4476611 DOI: 10.1371/journal.pone.0131213] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 05/29/2015] [Indexed: 01/18/2023] Open
Abstract
Sink/source relationships, regulating the mobilization of stored carbohydrates from the vegetative tissues to the grains, are of key importance for grain filling and grain yield. We used different inhibitors of plant hormone action to assess their effects on grain yield and on the expression of hormone-associated genes. Among the tested chemicals, 2-indol-3-yl-4-oxo-4-phenylbutanoic acid (PEO-IAA; antagonist of auxin receptor), nordihydroguaiaretic acid (NDGA; abscisic acid (ABA) biosynthesis inhibitor), and 2-aminoisobutyric acid (AIB; ethylene biosynthesis inhibitor) improved grain yield in a concentration dependent manner. These effects were also dependent on the plant developmental stage. NDGA and AIB treatments induced an increase in photosynthesis in flag leaves concomitant to the increments of starch content in flag leaves and grains. NDGA inhibited the expression of ABA-responsive gene, but did not significantly decrease ABA content. Instead, NDGA significantly decreased jasmonic acid and jasmonic acid-isoleucine. Our results support the notion that the specific inhibition of jasmonic acid and ethylene biosynthesis resulted in grain yield increase in rice.
Collapse
Affiliation(s)
- Hiroaki Tamaki
- Department of Plant Sciences, University of California Davis, Davis, California 95616, United States of America
- Health and Crop Sciences Research Laboratory, Sumitomo Chemical Co. Ltd., Hyogo 665–8555, Japan
| | - Maria Reguera
- Department of Plant Sciences, University of California Davis, Davis, California 95616, United States of America
| | - Yasser M. Abdel-Tawab
- Department of Plant Sciences, University of California Davis, Davis, California 95616, United States of America
| | - Yumiko Takebayashi
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230–0045, Japan
| | - Hiroyuki Kasahara
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230–0045, Japan
| | - Eduardo Blumwald
- Department of Plant Sciences, University of California Davis, Davis, California 95616, United States of America
- * E-mail:
| |
Collapse
|
28
|
Translatome analyses capture of opposing tissue-specific brassinosteroid signals orchestrating root meristem differentiation. Proc Natl Acad Sci U S A 2015; 112:923-8. [PMID: 25561530 DOI: 10.1073/pnas.1417947112] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The mechanisms ensuring balanced growth remain a critical question in developmental biology. In plants, this balance relies on spatiotemporal integration of hormonal signaling pathways, but the understanding of the precise contribution of each hormone is just beginning to take form. Brassinosteroid (BR) hormone is shown here to have opposing effects on root meristem size, depending on its site of action. BR is demonstrated to both delay and promote onset of stem cell daughter differentiation, when acting in the outer tissue of the root meristem, the epidermis, and the innermost tissue, the stele, respectively. To understand the molecular basis of this phenomenon, a comprehensive spatiotemporal translatome mapping of Arabidopsis roots was performed. Analyses of wild type and mutants featuring different distributions of BR revealed autonomous, tissue-specific gene responses to BR, implying its contrasting tissue-dependent impact on growth. BR-induced genes were primarily detected in epidermal cells of the basal meristem zone and were enriched by auxin-related genes. In contrast, repressed BR genes prevailed in the stele of the apical meristem zone. Furthermore, auxin was found to mediate the growth-promoting impact of BR signaling originating in the epidermis, whereas BR signaling in the stele buffered this effect. We propose that context-specific BR activity and responses are oppositely interpreted at the organ level, ensuring coherent growth.
Collapse
|
29
|
Jaroensanti N, Yoon JM, Nakai Y, Shirai I, Otani M, Park SH, Hayashi KI, Nakajima M, Asami T. Does the brassinosteroid signal pathway in photomorphogenesis overlap with the gravitropic response caused by auxin? Biosci Biotechnol Biochem 2014; 78:1839-49. [PMID: 25351332 DOI: 10.1080/09168451.2014.925783] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Brassinosteroid (BR) and auxin co-regulate plant growth in a process termed cross-talking. Based on the assumption that their signal transductions are partially shared, inhibitory chemicals for both signal transductions were screened from a commercially available library. A chemical designated as NJ15 (ethyl 2-[5-(3,5-dichlorophenyl)-1,2,3,4-tetrazole-2-yl]acetate) diminished the growth promotion of both adzuki bean epicotyls and Arabidopsis seedlings, by the application of either BR or auxin. To understand its target site(s), bioassays with a high dependence on the signal transduction of either BR (BR-signaling) or auxin (AX-signaling) were performed. NJ15 inhibited the photomorphogenesis of Arabidopsis seedlings grown in the dark, which mainly depends on BR-signaling, while NJ15 also inhibited their gravitropic responses mainly depending on AX-signaling. On the study for the structure-activity relationships of NJ15 analogs, they showed strong correlations on the inhibitory profiles between BR- and AX-signalings. These correlations imply that NJ15 targets the downstream pathway after the integration of BR- and AX-signals.
