1
|
Obafemi OT, Ayeleso AO, Adewale OB, Unuofin J, Ekundayo BE, Ntwasa M, Lebelo SL. Animal models in biomedical research: Relevance of Drosophila melanogaster. Heliyon 2025; 11:e41605. [PMID: 39850441 PMCID: PMC11754520 DOI: 10.1016/j.heliyon.2024.e41605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 12/23/2024] [Accepted: 12/30/2024] [Indexed: 01/25/2025] Open
Abstract
Animal models have become veritable tools in gaining insight into the pathogenesis and progression of several human diseases. These models could range in complexity from Caenorhabditis elegans to non-human primates. With the aid of these animal models, a lot of new knowledge has been gained about several diseases which otherwise would not have been possible. Most times, the utilization of these animal models is predicated on the level of homology they share with humans, which suggests that outcomes of studies using them could be extrapolated to humans. However, this has not always been the case. Drosophila melanogaster is becoming increasingly relevant as preferred model for understanding the biochemical basis of several human diseases. Apart from its relatively short lifespan, high fecundity and ease of rearing, the simplicity of its genome and lower redundancy of its genes when compared with vertebrate models, as well as availability of genetic tool kit for easy manipulation of its genome, have all contributed to its emergence as a valid animal model of human diseases. This review aimed at highlighting the contributions of selected animal models in biomedical research with a focus on the relevance of Drosophila melanogaster in understanding the biochemical basis of some diseases that have continued to plague mankind.
Collapse
Affiliation(s)
- Olabisi Tajudeen Obafemi
- Department of Life and Consumer Sciences, School of Agriculture and Life Sciences, University of South Africa, 1710, Johannesburg, South Africa
| | - Ademola Olabode Ayeleso
- Department of Life and Consumer Sciences, School of Agriculture and Life Sciences, University of South Africa, 1710, Johannesburg, South Africa
- Biochemistry Programme, College of Agriculture, Engineering and Science, Bowen University, PMB 284, Iwo, Osun State, Nigeria
| | | | - Jeremiah Unuofin
- Department of Life and Consumer Sciences, School of Agriculture and Life Sciences, University of South Africa, 1710, Johannesburg, South Africa
| | | | - Monde Ntwasa
- Department of Life and Consumer Sciences, School of Agriculture and Life Sciences, University of South Africa, 1710, Johannesburg, South Africa
| | - Sogolo Lucky Lebelo
- Department of Life and Consumer Sciences, School of Agriculture and Life Sciences, University of South Africa, 1710, Johannesburg, South Africa
| |
Collapse
|
2
|
Al-Dailami AN, Orchard I, Lange AB. RhoprCAPA-2 acts as a gonadotropin regulating reproduction in adult female, Rhodnius prolixus. Gen Comp Endocrinol 2024; 358:114611. [PMID: 39260593 DOI: 10.1016/j.ygcen.2024.114611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/16/2024] [Accepted: 09/07/2024] [Indexed: 09/13/2024]
Abstract
CAPA peptides play diverse roles in insects, modulating muscle contraction, regulating fluid balance, and reproduction. In Rhodnius prolixus, a hematophagous insect and a vector for human Chagas disease, three CAPA peptides are encoded by the capability gene, including RhoprCAPA-1, RhoprCAPA-2, and RhoprCAPA-PK-1. RhoprCAPA-2 is an anti-diuretic hormone in R. prolixus. Here, we explore the involvement of RhoprCAPA-2 in reproduction in adult female R. prolixus. Double-label immunohistochemistry reveals co-localization of RhoprCAPA-2-like and the glycoprotein hormone (GPA2/GPB5) subunit GPB5-like immunoreactivity in neurosecretory cells in the mesothoracic ganglionic mass and in their neurohemal sites, suggesting these peptides can be co-released to regulate physiological processes. qPCR analysis reveals changes in transcript expression levels of the RhoprCAPA receptor (CAPAR) in the fat body and reproductive tissues after feeding in adult female R. prolixus. RNA interference-mediated knockdown of CAPAR transcript decreases egg production and reduces hatching rate and survival rate in female R. prolixus. Downregulation of CAPAR decreases vitellogenin RhoprVg1 transcript expression in the fat body and deceases its receptor RhoprVgR transcript level in the ovaries; accompanied by a reduction in vitellogenin content in the fat body and hemolymph. Incubation of fat body and ovaries in vitro with RhoprCAPA-2 increases RhoprVg1 transcript expression in the fat body, vitellogenin content in the fat body culture medium, and increases RhoprVgR transcript in the ovaries. These findings implicate the CAPA signaling pathway in reproduction, with RhoprCAPA-2 acting as a gonadotropin in adult female R. prolixus.
Collapse
Affiliation(s)
- Areej N Al-Dailami
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario L5L 1C6, Canada.
| | - Ian Orchard
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario L5L 1C6, Canada.
| | - Angela B Lange
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario L5L 1C6, Canada.
| |
Collapse
|
3
|
Beaven R, Denholm B. The cryptonephridial/rectal complex: an evolutionary adaptation for water and ion conservation. Biol Rev Camb Philos Soc 2024. [PMID: 39438273 DOI: 10.1111/brv.13156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024]
Abstract
Arthropods have integrated digestive and renal systems, which function to acquire and maintain homeostatically the substances they require for survival. The cryptonephridial complex (CNC) is an evolutionary novelty in which the renal organs and gut have been dramatically reorganised. Parts of the renal or Malpighian tubules (MpTs) form a close association with the surface of the rectum, and are surrounded by a novel tissue, the perinephric membrane, which acts to insulate the system from the haemolymph and thus allows tight regulation of ions and water into and out of the CNC. The CNC can reclaim water and solutes from the rectal contents and recycle these back into the haemolymph. Fluid flow in the MpTs runs counter to flow within the rectum. It is this countercurrent arrangement that underpins its powerful recycling capabilities, and represents one of the most efficient water conservation mechanisms in nature. CNCs appear to have evolved multiple times, and are present in some of the largest and most evolutionarily successful insect groups including the larvae of most Lepidoptera and in a major beetle lineage (Cucujiformia + Bostrichoidea), suggesting that the CNC is an important adaptation. Here we review the knowledge of this remarkable organ system gained over the past 200 years. We first focus on the CNCs of tenebrionid beetles, for which we have an in-depth understanding from physiological, structural and ultrastructural studies (primarily in Tenebrio molitor), which are now being extended by studies in Tribolium castaneum enabled by advances in molecular and microscopy approaches established for this species. These recent studies are beginning to illuminate CNC development, physiology and endocrine control. We then take a broader view of arthropod CNCs, phylogenetically mapping their reported occurrence to assess their distribution and likely evolutionary origins. We explore CNCs from an ecological viewpoint, put forward evidence that CNCs may primarily be adaptations for facing the challenges of larval life, and argue that their loss in many aquatic species could point to a primary function in conserving water in terrestrial species. Finally, by considering the functions of renal and digestive epithelia in insects lacking CNCs, as well as the typical architecture of these organs in relation to one another, we propose that ancestral features of these organs predispose them for the evolution of CNCs.
Collapse
Affiliation(s)
- Robin Beaven
- Hugh Robson Building, George Square, Deanery of Biomedical Sciences, The University of Edinburgh, Edinburgh, EH8 9XD, UK
| | - Barry Denholm
- Hugh Robson Building, George Square, Deanery of Biomedical Sciences, The University of Edinburgh, Edinburgh, EH8 9XD, UK
| |
Collapse
|
4
|
Xin J, Brown D, Wang Y, Wang X, Li M, Li T, Liu N. Unveiling the Role of Two Rhodopsin-like GPCR Genes in Insecticide-Resistant House Flies, Musca domestica. Int J Mol Sci 2024; 25:10618. [PMID: 39408947 PMCID: PMC11477390 DOI: 10.3390/ijms251910618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/24/2024] [Accepted: 09/29/2024] [Indexed: 10/20/2024] Open
Abstract
Insecticide resistance in insects, driven by the overexpression of P450 enzymes, presents a significant challenge due to the enhanced metabolic detoxification of insecticides. Although the transcriptional regulation of P450 genes is not yet fully understood, G-protein-coupled receptor (GPCR) genes have emerged as key regulators in this process. This study is the first to associate GPCR genes with insecticide resistance in Musca domestica. We identified two key rhodopsin-like GPCR genes, ALHF_02706.g1581 and ALHF_04422.g2918, which were significantly overexpressed in the resistant ALHF strain compared to sensitive strains. Notably, both ALHF_02706.g1581 and ALHF_04422.g2918 were mapped to autosome 2, where critical but unidentified regulatory factors controlling resistance and P450 gene regulation are located. This supports our hypothesis that GPCRs function as trans-regulatory factors for P450-mediated resistance. Functional analysis using transgenic Drosophila demonstrated that overexpression of these rhodopsin-like GPCR genes increased permethrin resistance by approximately two-fold. Specifically, ALHF_02706.g1581 overexpression significantly upregulated the Drosophila resistance-related P450 genes CYP12D1, CYP6A2, and CYP6A8, while ALHF_04422.g2918 increased CYP6G1 and CYP6A2 expression, thereby enhancing insecticide detoxification in rhodopsin-like GPCR transgenic Drosophila lines. These findings suggest that these rhodopsin-like GPCR genes on autosome 2 may act as trans-regulatory factors for P450-mediated resistance, underscoring their critical role in insecticide detoxification and resistance development in M. domestica.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Nannan Liu
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, USA; (J.X.); (D.B.); (Y.W.); (X.W.); (M.L.); (T.L.)
| |
Collapse
|
5
|
Agard MA, Zandawala M, Paluzzi JPV. Another fly diuretic hormone: tachykinins increase fluid and ion transport by adult Drosophila melanogaster Malpighian 'renal' tubules. J Exp Biol 2024; 227:jeb247668. [PMID: 39319454 DOI: 10.1242/jeb.247668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 09/05/2024] [Indexed: 09/26/2024]
Abstract
Insects such as the model organism Drosophila melanogaster must modulate their internal physiology to withstand changes in temperature and availability of water and food. Regulation of the excretory system by peptidergic hormones is one mechanism by which insects maintain their internal homeostasis. Tachykinins are a family of neuropeptides that have been shown to stimulate fluid secretion from the Malpighian 'renal' tubules (MTs) in some insect species, but it is unclear if that is the case in the fruit fly, D. melanogaster. A central objective of the current study was to examine the physiological role of tachykinin signaling in the MTs of adult D. melanogaster. Using the genetic toolbox available in this model organism along with in vitro and whole-animal bioassays, our results indicate that Drosophila tachykinins (DTKs) function as diuretic hormones by binding to the DTK receptor (DTKR) localized in stellate cells of the MTs. Specifically, DTK activates cation and anion transport across the stimulated MTs, which impairs their survival in response to desiccation because of their inability to conserve water. Thus, besides their previously described roles in neuromodulation of pathways controlling locomotion and food search, olfactory processing, aggression, lipid metabolism and metabolic stress, processing of noxious stimuli and hormone release, DTKs also appear to function as bona fide endocrine factors regulating the excretory system and appear essential for the maintenance of hydromineral balance.
Collapse
Affiliation(s)
- Marishia A Agard
- Department of Biology, York University, 4700 Keele Street, Toronto, ON M3J 1P3, Canada
| | - Meet Zandawala
- Department of Biochemistry and Molecular Biology, University of Nevada Reno, Reno 89557, NV, USA
| | - Jean-Paul V Paluzzi
- Department of Biology, York University, 4700 Keele Street, Toronto, ON M3J 1P3, Canada
| |
Collapse
|
6
|
Sajadi F, Paluzzi JPV. Molecular characterization, localization, and physiological roles of ITP and ITP-L in the mosquito, Aedes aegypti. FRONTIERS IN INSECT SCIENCE 2024; 4:1374325. [PMID: 38654748 PMCID: PMC11035804 DOI: 10.3389/finsc.2024.1374325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 03/21/2024] [Indexed: 04/26/2024]
Abstract
The insect ion transport peptide (ITP) and its alternatively spliced variant, ITP-like peptide (ITP-L), belong to the crustacean hyperglycemic hormone family of peptides and are widely conserved among insect species. While limited, studies have characterized the ITP/ITP-L signaling system within insects, and putative functions including regulation of ion and fluid transport, ovarian maturation, and thirst/excretion have been proposed. Herein, we aimed to molecularly investigate Itp and Itp-l expression profiles in the mosquito, Aedes aegypti, examine peptide immunolocalization and distribution within the adult central nervous system, and elucidate physiological roles for these neuropeptides. Transcript expression profiles of both AedaeItp and AedaeItp-l revealed distinct enrichment patterns in adults, with AedaeItp expressed in the brain and AedaeItp-l expression predominantly within the abdominal ganglia. Immunohistochemical analysis within the central nervous system revealed expression of AedaeITP peptide in a number of cells in the brain and in the terminal ganglion. Comparatively, AedaeITP-L peptide was localized solely within the pre-terminal abdominal ganglia of the central nervous system. Interestingly, prolonged desiccation stress caused upregulation of AedaeItp and AedaeItp-l levels in adult mosquitoes, suggesting possible functional roles in water conservation and feeding-related activities. RNAi-mediated knockdown of AedaeItp caused an increase in urine excretion, while knockdown of both AedaeItp and AedaeItp-l reduced blood feeding and egg-laying in females as well as hindered egg viability, suggesting roles in reproductive physiology and behavior. Altogether, this study identifies AedaeITP and AedaeITP-L as key pleiotropic hormones, regulating various critical physiological processes in the disease vector, A. aegypti.
