1
|
Hunt AC, Rasor BJ, Seki K, Ekas HM, Warfel KF, Karim AS, Jewett MC. Cell-Free Gene Expression: Methods and Applications. Chem Rev 2024. [PMID: 39700225 DOI: 10.1021/acs.chemrev.4c00116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Cell-free gene expression (CFE) systems empower synthetic biologists to build biological molecules and processes outside of living intact cells. The foundational principle is that precise, complex biomolecular transformations can be conducted in purified enzyme or crude cell lysate systems. This concept circumvents mechanisms that have evolved to facilitate species survival, bypasses limitations on molecular transport across the cell wall, and provides a significant departure from traditional, cell-based processes that rely on microscopic cellular "reactors." In addition, cell-free systems are inherently distributable through freeze-drying, which allows simple distribution before rehydration at the point-of-use. Furthermore, as cell-free systems are nonliving, they provide built-in safeguards for biocontainment without the constraints attendant on genetically modified organisms. These features have led to a significant increase in the development and use of CFE systems over the past two decades. Here, we discuss recent advances in CFE systems and highlight how they are transforming efforts to build cells, control genetic networks, and manufacture biobased products.
Collapse
Affiliation(s)
- Andrew C Hunt
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Blake J Rasor
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Kosuke Seki
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Holly M Ekas
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Katherine F Warfel
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Ashty S Karim
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Michael C Jewett
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois 60611, United States
- Department of Bioengineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
2
|
Bartsch T, Lütz S, Rosenthal K. Cell-free protein synthesis with technical additives - expanding the parameter space of in vitro gene expression. Beilstein J Org Chem 2024; 20:2242-2253. [PMID: 39286794 PMCID: PMC11403795 DOI: 10.3762/bjoc.20.192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 08/22/2024] [Indexed: 09/19/2024] Open
Abstract
Biocatalysis has established itself as a successful tool in organic synthesis. A particularly fast technique for screening enzymes is the in vitro expression or cell-free protein synthesis (CFPS). The system is based on the transcription and translation machinery of an extract-donating organism to which substrates such as nucleotides and amino acids, as well as energy molecules, salts, buffer, etc., are added. After successful protein synthesis, further substrates can be added for an enzyme activity assay. Although mimicking of cell-like conditions is an approach for optimization, the physical and chemical properties of CFPS are not well described yet. To date, standard conditions have mainly been used for CFPS, with little systematic testing of whether conditions closer to intracellular conditions in terms of viscosity, macromolecules, inorganic ions, osmolarity, or water content are advantageous. Also, very few non-physiological conditions have been tested to date that would expand the parameter space in which CFPS can be performed. In this study, the properties of an Escherichia coli extract-based CFPS system are evaluated, and the parameter space is extended to high viscosities, concentrations of inorganic ion and osmolarity using ten different technical additives including organic solvents, polymers, and salts. It is shown that the synthesis of two model proteins, namely superfolder GFP (sfGFP) and the enzyme truncated human cyclic GMP-AMP synthase fused to sfGFP (thscGAS-sfGFP), is very robust against most of the tested additives.
Collapse
Affiliation(s)
- Tabea Bartsch
- Department of Biochemical and Chemical Engineering, TU Dortmund University, Emil-Figge-Straße 66, 44227 Dortmund, Germany
| | - Stephan Lütz
- Department of Biochemical and Chemical Engineering, TU Dortmund University, Emil-Figge-Straße 66, 44227 Dortmund, Germany
| | - Katrin Rosenthal
- School of Science, Constructor University, Campus Ring 6, 28759 Bremen, Germany
| |
Collapse
|
3
|
Ganesh RB, Maerkl SJ. Towards Self-regeneration: Exploring the Limits of Protein Synthesis in the Protein Synthesis Using Recombinant Elements (PURE) Cell-free Transcription-Translation System. ACS Synth Biol 2024; 13:2555-2566. [PMID: 39066734 DOI: 10.1021/acssynbio.4c00304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Self-regeneration is a key function of living systems that needs to be recapitulated in vitro to create a living synthetic cell. A major limiting factor for protein self-regeneration in the PURE cell-free transcription-translation system is its high protein concentration, which far exceeds the system's protein synthesis rate. Here, we were able to drastically reduce the nonribosomal PURE protein concentration up to 97.3% while increasing protein synthesis efficiency. Although crowding agents were not effective in the original PURE formulation, we found that in highly dilute PURE formulations, addition of 6% dextran considerably increased protein synthesis rate and total protein yield. These new PURE formulations will be useful for many cell-free synthetic biology applications, and we estimate that PURE can now support the complete self-regeneration of all 36 nonribosomal proteins, which is a critical step toward the development of a universal biochemical constructor and living synthetic cell.
Collapse
Affiliation(s)
- Ragunathan B Ganesh
- Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Sebastian J Maerkl
- Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| |
Collapse
|
4
|
Bienau A, Jäkel AC, Simmel FC. Cell-Free Gene Expression in Bioprinted Fluidic Networks. ACS Synth Biol 2024; 13:2447-2456. [PMID: 39042670 PMCID: PMC11334185 DOI: 10.1021/acssynbio.4c00187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/01/2024] [Accepted: 07/09/2024] [Indexed: 07/25/2024]
Abstract
The realization of soft robotic devices with life-like properties requires the engineering of smart, active materials that can respond to environmental cues in similar ways as living cells or organisms. Cell-free expression systems provide an approach for embedding dynamic molecular control into such materials that avoids many of the complexities associated with genuinely living systems. Here, we present a strategy to integrate cell-free protein synthesis within agarose-based hydrogels that can be spatially organized and supplied by a synthetic vasculature. We first utilize an indirect printing approach with a commercial bioprinter and Pluronic F-127 as a fugitive ink to define fluidic channel structures within the hydrogels. We then investigate the impact of the gel matrix on the expression of proteins in E. coli cell-extract, which is found to depend on the gel density and the dilution of the expression system. When supplying the vascularized hydrogels with reactants, larger components such as DNA plasmids are confined to the channels or immobilized in the gels while nanoscale reaction components can diffusively spread within the gel. Using a single supply channel, we demonstrate different spatial protein concentration profiles emerging from different cell-free gene circuits comprising production, gene activation, and negative feedback. Variation of the channel design allows the creation of specific concentration profiles such as a long-term stable gradient or the homogeneous supply of a hydrogel with proteins.
Collapse
Affiliation(s)
- Alexandra Bienau
- TU Munich, School of Natural Sciences, Department of Bioscience, 85748 Garching
b. München, Germany
| | - Anna C. Jäkel
- TU Munich, School of Natural Sciences, Department of Bioscience, 85748 Garching
b. München, Germany
| | - Friedrich C. Simmel
- TU Munich, School of Natural Sciences, Department of Bioscience, 85748 Garching
b. München, Germany
| |
Collapse
|
5
|
Mukherjee P, Mazumder A. Macromolecular crowding has opposite effects on two critical sub-steps of transcription initiation. FEBS Lett 2024; 598:1022-1033. [PMID: 38479985 PMCID: PMC7615953 DOI: 10.1002/1873-3468.14851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/12/2024] [Accepted: 02/19/2024] [Indexed: 04/12/2024]
Abstract
Transcription initiation, the first step in gene expression, has been studied extensively in dilute buffer, a condition which fails to consider the crowded environment in live cells. Recent reports indicate the kinetics of promoter escape is altered in crowded conditions for a consensus bacterial promoter. Here, we use a real-time fluorescence enhancement assay to study the kinetics of unwound bubble formation and promoter escape for three separate promoters. We find that the effect of crowding on transcription initiation is complex, with lower rates of unwound bubble formation, higher rates of promoter escape, and large variations depending on promoter identity. Based on our results, we suggest that altered conditions of crowding inside a live cell can trigger global changes.
Collapse
Affiliation(s)
- Pratip Mukherjee
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre, Ghaziabad, India
| | - Abhishek Mazumder
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| |
Collapse
|
6
|
Morey K, Thomas-Fenderson T, Watson A, Sebesta J, Peebles C, Gentry-Weeks C. Toehold switch plus signal amplification enables rapid detection. Biotechnol J 2023; 18:e2200607. [PMID: 37641181 PMCID: PMC10840733 DOI: 10.1002/biot.202200607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 08/04/2023] [Accepted: 08/14/2023] [Indexed: 08/31/2023]
Abstract
Recent world events have led to an increased interest in developing rapid and inexpensive clinical diagnostic platforms for viral detection. Here, the development of a cell-free toehold switch-based biosensor, which does not require upstream amplification of target RNA, is described for the detection of RNA viruses. Toehold switches were designed to avoid interfering secondary structure in the viral RNA binding region, mutational hotspots, and cross-reacting sequences of other coronaviruses. Using these design criteria, toehold switches were targeted to a low mutation region of the SARS-CoV-2 genome nonstructural protein 2 (nsp2). The designs were tested in a cell-free system using trigger RNA based on the viral genome and a highly sensitive fluorescent reporter gene, mNeonGreen. The detection sensitivity of our best toehold design, CSU 08, was in the low picomolar range of target (trigger) RNA. To increase the sensitivity of our cell-free biosensor to a clinically relevant level, we developed a modular downstream amplification system that utilizes toehold switch activation of tobacco etch virus (TEV) protease expression. The TEV protease cleaves a quenched fluorescent reporter, both increasing the signal fold change between control and sample and increasing the sensitivity to a clinically relevant low femtomolar range for target RNA detection.
Collapse
Affiliation(s)
- Kevin Morey
- Chemical and Biological Engineering Department, Colorado State University, Fort Collins, CO
| | - Tyler Thomas-Fenderson
- Microbiology, Immunology, and Pathology Department, Colorado State University, Fort Collins, CO
| | - Al Watson
- Chemical and Biological Engineering Department, Colorado State University, Fort Collins, CO
| | - Jacob Sebesta
- Chemical and Biological Engineering Department, Colorado State University, Fort Collins, CO
| | - Christie Peebles
- Chemical and Biological Engineering Department, Colorado State University, Fort Collins, CO
| | - Claudia Gentry-Weeks
- Microbiology, Immunology, and Pathology Department, Colorado State University, Fort Collins, CO
| |
Collapse
|
7
|
Thompson VF, Wieland DR, Mendoza-Leon V, Janis HI, Lay MA, Harrell LM, Schwartz JC. Binding of the nuclear ribonucleoprotein family member FUS to RNA prevents R-loop RNA:DNA hybrid structures. J Biol Chem 2023; 299:105237. [PMID: 37690693 PMCID: PMC10556777 DOI: 10.1016/j.jbc.2023.105237] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/17/2023] [Accepted: 08/25/2023] [Indexed: 09/12/2023] Open
Abstract
The protein FUS (FUSed in sarcoma) is a metazoan RNA-binding protein that influences RNA production by all three nuclear polymerases. FUS also binds nascent transcripts, RNA processing factors, RNA polymerases, and transcription machinery. Here, we explored the role of FUS binding interactions for activity during transcription. In vitro run-off transcription assays revealed FUS-enhanced RNA produced by a non-eukaryote polymerase. The activity also reduced the formation of R-loops between RNA products and their DNA template. Analysis by domain mutation and deletion indicated RNA-binding was required for activity. We interpret that FUS binds and sequesters nascent transcripts to prevent R-loops from forming with nearby DNA. DRIP-seq analysis showed that a knockdown of FUS increased R-loop enrichment near expressed genes. Prevention of R-loops by FUS binding to nascent transcripts has the potential to affect transcription by any RNA polymerase, highlighting the broad impact FUS can have on RNA metabolism in cells and disease.