Collapse
Affiliation(s)
- Naiyanate Jaroensanti
- a Department of Applied Biological Chemistry , The University of Tokyo , Tokyo , Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Oh E, Zhu JY, Bai MY, Arenhart RA, Sun Y, Wang ZY. Cell elongation is regulated through a central circuit of interacting transcription factors in the Arabidopsis hypocotyl. eLife 2014. [PMID: 24867218 DOI: 10.7554/elife.03031.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2023] Open
Abstract
As the major mechanism of plant growth and morphogenesis, cell elongation is controlled by many hormonal and environmental signals. How these signals are coordinated at the molecular level to ensure coherent cellular responses remains unclear. In this study, we illustrate a molecular circuit that integrates all major growth-regulating signals, including auxin, brassinosteroid, gibberellin, light, and temperature. Analyses of genome-wide targets, genetic and biochemical interactions demonstrate that the auxin-response factor ARF6, the light/temperature-regulated transcription factor PIF4, and the brassinosteroid-signaling transcription factor BZR1, interact with each other and cooperatively regulate large numbers of common target genes, but their DNA-binding activities are blocked by the gibberellin-inactivated repressor RGA. In addition, a tripartite HLH/bHLH module feedback regulates PIFs and additional bHLH factors that interact with ARF6, and thereby modulates auxin sensitivity according to developmental and environmental cues. Our results demonstrate a central growth-regulation circuit that integrates hormonal, environmental, and developmental controls of cell elongation in Arabidopsis hypocotyl.
Collapse
Affiliation(s)
- Eunkyoo Oh
- Department of Plant Biology, Carnegie Institution for Science, Stanford, United States
| | - Jia-Ying Zhu
- Department of Plant Biology, Carnegie Institution for Science, Stanford, United States
| | - Ming-Yi Bai
- Department of Plant Biology, Carnegie Institution for Science, Stanford, United States
| | | | - Yu Sun
- Department of Plant Biology, Carnegie Institution for Science, Stanford, United States
| | - Zhi-Yong Wang
- Department of Plant Biology, Carnegie Institution for Science, Stanford, United States
| |
Collapse
|
31
|
Oh E, Zhu JY, Bai MY, Arenhart RA, Sun Y, Wang ZY. Cell elongation is regulated through a central circuit of interacting transcription factors in the Arabidopsis hypocotyl. eLife 2014; 3. [PMID: 24867218 PMCID: PMC4075450 DOI: 10.7554/elife.03031] [Citation(s) in RCA: 385] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 05/25/2014] [Indexed: 12/30/2022] Open
Abstract
As the major mechanism of plant growth and morphogenesis, cell elongation is controlled by many hormonal and environmental signals. How these signals are coordinated at the molecular level to ensure coherent cellular responses remains unclear. In this study, we illustrate a molecular circuit that integrates all major growth-regulating signals, including auxin, brassinosteroid, gibberellin, light, and temperature. Analyses of genome-wide targets, genetic and biochemical interactions demonstrate that the auxin-response factor ARF6, the light/temperature-regulated transcription factor PIF4, and the brassinosteroid-signaling transcription factor BZR1, interact with each other and cooperatively regulate large numbers of common target genes, but their DNA-binding activities are blocked by the gibberellin-inactivated repressor RGA. In addition, a tripartite HLH/bHLH module feedback regulates PIFs and additional bHLH factors that interact with ARF6, and thereby modulates auxin sensitivity according to developmental and environmental cues. Our results demonstrate a central growth-regulation circuit that integrates hormonal, environmental, and developmental controls of cell elongation in Arabidopsis hypocotyl. DOI:http://dx.doi.org/10.7554/eLife.03031.001 Plants can grow by making more cells or by increasing the size of these existing cells. Plant growth is carefully controlled, but it must be able to respond to changes in the plant's environment. Many different plant hormones and various signals from the environment—such as light and temperature—influence how and when a plant grows. The different signals that affect cell growth typically act via distinct pathways that change which genes are switched on or off inside the cells. However, the ways in which these different signals are coordinated by plants are not fully understood. Now, Oh et al. have looked at the genes that are switched on and off in response to all the major signals that regulate the growth of the first stem to emerge from the seed of Arabidopsis, a small flowering plant that is widely studied by plant biologists. Oh et al. found that the proteins that change gene expression in response to hormones or the environment bind to each other. These proteins, which are collectively called transcription factors, were also revealed to cooperate to regulate the expression of hundreds of genes: transcription factors have not been seen to behave in this way in plants before. By discovering a central mechanism that coordinates the different signals that control plant growth, these findings may guide future efforts to boost the yields of food crops and plants that are grown to make biofuels. DOI:http://dx.doi.org/10.7554/eLife.03031.002
