1
|
Kesheh MM, Bayat M, Kobravi S, Lotfalizadeh MH, Heydari A, Memar MY, Baghi HB, Kermanshahi AZ, Ravaei F, Taghavi SP, Zarepour F, Nahand JS, Hashemian SMR, Mirzaei H. MicroRNAs and human viral diseases: A focus on the role of microRNA-29. Biochim Biophys Acta Mol Basis Dis 2024; 1871:167500. [PMID: 39260679 DOI: 10.1016/j.bbadis.2024.167500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 06/01/2024] [Accepted: 08/01/2024] [Indexed: 09/13/2024]
Abstract
The viral replication can impress through cellular miRNAs. Indeed, either the antiviral responses or the viral infection changes through cellular miRNAs resulting in affecting many regulatory signaling pathways. One of the microRNA families that is effective in human cancers, diseases, and viral infections is the miR-29 family. Members of miR-29 family are effective in different viral infections as their roles have appeared in regulation of immunity pathways either in innate immunity including interferon and inflammatory pathways or in adaptive immunity including activation of T-cells and antibodies production. Although miR-29a affects viral replication by suppressing antiviral responses, it can inhibit the expression of viral mRNAs via binding to their 3'UTR. In the present work, we discuss the evidence related to miR-29a and viral infection through host immunity regulation. We also review roles of other miR-29 family members by focusing on their role as biomarkers for diagnosing and targets for viral diseases management.
Collapse
Affiliation(s)
- Mina Mobini Kesheh
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mobina Bayat
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sepehr Kobravi
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Tehran Azad University, Tehran, Iran
| | | | - Azhdar Heydari
- Physiology Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran; Department of Physiology, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Yousef Memar
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Bannazadeh Baghi
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Atefeh Zamani Kermanshahi
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Ravaei
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Pouya Taghavi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Fatemeh Zarepour
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Javid Sadri Nahand
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Seyed Mohammad Reza Hashemian
- Chronic Respiratory Diseases Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
2
|
Gu W, Eke C, Gonzalez Santiago E, Olaloye O, Konnikova L. Single-cell atlas of the small intestine throughout the human lifespan demonstrates unique features of fetal immune cells. Mucosal Immunol 2024; 17:599-617. [PMID: 38555026 PMCID: PMC11384551 DOI: 10.1016/j.mucimm.2024.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 03/15/2024] [Accepted: 03/23/2024] [Indexed: 04/02/2024]
Abstract
Proper development of mucosal immunity is critical for human health. Over the past decade, it has become evident that in humans, this process begins in utero. However, there are limited data on the unique features and functions of fetal mucosal immune cells. To address this gap, we integrated several single-cell ribonucleic acid sequencing datasets of the human small intestine (SI) to create an SI transcriptional atlas throughout the human life span, ranging from the first trimester to adulthood, with a focus on immune cells. Fetal SI displayed a complex immune landscape comprising innate and adaptive immune cells that exhibited distinct transcriptional programs from postnatal samples, especially compared with pediatric and adult samples. We identified shifts in myeloid populations across gestation and progression of memory T-cell states throughout the human lifespan. In particular, there was a marked shift of memory T cells from those with stem-like properties in the fetal samples to fully differentiated cells with a high expression of activation and effector function genes in adult samples, with neonatal samples containing both features. Finally, we demonstrate that the SI developmental atlas can be used to elucidate improper trajectories linked to mucosal diseases by implicating developmental abnormalities underlying necrotizing enterocolitis, a severe intestinal complication of prematurity. Collectively, our data provide valuable resources and important insights into intestinal immunity that will facilitate regenerative medicine and disease understanding.
Collapse
Affiliation(s)
- Weihong Gu
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
| | - Chino Eke
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
| | | | - Oluwabunmi Olaloye
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
| | - Liza Konnikova
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA; Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA; Department of Obstetrics, Gynecology and Reproductive Science, Yale University School of Medicine, New Haven, CT, USA; Program in Translational Biomedicine, Yale University School of Medicine, New Haven, CT, USA; Program in Human Translational Immunology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
3
|
Larouche JD, Laumont CM, Trofimov A, Vincent K, Hesnard L, Brochu S, Côté C, Humeau JF, Bonneil É, Lanoix J, Durette C, Gendron P, Laverdure JP, Richie ER, Lemieux S, Thibault P, Perreault C. Transposable elements regulate thymus development and function. eLife 2024; 12:RP91037. [PMID: 38635416 PMCID: PMC11026094 DOI: 10.7554/elife.91037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024] Open
Abstract
Transposable elements (TEs) are repetitive sequences representing ~45% of the human and mouse genomes and are highly expressed by medullary thymic epithelial cells (mTECs). In this study, we investigated the role of TEs on T-cell development in the thymus. We performed multiomic analyses of TEs in human and mouse thymic cells to elucidate their role in T-cell development. We report that TE expression in the human thymus is high and shows extensive age- and cell lineage-related variations. TE expression correlates with multiple transcription factors in all cell types of the human thymus. Two cell types express particularly broad TE repertoires: mTECs and plasmacytoid dendritic cells (pDCs). In mTECs, transcriptomic data suggest that TEs interact with transcription factors essential for mTEC development and function (e.g., PAX1 and REL), and immunopeptidomic data showed that TEs generate MHC-I-associated peptides implicated in thymocyte education. Notably, AIRE, FEZF2, and CHD4 regulate small yet non-redundant sets of TEs in murine mTECs. Human thymic pDCs homogenously express large numbers of TEs that likely form dsRNA, which can activate innate immune receptors, potentially explaining why thymic pDCs constitutively secrete IFN ɑ/β. This study highlights the diversity of interactions between TEs and the adaptive immune system. TEs are genetic parasites, and the two thymic cell types most affected by TEs (mTEcs and pDCs) are essential to establishing central T-cell tolerance. Therefore, we propose that orchestrating TE expression in thymic cells is critical to prevent autoimmunity in vertebrates.
Collapse
Affiliation(s)
- Jean-David Larouche
- Institute for Research in Immunology and Cancer, Université de MontréalMontrealCanada
- Department of Medicine, Université de MontréalMontréalCanada
| | - Céline M Laumont
- Deeley Research Centre, BC CancerVictoriaCanada
- Department of Medical Genetics, University of British ColumbiaVancouverCanada
| | - Assya Trofimov
- Institute for Research in Immunology and Cancer, Université de MontréalMontrealCanada
- Department of Computer Science and Operations Research, Université de MontréalMontréalCanada
- Fred Hutchinson Cancer CenterSeattleUnited States
- Department of Physics, University of WashingtonSeattleUnited States
| | - Krystel Vincent
- Institute for Research in Immunology and Cancer, Université de MontréalMontrealCanada
| | - Leslie Hesnard
- Institute for Research in Immunology and Cancer, Université de MontréalMontrealCanada
| | - Sylvie Brochu
- Institute for Research in Immunology and Cancer, Université de MontréalMontrealCanada
| | - Caroline Côté
- Institute for Research in Immunology and Cancer, Université de MontréalMontrealCanada
| | - Juliette F Humeau
- Institute for Research in Immunology and Cancer, Université de MontréalMontrealCanada
| | - Éric Bonneil
- Institute for Research in Immunology and Cancer, Université de MontréalMontrealCanada
| | - Joel Lanoix
- Institute for Research in Immunology and Cancer, Université de MontréalMontrealCanada
| | - Chantal Durette
- Institute for Research in Immunology and Cancer, Université de MontréalMontrealCanada
| | - Patrick Gendron
- Institute for Research in Immunology and Cancer, Université de MontréalMontrealCanada
| | | | - Ellen R Richie
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas M.D. Anderson Cancer CenterHoustonUnited States
| | - Sébastien Lemieux
- Institute for Research in Immunology and Cancer, Université de MontréalMontrealCanada
- Department of Biochemistry and Molecular Medicine, Université de MontréalMontrealCanada
| | - Pierre Thibault
- Institute for Research in Immunology and Cancer, Université de MontréalMontrealCanada
- Department of Chemistry, Université de MontréalMontréalCanada
| | - Claude Perreault
- Institute for Research in Immunology and Cancer, Université de MontréalMontrealCanada
- Department of Medicine, Université de MontréalMontréalCanada
| |
Collapse
|
4
|
Oftedal BE, Sjøgren T, Wolff ASB. Interferon autoantibodies as signals of a sick thymus. Front Immunol 2024; 15:1327784. [PMID: 38455040 PMCID: PMC10917889 DOI: 10.3389/fimmu.2024.1327784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/07/2024] [Indexed: 03/09/2024] Open
Abstract
Type I interferons (IFN-I) are key immune messenger molecules that play an important role in viral defense. They act as a bridge between microbe sensing, immune function magnitude, and adaptive immunity to fight infections, and they must therefore be tightly regulated. It has become increasingly evident that thymic irregularities and mutations in immune genes affecting thymic tolerance can lead to the production of IFN-I autoantibodies (autoAbs). Whether these biomarkers affect the immune system or tissue integrity of the host is still controversial, but new data show that IFN-I autoAbs may increase susceptibility to severe disease caused by certain viruses, including SARS-CoV-2, herpes zoster, and varicella pneumonia. In this article, we will elaborate on disorders that have been identified with IFN-I autoAbs, discuss models of how tolerance to IFN-Is is lost, and explain the consequences for the host.