Collapse
|
7
|
Thakur S, Park Y, Jindal V. The functional assay identified authentic interactions between CAPA peptides and the CAPA receptor isoforms in Bemisia tabaci (Gennadius). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 200:105840. [PMID: 38582602 DOI: 10.1016/j.pestbp.2024.105840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 02/12/2024] [Accepted: 02/21/2024] [Indexed: 04/08/2024]
Abstract
CAPA neuropeptides regulate the diuresis/ antidiuresis process in insects by activating specific cognate receptor, CAPAr. In this study, we characterized the CAPAr gene (BtabCAPAr) in the whitefly, Bemisia tabaci Asia II 1. The two alternatively spliced isoforms of BtabCAPAr gene, BtabCAPAr-1 and BtabCAPAr-2, having six and five exons, respectively, were identified. The BtabCAPAr gene expression was highest in adult whitefly as compared to gene expression in egg, nymphal and pupal stages. Among the three putative CAPA peptides, CAPA-PVK1 and CAPA-PVK2 strongly activated the BtabCAPAr-1 with very low EC50 values of 0.067 nM and 0.053 nM, respectively, in heterologous calcium mobilization assays. None of the peptide activated the alternatively spliced isoform BtabCAPAr-2 that has lost the transmembrane segments 3 and 4. Significant levels of mortality were observed when whiteflies were fed with CAPA-PVK1 at 1.0 μM (50.0%), CAPA-PVK2 at 100.0 nM (43.8%) and CAPA-tryptoPK 1.0 μM (40.0%) at the 96 h after the treatment. This study provides valuable information to design biostable peptides to develop a class of insecticides.
Collapse
Affiliation(s)
- Sudeshna Thakur
- Insect Molecular Biology Laboratory, Punjab Agricultural University, Department of Entomology, Ludhiana, India
| | - Yoonseong Park
- Arthropod Molecular Physiology Laboratory, Department of Entomology, Kansas State University, Manhattan, KS, USA
| | - Vikas Jindal
- Insect Molecular Biology Laboratory, Punjab Agricultural University, Department of Entomology, Ludhiana, India.
| |
Collapse
|
8
|
Halberg KV, Denholm B. Mechanisms of Systemic Osmoregulation in Insects. ANNUAL REVIEW OF ENTOMOLOGY 2024; 69:415-438. [PMID: 37758224 DOI: 10.1146/annurev-ento-040323-021222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Water is essential to life. Terrestrial insects lose water by evaporation from the body surface and respiratory surfaces, as well as in the excretory products, posing a challenge made more acute by their high surface-to-volume ratio. These losses must be kept to a minimum and be offset by water gained from other sources. By contrast, insects such as the blood-sucking bug Rhodnius prolixus consume up to 10 times their body weight in a single blood meal, necessitating rapid expulsion of excess water and ions. How do insects manage their ion and water budgets? A century of study has revealed a great deal about the organ systems that insects use to maintain their ion and water balance and their regulation. Traditionally, a taxonomically wide range of species were studied, whereas more recent research has focused on model organisms to leverage the power of the molecular genetic approach. Key advances in new technologies have become available for a wider range of species in the past decade. We document how these approaches have already begun to inform our understanding of the diversity and conservation of insect systemic osmoregulation. We advocate that these technologies be combined with traditional approaches to study a broader range of nonmodel species to gain a comprehensive overview of the mechanism underpinning systemic osmoregulation in the most species-rich group of animals on earth, the insects.
Collapse
Affiliation(s)
- Kenneth Veland Halberg
- Section for Cell and Neurobiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark;
| | - Barry Denholm
- Department of Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
9
|
Sajadi F, Vergara-Martínez MF, Paluzzi JPV. The V-type H +-ATPase is targeted in antidiuretic hormone control of the Malpighian "renal" tubules. Proc Natl Acad Sci U S A 2023; 120:e2308602120. [PMID: 38096413 PMCID: PMC10743368 DOI: 10.1073/pnas.2308602120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 11/01/2023] [Indexed: 12/18/2023] Open
Abstract
Like other insects, secretion by mosquito Malpighian tubules (MTs) is driven by the V-type H+-ATPase (VA) localized in the apical membrane of principal cells. In Aedes aegypti, the antidiuretic neurohormone CAPA inhibits secretion by MTs stimulated by select diuretic hormones; however, the cellular effectors of this inhibitory signaling cascade remain unclear. Herein, we demonstrate that the VA inhibitor bafilomycin selectively inhibits serotonin (5HT)- and calcitonin-related diuretic hormone (DH31)-stimulated secretion. VA activity increases in DH31-treated MTs, whereas CAPA abolishes this increase through a NOS/cGMP/PKG signaling pathway. A critical feature of VA activation involves the reversible association of the cytosolic (V1) and membrane (Vo) complexes. Indeed, higher V1 protein abundance was found in membrane fractions of DH31-treated MTs, whereas CAPA significantly decreased V1 abundance in membrane fractions while increasing it in cytosolic fractions. V1 immunolocalization was observed strictly in the apical membrane of DH31-treated MTs, whereas immunoreactivity was dispersed following CAPA treatment. VA complexes colocalized apically in female MTs shortly after a blood meal consistent with the peak and postpeak phases of diuresis. Comparatively, V1 immunoreactivity in MTs was more dispersed and did not colocalize with the Vo complex in the apical membrane at 3 h post blood meal, representing a time point after the late phase of diuresis has concluded. Therefore, CAPA inhibition of MTs involves reducing VA activity and promotes complex dissociation hindering secretion. Collectively, these findings reveal a key target in hormone-mediated inhibition of MTs countering diuresis that provides a deeper understanding of this critical physiological process necessary for hydromineral balance.
Collapse
Affiliation(s)
- Farwa Sajadi
- Department of Biology, York University, Toronto, ONM3J 1P3, Canada
| | - María Fernanda Vergara-Martínez
- Department of Biology, York University, Toronto, ONM3J 1P3, Canada
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México City, 04510, México
| | | |
Collapse
|
10
|
Koyama T, Rana DW, Halberg KV. Managing fuels and fluids: Network integration of osmoregulatory and metabolic hormonal circuits in the polymodal control of homeostasis in insects. Bioessays 2023; 45:e2300011. [PMID: 37327252 DOI: 10.1002/bies.202300011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 05/19/2023] [Accepted: 05/30/2023] [Indexed: 06/18/2023]
Abstract
Osmoregulation in insects is an essential process whereby changes in hemolymph osmotic pressure induce the release of diuretic or antidiuretic hormones to recruit individual osmoregulatory responses in a manner that optimizes overall homeostasis. However, the mechanisms by which different osmoregulatory circuits interact with other homeostatic networks to implement the correct homeostatic program remain largely unexplored. Surprisingly, recent advances in insect genetics have revealed several important metabolic functions are regulated by classic osmoregulatory pathways, suggesting that internal cues related to osmotic and metabolic perturbations are integrated by the same hormonal networks. Here, we review our current knowledge on the network mechanisms that underpin systemic osmoregulation and discuss the remarkable parallels between the hormonal networks that regulate body fluid balance and those involved in energy homeostasis to provide a framework for understanding the polymodal optimization of homeostasis in insects.
Collapse
Affiliation(s)
- Takashi Koyama
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Danial Wasim Rana
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
11
|
Horváth V, Guirao-Rico S, Salces-Ortiz J, Rech GE, Green L, Aprea E, Rodeghiero M, Anfora G, González J. Gene expression differences consistent with water loss reduction underlie desiccation tolerance of natural Drosophila populations. BMC Biol 2023; 21:35. [PMID: 36797754 PMCID: PMC9933328 DOI: 10.1186/s12915-023-01530-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 01/27/2023] [Indexed: 02/18/2023] Open
Abstract
BACKGROUND Climate change is one of the main factors shaping the distribution and biodiversity of organisms, among others by greatly altering water availability, thus exposing species and ecosystems to harsh desiccation conditions. However, most of the studies so far have focused on the effects of increased temperature. Integrating transcriptomics and physiology is key to advancing our knowledge on how species cope with desiccation stress, and these studies are still best accomplished in model organisms. RESULTS Here, we characterized the natural variation of European D. melanogaster populations across climate zones and found that strains from arid regions were similar or more tolerant to desiccation compared with strains from temperate regions. Tolerant and sensitive strains differed not only in their transcriptomic response to stress but also in their basal expression levels. We further showed that gene expression changes in tolerant strains correlated with their physiological response to desiccation stress and with their cuticular hydrocarbon composition, and functionally validated three of the candidate genes identified. Transposable elements, which are known to influence stress response across organisms, were not found to be enriched nearby differentially expressed genes. Finally, we identified several tRNA-derived small RNA fragments that differentially targeted genes in response to desiccation stress. CONCLUSIONS Overall, our results showed that basal gene expression differences across individuals should be analyzed if we are to understand the genetic basis of differential stress survival. Moreover, tRNA-derived small RNA fragments appear to be relevant across stress responses and allow for the identification of stress-response genes not detected at the transcriptional level.
Collapse
Affiliation(s)
- Vivien Horváth
- Institute of Evolutionary Biology, CSIC, UPF, Barcelona, Spain
| | | | | | - Gabriel E Rech
- Institute of Evolutionary Biology, CSIC, UPF, Barcelona, Spain
| | - Llewellyn Green
- Institute of Evolutionary Biology, CSIC, UPF, Barcelona, Spain
| | - Eugenio Aprea
- Agriculture Food Environment Centre (C3A), University of Trento, San Michele All'adige (TN), Italy
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele All'adige (TN), Italy
| | - Mirco Rodeghiero
- Agriculture Food Environment Centre (C3A), University of Trento, San Michele All'adige (TN), Italy
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele All'adige (TN), Italy
| | - Gianfranco Anfora
- Agriculture Food Environment Centre (C3A), University of Trento, San Michele All'adige (TN), Italy
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele All'adige (TN), Italy
| | - Josefa González
- Institute of Evolutionary Biology, CSIC, UPF, Barcelona, Spain.
| |
Collapse
|
12
|
Li J, Lv H, Li X, Yao Y, Li J, Ma K. Identification and expression analysis of G protein-coupled receptors in the cotton aphid, Aphis gossypii Glover. Int J Biol Macromol 2022; 224:115-124. [DOI: 10.1016/j.ijbiomac.2022.10.108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 11/05/2022]
|
13
|
Dow JAT, Simons M, Romero MF. Drosophila melanogaster: a simple genetic model of kidney structure, function and disease. Nat Rev Nephrol 2022; 18:417-434. [PMID: 35411063 DOI: 10.1038/s41581-022-00561-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2022] [Indexed: 12/27/2022]
Abstract
Although the genetic basis of many kidney diseases is being rapidly elucidated, their experimental study remains problematic owing to the lack of suitable models. The fruitfly Drosophila melanogaster provides a rapid, ethical and cost-effective model system of the kidney. The unique advantages of D. melanogaster include ease and low cost of maintenance, comprehensive availability of genetic mutants and powerful transgenic technologies, and less onerous regulation, as compared with mammalian systems. Renal and excretory functions in D. melanogaster reside in three main tissues - the transporting renal (Malpighian) tubules, the reabsorptive hindgut and the endocytic nephrocytes. Tubules contain multiple cell types and regions and generate a primary urine by transcellular transport rather than filtration, which is then subjected to selective reabsorption in the hindgut. By contrast, the nephrocytes are specialized for uptake of macromolecules and equipped with a filtering slit diaphragm resembling that of podocytes. Many genes with key roles in the human kidney have D. melanogaster orthologues that are enriched and functionally relevant in fly renal tissues. This similarity has allowed investigations of epithelial transport, kidney stone formation and podocyte and proximal tubule function. Furthermore, a range of unique quantitative phenotypes are available to measure function in both wild type and disease-modelling flies.
Collapse
Affiliation(s)
- Julian A T Dow
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.
| | - Matias Simons
- INSERM UMR1163, Laboratory of Epithelial Biology and Disease, Imagine Institute, Université de Paris, Hôpital Necker-Enfants Malades, Paris, France
- Institute of Human Genetics, University Hospital Heidelberg, Heidelberg, Germany
| | - Michael F Romero
- Department of Physiology and Biomedical Engineering, Division of Nephrology and Hypertension, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| |
Collapse
|
14
|
Pang X, Zhang J, Han Y, Zhang C, Sun L, Cao C. Functional characterization of a diuretic hormone receptor associated with desiccation, starvation and temperature tolerance in gypsy moth, Lymantria dispar. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 184:105079. [PMID: 35715033 DOI: 10.1016/j.pestbp.2022.105079] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/27/2022] [Accepted: 03/09/2022] [Indexed: 06/15/2023]
Abstract
Variety of diuretic hormone neuropeptides is known to regulate water and ion balance in invertebrates. By activating their specific neuropeptide, diuretic hormone receptor (DHR) transmits extracellular signals into the cell, and then produces functional cell activity, which plays an important role in regulating physiology and behavior. However, little is known about the function of DHR gene in Lymantria dispar. DHR gene was firstly identified in L. dispar and its physiological functions were investigated using RNA interference (RNAi) technology. The results showed that except for the 6th instar larvae, the expression levels of DHR gene in the larval stages are higher than that in the egg, pupal and adult stages. The DHR gene is highly expressed in hindgut and midgut tissues. The L. dispar larvae significantly increased their water content and high temperature tolerance after the DHR was silenced, while decreasing excretion and feeding behavior. The physiological function of DHR is associated with desiccation, high temperature and starvation resistance. DHR could contribute to future development of novel insecticide to manage this global forest pest population.
