1
|
Bi J, Zheng M, Li K, Sun S, Zhang Z, Yan N, Li X. Relationships of serum FGF23 and α-klotho with atherosclerosis in patients with type 2 diabetes mellitus. Cardiovasc Diabetol 2024; 23:128. [PMID: 38622690 PMCID: PMC11020347 DOI: 10.1186/s12933-024-02205-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 03/15/2024] [Indexed: 04/17/2024] Open
Abstract
BACKGROUND Compelling evidence suggests that calcium/phosphorus homeostasis-related parameters may be linked to diabetes mellitus and cardiovascular events. However, few studies have investigated the association of fibroblast growth factor 23 (FGF23), α-klotho and FGF23/α-klotho ratio with atherosclerosis in patients with type 2 diabetes mellitus (T2DM). OBJECTIVE This study was designed to evaluate whether FGF23, α-klotho and FGF23/α-klotho ratio are associated with T2DM and further to explore the relationships between these three factors and atherosclerosis in Chinese patients with T2DM. METHODS Serum FGF23 and α-klotho levels were measured via an enzyme-linked immunosorbent assay (ELISA) kit, and the carotid intima-media thickness (CIMT) was assessed via high-resolution color Doppler ultrasonography. The associations of serum FGF23, α-klotho and FGF23/α-klotho ratio with atherosclerosis in T2DM patients were evaluated using multivariable logistic regression models. RESULTS This cross-sectional study involved 403 subjects (207 with T2DM and 196 without T2DM), 41.7% of the patients had atherosclerosis, and 67.2% of the carotid intima were thickened to a thickness greater than 0.9 mm. Compared with those in the lowest tertile, higher tertiles of FGF23 levels and FGF23/α-klotho ratio were positively associated with T2DM after adjusting for covariates, and serum α-klotho concentration was inversely correlated with T2DM (all P values < 0.01). Moreover, elevated serum FGF23 levels and FGF23/α-klotho ratio were positively associated with CIMT and carotid atherosclerosis in T2DM patients (all P values < 0.01). Further spline analysis similarly revealed linear dose‒response relationship (all P values < 0.01). And there was still significant differences in CIMT and carotid atherosclerosis between the highest group of α-klotho and the reference group in T2DM patients (P values = 0.05). CONCLUSIONS T2DM was positively linearly related to serum FGF23 concentration and FGF23/α-klotho ratio, and negatively correlated with serum α-klotho concentration. Furthermore, both FGF23 and FGF23/α-klotho ratio were positively correlated with CIMT and atherosclerosis in T2DM patients, while α-klotho was inversely correlated with both CIMT and atherosclerosis, although the associations were not completely significant. Prospective exploration and potential mechanisms underlying these associations remain to be further elucidated.
Collapse
Affiliation(s)
- Jiao Bi
- Xi'an Key Laboratory for Prevention and Treatment of Common Aging Diseases, Translational and Research Centre for Prevention and Therapy of Chronic Disease, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, 710021, PR China
| | - Mei Zheng
- The First Affiliated Hospital of Xi'an Medical College, Xi'an Medical University, Xi'an, 710021, China
| | - Ke Li
- Xi'an Key Laboratory for Prevention and Treatment of Common Aging Diseases, Translational and Research Centre for Prevention and Therapy of Chronic Disease, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, 710021, PR China
| | - Siwei Sun
- Xi'an Key Laboratory for Prevention and Treatment of Common Aging Diseases, Translational and Research Centre for Prevention and Therapy of Chronic Disease, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, 710021, PR China
| | - Zihang Zhang
- Xi'an Key Laboratory for Prevention and Treatment of Common Aging Diseases, Translational and Research Centre for Prevention and Therapy of Chronic Disease, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, 710021, PR China
| | - Nana Yan
- Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, 710068, China
| | - Xueping Li
- Xi'an Key Laboratory for Prevention and Treatment of Common Aging Diseases, Translational and Research Centre for Prevention and Therapy of Chronic Disease, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, 710021, PR China.
| |
Collapse
|
2
|
Liu Y, Chen M. Emerging role of α-Klotho in energy metabolism and cardiometabolic diseases. Diabetes Metab Syndr 2023; 17:102854. [PMID: 37722166 DOI: 10.1016/j.dsx.2023.102854] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 08/16/2023] [Accepted: 09/08/2023] [Indexed: 09/20/2023]
Abstract
BACKGROUND AND AIM Klotho was first identified as a gene associated with aging and longevity in 1997. α-Klotho is an anti-aging protein and its role in energy metabolism, various cardiovascular diseases (CVDs), and metabolic disorders is increasingly being recognized. In this review, we aimed to outline the potential protective role and therapeutic prospects of α-Klotho in energy metabolism and cardiometabolic diseases (CMDs). METHODS We comprehensively reviewed the relevant literature in PubMed using the keywords 'Klotho', 'metabolism', 'cardiovascular', 'diabetes', 'obesity', 'metabolic syndrome', and 'nonalcoholic fatty liver disease'. RESULTS α-Klotho can be divided into membrane-bound Klotho, secreted Klotho, and the most studied circulating soluble Klotho that can act as a hormone. Klotho gene polymorphisms have been implicated in energy metabolism and CMDs. α-Klotho can inhibit insulin/insulin growth factor-1 signaling and its overexpression can lead to a 'healthy insulin resistance' and may exert beneficial effects on the regulation of glycolipid metabolism and central energy homeostasis. α-Klotho, mainly serum Klotho, has been revealed to be protective against CVDs, diabetes and its complications, obesity, and nonalcoholic fatty liver disease. Human recombinant Klotho protein/Klotho gene delivery, multiple drugs, or natural products, and exercise can increase α-Klotho expression. CONCLUSION Overall, α-Klotho has demonstrated its potential as a promising target for modulating energy metabolism and CMDs, and further research is needed to explore its utilization in clinical practice in the future.
Collapse
Affiliation(s)
- Yuanbin Liu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, No. 99 Zhang Zhidong Road, Wuhan, Hubei, 430000, PR China
| | - Mingkai Chen
- Department of Gastroenterology, Renmin Hospital of Wuhan University, No. 99 Zhang Zhidong Road, Wuhan, Hubei, 430000, PR China.
| |
Collapse
|
3
|
Wang YY, Lin YH, Wu VC, Lin YH, Huang CY, Ku WC, Sun CY. Decreased Klotho Expression Causes Accelerated Decline of Male Fecundity through Oxidative Injury in Murine Testis. Antioxidants (Basel) 2023; 12:1671. [PMID: 37759974 PMCID: PMC10526093 DOI: 10.3390/antiox12091671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/18/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
Oxidative stress is the etiology for 30-80% of male patients affected by infertility, which is a major health problem worldwide. Klotho protein is an aging suppressor that functions as a humoral factor modulating various cellular processes including antioxidation and anti-inflammation, and its dysregulation leads to human pathologies. Male mice lacking Klotho are sterile, and decreased Klotho levels in the serum are observed in men suffering from infertility with lower sperm counts. However, the mechanism by which Klotho maintains healthy male fertility remains unclear. Klotho haplodeficiency (Kl+/-) accelerates fertility reduction by impairing sperm quality and spermatogenesis in Kl+/- mice. Testicular proteomic analysis revealed that loss of Klotho predominantly disturbed oxidation and the glutathione-related pathway. We further focused on the glutathione-S-transferase (GST) family which counteracts oxidative stress in most cell types and closely relates with fertility. Several GST proteins, including GSTP1, GSTO2, and GSTK1, were significantly downregulated, which subsequently resulted in increased levels of the lipid peroxidation product 4-hydroxynonenal and apoptosis in murine testis with low or no expression of Klotho. Taken together, the loss of one Kl allele accelerates male fecundity loss because diminished antioxidant capability induces oxidative injury in mice. This is the first study that highlights a connection between Klotho and GST proteins.
Collapse
Affiliation(s)
- Ya-Yun Wang
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, New Taipei City 242, Taiwan; (Y.-Y.W.); (Y.-H.L.)
| | - Ying-Hung Lin
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, New Taipei City 242, Taiwan; (Y.-Y.W.); (Y.-H.L.)
| | - Vin-Cent Wu
- Taiwan Consortium for Acute Kidney Injury and Renal Diseases (CAKs), Taipei 100, Taiwan;
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 100, Taiwan
| | - Yu-Hua Lin
- Department of Chemistry, Fu Jen Catholic University, New Taipei City 242, Taiwan;
- Division of Urology, Department of Surgery, Cardinal Tien Hospital, New Taipei City 231, Taiwan
| | - Chia-Yen Huang
- Gynecologic Cancer Center, Department of Obstetrics and Gynecology, Cathay General Hospital, Taipei 106, Taiwan;
- School of Medicine, Fu Jen Catholic University, New Taipei City 242, Taiwan;
| | - Wei-Chi Ku
- School of Medicine, Fu Jen Catholic University, New Taipei City 242, Taiwan;
| | - Chiao-Yin Sun
- Division of Nephrology, Department of Internal Medicine, Keelung Chang Gung Memorial Hospital, Keelung 204, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| |
Collapse
|
4
|
Latic N, Erben RG. Interaction of Vitamin D with Peptide Hormones with Emphasis on Parathyroid Hormone, FGF23, and the Renin-Angiotensin-Aldosterone System. Nutrients 2022; 14:nu14235186. [PMID: 36501215 PMCID: PMC9736617 DOI: 10.3390/nu14235186] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
The seminal discoveries that parathyroid hormone (PTH) and fibroblast growth factor 23 (FGF23) are major endocrine regulators of vitamin D metabolism led to a significant improvement in our understanding of the pivotal roles of peptide hormones and small proteohormones in the crosstalk between different organs, regulating vitamin D metabolism. The interaction of vitamin D, FGF23 and PTH in the kidney is essential for maintaining mineral homeostasis. The proteohormone FGF23 is mainly secreted from osteoblasts and osteoclasts in the bone. FGF23 acts on proximal renal tubules to decrease production of the active form of vitamin D (1,25(OH)2D) by downregulating transcription of 1α-hydroxylase (CYP27B1), and by activating transcription of the key enzyme responsible for vitamin D degradation, 24-hydroxylase (CYP24A1). Conversely, the peptide hormone PTH stimulates 1,25(OH)2D renal production by upregulating the expression of 1α-hydroxylase and downregulating that of 24-hydroxylase. The circulating concentration of 1,25(OH)2D is a positive regulator of FGF23 secretion in the bone, and a negative regulator of PTH secretion from the parathyroid gland, forming feedback loops between kidney and bone, and between kidney and parathyroid gland, respectively. In recent years, it has become clear that vitamin D signaling has important functions beyond mineral metabolism. Observation of seasonal variations in blood pressure and the subsequent identification of vitamin D receptor (VDR) and 1α-hydroxylase in non-renal tissues such as cardiomyocytes, endothelial and smooth muscle cells, suggested that vitamin D may play a role in maintaining cardiovascular health. Indeed, observational studies in humans have found an association between vitamin D deficiency and hypertension, left ventricular hypertrophy and heart failure, and experimental studies provided strong evidence for a role of vitamin D signaling in the regulation of cardiovascular function. One of the proposed mechanisms of action of vitamin D is that it functions as a negative regulator of the renin-angiotensin-aldosterone system (RAAS). This finding established a novel link between vitamin D and RAAS that was unexplored until then. During recent years, major progress has been made towards a more complete understanding of the mechanisms by which FGF23, PTH, and RAAS regulate vitamin D metabolism, especially at the genomic level. However, there are still major gaps in our knowledge that need to be filled by future research. The purpose of this review is to highlight our current understanding of the molecular mechanisms underlying the interaction between vitamin D, FGF23, PTH, and RAAS, and to discuss the role of these mechanisms in physiology and pathophysiology.