Collapse
Affiliation(s)
- Bergithe E. Oftedal
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Thea Sjøgren
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Anette S. B. Wolff
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
5
|
Han P, Zhang W, Wang D, Wu Y, Li X, Zhao S, Zhu M. Comparative transcriptome analysis of T lymphocyte subpopulations and identification of critical regulators defining porcine thymocyte identity. Front Immunol 2024; 15:1339787. [PMID: 38384475 PMCID: PMC10879363 DOI: 10.3389/fimmu.2024.1339787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 01/18/2024] [Indexed: 02/23/2024] Open
Abstract
Introduction The development and migration of T cells in the thymus and peripheral tissues are crucial for maintaining adaptive immunity in mammals. However, the regulatory mechanisms underlying T cell development and thymocyte identity formation in pigs remain largely underexplored. Method Here, by integrating bulk and single-cell RNA-sequencing data, we investigated regulatory signatures of porcine thymus and lymph node T cells. Results The comparison of T cell subpopulations derived from porcine thymus and lymph nodes revealed that their transcriptomic differences were influenced more by tissue origin than by T cell phenotypes, and that lymph node cells exhibited greater transcriptional diversity than thymocytes. Through weighted gene co-expression network analysis (WGCNA), we identified the key modules and candidate hub genes regulating the heterogeneity of T cell subpopulations. Further, we integrated the porcine thymocyte dataset with peripheral blood mononuclear cell (PBMC) dataset to systematically compare transcriptomic differences between T cell types from different tissues. Based on single-cell datasets, we further identified the key transcription factors (TFs) responsible for maintaining porcine thymocyte identity and unveiled that these TFs coordinately regulated the entire T cell development process. Finally, we performed GWAS of cell type-specific differentially expressed genes (DEGs) and 30 complex traits, and found that the DEGs in thymus-related and peripheral blood-related cell types, especially CD4_SP cluster and CD8-related cluster, were significantly associated with pig productive and reproductive traits. Discussion Our findings provide an insight into T cell development and lay a foundation for further exploring the porcine immune system and genetic mechanisms underlying complex traits in pigs.
Collapse
Affiliation(s)
- Pingping Han
- Key Lab of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Wei Zhang
- Key Lab of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Daoyuan Wang
- Key Lab of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Yalan Wu
- Key Lab of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Xinyun Li
- Key Lab of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Shuhong Zhao
- Key Lab of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Mengjin Zhu
- Key Lab of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
6
|
Stakišaitis D, Kapočius L, Kilimaitė E, Gečys D, Šlekienė L, Balnytė I, Palubinskienė J, Lesauskaitė V. Preclinical Study in Mouse Thymus and Thymocytes: Effects of Treatment with a Combination of Sodium Dichloroacetate and Sodium Valproate on Infectious Inflammation Pathways. Pharmaceutics 2023; 15:2715. [PMID: 38140056 PMCID: PMC10747708 DOI: 10.3390/pharmaceutics15122715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 11/17/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
The research presents data from a preclinical study on the anti-inflammatory effects of a sodium dichloroacetate and sodium valproate combination (DCA-VPA). The 2-week treatment with a DCA 100 mg/kg/day and VPA 150 mg/kg/day combination solution in drinking water's effects on the thymus weight, its cortex/medulla ratio, Hassall's corpuscles (HCs) number in the thymus medulla, and the expression of inflammatory and immune-response-related genes in thymocytes of male Balb/c mice were studied. Two groups of mice aged 6-7 weeks were investigated: a control (n = 12) and a DCA-VPA-treated group (n = 12). The treatment did not affect the body weight gain (p > 0.05), the thymus weight (p > 0.05), the cortical/medulla ratio (p > 0.05), or the number of HCs (p > 0.05). Treatment significantly increased the Slc5a8 gene expression by 2.1-fold (p < 0.05). Gene sequence analysis revealed a significant effect on the expression of inflammation-related genes in thymocytes by significantly altering the expression of several genes related to the cytokine activity pathway, the inflammatory response pathway, and the Il17 signaling pathway in thymocytes. Data suggest that DCA-VPA exerts an anti-inflammatory effect by inhibiting the inflammatory mechanisms in the mouse thymocytes.
Collapse
Affiliation(s)
- Donatas Stakišaitis
- Department of Histology and Embryology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (L.K.); (L.Š.); (I.B.); (J.P.)
- Laboratory of Molecular Oncology, National Cancer Institute, 08660 Vilnius, Lithuania
| | - Linas Kapočius
- Department of Histology and Embryology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (L.K.); (L.Š.); (I.B.); (J.P.)
| | - Evelina Kilimaitė
- Department of Histology and Embryology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (L.K.); (L.Š.); (I.B.); (J.P.)
| | - Dovydas Gečys
- Laboratory of Molecular Cardiology, Institute of Cardiology, Lithuanian University of Health Sciences, Sukileliu Ave., 50161 Kaunas, Lithuania;
| | - Lina Šlekienė
- Department of Histology and Embryology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (L.K.); (L.Š.); (I.B.); (J.P.)
| | - Ingrida Balnytė
- Department of Histology and Embryology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (L.K.); (L.Š.); (I.B.); (J.P.)
| | - Jolita Palubinskienė
- Department of Histology and Embryology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (L.K.); (L.Š.); (I.B.); (J.P.)
| | - Vaiva Lesauskaitė
- Laboratory of Molecular Cardiology, Institute of Cardiology, Lithuanian University of Health Sciences, Sukileliu Ave., 50161 Kaunas, Lithuania;
| |
Collapse
|
7
|
Ragazzini R, Boeing S, Zanieri L, Green M, D'Agostino G, Bartolovic K, Agua-Doce A, Greco M, Watson SA, Batsivari A, Ariza-McNaughton L, Gjinovci A, Scoville D, Nam A, Hayday AC, Bonnet D, Bonfanti P. Defining the identity and the niches of epithelial stem cells with highly pleiotropic multilineage potency in the human thymus. Dev Cell 2023; 58:2428-2446.e9. [PMID: 37652013 PMCID: PMC10957394 DOI: 10.1016/j.devcel.2023.08.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 09/19/2022] [Accepted: 08/09/2023] [Indexed: 09/02/2023]
Abstract
Thymus is necessary for lifelong immunological tolerance and immunity. It displays a distinctive epithelial complexity and undergoes age-dependent atrophy. Nonetheless, it also retains regenerative capacity, which, if harnessed appropriately, might permit rejuvenation of adaptive immunity. By characterizing cortical and medullary compartments in the human thymus at single-cell resolution, in this study we have defined specific epithelial populations, including those that share properties with bona fide stem cells (SCs) of lifelong regenerating epidermis. Thymic epithelial SCs display a distinctive transcriptional profile and phenotypic traits, including pleiotropic multilineage potency, to give rise to several cell types that were not previously considered to have shared origin. Using here identified SC markers, we have defined their cortical and medullary niches and shown that, in vitro, the cells display long-term clonal expansion and self-organizing capacity. These data substantively broaden our knowledge of SC biology and set a stage for tackling thymic atrophy and related disorders.