Collapse
Affiliation(s)
- Eunkyoo Oh
- Department of Plant Biology, Carnegie Institution for Science, Stanford, United States
| | - Jia-Ying Zhu
- Department of Plant Biology, Carnegie Institution for Science, Stanford, United States
| | - Ming-Yi Bai
- Department of Plant Biology, Carnegie Institution for Science, Stanford, United States
| | | | - Yu Sun
- Department of Plant Biology, Carnegie Institution for Science, Stanford, United States
| | - Zhi-Yong Wang
- Department of Plant Biology, Carnegie Institution for Science, Stanford, United States
| |
Collapse
|
32
|
Oh E, Zhu JY, Bai MY, Arenhart RA, Sun Y, Wang ZY. Cell elongation is regulated through a central circuit of interacting transcription factors in the Arabidopsis hypocotyl. eLife 2014; 3. [PMID: 24867218 DOI: 10.7554/elife.03031.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 05/25/2014] [Indexed: 05/21/2023] Open
Abstract
As the major mechanism of plant growth and morphogenesis, cell elongation is controlled by many hormonal and environmental signals. How these signals are coordinated at the molecular level to ensure coherent cellular responses remains unclear. In this study, we illustrate a molecular circuit that integrates all major growth-regulating signals, including auxin, brassinosteroid, gibberellin, light, and temperature. Analyses of genome-wide targets, genetic and biochemical interactions demonstrate that the auxin-response factor ARF6, the light/temperature-regulated transcription factor PIF4, and the brassinosteroid-signaling transcription factor BZR1, interact with each other and cooperatively regulate large numbers of common target genes, but their DNA-binding activities are blocked by the gibberellin-inactivated repressor RGA. In addition, a tripartite HLH/bHLH module feedback regulates PIFs and additional bHLH factors that interact with ARF6, and thereby modulates auxin sensitivity according to developmental and environmental cues. Our results demonstrate a central growth-regulation circuit that integrates hormonal, environmental, and developmental controls of cell elongation in Arabidopsis hypocotyl.
Collapse
Affiliation(s)
- Eunkyoo Oh
- Department of Plant Biology, Carnegie Institution for Science, Stanford, United States
| | - Jia-Ying Zhu
- Department of Plant Biology, Carnegie Institution for Science, Stanford, United States
| | - Ming-Yi Bai
- Department of Plant Biology, Carnegie Institution for Science, Stanford, United States
| | | | - Yu Sun
- Department of Plant Biology, Carnegie Institution for Science, Stanford, United States
| | - Zhi-Yong Wang
- Department of Plant Biology, Carnegie Institution for Science, Stanford, United States
| |
Collapse
|
33
|
Vanhaeren H, Gonzalez N, Coppens F, De Milde L, Van Daele T, Vermeersch M, Eloy NB, Storme V, Inzé D. Combining growth-promoting genes leads to positive epistasis in Arabidopsis thaliana. eLife 2014; 3:e02252. [PMID: 24843021 PMCID: PMC4014012 DOI: 10.7554/elife.02252] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Several genes positively influence final leaf size in Arabidopsis when mutated or overexpressed. The connections between these growth regulators are still poorly understood although such knowledge would further contribute to understand the processes driving leaf growth. In this study, we performed a combinatorial screen with 13 transgenic Arabidopsis lines with an increased leaf size. We found that from 61 analyzed combinations, 39% showed an additional increase in leaf size and most resulted from a positive epistasis on growth. Similar to what is found in other organisms in which such an epistasis assay was performed, only few genes were highly connected in synergistic combinations as we observed a positive epistasis in the majority of the combinations with samba, BRI1(OE) or SAUR19(OE). Furthermore, positive epistasis was found with combinations of genes with a similar mode of action, but also with genes which affect distinct processes, such as cell proliferation and cell expansion.DOI: http://dx.doi.org/10.7554/eLife.02252.001.