Collapse
Affiliation(s)
- Valery F Thompson
- Department of Pharmacology, University of Arizona, Tucson, Arizona, USA; University of Arizona Cancer Center, Tucson, Arizona, USA
| | - Daniel R Wieland
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona, USA
| | - Vivian Mendoza-Leon
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona, USA
| | - Helen I Janis
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona, USA
| | - Michelle A Lay
- Department of Pharmacology, University of Arizona, Tucson, Arizona, USA; University of Arizona Cancer Center, Tucson, Arizona, USA; Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona, USA
| | - Lucas M Harrell
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona, USA
| | - Jacob C Schwartz
- Department of Pharmacology, University of Arizona, Tucson, Arizona, USA; University of Arizona Cancer Center, Tucson, Arizona, USA.
| |
Collapse
|
8
|
Inlow K, Tenenbaum D, Friedman LJ, Kondev J, Gelles J. Recycling of bacterial RNA polymerase by the Swi2/Snf2 ATPase RapA. Proc Natl Acad Sci U S A 2023; 120:e2303849120. [PMID: 37406096 PMCID: PMC10334767 DOI: 10.1073/pnas.2303849120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/30/2023] [Indexed: 07/07/2023] Open
Abstract
Free-living bacteria have regulatory systems that can quickly reprogram gene transcription in response to changes in the cellular environment. The RapA ATPase, a prokaryotic homolog of the eukaryotic Swi2/Snf2 chromatin remodeling complex, may facilitate such reprogramming, but the mechanisms by which it does so are unclear. We used multiwavelength single-molecule fluorescence microscopy in vitro to examine RapA function in the Escherichia coli transcription cycle. In our experiments, RapA at <5 nM concentration did not appear to alter transcription initiation, elongation, or intrinsic termination. Instead, we directly observed a single RapA molecule bind specifically to the kinetically stable post termination complex (PTC)-consisting of core RNA polymerase (RNAP)-bound sequence nonspecifically to double-stranded DNA-and efficiently remove RNAP from DNA within seconds in an ATP-hydrolysis-dependent reaction. Kinetic analysis elucidates the process through which RapA locates the PTC and the key mechanistic intermediates that bind and hydrolyze ATP. This study defines how RapA participates in the transcription cycle between termination and initiation and suggests that RapA helps set the balance between global RNAP recycling and local transcription reinitiation in proteobacterial genomes.
Collapse
Affiliation(s)
- Koe Inlow
- Department of Biochemistry, Brandeis University, Waltham, MA02453
| | | | | | - Jane Kondev
- Department of Physics, Brandeis University, Waltham, MA02453
| | - Jeff Gelles
- Department of Biochemistry, Brandeis University, Waltham, MA02453
| |
Collapse
|
9
|
Liang T, Yang C, Song X, Feng Y, Liu Y, Chen H. Quantification of macromolecule crowding at single-molecule level. Phys Rev E 2023; 108:014406. [PMID: 37583195 DOI: 10.1103/physreve.108.014406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/19/2023] [Indexed: 08/17/2023]
Abstract
Macromolecule crowding has a prominent impact on a series of biochemical processes in the cell. It is also expected to promote macromolecular complexation induced by excluded volume effects, which conflicts with recent advances in the thermodynamic interaction between inert, synthetic polymers, and nucleic acids. Along this line, a method combining high-resolution magnetic tweezers and extended crowder-oxDNA model was applied to resolve these discrepancies by systematically studying the kinetics and thermodynamics of the folding-unfolding transition for an individual DNA hairpin in a crowded environment. More specifically, from the magnetic tweezers-based experiments, the linear dependence of the critical force of the DNA hairpin on the polyethylene glycol (PEG) concentration was demonstrated, which is consistent with the results based on the crowder-oxDNA model in which the Lennard-Jones potential was adopted to express the interaction between the crowders and the DNA hairpin. These consistencies highlight that the excluded volume effects are mainly responsible for the interaction between PEG and the DNA hairpin, which is different from the interaction between dextran and the DNA hairpin. In the meantime, the dependence of the folding rate on the molecule weight of PEG, which was different from fluorescence resonance energy transfer-based results, was identified. The proposed method opens a path to detect the interaction between an inert, synthetic molecule, and the DNA hairpin, which is important to accurately mimic the cytosolic environments using mixtures of different inert molecules.
Collapse
Affiliation(s)
- Ting Liang
- College of Physics, Guizhou University, Guiyang 550025, China
| | - Chao Yang
- College of Physics, Guizhou University, Guiyang 550025, China
| | - Xiaoya Song
- College of Physics, Guizhou University, Guiyang 550025, China
| | - Yuyu Feng
- College of Physics, Guizhou University, Guiyang 550025, China
| | - Yanhui Liu
- College of Physics, Guizhou University, Guiyang 550025, China
| | - Hu Chen
- Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Lab for Soft Functional Materials Research, Department of Physics, Xiamen University, Xiamen 361005, People's Republic of China
| |
Collapse
|
10
|
Ho G, Kubušová V, Irabien C, Li V, Weinstein A, Chawla S, Yeung D, Mershin A, Zolotovsky K, Mogas-Soldevila L. Multiscale design of cell-free biologically active architectural structures. Front Bioeng Biotechnol 2023; 11:1125156. [PMID: 37064226 PMCID: PMC10100494 DOI: 10.3389/fbioe.2023.1125156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/27/2023] [Indexed: 03/30/2023] Open
Abstract
Cell-free protein expression systems are here combined with 3D-printed structures to study the challenges and opportunities as biofabrication enters the spaces of architecture and design. Harnessing large-scale additive manufacturing of biological materials, we examined the addition of cell-free protein expression systems ("TXTL" i.e., biological transcription-translation machinery without the use of living cells) to printed structures. This allowed us to consider programmable, living-like, responsive systems for product design and indoor architectural applications. This emergent, pluripotent technology offers exciting potential in support of health, resource optimization, and reduction of energy use in the built environment, setting a new path to interactivity with mechanical, optical, and (bio) chemical properties throughout structures. We propose a roadmap towards creating healthier, functional and more durable systems by deploying a multiscale platform containing biologically-active components encapsulated within biopolymer lattices operating at three design scales: (i) supporting cell-free protein expression in a biopolymer matrix (microscale), (ii) varying material properties of porosity and strength within two-dimensional lattices to support biological and structural functions (mesoscale), and (iii) obtaining folded indoor surfaces that are structurally sound at the meter scale and biologically active (we label that regime macroscale). We embedded commercially available cell-free protein expression systems within silk fibroin and sodium alginate biopolymer matrices and used green fluorescent protein as the reporter to confirm their compatibility. We demonstrate mechanical attachment of freeze-dried bioactive pellets into printed foldable fibrous biopolymer lattices showing the first steps towards modular multiscale fabrication of large structures with biologically active zones. Our results discuss challenges to experimental setup affecting expression levels and show the potential of robust cell-free protein-expressing biosites within custom-printed structures at scales relevant to everyday consumer products and human habitats.
Collapse
Affiliation(s)
- G. Ho
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States
| | - V. Kubušová
- Department of Graduate Architecture, DumoLab Research, Stuart Weitzman School of Design, University of Pennsylvania, Philadelphia, PA, United States
- Department of Architecture and Design, Slovak University of Technology, Bratislava, Slovakia
| | - C. Irabien
- Department of Graduate Architecture, DumoLab Research, Stuart Weitzman School of Design, University of Pennsylvania, Philadelphia, PA, United States
| | - V. Li
- Department of Graduate Architecture, DumoLab Research, Stuart Weitzman School of Design, University of Pennsylvania, Philadelphia, PA, United States
| | - A. Weinstein
- Department of Graduate Architecture, DumoLab Research, Stuart Weitzman School of Design, University of Pennsylvania, Philadelphia, PA, United States
| | - Sh. Chawla
- Department of Graduate Architecture, DumoLab Research, Stuart Weitzman School of Design, University of Pennsylvania, Philadelphia, PA, United States
| | - D. Yeung
- Department of Graduate Architecture, DumoLab Research, Stuart Weitzman School of Design, University of Pennsylvania, Philadelphia, PA, United States
| | - A. Mershin
- Label Free Research Group, Center for Bits and Atoms, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - K. Zolotovsky
- Spatial Dynamics Program, Division of Experimental and Foundational Studies, Rhode Island School of Design, Providence, RI, United States
| | - L. Mogas-Soldevila
- Department of Graduate Architecture, DumoLab Research, Stuart Weitzman School of Design, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
11
|
Zhorabek F, Abesekara MS, Liu J, Dai X, Huang J, Chau Y. Construction of multiphasic membraneless organelles towards spontaneous spatial segregation and directional flow of biochemical reactions. Chem Sci 2023; 14:801-811. [PMID: 36755726 PMCID: PMC9890938 DOI: 10.1039/d2sc05438h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/29/2022] [Indexed: 01/15/2023] Open
Abstract
Many intracellular membraneless organelles (MLOs) appear to adapt a hierarchical multicompartment organization for efficient coordination of highly complex reaction networks. Recapitulating such an internal architecture in biomimetic platforms is, therefore, an important step to facilitate the functional understanding of MLOs and to enable the design of advanced microreactors. Herein, we present a modular bottom-up approach for building synthetic multiphasic condensates using a set of engineered multivalent polymer-oligopeptide hybrids. These hybrid constructs exhibit dynamic phase separation behaviour generating membraneless droplets with a subdivided interior featuring distinct chemical and physical properties, whereby a range of functional biomolecules can be spontaneously enriched and spatially segregated. The platform also attains separated confinement of transcription and translation reactions in proximal compartments, while allowing inter-compartment communication via a directional flow of reactants. With advanced structural and functional features attained, this system can be of great value as a MLO model and as a cell-free system for multiplex chemical biosynthesis.
Collapse
Affiliation(s)
- Fariza Zhorabek
- Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology Clear Water Bay, Kowloon Hong Kong SAR China
| | - Manisha Sandupama Abesekara
- Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology Clear Water Bay, Kowloon Hong Kong SAR China
| | - Jianhui Liu
- Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology Clear Water Bay, Kowloon Hong Kong SAR China
| | - Xin Dai
- Department of Chemistry, Hong Kong University of Science and TechnologyClear Water Bay, KowloonHong Kong SARChina
| | - Jinqing Huang
- Department of Chemistry, Hong Kong University of Science and TechnologyClear Water Bay, KowloonHong Kong SARChina
| | - Ying Chau
- Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology Clear Water Bay, Kowloon Hong Kong SAR China
| |
Collapse
|
12
|
Sánchez-Costa M, López-Gallego F. Solid-Phase Cell-Free Protein Synthesis and Its Applications in Biotechnology. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2023; 185:21-46. [PMID: 37306703 DOI: 10.1007/10_2023_226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Cell-free systems for the in vitro production of proteins have revolutionized the synthetic biology field. In the last decade, this technology is gaining momentum in molecular biology, biotechnology, biomedicine and even education. Materials science has burst into the field of in vitro protein synthesis to empower the value of existing tools and expand its applications. In this sense, the combination of solid materials (normally functionalized with different biomacromolecules) together with cell-free components has made this technology more versatile and robust. In this chapter, we discuss the combination of solid materials with DNA and transcription-translation machinery to synthesize proteins within compartments, to immobilize and purify in situ the nascent protein, to transcribe and transduce DNAs immobilized on solid surfaces, and the combination of all or some of these strategies.
Collapse
Affiliation(s)
- Mercedes Sánchez-Costa
- Heterogeneous Biocatalysis Laboratory, Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián, Spain
| | - Fernando López-Gallego
- Heterogeneous Biocatalysis Laboratory, Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián, Spain.
| |
Collapse
|
13
|
Chauhan G, Norred SE, Dabbs RM, Caveney PM, George JKV, Collier CP, Simpson ML, Abel SM. Crowding-Induced Spatial Organization of Gene Expression in Cell-Sized Vesicles. ACS Synth Biol 2022; 11:3733-3742. [PMID: 36260840 DOI: 10.1021/acssynbio.2c00336] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Cell-free protein synthesis is an important tool for studying gene expression and harnessing it for applications. In cells, gene expression is regulated in part by the spatial organization of transcription and translation. Unfortunately, current cell-free approaches are unable to control the organization of molecular components needed for gene expression, which limits the ability to probe and utilize its effects. Here, we show, using complementary computational and experimental approaches, that macromolecular crowding can be used to control the spatial organization and translational efficiency of gene expression in cell-sized vesicles. Computer simulations and imaging experiments reveal that, as crowding is increased, DNA plasmids become localized at the inner surface of vesicles. Ribosomes, in contrast, remain uniformly distributed, demonstrating that crowding can be used to differentially organize components of gene expression. We further carried out cell-free protein synthesis reactions in cell-sized vesicles and quantified mRNA and protein abundance. At sufficiently high levels of crowding, we observed localization of mRNA near vesicle surfaces, a decrease in translational efficiency and protein abundance, and anomalous scaling of protein abundance as a function of vesicle size. These results are consistent with high levels of crowding causing altered spatial organization and slower diffusion. Our work demonstrates a straightforward way to control the organization of gene expression in cell-sized vesicles and provides insight into the spatial regulation of gene expression in cells.