Collapse
|
5
|
Prud’homme GJ, Kurt M, Wang Q. Pathobiology of the Klotho Antiaging Protein and Therapeutic Considerations. FRONTIERS IN AGING 2022; 3:931331. [PMID: 35903083 PMCID: PMC9314780 DOI: 10.3389/fragi.2022.931331] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/06/2022] [Indexed: 12/06/2022]
Abstract
The α-Klotho protein (henceforth denoted Klotho) has antiaging properties, as first observed in mice homozygous for a hypomorphic Klotho gene (kl/kl). These mice have a shortened lifespan, stunted growth, renal disease, hyperphosphatemia, hypercalcemia, vascular calcification, cardiac hypertrophy, hypertension, pulmonary disease, cognitive impairment, multi-organ atrophy and fibrosis. Overexpression of Klotho has opposite effects, extending lifespan. In humans, Klotho levels decline with age, chronic kidney disease, diabetes, Alzheimer’s disease and other conditions. Low Klotho levels correlate with an increase in the death rate from all causes. Klotho acts either as an obligate coreceptor for fibroblast growth factor 23 (FGF23), or as a soluble pleiotropic endocrine hormone (s-Klotho). It is mainly produced in the kidneys, but also in the brain, pancreas and other tissues. On renal tubular-cell membranes, it associates with FGF receptors to bind FGF23. Produced in bones, FGF23 regulates renal excretion of phosphate (phosphaturic effect) and vitamin D metabolism. Lack of Klotho or FGF23 results in hyperphosphatemia and hypervitaminosis D. With age, human renal function often deteriorates, lowering Klotho levels. This appears to promote age-related pathology. Remarkably, Klotho inhibits four pathways that have been linked to aging in various ways: Transforming growth factor β (TGF-β), insulin-like growth factor 1 (IGF-1), Wnt and NF-κB. These can induce cellular senescence, apoptosis, inflammation, immune dysfunction, fibrosis and neoplasia. Furthermore, Klotho increases cell-protective antioxidant enzymes through Nrf2 and FoxO. In accord, preclinical Klotho therapy ameliorated renal, cardiovascular, diabetes-related and neurodegenerative diseases, as well as cancer. s-Klotho protein injection was effective, but requires further investigation. Several drugs enhance circulating Klotho levels, and some cross the blood-brain barrier to potentially act in the brain. In clinical trials, increased Klotho was noted with renin-angiotensin system inhibitors (losartan, valsartan), a statin (fluvastatin), mTOR inhibitors (rapamycin, everolimus), vitamin D and pentoxifylline. In preclinical work, antidiabetic drugs (metformin, GLP-1-based, GABA, PPAR-γ agonists) also enhanced Klotho. Several traditional medicines and/or nutraceuticals increased Klotho in rodents, including astaxanthin, curcumin, ginseng, ligustilide and resveratrol. Notably, exercise and sport activity increased Klotho. This review addresses molecular, physiological and therapeutic aspects of Klotho.
Collapse
Affiliation(s)
- Gérald J. Prud’homme
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, Unity Health Toronto, Toronto, ON, Canada
- *Correspondence: Gérald J. Prud’homme,
| | - Mervé Kurt
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, Unity Health Toronto, Toronto, ON, Canada
| | - Qinghua Wang
- Department of Endocrinology and Metabolism, Huashan Hospital, Shanghai Medical School, Fudan University, Shanghai, China
- Shanghai Yinuo Pharmaceutical Co., Ltd., Shanghai, China
| |
Collapse
|
6
|
Zhao M, Murakami S, Matsumaru D, Kawauchi T, Nabeshima YI, Motohashi H. NRF2 Pathway Activation Attenuates Aging-Related Renal Phenotypes due to α-Klotho Deficiency. J Biochem 2022; 171:579-589. [DOI: 10.1093/jb/mvac014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 02/03/2022] [Indexed: 11/13/2022] Open
Abstract
Summary
Oxidative stress is one of the major causes of the age-related functional decline in cells and tissues. The KEAP1-NRF2 system plays a central role in the regulation of redox balance, and NRF2 activation exerts antiaging effects by controlling oxidative stress in aged tissues. α-Klotho was identified as an aging suppressor protein based on the premature aging phenotypes of its mutant mice, and its expression is known to gradually decrease during aging. Because α-Klotho has been shown to possess antioxidant function, aging-related phenotypes of α-Klotho mutant mice seem to be attributable to increased oxidative stress at least in part. To examine whether NRF2 activation antagonizes aging-related phenotypes caused by α-Klotho deficiency, we crossed α-Klotho-deficient (Kl–/–) mice with a Keap1-knockdown background, in which the NRF2 pathway is constitutively activated in the whole body. NRF2 pathway activation in Kl–/– mice extended the lifespan and dramatically improved aging-related renal phenotypes. With elevated expression of antioxidant genes accompanied by an oxidative stress decrease, the antioxidant effects of NRF2 seem to make a major contribution to the attenuation of aging-related renal phenotypes of Kl–/– mice. Thus, NRF2 is expected to exert an antiaging function by partly compensating for the functional decline of α-Klotho during physiological aging.
Collapse
Affiliation(s)
- Mingyue Zhao
- Department of Gene Expression Regulation, Institute of Development, Aging and Cancer, Tohoku University, Sendai, 980-8575, Japan
| | - Shohei Murakami
- Department of Gene Expression Regulation, Institute of Development, Aging and Cancer, Tohoku University, Sendai, 980-8575, Japan
| | - Daisuke Matsumaru
- Department of Gene Expression Regulation, Institute of Development, Aging and Cancer, Tohoku University, Sendai, 980-8575, Japan
| | - Takeshi Kawauchi
- Laboratory of Molecular Life Science, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe 650-0047, Japan
| | - Yo-ichi Nabeshima
- Laboratory of Molecular Life Science, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe 650-0047, Japan
| | - Hozumi Motohashi
- Department of Gene Expression Regulation, Institute of Development, Aging and Cancer, Tohoku University, Sendai, 980-8575, Japan
| |
Collapse
|
7
|
Abstract
Apart from its phosphaturic action, the bone-derived hormone fibroblast growth factor-23 (FGF23) is also an essential regulator of vitamin D metabolism. The main target organ of FGF23 is the kidney, where FGF23 suppresses transcription of the key enzyme in vitamin D hormone (1,25(OH)2D) activation, 1α-hydroxylase, and activates transcription of the key enzyme responsible for vitamin D degradation, 24-hydroxylase, in proximal renal tubules. The circulating concentration of 1,25(OH)2D is a positive regulator of FGF23 secretion in bone, forming a feedback loop between kidney and bone. The importance of FGF23 as regulator of vitamin D metabolism is underscored by the fact that in the absence of FGF23 signaling, the tight control of renal 1α-hydroxylase fails, resulting in overproduction of 1,25(OH)2D in mice and men. During recent years, big strides have been made toward a more complete understanding of the mechanisms underlying the FGF23-mediated regulation of vitamin D metabolism, especially at the genomic level. However, there are still major gaps in our knowledge that need to be filled by future research. Importantly, the intracellular signaling cascades downstream of FGF receptors regulating transcription of 1α-hydroxylase and 24-hydroxylase in proximal renal tubules still remain unresolved. The purpose of this review is to highlight our current understanding of the molecular mechanisms underlying the regulation of vitamin D metabolism by FGF23, and to discuss the role of these mechanisms in physiology and pathophysiology. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC. on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Nejla Latic
- Department of Biomedical Sciences University of Veterinary Medicine Vienna Austria
| | - Reinhold G Erben
- Department of Biomedical Sciences University of Veterinary Medicine Vienna Austria
| |
Collapse
|
8
|
Küng CJ, Haykir B, Schnitzbauer U, Egli-Spichtig D, Hernando N, Wagner CA. Fibroblast growth factor 23 leads to endolysosomal routing of the renal phosphate cotransporters NaPi-IIa and NaPi-IIc in vivo. Am J Physiol Renal Physiol 2021; 321:F785-F798. [PMID: 34719948 DOI: 10.1152/ajprenal.00250.2021] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Na+-dependent phosphate cotransporters NaPi-IIa and NaPi-IIc, located at the brush-border membrane of renal proximal tubules, are regulated by numerous factors, including fibroblast growth factor 23 (FGF23). FGF23 downregulates NaPi-IIa and NaPi-IIc abundance after activating a signaling pathway involving phosphorylation of ERK1/2 (phospho-ERK1/2). FGF23 also downregulates expression of renal 1-α-hydroxylase (Cyp27b1) and upregulates 24-hydroxylase (Cyp24a1), thus reducing plasma calcitriol levels. Here, we examined the time course of FGF23-induced internalization of NaPi-IIa and NaPi-IIc and their intracellular pathway toward degradation in vivo. Mice were injected intraperitoneally with recombinant human (rh)FGF23 in the absence (biochemical analysis) or presence (immunohistochemistry) of leupeptin, an inhibitor of lysosomal proteases. Phosphorylation of ERK1/2 was enhanced 60 min after rhFGF23 administration, and increased phosphorylation was still detected 480 min after injection. Colocalization of phospho-ERK1/2 with NaPi-IIa was seen at 60 and 120 min and partly at 480 min. The abundance of both cotransporters was reduced 240 min after rhFGF23 administration, with a further reduction at 480 min. NaPi-IIa and NaPi-IIc were found to colocalize with clathrin and early endosomal antigen 1 as early as 120 min after rhFGF23 injection. Both cotransporters partially colocalized with cathepsin B and lysosomal-associated membrane protein-1, markers of lysosomes, 120 min after rhFGF23 injection. Thus, NaPi-IIa and NaPi-IIc are internalized within 2 h upon rhFGF23 injection. Both cotransporters share the pathway of clathrin-mediated endocytosis that leads first to early endosomes, finally resulting in trafficking toward the lysosome as early as 120 min after rhFGF23 administration.NEW & NOTEWORTHY The hormone fibroblast growth factor 23 (FGF23) controls phosphate homeostasis by regulating renal phosphate excretion. FGF23 acts on several phosphate transporters in the kidney. Here, we define the time course of this action and demonstrate how phosphate transporters NaPi-IIa and NaPi-IIc are internalized.