Collapse
Affiliation(s)
- Hannes Vanhaeren
- Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Nathalie Gonzalez
- Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Frederik Coppens
- Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Liesbeth De Milde
- Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Twiggy Van Daele
- Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Mattias Vermeersch
- Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Nubia B Eloy
- Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Veronique Storme
- Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Dirk Inzé
- Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| |
Collapse
|
34
|
Fu WQ, Zhao ZG, Ge XH, Ding L, Li ZY. Anatomy and transcript profiling of gynoecium development in female sterile Brassica napus mediated by one alien chromosome from Orychophragmus violaceus. BMC Genomics 2014; 15:61. [PMID: 24456102 PMCID: PMC3930543 DOI: 10.1186/1471-2164-15-61] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Accepted: 01/21/2014] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND The gynoecium is one of the most complex organs of angiosperms specialized for seed production and dispersal, but only several genes important for ovule or embryo sac development were identified by using female sterile mutants. The female sterility in oilseed rape (Brassica napus) was before found to be related with one alien chromosome from another crucifer Orychophragmus violaceus. Herein, the developmental anatomy and comparative transcript profiling (RNA-seq) for the female sterility were performed to reveal the genes and possible metabolic pathways behind the formation of the damaged gynoecium. RESULTS The ovules in the female sterile Brassica napus with two copies of the alien chromosomes (S1) initiated only one short integument primordium which underwent no further development and the female gametophyte development was blocked after the tetrad stage but before megagametogenesis initiation. Using Brassica_ 95k_ unigene as the reference genome, a total of 28,065 and 27,653 unigenes were identified to be transcribed in S1 and donor B. napus (H3), respectively. Further comparison of the transcript abundance between S1 and H3 revealed that 4540 unigenes showed more than two fold expression differences. Gene ontology and pathway enrichment analysis of the Differentially Expressed Genes (DEGs) showed that a number of important genes and metabolism pathways were involved in the development of gynoecium, embryo sac, ovule, integuments as well as the interactions between pollen and pistil. CONCLUSIONS DEGs for the ovule development were detected to function in the metabolism pathways regulating brassinosteroid (BR) biosynthesis, adaxial/abaxial axis specification, auxin transport and signaling. A model was proposed to show the possible roles and interactions of these pathways for the sterile gynoecium development. The results provided new information for the molecular mechanisms behind the gynoecium development at early stage in B. napus.
Collapse
Affiliation(s)
| | | | | | | | - Zai-yun Li
- National Key Lab of Crop Genetic Improvement, National Center of Crop Molecular Breeding Technology, National Center of Oil Crop Improvement (Wuhan), College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, P, R, China.
| |
Collapse
|
35
|
Wierzba MP, Tax FE. Notes from the underground: receptor-like kinases in Arabidopsis root development. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2013; 55:1224-37. [PMID: 23773179 DOI: 10.1111/jipb.12088] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 06/04/2013] [Indexed: 05/20/2023]
Abstract
During plant development, the frequency and context of cell division must be controlled, and cells must differentiate properly to perform their mature functions. In addition, stem cell niches need to be maintained as a reservoir for new cells. All of these processes require intercellular signaling, whether it is a cell relaying its position to other cells, or more mature cells signaling to the stem cell niche to regulate the rate of growth. Receptor-like kinases have emerged as a major component in these diverse roles, especially within the Arabidopsis root. In this review, the functions of receptor-like kinase signaling in regulating Arabidopsis root development will be examined in the areas of root apical meristem maintenance, regulation of epidermal cell fate, lateral root development and vascular differentiation. [Figure: see text] Frans E. Tax (Corresponding author).
Collapse
Affiliation(s)
- Michael P Wierzba
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona, 85721, USA
| | | |
Collapse
|
36
|
Jikumaru Y, Seo M, Matsuura H, Kamiya Y. Profiling of jasmonic acid-related metabolites and hormones in wounded leaves. Methods Mol Biol 2013; 1011:113-22. [PMID: 23615991 DOI: 10.1007/978-1-62703-414-2_9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
The endogenous concentration of N-jasmonoyl-L-isoleucine (JA-Ile) is regulated by the balance between biosynthesis and deactivation and controls plant developmental processes and stress responses. Therefore, profiling of its precursors and metabolites is required to understand the mechanism by which the JA-Ile concentration is regulated. Also, other hormones, such as indole-3-acetic acid, abscisic acid, salicylic acid, and ethylene, have been suggested to interact with JA-Ile signaling. Profiling of these hormones and their metabolites should give us insights into their interaction mode. Liquid chromatography-electrospray ionization-tandem mass spectrometry has enabled us to develop a highly sensitive and high-throughput comprehensive quantification analysis of phytohormones.
Collapse
|
37
|
Fridman Y, Savaldi-Goldstein S. Brassinosteroids in growth control: how, when and where. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2013; 209:24-31. [PMID: 23759100 DOI: 10.1016/j.plantsci.2013.04.002] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 04/12/2013] [Accepted: 04/13/2013] [Indexed: 05/08/2023]
Abstract
The steroid hormones brassinosteroids take on critical roles during various plant growth processes, including control of cell proliferation and cell elongation. In this review, we discuss different strategies that have advanced our understanding of brassinosteroid function. Approaches observing whole-plant responses uncovered regulatory brassinosteroids-dependent modules controlling cell elongation. In these regulatory modules, downstream components of the brassinosteroid signaling pathway directly interact with other hormonal and environmental pathways. In alternative approaches, brassinosteroid activity has been dissected at the tissue and cellular level of above- and below-ground organs. These studies have determined the importance of brassinosteroids in cell cycle progression and in timing of cell differentiation. In addition, they have demonstrated that local reduction of the hormone sets organ boundaries. Finally, these studies uncovered the capacity of the epidermal-derived brassinosteroid signaling to control organ growth. Thus, inter-cellular communication is intimately involved in brassinosteroid-mediated growth control. The current challenge is therefore to decipher the spatiotemporal distribution of brassinosteroid activity and its impact on coherent growth and development.