Collapse
Affiliation(s)
- Gaurav Chauhan
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Knoxville, Tennessee37996, United States
| | - S Elizabeth Norred
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee37831, United States.,Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville and Oak Ridge National Laboratory, Knoxville, Tennessee37996, United States
| | - Rosemary M Dabbs
- Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville and Oak Ridge National Laboratory, Knoxville, Tennessee37996, United States
| | - Patrick M Caveney
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee37831, United States.,Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville and Oak Ridge National Laboratory, Knoxville, Tennessee37996, United States
| | - John K Vincent George
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee37831, United States.,Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville and Oak Ridge National Laboratory, Knoxville, Tennessee37996, United States
| | - C Patrick Collier
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee37831, United States
| | - Michael L Simpson
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee37831, United States.,Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville and Oak Ridge National Laboratory, Knoxville, Tennessee37996, United States
| | - Steven M Abel
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Knoxville, Tennessee37996, United States
| |
Collapse
|
14
|
Li C, Zhang X, Dong M, Han X. Progress on Crowding Effect in Cell-like Structures. MEMBRANES 2022; 12:593. [PMID: 35736300 PMCID: PMC9228500 DOI: 10.3390/membranes12060593] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/27/2022] [Accepted: 05/30/2022] [Indexed: 12/10/2022]
Abstract
Several biological macromolecules, such as proteins, nucleic acids, and polysaccharides, occupy about 30% of the space in cells, resulting in a crowded macromolecule environment. The crowding effect within cells exerts an impact on the functions of biological components, the assembly behavior of biomacromolecules, and the thermodynamics and kinetics of metabolic reactions. Cell-like structures provide confined and independent compartments for studying the working mechanisms of cells, which can be used to study the physiological functions arising from the crowding effect of macromolecules in cells. This article mainly summarizes the progress of research on the macromolecular crowding effects in cell-like structures. It includes the effects of this crowding on actin assembly behavior, tubulin aggregation behavior, and gene expression. The challenges and future trends in this field are presented at the end of the paper.
Collapse
Affiliation(s)
- Chao Li
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 92 West Da-Zhi Street, Harbin 150001, China; (C.L.); (X.Z.)
| | - Xiangxiang Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 92 West Da-Zhi Street, Harbin 150001, China; (C.L.); (X.Z.)
| | - Mingdong Dong
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, 8000 Aarhus, Denmark
| | - Xiaojun Han
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 92 West Da-Zhi Street, Harbin 150001, China; (C.L.); (X.Z.)
| |
Collapse
|
15
|
Thakur M, Breger JC, Susumu K, Oh E, Spangler JR, Medintz IL, Walper SA, Ellis GA. Self-assembled nanoparticle-enzyme aggregates enhance functional protein production in pure transcription-translation systems. PLoS One 2022; 17:e0265274. [PMID: 35298538 PMCID: PMC8929567 DOI: 10.1371/journal.pone.0265274] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/27/2022] [Indexed: 11/19/2022] Open
Abstract
Cell-free protein synthesis systems (CFPS) utilize cellular transcription and translation (TX-TL) machinery to synthesize proteins in vitro. These systems are useful for multiple applications including production of difficult proteins, as high-throughput tools for genetic circuit screening, and as systems for biosensor development. Though rapidly evolving, CFPS suffer from some disadvantages such as limited reaction rates due to longer diffusion times, significant cost per assay when using commercially sourced materials, and reduced reagent stability over prolonged periods. To address some of these challenges, we conducted a series of proof-of-concept experiments to demonstrate enhancement of CFPS productivity via nanoparticle assembly driven nanoaggregation of its constituent proteins. We combined a commercially available CFPS that utilizes purified polyhistidine-tagged (His-tag) TX-TL machinery with CdSe/CdS/ZnS core/shell/shell quantum dots (QDs) known to readily coordinate His-tagged proteins in an oriented fashion. We show that nanoparticle scaffolding of the CFPS cross-links the QDs into nanoaggregate structures while enhancing the production of functional recombinant super-folder green fluorescent protein and phosphotriesterase, an organophosphate hydrolase; the latter by up to 12-fold. This enhancement, which occurs by an undetermined mechanism, has the potential to improve CFPS in general and specifically CFPS-based biosensors (faster response time) while also enabling rapid detoxification/bioremediation through point-of-concern synthesis of similar catalytic enzymes. We further show that such nanoaggregates improve production in diluted CFPS reactions, which can help to save money and extend the amount of these costly reagents. The results are discussed in the context of what may contribute mechanistically to the enhancement and how this can be applied to other CFPS application scenarios.
Collapse
Affiliation(s)
- Meghna Thakur
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, District of Columbia, United States of America
- College of Science, George Mason University, Fairfax, Virginia, United States of America
| | - Joyce C. Breger
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, District of Columbia, United States of America
| | - Kimihiro Susumu
- Optical Sciences Division, Code 5600, U.S. Naval Research Laboratory, Washington, District of Columbia, United States of America
- Jacobs Corporation, Dallas, Texas, United States of America
| | - Eunkeu Oh
- Optical Sciences Division, Code 5600, U.S. Naval Research Laboratory, Washington, District of Columbia, United States of America
| | - Joseph R. Spangler
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, District of Columbia, United States of America
| | - Igor L. Medintz
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, District of Columbia, United States of America
| | - Scott A. Walper
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, District of Columbia, United States of America
| | - Gregory A. Ellis
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, District of Columbia, United States of America
- * E-mail:
| |
Collapse
|
16
|
Comparative study of SARS-CoV-2 infection in different cell types: Biophysical-computational approach to the role of potential receptors. Comput Biol Med 2022; 142:105245. [PMID: 35077937 PMCID: PMC8770263 DOI: 10.1016/j.compbiomed.2022.105245] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/07/2022] [Accepted: 01/16/2022] [Indexed: 12/17/2022]
Abstract
Cellular susceptibility to SARS-CoV-2 infection in the respiratory tract has been associated with the ability of the virus to interact with potential receptors on the host membrane. We have modeled viral dynamics by simulating various cellular systems and artificial conditions, including macromolecular crowding, based on experimental and transcriptomic data to infer parameters associated with viral growth and predict cell susceptibility. We have accomplished this based on the type, number and level of expression of the angiotensin-converting enzyme 2 (ACE2), transmembrane serine 2 (TMPRSS2), basigin2 (CD147), FURIN protease, neuropilin 1 (NRP1) or other less studied candidate receptors such as heat shock protein A5 (HSPA5) and angiotensin II receptor type 2 (AGTR2). In parallel, we studied the effect of simulated artificial environments on the accessibility to said proposed receptors. In addition, viral kinetic behavior dependent on the degree of cellular susceptibility was predicted. The latter was observed to be more influenced by the type of proteins and expression level, than by the number of potential proteins associated with the SARS CoV-2 infection. We predict a greater theoretical propensity to susceptibility in cell lines such as NTERA-2, SCLC-21H, HepG2 and Vero6, and a lower theoretical propensity in lines such as CaLu3, RT4, HEK293, A549 and U-251MG. An important relationship was observed between expression levels, protein diffusivity, and thermodynamically favorable interactions between host proteins and the viral spike, suggesting potential sites of early infection other than the lungs. This research is expected to stimulate future quantitative experiments and promote systematic investigation of the effect of crowding presented here.
Collapse
|
17
|
Wang C, Yang J, Lu Y. Modularize and Unite: Toward Creating a Functional Artificial Cell. Front Mol Biosci 2021; 8:781986. [PMID: 34912849 PMCID: PMC8667554 DOI: 10.3389/fmolb.2021.781986] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 11/17/2021] [Indexed: 11/17/2022] Open
Abstract
An artificial cell is a simplified model of a living system, bringing breakthroughs into both basic life science and applied research. The bottom-up strategy instructs the construction of an artificial cell from nonliving materials, which could be complicated and interdisciplinary considering the inherent complexity of living cells. Although significant progress has been achieved in the past 2 decades, the area is still facing some problems, such as poor compatibility with complex bio-systems, instability, and low standardization of the construction method. In this review, we propose creating artificial cells through the integration of different functional modules. Furthermore, we divide the function requirements of an artificial cell into four essential parts (metabolism, energy supplement, proliferation, and communication) and discuss the present researches. Then we propose that the compartment and the reestablishment of the communication system would be essential for the reasonable integration of functional modules. Although enormous challenges remain, the modular construction would facilitate the simplification and standardization of an artificial cell toward a natural living system. This function-based strategy would also broaden the application of artificial cells and represent the steps of imitating and surpassing nature.
Collapse
Affiliation(s)
- Chen Wang
- Key Laboratory of Industrial Biocatalysis, Department of Chemical Engineering, Ministry of Education, Tsinghua University, Beijing, China
| | - Junzhu Yang
- Key Laboratory of Industrial Biocatalysis, Department of Chemical Engineering, Ministry of Education, Tsinghua University, Beijing, China
| | - Yuan Lu
- Key Laboratory of Industrial Biocatalysis, Department of Chemical Engineering, Ministry of Education, Tsinghua University, Beijing, China
| |
Collapse
|
18
|
Banks AM, Whitfield CJ, Brown SR, Fulton DA, Goodchild SA, Grant C, Love J, Lendrem DW, Fieldsend JE, Howard TP. Key reaction components affect the kinetics and performance robustness of cell-free protein synthesis reactions. Comput Struct Biotechnol J 2021; 20:218-229. [PMID: 35024094 PMCID: PMC8718664 DOI: 10.1016/j.csbj.2021.12.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/08/2021] [Accepted: 12/08/2021] [Indexed: 11/23/2022] Open
Abstract
Cell-free protein synthesis (CFPS) reactions have grown in popularity with particular interest in applications such as gene construct prototyping, biosensor technologies and the production of proteins with novel chemistry. Work has frequently focussed on optimising CFPS protocols for improving protein yield, reducing cost, or developing streamlined production protocols. Here we describe a statistical Design of Experiments analysis of 20 components of a popular CFPS reaction buffer. We simultaneously identify factors and factor interactions that impact on protein yield, rate of reaction, lag time and reaction longevity. This systematic experimental approach enables the creation of a statistical model capturing multiple behaviours of CFPS reactions in response to components and their interactions. We show that a novel reaction buffer outperforms the reference reaction by 400% and importantly reduces failures in CFPS across batches of cell lysates, strains of E. coli, and in the synthesis of different proteins. Detailed and quantitative understanding of how reaction components affect kinetic responses and robustness is imperative for future deployment of cell-free technologies.