Collapse
Affiliation(s)
- Catharina J Küng
- Institute of Physiology, University of Zurich and National Center of Competence in Research Kidney.CH, Zurich, Switzerland
| | - Betül Haykir
- Institute of Physiology, University of Zurich and National Center of Competence in Research Kidney.CH, Zurich, Switzerland
| | - Udo Schnitzbauer
- Institute of Physiology, University of Zurich and National Center of Competence in Research Kidney.CH, Zurich, Switzerland
| | - Daniela Egli-Spichtig
- Institute of Physiology, University of Zurich and National Center of Competence in Research Kidney.CH, Zurich, Switzerland
| | - Nati Hernando
- Institute of Physiology, University of Zurich and National Center of Competence in Research Kidney.CH, Zurich, Switzerland
| | - Carsten A Wagner
- Institute of Physiology, University of Zurich and National Center of Competence in Research Kidney.CH, Zurich, Switzerland
| |
Collapse
|
9
|
Nikooyeh B, Neyestani TR. Can vitamin D be considered an adiponectin secretagogue? A systematic review and meta-analysis. J Steroid Biochem Mol Biol 2021; 212:105925. [PMID: 34089834 DOI: 10.1016/j.jsbmb.2021.105925] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 05/25/2021] [Indexed: 12/24/2022]
Abstract
There is some evidence for ameliorating effect of vitamin D on glycemic and lipidemic status which are likely to be mediated through other molecules including adiponectin. However, the overall results have been controversial. This study was conducted to evaluate the effect of vitamin D supplementation on serum adiponectin concentration. MEDLINE, PubMed, Embase, Cochrane Library, and Google Scholar were searched and 402 studies were found in a preliminary search. After screening of titles and abstracts nine studies were selected. Pooled data showed no significant effect on adiponectin concentrations (mean difference (MD) 0.37, 95 % CI: -0.1 to 0.87). However, there was a significant effect in a subgroup of participants who had diabetes (MD: 0.03, 95 % CI: 0.00 to 0.05, p = 0.029). The treatment effect on adiponectin concentrations was significant in those trials that used supplementation on a daily basis (MD: 0.03, 95 % CI: 0.00 to 0.05, p = 0.028) and vitamin D plus calcium (MD: 0.04, 95 % CI: 0.01 to 0.07, p = 0.014). The meta-regression revealed a significant association between BMI and age of participants at baseline and the treatment effect (B, -0.144, 95 % CI: -0.276 to -0.011, p = 0.033 and B, -0.043, 95 % CI: -0.075 to -0.012, p = 0.006). The results of this meta-analysis study indicates that vitamin D may be considered an adiponectin secretagogue in subjects with diabetes and this effect may be potentiated if vitamin D intake is on daily basis and in combination with calcium but can be weakened by increasing BMI.
Collapse
Affiliation(s)
- Bahareh Nikooyeh
- Laboratory of Nutrition Research, National Nutrition and Food Technology Research Institute and Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Tirang R Neyestani
- Laboratory of Nutrition Research, National Nutrition and Food Technology Research Institute and Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
10
|
Haussler MR, Livingston S, Sabir ZL, Haussler CA, Jurutka PW. Vitamin D Receptor Mediates a Myriad of Biological Actions Dependent on Its 1,25-Dihydroxyvitamin D Ligand: Distinct Regulatory Themes Revealed by Induction of Klotho and Fibroblast Growth Factor-23. JBMR Plus 2021; 5:e10432. [PMID: 33553988 PMCID: PMC7839824 DOI: 10.1002/jbm4.10432] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 11/01/2020] [Indexed: 11/21/2022] Open
Abstract
The hormonal vitamin D metabolite, 1,25‐dihydroxyvitamin D [1,25(OH)2D], produced in kidney, acts in numerous end organs via the nuclear vitamin D receptor (VDR) to trigger molecular events that orchestrate bone mineral homeostasis. VDR is a ligand‐controlled transcription factor that obligatorily heterodimerizes with retinoid X receptor (RXR) to target vitamin D responsive elements (VDREs) in the vicinity of vitamin D‐regulated genes. Circulating 1,25(OH)2D concentrations are governed by PTH, an inducer of renal D‐hormone biosynthesis catalyzed by CYP27B1 that functions as the key player in a calcemic endocrine circuit, and by fibroblast growth factor‐23 (FGF23), a repressor of the CYP27B1 renal enzyme, creating a hypophosphatemic endocrine loop. 1,25(OH)2D/VDR–RXR acts in kidney to induce Klotho (a phosphaturic coreceptor for FGF23) to correct hyperphosphatemia, NPT2a/c to correct hypophosphatemia, and TRPV5 and CaBP28k to enhance calcium reabsorption. 1,25(OH)2D‐liganded VDR–RXR functions in osteoblasts/osteocytes by augmenting RANK‐ligand expression to paracrine signal osteoclastic bone resorption, while simultaneously inducing FGF23, SPP1, BGLP, LRP5, ANK1, ENPP1, and TNAP, and conversely repressing RUNX2 and PHEX expression, effecting localized control of mineralization to sculpt the skeleton. Herein, we document the history of 1,25(OH)2D/VDR and summarize recent advances in characterizing their physiology, biochemistry, and mechanism of action by highlighting two examples of 1,25(OH)2D/VDR molecular function. The first is VDR‐mediated primary induction of Klotho mRNA by 1,25(OH)2D in kidney via a mechanism initiated by the docking of liganded VDR–RXR on a VDRE at −35 kb in the mouse Klotho gene. In contrast, the secondary induction of FGF23 by 1,25(OH)2D in bone is proposed to involve rapid nongenomic action of 1,25(OH)2D/VDR to acutely activate PI3K, in turn signaling the induction of MZF1, a transcription factor that, in cooperation with c‐ets1‐P, binds to an enhancer element centered at −263 bp in the promoter‐proximal region of the mouse fgf23 gene. Chronically, 1,25(OH)2D‐induced osteopontin apparently potentiates MZF1. © 2020 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Mark R Haussler
- Department of Basic Medical Sciences University of Arizona College of Medicine-Phoenix Phoenix AZ
| | - Sarah Livingston
- School of Mathematical and Natural Sciences Arizona State University Glendale AZ
| | - Zhela L Sabir
- School of Mathematical and Natural Sciences Arizona State University Glendale AZ
| | - Carol A Haussler
- Department of Basic Medical Sciences University of Arizona College of Medicine-Phoenix Phoenix AZ
| | - Peter W Jurutka
- Department of Basic Medical Sciences University of Arizona College of Medicine-Phoenix Phoenix AZ.,School of Mathematical and Natural Sciences Arizona State University Glendale AZ
| |
Collapse
|
11
|
Ewendt F, Feger M, Föller M. Role of Fibroblast Growth Factor 23 (FGF23) and αKlotho in Cancer. Front Cell Dev Biol 2021; 8:601006. [PMID: 33520985 PMCID: PMC7841205 DOI: 10.3389/fcell.2020.601006] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 10/15/2020] [Indexed: 12/16/2022] Open
Abstract
Together with fibroblast growth factors (FGFs) 19 and 21, FGF23 is an endocrine member of the family of FGFs. Mainly secreted by bone cells, FGF23 acts as a hormone on the kidney, stimulating phosphate excretion and suppressing formation of 1,25(OH)2D3, active vitamin D. These effects are dependent on transmembrane protein αKlotho, which enhances the binding affinity of FGF23 for FGF receptors (FGFR). Locally produced FGF23 in other tissues including liver or heart exerts further paracrine effects without involvement of αKlotho. Soluble Klotho (sKL) is an endocrine factor that is cleaved off of transmembrane Klotho or generated by alternative splicing and regulates membrane channels, transporters, and intracellular signaling including insulin growth factor 1 (IGF-1) and Wnt pathways, signaling cascades highly relevant for tumor progression. In mice, lack of FGF23 or αKlotho results in derangement of phosphate metabolism and a syndrome of rapid aging with abnormalities affecting most organs and a very short life span. Conversely, overexpression of anti-aging factor αKlotho results in a profound elongation of life span. Accumulating evidence suggests a major role of αKlotho as a tumor suppressor, at least in part by inhibiting IGF-1 and Wnt/β-catenin signaling. Hence, in many malignancies, higher αKlotho expression or activity is associated with a more favorable outcome. Moreover, also FGF23 and phosphate have been revealed to be factors relevant in cancer. FGF23 is particularly significant for those forms of cancer primarily affecting bone (e.g., multiple myeloma) or characterized by bone metastasis. This review summarizes the current knowledge of the significance of FGF23 and αKlotho for tumor cell signaling, biology, and clinically relevant parameters in different forms of cancer.
Collapse
Affiliation(s)
- Franz Ewendt
- Department of Nutritional Physiology, Institute of Agricultural and Nutritional Sciences, Martin-Luther University Halle-Wittenberg, Halle, Germany
| | - Martina Feger
- Department of Physiology, University of Hohenheim, Stuttgart, Germany
| | - Michael Föller
- Department of Physiology, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
12
|
Agoro R, Ni P, Noonan ML, White KE. Osteocytic FGF23 and Its Kidney Function. Front Endocrinol (Lausanne) 2020; 11:592. [PMID: 32982979 PMCID: PMC7485387 DOI: 10.3389/fendo.2020.00592] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 07/20/2020] [Indexed: 12/16/2022] Open
Abstract
Osteocytes, which represent up to 95% of adult skeletal cells, are deeply embedded in bone. These cells exhibit important interactive abilities with other bone cells such as osteoblasts and osteoclasts to control skeletal formation and resorption. Beyond this local role, osteocytes can also influence the function of distant organs due to the presence of their sophisticated lacunocanalicular system, which connects osteocyte dendrites directly to the vasculature. Through these networks, osteocytes sense changes in circulating metabolites and respond by producing endocrine factors to control homeostasis. One critical function of osteocytes is to respond to increased blood phosphate and 1,25(OH)2 vitamin D (1,25D) by producing fibroblast growth factor-23 (FGF23). FGF23 acts on the kidneys through partner fibroblast growth factor receptors (FGFRs) and the co-receptor Klotho to promote phosphaturia via a downregulation of phosphate transporters, as well as the control of vitamin D metabolizing enzymes to reduce blood 1,25D. In the first part of this review, we will explore the signals involved in the positive and negative regulation of FGF23 in osteocytes. In the second portion, we will bridge bone responses with the review of current knowledge on FGF23 endocrine functions in the kidneys.
Collapse
Affiliation(s)
- Rafiou Agoro
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Pu Ni
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Megan L. Noonan
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Kenneth E. White
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, United States
- Medicine/Division of Nephrology, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
13
|
Bøllehuus Hansen L, Kaludjerovic J, Nielsen JE, Rehfeld A, Poulsen NN, Ide N, Skakkebaek NE, Frederiksen H, Juul A, Lanske B, Blomberg Jensen M. Influence of FGF23 and Klotho on male reproduction: Systemic vs direct effects. FASEB J 2020; 34:12436-12449. [PMID: 32729975 DOI: 10.1096/fj.202000061rr] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 06/29/2020] [Accepted: 07/06/2020] [Indexed: 01/05/2023]
Abstract
Currently, no treatment exists to improve semen quality in most infertile men. Here, we demonstrate systemic and direct effects of Fibroblast growth factor 23 (FGF23) and Klotho, which normally regulate vitamin D and mineral homeostasis, on testicular function. Direct effects are plausible because KLOTHO is expressed in both germ cells and spermatozoa and forms with FGFR1 a specific receptor for the bone-derived hormone FGF23. Treatment with FGF23 increased testicular weight in wild-type mice, while mice with global loss of either FGF23 or Klotho had low testicular weight, reduced sperm count, and sperm motility. Mice with germ cell-specific Klotho (gcKL) deficiency neither had a change in sperm count nor sperm motility. However, a tendency toward fewer pregnancies was detected, and significantly fewer Klotho heterozygous pups originated from gcKL knockdown mice than would be expected by mendelian inheritance. Moreover, gcKL mice had a molecular phenotype with higher testicular expression of Slc34a2 and Trpv5 than wild-type littermates, which suggests a regulatory role for testicular phosphate and calcium homeostasis. KLOTHO and FGFR1 were also expressed in human germ cells and spermatozoa, and FGF23 treatment augmented the calcium response to progesterone in human spermatozoa. Moreover, cross-sectional data revealed that infertile men with the highest serum Klotho levels had significantly higher serum Inhibin B and total sperm count than men with the lowest serum Klotho concentrations. In conclusion, this translational study suggests that FGF23 and Klotho influence gonadal function and testicular mineral ion homeostasis both directly and indirectly through systemic changes in vitamin D and mineral homeostasis.