Collapse
Affiliation(s)
- Roberta Ragazzini
- Epithelial Stem Cell Biology & Regenerative Medicine Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Institute of Immunity & Transplantation, Division of Infection & Immunity, UCL, Pears Building, Rosslyn Hill, London NW3 2PP, UK
| | - Stefan Boeing
- Bioinformatics & Biostatistics, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Luca Zanieri
- Epithelial Stem Cell Biology & Regenerative Medicine Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Institute of Immunity & Transplantation, Division of Infection & Immunity, UCL, Pears Building, Rosslyn Hill, London NW3 2PP, UK
| | - Mary Green
- Experimental Histopathology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Giuseppe D'Agostino
- Haematopoietic Stem Cell Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Plasticell Limited, Stevenage Bioscience Catalyst, Gunnels Wood Road, Stevenage SG1 2FX, UK
| | - Kerol Bartolovic
- Flow Cytometry Core, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Ana Agua-Doce
- Flow Cytometry Core, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Maria Greco
- Single Cell Facility, MRC WIMM, University of Oxford, Oxford OX3 9DS, UK
| | - Sara A Watson
- Epithelial Stem Cell Biology & Regenerative Medicine Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Antoniana Batsivari
- Haematopoietic Stem Cell Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Linda Ariza-McNaughton
- Haematopoietic Stem Cell Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Asllan Gjinovci
- Epithelial Stem Cell Biology & Regenerative Medicine Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Institute of Immunity & Transplantation, Division of Infection & Immunity, UCL, Pears Building, Rosslyn Hill, London NW3 2PP, UK
| | | | - Andy Nam
- NanoString Technologies Inc., Seattle, WA, USA
| | - Adrian C Hayday
- Immunosurveillance Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, King's College London, London, UK
| | - Dominique Bonnet
- Haematopoietic Stem Cell Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Paola Bonfanti
- Epithelial Stem Cell Biology & Regenerative Medicine Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Institute of Immunity & Transplantation, Division of Infection & Immunity, UCL, Pears Building, Rosslyn Hill, London NW3 2PP, UK.
| |
Collapse
|
8
|
Resop RS, Salvatore B, Kim SJ, Gordon BR, Blom B, Vatakis DN, Uittenbogaart CH. HIV-1 Infection Results in Sphingosine-1-Phosphate Receptor 1 Dysregulation in the Human Thymus. Int J Mol Sci 2023; 24:13865. [PMID: 37762169 PMCID: PMC10531245 DOI: 10.3390/ijms241813865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/31/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Regeneration of functional naïve T lymphocytes following the onset of human immunodeficiency virus (HIV) infection remains a crucial issue for people living with HIV (PLWH), even when adhering to antiretroviral therapy (ART). Thus far, reports on the impact of HIV-1 infection on the entry of thymic precursors and the egress of functional naïve T lymphocytes to and from the thymus are limited. We examined the impact of HIV-1 on Sphingosine-1-phosphate (S1P) signaling, which governs the egress of functional naïve thymocytes from the thymus to the periphery. Using in vitro experiments with primary human thymocytes and in vivo and ex vivo studies with humanized mice, we show that HIV-1 infection results in upregulation of the expression of S1P receptor 1 (S1PR1) in the human thymus. Intriguingly, this upregulation occurs during intrathymic infection (direct infection of the human thymic implant) as well as systemic infection in humanized mice. Moreover, considering the dysregulation of pro- and anti-inflammatory cytokines in infected thymi, the increased expression of S1PR1 in response to in vitro exposure to Interferon-Beta (IFN-β) and Tumor Necrosis Factor-Alpha (TNF-α) indicates that cytokine dysregulation following HIV infection may contribute to upregulation of S1PR1. Finally, an increased presence of CD3hiCD69- (fully mature) as well as CD3hiCD69+ (less mature) T cells in the spleen during HIV infection in humanized mice, combined with earlier expression of S1PR1 during thymocyte development, suggests that upregulation of S1PR1 may translate to increased or accelerated egress from the thymus. The egress of thymocytes that are not functionally mature from the thymus to peripheral blood and lymphoid organs may have implications for the immune function of PLWH.
Collapse
Affiliation(s)
- Rachel S. Resop
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA; (R.S.R.); (B.S.); (S.J.K.)
- UCLA AIDS Institute and Center for AIDS Research, University of California, Los Angeles, CA 90095, USA;
| | - Bradley Salvatore
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA; (R.S.R.); (B.S.); (S.J.K.)
| | - Shawn J. Kim
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA; (R.S.R.); (B.S.); (S.J.K.)
| | - Brent R. Gordon
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA; (R.S.R.); (B.S.); (S.J.K.)
| | - Bianca Blom
- Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands;
| | - Dimitrios N. Vatakis
- UCLA AIDS Institute and Center for AIDS Research, University of California, Los Angeles, CA 90095, USA;
- Department of Medicine, Division of Hematology-Oncology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Christel H. Uittenbogaart
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA; (R.S.R.); (B.S.); (S.J.K.)
- UCLA AIDS Institute and Center for AIDS Research, University of California, Los Angeles, CA 90095, USA;
- Department of Pediatrics, David Geffen School of Medicine at UCLA, University of California, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
9
|
Pioli KT, Lau KH, Pioli PD. Thymus antibody-secreting cells possess an interferon gene signature and are preferentially expanded in young female mice. iScience 2023; 26:106223. [PMID: 36890795 PMCID: PMC9986522 DOI: 10.1016/j.isci.2023.106223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 01/05/2023] [Accepted: 02/11/2023] [Indexed: 02/17/2023] Open
Abstract
Antibody-secreting cells (ASCs) are key contributors to humoral immunity through immunoglobulin production and the potential to be long-lived. ASC persistence has been recognized in the autoimmune thymus (THY); however, only recently has this population been appreciated in healthy THY tissue. We showed that the young female THY was skewed toward higher production of ASCs relative to males. However, these differences disappeared with age. In both sexes, THY ASCs included Ki-67+ plasmablasts which required CD154(CD40L) signals for their propagation. Single cell RNA-sequencing revealed that THY ASCs were enriched for an interferon responsive transcriptional signature relative to those from bone marrow and spleen. Flow cytometry confirmed that THY ASCs had increased levels of Toll-like receptor 7 as well as CD69 and major histocompatibility complex class II. Overall, we identified fundamental aspects of THY ASC biology which may be leveraged for future in depth studies of this population in both health and disease.
Collapse
Affiliation(s)
- KimAnh T. Pioli
- Department of Biochemistry, Microbiology and Immunology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N5E5, Canada
| | - Kin H. Lau
- Bioinformatics and Biostatistics Core, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Peter D. Pioli
- Department of Biochemistry, Microbiology and Immunology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N5E5, Canada
| |
Collapse
|
10
|
Narula P, Kiruthika S, Chowdhari S, Vivekanandan P, Chugh A. Inhibition of Hepatitis B Virus (HBV) by Tachyplesin, a Marine Antimicrobial Cell-Penetrating Peptide. Pharmaceutics 2023; 15:pharmaceutics15020672. [PMID: 36839994 PMCID: PMC9962029 DOI: 10.3390/pharmaceutics15020672] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/05/2022] [Accepted: 02/14/2023] [Indexed: 02/19/2023] Open
Abstract
We investigate the role of Tachyplesin (Tpl), a marine antimicrobial cell-penetrating peptide, as an anti-HBV agent. Our findings, using confocal microscopy and flow cytometry, demonstrate the internalization of FITC-Tpl in both Huh7 and HepG2 cell lines. Further, our results show that Tpl inhibits the expression of HBV proteins, including hepatitis B surface antigen (HBsAg) and hepatitis B 'e' antigen (HBeAg) in cell supernatants of human liver cell lines transfected with 1.3× pHBV. Interestingly Tpl also reduces levels of HBV pre-core RNA and HBV pregenomic RNA, suggesting that Tpl-mediated inhibition occurs at the early stages of HBV replication, including viral transcription. In addition, Tpl led to a significant reduction in levels of hepatitis B virion secretion. In sum, here we demonstrate the potent anti-HBV activity of Tpl at non-cytotoxic concentrations indicating the potential of Tpl to emerge as an effective therapeutic peptide against HBV.
Collapse
|
11
|
NS2 is a key determinant of compatibility in reassortant avian influenza virus with heterologous H7N9-derived NS segment. Virus Res 2023; 324:199028. [PMID: 36572153 DOI: 10.1016/j.virusres.2022.199028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/30/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022]
Abstract
Influenza A viruses are common pathogens with high prevalence worldwide and potential for pandemic spread. While influenza A infections typically elicit robust cellular innate immune responses, the non-structural protein 1 (NS1) antagonizes host anti-viral responses and is critical for efficient virus replication and virulence. The avian influenza virus (AIV) H7N9 initially emerged in China in 2013 and has since crossed the avian-human barrier, causing severe disease in humans. To investigate the influence of the H7N9 NS gene (NS079) on viral replication and innate immune response, we generated several recombinant AIVs bearing various NS079 segments on the backbone of H6N1 (strain 0702). Intriguingly, the recombinant virus bearing the heterologous NS079 gene was highly attenuated compared with virus carrying the homologous NS gene (NS0702). Furthermore, we generated a NS079-0702R virus that expresses a chimeric NS gene in which part of the NS079 effector domain was replaced with the sequence from NS0702. The NS079-0702R virus exhibited significantly enhanced viral yield, approximately 100-fold more than virus bearing NS079. The high infection rate of NS079-0702R virus was reflected by strong induction of IFN and Mx expression in human A549 cells. Intriguingly, our in vitro comparative analysis suggested that the increased NS079-0702R infection capacity was independent of the ability of NS1 to interact with cellular partners, such as PKR and CPSF30. Since partial substitution of the effector domain from NS0702 altered the coding sequence of NS2, we further generated another recombinant virus with NS2 derived from H7N9. Surprisingly, the virus with H7N9-derived NS2 exhibited growth characteristics similar to NS079. Our data demonstrate that swapping NS2 components changes infection efficiency, suggesting a key role for NS2 as a determinant of viral compatibility upon reassortment. These findings warrant further investigation into the precise mechanisms by which NS2 contributes to viral replication and host immunity.1.