Collapse
Key Words
- 3-PGA, 3-phosphoglyceric acid
- ATP, adenosine triphosphate
- Automation
- CFE, cell-free extract
- CFPS, cell-free protein synthesis
- CTP, cytidine triphosphate
- Cell-free protein synthesis (CFPS)
- CoA, coenzyme A
- DSD, Definitive Screening Design
- DTT, dithiothreitol
- Design of Experiments (DoE)
- DoE, Design of Experiments
- FEU, fluorescein equivalent units
- G-6-P, glucose-6-phosphate
- GTP, guanosine triphosphate
- HEPES, 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid
- K-glutamate, potassium glutamate
- LB, lysogeny broth
- Mg, magnesium glutamate
- NAD, nicotinamide adenine dinucleotide
- NTP, nucleoside triphosphate
- OFAT, one-factor-at-a-time
- PEG-8000, polyethylene glycol 8000
- PEP, phosphoenolpyruvate
- RFU, relative fluorescence units
- RSM, Response Surface Model
- Robustness
- Statistical engineering
- UTP, uridine triphosphate
- X-gal, 5-bromo-4-chloro-3-indolyl-β-D-galactopyranoside
- cAMP, cyclic adenosine monophosphate
- eGFP, enhanced green fluorescent protein
- tRNA, transfer ribonucleic acid
Collapse
Affiliation(s)
- Alice M. Banks
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - Colette J. Whitfield
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| | | | - David A. Fulton
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - Sarah A. Goodchild
- Defence Science and Technology Laboratory, Porton Down, Salisbury SP4 0JQ, United Kingdom
| | | | - John Love
- Biosciences, University of Exeter, Exeter EX4 4QD, United Kingdom
| | - Dennis W. Lendrem
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| | | | - Thomas P. Howard
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| |
Collapse
|
19
|
Studying cell volume beyond cell volume. CURRENT TOPICS IN MEMBRANES 2021; 88:165-188. [PMID: 34862025 DOI: 10.1016/bs.ctm.2021.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The first part of the paper describes two simple microscopic techniques that we use in our laboratory. One measures cell volumes in adherent cultures and the other measures cell dry mass; both measurements are done on the same instrument (a standard bright-field transmission microscope with only one or two narrow-band color filters added) and on the same cells. The reason for combining cell volume with dry mass is that the ratio of the two-dry mass concentration (MC)-is an important and insufficiently utilized biological parameter. We then describe a few applications of MC. The available experimental data strongly suggest its critical role in biological processes, including cell volume regulation. For example, most eukaryotic cells have surprisingly similar values of MC. Moreover, MC (and not cell volume) is tightly controlled in growing cell cultures at highly variable external osmolarities. We review the results showing that elevation of MC is a direct cause of shrinkage-induced apoptosis. Also, by focusing on MC, one can study heterogenous processes, such as necrotic swelling, or discriminate between apoptotic dehydration and the loss of cell fragments.
Collapse
|
20
|
Vezeau GE, Salis HM. Tuning Cell-Free Composition Controls the Time Delay, Dynamics, and Productivity of TX-TL Expression. ACS Synth Biol 2021; 10:2508-2519. [PMID: 34498860 DOI: 10.1021/acssynbio.1c00136] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The composition of cell-free expression systems (TX-TL) is adjusted by adding macromolecular crowding agents and salts. However, the effects of these cosolutes on the dynamics of individual gene expression processes have not been quantified. Here, we carry out kinetic mRNA and protein level measurements on libraries of genetic constructs using the common cosolutes PEG-8000, Ficoll-400, and magnesium glutamate. By combining these measurements with biophysical modeling, we show that cosolutes have differing effects on transcription initiation, translation initiation, and translation elongation rates with trade-offs between time delays, expression tunability, and maximum expression productivity. We also confirm that biophysical models can predict translation initiation rates in TX-TL using Escherichia coli lysate. We discuss how cosolute composition can be tuned to maximize performance across different cell-free applications, including biosensing, diagnostics, and biomanufacturing.
Collapse
Affiliation(s)
- Grace E. Vezeau
- Department of Biological Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Howard M. Salis
- Department of Biological Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Chemical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
21
|
Protocell arrays for simultaneous detection of diverse analytes. Nat Commun 2021; 12:5724. [PMID: 34588445 PMCID: PMC8481512 DOI: 10.1038/s41467-021-25989-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 09/03/2021] [Indexed: 01/05/2023] Open
Abstract
Simultaneous detection of multiple analytes from a single sample (multiplexing), particularly when done at the point of need, can guide complex decision-making without increasing the required sample volume or cost per test. Despite recent advances, multiplexed analyte sensing still typically faces the critical limitation of measuring only one type of molecule (e.g., small molecules or nucleic acids) per assay platform. Here, we address this bottleneck with a customizable platform that integrates cell-free expression (CFE) with a polymer-based aqueous two-phase system (ATPS), producing membrane-less protocells containing transcription and translation machinery used for detection. We show that multiple protocells, each performing a distinct sensing reaction, can be arrayed in the same microwell to detect chemically diverse targets from the same sample. Furthermore, these protocell arrays are compatible with human biofluids, maintain function after lyophilization and rehydration, and can produce visually interpretable readouts, illustrating this platform's potential as a minimal-equipment, field-deployable, multi-analyte detection tool.
Collapse
|
22
|
Blum SM, Lee MS, Mgboji GE, Funk VL, Beabout K, Harbaugh SV, Roth PA, Liem AT, Miklos AE, Emanuel PA, Walper SA, Chávez JL, Lux MW. Impact of Porous Matrices and Concentration by Lyophilization on Cell-Free Expression. ACS Synth Biol 2021; 10:1116-1131. [PMID: 33843211 DOI: 10.1021/acssynbio.0c00634] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Cell-free expression systems have drawn increasing attention as a tool to achieve complex biological functions outside of the cell. Several applications of the technology involve the delivery of functionality to challenging environments, such as field-forward diagnostics or point-of-need manufacturing of pharmaceuticals. To achieve these goals, cell-free reaction components are preserved using encapsulation or lyophilization methods, both of which often involve an embedding of components in porous matrices like paper or hydrogels. Previous work has shown a range of impacts of porous materials on cell-free expression reactions. Here, we explored a panel of 32 paperlike materials and 5 hydrogel materials for the impact on reaction performance. The screen included a tolerance to lyophilization for reaction systems based on both cell lysates and purified expression components. For paperlike materials, we found that (1) materials based on synthetic polymers were mostly incompatible with cell-free expression, (2) lysate-based reactions were largely insensitive to the matrix for cellulosic and microfiber materials, and (3) purified systems had an improved performance when lyophilized in cellulosic but not microfiber matrices. The impact of hydrogel materials ranged from completely inhibitory to a slight enhancement. The exploration of modulating the rehydration volume of lyophilized reactions yielded reaction speed increases using an enzymatic colorimetric reporter of up to twofold with an optimal ratio of 2:1 lyophilized reaction to rehydration volume for the lysate system and 1.5:1 for the purified system. The effect was independent of the matrices assessed. Testing with a fluorescent nonenzymatic reporter and no matrix showed similar improvements in both yields and reaction speeds for the lysate system and yields but not reaction speeds for the purified system. We finally used these observations to show an improved performance of two sensors that span reaction types, matrix, and reporters. In total, these results should enhance efforts to develop field-forward applications of cell-free expression systems.
Collapse
Affiliation(s)
- Steven M. Blum
- United States Army Combat Capabilities Development Command Chemical Biological Center. 8198 Blackhawk Road, APG, Aberdeen, Maryland 21010, United States
| | - Marilyn S. Lee
- United States Army Combat Capabilities Development Command Chemical Biological Center. 8198 Blackhawk Road, APG, Aberdeen, Maryland 21010, United States
| | - Glory E. Mgboji
- United States Army Combat Capabilities Development Command Chemical Biological Center. 8198 Blackhawk Road, APG, Aberdeen, Maryland 21010, United States
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee 37830-6209, United States
| | - Vanessa L. Funk
- United States Army Combat Capabilities Development Command Chemical Biological Center. 8198 Blackhawk Road, APG, Aberdeen, Maryland 21010, United States
| | - Kathryn Beabout
- UES, Inc., Dayton, Ohio 45432, United States
- 711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433, United States
| | - Svetlana V. Harbaugh
- 711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433, United States
| | - Pierce A. Roth
- United States Army Combat Capabilities Development Command Chemical Biological Center. 8198 Blackhawk Road, APG, Aberdeen, Maryland 21010, United States
- DCS Corporation, 4696 Millenium Drive, Suite 450, Belcamp, Maryland 21017, United States
| | - Alvin T. Liem
- United States Army Combat Capabilities Development Command Chemical Biological Center. 8198 Blackhawk Road, APG, Aberdeen, Maryland 21010, United States
- DCS Corporation, 4696 Millenium Drive, Suite 450, Belcamp, Maryland 21017, United States
| | - Aleksandr E. Miklos
- United States Army Combat Capabilities Development Command Chemical Biological Center. 8198 Blackhawk Road, APG, Aberdeen, Maryland 21010, United States
| | - Peter A. Emanuel
- United States Army Combat Capabilities Development Command Chemical Biological Center. 8198 Blackhawk Road, APG, Aberdeen, Maryland 21010, United States
| | - Scott A. Walper
- Naval Research Laboratory, 4555 Overlook Avenue SW, Washington, District of Columbia 20375, United States
| | - Jorge Luis Chávez
- 711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433, United States
| | - Matthew W. Lux
- United States Army Combat Capabilities Development Command Chemical Biological Center. 8198 Blackhawk Road, APG, Aberdeen, Maryland 21010, United States
| |
Collapse
|
23
|
Mizuuchi R, Ichihashi N. Translation-coupled RNA replication and parasitic replicators in membrane-free compartments. Chem Commun (Camb) 2021; 56:13453-13456. [PMID: 33043949 DOI: 10.1039/d0cc06606k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We report RNA self-replication through the translation of its encoded protein within membrane-free compartments generated by liquid-liquid phase separation. The aqueous droplets support RNA self-replication by concentrating a genomic RNA and translation proteins, facilitating the uptake of small substrates, and preventing the replication of parasitic RNAs through compartmentalization.
Collapse
Affiliation(s)
- Ryo Mizuuchi
- Komaba Institute for Science, The University of Tokyo, Meguro, Tokyo 153-8902, Japan. and JST, PRESTO, Kawaguchi, Saitama 332-0012, Japan
| | - Norikazu Ichihashi
- Komaba Institute for Science, The University of Tokyo, Meguro, Tokyo 153-8902, Japan. and Department of Life Science, Graduate School of Arts and Science, The University of Tokyo, Meguro, Tokyo 153-8902, Japan and Universal Biology Institute, The University of Tokyo, Meguro, Tokyo 153-8902, Japan
| |
Collapse
|
24
|
Matsumoto S, Sugimoto N. New Insights into the Functions of Nucleic Acids Controlled by Cellular Microenvironments. Top Curr Chem (Cham) 2021; 379:17. [PMID: 33782792 DOI: 10.1007/s41061-021-00329-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 03/11/2021] [Indexed: 12/11/2022]
Abstract
The right-handed double-helical B-form structure (B-form duplex) has been widely recognized as the canonical structure of nucleic acids since it was first proposed by James Watson and Francis Crick in 1953. This B-form duplex model has a monochronic and static structure and codes genetic information within a sequence. Interestingly, DNA and RNA can form various non-canonical structures, such as hairpin loops, left-handed helices, triplexes, tetraplexes of G-quadruplex and i-motif, and branched junctions, in addition to the canonical structure. The formation of non-canonical structures depends not only on sequence but also on the surrounding environment. Importantly, these non-canonical structures may exhibit a wide variety of biological roles by changing their structures and stabilities in response to the surrounding environments, which undergo vast changes at specific locations and at specific times in cells. Here, we review recent progress regarding the interesting behaviors and functions of nucleic acids controlled by molecularly crowded cellular conditions. New insights gained from recent studies suggest that nucleic acids not only code genetic information in sequences but also have unknown functions regarding their structures and stabilities through drastic structural changes in cellular environments.
Collapse
Affiliation(s)
- Saki Matsumoto
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 7-1-20 Minatojima-Minamimachi, Kobe, 650-0047, Japan
| | - Naoki Sugimoto
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 7-1-20 Minatojima-Minamimachi, Kobe, 650-0047, Japan. .,Graduate School of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, 7-1-20 Minatojima-Minamimachi, Kobe, 650-0047, Japan.
| |
Collapse
|
25
|
Mazumder A, Wang A, Uhm H, Ebright RH, Kapanidis AN. RNA polymerase clamp conformational dynamics: long-lived states and modulation by crowding, cations, and nonspecific DNA binding. Nucleic Acids Res 2021; 49:2790-2802. [PMID: 33589919 PMCID: PMC7969002 DOI: 10.1093/nar/gkab074] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 01/23/2021] [Accepted: 01/28/2021] [Indexed: 02/04/2023] Open
Abstract
The RNA polymerase (RNAP) clamp, a mobile structural element conserved in RNAP from all domains of life, has been proposed to play critical roles at different stages of transcription. In previous work, we demonstrated using single-molecule Förster resonance energy transfer (smFRET) that RNAP clamp interconvert between three short-lived conformational states (lifetimes ∼ 0.3–0.6 s), that the clamp can be locked into any one of these states by small molecules, and that the clamp stays closed during initial transcription and elongation. Here, we extend these studies to obtain a comprehensive understanding of clamp dynamics under conditions RNAP may encounter in living cells. We find that the RNAP clamp can populate long-lived conformational states (lifetimes > 1.0 s) and can switch between these long-lived states and the previously observed short-lived states. In addition, we find that clamp motions are increased in the presence of molecular crowding, are unchanged in the presence of elevated monovalent-cation concentrations, and are reduced in the presence of elevated divalent-cation concentrations. Finally, we find that RNAP bound to non-specific DNA predominantly exhibits a closed clamp conformation. Our results raise the possibility of additional regulatory checkpoints that could affect clamp dynamics and consequently could affect transcription and transcriptional regulation.