Collapse
Affiliation(s)
- Xinru Pang
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| | - Jingzhe Zhang
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| | - Yang Han
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| | - Chenshu Zhang
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| | - Lili Sun
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| | - Chuanwang Cao
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, PR China.
| |
Collapse
|
15
|
Shi Y, Nachman RJ, Gui SH, Piot N, Kaczmarek K, Zabrocki J, Dow JAT, Davies SA, Smagghe G. Efficacy and biosafety assessment of neuropeptide CAPA analogues against the peach-potato aphid (Myzus persicae). INSECT SCIENCE 2022; 29:521-530. [PMID: 34263534 DOI: 10.1111/1744-7917.12951] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/26/2021] [Accepted: 07/07/2021] [Indexed: 06/13/2023]
Abstract
Insect CAPA neuropeptidesare considered to affect water and ion balance by mediating the physiological metabolism activities of the Malpighian tubules. In previous studies, the CAPA-PK analogue 1895 (2Abf-Suc-FGPRLamide) was reported to decrease aphid fitness when administered through microinjection or via topical application. However, a further statistically significant decrease in the fitness of aphids and an increased mortality could not be established with pairwise combinations of 1895 with other CAPA analogue. In this study, we assessed the topical application of new combinations of 1895 with five CAPA-PVK analogues on the fitness of aphids. We found that 1895 and CAPA-PVK analogue 2315 (ASG-[β3 L]-VAFPRVamide) was statistically the most effective combination to control the peach potato aphid Myzus persicae nymphs via topical application, leading to 72% mortality. Additionally, the combination (1895+2315) was evaluated against a selection of beneficial insects, that is, a pollinator (Bombus terrestris) and three natural enemies (Chrysoperla carnea, Nasonia vitripennis, and Adalia bipunctata). We found no significant influence on food intake, weight increase, and survival for the pollinator and the three representative natural enemies. These results could facilitate to further establish and generate CAPA analogues as alternatives to broad spectrum and less friendly insecticides.
Collapse
Affiliation(s)
- Yan Shi
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Ronald J Nachman
- U.S. Department of Agriculture, Insect Neuropeptide Laboratory, Insect Control and Cotton Disease Research Unit, Southern Plains Agricultural Research Center, College Station, Austin, Texas, USA
| | - Shun-Hua Gui
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
- Institute of Entomology, Guizhou University, Guiyang, Guizhou, China
| | - Niels Piot
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Krzysztof Kaczmarek
- U.S. Department of Agriculture, Insect Neuropeptide Laboratory, Insect Control and Cotton Disease Research Unit, Southern Plains Agricultural Research Center, College Station, Austin, Texas, USA
- Institute of Organic Chemistry, Lodz University of Technology, Lodz, 90-924, Poland
| | - Janusz Zabrocki
- U.S. Department of Agriculture, Insect Neuropeptide Laboratory, Insect Control and Cotton Disease Research Unit, Southern Plains Agricultural Research Center, College Station, Austin, Texas, USA
- Institute of Organic Chemistry, Lodz University of Technology, Lodz, 90-924, Poland
| | - Julian A T Dow
- College of Medical, Veterinary and Life Sciences, Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow, UK
| | - Shireen-A Davies
- College of Medical, Veterinary and Life Sciences, Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow, UK
| | - Guy Smagghe
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
16
|
Kolosov D, O'Donnell MJ. Blending physiology and RNAseq to provide new insights into regulation of epithelial transport: switching between ion secretion and reabsorption. J Exp Biol 2022; 225:274251. [PMID: 35119072 DOI: 10.1242/jeb.243293] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
This Review addresses the means by which epithelia change the direction of vectorial ion transport. Recent studies have revealed that insect Malpighian (renal) tubules can switch from secreting to reabsorbing K+. When the gut of larval lepidopterans is empty (during the moult cycle) or when the larvae are reared on K+-deficient diet, the distal ileac plexus segment of the tubule secretes K+ from the haemolymph into the tubule lumen. By contrast, in larvae reared on K+-rich diet, ions and fluid are reabsorbed from the rectal lumen into the perinephric space surrounding the cryptonephridial tubules of the rectal complex. Ions and fluid are then transported from the perinephric space into the lumen of the cryptonephridial tubules, thus supplying the free segments of the tubule downstream. Under these conditions, some of the K+ and water in the tubule lumen is reabsorbed across the cells of the distal ileac plexus, allowing for expansion of haemolymph volume in the rapidly growing larvae, as well as recycling of K+ and base equivalents. RNA sequencing data reveal large-scale changes in gene transcription that are associated with the switch between ion secretion and ion reabsorption by the distal ileac plexus. An unexpected finding is the presence of voltage-gated, ligand-gated and mechanosensitive ion channels, normally seen in excitable cells, in Malpighian tubules. Transcriptomic surveys indicate that these types of channels are also present in multiple other types of vertebrate and invertebrate epithelia, suggesting that they may play novel roles in epithelial cell signalling and regulation of epithelial ion transport.
Collapse
Affiliation(s)
- Dennis Kolosov
- Department of Biological Sciences, California State University San Marcos, 333 S Twin Oaks Valley Road, San Marcos, CA 92096, USA
| | - Michael J O'Donnell
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON, Canada, L8S 4K1
| |
Collapse
|
17
|
Li Y, Gao H, Yu R, Zhang Y, Feng F, Tang J, Li B. Identification and characterization of G protein-coupled receptors in Spodoptera frugiperda (Insecta: Lepidoptera). Gen Comp Endocrinol 2022; 317:113976. [PMID: 35016911 DOI: 10.1016/j.ygcen.2022.113976] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/23/2021] [Accepted: 01/05/2022] [Indexed: 12/13/2022]
Abstract
Spodoptera frugiperda (Insecta: Lepidoptera) is a destructive invasive pest feeding on various plants and causing serious damage to several economically-important crops. G protein-coupled receptors (GPCRs) are cellular receptors that coordinate diverse signaling processes, associated with many physiological processes and disease states. However, less information about GPCRs had been reported in S. frugiperda, limiting the recognition of signaling system and in-depth studies of this pest. Here, a total of 167 GPCRs were identified in S. frugiperda. Compared with other insects, the GPCRs of S. frugiperda were significantly expanded. A large of tandem duplication and segmental duplication events were observed, which may be the key factor to increase the size of GPCR family. In detail, these expansion events mainly concentrate on biogenic amine receptors, neuropeptide and protein hormone receptors, which may be involved in feeding, reproduction, life span, and tolerance of S. frugiperda. Additionally, 17 Mth/Mthl members were identified in S. frugiperda, which may be similar to the evolutionary pattern of 16 Mth/Mthl members in Drosophila. Moreover, the expression patterns across different developmental stages of all GPCR genes were also analyzed. Among these, most of the GPCR genes are poorly expressed in S. frugiperda and some highly expressed GPCR genes help S. frugiperda adapt to the environment better, such as Rh6 and AkhR. In this study, all GPCRs in S. frugiperda were identified for the first time, which provided a basis for further revealing the role of these receptors in the physiological and behavioral regulation of this pest.
Collapse
Affiliation(s)
- Yanxiao Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Han Gao
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Runnan Yu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Yonglei Zhang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Fan Feng
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Jing Tang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Bin Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
18
|
Insects as a New Complex Model in Hormonal Basis of Obesity. Int J Mol Sci 2021; 22:ijms222011066. [PMID: 34681728 PMCID: PMC8540125 DOI: 10.3390/ijms222011066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/07/2021] [Accepted: 10/09/2021] [Indexed: 11/30/2022] Open
Abstract
Nowadays, one of the biggest problems in healthcare is an obesity epidemic. Consumption of cheap and low-quality energy-rich diets, low physical activity, and sedentary work favor an increase in the number of obesity cases within many populations/nations. This is a burden on society, public health, and the economy with many deleterious consequences. Thus, studies concerning this disorder are extremely needed, including searching for new, effective, and fitting models. Obesity may be related, among other factors, to disrupting adipocytes activity, disturbance of metabolic homeostasis, dysregulation of hormonal balance, cardiovascular problems, or disorders in nutrition which may lead to death. Because of the high complexity of obesity, it is not easy to find an ideal model for its studies which will be suitable for genetic and physiological analysis including specification of different compounds’ (hormones, neuropeptides) functions, as well as for signaling pathways analysis. In recent times, in search of new models for human diseases there has been more and more attention paid to insects, especially in neuro-endocrine regulation. It seems that this group of animals might also be a new model for human obesity. There are many arguments that insects are a good, multidirectional, and complex model for this disease. For example, insect models can have similar conservative signaling pathways (e.g., JAK-STAT signaling pathway), the presence of similar hormonal axis (e.g., brain–gut axis), or occurrence of structural and functional homologues between neuropeptides (e.g., neuropeptide F and human neuropeptide Y, insulin-like peptides, and human insulin) compared to humans. Here we give a hint to use insects as a model for obesity that can be used in multiple ways: as a source of genetic and peptidomic data about etiology and development correlated with obesity occurrence as well as a model for novel hormonal-based drug activity and their impact on mechanism of disease occurrence.
Collapse
|
19
|
Branco AJ, Vattamparambil AS, Landry GM. Lead (Pb 2+)-induced calcium oxalate crystallization ex vivo is ameliorated via inositol 1,4,5-trisphosphate receptor (InsP 3R) knockdown in a Drosophila melanogaster model of nephrolithiasis. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 87:103695. [PMID: 34171488 DOI: 10.1016/j.etap.2021.103695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 06/17/2021] [Accepted: 06/19/2021] [Indexed: 06/13/2023]
Abstract
Nephrolithiasis causes severe pain and is a highly recurrent pathophysiological state. Calcium-containing stones, specifically calcium oxalate (CaOx), is the most common type accounting for approximately 75 % of stone composition. Genetic predisposition, gender, geographic region, diet, and low fluid intake all contribute to disease pathogenesis. However, exposure to environmental pollutants as a contribution to kidney stone formation remains insufficiently studied. Lead (Pb2+) is of particular interest as epidemiological data indicate that low-level exposure (BLL = 0.48-3.85 μM) confers a 35 % increased risk of developing CaOx nephrolithiasis. However, mechanisms underlying this association have yet to be elucidated. Drosophila melanogaster provide a useful genetic model where major molecular pathophysiological pathways can be efficiently studied. Malpighian tubules (MT) were isolated from either Wild-Type or InsP3R knockdown flies and treated with oxalate (5 mM) ± Pb2+ (2μM) for 1 h. Following exposure, MTs were imaged and crystals quantified. CaOx crystal number and total area were significantly increased (˜5-fold) in Pb2+(pre-treatment) + oxalate-exposed MTs when compared to oxalate alone controls. However, CaOx crystal number and total crystal area in Pb2+ + oxalate-exposed InsP3R knockdown MTs were significantly decreased (˜3-fold) indicating the role for principal cell-specific InsP3R-mediated Ca2+ mobilization as a mechanism for Pb2+-induced increases in CaOx crystallization inset model of nephrolithiasis.
Collapse
Affiliation(s)
- Anthony J Branco
- Massachusetts College of Pharmacy and Health Sciences, School of Pharmacy, Department of Pharmaceutical Sciences, Boston, MA, 02115, United States
| | - Anoushka S Vattamparambil
- Massachusetts College of Pharmacy and Health Sciences, School of Pharmacy, Department of Pharmaceutical Sciences, Boston, MA, 02115, United States
| | - Greg M Landry
- Massachusetts College of Pharmacy and Health Sciences, School of Pharmacy, Department of Pharmaceutical Sciences, Boston, MA, 02115, United States.
| |
Collapse
|
20
|
A nutrient-responsive hormonal circuit mediates an inter-tissue program regulating metabolic homeostasis in adult Drosophila. Nat Commun 2021; 12:5178. [PMID: 34462441 PMCID: PMC8405823 DOI: 10.1038/s41467-021-25445-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 08/04/2021] [Indexed: 02/07/2023] Open
Abstract
Animals maintain metabolic homeostasis by modulating the activity of specialized organs that adjust internal metabolism to external conditions. However, the hormonal signals coordinating these functions are incompletely characterized. Here we show that six neurosecretory cells in the Drosophila central nervous system respond to circulating nutrient levels by releasing Capa hormones, homologs of mammalian neuromedin U, which activate the Capa receptor (CapaR) in peripheral tissues to control energy homeostasis. Loss of Capa/CapaR signaling causes intestinal hypomotility and impaired nutrient absorption, which gradually deplete internal nutrient stores and reduce organismal lifespan. Conversely, increased Capa/CapaR activity increases fluid and waste excretion. Furthermore, Capa/CapaR inhibits the release of glucagon-like adipokinetic hormone from the corpora cardiaca, which restricts energy mobilization from adipose tissue to avoid harmful hyperglycemia. Our results suggest that the Capa/CapaR circuit occupies a central node in a homeostatic program that facilitates the digestion and absorption of nutrients and regulates systemic energy balance.