Collapse
Affiliation(s)
- Yulia Fridman
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel.
| | | |
Collapse
|
38
|
Hao J, Yin Y, Fei SZ. Brassinosteroid signaling network: implications on yield and stress tolerance. PLANT CELL REPORTS 2013; 32:1017-30. [PMID: 23568410 DOI: 10.1007/s00299-013-1438-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 03/19/2013] [Accepted: 03/25/2013] [Indexed: 05/03/2023]
Abstract
The steroidal hormone brassinosteroids (BRs) play important roles in plant growth and development. Genetic, genomic and proteomic studies in Arabidopsis have identified major BR signaling components and elucidated the signal transduction pathway from the cell surface receptor kinase BRI1 to the BES1/BZR1 family of transcription factors. BRs interact with other plant hormones in coordinating gene expression and plant growth and development. In this review, we provide an update on the latest progress in characterizing the BR signaling network and discuss its interactions with other hormone pathways in determining yield component traits and in regulating stress responses.
Collapse
|
39
|
Abstract
The brassinosteroid (BR) class of steroid hormones regulates plant development and physiology. The BR signal is transduced by a receptor kinase-mediated signal transduction pathway, which is distinct from animal steroid signalling systems. Recent studies have fully connected the BR signal transduction chain and have identified thousands of BR target genes, linking BR signalling to numerous cellular processes. Molecular links between BR and several other signalling pathways have also been identified. Here, we provide an overview of the highly integrated BR signalling network and explain how this steroid hormone functions as a master regulator of plant growth, development and metabolism.
Collapse
Affiliation(s)
- Jia-Ying Zhu
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA
| | | | | |
Collapse
|
40
|
Schmitz AJ, Folsom JJ, Jikamaru Y, Ronald P, Walia H. SUB1A-mediated submergence tolerance response in rice involves differential regulation of the brassinosteroid pathway. THE NEW PHYTOLOGIST 2013; 198:1060-1070. [PMID: 23496140 DOI: 10.1111/nph.12202] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 01/29/2013] [Indexed: 05/20/2023]
Abstract
· Submergence 1A (SUB1A), is an ethylene response factor (ERF) that confers submergence tolerance in rice (Oryza sativa) via limiting shoot elongation during the inundation period. SUB1A has been proposed to restrict shoot growth by modulating gibberellic acid (GA) signaling. · Our transcriptome analysis indicated that SUB1A differentially regulates genes associated with brassinosteroid (BR) synthesis during submergence. Consistent with the gene expression data, the SUB1A genotype had higher brassinosteroid levels after submergence compared to the intolerant genotype. Tolerance to submergence can be activated in the intolerant genotype by pretreatment with exogenous brassinolide, which results in restricted shoot elongation during submergence. · BR induced a GA catabolic gene, resulting in lower GA levels in SUB1A plants. BR treatment also induced the DELLA protein SLR1, a known repressor of GA responses such as shoot elongation. We propose that BR limits GA levels during submergence in the SUB1A rice through a GA catabolic enzyme as part of an early response and may repress GA responses by inducing SLR1 after several days of submergence. · Our results suggest that BR biosynthesis is regulated in a SUB1A-dependent manner during submergence and is involved in modulating the GA signaling and homeostasis.
Collapse
Affiliation(s)
- Aaron J Schmitz
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE, 68583, USA
| | - Jing J Folsom
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE, 68583, USA
| | - Yusuke Jikamaru
- RIKEN Plant Science Center, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama-shi, Kanagawa, 230-0045, Japan
| | - Pamela Ronald
- Department of Plant Pathology, University of California, Davis, CA, 95616, USA
| | - Harkamal Walia
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE, 68583, USA
| |
Collapse
|
41
|
Ivanov VB, Dubrovsky JG. Longitudinal zonation pattern in plant roots: conflicts and solutions. TRENDS IN PLANT SCIENCE 2013; 18:237-43. [PMID: 23123304 DOI: 10.1016/j.tplants.2012.10.002] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Revised: 09/27/2012] [Accepted: 10/05/2012] [Indexed: 05/21/2023]
Abstract
Despite the relative simplicity of Arabidopsis root organization, there is no general agreement regarding the terminology used to describe the longitudinal zonation pattern (LZP) of this model system. In this opinion article, we examine inconsistencies in the terminology and provide a conceptual framework for the LZP that may be applied to all angiosperms. We propose that the root apical meristem (RAM) consists of the cell-proliferation domain where cells maintain a high probability to divide and the transition domain with a low probability of cell division; in both domains cells grow at the same, relatively low, rate. Owing to stochastic termination of cell proliferation in the RAM, the border between the domains is 'fuzzy'. Molecular markers analyzed together with quantitative growth and cell analyses could help to identify developmental zones along the root and lead to a better understanding of the LZP in angiosperms.