Collapse
Affiliation(s)
- Abhishek Mazumder
- Biological Physics Research Group, Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, UK
| | - Anna Wang
- Biological Physics Research Group, Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, UK
| | - Heesoo Uhm
- Biological Physics Research Group, Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, UK
| | - Richard H Ebright
- Waksman Institute and Department of Chemistry, Rutgers University, Piscataway, NJ 08854, USA
| | - Achillefs N Kapanidis
- Biological Physics Research Group, Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, UK
| |
Collapse
|
26
|
Batista AC, Soudier P, Kushwaha M, Faulon J. Optimising protein synthesis in cell‐free systems, a review. ENGINEERING BIOLOGY 2021; 5:10-19. [PMID: 36968650 PMCID: PMC9996726 DOI: 10.1049/enb2.12004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 12/03/2020] [Accepted: 12/09/2020] [Indexed: 12/25/2022] Open
Abstract
Over the last decades, cell-free systems have been extensively used for in vitro protein expression. A vast range of protocols and cellular sources varying from prokaryotes and eukaryotes are now available for cell-free technology. However, exploiting the maximum capacity of cell free systems is not achieved by using traditional protocols. Here, what are the strategies and choices one can apply to optimise cell-free protein synthesis have been reviewed. These strategies provide robust and informative improvements regarding transcription, translation and protein folding which can later be used for the establishment of individual best cell-free reactions per lysate batch.
Collapse
Affiliation(s)
- Angelo C. Batista
- Université Paris‐Saclay INRAE AgroParisTech Micalis Institute Jouy‐en‐Josas France
| | - Paul Soudier
- Université Paris‐Saclay INRAE AgroParisTech Micalis Institute Jouy‐en‐Josas France
| | - Manish Kushwaha
- Université Paris‐Saclay INRAE AgroParisTech Micalis Institute Jouy‐en‐Josas France
| | - Jean‐Loup Faulon
- Université Paris‐Saclay INRAE AgroParisTech Micalis Institute Jouy‐en‐Josas France
- SYNBIOCHEM Center School of Chemistry Manchester Institute of Biotechnology The University of Manchester Manchester UK
| |
Collapse
|
27
|
Benítez-Mateos AI, Zeballos N, Comino N, Moreno de Redrojo L, Randelovic T, López-Gallego F. Microcompartmentalized Cell-Free Protein Synthesis in Hydrogel μ-Channels. ACS Synth Biol 2020; 9:2971-2978. [PMID: 33170665 DOI: 10.1021/acssynbio.0c00462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The rapid demand for protein-based molecules has stimulated much research on cell-free protein synthesis (CFPS); however, there are still many challenges in terms of cost-efficiency, process intensification, and sustainability. Herein, we describe the microcompartmentalization of CFPS of superfolded green fluorescent protein (sGFP) in alginate hydrogels, which were casted into a μ-channel device. CFPS was optimized for the microcompartmentalized environment and characterized in terms of synthesis yield. To extend the scope of this technology, the use of other biocompatible materials (collagen, laponite, and agarose) was explored. In addition, the diffusion of sGFP from the hydrogel microenvironment to the bulk was demonstrated, opening a promising opportunity for concurrent synthesis and delivery of proteins. Finally, we provide an application for this system: the CFPS of enzymes. The present design of the hydrogel μ-channel device may enhance the potential application of microcompartmentalized CFPS in biosensing, bioprototyping, and therapeutic development.
Collapse
Affiliation(s)
- Ana I. Benítez-Mateos
- Heterogeneous Biocatalysis Laboratory, CICbiomaGUNE, Paseo Miramón 182. Edificio empresarial “C”, 20014 San Sebastián, Spain
- Heterogeneous Biocatalysis Laboratory, Instituto de Síntesis Química y Catálisis Homogénea (iSQCH), CSIC-Universidad de Zaragoza, C/Pedro Cerbuna 12, 50009 Zaragoza, Spain
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Nicoll Zeballos
- Heterogeneous Biocatalysis Laboratory, CICbiomaGUNE, Paseo Miramón 182. Edificio empresarial “C”, 20014 San Sebastián, Spain
| | - Natalia Comino
- Heterogeneous Biocatalysis Laboratory, CICbiomaGUNE, Paseo Miramón 182. Edificio empresarial “C”, 20014 San Sebastián, Spain
| | - Lucía Moreno de Redrojo
- Heterogeneous Biocatalysis Laboratory, Instituto de Síntesis Química y Catálisis Homogénea (iSQCH), CSIC-Universidad de Zaragoza, C/Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Teodora Randelovic
- Tissue MicroEnvironment (TME) Lab, Institute for Health Research Aragón (IISA), Avda. San Juan Bosco 13, 50009 Zaragoza, Spain
- Aragon Institute of Engineering Research (I3A), University of Zaragoza, Mariano Escuillor s/n, 50018 Zaragoza, Spain
| | - Fernando López-Gallego
- Heterogeneous Biocatalysis Laboratory, CICbiomaGUNE, Paseo Miramón 182. Edificio empresarial “C”, 20014 San Sebastián, Spain
- Heterogeneous Biocatalysis Laboratory, Instituto de Síntesis Química y Catálisis Homogénea (iSQCH), CSIC-Universidad de Zaragoza, C/Pedro Cerbuna 12, 50009 Zaragoza, Spain
- IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain
- ARAID, Aragon Foundation for Science, 50009 Zaragoza, Spain
| |
Collapse
|
28
|
Shaban HA, Barth R, Bystricky K. Navigating the crowd: visualizing coordination between genome dynamics, structure, and transcription. Genome Biol 2020; 21:278. [PMID: 33203432 PMCID: PMC7670612 DOI: 10.1186/s13059-020-02185-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 10/19/2020] [Indexed: 12/12/2022] Open
Abstract
The eukaryotic genome is hierarchically structured yet highly dynamic. Regulating transcription in this environment demands a high level of coordination to permit many proteins to interact with chromatin fiber at appropriate sites in a timely manner. We describe how recent advances in quantitative imaging techniques overcome caveats of sequencing-based methods (Hi-C and related) by enabling direct visualization of transcription factors and chromatin at high resolution, from single genes to the whole nucleus. We discuss the contribution of fluorescence imaging to deciphering the principles underlying this coordination within the crowded nuclear space in living cells and discuss challenges ahead.
Collapse
Affiliation(s)
- Haitham A Shaban
- Spectroscopy Department, Physics Division, National Research Centre, Dokki, Cairo, 12622, Egypt.
- Current Address: Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| | - Roman Barth
- Department of Bionanoscience, Delft University of Technology, 2628 CJ, Delft, The Netherlands
| | - Kerstin Bystricky
- Laboratoire de Biologie Moléculaire Eucaryote (LBME), Centre de Biologie Intégrative (CBI), CNRS, UPS, University of Toulouse, 31062, Toulouse, France.
- Institut Universitaire de France (IUF), Paris, France.
| |
Collapse
|
29
|
Drachuk I, Harbaugh S, Chávez JL, Kelley-Loughnane N. Improving the Activity of DNA-Encoded Sensing Elements through Confinement in Silk Microcapsules. ACS APPLIED MATERIALS & INTERFACES 2020; 12:48329-48339. [PMID: 33064462 DOI: 10.1021/acsami.0c13713] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Assembling synthetic bioparts into simplified artificial cells holds tremendous promise for advancing studies into the synthesis, biosensing, and delivery of biomolecules. Currently, the most successful techniques for encapsulation of the transcription-translation machinery exploit compartmentalization in liposomal vesicles. However, improvements to these methods may increase permeability to polar molecules, functionalization of the membrane with biologically active elements, and encapsulation efficiency. Microcapsules prepared via templated layer-by-layer (LbL) assembly using natural polymers have the potential to resolve some of the hurdles associated with liposomes. Here, we introduce a design for immobilizing DNA templates encoding translationally activated riboswitches and RNA aptamers into microcapsules prepared from regenerated silk fibroin protein. Adjusting several key parameters such as the presence of a polymer primer, concentration of silk protein, and DNA loadings during LbL assembly resulted in biocompatible, semipermeable, DNA-laden microcapsules. To preserve bioactivity, DNA was immobilized inside of the capsule membrane, which not only promoted stability during long-term storage at ambient conditions but also improved output response from spatially confined DNA-encoded sensing elements (SEs). Multiple copies of mRNA and GFPa1 protein were synthesized upon activation with specific analytes during in vitro transcription/translation reactions, demonstrating that selective permeability of silk microcapsules was essential for the diffusion of components of the cell-free system inside of the capsules. Further functionalization of capsule shells with gold nanoparticles (AuNPs) and antibodies (IgG) demonstrated the applicability of microcompartmentalized colloidal objects carrying SEs for remote sensing and/or targeted delivery. In the future, multifunctional, biocompatible silk-based microcapsules loaded with different RNA sensors can help advance the design of multiplexed biosensors tracking multiple biomarkers in complex media.
Collapse
Affiliation(s)
- Irina Drachuk
- UES Inc., Dayton, Ohio 45432, United States
- 711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson AFB, Dayton, Ohio 45433, United States
| | - Svetlana Harbaugh
- 711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson AFB, Dayton, Ohio 45433, United States
| | - Jorge L Chávez
- 711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson AFB, Dayton, Ohio 45433, United States
| | - Nancy Kelley-Loughnane
- 711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson AFB, Dayton, Ohio 45433, United States
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Dayton, Ohio 45433, United States
| |
Collapse
|
30
|
Lee MS, Hung CS, Phillips DA, Buck CC, Gupta MK, Lux MW. Silk fibroin as an additive for cell-free protein synthesis. Synth Syst Biotechnol 2020; 5:145-154. [PMID: 32637668 PMCID: PMC7320238 DOI: 10.1016/j.synbio.2020.06.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 06/15/2020] [Accepted: 06/15/2020] [Indexed: 01/06/2023] Open
Abstract
Cell-free systems contain many proteins and metabolites required for complex functions such as transcription and translation or multi-step metabolic conversions. Research into expanding the delivery of these systems by drying or by embedding into other materials is enabling new applications in sensing, point-of-need manufacturing, and responsive materials. Meanwhile, silk fibroin from the silk worm, Bombyx mori, has received attention as a protective additive for dried enzyme formulations and as a material to build biocompatible hydrogels for controlled localization or delivery of biomolecular cargoes. In this work, we explore the effects of silk fibroin as an additive in cell-free protein synthesis (CFPS) reactions. Impacts of silk fibroin on CFPS activity and stability after drying, as well as the potential for incorporation of CFPS into hydrogels of crosslinked silk fibroin are assessed. We find that simple addition of silk fibroin increased productivity of the CFPS reactions by up to 42%, which we attribute to macromolecular crowding effects. However, we did not find evidence that silk fibroin provides a protective effects after drying as previously described for purified enzymes. Further, the enzymatic crosslinking transformations of silk fibroin typically used to form hydrogels are inhibited in the presence of the CFPS reaction mixture. Crosslinking attempts did not impact CFPS activity, but did yield localized protein aggregates rather than a hydrogel. We discuss the mechanisms at play in these results and how the silk fibroin-CFPS system might be improved for the design of cell-free devices.