Collapse
|
21
|
Sajadi F, Paluzzi JPV. Hormonal regulation and functional role of the "renal" tubules in the disease vector, Aedes aegypti. VITAMINS AND HORMONES 2021; 117:189-225. [PMID: 34420581 DOI: 10.1016/bs.vh.2021.06.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The Aedes aegypti mosquito is a vector responsible for transmitting various arboviruses including dengue and yellow fever. Their ability to regulate the ionic and water composition of their hemolymph is a major physiological phenomenon, allowing the mosquito to adapt to a range of ecological niches. Hematophagus insects, including the female A. aegypti, face the challenge of excess salt and water intake after a blood meal. Post-prandial diuresis is under rigorous control by neuroendocrine factors, acting on the Malpighian "renal" tubules (MTs), to regulate primary urine production. The MTs are made up of two cell types; mitochondria-rich principal cells, which facilitate active transport of Na+ and K+ cations across the membrane, and thin stellate cells, which allows for transepithelial Cl- secretion. The active driving force responsible for ion transport is the apical V-type H+ ATPase, which creates a proton gradient allowing for Na+ and/or K+ cation exchange through cation/H+ antiporters. Additionally, the basolaterally localized Na+-K+-2Cl- cotransporter (NKCC) is responsible for the transport of these ions from the hemolymph into the principal cells. Numerous studies have examined hormonal regulation of the mosquito MTs and identified several diuretics including serotonin (5HT), a calcitonin-related diuretic hormone 31 (DH31), a corticotropin-related factor like diuretic peptide (DH44), a kinin-related diuretic peptide, as well as anti-diuretic factors including CAPA peptides, all of which are known to regulate fluid and ion transport by the MTs. This review therefore focuses on the control of ionic homeostasis in A. aegypti mosquitoes, emphasizing the importance of the MTs, the channels and transporters involved in maintaining hydromineral balance, and the neuroendocrine regulation of both diuresis and anti-diuresis.
Collapse
Affiliation(s)
- Farwa Sajadi
- Department of Biology, York University, Toronto, ON, Canada
| | | |
Collapse
|
22
|
Urbański A, Walkowiak-Nowicka K, Nowicki G, Chowański S, Rosiński G. Effect of Short-Term Desiccation, Recovery Time, and CAPA-PVK Neuropeptide on the Immune System of the Burying Beetle Nicrophorus vespilloides. Front Physiol 2021; 12:671463. [PMID: 34234689 PMCID: PMC8255627 DOI: 10.3389/fphys.2021.671463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 05/17/2021] [Indexed: 11/13/2022] Open
Abstract
Environmental conditions, especially related to winter, are crucial for shaping activity of insect immune system. However, our previous research clearly indicates differences in the immune system functioning when the cold stress was induced in the laboratory conditions and when the beetles were collected from natural environment during winter. This is probably related to the multiplication of observed effects by simultaneous presence of different stress factors characteristic of winter, including desiccation. For these reasons, our next step was analysis of the effects of short-term desiccation and recovery time on the functioning of immune system of burying beetle Nicrophorus vespilloides. Also, the effect of Tenmo–PVK-2 (tenebrionid periviscerokinin), member of the CAPA–PVK neuropeptide family, was investigated to better understand observed changes. Short-term desiccation decreases the phagocytic activity of burying beetle haemocytes, which is correlated with a reduction in their adhesive ability. On the other hand, there was a significant increase in phenoloxidase (PO) activity and the level of proPO expression, which may suggest sealing the cuticula by melanin deposition and prevention of water loss. Additionally, the elevated level of defensin expression may be associated with the cross-talk between mechanisms, which participate in insect response to environmental stress, including pathogen infection. After 1 h of recovery time, the activity of tested cellular and humoral mechanisms was mostly back to the control level. However, inhibition of the activity of PO and down-regulation of proPO were noted. These results also indicate importance of melanin deposition during water loss. Moreover, it suggests that some changes in immune system functioning during stress conditions do not have an immune function. Interestingly, part of the effects characteristic of recovery time were also observed after the application of Tenmo–PVK-2, mainly related to haemocyte morphology. These results indicate that CAPA–PVK neuropeptides may also influence on activity of burying beetle immune system. It should be also highlighted that, because of the study of the effects of CAPA–PVK neuropeptides, homologs of vertebrate neuromedin U, the results may be interesting for search evolutionary similarities in the functioning of the neuroendocrine system of insects and vertebrates.
Collapse
Affiliation(s)
- Arkadiusz Urbański
- Department of Animal Physiology and Developmental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, Poznań, Poland.,HiProMine S.A., Robakowo, Poland
| | - Karolina Walkowiak-Nowicka
- Department of Animal Physiology and Developmental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, Poznań, Poland
| | - Grzegorz Nowicki
- Molecular Virology Research Unit, Faculty of Biology, Adam Mickiewicz University in Poznań, Poznań, Poland.,genXone S.A., Złotniki, Poland
| | - Szymon Chowański
- Department of Animal Physiology and Developmental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, Poznań, Poland
| | - Grzegorz Rosiński
- Department of Animal Physiology and Developmental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, Poznań, Poland
| |
Collapse
|
23
|
Liu N, Li T, Wang Y, Liu S. G-Protein Coupled Receptors (GPCRs) in Insects-A Potential Target for New Insecticide Development. Molecules 2021; 26:2993. [PMID: 34069969 PMCID: PMC8157829 DOI: 10.3390/molecules26102993] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/10/2021] [Accepted: 05/12/2021] [Indexed: 02/07/2023] Open
Abstract
G-protein coupled receptors (GPCRs) play important roles in cell biology and insects' physiological processes, toxicological response and the development of insecticide resistance. New information on genome sequences, proteomic and transcriptome analysis and expression patterns of GPCRs in organs such as the central nervous system in different organisms has shown the importance of these signaling regulatory GPCRs and their impact on vital cell functions. Our growing understanding of the role played by GPCRs at the cellular, genome, transcriptome and tissue levels is now being utilized to develop new targets that will sidestep many of the problems currently hindering human disease control and insect pest management. This article reviews recent work on the expression and function of GPCRs in insects, focusing on the molecular complexes governing the insect physiology and development of insecticide resistance and examining the genome information for GPCRs in two medically important insects, mosquitoes and house flies, and their orthologs in the model insect species Drosophila melanogaster. The tissue specific distribution and expression of the insect GPCRs is discussed, along with fresh insights into practical aspects of insect physiology and toxicology that could be fundamental for efforts to develop new, more effective, strategies for pest control and resistance management.
Collapse
Affiliation(s)
- Nannan Liu
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, USA; (T.L.); (Y.W.)
| | - Ting Li
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, USA; (T.L.); (Y.W.)
| | - Yifan Wang
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, USA; (T.L.); (Y.W.)
| | - Shikai Liu
- College of Fisheries, Ocean University of China, Qingdao 266100, China;
| |
Collapse
|
24
|
Liu N, Wang Y, Li T, Feng X. G-Protein Coupled Receptors (GPCRs): Signaling Pathways, Characterization, and Functions in Insect Physiology and Toxicology. Int J Mol Sci 2021; 22:ijms22105260. [PMID: 34067660 PMCID: PMC8156084 DOI: 10.3390/ijms22105260] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 02/06/2023] Open
Abstract
G-protein-coupled receptors (GPCRs) are known to play central roles in the physiology of many organisms. Members of this seven α-helical transmembrane protein family transduce the extracellular signals and regulate intracellular second messengers through coupling to heterotrimeric G-proteins, adenylate cyclase, cAMPs, and protein kinases. As a result of the critical function of GPCRs in cell physiology and biochemistry, they not only play important roles in cell biology and the medicines used to treat a wide range of human diseases but also in insects’ physiological functions. Recent studies have revealed the expression and function of GPCRs in insecticide resistance, improving our understanding of the molecular complexes governing the development of insecticide resistance. This article focuses on the review of G-protein coupled receptor (GPCR) signaling pathways in insect physiology, including insects’ reproduction, growth and development, stress responses, feeding, behaviors, and other physiological processes. Hormones and polypeptides that are involved in insect GPCR regulatory pathways are reviewed. The review also gives a brief introduction of GPCR pathways in organisms in general. At the end of the review, it provides the recent studies on the function of GPCRs in the development of insecticide resistance, focusing in particular on our current knowledge of the expression and function of GPCRs and their downstream regulation pathways and their roles in insecticide resistance and the regulation of resistance P450 gene expression. The latest insights into the exciting technological advances and new techniques for gene expression and functional characterization of the GPCRs in insects are provided.
Collapse
Affiliation(s)
- Nannan Liu
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, USA; (Y.W.); (T.L.)
- Correspondence: ; Tel.: +1-334-844-5076
| | - Yifan Wang
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, USA; (Y.W.); (T.L.)
| | - Ting Li
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, USA; (Y.W.); (T.L.)
| | - Xuechun Feng
- Department of Biology Sciences, University of California, San Diego, CA 92093, USA;
| |
Collapse
|
25
|
Burbridge K, Holcombe J, Weavers H. Metabolically active and polyploid renal tissues rely on graded cytoprotection to drive developmental and homeostatic stress resilience. Development 2021; 148:dev197343. [PMID: 33913484 PMCID: PMC8214761 DOI: 10.1242/dev.197343] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 03/29/2021] [Indexed: 12/26/2022]
Abstract
Body tissues are frequently exposed to stress, from toxic byproducts generated during cellular metabolism through to infection or wounding. Although it is well-established that tissues respond to exogenous injury by rapidly upregulating cytoprotective machinery, how energetically demanding tissues - vulnerable to persistent endogenous insult - withstand stress is poorly understood. Here, we show that the cytoprotective factors Nrf2 and Gadd45 act within a specific renal cell subtype, the energetically and biosynthetically active 'principal' cells, to drive stress resilience during Drosophila renal development and homeostasis. Renal tubules lacking Gadd45 exhibit striking morphogenetic defects (with cell death, inflammatory infiltration and reduced ploidy) and accumulate significant DNA damage in post-embryonic life. In parallel, the transcription factor Nrf2 is active during periods of intense renal physiological activity, where it protects metabolically active renal cells from oxidative damage. Despite its constitutive nature, renal cytoprotective activity must be precisely balanced and sustained at modest sub-injury levels; indeed, further experimental elevation dramatically perturbs renal development and function. We suggest that tissues requiring long-term protection must employ restrained cytoprotective activity, whereas higher levels might only be beneficial if activated transiently pre-emptive to exogenous insult.
Collapse
Affiliation(s)
| | | | - Helen Weavers
- School of Biochemistry, Biomedical Sciences, University of Bristol, Bristol BS8 1TD, UK
| |
Collapse
|
26
|
A unique Malpighian tubule architecture in Tribolium castaneum informs the evolutionary origins of systemic osmoregulation in beetles. Proc Natl Acad Sci U S A 2021; 118:2023314118. [PMID: 33785598 PMCID: PMC8040626 DOI: 10.1073/pnas.2023314118] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Maintaining internal salt and water balance in response to fluctuating external conditions is essential for animal survival. This is particularly true for insects as their high surface-to-volume ratio makes them highly susceptible to osmotic stress. However, the cellular and hormonal mechanisms that mediate the systemic control of osmotic homeostasis in beetles (Coleoptera), the largest group of insects, remain largely unidentified. Here, we demonstrate that eight neurons in the brain of the red flour beetle Tribolium castaneum respond to internal changes in osmolality by releasing diuretic hormone (DH) 37 and DH47-homologs of vertebrate corticotropin-releasing factor (CRF) hormones-to control systemic water balance. Knockdown of the gene encoding the two hormones (Urinate, Urn8) reduces Malpighian tubule secretion and restricts organismal fluid loss, whereas injection of DH37 or DH47 reverses these phenotypes. We further identify a CRF-like receptor, Urinate receptor (Urn8R), which is exclusively expressed in a functionally unique secondary cell in the beetle tubules, as underlying this response. Activation of Urn8R increases K+ secretion, creating a lumen-positive transepithelial potential that drives fluid secretion. Together, these data show that beetle Malpighian tubules operate by a fundamentally different mechanism than those of other insects. Finally, we adopt a fluorescent labeling strategy to identify the evolutionary origin of this unusual tubule architecture, revealing that it evolved in the last common ancestor of the higher beetle families. Our work thus uncovers an important homeostatic program that is key to maintaining osmotic control in beetles, which evolved parallel to the radiation of the "advanced" beetle lineages.