Collapse
Affiliation(s)
- Lasse Bøllehuus Hansen
- Group of Skeletal, Mineral and Gonadal Endocrinology, Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.,Division of Bone and Mineral Research, Harvard School of Dental Medicine, Harvard Medical School, Boston, MA, USA
| | - Jovana Kaludjerovic
- Division of Bone and Mineral Research, Harvard School of Dental Medicine, Harvard Medical School, Boston, MA, USA
| | - John Erik Nielsen
- Department of Growth and Reproduction, International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Anders Rehfeld
- Department of Growth and Reproduction, International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Nadia Nicholine Poulsen
- Group of Skeletal, Mineral and Gonadal Endocrinology, Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Noriko Ide
- Division of Bone and Mineral Research, Harvard School of Dental Medicine, Harvard Medical School, Boston, MA, USA
| | - Niels Erik Skakkebaek
- Department of Growth and Reproduction, International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Hanne Frederiksen
- Department of Growth and Reproduction, International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Anders Juul
- Department of Growth and Reproduction, International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Beate Lanske
- Division of Bone and Mineral Research, Harvard School of Dental Medicine, Harvard Medical School, Boston, MA, USA
| | - Martin Blomberg Jensen
- Group of Skeletal, Mineral and Gonadal Endocrinology, Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.,Division of Bone and Mineral Research, Harvard School of Dental Medicine, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
14
|
Moor MB, Ramakrishnan SK, Legrand F, Bachtler M, Koesters R, Hynes NE, Pasch A, Bonny O. Elevated serum magnesium lowers calcification propensity in Memo1-deficient mice. PLoS One 2020; 15:e0236361. [PMID: 32706793 PMCID: PMC7380890 DOI: 10.1371/journal.pone.0236361] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 07/03/2020] [Indexed: 11/18/2022] Open
Abstract
MEdiator of cell MOtility1 (MEMO1) is a ubiquitously expressed redox protein involved in extracellular ligand-induced cell signaling. We previously reported that inducible whole-body Memo1 KO (cKO) mice displayed a syndrome of premature aging and disturbed mineral metabolism partially recapitulating the phenotype observed in Klotho or Fgf23-deficient mouse models. Here, we aimed at delineating the contribution of systemic mineral load on the Memo1 cKO mouse phenotype. We attempted to rescue the Memo1 cKO phenotype by depleting phosphate or vitamin D from the diet, but did not observe any effect on survival. However, we noticed that, by contrast to Klotho or Fgf23-deficient mouse models, Memo1 cKO mice did not present any soft-tissue calcifications and displayed even a decreased serum calcification propensity. We identified higher serum magnesium levels as the main cause of protection against calcifications. Expression of genes encoding intestinal and renal magnesium channels and the regulator epidermal growth factor were increased in Memo1 cKO. In order to check whether magnesium reabsorption in the kidney alone was driving the higher magnesemia, we generated a kidney-specific Memo1 KO (kKO) mouse model. Memo1 kKO mice also displayed higher magnesemia and increased renal magnesium channel gene expression. Collectively, these data identify MEMO1 as a novel regulator of magnesium homeostasis and systemic calcification propensity, by regulating expression of the main magnesium channels.
Collapse
Affiliation(s)
- Matthias B. Moor
- Department of Medical Biosciences, University of Lausanne, Lausanne, Switzerland
- The National Centre of Competence in Research (NCCR) "Kidney.CH - Kidney Control of Homeostasis", Zürich, Switzerland
| | - Suresh K. Ramakrishnan
- Department of Medical Biosciences, University of Lausanne, Lausanne, Switzerland
- The National Centre of Competence in Research (NCCR) "Kidney.CH - Kidney Control of Homeostasis", Zürich, Switzerland
| | - Finola Legrand
- Department of Medical Biosciences, University of Lausanne, Lausanne, Switzerland
| | - Matthias Bachtler
- Calciscon AG, Nidau, Switzerland and Institute for Physiology and Pathophysiology, Johannes Kepler University Linz, Linz, Austria
| | - Robert Koesters
- Department of Nephrology, Hôpital Tenon, Université Pierre et Marie Curie, Paris, France
| | - Nancy E. Hynes
- Friedrich Miescher Institute for Biomedical Research and University of Basel, Basel, Switzerland
| | - Andreas Pasch
- Calciscon AG, Nidau, Switzerland and Institute for Physiology and Pathophysiology, Johannes Kepler University Linz, Linz, Austria
| | - Olivier Bonny
- Department of Medical Biosciences, University of Lausanne, Lausanne, Switzerland
- The National Centre of Competence in Research (NCCR) "Kidney.CH - Kidney Control of Homeostasis", Zürich, Switzerland
- Department of Medicine, Service of Nephrology, Lausanne University Hospital, Lausanne, Switzerland
- * E-mail:
| |
Collapse
|
15
|
Salech F, Varela-Nallar L, Arredondo SB, Bustamante DB, Andaur GA, Cisneros R, Ponce DP, Ayala P, Inestrosa NC, Valdés JL, I Behrens M, Couve A. Local Klotho Enhances Neuronal Progenitor Proliferation in the Adult Hippocampus. J Gerontol A Biol Sci Med Sci 2020; 74:1043-1051. [PMID: 29300914 DOI: 10.1093/gerona/glx248] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Accepted: 12/28/2017] [Indexed: 12/21/2022] Open
Abstract
Klotho is an aging-related protein associated with hippocampal cognitive performance in mammals. Klotho regulates progenitor cell proliferation in non-neuronal tissues, but its role in adult hippocampal neurogenesis (AHN) has not been explored. Klotho expression in the adult mouse hippocampus was examined by immunofluorescence and polymerase chain reaction. AHN was evaluated in the hippocampus of klotho knock-out mice (KO), klotho KO/vitamin D-receptor mutant mice, and in a model of local klotho hippocampal knockdown. The recombinant Klotho effect on proliferation was measured in mouse-derived hippocampal neural progenitor cells. Hippocampal-dependent memory was assessed by a dry-land version of the Morris water maze. Klotho was expressed in the granular cell layer of the adult Dentate Gyrus. AHN was increased in klotho KO mice, but not in klotho KO/vitamin D-receptor mutant mice. Inversely, local downregulation of hippocampal Klotho diminished AHN. Recombinant Klotho increased the proliferation rate of neural progenitors. Downregulation of hippocampal Klotho correlated with a decreased performance in hippocampal-dependent memory. These results suggest that Klotho directly participates in regulating AHN. Our observations indicate that Klotho promotes proliferation, AHN and hippocampal-dependent cognition. Increased neurogenesis in klotho KO mice may be secondary to the activation of other pathways altered in the model, such as vitamin D.
Collapse
Affiliation(s)
- Felipe Salech
- Department of Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Biomedical Neuroscience Institute (BNI), Santiago, Chile.,Unidad de Geriatría, Hospital Clínico Universidad de Chile, Santiago.,Centro de Investigación Clínica Avanzada (CICA), Hospital Clínico Universidad de Chile, Santiago
| | - Lorena Varela-Nallar
- Centro de Investigaciones Biomédicas (CIB), Facultad de Ciencias Biológicas y Facultad de Medicina, Universidad Andrés Bello, Santiago, Chile
| | - Sebastián B Arredondo
- Centro de Investigaciones Biomédicas (CIB), Facultad de Ciencias Biológicas y Facultad de Medicina, Universidad Andrés Bello, Santiago, Chile
| | - Daniel B Bustamante
- Centro de Investigaciones Biomédicas (CIB), Facultad de Ciencias Biológicas y Facultad de Medicina, Universidad Andrés Bello, Santiago, Chile
| | - Gabriela A Andaur
- Centro de Investigaciones Biomédicas (CIB), Facultad de Ciencias Biológicas y Facultad de Medicina, Universidad Andrés Bello, Santiago, Chile
| | - Rodrigo Cisneros
- Department of Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Daniela P Ponce
- Centro de Investigación Clínica Avanzada (CICA), Hospital Clínico Universidad de Chile, Santiago
| | - Patricia Ayala
- Centro de Investigación Clínica Avanzada (CICA), Hospital Clínico Universidad de Chile, Santiago
| | - Nibaldo C Inestrosa
- Centro de Envejecimiento y Regeneración (CARE), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, P. Universidad Católica de Chile, Santiago.,Center for Healthy Brain Ageing, School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, Australia.,Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
| | - José L Valdés
- Department of Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Biomedical Neuroscience Institute (BNI), Santiago, Chile
| | - María I Behrens
- Centro de Investigación Clínica Avanzada (CICA), Hospital Clínico Universidad de Chile, Santiago.,Departamento de Neurología y Neurocirugía, Hospital Clínico Universidad de Chile, Santiago.,Clínica Alemana de Santiago, Chile
| | - Andrés Couve
- Department of Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Biomedical Neuroscience Institute (BNI), Santiago, Chile
| |
Collapse
|
16
|
Berezin AE, Berezin AA. Impaired function of fibroblast growth factor 23 / Klotho protein axis in prediabetes and diabetes mellitus: Promising predictor of cardiovascular risk. Diabetes Metab Syndr 2019; 13:2549-2556. [PMID: 31405675 DOI: 10.1016/j.dsx.2019.07.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 07/08/2019] [Indexed: 12/12/2022]
Abstract
The discovery of clear molecular mechanisms of early cardiac and vascular complications in patients with prediabetes and known diabetes mellitus are core element of stratification at risk with predictive model creation further. Previous clinical studies have shown a pivotal role of impaired signaling axis of fibroblast growth factor 23 (FGF23), FGF23 receptor isoforms and its co-factor Klotho protein in cardiovascular (CV) complications in prediabetes and diabetes. Although there were data received in clinical studies, which confirmed a causative role of altered function of FGF-23/Klotho protein axis in manifestation of CV disease in prediabetes and type 2 diabetes mellitus (T2DM), the target therapy of these diseases directing on improvement of metabolic profiles, systemic and adipokine-relating inflammation by beneficial restoring of dysregulation in FGF-23/Klotho protein axis remain to be not fully clear. The aim of the review was to summarize findings regarding the role of impaired FGF-23/Klotho protein axis in developing CV complications in patients with prediabetes and type 2 diabetes mellitus. It has been elucidated that elevated levels of FGF-23 and deficiency of Klotho protein in peripheral blood are predictors of CV disease and CV outcomes in patients with (pre) diabetes, while predictive values of dynamic changes of the concentrations of these biomarkers require to be elucidated in detail in the future.
Collapse
Affiliation(s)
- Alexander E Berezin
- Internal Medicine Department, State Medical University, Ministry of Health of Ukraine, Zaporozhye, 69035, Ukraine.
| | - Alexander A Berezin
- Internal Medicine Department, Medical Academy of Post-Graduate Education, Ministry of Health of Ukraine, Zaporozhye, 69096, Ukraine
| |
Collapse
|
17
|
Faye PA, Poumeaud F, Miressi F, Lia AS, Demiot C, Magy L, Favreau F, Sturtz FG. Focus on 1,25-Dihydroxyvitamin D3 in the Peripheral Nervous System. Front Neurosci 2019; 13:348. [PMID: 31031586 PMCID: PMC6474301 DOI: 10.3389/fnins.2019.00348] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 03/26/2019] [Indexed: 12/13/2022] Open
Abstract
In this review, we draw attention to the roles of calcitriol (1,25-dihydroxyvitamin D3) in the trophicity of the peripheral nervous system. Calcitriol has long been known to be crucial in phosphocalcium homeostasis. However, recent discoveries concerning its involvement in the immune system, anti-cancer defenses, and central nervous system development suggest a more pleiotropic role than previously thought. Several studies have highlighted the impact of calcitriol deficiency as a promoting factor of various central neurological diseases, such as multiple sclerosis, amyotrophic lateral sclerosis, Parkinson's disease, and Alzheimer's disease. Based on these findings and recent publications, a greater role for calcitriol may be envisioned in the peripheral nervous system. Indeed, calcitriol is involved in myelination, axonal homogeneity of peripheral nerves, and neuronal-cell differentiation. This may have useful clinical consequences, as calcitriol supplementation may be a simple means to avoid the onset and/or development of peripheral nervous-system disorders.