Collapse
|
12
|
Salvatore B, Resop RS, Gordon BR, Epeldegui M, Martinez-Maza O, Comin-Anduix B, Lam A, Wu TT, Uittenbogaart CH. Characterization of T Follicular Helper Cells and T Follicular Regulatory Cells in HIV-Infected and Sero-Negative Individuals. Cells 2023; 12:cells12020296. [PMID: 36672230 PMCID: PMC9856637 DOI: 10.3390/cells12020296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 01/03/2023] [Accepted: 01/08/2023] [Indexed: 01/13/2023] Open
Abstract
Humoral immune response is important in fighting pathogens by the production of specific antibodies by B cells. In germinal centers, T follicular helper (TFH) cells provide important help to B-cell antibody production but also contribute to HIV persistence. T follicular regulatory (TFR) cells, which inhibit the function of TFH cells, express similar surface markers. Since FOXP3 is the only marker that distinguishes TFR from TFH cells it is unknown whether the increase in TFH cells observed in HIV infection and HIV persistence may be partly due to an increase in TFR cells. Using multicolor flow cytometry to detect TFH and TFR cells in cryopreserved peripheral blood mononuclear cells from HIV-infected and non-infected participants in the UCLA Multicenter AIDS Cohort Study (MACS), we identified CD3+CXCR5+CD4+CD8-BCL6+ peripheral blood TFH (pTFH) cells and CD3+CXCR5+CD4+CD8-FOXP3+ peripheral blood TFR (pTFR) cells. Unlike TFR cells in germinal centers, pTFR cells do not express B cell lymphoma 6 (BCL6), a TFH cell master transcriptional regulator. Our major findings are that the frequency of pTFH cells, but not pTFR cells was higher in HIV-infected participants of the MACS and that pTFH cells expressed less CCR5 in HIV-infected MACS participants. Constitutive expression of CCR5 in TFR cells supports their potential to contribute to HIV persistence.
Collapse
Affiliation(s)
- Bradley Salvatore
- Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Rachel S. Resop
- Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles (UCLA), Los Angeles, CA 90095, USA
- UCLA AIDS Institute, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Brent R. Gordon
- Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles (UCLA), Los Angeles, CA 90095, USA
- UCLA AIDS Institute, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Marta Epeldegui
- UCLA AIDS Institute, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA 90095, USA
- Department of Obstetrics and Gynecology, University of California Los Angeles (UCLA), Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center (JCCC), University of California Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Otoniel Martinez-Maza
- UCLA AIDS Institute, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA 90095, USA
- Department of Obstetrics and Gynecology, University of California Los Angeles (UCLA), Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center (JCCC), University of California Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Begoña Comin-Anduix
- Jonsson Comprehensive Cancer Center (JCCC), University of California Los Angeles (UCLA), Los Angeles, CA 90095, USA
- Department of Surgical-Oncology, University of California Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Alex Lam
- Department of Molecular Pharmacology, University of California Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Ting-Ting Wu
- UCLA AIDS Institute, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center (JCCC), University of California Los Angeles (UCLA), Los Angeles, CA 90095, USA
- Department of Molecular Pharmacology, University of California Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Christel H. Uittenbogaart
- Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles (UCLA), Los Angeles, CA 90095, USA
- UCLA AIDS Institute, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center (JCCC), University of California Los Angeles (UCLA), Los Angeles, CA 90095, USA
- Department of Pediatrics, University of California Los Angeles (UCLA), Los Angeles, CA 90095, USA
- Correspondence:
| |
Collapse
|
13
|
Pioli KT, Pioli PD. Thymus antibody-secreting cells: once forgotten but not lost. Front Immunol 2023; 14:1170438. [PMID: 37122712 PMCID: PMC10130419 DOI: 10.3389/fimmu.2023.1170438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 03/28/2023] [Indexed: 05/02/2023] Open
Abstract
Antibody-secreting cells are essential contributors to the humoral response. This is due to multiple factors which include: 1) the ability to secrete thousands of antibodies per second, 2) the ability to regulate the immune response and 3) the potential to be long-lived. Not surprisingly, these cells can be found in numerous sites within the body which include organs that directly interface with potential pathogens (e.g., gut) and others that provide long-term survival niches (e.g., bone marrow). Even though antibody-secreting cells were first identified in the thymus of both humans and rodents in the 1960s, if not earlier, only recently has this population begun to be extensively investigated. In this article, we provide an update regarding the current breath of knowledge pertaining to thymus antibody-secreting cells and discuss the potential roles of these cells and their impact on health.
Collapse
|
14
|
Helicobacter pylori Infection Elicits Type I Interferon Response in Human Monocytes via Toll-Like Receptor 8 Signaling. J Immunol Res 2022; 2022:3861518. [PMID: 36317079 PMCID: PMC9617731 DOI: 10.1155/2022/3861518] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 09/12/2022] [Accepted: 10/07/2022] [Indexed: 11/22/2022] Open
Abstract
Helicobacter pylori colonization and persistence could precede gastric adenocarcinoma. Elucidating immune recognition strategies of H. pylori is therefore imperative to curb chronic persistence in the human host. Toll-like receptor 7 (TLR7) and TLR8 are widely known as viral single-stranded RNA (ssRNA) sensors yet less studied in the bacteria context. Here, we investigated the involvement of these receptors in the immunity to H. pylori. Human THP-1 monocytic cells were infected with H. pylori, and the expression levels of human Toll-like receptors (TLRs) were examined. The roles of TLR7 and TLR8 in response to H. pylori infection were further investigated using receptor antagonists. Among all TLR transcripts examined, TLR8 exhibited the most prominent upregulation, followed by TLR7 in the THP-1 cells infected with H. pylori J99 or SS1 strains. H. pylori infection-mediated IFN-α and IFN-β transactivation was significantly abrogated by the TLR7/8 (but not TLR7) antagonist. Additionally, TLR7/8 antagonist treatment reduced H. pylori infection-mediated phosphorylation of interferon regulatory factor 7 (IRF7). Our study suggests a novel role of TLR8 signaling in host immunity against H. pylori through sensing live bacteria to elicit the production of type I interferon.
Collapse
|
15
|
Gu W, Madrid DMC, Joyce S, Driver JP. A single-cell analysis of thymopoiesis and thymic iNKT cell development in pigs. Cell Rep 2022; 40:111050. [PMID: 35793622 PMCID: PMC9704770 DOI: 10.1016/j.celrep.2022.111050] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 04/26/2022] [Accepted: 06/13/2022] [Indexed: 12/13/2022] Open
Abstract
Many aspects of the porcine immune system remain poorly characterized, which poses a barrier to improving swine health and utilizing pigs as preclinical models. Here, we employ single-cell RNA sequencing (scRNA-seq) to create a cell atlas of the early-adolescent pig thymus. Our data show conserved features as well as species-specific differences in cell states and cell types compared with human thymocytes. We also describe several unconventional T cell types with gene expression profiles associated with innate effector functions. This includes a cell census of more than 11,000 differentiating invariant natural killer T (iNKT) cells, which reveals that the functional diversity of pig iNKT cells differs substantially from the iNKT0/1/2/17 subset differentiation paradigm established in mice. Our data characterize key differentiation events in porcine thymopoiesis and iNKT cell maturation and provide important insights into pig T cell development.
Collapse
Affiliation(s)
- Weihong Gu
- Department of Animal Sciences, University of Florida, Gainesville, FL 32611, USA
| | | | - Sebastian Joyce
- Department of Veterans Affairs, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Institution for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - John P Driver
- Department of Animal Sciences, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
16
|
Wilkinson C, Kyle J, Irimpen M, Stuart S, Mohandass S, Sheperd A, Smith KJ, Mullin MJ. Improved yield of recombinant human IFN-α2b from mammalian cells using heterologous signal peptide approach. Protein Expr Purif 2022; 198:106125. [PMID: 35659600 DOI: 10.1016/j.pep.2022.106125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/27/2022] [Accepted: 05/28/2022] [Indexed: 10/18/2022]
Abstract
The Type I Interferon cytokine family member, Interferon-α2b (hIFN-α2b), modulates a number of important biological mechanisms including anti-proliferation, immunoregulation and antiviral responses. Due to its role in the immune system, hIFN-α2b has been used as a therapeutic modulator in hepatitis C as well as some forms of leukaemia. Clinical grade hIFN-α2b is typically produced in bacterial expression systems that involves complex refolding protocols and subsequent loss of yields. In this study, we describe an expression and purification system for hIFN-α2b from mammalian cells. Application of the Trypsin-1 signal peptide-propeptide domain significantly improved the expression and secretion of hIFN-α2b from HEK293 cells. We established a simple purification strategy that yields homogenous, pure hIFN-α2b that is stable and biologically active.