Collapse
|
27
|
Zandawala M, Nguyen T, Balanyà Segura M, Johard HAD, Amcoff M, Wegener C, Paluzzi JP, Nässel DR. A neuroendocrine pathway modulating osmotic stress in Drosophila. PLoS Genet 2021; 17:e1009425. [PMID: 33684132 PMCID: PMC7971876 DOI: 10.1371/journal.pgen.1009425] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 03/18/2021] [Accepted: 02/15/2021] [Indexed: 12/19/2022] Open
Abstract
Environmental factors challenge the physiological homeostasis in animals, thereby evoking stress responses. Various mechanisms have evolved to counter stress at the organism level, including regulation by neuropeptides. In recent years, much progress has been made on the mechanisms and neuropeptides that regulate responses to metabolic/nutritional stress, as well as those involved in countering osmotic and ionic stresses. Here, we identified a peptidergic pathway that links these types of regulatory functions. We uncover the neuropeptide Corazonin (Crz), previously implicated in responses to metabolic stress, as a neuroendocrine factor that inhibits the release of a diuretic hormone, CAPA, and thereby modulates the tolerance to osmotic and ionic stress. Both knockdown of Crz and acute injections of Crz peptide impact desiccation tolerance and recovery from chill-coma. Mapping of the Crz receptor (CrzR) expression identified three pairs of Capa-expressing neurons (Va neurons) in the ventral nerve cord that mediate these effects of Crz. We show that Crz acts to restore water/ion homeostasis by inhibiting release of CAPA neuropeptides via inhibition of cAMP production in Va neurons. Knockdown of CrzR in Va neurons affects CAPA signaling, and consequently increases tolerance for desiccation, ionic stress and starvation, but delays chill-coma recovery. Optogenetic activation of Va neurons stimulates excretion and simultaneous activation of Crz and CAPA-expressing neurons reduces this response, supporting the inhibitory action of Crz. Thus, Crz inhibits Va neurons to maintain osmotic and ionic homeostasis, which in turn affects stress tolerance. Earlier work demonstrated that systemic Crz signaling restores nutrient levels by promoting food search and feeding. Here we additionally propose that Crz signaling also ensures osmotic homeostasis by inhibiting release of CAPA neuropeptides and suppressing diuresis. Thus, Crz ameliorates stress-associated physiology through systemic modulation of both peptidergic neurosecretory cells and the fat body in Drosophila.
Collapse
Affiliation(s)
- Meet Zandawala
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Thomas Nguyen
- Department of Biology, York University, Toronto, Ontario, Canada
| | - Marta Balanyà Segura
- Neurobiology and Genetics, Würzburg Insect Research (WIR), Theodor-Boveri-Institute, Biocenter, University of Würzburg, Germany
| | | | - Mirjam Amcoff
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Christian Wegener
- Neurobiology and Genetics, Würzburg Insect Research (WIR), Theodor-Boveri-Institute, Biocenter, University of Würzburg, Germany
| | | | - Dick R Nässel
- Department of Zoology, Stockholm University, Stockholm, Sweden
| |
Collapse
|
28
|
Birgül Iyison N, Shahraki A, Kahveci K, Düzgün MB, Gün G. Are insect GPCRs ideal next‐generation pesticides: opportunities and challenges. FEBS J 2021; 288:2727-2745. [DOI: 10.1111/febs.15708] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 12/27/2020] [Accepted: 01/06/2021] [Indexed: 12/22/2022]
Affiliation(s)
- Necla Birgül Iyison
- Department of Molecular Biology and Genetics Institute of Graduate Studies in Science and Engineering Boğaziçi University Istanbul Turkey
| | - Aida Shahraki
- Department of Molecular Biology and Genetics Institute of Graduate Studies in Science and Engineering Boğaziçi University Istanbul Turkey
| | - Kübra Kahveci
- Department of Molecular Biology and Genetics Institute of Graduate Studies in Science and Engineering Boğaziçi University Istanbul Turkey
| | - Mustafa Barbaros Düzgün
- Department of Molecular Biology and Genetics Institute of Graduate Studies in Science and Engineering Boğaziçi University Istanbul Turkey
| | - Gökhan Gün
- Department of Molecular Biology and Genetics Institute of Graduate Studies in Science and Engineering Boğaziçi University Istanbul Turkey
| |
Collapse
|
29
|
Gao H, Li Y, Wang M, Song X, Tang J, Feng F, Li B. Identification and Expression Analysis of G Protein-Coupled Receptors in the Miridae Insect Apolygus lucorum. Front Endocrinol (Lausanne) 2021; 12:773669. [PMID: 34899608 PMCID: PMC8660763 DOI: 10.3389/fendo.2021.773669] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/08/2021] [Indexed: 01/31/2023] Open
Abstract
G protein-coupled receptors (GPCRs) are the largest and most versatile family of transmembrane receptors in the cell and they play a vital role in the regulation of multiple physiological processes. The family Miridae (Hemiptera: Heteroptera) is one of the most diverse families of insects. Until now, information on GPCRs has been lacking in Miridae. Apolygus lucorum, a representative species of the Miridae, is an omnivorous pest that occurs worldwide and is notorious for causing serious damage to various crops and substantial economic losses. By searching the genome, 133 GPCRs were identified in A. lucorum. Compared with other model insects, we have observed GPCR genes to be remarkably expanded in A. lucorum, especially focusing on biogenic amine receptors and neuropeptide receptors. Among these, there is a novel large clade duplicated from known FMRFamide receptors (FMRFaRs). Moreover, the temporal and spatial expression profiles of the 133 genes across developmental stages were determined by transcriptome analysis. Most GPCR genes showed a low expression level in the whole organism of A. lucorum. However, there were a few highly expressed GPCR genes. The highly expressed LW opsins in the head probably relate to nocturning of A. lucorum, and the expression of Cirl at different times and in different tissues indicated it may be involved in growth and development of A. lucorum. We also found C2 leucine-rich repeat-containing GPCRs (LGRs) were mainly distributed in Hemiptera and Phthiraptera among insects. Our study was the first investigation on GPCRs in A. lucorum and it provided a molecular target for the regulation and control of Miridae pests.
Collapse
|
30
|
Ahn SJ, Mc Donnell RJ, Corcoran JA, Martin RC, Choi MY. Identification and functional characterization of the first molluscan neuromedin U receptor in the slug, Deroceras reticulatum. Sci Rep 2020; 10:22308. [PMID: 33339848 PMCID: PMC7749107 DOI: 10.1038/s41598-020-79047-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 11/27/2020] [Indexed: 11/17/2022] Open
Abstract
Neuromedin U (NmU) is a neuropeptide regulating diverse physiological processes. The insect homologs of vertebrate NmU are categorized as PRXamide family peptides due to their conserved C-terminal end. However, NmU homologs have been elusive in Mollusca, the second largest phylum in the animal kingdom. Here we report the first molluscan NmU/PRXamide receptor from the slug, Deroceras reticulatum. Two splicing variants of the receptor gene were functionally expressed and tested for binding with ten endogenous peptides from the slug and some insect PRXamide and vertebrate NmU peptides. Three heptapeptides (QPPLPRYa, QPPVPRYa and AVPRPRIa) triggered significant activation of the receptors, suggesting that they are true ligands for the NmU/PRXamide receptor in the slug. Synthetic peptides with structural modifications at different amino acid positions provided important insights on the core moiety of the active peptides. One receptor variant always exhibited higher binding activity than the other variant. The NmU-encoding genes were highly expressed in the slug brain, while the receptor gene was expressed at lower levels in general with relatively higher expression levels in both the brain and foot. Injection of the bioactive peptides into slugs triggered defensive behavior such as copious mucus secretion and a range of other anomalous behaviors including immobilization, suggesting their role in important physiological functions.
Collapse
Affiliation(s)
- Seung-Joon Ahn
- Horticultural Crops Research Unit, USDA-ARS, Corvallis, OR, USA.,Department of Biochemistry, Molecular Biology, Entomology & Plant Pathology, Mississippi State University, Mississippi State, MS, USA
| | - Rory J Mc Donnell
- Department of Crop and Soil Science, Oregon State University, Corvallis, OR, USA
| | - Jacob A Corcoran
- Horticultural Crops Research Unit, USDA-ARS, Corvallis, OR, USA.,Biological Control of Insects Research Unit, USDA-ARS, Columbia, MO, USA
| | - Ruth C Martin
- Forage Seed and Cereal Research Unit, USDA-ARS, Corvallis, OR, USA
| | - Man-Yeon Choi
- Horticultural Crops Research Unit, USDA-ARS, Corvallis, OR, USA.
| |
Collapse
|
31
|
Zatsepina O, Karpov D, Chuvakova L, Rezvykh A, Funikov S, Sorokina S, Zakluta A, Garbuz D, Shilova V, Evgen'ev M. Genome-wide transcriptional effects of deletions of sulphur metabolism genes in Drosophila melanogaster. Redox Biol 2020; 36:101654. [PMID: 32769010 PMCID: PMC7414014 DOI: 10.1016/j.redox.2020.101654] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 07/21/2020] [Indexed: 01/15/2023] Open
Abstract
In recent years, the gasotransmitter hydrogen sulphide (H2S), produced by the transsulphuration pathway, has been recognized as a biological mediator playing an important role under normal conditions and in various pathologies in both eukaryotes and prokaryotes. The transsulphuration pathway (TSP) includes the conversion of homocysteine to cysteine following the breakdown of methionine. In Drosophila melanogaster and other eukaryotes, H2S is produced by cystathionine β-synthase (CBS), cystathionine γ-lyase (CSE), and 3-mercaptopyruvate sulphurtransferase (MST). In the experiments performed in this study, we were able to explore the CRISPR/Cas9 technique to obtain single and double deletions in homozygotes of these three major genes responsible for H2S production in Drosophila melanogaster. In most cases, the deletion of one studied gene does not result in the compensatory induction of two other genes responsible for H2S production. Transcriptomic studies demonstrated that the deletions of the above CBS and CSE genes alter genome expression to different degrees, with a more pronounced effect being exerted by deletion of the CBS gene. Furthermore, the double deletion of both CBS and CSE resulted in a cumulative effect on transcription in the resulting strains. Overall, we found that the obtained deletions affect numerous genes involved in various biological pathways. Specifically, genes involved in the oxidative reduction process, stress-response genes, housekeeping genes, and genes participating in olfactory and reproduction are among the most strongly affected. Furthermore, characteristic differences in the response to the deletions of the studied genes are apparently organ-specific and have clear-cut sex-specific characteristics. Single and double deletions of the three genes responsible for the production of H2S helped to elucidate new aspects of the biological significance of this vital physiological mediator.
Collapse
Affiliation(s)
- O Zatsepina
- Engelhardt Institute of Molecular Biology of Russian Academy of Sciences, Moscow, Russia
| | - D Karpov
- Engelhardt Institute of Molecular Biology of Russian Academy of Sciences, Moscow, Russia
| | - L Chuvakova
- Engelhardt Institute of Molecular Biology of Russian Academy of Sciences, Moscow, Russia
| | - A Rezvykh
- Engelhardt Institute of Molecular Biology of Russian Academy of Sciences, Moscow, Russia; Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia
| | - S Funikov
- Engelhardt Institute of Molecular Biology of Russian Academy of Sciences, Moscow, Russia
| | - S Sorokina
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Moscow, Russia
| | - A Zakluta
- Engelhardt Institute of Molecular Biology of Russian Academy of Sciences, Moscow, Russia
| | - D Garbuz
- Engelhardt Institute of Molecular Biology of Russian Academy of Sciences, Moscow, Russia
| | - V Shilova
- Engelhardt Institute of Molecular Biology of Russian Academy of Sciences, Moscow, Russia
| | - M Evgen'ev
- Engelhardt Institute of Molecular Biology of Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
32
|
Lajevardi A, Paluzzi JPV. Receptor Characterization and Functional Activity of Pyrokinins on the Hindgut in the Adult Mosquito, Aedes aegypti. Front Physiol 2020; 11:490. [PMID: 32528310 PMCID: PMC7255104 DOI: 10.3389/fphys.2020.00490] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 04/21/2020] [Indexed: 01/29/2023] Open
Abstract
Pyrokinins are structurally related insect neuropeptides, characterized by their myotropic, pheromonotropic and melanotropic roles in some insects, but their function is unclear in blood-feeding arthropods. In the present study, we functionally characterized the pyrokinin-1 and pyrokinin-2 receptors (PK1-R and PK2-R, respectively), in the yellow fever mosquito, Aedes aegypti, using a heterologous cell system to characterize their selective and dose-responsive activation by members of two distinct pyrokinin subfamilies. We also assessed transcript-level expression of these receptors in adult organs and found the highest level of PK1-R transcript in the posterior hindgut (rectum) while PK2-R expression was enriched in the anterior hindgut (ileum) as well as in reproductive organs, suggesting these to be prominent target sites for their peptidergic ligands. In support of this, PRXa-like immunoreactivity (where X = V or L) was localized to innervation along the hindgut. Indeed, we identified a myoinhibitory role for a PK2 on the ileum where PK2-R transcript was enriched. However, although we found that PK1 did not influence myoactivity or Na+ transport in isolated recta, the PRXa-like immunolocalization terminating in close association to the rectal pads and the significant enrichment of PK1-R transcript in the rectum suggests this organ could be a target of PK1 signaling and may regulate the excretory system in this important disease vector species.
Collapse
Affiliation(s)
- Aryan Lajevardi
- Laboratory of Integrative Vector Neuroendocrinology, Department of Biology, York University, Toronto, ON, Canada
| | - Jean-Paul V Paluzzi
- Laboratory of Integrative Vector Neuroendocrinology, Department of Biology, York University, Toronto, ON, Canada
| |
Collapse
|
33
|
Abstract
PURPOSE OF REVIEW Studies of the genetic model organism, Drosophila melanogaster, have unraveled molecular pathways relevant to human physiology and disease. The Malpighian tubule, the Drosophila renal epithelium, is described here, including tools available to study transport; conserved transporters, channels, and the signaling pathways regulating them; and fly models of kidney stone disease. RECENT FINDINGS Tools to measure Malpighian tubule transport continue to advance, including use of a transgenic sensor to quantify intracellular pH and proton fluxes. A recent study generated an RNA-sequencing-based atlas of tissue-specific gene expression, with resulting insights into Malpighian tubule gene expression of transporters and channels. Advances have been made in understanding the molecular physiology of the With No Lysine kinase-Ste20-related proline/alanine rich kinase/oxidative stress response kinase cascade that regulates epithelial ion transport in flies and mammals. New studies in Drosophila kidney stone models have characterized zinc transporters and used Malpighian tubules to study the efficacy of a plant metabolite in decreasing stone burden. SUMMARY Study of the Drosophila Malpighian tubule affords opportunities to better characterize the molecular physiology of epithelial transport mechanisms relevant to mammalian renal physiology.