Collapse
Affiliation(s)
- Victor B Ivanov
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya ul. 35, Moscow, 127276 Russia.
| | | |
Collapse
|
42
|
Placido DF, Campbell MT, Folsom JJ, Cui X, Kruger GR, Baenziger PS, Walia H. Introgression of novel traits from a wild wheat relative improves drought adaptation in wheat. PLANT PHYSIOLOGY 2013; 161:1806-19. [PMID: 23426195 PMCID: PMC3613457 DOI: 10.1104/pp.113.214262] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 02/16/2013] [Indexed: 05/04/2023]
Abstract
Root architecture traits are an important component for improving water stress adaptation. However, selection for aboveground traits under favorable environments in modern cultivars may have led to an inadvertent loss of genes and novel alleles beneficial for adapting to environments with limited water. In this study, we elucidate the physiological and molecular consequences of introgressing an alien chromosome segment (7DL) from a wild wheat relative species (Agropyron elongatum) into cultivated wheat (Triticum aestivum). The wheat translocation line had improved water stress adaptation and higher root and shoot biomass compared with the control genotypes, which showed significant drops in root and shoot biomass during stress. Enhanced access to water due to higher root biomass enabled the translocation line to maintain more favorable gas-exchange and carbon assimilation levels relative to the wild-type wheat genotypes during water stress. Transcriptome analysis identified candidate genes associated with root development. Two of these candidate genes mapped to the site of translocation on chromosome 7DL based on single-feature polymorphism analysis. A brassinosteroid signaling pathway was predicted to be involved in the novel root responses observed in the A. elongatum translocation line, based on the coexpression-based gene network generated by seeding the network with the candidate genes. We present an effective and highly integrated approach that combines root phenotyping, whole-plant physiology, and functional genomics to discover novel root traits and the underlying genes from a wild related species to improve drought adaptation in cultivated wheat.
Collapse
Affiliation(s)
- Dante F. Placido
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, Nebraska 68583 (D.F.P., M.T.C., J.J.F., G.R.K., P.S.B., H.W.); and
- Department of Statistics, University of California, Riverside, California 92521 (X.C.)
| | - Malachy T. Campbell
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, Nebraska 68583 (D.F.P., M.T.C., J.J.F., G.R.K., P.S.B., H.W.); and
- Department of Statistics, University of California, Riverside, California 92521 (X.C.)
| | - Jing J. Folsom
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, Nebraska 68583 (D.F.P., M.T.C., J.J.F., G.R.K., P.S.B., H.W.); and
- Department of Statistics, University of California, Riverside, California 92521 (X.C.)
| | - Xinping Cui
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, Nebraska 68583 (D.F.P., M.T.C., J.J.F., G.R.K., P.S.B., H.W.); and
- Department of Statistics, University of California, Riverside, California 92521 (X.C.)
| | - Greg R. Kruger
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, Nebraska 68583 (D.F.P., M.T.C., J.J.F., G.R.K., P.S.B., H.W.); and
- Department of Statistics, University of California, Riverside, California 92521 (X.C.)
| | - P. Stephen Baenziger
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, Nebraska 68583 (D.F.P., M.T.C., J.J.F., G.R.K., P.S.B., H.W.); and
- Department of Statistics, University of California, Riverside, California 92521 (X.C.)