Collapse
Affiliation(s)
- Pierre Antoine Faye
- EA 6309, Myelin Maintenance and Peripheral Neuropathies, Faculties of Medicine and Pharmacy, University of Limoges, Limoges, France
- Department of Biochemistry and Molecular Genetics, University Hospital of Limoges, Limoges, France
| | - François Poumeaud
- EA 6309, Myelin Maintenance and Peripheral Neuropathies, Faculties of Medicine and Pharmacy, University of Limoges, Limoges, France
| | - Federica Miressi
- EA 6309, Myelin Maintenance and Peripheral Neuropathies, Faculties of Medicine and Pharmacy, University of Limoges, Limoges, France
| | - Anne Sophie Lia
- EA 6309, Myelin Maintenance and Peripheral Neuropathies, Faculties of Medicine and Pharmacy, University of Limoges, Limoges, France
- Department of Biochemistry and Molecular Genetics, University Hospital of Limoges, Limoges, France
| | - Claire Demiot
- EA 6309, Myelin Maintenance and Peripheral Neuropathies, Faculties of Medicine and Pharmacy, University of Limoges, Limoges, France
| | - Laurent Magy
- CHU de Limoges, Reference Center for Rare Peripheral Neuropathies, Department of Neurology, Limoges, France
| | - Frédéric Favreau
- EA 6309, Myelin Maintenance and Peripheral Neuropathies, Faculties of Medicine and Pharmacy, University of Limoges, Limoges, France
- Department of Biochemistry and Molecular Genetics, University Hospital of Limoges, Limoges, France
| | - Franck G. Sturtz
- EA 6309, Myelin Maintenance and Peripheral Neuropathies, Faculties of Medicine and Pharmacy, University of Limoges, Limoges, France
- Department of Biochemistry and Molecular Genetics, University Hospital of Limoges, Limoges, France
| |
Collapse
|
18
|
Abstract
Purpose of review α-Klotho (Klotho) occurs in three isoforms, a membrane-bound form acting as a coreceptor for fibroblast growth factor-23 (FGF23) signalling, a shed soluble form consisting of Klotho's large ectodomain thought to act as an enzyme or a hormone, and a secreted truncated form generated by alternative splicing of the Klotho mRNA with unknown function. The purpose of this review is to highlight the recent advances in our understanding of Klotho's function in mineral homeostasis. Recent findings A number of seminal discoveries have recently been made in this area, shifting existing paradigms. The crystal structure of the ternary FGF receptor (FGFR)-1c/Klotho/FGF23 complex has been uncovered, revealing how the ligand FGF23 interacts with FGFR1c and the coreceptor Klotho at atomic resolution. Furthermore, it was shown that soluble Klotho lacks any glycosidase activity and serves as a bona fide coreceptor for FGF23 signalling. Experiments with a combination of Klotho and Fgf23-deficient mouse models demonstrated that all isoforms of Klotho lack any physiologically relevant, FGF23-independent functions in mineral homeostasis or ageing. Finally, it was demonstrated that the alternatively spliced Klotho mRNA is degraded and is not translated into a secreted Klotho protein isoform in humans. Summary Taken together, there is now overwhelming evidence that the main physiological function of transmembrane and soluble Klotho for mineral homeostasis is their role as coreceptors mediating FGF23 actions. In light of these findings, the main pathophysiological consequence of the downregulation of Klotho observed in acute and chronic renal failure may be the induction of renal FGF23 resistance.
Collapse
|
19
|
Kjalarsdottir L, Tersey SA, Vishwanath M, Chuang JC, Posner BA, Mirmira RG, Repa JJ. 1,25-Dihydroxyvitamin D 3 enhances glucose-stimulated insulin secretion in mouse and human islets: a role for transcriptional regulation of voltage-gated calcium channels by the vitamin D receptor. J Steroid Biochem Mol Biol 2019; 185:17-26. [PMID: 30071248 DOI: 10.1016/j.jsbmb.2018.07.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 06/26/2018] [Accepted: 07/06/2018] [Indexed: 12/12/2022]
Abstract
AIM Vitamin D deficiency in rodents negatively affects glucose-stimulated insulin secretion (GSIS) and human epidemiological studies connect poor vitamin D status with type 2 diabetes. Previous studies performed primarily in rat islets have shown that vitamin D can enhance GSIS. However the molecular pathways linking vitamin D and insulin secretion are currently unknown. Therefore, experiments were undertaken to elucidate the transcriptional role(s) of the vitamin D receptor (VDR) in islet function. METHODS Human and mouse islets were cultured with vehicle or 1,25-dihydroxyvitamin-D3 (1,25D3) and then subjected to GSIS assays. Insulin expression, insulin content, glucose uptake and glucose-stimulated calcium influx were tested. Microarray analysis was performed. In silico analysis was used to identify VDR response elements (VDRE) within target genes and their activity was tested using reporter assays. RESULTS Vdr mRNA is abundant in islets and Vdr expression is glucose-responsive. Preincubation of mouse and human islets with 1,25D3 enhances GSIS and increases glucose-stimulated calcium influx. Microarray analysis identified the R-type voltage-gated calcium channel (VGCC) gene, Cacna1e, which is highly upregulated by 1,25D3 in human and mouse islets and contains a conserved VDRE in intron 7. Results from GSIS assays suggest that 1,25D3 might upregulate a variant of R-type VGCC that is resistant to chemical inhibition. CONCLUSION These results suggest that the role of 1,25D3 in regulating calcium influx acts through the R-Type VGCC during GSIS, thereby modulating the capacity of beta cells to secrete insulin.
Collapse
Affiliation(s)
- Lilja Kjalarsdottir
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, United States.
| | - Sarah A Tersey
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, 46202, United States; Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, 46202, United States
| | - Mridula Vishwanath
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, 75390, United States
| | - Jen-Chieh Chuang
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, United States
| | - Bruce A Posner
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, 75390, United States
| | - Raghavendra G Mirmira
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, 46202, United States; Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, United States; Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN, 46202, United States
| | - Joyce J Repa
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, United States; Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, 75390, United States.
| |
Collapse
|
20
|
Moor MB, Haenzi B, Legrand F, Koesters R, Hynes NE, Bonny O. Renal Memo1 Differentially Regulates the Expression of Vitamin D-Dependent Distal Renal Tubular Calcium Transporters. Front Physiol 2018; 9:874. [PMID: 30038585 PMCID: PMC6046545 DOI: 10.3389/fphys.2018.00874] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 06/19/2018] [Indexed: 01/11/2023] Open
Abstract
Ablation of the Mediator of ErbB2-driven Cell Motility 1 (Memo1) in mice altered calcium homeostasis and renal calcium transporter abundance by an unknown mechanism. Here, we investigated the role of intrarenal Memo in renal calcium handling. We have generated a mouse model of inducible kidney-specific Memo1 deletion. The Memo-deficient mice showed normal serum concentration and urinary excretion of calcium and phosphate, but elevated serum FGF23 concentration. They displayed elevated gene expression and protein abundance of the distal renal calcium transporters NCX1, TRPV5, and calbindin D28k. In addition, Claudin 14 gene expression was increased. When the mice were challenged by a vitamin D deficient diet, serum FGF23 concentration and TRPV5 membrane abundance were decreased, but NCX1 abundance remained increased. Collectively, renal distal calcium transport proteins (TRPV5 and Calbindin-D28k) in this model were altered by Memo- and vitamin-D dependent mechanisms, except for NCX1 which was vitamin D-independent. These findings highlight the existence of distinct regulatory mechanisms affecting TRPV5 and NCX1 membrane expression in vivo.
Collapse
Affiliation(s)
- Matthias B. Moor
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland
| | - Barbara Haenzi
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland
| | - Finola Legrand
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland
| | - Robert Koesters
- Department of Nephrology, Hôpital Tenon, Université Pierre et Marie Curie, Paris, France
| | - Nancy E. Hynes
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Olivier Bonny
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland
- Service of Nephrology, Department of Medicine, Lausanne University Hospital, Lausanne, Switzerland
| |
Collapse
|
21
|
Andrukhova O, Schüler C, Bergow C, Petric A, Erben RG. Augmented Fibroblast Growth Factor-23 Secretion in Bone Locally Contributes to Impaired Bone Mineralization in Chronic Kidney Disease in Mice. Front Endocrinol (Lausanne) 2018; 9:311. [PMID: 29942284 PMCID: PMC6004378 DOI: 10.3389/fendo.2018.00311] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 05/24/2018] [Indexed: 11/13/2022] Open
Abstract
Chronic kidney disease-mineral and bone disorder (CKD-MBD) is a systemic disorder of mineral and bone metabolism caused by CKD. Impaired bone mineralization together with increased bony secretion of fibroblast growth factor-23 (FGF23) are hallmarks of CKD-MBD. We recently showed that FGF23 suppresses the expression of tissue nonspecific alkaline phosphatase (TNAP) in bone cells by a Klotho-independent, FGF receptor-3-mediated signaling axis, leading to the accumulation of the mineralization inhibitor pyrophosphate. Therefore, we hypothesized that excessive FGF23 secretion may locally impair bone mineralization in CKD-MBD. To test this hypothesis, we induced CKD by 5/6 nephrectomy in 3-month-old wild-type (WT) mice and Fgf23-/-/VDRΔ/Δ (Fgf23/VDR) compound mutant mice maintained on a diet enriched with calcium, phosphate, and lactose. Eight weeks postsurgery, WT CKD mice were characterized by reduced bone mineral density at the axial and appendicular skeleton, hyperphosphatemia, secondary hyperparathyroidism, increased serum intact Fgf23, and impaired bone mineralization as evidenced by bone histomorphometry. Laser capture microdissection in bone cryosections showed that both osteoblasts and osteocytes contributed to the CKD-induced increase in Fgf23 mRNA abundance. In line with our hypothesis, osteoblastic and osteocytic activity of alkaline phosphatase was reduced, and bone pyrophosphate concentration was ~2.5-fold higher in CKD mice, relative to Sham controls. In Fgf23/VDR compound mice lacking Fgf23, 5/6-Nx induced secondary hyperparathyroidism and bone loss. However, 5/6-Nx failed to suppress TNAP activity, and bone pyrophosphate concentrations remained unchanged in Fgf23/VDR CKD mice. Collectively, our data suggest that elevated Fgf23 production in bone contributes to the mineralization defect in CKD-MBD by auto-/paracrine suppression of TNAP and subsequent accumulation of pyrophosphate in bone. Hence, our study has identified a novel mechanism involved in the pathogenesis of CKD-MBD.