Collapse
|
34
|
Zhang H, Bai J, Huang S, Liu H, Lin J, Hou Y. Neuropeptides and G-Protein Coupled Receptors (GPCRs) in the Red Palm Weevil Rhynchophorus ferrugineus Olivier (Coleoptera: Dryophthoridae). Front Physiol 2020; 11:159. [PMID: 32184735 PMCID: PMC7058690 DOI: 10.3389/fphys.2020.00159] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 02/12/2020] [Indexed: 12/21/2022] Open
Abstract
The red palm weevil Rhynchophorus ferrugineus is a devastating, invasive pest that causes serious damages to palm trees, and its invasiveness depends on its strong ability of physiological and behavioral adaptability. Neuropeptides and their receptors regulate physiology and behavior of insects, but these protein partners have not been identified from many insects. Here, we systematically identified neuropeptide precursors and the corresponding receptors in the red palm weevil, and analyzed their tissue expression patterns under control conditions and after pathogen infection. A total of 43 putative neuropeptide precursors were identified, including an extra myosuppressin peptide was identified with amino acid substitutions at two conserved sites. Forty-four putative neuropeptide receptors belonging to three classes were also identified, in which neuropeptide F receptors and insulin receptors were expanded compared to those in other insects. Based on qRT-PCR analyses, genes coding for several neuropeptide precursors and receptors were highly expressed in tissues other than the nervous system, suggesting that these neuropeptides and receptors play other roles in addition to neuro-reception. Some of the neuropeptides and receptors, like the tachykinin-related peptide and receptor, were significantly induced by pathogen infection, especially sensitive to Bacillus thuringiensis and Metarhizium anisopliae. Systemic identification and initial characterization of neuropeptides and their receptors in the red palm weevil provide a framework for further studies to reveal the functions of these ligand- and receptor-couples in regulating physiology, behavior, and immunity in this important insect pest species.
Collapse
Affiliation(s)
- He Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fujian, China.,Fujian Provincial Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fujian, China
| | - Juan Bai
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fujian, China.,Fujian Provincial Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fujian, China
| | - Shuning Huang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fujian, China.,Fujian Provincial Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fujian, China
| | - Huihui Liu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fujian, China.,Fujian Provincial Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fujian, China
| | - Jintian Lin
- Guangzhou City Key Laboratory of Subtropical Fruit Tree Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Youming Hou
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fujian, China.,Fujian Provincial Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fujian, China
| |
Collapse
|
35
|
Costa CP, Duennes MA, Fisher K, Der JP, Watrous KM, Okamoto N, Yamanaka N, Woodard SH. Transcriptome analysis reveals nutrition‐ and age‐related patterns of gene expression in the fat body of pre‐overwintering bumble bee queens. Mol Ecol 2020; 29:720-737. [DOI: 10.1111/mec.15361] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 01/06/2020] [Accepted: 01/08/2020] [Indexed: 01/01/2023]
Affiliation(s)
| | | | - Kaleigh Fisher
- Department of Entomology University of California Riverside CA USA
| | - Joshua P. Der
- Department of Biological Science California State University Fullerton CA USA
| | | | - Naoki Okamoto
- Department of Entomology University of California Riverside CA USA
| | - Naoki Yamanaka
- Department of Entomology University of California Riverside CA USA
| | | |
Collapse
|
36
|
Sajadi F, Uyuklu A, Paputsis C, Lajevardi A, Wahedi A, Ber LT, Matei A, Paluzzi JPV. CAPA neuropeptides and their receptor form an anti-diuretic hormone signaling system in the human disease vector, Aedes aegypti. Sci Rep 2020; 10:1755. [PMID: 32020001 PMCID: PMC7000730 DOI: 10.1038/s41598-020-58731-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 01/20/2020] [Indexed: 01/07/2023] Open
Abstract
Insect CAPA neuropeptides are homologs of mammalian neuromedin U and are known to influence ion and water balance by regulating the activity of the Malpighian 'renal' tubules (MTs). Several diuretic hormones are known to increase primary fluid and ion secretion by insect MTs and, in adult female mosquitoes, a calcitonin-related peptide (DH31) called mosquito natriuretic peptide, increases sodium secretion to compensate for the excess salt load acquired during blood-feeding. An endogenous mosquito anti-diuretic hormone was recently described, having potent inhibitory activity against select diuretic hormones, including DH31. Herein, we functionally deorphanized, both in vitro and in vivo, a mosquito anti-diuretic hormone receptor (AedaeADHr) with expression analysis indicating highest enrichment in the MTs where it is localized within principal cells. Characterization using a heterologous in vitro system demonstrated the receptor was highly sensitive to mosquito CAPA neuropeptides while in vivo, AedaeADHr knockdown abolished CAPA-induced anti-diuretic control of DH31-stimulated MTs. CAPA neuropeptides are produced within a pair of neurosecretory cells in each of the abdominal ganglia, whose axonal projections innervate the abdominal neurohaemal organs, where these neurohormones are released into circulation. Lastly, pharmacological inhibition of nitric oxide synthase (NOS) and protein kinase G (PKG) signaling eliminated anti-diuretic activity of CAPA, highlighting the role of the second messenger cGMP and NOS/PKG in this anti-diuretic signaling pathway.
Collapse
Affiliation(s)
- Farwa Sajadi
- Department of Biology, York University, 4700 Keele Street, Toronto, Ontario, M3J 1P3, Canada
| | - Ali Uyuklu
- Department of Biology, York University, 4700 Keele Street, Toronto, Ontario, M3J 1P3, Canada
| | - Christine Paputsis
- Department of Biology, York University, 4700 Keele Street, Toronto, Ontario, M3J 1P3, Canada
| | - Aryan Lajevardi
- Department of Biology, York University, 4700 Keele Street, Toronto, Ontario, M3J 1P3, Canada
| | - Azizia Wahedi
- Department of Biology, York University, 4700 Keele Street, Toronto, Ontario, M3J 1P3, Canada
| | - Lindsay Taylor Ber
- Department of Biology, York University, 4700 Keele Street, Toronto, Ontario, M3J 1P3, Canada
| | - Andreea Matei
- Department of Biology, York University, 4700 Keele Street, Toronto, Ontario, M3J 1P3, Canada
| | - Jean-Paul V Paluzzi
- Department of Biology, York University, 4700 Keele Street, Toronto, Ontario, M3J 1P3, Canada.
| |
Collapse
|
37
|
Cohen E, Sawyer JK, Peterson NG, Dow JAT, Fox DT. Physiology, Development, and Disease Modeling in the Drosophila Excretory System. Genetics 2020; 214:235-264. [PMID: 32029579 PMCID: PMC7017010 DOI: 10.1534/genetics.119.302289] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 11/04/2019] [Indexed: 02/06/2023] Open
Abstract
The insect excretory system contains two organ systems acting in concert: the Malpighian tubules and the hindgut perform essential roles in excretion and ionic and osmotic homeostasis. For over 350 years, these two organs have fascinated biologists as a model of organ structure and function. As part of a recent surge in interest, research on the Malpighian tubules and hindgut of Drosophila have uncovered important paradigms of organ physiology and development. Further, many human disease processes can be modeled in these organs. Here, focusing on discoveries in the past 10 years, we provide an overview of the anatomy and physiology of the Drosophila excretory system. We describe the major developmental events that build these organs during embryogenesis, remodel them during metamorphosis, and repair them following injury. Finally, we highlight the use of the Malpighian tubules and hindgut as accessible models of human disease biology. The Malpighian tubule is a particularly excellent model to study rapid fluid transport, neuroendocrine control of renal function, and modeling of numerous human renal conditions such as kidney stones, while the hindgut provides an outstanding model for processes such as the role of cell chirality in development, nonstem cell-based injury repair, cancer-promoting processes, and communication between the intestine and nervous system.
Collapse
Affiliation(s)
| | - Jessica K Sawyer
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, and
| | | | - Julian A T Dow
- Institute of Molecular, Cell, and Systems Biology, University of Glasgow, G12 8QQ, United Kingdom
| | - Donald T Fox
- Department of Cell Biology and
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, and
| |
Collapse
|
38
|
Specialized stellate cells offer a privileged route for rapid water flux in Drosophila renal tubule. Proc Natl Acad Sci U S A 2020; 117:1779-1787. [PMID: 31907321 PMCID: PMC6983416 DOI: 10.1073/pnas.1915943117] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Insects are highly successful, in part through an excellent ability to osmoregulate. The renal (Malpighian) tubules can secrete fluid faster on a per-cell basis than any other epithelium, but the route for these remarkable water fluxes has not been established. In Drosophila melanogaster, we show that 4 genes of the major intrinsic protein family are expressed at a very high level in the fly renal tissue: the aquaporins (AQPs) Drip and Prip and the aquaglyceroporins Eglp2 and Eglp4 As predicted from their structure, and by their transport function by expressing these proteins in Xenopus oocytes, Drip, Prip, and Eglp2 show significant and specific water permeability, whereas Eglp2 and Eglp4 show very high permeability to glycerol and urea. Knockdowns of any of these genes result in impaired hormone-induced fluid secretion. The Drosophila tubule has 2 main secretory cell types: active cation-transporting principal cells, wherein the aquaglyceroporins localize to opposite plasma membranes, and small stellate cells, the site of the chloride shunt conductance, with these AQPs localizing to opposite plasma membranes. This suggests a model in which osmotically obliged water flows through the stellate cells. Consistent with this model, fluorescently labeled dextran, an in vivo marker of membrane water permeability, is trapped in the basal infoldings of the stellate cells after kinin diuretic peptide stimulation, confirming that these cells provide the major route for transepithelial water flux. The spatial segregation of these components of epithelial water transport may help to explain the unique success of the higher insects in regulating their internal environments.
Collapse
|
39
|
Ghimire S, Terhzaz S, Cabrero P, Romero MF, Davies SA, Dow JAT. Targeted renal knockdown of Na +/H + exchanger regulatory factor Sip1 produces uric acid nephrolithiasis in Drosophila. Am J Physiol Renal Physiol 2019; 317:F930-F940. [PMID: 31364377 DOI: 10.1152/ajprenal.00551.2018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Nephrolithiasis is one of the most common kidney diseases, with poorly understood pathophysiology, but experimental study has been hindered by lack of experimentally tractable models. Drosophila melanogaster is a useful model organism for renal diseases because of genetic and functional similarities of Malpighian (renal) tubules with the human kidney. Here, we demonstrated function of the sex-determining region Y protein-interacting protein-1 (Sip1) gene, an ortholog of human Na+/H+ exchanger regulatory factor (NHERF1), in Drosophila Malpighian tubules and its impact on nephrolithiasis. Abundant birefringent calculi were observed in Sip1 mutant flies, and the phenotype was also observed in renal stellate cell-specific RNA interference Sip1 knockdown in otherwise normal flies, confirming a renal etiology. This phenotype was abolished in rosy mutant flies (which model human xanthinuria) and by the xanthine oxidase inhibitor allopurinol, suggesting that the calculi were of uric acid. This was confirmed by direct biochemical assay for urate. Stones rapidly dissolved when the tubule was bathed in alkaline media, suggesting that Sip1 knockdown was acidifying the tubule. SIP1 was shown to collocate with Na+/H+ exchanger isoform 2 (NHE2) and with moesin in stellate cells. Knockdown of NHE2 specifically to the stellate cells also increased renal uric acid stone formation, and so a model was developed in which SIP1 normally regulates NHE2 activity and luminal pH, ultimately leading to uric acid stone formation. Drosophila renal tubules may thus offer a useful model for urate nephrolithiasis.