Collapse
Affiliation(s)
- Claire Wilkinson
- Protein Technologies Group, UK; Department of Protein & Cellular Sciences, UK
| | - Jacob Kyle
- Protein Technologies Group, UK; Department of Protein & Cellular Sciences, UK
| | - Meghna Irimpen
- Protein Production & Purification, UK; Department of Protein & Cellular Sciences, UK
| | - Sarah Stuart
- High-throughput Characterisation, Biopharm, GlaxoSmithKline Research & Development, Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2NY, UK
| | - Shylaja Mohandass
- High-throughput Characterisation, Biopharm, GlaxoSmithKline Research & Development, Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2NY, UK
| | | | | | - Michael J Mullin
- Protein Technologies Group, UK; Department of Protein & Cellular Sciences, UK.
| |
Collapse
|
17
|
Andolfo I, Russo R, Lasorsa VA, Cantalupo S, Rosato BE, Bonfiglio F, Frisso G, Abete P, Cassese GM, Servillo G, Esposito G, Gentile I, Piscopo C, Villani R, Fiorentino G, Cerino P, Buonerba C, Pierri B, Zollo M, Iolascon A, Capasso M. Common variants at 21q22.3 locus influence MX1 and TMPRSS2 gene expression and susceptibility to severe COVID-19. iScience 2021; 24:102322. [PMID: 33748697 PMCID: PMC7968217 DOI: 10.1016/j.isci.2021.102322] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/15/2021] [Accepted: 03/15/2021] [Indexed: 12/15/2022] Open
Abstract
The established risk factors of coronavirus disease 2019 (COVID-19) are advanced age, male sex, and comorbidities, but they do not fully explain the wide spectrum of disease manifestations. Genetic factors implicated in the host antiviral response provide for novel insights into its pathogenesis. We performed an in-depth genetic analysis of chromosome 21 exploiting the genome-wide association study data, including 6,406 individuals hospitalized for COVID-19 and 902,088 controls with European genetic ancestry from the COVID-19 Host Genetics Initiative. We found that five single nucleotide polymorphisms within TMPRSS2 and near MX1 gene show associations with severe COVID-19. The minor alleles of the five single nucleotide polymorphisms (SNPs) correlated with a reduced risk of developing severe COVID-19 and high level of MX1 expression in blood. Our findings demonstrate that host genetic factors can influence the different clinical presentations of COVID-19 and that MX1 could be a potential therapeutic target.
Collapse
Affiliation(s)
- Immacolata Andolfo
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples, Federico II, 80145 Naples, Italy
- CEINGE Biotecnologie Avanzate, Via Gaetano Salvatore, 486, 80145 Napoli, Italy
| | - Roberta Russo
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples, Federico II, 80145 Naples, Italy
- CEINGE Biotecnologie Avanzate, Via Gaetano Salvatore, 486, 80145 Napoli, Italy
| | - Vito Alessandro Lasorsa
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples, Federico II, 80145 Naples, Italy
- CEINGE Biotecnologie Avanzate, Via Gaetano Salvatore, 486, 80145 Napoli, Italy
| | - Sueva Cantalupo
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples, Federico II, 80145 Naples, Italy
- CEINGE Biotecnologie Avanzate, Via Gaetano Salvatore, 486, 80145 Napoli, Italy
| | - Barbara Eleni Rosato
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples, Federico II, 80145 Naples, Italy
- CEINGE Biotecnologie Avanzate, Via Gaetano Salvatore, 486, 80145 Napoli, Italy
| | - Ferdinando Bonfiglio
- Dipartimento di Ingegneria chimica, dei Materiali e della Produzione industriale, Università degli Studi di Napoli Federico II, Napoli, Italy
| | - Giulia Frisso
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples, Federico II, 80145 Naples, Italy
- CEINGE Biotecnologie Avanzate, Via Gaetano Salvatore, 486, 80145 Napoli, Italy
| | - Pasquale Abete
- COVID Hospital, P.O.S. Anna e SS. Madonna della Neve di Boscotrecase, Ospedali Riuniti Area Vesuviana, Napoli, Italy
| | - Gian Marco Cassese
- COVID Hospital, P.O.S. Anna e SS. Madonna della Neve di Boscotrecase, Ospedali Riuniti Area Vesuviana, Napoli, Italy
| | - Giuseppe Servillo
- Dipartimento di Neuroscienze e Scienze riproduttive ed odontostomatologiche, Università degli Studi di Napoli Federico II, Napoli, Italy
| | - Gabriella Esposito
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples, Federico II, 80145 Naples, Italy
- CEINGE Biotecnologie Avanzate, Via Gaetano Salvatore, 486, 80145 Napoli, Italy
| | - Ivan Gentile
- Dipartimento di Medicina clinica e Chirurgia, Università degli Studi di Napoli Federico II, Napoli, Italy
| | - Carmelo Piscopo
- Medical and Laboratory Genetics Unit, A.O.R.N. ‘Antonio Cardarelli’, Napoli, Italy
| | - Romolo Villani
- Poison Centre, A.O.R.N. ‘Antonio Cardarelli’, Napoli, Italy
| | | | - Pellegrino Cerino
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Napoli, Italy
| | - Carlo Buonerba
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Napoli, Italy
| | - Biancamaria Pierri
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Napoli, Italy
- Dipartimento di Medicina, Chirurgia e Odontoiatria "Scuola Medica Salernitana", Università di Salerno, Baronissi, Italy
| | - Massimo Zollo
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples, Federico II, 80145 Naples, Italy
- CEINGE Biotecnologie Avanzate, Via Gaetano Salvatore, 486, 80145 Napoli, Italy
| | - Achille Iolascon
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples, Federico II, 80145 Naples, Italy
- CEINGE Biotecnologie Avanzate, Via Gaetano Salvatore, 486, 80145 Napoli, Italy
| | - Mario Capasso
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples, Federico II, 80145 Naples, Italy
- CEINGE Biotecnologie Avanzate, Via Gaetano Salvatore, 486, 80145 Napoli, Italy
| |
Collapse
|
18
|
Laan M, Salumets A, Klein A, Reintamm K, Bichele R, Peterson H, Peterson P. Post-Aire Medullary Thymic Epithelial Cells and Hassall's Corpuscles as Inducers of Tonic Pro-Inflammatory Microenvironment. Front Immunol 2021; 12:635569. [PMID: 33868260 PMCID: PMC8050345 DOI: 10.3389/fimmu.2021.635569] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/05/2021] [Indexed: 11/13/2022] Open
Abstract
While there is convincing evidence on the role of Aire-positive medullary thymic epithelial cells (mTEC) in the induction of central tolerance, the nature and function of post-Aire mTECs and Hassall's corpuscles have remained enigmatic. Here we summarize the existing data on these late stages of mTEC differentiation with special focus on their potential to contribute to central tolerance induction by triggering the unique pro-inflammatory microenvironment in the thymus. In order to complement the existing evidence that has been obtained from mouse models, we performed proteomic analysis on microdissected samples from human thymic medullary areas at different differentiation stages. The analysis confirms that at the post-Aire stages, the mTECs lose their nuclei but maintain machinery required for translation and exocytosis and also upregulate proteins specific to keratinocyte differentiation and cornification. In addition, at the late stages of differentiation, the human mTECs display a distinct pro-inflammatory signature, including upregulation of the potent endogenous TLR4 agonist S100A8/S100A9. Collectively, the study suggests a novel mechanism by which the post-Aire mTECs and Hassall's corpuscles contribute to the thymic microenvironment with potential cues on the induction of central tolerance.