Collapse
Affiliation(s)
- Marilyn S. Lee
- US Army Combat Capabilities Development Command Chemical and Biological Center, 8567 Ricketts Point Road, Aberdeen Proving Ground, MD, 21010, USA
| | - Chia-Suei Hung
- US Air Force Research Laboratory, 2179 12th St., B652/R122 Wright-Patterson Air Force Base, OH, 45433, USA
| | - Daniel A. Phillips
- US Naval Research Laboratory Center for Bio/Molecular Science and Engineering, Bldg. 42, Room 303 4555 Overlook Ave. Washington, DC 20375, UES Inc., 4401 Dayton Xenia Rd., Beavercreek, OH 45432, USA
| | - Chelsea C. Buck
- US Air Force Research Laboratory, 2179 12th St., B652/R122 Wright-Patterson Air Force Base, OH, 45433, USA
- US Naval Research Laboratory Center for Bio/Molecular Science and Engineering, Bldg. 42, Room 303 4555 Overlook Ave. Washington, DC 20375, UES Inc., 4401 Dayton Xenia Rd., Beavercreek, OH 45432, USA
| | - Maneesh K. Gupta
- US Air Force Research Laboratory, 2179 12th St., B652/R122 Wright-Patterson Air Force Base, OH, 45433, USA
| | - Matthew W. Lux
- US Army Combat Capabilities Development Command Chemical and Biological Center, 8567 Ricketts Point Road, Aberdeen Proving Ground, MD, 21010, USA
| |
Collapse
|
31
|
Burgenson D, Linton J, Ge X, Kostov Y, Tolosa L, Szeto GL, Rao G. A Cell-Free Protein Expression System Derived from Human Primary Peripheral Blood Mononuclear Cells. ACS Synth Biol 2020; 9:2188-2196. [PMID: 32698572 DOI: 10.1021/acssynbio.0c00256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Historically, some of the first cell-free protein expression systems studied in vitro translation in various human blood cells. However, because of limited knowledge of eukaryotic translation and the advancement of cell line development, interest in these systems decreased. Eukaryotic translation is a complex system of factors that contribute to the overall translation of mRNA to produce proteins. The intracellular translateome of a cell can be modified by various factors and disease states, but it is impossible to individually measure all factors involved when there is no comprehensive understanding of eukaryotic translation. The present work outlines the use of a coupled transcription and translation cell-free protein expression system to produce recombinant proteins derived from human donor peripheral blood mononuclear cells (PBMCs) activated with phytohemagglutinin-M (PHA-M). The methods outlined here could result in tools to aid immunology, gene therapy, cell therapy, and synthetic biology research and provide a convenient and holistic method to study and assess the intracellular translation environment of primary immune cells.
Collapse
Affiliation(s)
- David Burgenson
- Center for Advanced Sensor Technology, University of Maryland Baltimore County, Baltimore, Maryland 21250, United States
- Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland Baltimore County, Baltimore, Maryland 21250, United States
| | - Jonathan Linton
- Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland Baltimore County, Baltimore, Maryland 21250, United States
| | - Xudong Ge
- Center for Advanced Sensor Technology, University of Maryland Baltimore County, Baltimore, Maryland 21250, United States
- Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland Baltimore County, Baltimore, Maryland 21250, United States
| | - Yordan Kostov
- Center for Advanced Sensor Technology, University of Maryland Baltimore County, Baltimore, Maryland 21250, United States
- Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland Baltimore County, Baltimore, Maryland 21250, United States
| | - Leah Tolosa
- Center for Advanced Sensor Technology, University of Maryland Baltimore County, Baltimore, Maryland 21250, United States
- Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland Baltimore County, Baltimore, Maryland 21250, United States
| | - Gregory L. Szeto
- Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland Baltimore County, Baltimore, Maryland 21250, United States
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, Maryland 21201, United States
| | - Govind Rao
- Center for Advanced Sensor Technology, University of Maryland Baltimore County, Baltimore, Maryland 21250, United States
- Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland Baltimore County, Baltimore, Maryland 21250, United States
| |
Collapse
|
32
|
Liu D, Yang Z, Zhang L, Wei M, Lu Y. Cell-free biology using remote-controlled digital microfluidics for individual droplet control. RSC Adv 2020; 10:26972-26981. [PMID: 35515808 PMCID: PMC9055536 DOI: 10.1039/d0ra04588h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 07/02/2020] [Indexed: 12/26/2022] Open
Abstract
Cell-free biology for diverse protein expression and biodetection in vitro has developed rapidly in recent years because of its more open and controllable reaction environment. However, complex liquid handling schemes are troublesome, especially when scaling up to perform multiple different reactions simultaneously. Digital microfluidic (DMF) technology can operate a single droplet by controlling its movement, mixing, separation, and some other actions, and is a suitable scaffold for cell-free reactions with higher efficiency. In this paper, a commercial DMF board, OpenDrop, was used, and DMF technology via remote real-time control inspired by the Internet of Things (IoT) was developed for detecting glucose enzyme catalytic cell-free reactions and verifying the feasibility of programmed cell-free protein expression. A cell-free biological reaction process which can be remote-controlled visually with excellent interactivity, controllability and flexibility was achieved. As proof-of-concept research, this work proposed a new control interface for single-drop cell-free biological reactions. It is much like the "droplet operation desktop" concept, used for remote-controllable operations and distributions of cell-free biology for efficient biological screening and protein synthesis in complex reaction networks, with expanded operability and less artificial interference.
Collapse
Affiliation(s)
- Dong Liu
- Department of Chemical Engineering, Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University Beijing 100084 China
| | - Zhenghuan Yang
- Department of Chemical Engineering, Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University Beijing 100084 China
| | - Luyang Zhang
- Department of Chemical Engineering, Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University Beijing 100084 China
| | - Minglun Wei
- Department of Chemical Engineering, Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University Beijing 100084 China
| | - Yuan Lu
- Department of Chemical Engineering, Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University Beijing 100084 China
| |
Collapse
|
33
|
Wang H, Gu L, Tan R, Ma X, Zhou X, Liu Y. Macromolecule crowding effects on the phase separation of semi-flexible polymer in spherical confined space. J Biol Phys 2020; 46:223-231. [PMID: 32613446 DOI: 10.1007/s10867-020-09550-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 05/13/2020] [Indexed: 11/27/2022] Open
Abstract
Current works focus on detecting macromolecule crowding effects on the phase separation of the mixture between semi-flexible polymer and crowders (hydrophilic polymers) in confined space by Monte Carlo simulations. With the increasing addition of crowders into the spherical confined space, the semi-flexible polymer was first compressed into a condensed state from the initial coil state, and then the condensed conformation expanded and deposited on the inner surface of the spherical confined space with an extended state. The phase diagram in the phase space of the volume fraction of crowders and the scaled radius of spherical confined space by crowder diameter, and the direct conformation transition of semi-flexible polymer have validated the phase transition process successfully. In addition, the deposition of extended conformation on the inner surface of the spherical confined space was qualified by the vertex density, its curve shifted along the radial direction with the increasing volume fraction of crowder. During the phase separation process, the critical volume fraction φ∗ relates to the crowder diameter approximately linearly and the relation between the critical volume fraction and the crowder diameter strongly depends on the size of the spherical confined space.
Collapse
Affiliation(s)
- Hongchang Wang
- School of Physics and Electronic Science, Guizhou Normal University, Guiyang, 550025, China
| | - Lingyun Gu
- School of Physics and Astronomy, Sun Yat-Sen University, Zhuhai, 519082, China
| | - Rongri Tan
- College of Communication and Electronics, Jiangxi Science and Technology Normal University, Nanchang, 330013, China
| | - Xiaotian Ma
- School of Physics and Electronic Science, Guizhou Normal University, Guiyang, 550025, China
| | - Xun Zhou
- School of Physics and Electronic Science, Guizhou Normal University, Guiyang, 550025, China.
| | - Yanhui Liu
- College of Physics, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
34
|
Chen X, Sun Q, Lu Y. Creating a locally crowded environment with nanoclay hydrogels for cell-free biosynthesis. SOFT MATTER 2020; 16:5132-5138. [PMID: 32478769 DOI: 10.1039/d0sm00636j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In living cells, the exceptionally high local concentration of macromolecules, or "locally crowded environment," could affect many aspects of cellular function. Exploration of the locally crowded environment can improve the understanding of living cells and advance the study of artificial cells. In this paper, nanoclay combined with gene templates is used to simulate the locally crowded environment in a cell-free system, ultimately to explore its effects on protein expression. The adsorption effect can immobilize the plasmid on the nanoclay surface, thereby achieving a higher local concentration in the cell-free system. A closer proximity of genes could result in an increase in the protein production of cell-free systems by 1.75 times. Besides, the kinetics of the nanoclay in the cell-free system was analyzed, and the results showed that the genetic transcription level involved in cell-free reactions was significantly improved. This study confirms that a locally crowded environment created by the nanoclay can achieve high protein expression in a cell-free system and help promote the process of transcription and translation. Application of the nanoclay in the cell-free system demonstrates the significance of applying nanomaterials in biological and biomedical fields and provides technical support for the study of the locally crowded environment.
Collapse
Affiliation(s)
- Xinjie Chen
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.
| | - Qi Sun
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.
| | - Yuan Lu
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
35
|
Garenne D, Noireaux V. Analysis of Cytoplasmic and Membrane Molecular Crowding in Genetically Programmed Synthetic Cells. Biomacromolecules 2020; 21:2808-2817. [DOI: 10.1021/acs.biomac.0c00513] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- David Garenne
- School of Physics and Astronomy, University of Minnesota, 115 Union Street SE, Minneapolis, Minnesota 55455, United States
| | - Vincent Noireaux
- School of Physics and Astronomy, University of Minnesota, 115 Union Street SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
36
|
Gregorio NE, Kao WY, Williams LC, Hight CM, Patel P, Watts KR, Oza JP. Unlocking Applications of Cell-Free Biotechnology through Enhanced Shelf Life and Productivity of E. coli Extracts. ACS Synth Biol 2020; 9:766-778. [PMID: 32083847 DOI: 10.1021/acssynbio.9b00433] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cell-free protein synthesis (CFPS) is a platform biotechnology that enables a breadth of applications. However, field applications remain limited due to the poor shelf-stability of aqueous cell extracts required for CFPS. Lyophilization of E. coli extracts improves shelf life but remains insufficient for extended storage at room temperature. To address this limitation, we mapped the chemical space of ten low-cost additives with four distinct mechanisms of action in a combinatorial manner to identify formulations capable of stabilizing lyophilized cell extract. We report three key findings: (1) unique additive formulations that maintain full productivity of cell extracts stored at 4 °C and 23 °C; (2) additive formulations that enhance extract productivity by nearly 2-fold; (3) a machine learning algorithm that provides predictive capacity for the stabilizing effects of additive formulations that were not tested experimentally. These findings provide a simple and low-cost advance toward making CFPS field-ready and cost-competitive for biomanufacturing.