Collapse
Affiliation(s)
- Saurav Ghimire
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Selim Terhzaz
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Pablo Cabrero
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Michael F Romero
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| | - Shireen A Davies
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Julian A T Dow
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
40
|
Alford L, Marley R, Dornan A, Pierre J, Dow JAT, Nachman RJ, Davies SA. Assessment of neuropeptide binding sites and the impact of biostable kinin and CAP2b analogue treatment on aphid (Myzus persicae and Macrosiphum rosae) stress tolerance. PEST MANAGEMENT SCIENCE 2019; 75:1750-1759. [PMID: 30734498 PMCID: PMC6593983 DOI: 10.1002/ps.5372] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 12/05/2018] [Accepted: 02/04/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Neuropeptides are regulators of critical life processes in insects and, due to their high specificity, represent potential targets in the development of greener insecticidal agents. Fundamental to this drive is understanding neuroendocrine pathways that control key physiological processes in pest insects and the screening of potential analogues. The current study investigated neuropeptide binding sites of kinin and CAPA (CAPA-1) in the aphids Myzus persicae and Macrosiphum rosae and the effect of biostable analogues on aphid fitness under conditions of desiccation, starvation and thermal (cold) stress. RESULTS M. persicae and M. rosae displayed identical patterns of neuropeptide receptor mapping along the gut, with the gut musculature representing the main target for kinin and CAPA-1 action. While kinin receptor binding was observed in the brain and VNC of M. persicae, this was not observed in M. rosae. Furthermore, no CAPA-1 receptor binding was observed in the brain and VNC of either species. CAP2b/PK analogues (with CAPA receptor cross-activity) were most effective in reducing aphid fitness under conditions of desiccation and starvation stress, particularly analogues 1895 (2Abf-Suc-FGPRLa) and 2129 (2Abf-Suc-ATPRIa), which expedited aphid mortality. All analogues, with the exception of 2139-Ac, were efficient at reducing aphid survival under cold stress, although were equivalent in the strength of their effect. CONCLUSION In demonstrating the effects of analogues belonging to the CAP2b neuropeptide family and key analogue structures that reduce aphid fitness under stress conditions, this research will feed into the development of second generation analogues and ultimately the development of neuropeptidomimetic-based insecticidal agents. © 2019 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Lucy Alford
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
| | - Richard Marley
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
| | - Anthony Dornan
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
| | - Jean‐Sébastien Pierre
- UMR 6553 ECOBIO, Centre National de la Recherche ScientifiqueUniversité de Rennes IRennes CedexFrance
| | - Julian AT Dow
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
| | - Ronald J Nachman
- Insect Control and Cotton Disease Research Unit, Southern Plains Agricultural Research CenterU.S. Department of AgricultureCollege StationTexasUSA
| | - Shireen A Davies
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
| |
Collapse
|
41
|
Martínez-Corrales G, Cabrero P, Dow JAT, Terhzaz S, Davies SA. Novel roles for GATAe in growth, maintenance and proliferation of cell populations in the Drosophila renal tubule. Development 2019; 146:dev.178087. [PMID: 31036543 DOI: 10.1242/dev.178087] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 04/23/2019] [Indexed: 12/14/2022]
Abstract
The GATA family of transcription factors is implicated in numerous developmental and physiological processes in metazoans. In Drosophila melanogaster, five different GATA factor genes (pannier, serpent, grain, GATAd and GATAe) have been reported as essential in the development and identity of multiple tissues, including the midgut, heart and brain. Here, we present a novel role for GATAe in the function and homeostasis of the Drosophila renal (Malpighian) tubule. We demonstrate that reduced levels of GATAe gene expression in tubule principal cells induce uncontrolled cell proliferation, resulting in tumorous growth with associated altered expression of apoptotic and carcinogenic key genes. Furthermore, we uncover the involvement of GATAe in the maintenance of stellate cells and migration of renal and nephritic stem cells into the tubule. Our findings of GATAe as a potential master regulator in the events of growth control and cell survival required for the maintenance of the Drosophila renal tubule could provide new insights into the molecular pathways involved in the formation and maintenance of a functional tissue and kidney disease.
Collapse
Affiliation(s)
- Guillermo Martínez-Corrales
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Pablo Cabrero
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Julian A T Dow
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Selim Terhzaz
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Shireen-A Davies
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
42
|
Nässel DR, Zandawala M. Recent advances in neuropeptide signaling in Drosophila, from genes to physiology and behavior. Prog Neurobiol 2019; 179:101607. [PMID: 30905728 DOI: 10.1016/j.pneurobio.2019.02.003] [Citation(s) in RCA: 193] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 02/18/2019] [Accepted: 02/28/2019] [Indexed: 12/11/2022]
Abstract
This review focuses on neuropeptides and peptide hormones, the largest and most diverse class of neuroactive substances, known in Drosophila and other animals to play roles in almost all aspects of daily life, as w;1;ell as in developmental processes. We provide an update on novel neuropeptides and receptors identified in the last decade, and highlight progress in analysis of neuropeptide signaling in Drosophila. Especially exciting is the huge amount of work published on novel functions of neuropeptides and peptide hormones in Drosophila, largely due to the rapid developments of powerful genetic methods, imaging techniques and innovative assays. We critically discuss the roles of peptides in olfaction, taste, foraging, feeding, clock function/sleep, aggression, mating/reproduction, learning and other behaviors, as well as in regulation of development, growth, metabolic and water homeostasis, stress responses, fecundity, and lifespan. We furthermore provide novel information on neuropeptide distribution and organization of peptidergic systems, as well as the phylogenetic relations between Drosophila neuropeptides and those of other phyla, including mammals. As will be shown, neuropeptide signaling is phylogenetically ancient, and not only are the structures of the peptides, precursors and receptors conserved over evolution, but also many functions of neuropeptide signaling in physiology and behavior.
Collapse
Affiliation(s)
- Dick R Nässel
- Department of Zoology, Stockholm University, Stockholm, Sweden.
| | - Meet Zandawala
- Department of Zoology, Stockholm University, Stockholm, Sweden; Department of Neuroscience, Brown University, Providence, RI, USA.
| |
Collapse
|
43
|
Davies SA, Cabrero P, Marley R, Corrales GM, Ghimire S, Dornan AJ, Dow JAT. Epithelial Function in the Drosophila Malpighian Tubule: An In Vivo Renal Model. Methods Mol Biol 2019; 1926:203-221. [PMID: 30742274 DOI: 10.1007/978-1-4939-9021-4_17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The insect renal (Malpighian) tubule has long been a model system for the study of fluid secretion and its neurohormonal control, as well as studies on ion transport mechanisms. To extend these studies beyond the boundaries of classical physiology, a molecular genetic approach together with the 'omics technologies is required. To achieve this in any vertebrate transporting epithelium remains a daunting task, as the genetic tools available are still relatively unsophisticated. Drosophila melanogaster, however, is an outstanding model organism for molecular genetics. Here we describe a technique for fluid secretion assays in the D. melanogaster equivalent of the kidney nephron. The development of this first physiological assay for a Drosophila epithelium, allowing combined approaches of integrative physiology and functional genomics, has now provided biologists with an entirely new model system, the Drosophila Malpighian tubule, which is utilized in multiple fields as diverse as kidney disease research and development of new modes of pest insect control.
Collapse
Affiliation(s)
- Shireen-A Davies
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, UK.
| | - Pablo Cabrero
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, UK
| | - Richard Marley
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, UK
| | - Guillermo Martinez Corrales
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, UK
| | - Saurav Ghimire
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, UK
| | - Anthony J Dornan
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, UK
| | - Julian A T Dow
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, UK.
| |
Collapse
|
44
|
Landry GM, Furrow E, Holmes HL, Hirata T, Kato A, Williams P, Strohmaier K, Gallo CJR, Chang M, Pandey MK, Jiang H, Bansal A, Franz MC, Montalbetti N, Alexander MP, Cabrero P, Dow JAT, DeGrado TR, Romero MF. Cloning, function, and localization of human, canine, and Drosophila ZIP10 (SLC39A10), a Zn 2+ transporter. Am J Physiol Renal Physiol 2018; 316:F263-F273. [PMID: 30520657 DOI: 10.1152/ajprenal.00573.2017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Zinc (Zn2+) is the second most abundant trace element, but is considered a micronutrient, as it is a cofactor for many enzymes and transcription factors. Whereas Zn2+ deficiency can cause cognitive immune or metabolic dysfunction and infertility, excess Zn2+ is nephrotoxic. As for other ions and solutes, Zn2+ is moved into and out of cells by specific membrane transporters: ZnT, Zip, and NRAMP/DMT proteins. ZIP10 is reported to be localized at the apical membrane of renal proximal tubules in rats, where it is believed to play a role in Zn2+ import. Renal regulation of Zn2+ is of particular interest in light of growing evidence that Zn2+ may play a role in kidney stone formation. The objective of this study was to show that ZIP10 homologs transport Zn2+, as well as ZIP10, kidney localization across species. We cloned ZIP10 from dog, human, and Drosophila ( CG10006), tested clones for Zn2+ uptake in Xenopus oocytes and localized the protein in renal structures. CG10006, rather than foi (fear-of-intimacy, CG6817) is the primary ZIP10 homolog found in Drosophila Malpighian tubules. The ZIP10 antibody recognizes recombinant dog, human, and Drosophila ZIP10 proteins. Immunohistochemistry reveals that ZIP10 in higher mammals is found not only in the proximal tubule, but also in the collecting duct system. These ZIP10 proteins show Zn2+ transport. Together, these studies reveal ZIP10 kidney localization, a role in renal Zn2+ transport, and indicates that CG10006 is a Drosophila homolog of ZIP10.
Collapse
Affiliation(s)
- Greg M Landry
- Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science , Rochester, Minnesota.,Nephrology and Hypertension, Mayo Clinic College of Medicine and Science , Rochester, Minnesota.,O'Brien Urology Research Center, Mayo Clinic College of Medicine and Science , Rochester, Minnesota
| | - Eva Furrow
- Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota , St. Paul, Minnesota
| | - Heather L Holmes
- Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science , Rochester, Minnesota
| | - Taku Hirata
- Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science , Rochester, Minnesota.,Nephrology and Hypertension, Mayo Clinic College of Medicine and Science , Rochester, Minnesota.,O'Brien Urology Research Center, Mayo Clinic College of Medicine and Science , Rochester, Minnesota
| | - Akira Kato
- Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science , Rochester, Minnesota.,Center for Biological Resources and Informatics and Department of Biological Sciences, Tokyo Institute of Technology , Yokohama , Japan
| | - Paige Williams
- Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science , Rochester, Minnesota.,Nephrology and Hypertension, Mayo Clinic College of Medicine and Science , Rochester, Minnesota.,O'Brien Urology Research Center, Mayo Clinic College of Medicine and Science , Rochester, Minnesota
| | - Käri Strohmaier
- Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science , Rochester, Minnesota.,Nephrology and Hypertension, Mayo Clinic College of Medicine and Science , Rochester, Minnesota.,O'Brien Urology Research Center, Mayo Clinic College of Medicine and Science , Rochester, Minnesota
| | - Chris J R Gallo
- Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science , Rochester, Minnesota.,O'Brien Urology Research Center, Mayo Clinic College of Medicine and Science , Rochester, Minnesota
| | - Minhwang Chang
- Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science , Rochester, Minnesota
| | - Mukesh K Pandey
- Nuclear Medicine, Mayo Clinic College of Medicine and Science , Rochester, Minnesota
| | - Huailei Jiang
- Nuclear Medicine, Mayo Clinic College of Medicine and Science , Rochester, Minnesota
| | - Aditya Bansal
- Nuclear Medicine, Mayo Clinic College of Medicine and Science , Rochester, Minnesota
| | - Marie-Christine Franz
- Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science , Rochester, Minnesota
| | - Nicolas Montalbetti
- Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science , Rochester, Minnesota
| | - Mariam P Alexander
- Laboratory of Medicine and Pathology, Mayo Clinic College of Medicine and Science , Rochester, Minnesota
| | - Pablo Cabrero
- Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary, and Life Sciences, University of Glasgow , Glasgow , United Kingdom
| | - Julian A T Dow
- Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary, and Life Sciences, University of Glasgow , Glasgow , United Kingdom
| | - Timothy R DeGrado
- Nuclear Medicine, Mayo Clinic College of Medicine and Science , Rochester, Minnesota
| | - Michael F Romero
- Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science , Rochester, Minnesota.,Nephrology and Hypertension, Mayo Clinic College of Medicine and Science , Rochester, Minnesota.,O'Brien Urology Research Center, Mayo Clinic College of Medicine and Science , Rochester, Minnesota
| |
Collapse
|
45
|
MacMillan HA, Nazal B, Wali S, Yerushalmi GY, Misyura L, Donini A, Paluzzi JP. Anti-diuretic activity of a CAPA neuropeptide can compromise Drosophila chill tolerance. ACTA ACUST UNITED AC 2018; 221:jeb.185884. [PMID: 30104306 DOI: 10.1242/jeb.185884] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 08/03/2018] [Indexed: 01/07/2023]
Abstract
For insects, chilling injuries that occur in the absence of freezing are often related to a systemic loss of ion and water balance that leads to extracellular hyperkalemia, cell depolarization and the triggering of apoptotic signalling cascades. The ability of insect ionoregulatory organs (e.g. the Malpighian tubules) to maintain ion balance in the cold has been linked to improved chill tolerance, and many neuroendocrine factors are known to influence ion transport rates of these organs. Injection of micromolar doses of CAPA (an insect neuropeptide) have been previously demonstrated to improve Drosophila cold tolerance, but the mechanisms through which it impacts chill tolerance are unclear, and low doses of CAPA have been previously demonstrated to cause anti-diuresis in insects, including dipterans. Here, we provide evidence that low (femtomolar) and high (micromolar) doses of CAPA impair and improve chill tolerance, respectively, via two different effects on Malpighian tubule ion and water transport. While low doses of CAPA are anti-diuretic, reduce tubule K+ clearance rates and reduce chill tolerance, high doses facilitate K+ clearance from the haemolymph and increase chill tolerance. By quantifying CAPA peptide levels in the central nervous system, we estimated the maximum achievable hormonal titres of CAPA and found further evidence that CAPA may function as an anti-diuretic hormone in Drosophila melanogaster We provide the first evidence of a neuropeptide that can negatively affect cold tolerance in an insect and further evidence of CAPA functioning as an anti-diuretic peptide in this ubiquitous insect model.