| | | |
Collapse
|
43
|
Takakusagi Y, Manita D, Kusayanagi T, Izaguirre-Carbonell J, Takakusagi K, Kuramochi K, Iwabata K, Kanai Y, Sakaguchi K, Sugawara F. Mapping a disordered portion of the Brz2001-binding site on a plant monooxygenase, DWARF4, using a quartz-crystal microbalance biosensor-based T7 phage display. Assay Drug Dev Technol 2013; 11:206-15. [PMID: 23514038 DOI: 10.1089/adt.2012.478] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In small-molecule/protein interaction studies, technical difficulties such as low solubility of small molecules or low abundance of protein samples often restrict the progress of research. Here, we describe a quartz-crystal microbalance (QCM) biosensor-based T7 phage display in combination use with a receptor-ligand contacts (RELIC) bioinformatics server for application in a plant Brz2001/DWARF4 system. Brz2001 is a brassinosteroid biosynthesis inhibitor in the less-soluble triazole series of compounds that targets DWARF4, a cytochrome P450 (Cyp450) monooxygenase containing heme and iron. Using a Brz2001 derivative that has higher solubility in 70% EtOH and forms a self-assembled monolayer on gold electrode, we selected 34 Brz2001-recognizing peptides from a 15-mer T7 phage-displayed random peptide library using a total of four sets of one-cycle biopanning. The RELIC/MOTIF program revealed continuous and discontinuous short motifs conserved within the 34 Brz2001-selected 15-mer peptide sequences, indicating the increase of information content for Brz2001 recognition. Furthermore, an analysis of similarity between the 34 peptides and the amino-acid sequence of DWARF4 using the RELIC/MATCH program generated a similarity plot and a cluster diagram of the amino-acid sequence. Both of these data highlighted an internally located disordered portion of a catalytic site on DWARF4, indicating that this portion is essential for Brz2001 recognition. A similar trend was also noted by an analysis using another 26 Brz2001-selected peptides, and not observed using the 27 gold electrode-recognizing control peptides, demonstrating the reproducibility and specificity of this method. Thus, this affinity-based strategy enables high-throughput detection of the small-molecule-recognizing portion on the target protein, which overcomes technical difficulties such as sample solubility or preparation that occur when conventional methods are used.
Collapse
Affiliation(s)
- Yoichi Takakusagi
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Chiba 278-8510, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Schneider K, Breuer C, Kawamura A, Jikumaru Y, Hanada A, Fujioka S, Ichikawa T, Kondou Y, Matsui M, Kamiya Y, Yamaguchi S, Sugimoto K. Arabidopsis PIZZA has the capacity to acylate brassinosteroids. PLoS One 2012; 7:e46805. [PMID: 23071642 PMCID: PMC3465265 DOI: 10.1371/journal.pone.0046805] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Accepted: 09/06/2012] [Indexed: 01/11/2023] Open
Abstract
Brassinosteroids (BRs) affect a wide range of developmental processes in plants and compromised production or signalling of BRs causes severe growth defects. To identify new regulators of plant organ growth, we searched the Arabidopsis FOX (Full-length cDNA Over-eXpressor gene) collection for mutants with altered organ size and isolated two overexpression lines that display typical BR deficient dwarf phenotypes. The phenotype of these lines, caused by an overexpression of a putative acyltransferase gene PIZZA (PIZ), was partly rescued by supplying exogenous brassinolide (BL) and castasterone (CS), indicating that endogenous BR levels are rate-limiting for the growth of PIZ overexpression lines. Our transcript analysis further showed that PIZ overexpression leads to an elevated expression of genes involved in BR biosynthesis and a reduced expression of BR inactivating hydroxylases, a transcriptional response typical to low BR levels. Taking the advantage of relatively high endogenous BR accumulation in a mild bri1-301 background, we found that overexpression of PIZ results in moderately reduced levels of BL and CS and a strong reduction of typhasterol (TY) and 6-deoxocastasterone (6-deoxoCS), suggesting a role of PIZ in BR metabolism. We tested a set of potential substrates in vitro for heterologously expressed PIZ and confirmed its acyltransferase activity with BL, CS and TY. The PIZ gene is expressed in various tissues but as reported for other genes involved in BR metabolism, the loss-of-function mutants did not display obvious growth phenotypes under standard growth conditions. Together, our data suggest that PIZ can modify BRs by acylation and that these properties might help modulating endogenous BR levels in Arabidopsis.