Collapse
Affiliation(s)
- Olena Andrukhova
- Department of Biomedical Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Christiane Schüler
- Department of Biomedical Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Claudia Bergow
- Department of Biomedical Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Alexandra Petric
- Department of Biomedical Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Reinhold G Erben
- Department of Biomedical Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
| |
Collapse
|
22
|
Abstract
Fibroblast growth factor-23 (FGF23) is a bone-derived hormone suppressing phosphate reabsorption and vitamin D hormone synthesis in the kidney. At physiological concentrations of the hormone, the endocrine actions of FGF23 in the kidney are αKlotho-dependent, because high-affinity binding of FGF23 to FGF receptors requires the presence of the co-receptor αKlotho on target cells. It is well established that excessive concentrations of intact FGF23 in the blood lead to phosphate wasting in patients with normal kidney function. Based on the importance of diseases associated with gain of FGF23 function such as phosphate-wasting diseases and chronic kidney disease, a large body of literature has focused on the pathophysiological consequences of FGF23 excess. Less emphasis has been put on the role of FGF23 in normal physiology. Nevertheless, during recent years, lessons we have learned from loss-of-function models have shown that besides the paramount physiological roles of FGF23 in the control of 1α-hydroxylase expression and of apical membrane expression of sodium-phosphate co-transporters in proximal renal tubules, FGF23 also is an important stimulator of calcium and sodium reabsorption in distal renal tubules. In addition, there is an emerging role of FGF23 as an auto-/paracrine regulator of alkaline phosphatase expression and mineralization in bone. In contrast to the renal actions of FGF23, the FGF23-mediated suppression of alkaline phosphatase in bone is αKlotho-independent. Moreover, FGF23 may be a physiological suppressor of differentiation of hematopoietic stem cells into the erythroid lineage in the bone microenvironment. At present, there is little evidence for a physiological role of FGF23 in organs other than kidney and bone. The purpose of this mini-review is to highlight the current knowledge about the complex physiological functions of FGF23.
Collapse
|
23
|
Abstract
Fibroblast growth factor-23 (FGF23) is a bone-derived hormone, mainly produced by osteoblasts and osteocytes in response to increased extracellular phosphate and circulating vitamin D hormone. Endocrine FGF23 signaling requires co-expression of the ubiquitously expressed FGF receptor 1 (FGFR1) and the co-receptor α-Klotho (Klotho). In proximal renal tubules, FGF23 suppresses the membrane expression of the sodium-phosphate cotransporters Npt2a and Npt2c which mediate urinary reabsorption of filtered phosphate. In addition, FGF23 suppresses proximal tubular expression of 1α-hydroxylase, the key enzyme responsible for vitamin D hormone production. In distal renal tubules, FGF23 signaling activates with-no-lysine kinase 4, leading to increased renal tubular reabsorption of calcium and sodium. Therefore, FGF23 is not only a phosphaturic but also a calcium- and sodium-conserving hormone, a finding that may have important implications for the pathophysiology of chronic kidney disease. Besides these endocrine, Klotho-dependent functions of FGF23, FGF23 is also an auto-/paracrine suppressor of tissue-nonspecific alkaline phosphatase transcription via Klotho-independent FGFR3 signaling, leading to local inhibition of mineralization through accumulation of pyrophosphate. In addition, FGF23 may target the heart via an FGFR4-mediated Klotho-independent signaling cascade. Taken together, there is emerging evidence that FGF23 is a pleiotropic hormone, linking bone with several other organ systems.
Collapse
MESH Headings
- Autocrine Communication
- Bone and Bones/physiology
- Calcification, Physiologic
- Cardiovascular System
- Fibroblast Growth Factor-23
- Fibroblast Growth Factors/physiology
- Glucuronidase/physiology
- Humans
- Immunomodulation
- Kidney Tubules, Proximal/physiology
- Klotho Proteins
- Paracrine Communication
- Phosphates/physiology
- Receptor, Fibroblast Growth Factor, Type 1/physiology
- Receptor, Fibroblast Growth Factor, Type 3/physiology
- Receptor, Fibroblast Growth Factor, Type 4/physiology
- Sodium-Phosphate Cotransporter Proteins, Type IIa/physiology
- Sodium-Phosphate Cotransporter Proteins, Type IIc/physiology
Collapse
Affiliation(s)
- Reinhold G Erben
- 1 Department of Biomedical Sciences, Institute of Physiology, Pathophysiology and Biophysics, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
24
|
Andrukhova O, Bayer J, Schüler C, Zeitz U, Murali SK, Ada S, Alvarez-Pez JM, Smorodchenko A, Erben RG. Klotho Lacks an FGF23-Independent Role in Mineral Homeostasis. J Bone Miner Res 2017; 32:2049-2061. [PMID: 28600880 DOI: 10.1002/jbmr.3195] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 05/30/2017] [Accepted: 06/09/2017] [Indexed: 12/30/2022]
Abstract
Fibroblast growth factor-23 (FGF23) is a bone-derived hormone regulating vitamin D hormone production and renal handling of minerals by signaling through an FGF receptor/αKlotho (Klotho) receptor complex. Whether Klotho has FGF23-independent effects on mineral homeostasis is a controversial issue. Here, we aimed to shed more light on this controversy by comparing male and female triple knockout mice with simultaneous deficiency in Fgf23 and Klotho and a nonfunctioning vitamin D receptor (VDR) (Fgf23/Klotho/VDR) with double (Fgf23/VDR, Klotho/VDR, and Fgf23/Klotho) and single Fgf23, Klotho, and VDR mutants. As expected, 4-week-old Fgf23, Klotho, and Fgf23/Klotho knockout mice were hypercalcemic and hyperphosphatemic, whereas VDR, Fgf23/VDR, and Klotho/VDR mice on rescue diet were normocalcemic and normophosphatemic. Serum levels of calcium, phosphate, and sodium did not differ between 4-week-old triple Fgf23/Klotho/VDR and double Fgf23/VDR or Klotho/VDR knockout mice. Notably, 3-month-old Fgf23/Klotho/VDR triple knockout mice were indistinguishable from double Fgf23/VDR and Klotho/VDR compound mutants in terms of serum calcium, serum phosphate, serum sodium, and serum PTH, as well as urinary calcium and sodium excretion. Protein expression analysis revealed increased membrane abundance of sodium-phosphate co-transporter 2a (NaPi-2a), and decreased expression of sodium-chloride co-transporter (NCC) and transient receptor potential cation channel subfamily V member 5 (TRPV5) in Fgf23/Klotho/VDR, Fgf23/VDR, and Klotho/VDR mice, relative to wild-type and VDR mice, but no differences between triple and double knockouts. Further, ex vivo treatment of live kidney slices isolated from wild-type and Klotho/VDR mice with soluble Klotho did not induce changes in intracellular phosphate, calcium or sodium accumulation assessed by two-photon microscopy. In conclusion, our data suggest that the main physiological function of Klotho for mineral homeostasis in vivo is its role as co-receptor mediating Fgf23 action. © 2017 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Olena Andrukhova
- Department of Biomedical Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Jessica Bayer
- Department of Biomedical Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Christiane Schüler
- Department of Biomedical Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Ute Zeitz
- Department of Biomedical Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Sathish K Murali
- Department of Biomedical Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Sibel Ada
- Department of Biomedical Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
| | | | - Alina Smorodchenko
- Institute for Vegetative Anatomy, Charité University of Berlin, Berlin, Germany
| | - Reinhold G Erben
- Department of Biomedical Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
| |
Collapse
|
25
|
Slavic S, Ford K, Modert M, Becirovic A, Handschuh S, Baierl A, Katica N, Zeitz U, Erben RG, Andrukhova O. Genetic Ablation of Fgf23 or Klotho Does not Modulate Experimental Heart Hypertrophy Induced by Pressure Overload. Sci Rep 2017; 7:11298. [PMID: 28900153 PMCID: PMC5595838 DOI: 10.1038/s41598-017-10140-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 08/02/2017] [Indexed: 12/20/2022] Open
Abstract
Left ventricular hypertrophy (LVH) ultimately leads to heart failure in conditions of increased cardiac pre- or afterload. The bone-derived phosphaturic and sodium-conserving hormone fibroblast growth factor-23 (FGF23) and its co-receptor Klotho have been implicated in the development of uremic LVH. Using transverse aortic constriction (TAC) in gene-targeted mouse models, we examine the role of Fgf23 and Klotho in cardiac hypertrophy and dysfunction induced by pressure overload. TAC profoundly increases serum intact Fgf23 due to increased cardiac and bony Fgf23 transcription and downregulation of Fgf23 cleavage. Aldosterone receptor blocker spironolactone normalizes serum intact Fgf23 levels after TAC by reducing bony Fgf23 transcription. Notably, genetic Fgf23 or Klotho deficiency does not influence TAC-induced hypertrophic remodelling, LV functional impairment, or LV fibrosis. Despite the profound, aldosterone-mediated increase in circulating intact Fgf23 after TAC, our data do not support an essential role of Fgf23 or Klotho in the pathophysiology of pressure overload-induced cardiac hypertrophy.
Collapse
Affiliation(s)
- Svetlana Slavic
- Department of Biomedical Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Kristopher Ford
- Department of Biomedical Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Magalie Modert
- Department of Biomedical Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Amarela Becirovic
- Department of Biomedical Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
| | | | - Andreas Baierl
- Department of Statistics and Operations Research, University of Vienna, Vienna, Austria
| | - Nejla Katica
- Department of Biomedical Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Ute Zeitz
- Department of Biomedical Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Reinhold G Erben
- Department of Biomedical Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Olena Andrukhova
- Department of Biomedical Sciences, University of Veterinary Medicine Vienna, Vienna, Austria.
| |
Collapse
|
26
|
Watanabe R, Fujita N, Sato Y, Kobayashi T, Morita M, Oike T, Miyamoto K, Kuro-O M, Michigami T, Fukumoto S, Tsuji T, Toyama Y, Nakamura M, Matsumoto M, Miyamoto T. Enpp1 is an anti-aging factor that regulates Klotho under phosphate overload conditions. Sci Rep 2017; 7:7786. [PMID: 28798354 PMCID: PMC5552841 DOI: 10.1038/s41598-017-07341-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 06/06/2017] [Indexed: 12/24/2022] Open
Abstract
Control of phosphate metabolism is crucial to regulate aging in mammals. Klotho is a well-known anti-aging factor that regulates phosphate metabolism: mice mutant or deficient in Klotho exhibit phenotypes resembling human aging. Here we show that ectonucleotide pyrophosphatase/phosphodiesterase 1 (Enpp1) is required for Klotho expression under phosphate overload conditions. Loss-of-function Enpp1ttw/ttw mice under phosphate overload conditions exhibited phenotypes resembling human aging and Klotho mutants, such as short life span, arteriosclerosis and osteoporosis, with elevated serum 1,25(OH)2D3 levels. Enpp1ttw/ttw mice also exhibited significantly reduced renal Klotho expression under phosphate overload conditions, and aging phenotypes in these mice were rescued by Klotho overexpression, a low vitamin D diet or vitamin D receptor knockout. These findings indicate that Enpp1 plays a crucial role in regulating aging via Klotho expression under phosphate overload conditions.