Collapse
Affiliation(s)
- Martti Laan
- Molecular Pathology Research Group, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Ahto Salumets
- Molecular Pathology Research Group, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
- Institute of Computer Science, Faculty of Science and Technology, University of Tartu, Tartu, Estonia
| | - Annabel Klein
- Molecular Pathology Research Group, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Kerli Reintamm
- Molecular Pathology Research Group, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Rudolf Bichele
- Molecular Pathology Research Group, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Hedi Peterson
- Institute of Computer Science, Faculty of Science and Technology, University of Tartu, Tartu, Estonia
| | - Pärt Peterson
- Molecular Pathology Research Group, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| |
Collapse
|
19
|
Li Y, Kong W, Yang W, Patel RM, Casey EB, Okeyo-Owuor T, White JM, Porter SN, Morris SA, Magee JA. Single-Cell Analysis of Neonatal HSC Ontogeny Reveals Gradual and Uncoordinated Transcriptional Reprogramming that Begins before Birth. Cell Stem Cell 2020; 27:732-747.e7. [PMID: 32822583 PMCID: PMC7655695 DOI: 10.1016/j.stem.2020.08.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 06/21/2020] [Accepted: 07/31/2020] [Indexed: 12/14/2022]
Abstract
Fetal and adult hematopoietic stem cells (HSCs) have distinct proliferation rates, lineage biases, gene expression profiles, and gene dependencies. Although these differences are widely recognized, it is not clear how the transition from fetal to adult identity is coordinated. Here we show that murine HSCs and committed hematopoietic progenitor cells (HPCs) undergo a gradual, rather than precipitous, transition from fetal to adult transcriptional states. The transition begins prior to birth and is punctuated by a late prenatal spike in type I interferon signaling that promotes perinatal HPC expansion and sensitizes progenitors to the leukemogenic FLT3ITD mutation. Most other changes in gene expression and enhancer activation are imprecisely timed and poorly coordinated. Thus, heterochronic enhancer elements, and their associated transcripts, are activated independently of one another rather than as part of a robust network. This simplifies the regulatory programs that guide neonatal HSC/HPC ontogeny, but it creates heterogeneity within these populations.
Collapse
Affiliation(s)
- Yanan Li
- Department of Pediatrics, Division of Hematology and Oncology, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Wenjun Kong
- Department of Genetics, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA; Department of Developmental Biology, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA; Center of Regenerative Medicine, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Wei Yang
- Department of Genetics, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Riddhi M Patel
- Department of Pediatrics, Division of Hematology and Oncology, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Emily B Casey
- Department of Pediatrics, Division of Hematology and Oncology, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Theresa Okeyo-Owuor
- Department of Pediatrics, Division of Hematology and Oncology, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - J Michael White
- Department of Pathology and Immunobiology, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Shaina N Porter
- Department of Pediatrics, Division of Hematology and Oncology, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Samantha A Morris
- Department of Genetics, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA; Department of Developmental Biology, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA; Center of Regenerative Medicine, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA.
| | - Jeffrey A Magee
- Department of Pediatrics, Division of Hematology and Oncology, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA; Department of Genetics, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA.
| |
Collapse
|
20
|
Wang J, Sekai M, Matsui T, Fujii Y, Matsumoto M, Takeuchi O, Minato N, Hamazaki Y. Hassall’s corpuscles with cellular-senescence features maintain IFNα production through neutrophils and pDC activation in the thymus. Int Immunol 2018; 31:127-139. [PMID: 30534943 PMCID: PMC9271218 DOI: 10.1093/intimm/dxy073] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 11/17/2018] [Indexed: 11/14/2022] Open
Abstract
Hassall’s corpuscles (HCs) are composed of cornifying, terminally differentiated medullary thymic epithelial cells (mTECs) that are developed under the control of Aire. Here, we demonstrated that HC-mTECs show features of cellular senescence and produce inflammatory cytokines and chemokines including CXCL5, thereby recruiting and activating neutrophils to produce IL-23 in the thymic medulla. We further indicated that thymic plasmacytoid dendritic cells (pDCs) expressing IL-23 receptors constitutively produced Ifna, which plays a role in single positive (SP) cell maturation, in an Il23a-dependent manner. Neutrophil depletion with anti-Ly6G antibody injection resulted in a significant decrease of Ifna expression in the thymic pDCs, suggesting that thymic neutrophil activation underlies the Ifna expression in thymic pDCs in steady state conditions. A New Zealand White mouse strain showing HC hyperplasia exhibited greater numbers and activation of thymic neutrophils and pDCs than B6 mice, whereas Aire-deficient B6 mice with defective HC development and SP thymocyte maturation showed significantly compromised numbers and activation of these cells. These results collectively suggested that HC-mTECs with cell-senescence features initiate a unique cell activation cascade including neutrophils and pDCs leading to the constitutive IFNα expression required for SP T-cell maturation in the thymic medulla.
Collapse
Affiliation(s)
- Jianwei Wang
- Department of Immunology and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Laboratory of Immunobiology, Graduate School of Medicine, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, Japan
| | - Miho Sekai
- Department of Immunology and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Laboratory of Immunobiology, Graduate School of Medicine, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, Japan
| | - Takeshi Matsui
- Laboratory for Skin Homeostasis, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Kanagawa, Japan
| | - Yosuke Fujii
- Department of Immunology and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Mitsuru Matsumoto
- Division of Molecular Immunology, Institute for Enzyme Research, Tokushima University, Tokushima, Japan
| | - Osamu Takeuchi
- Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Nagahiro Minato
- Department of Immunology and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yoko Hamazaki
- Department of Immunology and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Laboratory of Immunobiology, Graduate School of Medicine, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, Japan
| |
Collapse
|
21
|
Nakahama T, Kato Y, Kim JI, Vongpipatana T, Suzuki Y, Walkley CR, Kawahara Y. ADAR1-mediated RNA editing is required for thymic self-tolerance and inhibition of autoimmunity. EMBO Rep 2018; 19:embr.201846303. [PMID: 30361393 DOI: 10.15252/embr.201846303] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 09/21/2018] [Accepted: 09/28/2018] [Indexed: 12/13/2022] Open
Abstract
T cells play a crucial role in the adaptive immune system, and their maturation process is tightly regulated. Adenosine deaminase acting on RNA 1 (ADAR1) is the enzyme responsible for adenosine-to-inosine RNA editing in dsRNAs, and loss of ADAR1 activates the innate immune sensing response via melanoma differentiation-associated protein 5 (MDA5), which interprets unedited dsRNA as non-self. Although ADAR1 is highly expressed in the thymus, its role in the adaptive immune system, especially in T cells, remains elusive. Here, we demonstrate that T cell-specific deletion of Adar1 in mice causes abnormal thymic T cell maturation including impaired negative selection and autoimmunity such as spontaneous colitis. This is caused by excessive expression of interferon-stimulated genes, which reduces T cell receptor (TCR) signal transduction, due to a failure of RNA editing in ADAR1-deficient thymocytes. Intriguingly, concurrent deletion of MDA5 restores thymocyte maturation and prevents colitis. These findings suggest that prevention of MDA5 sensing of endogenous dsRNA by ADAR1-mediated RNA editing is required for preventing both innate immune responses and T cell-mediated autoimmunity.
Collapse
Affiliation(s)
- Taisuke Nakahama
- Department of RNA Biology and Neuroscience, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Yuki Kato
- Department of RNA Biology and Neuroscience, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Jung In Kim
- Department of RNA Biology and Neuroscience, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Tuangtong Vongpipatana
- Department of RNA Biology and Neuroscience, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Yutaka Suzuki
- Laboratory of Systems Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Carl R Walkley
- St Vincent's Institute and Department of Medicine, St. Vincent's Hospital, University of Melbourne, Fitzroy, Vic., Australia
| | - Yukio Kawahara
- Department of RNA Biology and Neuroscience, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
22
|
Hussein HAM, Akula SM. miRNA-36 inhibits KSHV, EBV, HSV-2 infection of cells via stifling expression of interferon induced transmembrane protein 1 (IFITM1). Sci Rep 2017; 7:17972. [PMID: 29269892 PMCID: PMC5740118 DOI: 10.1038/s41598-017-18225-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 12/07/2017] [Indexed: 02/08/2023] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is etiologically associated with all forms of Kaposi's sarcoma worldwide. Little is currently known about the role of microRNAs (miRNAs) in KSHV entry. We recently demonstrated that KSHV induces a plethora of host cell miRNAs during the early stages of infection. In this study, we show the ability of host cell novel miR-36 to specifically inhibit KSHV-induced expression of interferon induced transmembrane protein 1 (IFITM1) to limit virus infection of cells. Transfecting cells with miR-36 mimic specifically lowered IFITM1 expression and thereby significantly dampening KSHV infection. In contrast, inhibition of miR-36 using miR-36 inhibitor had the direct opposite effect on KSHV infection of cells, allowing enhanced viral infection of cells. The effect of miR-36 on KSHV infection of cells was at a post-binding stage of virus entry. The highlight of this work was in deciphering a common theme in the ability of miR-36 to regulate infection of closely related DNA viruses: KSHV, Epstein-Barr virus (EBV), and herpes simplexvirus-2 (HSV-2). Taken together, we report for the first time the ability of host cell miRNA to regulate internalization of KSHV, EBV, and HSV-2 in hematopoietic and endothelial cells.