Collapse
Affiliation(s)
- Nicole E. Gregorio
- Chemistry and Biochemistry Department, California Polytechnic State University, 1 Grand Avenue, San Luis Obispo, California 93407, United States
- Center for Applications in Biotechnology, California Polytechnic State University, 1 Grand Avenue, San Luis Obispo, California 93407, United States
| | - Wesley Y. Kao
- Chemistry and Biochemistry Department, California Polytechnic State University, 1 Grand Avenue, San Luis Obispo, California 93407, United States
- Center for Applications in Biotechnology, California Polytechnic State University, 1 Grand Avenue, San Luis Obispo, California 93407, United States
| | - Layne C. Williams
- Chemistry and Biochemistry Department, California Polytechnic State University, 1 Grand Avenue, San Luis Obispo, California 93407, United States
- Center for Applications in Biotechnology, California Polytechnic State University, 1 Grand Avenue, San Luis Obispo, California 93407, United States
| | - Christopher M. Hight
- Chemistry and Biochemistry Department, California Polytechnic State University, 1 Grand Avenue, San Luis Obispo, California 93407, United States
- Center for Applications in Biotechnology, California Polytechnic State University, 1 Grand Avenue, San Luis Obispo, California 93407, United States
| | - Pratish Patel
- Department of Finance, Orfalea College of Business, California Polytechnic State University, San Luis Obispo, California 93407, United States
| | - Katharine R. Watts
- Chemistry and Biochemistry Department, California Polytechnic State University, 1 Grand Avenue, San Luis Obispo, California 93407, United States
- Center for Applications in Biotechnology, California Polytechnic State University, 1 Grand Avenue, San Luis Obispo, California 93407, United States
| | - Javin P. Oza
- Chemistry and Biochemistry Department, California Polytechnic State University, 1 Grand Avenue, San Luis Obispo, California 93407, United States
- Center for Applications in Biotechnology, California Polytechnic State University, 1 Grand Avenue, San Luis Obispo, California 93407, United States
| |
Collapse
|
37
|
Laohakunakorn N, Grasemann L, Lavickova B, Michielin G, Shahein A, Swank Z, Maerkl SJ. Bottom-Up Construction of Complex Biomolecular Systems With Cell-Free Synthetic Biology. Front Bioeng Biotechnol 2020; 8:213. [PMID: 32266240 PMCID: PMC7105575 DOI: 10.3389/fbioe.2020.00213] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 03/03/2020] [Indexed: 12/16/2022] Open
Abstract
Cell-free systems offer a promising approach to engineer biology since their open nature allows for well-controlled and characterized reaction conditions. In this review, we discuss the history and recent developments in engineering recombinant and crude extract systems, as well as breakthroughs in enabling technologies, that have facilitated increased throughput, compartmentalization, and spatial control of cell-free protein synthesis reactions. Combined with a deeper understanding of the cell-free systems themselves, these advances improve our ability to address a range of scientific questions. By mastering control of the cell-free platform, we will be in a position to construct increasingly complex biomolecular systems, and approach natural biological complexity in a bottom-up manner.
Collapse
Affiliation(s)
- Nadanai Laohakunakorn
- School of Biological Sciences, Institute of Quantitative Biology, Biochemistry, and Biotechnology, University of Edinburgh, Edinburgh, United Kingdom
| | - Laura Grasemann
- School of Engineering, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Barbora Lavickova
- School of Engineering, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Grégoire Michielin
- School of Engineering, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Amir Shahein
- School of Engineering, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Zoe Swank
- School of Engineering, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Sebastian J. Maerkl
- School of Engineering, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
38
|
Ge X, Xu J. Macromolecular crowding effects on transcription and translation are regulated by free magnesium ion. Biotechnol Appl Biochem 2020; 67:117-122. [PMID: 31576614 PMCID: PMC7263881 DOI: 10.1002/bab.1827] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 09/28/2019] [Indexed: 12/21/2022]
Abstract
Cell-free metabolic engineering is an emerging and promising alternative platform for the production of fuels and chemicals. In recent years, macromolecular crowding effect, which is an important function in living cells but ignored in cell-free systems, has been transferred to cell-free protein synthesis (CFPS). However, inhibitory effects of crowding agents on CFPS were frequently observed, and the mechanism is unclear. In this study, free Mg2+ was found to be a key factor that can regulate the macromolecular crowding effect on in vitro transcription, in vitro translation, and coupled transcript/translation. Addition of crowding agents (20% of Ficoll-70 or Ficoll-400) enhanced in vitro transcription at an index of free Mg2+ concentration (IFMC) below 2 mM but inhibited the transcription when the IFMC was higher than 2 mM. Similarly, Ficoll-400 enhanced in vitro translation and coupled transcription/translation at a lower IFMC (0.1-2 mM) and inhibited the reactions at higher IFMC (>2 mM). Based on the results, CFPS systems could be further optimized by adjusting the content of crowding agents and the IFMC. Besides, the results also indicate that macromolecular crowding effect is important for maintaining the efficiency of in vivo transcription and translation which occur at a low intracellular IFMC (<1 mM).
Collapse
Affiliation(s)
- Xumeng Ge
- Arkansas Biosciences Institute and College of Agriculture and Technology, Arkansas State University, Jonesboro, AR, USA
- Quasar Energy Group, Independence, OH, USA
| | - Jianfeng Xu
- Arkansas Biosciences Institute and College of Agriculture and Technology, Arkansas State University, Jonesboro, AR, USA
| |
Collapse
|
39
|
Köhler T, Heida T, Hoefgen S, Weigel N, Valiante V, Thiele J. Cell-free protein synthesis and in situ immobilization of deGFP-MatB in polymer microgels for malonate-to-malonyl CoA conversion. RSC Adv 2020; 10:40588-40596. [PMID: 35520868 PMCID: PMC9057574 DOI: 10.1039/d0ra06702d] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/22/2020] [Indexed: 12/12/2022] Open
Abstract
We describe a bottom-up approach towards functional enzymes utilizing microgels as carriers for genetic information that enable cell-free protein synthesis, in situ immobilization, and utilization of functional deGFP-MatB.
Collapse
Affiliation(s)
- Tony Köhler
- Institute of Physical Chemistry and Polymer Physics
- Leibniz-Institut für Polymerforschung Dresden e.V
- 01069 Dresden
- Germany
| | - Thomas Heida
- Institute of Physical Chemistry and Polymer Physics
- Leibniz-Institut für Polymerforschung Dresden e.V
- 01069 Dresden
- Germany
| | - Sandra Hoefgen
- Biobricks of Microbial Natural Product Syntheses
- Department of Molecular and Applied Microbiology
- Leibniz Institute for Natural Product Research and Infection Biology
- 07745 Jena
- Germany
| | - Niclas Weigel
- Institute of Physical Chemistry and Polymer Physics
- Leibniz-Institut für Polymerforschung Dresden e.V
- 01069 Dresden
- Germany
| | - Vito Valiante
- Biobricks of Microbial Natural Product Syntheses
- Department of Molecular and Applied Microbiology
- Leibniz Institute for Natural Product Research and Infection Biology
- 07745 Jena
- Germany
| | - Julian Thiele
- Institute of Physical Chemistry and Polymer Physics
- Leibniz-Institut für Polymerforschung Dresden e.V
- 01069 Dresden
- Germany
| |
Collapse
|
40
|
Chung S, Lerner E, Jin Y, Kim S, Alhadid Y, Grimaud LW, Zhang IX, Knobler CM, Gelbart WM, Weiss S. The effect of macromolecular crowding on single-round transcription by Escherichia coli RNA polymerase. Nucleic Acids Res 2019; 47:1440-1450. [PMID: 30590739 PMCID: PMC6379708 DOI: 10.1093/nar/gky1277] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 12/01/2018] [Accepted: 12/13/2018] [Indexed: 01/09/2023] Open
Abstract
Previous works have reported significant effects of macromolecular crowding on the structure and behavior of biomolecules. The crowded intracellular environment, in contrast to in vitro buffer solutions, likely imparts similar effects on biomolecules. The enzyme serving as the gatekeeper for the genome, RNA polymerase (RNAP), is among the most regulated enzymes. Although it was previously demonstrated that macromolecular crowding affects association of RNAP to DNA, not much is known about how crowding acts on late initiation and promoter clearance steps, which are considered to be the rate-determining steps for many promoters. Here, we demonstrate that macromolecular crowding enhances the rate of late initiation and promoter clearance using in vitro quenching-based single-molecule kinetics assays. Moreover, the enhancement's dependence on crowder size notably deviates from predictions by the scaled-particle theory, commonly used for description of crowding effects. Our findings shed new light on how enzymatic reactions could be affected by crowded conditions in the cellular milieu.
Collapse
Affiliation(s)
- SangYoon Chung
- Department of Chemistry and Biochemistry, University of California Los Angeles, CA 90095, USA
| | - Eitan Lerner
- Department of Chemistry and Biochemistry, University of California Los Angeles, CA 90095, USA
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Yan Jin
- Department of Chemistry and Biochemistry, University of California Los Angeles, CA 90095, USA
| | - Soohong Kim
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Yazan Alhadid
- Interdepartmental Program in Molecular, Cellular, and Integrative Physiology, University of California, Los Angeles, CA 90095, USA
| | - Logan Wilson Grimaud
- Department of Chemistry and Biochemistry, University of California Los Angeles, CA 90095, USA
| | - Irina X Zhang
- Department of Chemistry and Biochemistry, University of California Los Angeles, CA 90095, USA
- Present address: Irina X. Zhang, Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Charles M Knobler
- Department of Chemistry and Biochemistry, University of California Los Angeles, CA 90095, USA
| | - William M Gelbart
- Department of Chemistry and Biochemistry, University of California Los Angeles, CA 90095, USA
- Interdepartmental Program in Molecular, Cellular, and Integrative Physiology, University of California, Los Angeles, CA 90095, USA
- Molecular Biology Institute (MBI), University of California Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California Los Angeles, CA 90095, USA
- Correspondence may also be addressed to William M. Gelbart. Tel: +1 310 825 2005; Fax: +1 310 206 4038;
| | - Shimon Weiss
- Department of Chemistry and Biochemistry, University of California Los Angeles, CA 90095, USA
- Interdepartmental Program in Molecular, Cellular, and Integrative Physiology, University of California, Los Angeles, CA 90095, USA
- Molecular Biology Institute (MBI), University of California Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California Los Angeles, CA 90095, USA
- Department of Physiology, University of California Los Angeles, CA 90095, USA
- Department of Physics, Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel
- To whom correspondence should be addressed. Tel: +1 310 794 0093; Fax: +1 310 267 4672;
| |
Collapse
|
41
|
An equation for biomimicking macromolecular crowding using Escherichia coli MG1655 strain. Biophys Chem 2019; 254:106244. [PMID: 31446252 DOI: 10.1016/j.bpc.2019.106244] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/13/2019] [Accepted: 08/02/2019] [Indexed: 11/20/2022]
Abstract
Macromolecules present in the intracellular environment of a cell are densely packed, resulting in a highly crowded cytosolic environment. This crowded milieu influences several biochemical equilibria such as diffusibility and association constant of biomolecules which impose a serious impact on cellular functions as well as its processes. A number of in silico and in vitro studies have been reported till date about using synthetic crowding agents for resembling such a crowding environment within the cell. Lately, it has been realized that synthetic crowders are not suitable for mimicking the intrinsic environment of the cell. In this study, proteins were assumed to be the major biological molecule which contributes to the crowding environment. We have semi-theoretically determined the total protein concentration within an individual E. coli MG1655 cell which changes notably as the growth curve proceeds from 0.2 to 1.0 OD600. The average range of total cellular protein concentration throughout the batch culture was found to be in the range of 15.2 to 178 fg/fL of cytoplasmic volume. The fundamental knowledge gained through the study was translated to applied research in the form of an equation. We propose an equation that could help to mimic the OD600 dependent crowding environment present within a single cell of E. coli in the desired volume of reaction solution. In a nutshell, the equation provides quantitative estimation of the volume of culture required to prepare the cell lysate for biomimicking the intracellular crowding environment in vitro. This finding provides a new insight into the cellular cytosolic environment that could be used as a platform to frame more cells like environment in cell-free protein synthesis (CFPS) system for synthetic biology applications.
Collapse
|
42
|
Guo X, Bai L, Li F, Huck WTS, Yang D. Branched DNA Architectures Produced by PCR-Based Assembly as Gene Compartments for Cell-Free Gene-Expression Reactions. Chembiochem 2019; 20:2597-2603. [PMID: 30938476 DOI: 10.1002/cbic.201900094] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Indexed: 11/10/2022]
Abstract
The physical distance between genes plays important roles in controlling gene expression reactions in vivo. Herein, we report the design and synthesis of a branched gene architecture in which three transcription units are integrated into one framework through assembly based on the polymerase chain reaction (PCR), together with the exploitation of these constructs as "gene compartments" for cell-free gene expression reactions, probing the impact of this physical environment on gene transcription and translation. We find that the branched gene system enhances gene expression yields, in particular at low concentrations of DNA and RNA polymerase (RNAP); furthermore, in a crowded microenvironment that mimics the intracellular microenvironment, gene expression from branched genes maintains a relatively high level. We propose that the branched gene assembly forms a membrane-free gene compartment that resembles the nucleoid of prokaryotes and enables RNAP to shuttle more efficiently between neighboring transcription units, thus enhancing gene expression efficiency. Our branched DNA architecture provides a valuable platform for studying the influence of "cellular" physical environments on biochemical reactions in simplified cell-free systems.