Collapse
Affiliation(s)
- Katja Schneider
- RIKEN Plant Science Center, Tsurumi, Yokohama, Kanagawa, Japan
| | | | - Ayako Kawamura
- RIKEN Plant Science Center, Tsurumi, Yokohama, Kanagawa, Japan
| | - Yusuke Jikumaru
- RIKEN Plant Science Center, Tsurumi, Yokohama, Kanagawa, Japan
| | - Atsushi Hanada
- RIKEN Plant Science Center, Tsurumi, Yokohama, Kanagawa, Japan
| | - Shozo Fujioka
- RIKEN Advanced Science Institute, Wako, Saitama, Japan
| | | | - Youichi Kondou
- RIKEN Plant Science Center, Tsurumi, Yokohama, Kanagawa, Japan
| | - Minami Matsui
- RIKEN Plant Science Center, Tsurumi, Yokohama, Kanagawa, Japan
| | - Yuji Kamiya
- RIKEN Plant Science Center, Tsurumi, Yokohama, Kanagawa, Japan
| | | | - Keiko Sugimoto
- RIKEN Plant Science Center, Tsurumi, Yokohama, Kanagawa, Japan
- * E-mail:
| |
Collapse
|
45
|
Choudhary SP, Yu JQ, Yamaguchi-Shinozaki K, Shinozaki K, Tran LSP. Benefits of brassinosteroid crosstalk. TRENDS IN PLANT SCIENCE 2012; 17:594-605. [PMID: 22738940 DOI: 10.1016/j.tplants.2012.05.012] [Citation(s) in RCA: 144] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 05/23/2012] [Accepted: 05/25/2012] [Indexed: 05/03/2023]
Abstract
Brassinosteroids (BRs) are a group of phytohormones that regulate various biological processes in plants. Interactions and crosstalk between BRs and other plant hormones control a broad spectrum of physiological and developmental processes. In this review, we examine recent findings which indicate that BR signaling components mainly interact with the signaling elements of other hormones at the transcriptional level. Our major challenge is to understand how BR signaling independently, or in conjunction with other hormones, controls different BR-regulated activities. The application of a range of biotechnological strategies based on the modulation of BR content and its interplay with other plant growth regulators (PGRs) could provide a unique tool for the genetic improvement of crop productivity in a sustainable manner.
Collapse
|
46
|
Zhao B, Li J. Regulation of brassinosteroid biosynthesis and inactivation. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2012; 54:746-59. [PMID: 22963251 DOI: 10.1111/j.1744-7909.2012.01168.x] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Brassinosteroids (BRs) are a group of naturally-occurring steroidal phytohormones playing fundamental roles during normal plant growth and development. Using a combination of experimental approaches, including analytical chemistry, genetics, and biochemistry, the major BR biosynthetic pathway has been largely elucidated. The least-understood knowledge in the BR research field is probably the molecular mechanisms controlling the bioactive levels of BRs in response to various developmental and environmental cues. In this review, we focus our discussion on a recently-proposed, 8-step predominant BR biosynthetic pathway, several newly-identified transcription factors regulating the expression of key enzymes that catalyze BR biosynthesis, and up-to-date information about the mechanisms that plants use to inactivate unnecessary BRs.
Collapse
Affiliation(s)
- Baolin Zhao
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | | |
Collapse
|
47
|
Wang ZY, Bai MY, Oh E, Zhu JY. Brassinosteroid signaling network and regulation of photomorphogenesis. Annu Rev Genet 2012; 46:701-24. [PMID: 23020777 DOI: 10.1146/annurev-genet-102209-163450] [Citation(s) in RCA: 310] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In plants, the steroidal hormone brassinosteroid (BR) regulates numerous developmental processes, including photomorphogenesis. Genetic, proteomic, and genomic studies in Arabidopsis have illustrated a fully connected BR signal transduction pathway from the cell surface receptor kinase BRI1 to the BZR1 family of transcription factors. Genome-wide analyses of protein-DNA interactions have identified thousands of BZR1 target genes that link BR signaling to various cellular, metabolic, and developmental processes, as well as other signaling pathways. In controlling photomorphogenesis, BR signaling is highly integrated with the light, gibberellin, and auxin pathways through both direct interactions between signaling proteins and transcriptional regulation of key components of these pathways. BR signaling also cross talks with other receptor kinase pathways to modulate stomata development and innate immunity. The molecular connections in the BR signaling network demonstrate a robust steroid signaling system that has evolved in plants to orchestrate signal transduction, genome expression, metabolism, defense, and development.
Collapse
Affiliation(s)
- Zhi-Yong Wang
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305, USA.
| | | | | | | |
Collapse
|
48
|
Role of actin cytoskeleton in brassinosteroid signaling and in its integration with the auxin response in plants. Dev Cell 2012; 22:1275-85. [PMID: 22698285 DOI: 10.1016/j.devcel.2012.04.008] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Revised: 02/10/2012] [Accepted: 04/11/2012] [Indexed: 01/13/2023]
Abstract
In plants, developmental programs and tropisms are modulated by the phytohormone auxin. Auxin reconfigures the actin cytoskeleton, which controls polar localization of auxin transporters such as PIN2 and thus determines cell-type-specific responses. In conjunction with a second growth-promoting phytohormone, brassinosteroid (BR), auxin synergistically enhances growth and gene transcription. We show that BR alters actin configuration and PIN2 localization in a manner similar to that of auxin. We describe a BR constitutive-response mutant that bears an allele of the ACTIN2 gene and shows altered actin configuration, PIN2 delocalization, and a broad array of phenotypes that recapitulate BR-treated plants. Moreover, we show that actin filament reconfiguration is sufficient to activate BR signaling, which leads to an enhanced auxin response. Our results demonstrate that the actin cytoskeleton functions as an integration node for the BR signaling pathway and auxin responsiveness.
Collapse
|