Collapse
Affiliation(s)
- Hosni A M Hussein
- Department of Microbiology & Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, 27834, USA
| | - Shaw M Akula
- Department of Microbiology & Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, 27834, USA.
| |
Collapse
|
23
|
Ansari AR, Liu H. Acute Thymic Involution and Mechanisms for Recovery. Arch Immunol Ther Exp (Warsz) 2017; 65:401-420. [PMID: 28331940 DOI: 10.1007/s00005-017-0462-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 03/12/2017] [Indexed: 12/14/2022]
Abstract
Acute thymic involution (ATI) is usually regarded as a virulence trait. It is caused by several infectious agents (bacteria, viruses, parasites, fungi) and other factors, including stress, pregnancy, malnutrition and chemotherapy. However, the complex mechanisms that operate during ATI differ substantially from each other depending on the causative agent. For instance, a transient reduction in the size and weight of the thymus and depletion of populations of T cell subsets are hallmarks of ATI in many cases, whereas severe disruption of the anatomical structure of the organ is also associated with some factors, including fungal, parasitic and viral infections. However, growing evidence shows that ATI may be therapeutically halted or reversed. In this review, we highlight the current progress in this field with respect to numerous pathological factors and discuss the possible mechanisms. Moreover, these new observations also show that ATI can be mechanistically reversed.
Collapse
Affiliation(s)
- Abdur Rahman Ansari
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, 430070, Wuhan, Hubei, China.,Section of Anatomy and Histology, Department of Basic Sciences, College of Veterinary and Animal Sciences (CVAS), Jhang, Pakistan.,University of Veterinary and Animal Sciences (UVAS), Lahore, Pakistan
| | - Huazhen Liu
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, 430070, Wuhan, Hubei, China.
| |
Collapse
|
24
|
Resop RS, Douaisi M, Craft J, Jachimowski LCM, Blom B, Uittenbogaart CH. Sphingosine-1-phosphate/sphingosine-1-phosphate receptor 1 signaling is required for migration of naive human T cells from the thymus to the periphery. J Allergy Clin Immunol 2016; 138:551-557.e8. [PMID: 27056271 PMCID: PMC7007110 DOI: 10.1016/j.jaci.2015.12.1339] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 12/04/2015] [Accepted: 12/16/2015] [Indexed: 01/09/2023]
Abstract
BACKGROUND The mechanisms that govern the egress of mature thymocytes from the human thymus to the periphery remain understudied yet are of utmost importance to the field of basic immunology, as well as T-cell reconstitution in various immunodeficiencies. We examined the expression and function of sphingosine-1-phosphate (S1P) receptors in human thymocyte egress. OBJECTIVES We aimed to determine whether S1P receptors (S1P-Rs) play a role in mature human thymocyte egress and to identify the thymocyte population or populations that express S1P-Rs and respond to S1P by migrating across a concentration gradient. METHODS Human thymocytes were exposed to S1P in Transwell plate migration assays coupled to flow cytometry to evaluate the response to S1P of thymocytes at different stages of maturation. Constitutive S1P-R expression was quantified by means of real-time PCR in sorted thymocyte subsets and flow cytometry. S1P-R1 and Kruppel-like factor 2 expression were monitored after S1P exposure by using flow cytometry and quantitative PCR. RESULTS S1P-R1 was the prevalent S1P receptor on mature human thymocytes (CD3(hi)CD27(+)CD69(-)), the population that also demonstrated the greatest response to S1P in migration assays. Pretreatment with FTY720, an S1P-R1 nonselective modulator significantly reduced migration and suggested a role for S1P-R2 in retaining thymocytes in the tissue. Lastly, surface S1P-R1 expression, as well S1PR1 and Kruppel-like factor 2 (KLF2) transcripts, were significantly decreased in mature thymocytes on exposure to S1P. CONCLUSION Mature human thymocytes rely on S1P-R1 to migrate toward S1P. Taken in the context of murine work demonstrating that S1P is required for thymocyte egress to the periphery, our data highlight a new key chemokine for human thymocyte egress.
Collapse
Affiliation(s)
- Rachel S Resop
- Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, Calif; UCLA AIDS Institute, David Geffen School of Medicine at UCLA, University of California, Los Angeles, Calif
| | - Marc Douaisi
- Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, Calif
| | - Joshua Craft
- Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, Calif
| | | | - Bianca Blom
- Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Christel H Uittenbogaart
- Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, Calif; Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; UCLA AIDS Institute, David Geffen School of Medicine at UCLA, University of California, Los Angeles, Calif; Department of Pediatrics, University of California Los Angeles, Amsterdam, The Netherlands.
| |
Collapse
|
25
|
Thymic and Postthymic Regulation of Naïve CD4(+) T-Cell Lineage Fates in Humans and Mice Models. Mediators Inflamm 2016; 2016:9523628. [PMID: 27313405 PMCID: PMC4904118 DOI: 10.1155/2016/9523628] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 04/28/2016] [Indexed: 12/14/2022] Open
Abstract
Our understanding of how thymocytes differentiate into many subtypes has been increased progressively in its complexity. At early life, the thymus provides a suitable microenvironment with specific combination of stromal cells, growth factors, cytokines, and chemokines to induce the bone marrow lymphoid progenitor T-cell precursors into single-positive CD4+ and CD8+ T effectors and CD4+CD25+ T-regulatory cells (Tregs). At postthymic compartments, the CD4+ T-cells acquire distinct phenotypes which include the classical T-helper 1 (Th1), T-helper 2 (Th2), T-helper 9 (Th9), T-helper 17 (Th17), follicular helper T-cell (Tfh), and induced T-regulatory cells (iTregs), such as the regulatory type 1 cells (Tr1) and transforming growth factor-β- (TGF-β-) producing CD4+ T-cells (Th3). Tregs represent only a small fraction, 5–10% in mice and 1-2% in humans, of the overall CD4+ T-cells in lymphoid tissues but are essential for immunoregulatory circuits mediating the inhibition and expansion of all lineages of T-cells. In this paper, we first provide an overview of the major cell-intrinsic developmental programs that regulate T-cell lineage fates in thymus and periphery. Next, we introduce the SV40 immortomouse as a relevant mice model for implementation of new approaches to investigate thymus organogenesis, CD4 and CD8 development, and thymus cells tumorogenesis.
Collapse
|
26
|
Type I interferons regulate eomesodermin expression and the development of unconventional memory CD8(+) T cells. Nat Commun 2015; 6:7089. [PMID: 25953241 PMCID: PMC4432629 DOI: 10.1038/ncomms8089] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 04/01/2015] [Indexed: 12/24/2022] Open
Abstract
CD8(+) T-cell memory phenotype and function are acquired after antigen-driven activation. Memory-like cells may also arise in absence of antigenic exposure in the thymus or in the periphery. Eomesodermin (Eomes) is a key transcription factor for the development of these unconventional memory cells. Herein, we show that type I interferon signalling in CD8(+) T cells directly activates Eomes gene expression. Consistent with this observation, the phenotype, function and age-dependent expansion of 'virtual memory' CD8(+) T cells are strongly affected in absence of type I interferon signalling. In addition, type I interferons induce a sustained expansion of 'virtual memory' CD8(+) T cells in an Eomes-dependent fashion. We further show that the development of 'innate thymic' CD8(+) T cells is dependent on the same pathway. In conclusion, we demonstrate that type I interferon signalling in CD8(+) T cells drives Eomes expression and thereby regulates the function and homeostasis of memory-like CD8(+) T cells.
Collapse
|
27
|
Epeldegui M, Blom B, Uittenbogaart CH. BST2/Tetherin is constitutively expressed on human thymocytes with the phenotype and function of Treg cells. Eur J Immunol 2014; 45:728-37. [PMID: 25408362 DOI: 10.1002/eji.201444787] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 10/24/2014] [Accepted: 11/14/2014] [Indexed: 11/08/2022]
Abstract
In contrast to peripheral plasmacytoid DCs (pDCs), thymic pDCs constitutively express low levels of IFN-α. This leads to induction of interferon secondary genes (ISGs) in medullary thymocytes, raising the question whether IFN-α may play a role in T-cell development. When characterizing further differences between peripheral and thymic pDCs, we found that thymic pDCs have a phenotype consistent with an "activated signature" including expression of TNF-α and bone marrow stromal cell antigen 2 (BST2), but no expression of ILT7. Given that BST2 is induced by IFN-α, and IFN-α secretion is controlled by interaction between ILT7 and BST2, this regulatory pathway is apparently lost in thymic pDCs. Further, we also show that BST2 is constitutively expressed on a subset of medullary thymocytes at the mRNA and protein level reflecting a history of IFN-α transduced signals. The majority of BST2(+) thymocytes express CCR5 rendering them prevalent targets for R5-tropic HIV infection. Moreover, BST2(+) thymocytes express Foxp3 and CD25, consistent with the phenotype of natural Treg cells, and exert suppressive activity as they impair the proliferation of autologous CD3(+) thymocytes. Collectively, our results suggest that low levels of IFN-α secreted by thymic pDCs play an important role in the development of natural Treg cells.