Collapse
Affiliation(s)
- Ryuichi Watanabe
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Nobuyuki Fujita
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Yuiko Sato
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan.,Department of Advanced Therapy for Musculoskeletal Disorders, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Tami Kobayashi
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan.,Department of Musculoskeletal Reconstruction and Regeneration Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Mayu Morita
- Division of Oral and Maxillofacial Surgery, Department of Dentistry and Oral Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Takatsugu Oike
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Kana Miyamoto
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Makoto Kuro-O
- Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi, 329-0498, Japan
| | - Toshimi Michigami
- Department of Bone and Mineral Research, Osaka Medical Center and Research Institute for Maternal and Child Health, Izumi, Osaka, 594-1101, Japan
| | - Seiji Fukumoto
- Fujii Memorial Institute of Medical Sciences, Tokushima University, Tokushima, Tokushima, 770-8503, Japan
| | - Takashi Tsuji
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Yoshiaki Toyama
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Masaya Nakamura
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Morio Matsumoto
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Takeshi Miyamoto
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan. .,Department of Advanced Therapy for Musculoskeletal Disorders, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| |
Collapse
|
27
|
Mencke R, Hillebrands JL. The role of the anti-ageing protein Klotho in vascular physiology and pathophysiology. Ageing Res Rev 2017; 35:124-146. [PMID: 27693241 DOI: 10.1016/j.arr.2016.09.001] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 09/23/2016] [Indexed: 02/08/2023]
Abstract
Klotho is an anti-ageing protein that functions in many pathways that govern ageing, like regulation of phosphate homeostasis, insulin signaling, and Wnt signaling. Klotho expression levels and levels in blood decline during ageing. The vascular phenotype of Klotho deficiency features medial calcification, intima hyperplasia, endothelial dysfunction, arterial stiffening, hypertension, and impaired angiogenesis and vasculogenesis, with characteristics similar to aged human arteries. Klotho-deficient phenotypes can be prevented and rescued by Klotho gene expression or protein supplementation. High phosphate levels are likely to be directly pathogenic and are a prerequisite for medial calcification, but more important determinants are pathways that regulate cellular senescence, suggesting that deficiency of Klotho renders cells susceptible to phosphate toxicity. Overexpression of Klotho is shown to ameliorate medial calcification, endothelial dysfunction, and hypertension. Endogenous vascular Klotho expression is a controversial subject and, currently, no compelling evidence exists that supports the existence of vascular membrane-bound Klotho expression, as expressed in kidney. In vitro, Klotho has been shown to decrease oxidative stress and apoptosis in both SMCs and ECs, to reduce SMC calcification, to maintain the contractile SMC phenotype, and to prevent μ-calpain overactivation in ECs. Klotho has many protective effects with regard to the vasculature and constitutes a very promising therapeutic target. The purpose of this review is to explore the etiology of the vascular phenotype of Klotho deficiency and the therapeutic potential of Klotho in vascular disease.
Collapse
|
28
|
Andrukhova O, Streicher C, Zeitz U, Erben RG. Fgf23 and parathyroid hormone signaling interact in kidney and bone. Mol Cell Endocrinol 2016; 436:224-39. [PMID: 27498418 DOI: 10.1016/j.mce.2016.07.035] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 07/26/2016] [Accepted: 07/26/2016] [Indexed: 12/19/2022]
Abstract
Fibroblast growth factor-23 (FGF23) is a bone-derived hormone, suppressing renal phosphate reabsorption and vitamin D hormone synthesis in proximal tubules, and stimulating calcium reabsorption in distal tubules of the kidney. Here, we analyzed the long term sequelae of deficient Fgf23 signaling on bone and mineral metabolism in 9-month-old mice lacking both Fgf23 or Klotho and a functioning vitamin D receptor (VDR). To prevent hypocalcemia in VDR deficient mice, all mice were kept on a rescue diet enriched with calcium, phosphate, and lactose. VDR mutants were normocalcemic and normophosphatemic, and had normal tibial bone mineral density. Relative to VDR mutants, Fgf23/VDR and Klotho/VDR compound mutants were characterized by hypocalcemia, hyperphosphatemia, and very high serum parathyroid hormone (PTH). Despite ∼10-fold higher serum PTH levels in compound mutants, urinary excretion of phosphate and calcium as well as osteoclast numbers in bone remained unchanged relative to VDR mutants. The increase in plasma cAMP after hPTH(1-34) injection was similar in all genotypes. However, a 5-day infusion of hPTH(1-34) via osmotic minipumps resulted in reduced phosphorylation of extracellular signal-regulated kinase 1 and 2 (ERK1/2) in bone and kidney of Fgf23/VDR and Klotho/VDR compound mutants, relative to VDR and WT controls. Similarly, the PTH-mediated ERK1/2 phosphorylation was reduced in primary osteoblasts isolated from Fgf23 and Klotho deficient mice, but was restored by concomitant treatment with recombinant FGF23. Collectively, our data indicate that the phosphaturic, calcium-conserving, and bone resorption-stimulating actions of PTH are blunted by Fgf23 or Klotho deficiency. Hence, FGF23 may be an important modulator of PTH signaling in bone and kidney.
Collapse
Affiliation(s)
- Olena Andrukhova
- Department of Biomedical Sciences, University of Veterinary Medicine, 1210, Vienna, Austria
| | - Carmen Streicher
- Department of Biomedical Sciences, University of Veterinary Medicine, 1210, Vienna, Austria
| | - Ute Zeitz
- Department of Biomedical Sciences, University of Veterinary Medicine, 1210, Vienna, Austria
| | - Reinhold G Erben
- Department of Biomedical Sciences, University of Veterinary Medicine, 1210, Vienna, Austria.
| |
Collapse
|
29
|
Abstract
Fibroblast growth factor-23 (FGF23) is a bone-derived hormone known to suppress phosphate reabsorption and vitamin D hormone production in the kidney. Klotho was originally discovered as an anti-aging factor, but the functional role of Klotho is still a controversial issue. Three major functions have been proposed, a hormonal function of soluble Klotho, an enzymatic function as glycosidase, and the function as an obligatory co-receptor for FGF23 signaling. The purpose of this review is to highlight the recent advances in the area of FGF23 and Klotho signaling in the kidney, in the parathyroid gland, in the cardiovascular system, in bone, and in the central nervous system. During recent years, major new functions of FGF23 and Klotho have been discovered in these organ systems. Based on these novel findings, FGF23 has emerged as a pleiotropic endocrine and auto-/paracrine factor influencing not only mineral metabolism but also cardiovascular function.
Collapse
|
30
|
Moor MB, Bonny O. Ways of calcium reabsorption in the kidney. Am J Physiol Renal Physiol 2016; 310:F1337-50. [PMID: 27009338 DOI: 10.1152/ajprenal.00273.2015] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 03/17/2016] [Indexed: 11/22/2022] Open
Abstract
The role of the kidney in calcium homeostasis has been reshaped from a classic view in which the kidney was regulated by systemic calcitropic hormones such as vitamin D3 or parathyroid hormone to an organ actively taking part in the regulation of calcium handling. With the identification of the intrinsic renal calcium-sensing receptor feedback system, the regulation of paracellular calcium transport involving claudins, and new paracrine regulators such as klotho, the kidney has emerged as a crucial modulator not only of calciuria but also of calcium homeostasis. This review summarizes recent molecular and endocrine contributors to renal calcium handling and highlights the tight link between calcium and sodium reabsorption in the kidney.
Collapse
Affiliation(s)
- Matthias B Moor
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland; and
| | - Olivier Bonny
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland; and Service of Nephrology, Department of Medicine, Lausanne University Hospital, Lausanne, Switzerland
| |
Collapse
|
31
|
Murali SK, Roschger P, Zeitz U, Klaushofer K, Andrukhova O, Erben RG. FGF23 Regulates Bone Mineralization in a 1,25(OH)2 D3 and Klotho-Independent Manner. J Bone Miner Res 2016; 31:129-42. [PMID: 26235988 DOI: 10.1002/jbmr.2606] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 07/23/2015] [Accepted: 07/24/2015] [Indexed: 12/25/2022]
Abstract
Fibroblast growth factor-23 (Fgf23) is a bone-derived hormone, suppressing phosphate reabsorption and vitamin D hormone (1,25(OH)2 D3 ) production in the kidney. It has long been an enigma why lack of Fgf23 or of Klotho, the coreceptor for Fgf23, leads to severe impairment in bone mineralization despite the presence of hypercalcemia and hyperphosphatemia. Using Fgf23(-/-) or Klotho(-/-) mice together with compound mutant mice lacking both Fgf23 or Klotho and a functioning vitamin D receptor, we show that in Klotho(-/-) mice the mineralization defect is solely driven by 1,25(OH)2 D3 -induced upregulation of the mineralization-inhibiting molecules osteopontin and pyrophosphate in bone. In Fgf23(-/-) mice, the mineralization defect has two components, a 1,25(OH)2 D3 -driven component similar to Klotho(-/-) mice and a component driven by lack of Fgf23, causing additional accumulation of osteopontin. We found that FGF23 regulates osteopontin secretion indirectly by suppressing alkaline phosphatase transcription and phosphate production in osteoblastic cells, acting through FGF receptor-3 in a Klotho-independent manner. Hence, FGF23 secreted from osteocytes may form an autocrine/paracrine feedback loop for the local fine-tuning of bone mineralization.
Collapse
Affiliation(s)
- Sathish Kumar Murali
- Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Paul Roschger
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Center Meidling, 1st Medical Department, Hanusch Hospital, Vienna, Austria
| | - Ute Zeitz
- Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Klaus Klaushofer
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Center Meidling, 1st Medical Department, Hanusch Hospital, Vienna, Austria
| | - Olena Andrukhova
- Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Reinhold G Erben
- Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
32
|
Andrukhova O, Slavic S, Odörfer KI, Erben RG. Experimental Myocardial Infarction Upregulates Circulating Fibroblast Growth Factor-23. J Bone Miner Res 2015; 30:1831-9. [PMID: 25858796 PMCID: PMC4973700 DOI: 10.1002/jbmr.2527] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 03/25/2015] [Accepted: 04/06/2015] [Indexed: 01/22/2023]
Abstract
Myocardial infarction (MI) is a major cause of death worldwide. Epidemiological studies have linked vitamin D deficiency to MI incidence. Because fibroblast growth factor-23 (FGF23) is a master regulator of vitamin D hormone production and has been shown to be associated with cardiac hypertrophy per se, we explored the hypothesis that FGF23 may be a previously unrecognized pathophysiological factor causally linked to progression of cardiac dysfunction post-MI. Here, we show that circulating intact Fgf23 was profoundly elevated, whereas serum vitamin D hormone levels were suppressed, after induction of experimental MI in rat and mouse models, independent of changes in serum soluble Klotho or serum parathyroid hormone. Both skeletal and cardiac expression of Fgf23 was increased after MI. Although the molecular link between the cardiac lesion and circulating Fgf23 concentrations remains to be identified, our study has uncovered a novel heart-bone-kidney axis that may have important clinical implications and may inaugurate the new field of cardio-osteology.
Collapse
|
33
|
Almilaji A, Pakladok T, Muñoz C, Elvira B, Sopjani M, Lang F. Upregulation of KCNQ1/KCNE1 K+ channels by Klotho. Channels (Austin) 2015; 8:222-9. [PMID: 24457979 DOI: 10.4161/chan.27662] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Klotho is a transmembrane protein expressed primarily in kidney, parathyroid gland, and choroid plexus. The extracellular domain could be cleaved off and released into the systemic circulation. Klotho is in part effective as β-glucuronidase regulating protein stability in the cell membrane. Klotho is a major determinant of aging and life span.Overexpression of Klotho increases and Klotho deficiency decreases life span. Klotho deficiency may further result in hearing loss and cardiac arrhythmia. The present study explored whether Klotho modifies activity and protein abundance of KCNQ1/KCNE1, a K(+) channel required for proper hearing and cardiac repolarization. To this end, cRNA encoding KCNQ1/KCNE1 was injected in Xenopus oocytes with or without additional injection of cRNA encoding Klotho. KCNQ1/KCNE1 expressing oocytes were treated with human recombinant Klotho protein (30 ng/mL) for 24 h. Moreover, oocytes which express both KCNQ1/KCNE1 and Klotho were treated with 10 μM DSA L (D-saccharic acid-1,4-lactone), a β-glucuronidase inhibitor. The KCNQ1/KCNE1 depolarization-induced current (I(Ks)) was determined utilizing dual electrode voltage clamp, while KCNQ1/KCNE1 protein abundance in the cell membrane was visualized utilizing specific antibody binding and quantified by chemiluminescence. KCNQ1/KCNE1 channel activity and KCNQ1/KCNE1 protein abundance were upregulated by coexpression of Klotho. The effect was mimicked by treatment with human recombinant Klotho protein (30 ng/mL) and inhibited by DSA L (10 μM). In conclusion, Klotho upregulates KCNQ1/KCNE1 channel activity by “mainly” enhancing channel protein abundance in the plasma cell membrane, an effect at least partially mediated through the β-glucuronidase activity of Klotho protein.