Collapse
Affiliation(s)
- Xiaocui Guo
- Frontier Science Center for Synthetic Biology and, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Lihui Bai
- Frontier Science Center for Synthetic Biology and, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Feng Li
- Frontier Science Center for Synthetic Biology and, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Wilhelm T S Huck
- Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525, AJ, Nijmegen, The Netherlands
| | - Dayong Yang
- Frontier Science Center for Synthetic Biology and, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
| |
Collapse
|
43
|
Junker NO, Vaghefikia F, Albarghash A, Höfig H, Kempe D, Walter J, Otten J, Pohl M, Katranidis A, Wiegand S, Fitter J. Impact of Molecular Crowding on Translational Mobility and Conformational Properties of Biological Macromolecules. J Phys Chem B 2019; 123:4477-4486. [PMID: 31059260 DOI: 10.1021/acs.jpcb.9b01239] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Effects of molecular crowding on structural and dynamical properties of biological macromolecules do depend on the concentration of crowding agents but also on the molecular mass and the structural compactness of the crowder molecules. By employing fluorescence correlation spectroscopy (FCS), we investigated the translational mobility of several biological macromolecules ranging from 17 kDa to 2.7 MDa. Polyethylene glycol and Ficoll polymers of different molecular masses were used in buffer solutions to mimic a crowded environment. The reduction in translational mobility of the biological tracer molecules was analyzed as a function of crowder volume fractions and was generally more pronounced in PEG as compared to Ficoll solutions. For several crowding conditions, we observed a molecular sieving effect, in which the diffusion coefficient of larger tracer molecules is reduced to a larger extent than predicted by the Stokes-Einstein relation. By employing a FRET-based biosensor, we also showed that a multiprotein complex is significantly compacted in the presence of macromolecular crowders. Importantly, with respect to sensor in vivo applications, ligand concentration determining sensors would need a crowding specific calibration in order to deliver correct cytosolic ligand concentration.
Collapse
Affiliation(s)
- Niklas O Junker
- I. Physikalisches Institut (IA) , RWTH Aachen University , 52074 Aachen , Germany
| | - Farzaneh Vaghefikia
- I. Physikalisches Institut (IA) , RWTH Aachen University , 52074 Aachen , Germany
| | - Alyazan Albarghash
- I. Physikalisches Institut (IA) , RWTH Aachen University , 52074 Aachen , Germany
| | - Henning Höfig
- I. Physikalisches Institut (IA) , RWTH Aachen University , 52074 Aachen , Germany
| | - Daryan Kempe
- I. Physikalisches Institut (IA) , RWTH Aachen University , 52074 Aachen , Germany
| | - Julia Walter
- I. Physikalisches Institut (IA) , RWTH Aachen University , 52074 Aachen , Germany
| | | | | | | | - Simone Wiegand
- Physikalische Chemie , Universität zu Köln , 50923 Köln , Germany
| | - Jörg Fitter
- I. Physikalisches Institut (IA) , RWTH Aachen University , 52074 Aachen , Germany
| |
Collapse
|
44
|
Jeong D, Klocke M, Agarwal S, Kim J, Choi S, Franco E, Kim J. Cell-Free Synthetic Biology Platform for Engineering Synthetic Biological Circuits and Systems. Methods Protoc 2019; 2:E39. [PMID: 31164618 PMCID: PMC6632179 DOI: 10.3390/mps2020039] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 04/12/2019] [Accepted: 05/08/2019] [Indexed: 01/07/2023] Open
Abstract
Synthetic biology brings engineering disciplines to create novel biological systems for biomedical and technological applications. The substantial growth of the synthetic biology field in the past decade is poised to transform biotechnology and medicine. To streamline design processes and facilitate debugging of complex synthetic circuits, cell-free synthetic biology approaches has reached broad research communities both in academia and industry. By recapitulating gene expression systems in vitro, cell-free expression systems offer flexibility to explore beyond the confines of living cells and allow networking of synthetic and natural systems. Here, we review the capabilities of the current cell-free platforms, focusing on nucleic acid-based molecular programs and circuit construction. We survey the recent developments including cell-free transcription-translation platforms, DNA nanostructures and circuits, and novel classes of riboregulators. The links to mathematical models and the prospects of cell-free synthetic biology platforms will also be discussed.
Collapse
Affiliation(s)
- Dohyun Jeong
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, 77 Cheongam-ro, Pohang, Gyeongbuk 37673, Korea.
| | - Melissa Klocke
- Department of Mechanical Engineering, University of California at Riverside, 900 University Ave, Riverside, CA 92521, USA.
| | - Siddharth Agarwal
- Department of Mechanical Engineering, University of California at Riverside, 900 University Ave, Riverside, CA 92521, USA.
| | - Jeongwon Kim
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, 77 Cheongam-ro, Pohang, Gyeongbuk 37673, Korea.
| | - Seungdo Choi
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, 77 Cheongam-ro, Pohang, Gyeongbuk 37673, Korea.
| | - Elisa Franco
- Department of Mechanical and Aerospace Engineering, University of California at Los Angeles, 420 Westwood Plaza, Los Angeles, CA 90095, USA.
| | - Jongmin Kim
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, 77 Cheongam-ro, Pohang, Gyeongbuk 37673, Korea.
| |
Collapse
|
45
|
Bai L, Guo X, Zhang X, Yu W, Yang D. Saccharides Create a Crowding Environment for Gene Expression in Cell-Free Systems. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:5931-5936. [PMID: 30955336 DOI: 10.1021/acs.langmuir.8b03744] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Cellular physical microenvironment such as crowding shows great influence on enzymatic reactions. Herein, we report a new finding that saccharides with low molecular weight create an effective crowding microenvironment for gene expression in cell-free protein synthesis, which provides valuable implications for living systems. Four saccharides including sorbose, galactose, sucrose, and cellobiose are screened out as effective crowders. At a low concentration range of saccharides, both the mRNA and protein amounts present an upward trend with the concentration increment of saccharides; when the concentrations exceed a critical value, the mRNA and protein amounts decrease. A mechanism is proposed that at low concentrations of saccharides, the effective concentrations of reactants increase due to the coexistence of crowders and reactants in a finite volume; when the concentrations exceed a critical value, the molecular diffusion of reactants is dominantly restricted due to the increased viscosity. Our finding opens a new view that saccharides with low molecular weight could be crowders and provides a new insight that substances with low molecular weight in cells would produce a crowding effect on biochemical reactions in living systems.
Collapse
Affiliation(s)
- Lihui Bai
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin University , Tianjin 300072 , P. R. China
| | - Xiaocui Guo
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin University , Tianjin 300072 , P. R. China
| | - Xue Zhang
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin University , Tianjin 300072 , P. R. China
| | - Wenting Yu
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin University , Tianjin 300072 , P. R. China
| | - Dayong Yang
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin University , Tianjin 300072 , P. R. China
| |
Collapse
|
46
|
Moriizumi Y, Tabata KV, Miyoshi D, Noji H. Osmolyte-Enhanced Protein Synthesis Activity of a Reconstituted Translation System. ACS Synth Biol 2019; 8:557-567. [PMID: 30763512 DOI: 10.1021/acssynbio.8b00513] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Molecular crowding is receiving great attention in cell-free synthetic biology because molecular crowding is a critical feature of natural cell discrimination from artificial cells. Further, it has significant and generic influences on biomolecular functions. Although there are reports on how the macromolecular crowder reagents affect cell-free systems such as transcription and translation, the second class of molecular crowder reagents with low molecular weight, osmolyte, was much less studied in cell-free systems. In the present study, we focused on trimethylamine- N-oxide (TMAO) and betaine, methylamine osmolytes, and investigated the effectiveness of these osmolytes on gene expression activity of reconstituted cell-free protein synthesis. The gene expression activity of the fluorescent proteins Venus and tdTomato and the enzymes β-galactosidase and dihydrofolate reductase were tested. At 37 °C, 0.4 M TMAO showed the highest enhancement of translational activity by a factor of 1.6-3.8, regardless of protein type. In contrast, betaine showed only a moderate effect that was limited to fluorescent proteins. Excess amounts of osmolytes suppressed gene expression activity. An mRNA-start assay and SDS-PAGE quantitative analysis provided firm evidence that TMAO enhances the translation process, instead of transcription, folding, or the maturation of fluorescent proteins. Interestingly, at 26 °C, TMAO and betaine showed the highest enhancement of protein synthesis activity at lower concentrations than at 37 °C. These findings provide implications on how osmolytes assist translation in natural cells. Further, they provide guidelines for modulation of protein synthesis activity in artificial cells through osmolyte addition.
Collapse
Affiliation(s)
- Yoshiki Moriizumi
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kazuhito V. Tabata
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Daisuke Miyoshi
- Department of Nanobiochemistry, Faculty of Frontiers of Innovative Research in Science and Technology (FIRST) and Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 7-1-20 minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Hiroyuki Noji
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
47
|
Abstract
Cell-free protein synthesis (CFPS) has become an established tool for rapid protein synthesis in order to accelerate the discovery of new enzymes and the development of proteins with improved characteristics. Over the past years, progress in CFPS system preparation has been made towards simplification, and many applications have been developed with regard to tailor-made solutions for specific purposes. In this review, various preparation methods of CFPS systems are compared and the significance of individual supplements is assessed. The recent applications of CFPS are summarized and the potential for biocatalyst development discussed. One of the central features is the high-throughput synthesis of protein variants, which enables sophisticated approaches for rapid prototyping of enzymes. These applications demonstrate the contribution of CFPS to enhance enzyme functionalities and the complementation to in vivo protein synthesis. However, there are different issues to be addressed, such as the low predictability of CFPS performance and transferability to in vivo protein synthesis. Nevertheless, the usage of CFPS for high-throughput enzyme screening has been proven to be an efficient method to discover novel biocatalysts and improved enzyme variants.
Collapse
|
48
|
Kai L, Schwille P. Cell-Free Protein Synthesis and Its Perspectives for Assembling Cells from the Bottom-Up. ACTA ACUST UNITED AC 2019; 3:e1800322. [PMID: 32648712 DOI: 10.1002/adbi.201800322] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/14/2019] [Indexed: 12/20/2022]
Abstract
The underlying idea of synthetic biology is that biological reactions/modules/systems can be precisely engineered and controlled toward desired products. Numerous efforts in the past decades in deciphering the complexity of biological systems in vivo have led to a variety of tools for synthetic biology, especially based on recombinant DNA. However, one generic limitation of all living systems is that the vast majority of energy input is dedicated to maintain the system as a whole, rather than the small part of interest. Cell-free synthetic biology is aiming at exactly this fundamental limitation, providing the next level of flexibility for engineering and designing biological systems in vitro. New technology has continuously inspired cell-free biology and extended its applications, including gene circuits, spatiotemporally controlled pathways, coactivated catalysts systems, and rationally designed multienzyme pathways, in particular, minimal cell construction. In the context of this special issue, discussing work being carried out in the "MaxSynBio" consortium, the advances in characterizing stochasticity and dynamics of cell-free protein synthesis within cell-sized compartments, as well as the molecular crowding effect, are discussed. The organization of spatial heterogeneity is the key prerequisite for achieving hierarchy and stepwise assembly of minimal cells from the bottom-up.
Collapse
Affiliation(s)
- Lei Kai
- School of Life Sciences, Jiangsu Normal University, Shanghai Road 101, 221116, Xuzhou, P. R. China.,Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, D-82152, Martinsried, Germany
| | - Petra Schwille
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, D-82152, Martinsried, Germany
| |
Collapse
|
49
|
Dopp BJL, Tamiev DD, Reuel NF. Cell-free supplement mixtures: Elucidating the history and biochemical utility of additives used to support in vitro protein synthesis in E. coli extract. Biotechnol Adv 2019; 37:246-258. [DOI: 10.1016/j.biotechadv.2018.12.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 12/06/2018] [Accepted: 12/15/2018] [Indexed: 12/18/2022]
|
50
|
|