Collapse
Affiliation(s)
- Marta Epeldegui
- Departments of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, CA, USA; UCLA AIDS Institute, UCLA, Los Angeles, CA, USA
| | | | | |
Collapse
|
28
|
Modified interferon-α subtypes production and chemokine networks in the thymus during acute simian immunodeficiency virus infection, impact on thymopoiesis. AIDS 2014; 28:1101-13. [PMID: 24614087 DOI: 10.1097/qad.0000000000000249] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
OBJECTIVES Thymus dysfunction characterizes human/simian immunodeficiency virus (SIV) infections and contributes to physiopathology. However, both the mechanisms involved in thymic dysfunction and its precise timing remain unknown. We here analyzed thymic function during acute SIV infection in rhesus macaques. DESIGN AND METHODS Rhesus macaques were intravenously infected with SIVmac251 and bled every 2/3 days or necropsied at different early time points postinfection. Naive T-cell counts were followed by flow cytometry and their T-cell receptor excision circle content evaluated by qPCR. Thymic chemokines were quantified by reverse transcription-qPCR and localized by in-situ hybridization in thymuses collected at necropsy. Thymic interferon alpha (IFN-α) subtype production was quantified by reverse transcription-qPCR combined to heteroduplex tracking assay. The effect of thymic IFN-α subtypes was tested on sorted triple negative thymocytes cultured on OP9-hDL1 cells. RESULTS A reduced intrathymic proliferation history characterizes T cells produced during the first weeks of infection. Moreover, we evidenced a profound alteration of both chemokines and IFN-α subtypes transcriptional patterns in SIV-infected thymuses. Finally, we showed that IFN-α subtypes produced in the infected thymuses inhibit thymocyte proliferation, still preserving their differentiation capacity. CONCLUSION Thymopoiesis is deeply impacted from the first days of SIV infection. Reduced thymocyte proliferation - a time-consuming process - together with modified chemokine networks is consistent with thymocyte differentiation speed-up. This may transiently enhance thymic output, thus increasing naive T-cell counts and diversity and the immune competence of the host. Nonetheless, long-lasting modification of thymic physiology may lead to thymic exhaustion, as observed in late primary HIV infection.
Collapse
|
29
|
Tsugawa Y, Kato H, Fujita T, Shimotohno K, Hijikata M. Critical role of interferon-α constitutively produced in human hepatocytes in response to RNA virus infection. PLoS One 2014; 9:e89869. [PMID: 24587086 PMCID: PMC3935935 DOI: 10.1371/journal.pone.0089869] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 01/24/2014] [Indexed: 12/24/2022] Open
Abstract
Several viruses are known to infect human liver and cause the hepatitis, but the interferon (IFN) response, a first-line defense against viral infection, of virus-infected hepatocytes is not clearly defined yet. We investigated innate immune system against RNA viral infection in immortalized human hepatocytes (HuS-E/2 cells), as the cells showed similar early innate immune responses to primary human hepatocytes (PHH). The low-level constitutive expression of IFN-α1 gene, but not IFN-β and IFN-λ, was observed in both PHH and HuS-E/2 cells in the absence of viral infection, suggesting a particular subtype(s) of IFN-α is constitutively produced in human hepatocytes. To examine the functional role of such IFN-α in the antiviral response, the expression profiles of innate immune-related genes were studied in the cells with the treatment of neutralization against type I IFN receptor 2 (IFNAR2) or IFN-α itself to inhibit the constitutive IFN-α signaling before and after virus infection. As the results, a clear reduction of basal level expression of IFN-inducible genes was observed in uninfected cells. When the effect of the inhibition on the cells infected with hepatitis C virus (HCV) was examined, the significant decrease of IFN stimulated gene expression and the enhancement of initial HCV replication were observed, suggesting that the steady-state production of IFN-α plays a role in amplification of antiviral responses to control the spread of RNA viral infection in human hepatocytes.
Collapse
Affiliation(s)
- Yoji Tsugawa
- Laboratory of Human Tumor Viruses, Institute for Virus Research, Kyoto University, Kyoto, Japan
- Laboratory of Viral Oncology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Hiroki Kato
- Laboratory of Molecular Genetics, Institute for Virus Research, Kyoto University, Kyoto, Japan
| | - Takashi Fujita
- Laboratory of Molecular Genetics, Institute for Virus Research, Kyoto University, Kyoto, Japan
| | - Kunitada Shimotohno
- The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Ichikawa, Japan
| | - Makoto Hijikata
- Laboratory of Human Tumor Viruses, Institute for Virus Research, Kyoto University, Kyoto, Japan
- Laboratory of Viral Oncology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- * E-mail:
| |
Collapse
|
30
|
Gentek R, Munneke JM, Helbig C, Blom B, Hazenberg MD, Spits H, Amsen D. Modulation of Signal Strength Switches Notch from an Inducer of T Cells to an Inducer of ILC2. Front Immunol 2013; 4:334. [PMID: 24155745 PMCID: PMC3804867 DOI: 10.3389/fimmu.2013.00334] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 10/02/2013] [Indexed: 11/20/2022] Open
Abstract
Innate lymphoid cells (ILCs) are emerging key players of the immune system with close lineage relationship to T cells. ILC2 play an important role in protective immunity against multicellular parasites, but are also involved in the pathogenesis of type 2 immune diseases. Here, we have studied the developmental requirements for human ILC2. We report that ILC2 are present in the thymus of young human donors, possibly reflecting local differentiation. Furthermore, we show that uncommitted lineage−CD34+CD1a−human thymic progenitors have the capacity to develop into ILC2 in vitro under the influence of Notch signaling, either by stimulation with the Notch ligand Delta like 1 (Dll1) or by expression of the active intracellular domain of NOTCH1 (NICD1). The capacity of NICD1 to mobilize the ILC2 differentiation program was sufficiently potent to override commitment to the T cell lineage in CD34+CD1a+ progenitors and force them into the ILC2 lineage. As Notch is an important factor also for T cell development, these results raise the question how one and the same signaling pathway can elicit such distinct developmental outcomes from the same precursors. We provide evidence that Notch signal strength is a critical determinant in this decision: by tuning signal amplitude, Notch can be converted from a T cell inducer (low signal strength) to an ILC2 inducer (high signal strength). Thus, this study enhances our understanding of human ILC2 development and identifies a mechanism determining specificity of Notch signal output during T cell and ILC2 differentiation.
Collapse
Affiliation(s)
- Rebecca Gentek
- Department of Cell Biology and Histology, Academic Medical Center , Amsterdam , Netherlands
| | | | | | | | | | | | | |
Collapse
|
31
|
Liston A, Papadopoulou AS, Danso-Abeam D, Dooley J. MicroRNA-29 in the adaptive immune system: setting the threshold. Cell Mol Life Sci 2012; 69:3533-41. [PMID: 22971773 PMCID: PMC11114856 DOI: 10.1007/s00018-012-1124-0] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Revised: 08/09/2012] [Accepted: 08/09/2012] [Indexed: 12/12/2022]
Abstract
Recent research into the role of microRNA (miR) in the immune system has identified the miR-29 family as critical regulators of key processes in adaptive immunity. The miR-29 family consists of four members with shared regulatory capacity, namely miR-29a, miR-29b-1, miR-29b-2 and miR-29c. Being expressed in both T and B cells, as well as the main accessory cell types of thymic epithelium and dendritic cells, the miR-29 family has been identified as a putative regulator of immunity due to the predicted suppression of key immunological pathways. The generation of a series of in vivo molecular tools targeting the miR-29 family has identified the critical role of these miR in setting the molecular threshold for three central events in adaptive immunity: (1) control over thymic production of T cells by modulating the threshold for infection-associated thymic involution, (2) creating a neutral threshold for T cell polarization following activation, and (3) setting the threshold for B cell oncogenic transformation. These results identify the miR-29 family as potent immune modulators which have already been exploited through the evolution of a viral mimic and could potentially be exploited further for therapeutic intervention.
Collapse
Affiliation(s)
- Adrian Liston
- Autoimmune Genetics Laboratory, VIB and University of Leuven, Leuven, Belgium
| | | | - Dina Danso-Abeam
- Autoimmune Genetics Laboratory, VIB and University of Leuven, Leuven, Belgium
| | - James Dooley
- Autoimmune Genetics Laboratory, VIB and University of Leuven, Leuven, Belgium
| |
Collapse
|