Collapse
Affiliation(s)
| | - Basma Nazal
- Department of Biology, York University, Toronto, ON, Canada M3J 1P3
| | - Sahr Wali
- Department of Biology, York University, Toronto, ON, Canada M3J 1P3
| | - Gil Y Yerushalmi
- Department of Biology, York University, Toronto, ON, Canada M3J 1P3
| | - Lidiya Misyura
- Department of Biology, York University, Toronto, ON, Canada M3J 1P3
| | - Andrew Donini
- Department of Biology, York University, Toronto, ON, Canada M3J 1P3
| | | |
Collapse
|
46
|
Pandit AA, Ragionieri L, Marley R, Yeoh JGC, Inward DJG, Davies SA, Predel R, Dow JAT. Coordinated RNA-Seq and peptidomics identify neuropeptides and G-protein coupled receptors (GPCRs) in the large pine weevil Hylobius abietis, a major forestry pest. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2018; 101:94-107. [PMID: 30165105 DOI: 10.1016/j.ibmb.2018.08.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 07/30/2018] [Accepted: 08/24/2018] [Indexed: 06/08/2023]
Abstract
Hylobius abietis (Linnaeus), or large pine weevil (Coleoptera, Curculionidae), is a pest of European coniferous forests. In order to gain understanding of the functional physiology of this species, we have assembled a de novo transcriptome of H. abietis, from sequence data obtained by Next Generation Sequencing. In particular, we have identified genes encoding neuropeptides, peptide hormones and their putative G-protein coupled receptors (GPCRs) to gain insights into neuropeptide-modulated processes. The transcriptome was assembled de novo from pooled paired-end, sequence reads obtained from RNA from whole adults, gut and central nervous system tissue samples. Data analysis was performed on the transcripts obtained from the assembly including, annotation, gene ontology and functional assignment as well as transcriptome completeness assessment and KEGG pathway analysis. Pipelines were created using Bioinformatics tools and techniques for prediction and identification of neuropeptides and neuropeptide receptors. Peptidomic analysis was also carried out using a combination of MALDI-TOF as well as Q-Exactive Orbitrap mass spectrometry to confirm the identified neuropeptide. 41 putative neuropeptide families were identified in H. abietis, including Adipokinetic hormone (AKH), CAPA and DH31. Neuropeptide F, which has not been yet identified in the model beetle T. castaneum, was identified. Additionally, 24 putative neuropeptide and 9 leucine-rich repeat containing G protein coupled receptor-encoding transcripts were determined using both alignment as well as non-alignment methods. This information, submitted to the NCBI sequence read archive repository (SRA accession: SRP133355), can now be used to inform understanding of neuropeptide-modulated physiology and behaviour in H. abietis; and to develop specific neuropeptide-based tools for H. abietis control.
Collapse
Affiliation(s)
- Aniruddha A Pandit
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Lapo Ragionieri
- Functional Peptidomics Group, Institute for Zoology, Department of Biology, University of Cologne, Zuelpicher Str. 47b, D-50674 Cologne, Germany
| | - Richard Marley
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Joseph G C Yeoh
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | | | - Shireen-Anne Davies
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Reinhard Predel
- Functional Peptidomics Group, Institute for Zoology, Department of Biology, University of Cologne, Zuelpicher Str. 47b, D-50674 Cologne, Germany
| | - Julian A T Dow
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK.
| |
Collapse
|
47
|
Shen Z, Yang X, Chen Y, Shi L. CAPA periviscerokinin-mediated activation of MAPK/ERK signaling through Gq-PLC-PKC-dependent cascade and reciprocal ERK activation-dependent internalized kinetics of Bom-CAPA-PVK receptor 2. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2018; 98:1-15. [PMID: 29730398 DOI: 10.1016/j.ibmb.2018.04.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 04/16/2018] [Accepted: 04/28/2018] [Indexed: 06/08/2023]
Abstract
Bombyx mori neuropeptide G protein-coupled receptor (BNGR)-A27 is a specific receptor for B. mori capability (CAPA) periviscerokinin (PVK), that is, Bom-CAPA-PVK receptor 2. Upon stimulation of Bom-CAPA-PVK-1 or -PVK-2, Bom-CAPA-PVK receptor 2 significantly increases cAMP-response element-controlled luciferase activity and Ca2+ mobilization in a Gq inhibitor-sensitive manner. However, the underlying mechanism(s) for CAPA/CAPA receptor system mediation of extracellular signal-regulated kinases1/2 (ERK1/2) activation remains to be explained further. Here, we discovered that Bom-CAPA-PVK receptor 2 stimulated ERK1/2 phosphorylation in a dose- and time-dependent manner in response to Bom-CAPA-PVK-1 or -PVK-2 with similar potencies. Furthermore, ERK1/2 phosphorylation can be inhibited by Gq inhibitor UBO-QIC, PLC inhibitor U73122, protein kinase C (PKC) inhibitor Go 6983, phospholipase D (PLD) inhibitor FIPI and Ca2+ chelators EGTA and BAPTA-AM. Moreover, Bom-CAPA-PVK-R2-induced activation of ERK1/2 was significantly attenuated by treatment with the Gβγ-specific inhibitors, phosphatidylinositol 3-kinase (PI3K)-specific inhibitor Wortmannin and Src-specific inhibitor PP2. Our data also demonstrate that receptor tyrosine kinase (RTK) transactivation pathways are involved in the mechanisms of Bom-CAPA-PVK receptor to ERK1/2 phosphorylation. In addition, β-arrestin1/2 is not involved in Bom-CAPA-PVK-R2-mediated ERK1/2 activation but required for the agonist-independent, ERK1/2 activation-dependent internalization of the G protein-coupled receptor (GPCR).
Collapse
Affiliation(s)
- Zhangfei Shen
- Department of Economic Zoology, College of Animal Sciences, Zijingang Campus, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Xiaoyuan Yang
- College of Life Sciences, Zijingang Campus, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Yu Chen
- College of Life Sciences, Zijingang Campus, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Liangen Shi
- Department of Economic Zoology, College of Animal Sciences, Zijingang Campus, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| |
Collapse
|
48
|
Zheng W, Rus F, Hernandez A, Kang P, Goldman W, Silverman N, Tatar M. Dehydration triggers ecdysone-mediated recognition-protein priming and elevated anti-bacterial immune responses in Drosophila Malpighian tubule renal cells. BMC Biol 2018; 16:60. [PMID: 29855367 PMCID: PMC5984326 DOI: 10.1186/s12915-018-0532-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 05/15/2018] [Indexed: 12/03/2022] Open
Abstract
Background Drosophila is a powerful model for the study of factors modulating innate immunity. This study examines the effect of water-loss dehydration on innate immune responsiveness in the Drosophila renal system (Malpighian tubules; MTs), and how this leads to elevated host defense and contributes to immunosenescence. Results A short period of desiccation-elevated peptidoglycan recognition protein-LC (PGRP-LC) expression in MTs, increased antimicrobial peptide (AMP) gene induction, and protected animals from bacterial infection. We show that desiccation increased ecdysone synthesis in MTs, while inhibition of ecdysone synthesis or ecdysone receptor expression, specifically within MTs, prevented induction of PGRP-LC and reduced protection from bacterial infection. Additionally, aged flies are constitutively water-stressed and have elevated levels of ecdysone and PGRP-LC. Conversely, adults aged at high relative humidity show less water loss and have reduced expression of PGRP-LC and AMPs. Conclusions The Drosophila renal system is an important contributor to host defense and can modulate immune responses in an organ autonomous manner, responding to environmental changes such as desiccation. Desiccation primes immune responsiveness by elevating PGRP-LC expression specifically in MTs. In response to desiccation, ecdysone is produced in MTs and acts in a paracrine fashion to increase PGRP-LC expression, immune responsiveness, and improve host defense. This activity of the renal system may contribute to the immunosenescence observed in Drosophila. Electronic supplementary material The online version of this article (10.1186/s12915-018-0532-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wenjing Zheng
- Division of Biology and Medicine, Brown University, Providence, RI, USA
| | - Florentina Rus
- Department of Medicine, Division of Infectious Diseases, University of Massachusetts, Medical School, Worcester, MA, USA
| | - Ana Hernandez
- Division of Biology and Medicine, Brown University, Providence, RI, USA
| | - Ping Kang
- Division of Biology and Medicine, Brown University, Providence, RI, USA
| | - William Goldman
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, USA
| | - Neal Silverman
- Department of Medicine, Division of Infectious Diseases, University of Massachusetts, Medical School, Worcester, MA, USA.
| | - Marc Tatar
- Division of Biology and Medicine, Brown University, Providence, RI, USA.
| |
Collapse
|
49
|
Sajadi F, Curcuruto C, Al Dhaheri A, Paluzzi JPV. Anti-diuretic action of a CAPA neuropeptide against a subset of diuretic hormones in the disease vector Aedes aegypti. ACTA ACUST UNITED AC 2018; 221:jeb.177089. [PMID: 29496779 DOI: 10.1242/jeb.177089] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Accepted: 02/21/2018] [Indexed: 01/21/2023]
Abstract
The mosquito Aedes aegypti is a vector responsible for transmitting various pathogens to humans, and their prominence as chief vectors of human disease is largely due to their anthropophilic blood feeding behaviour. Larval stage mosquitoes must deal with the potential dilution of their haemolymph in freshwater, whereas the haematophagus A. aegypti female faces the challenge of excess ion and water intake after a blood meal. The excretory system, composed of the Malpighian tubules (MTs) and hindgut, is strictly controlled by neuroendocrine factors, responsible for the regulation of diuresis across all developmental stages. The highly studied insect MTs are influenced by a variety of diuretic hormones and, in some insects, anti-diuretic factors. In the present study, we investigated the effects of AedaeCAPA-1 neuropeptide on larval and adult female A. aegypti MTs stimulated with various diuretic factors including serotonin (5-HT), a corticotropin-related factor (CRF) diuretic peptide, a calcitonin-related diuretic hormone (DH31) and a kinin-related diuretic peptide. Overall, our findings establish that AedaeCAPA-1 specifically inhibits secretion of larval and adult MTs stimulated by 5-HT and DH31, whilst having no activity on MTs stimulated by other diuretic factors. Furthermore, although AedaeCAPA-1 acts as an anti-diuretic, it does not influence the relative proportions of cations transported by adult MTs, thus maintaining the kaliuretic activity of 5-HT and natriuretic activity of DH31 In addition, we tested the effects of the second messenger cGMP in adult MTs. We established that cGMP has similar effects to AedaeCAPA-1, strongly inhibiting 5-HT- and DH31-stimulated fluid secretion, but with only minor effects on CRF-stimulated diuresis. Interestingly, although AedaeCAPA-1 has no inhibitory activity on kinin-stimulated fluid secretion, cGMP strongly inhibited fluid secretion by this diuretic hormone, which targets stellate cells specifically. Collectively, these results support that AedaeCAPA-1 inhibits select diuretic factors acting on the principal cells and this probably involves cGMP as a second messenger. Kinin-stimulated diuresis, which targets stellate cells, is also inhibited by cGMP, suggesting that another anti-diuretic factor in addition to AedaeCAPA-1 exists and may utilize cGMP as a second messenger.
Collapse
Affiliation(s)
- Farwa Sajadi
- Department of Biology, York University, 4700 Keele Street, Toronto, ON, M3J 1P3, Canada
| | - Carmela Curcuruto
- Department of Biology, York University, 4700 Keele Street, Toronto, ON, M3J 1P3, Canada
| | - Afra Al Dhaheri
- Department of Biology, York University, 4700 Keele Street, Toronto, ON, M3J 1P3, Canada
| | - Jean-Paul V Paluzzi
- Department of Biology, York University, 4700 Keele Street, Toronto, ON, M3J 1P3, Canada
| |
Collapse
|
50
|
Terhzaz S, Alford L, Yeoh JGC, Marley R, Dornan AJ, Dow JAT, Davies SA. Renal neuroendocrine control of desiccation and cold tolerance by Drosophila suzukii. PEST MANAGEMENT SCIENCE 2018; 74:800-810. [PMID: 28714258 PMCID: PMC5888198 DOI: 10.1002/ps.4663] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 07/10/2017] [Accepted: 07/10/2017] [Indexed: 05/04/2023]
Abstract
BACKGROUND Neuropeptides are central to the regulation of physiological and behavioural processes in insects, directly impacting cold and desiccation survival. However, little is known about the control mechanisms governing these responses in Drosophila suzukii. The close phylogenetic relationship of D. suzukii with Drosophila melanogaster allows, through genomic and functional studies, an insight into the mechanisms directing stress tolerance in D. suzukii. RESULTS Capability (Capa), leucokinin (LK), diuretic hormone 44 (DH44 ) and DH31 neuropeptides demonstrated a high level of conservation between D. suzukii and D. melanogaster with respect to peptide sequences, neuronal expression, receptor localisation, and diuretic function in the Malpighian tubules. Despite D. suzukii's ability to populate cold environments, it proved sensitive to both cold and desiccation. Furthermore, in D. suzukii, Capa acts as a desiccation- and cold stress-responsive gene, while DH44 gene expression is increased only after desiccation exposure, and the LK gene after nonlethal cold stress recovery. CONCLUSION This study provides a comparative investigation into stress tolerance mediation by neuroendocrine signalling in two Drosophila species, providing evidence that similar signalling pathways control fluid secretion in the Malpighian tubules. Identifying processes governing specific environmental stresses affecting D. suzukii could lead to the development of targeted integrated management strategies to control insect pest populations. © 2017 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Selim Terhzaz
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
| | - Lucy Alford
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
| | - Joseph GC Yeoh
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
| | - Richard Marley
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
| | - Anthony J Dornan
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
| | - Julian AT Dow
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
| | - Shireen A Davies
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
| |
Collapse
|