Collapse
|
34
|
Almilaji A, Honisch S, Liu G, Elvira B, Ajay SS, Hosseinzadeh Z, Ahmed M, Munoz C, Sopjani M, Lang F. Regulation of the voltage gated K channel Kv1.3 by recombinant human klotho protein. Kidney Blood Press Res 2014; 39:609-22. [PMID: 25571875 DOI: 10.1159/000368472] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS Klotho, a protein mainly produced in the kidney and released into circulating blood, contributes to the negative regulation of 1,25(OH)2D3 formation and is thus a powerful regulator of mineral metabolism. As β-glucuronidase, alpha Klotho protein further regulates the stability of several carriers and channels in the plasma membrane and thus regulates channel and transporter activity. Accordingly, alpha Klotho protein participates in the regulation of diverse functions seemingly unrelated to mineral metabolism including lymphocyte function. The present study explored the impact of alpha Klotho protein on the voltage gated K+ channel Kv1.3. METHODS cRNA encoding Kv1.3 (KCNA3) was injected into Xenopus oocytes and depolarization induced outward current in Kv1.3 expressing Xenopus oocytes determined utilizing dual electrode voltage clamp. Experiments were performed without or with prior treatment with recombinant human Klotho protein (50 ng/ml, 24 hours) in the absence or presence of a β-glucuronidase inhibitor D-saccharic acid-1,4-lactone (DSAL, 10 µM). Moreover, the voltage gated K+ current was determined in Jcam lymphoma cells by whole cell patch clamp following 24 hours incubation without or with recombinant human Klotho protein (50 ng/ml, 24 hours). Kv1.3 protein abundance in Jcam cells was determined utilising fluorescent antibodies in flow cytometry. RESULTS In Kv1.3 expressing Xenopus oocytes the Kv1.3 currents and the protein abundance of Kv1.3 were both significantly enhanced after treatment with recombinant human Klotho protein (50 ng/ml, 24 hours), an effect reversed by presence of DSAL. Moreover, treatment with recombinant human Klotho protein increased Kv currents and Kv1.3 protein abundance in Jcam cells. CONCLUSION Alpha Klotho protein enhances Kv1.3 channel abundance and Kv1.3 currents in the plasma membrane, an effect depending on its β-glucuronidase activity.
Collapse
Affiliation(s)
- Ahmad Almilaji
- Department of Physiology, University of Tübingen, Tübingen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Sun Y, Zhou G, Gui T, Shimokado A, Nakanishi M, Oikawa K, Sato F, Muragaki Y. Elevated serum 1,25(OH)2-vitamin D3 level attenuates renal tubulointerstitial fibrosis induced by unilateral ureteral obstruction in kl/kl mice. Sci Rep 2014; 4:6563. [PMID: 25297969 PMCID: PMC5377451 DOI: 10.1038/srep06563] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 09/12/2014] [Indexed: 12/28/2022] Open
Abstract
Previous studies have suggested that Klotho provides reno-protection against unilateral ureteral obstruction (UUO)-induced renal tubulointerstitial fibrosis (RTF). Because the existing studies are mainly performed using heterozygous Klotho mutant (HT) mice, we focused on the effect of UUO on homozygous Klotho mutant (kl/kl) mice. UUO kidneys from HT mice showed a significantly higher level of RTF and TGF-β/Smad3 signaling than wild-type (WT) mice, whereas both were greatly suppressed in kl/kl mice. Primary proximal tubular epithelial culture cells isolated from kl/kl mice showed no suppression in TGF-β1-induced epithelial mesenchymal transition (EMT) compared to those from HT mice. In the renal epithelial cell line NRK52E, a large amount of inorganic phosphate (Pi), FGF23, or calcitriol was added to the medium to mimic the in vivo homeostasis of kl/kl mice. Neither Pi nor FGF23 antagonized TGF-β1-induced EMT. In contrast, calcitriol ameliorated TGF-β1-induced EMT in a dose dependent manner. A vitamin D3-deficient diet normalized the serum 1,25 (OH)2 vitamin D3 level in kl/kl mice and enhanced UUO-induced RTF and TGF-β/Smad3 signaling. In conclusion, the alleviation of UUO-induced RTF in kl/kl mice was due to the TGF-β1 signaling suppression caused by an elevated serum 1, 25(OH)2 vitamin D3.
Collapse
Affiliation(s)
- Yujing Sun
- 1] First Department of Pathology, Wakayama Medical University School of Medicine, 811-1 Kimiidera, Wakayama 641-0012, Japan [2] Department of Pathology, School of Medicine, Shandong University, Jinan Wen Hua Xi Road 44, Jinan 250012, PR China
| | - Gengyin Zhou
- Department of Pathology, School of Medicine, Shandong University, Jinan Wen Hua Xi Road 44, Jinan 250012, PR China
| | - Ting Gui
- 1] First Department of Pathology, Wakayama Medical University School of Medicine, 811-1 Kimiidera, Wakayama 641-0012, Japan [2]
| | - Aiko Shimokado
- First Department of Pathology, Wakayama Medical University School of Medicine, 811-1 Kimiidera, Wakayama 641-0012, Japan
| | - Masako Nakanishi
- First Department of Pathology, Wakayama Medical University School of Medicine, 811-1 Kimiidera, Wakayama 641-0012, Japan
| | - Kosuke Oikawa
- First Department of Pathology, Wakayama Medical University School of Medicine, 811-1 Kimiidera, Wakayama 641-0012, Japan
| | - Fuyuki Sato
- First Department of Pathology, Wakayama Medical University School of Medicine, 811-1 Kimiidera, Wakayama 641-0012, Japan
| | - Yasuteru Muragaki
- First Department of Pathology, Wakayama Medical University School of Medicine, 811-1 Kimiidera, Wakayama 641-0012, Japan
| |
Collapse
|
36
|
Nowak A, Friedrich B, Artunc F, Serra AL, Breidthardt T, Twerenbold R, Peter M, Mueller C. Prognostic value and link to atrial fibrillation of soluble Klotho and FGF23 in hemodialysis patients. PLoS One 2014; 9:e100688. [PMID: 24991914 PMCID: PMC4084634 DOI: 10.1371/journal.pone.0100688] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 05/30/2014] [Indexed: 11/30/2022] Open
Abstract
Deranged calcium-phosphate metabolism contributes to the burden of morbidity and mortality in dialysis patients. This study aimed to assess the association of the phosphaturic hormone fibroblast growth factor 23 (FGF23) and soluble Klotho with all-cause mortality. We measured soluble Klotho and FGF23 levels at enrolment and two weeks later in 239 prevalent hemodialysis patients. The primary hypothesis was that low Klotho and high FGF23 are associated with increased mortality. The association between Klotho and atrial fibrillation (AF) at baseline was explored as secondary outcome. AF was defined as presence of paroxysmal, persistent or permanent AF. During a median follow-up of 924 days, 59 (25%) patients died from any cause. Lower Klotho levels were not associated with mortality in a multivariable adjusted analysis when examined either on a continuous scale (HR 1.25 per SD increase, 95% CI 0.84–1.86) or in tertiles, with tertile 1 as the reference category (HR for tertile two 0.65, 95% CI 0.26–1.64; HR for tertile three 2.18, 95% CI 0.91–2.23). Higher Klotho levels were associated with the absence of AF in a muItivariable logistic regression analysis (OR 0.66 per SD increase, 95% CI 0.41–1.00). Higher FGF23 levels were associated with mortality risk in a multivariable adjusted analysis when examined either on a continuous scale (HR 1.45 per SD increase, 95% CI 1.05–1.99) or in tertiles, with the tertile 1 as the reference category (HR for tertile two 1.63, 95% CI 0.64–4.14; HR for tertile three 3.91, 95% CI 1.28–12.20). FGF23 but not Klotho levels are associated with mortality in hemodialysis patients. Klotho may be protective against AF.
Collapse
Affiliation(s)
- Albina Nowak
- Division of Internal Medicine, University Hospital Zürich, Zürich, Switzerland
- * E-mail:
| | - Björn Friedrich
- Department of Internal Medicine, Division of Endocrinology, Diabetology, Vascular Disease, Nephrology and Clinical Chemistry, University of Tübingen, Tübingen, Germany
- Dialysis center Leonberg, Leonberg, Germany
| | - Ferruh Artunc
- Department of Internal Medicine, Division of Endocrinology, Diabetology, Vascular Disease, Nephrology and Clinical Chemistry, University of Tübingen, Tübingen, Germany
| | - Andreas L. Serra
- Division of Nephrology, University Hospital Zürich, Zürich, Switzerland
| | | | | | - Myriam Peter
- Division of Cardiology, University Hospital Basel, Basel, Switzerland
| | - Christian Mueller
- Division of Cardiology, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
37
|
Andrukhova O, Slavic S, Smorodchenko A, Zeitz U, Shalhoub V, Lanske B, Pohl EE, Erben RG. FGF23 regulates renal sodium handling and blood pressure. EMBO Mol Med 2014; 6:744-59. [PMID: 24797667 PMCID: PMC4203353 DOI: 10.1002/emmm.201303716] [Citation(s) in RCA: 245] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Fibroblast growth factor-23 (FGF23) is a bone-derived hormone regulating renal phosphate reabsorption and vitamin D synthesis in renal proximal tubules. Here, we show that FGF23 directly regulates the membrane abundance of the Na(+):Cl(-) co-transporter NCC in distal renal tubules by a signaling mechanism involving the FGF receptor/αKlotho complex, extracellular signal-regulated kinase 1/2 (ERK1/2), serum/glucocorticoid-regulated kinase 1 (SGK1), and with-no lysine kinase-4 (WNK4). Renal sodium (Na(+)) reabsorption and distal tubular membrane expression of NCC are reduced in mouse models of Fgf23 and αKlotho deficiency. Conversely, gain of FGF23 function by injection of wild-type mice with recombinant FGF23 or by elevated circulating levels of endogenous Fgf23 in Hyp mice increases distal tubular Na(+) uptake and membrane abundance of NCC, leading to volume expansion, hypertension, and heart hypertrophy in a αKlotho and dietary Na(+)-dependent fashion. The NCC inhibitor chlorothiazide abrogates FGF23-induced volume expansion and heart hypertrophy. Our findings suggest that FGF23 is a key regulator of renal Na(+) reabsorption and plasma volume, and may explain the association of FGF23 with cardiovascular risk in chronic kidney disease patients.
Collapse
Affiliation(s)
| | | | | | - Ute Zeitz
- University of Veterinary Medicine Vienna, Vienna, Austria
| | | | - Beate Lanske
- Harvard School of Dental Medicine, Boston, MA, USA
| | - Elena E Pohl
- University of Veterinary Medicine Vienna, Vienna, Austria
| | | |
Collapse
|
38
|
Andrukhova O, Smorodchenko A, Egerbacher M, Streicher C, Zeitz U, Goetz R, Shalhoub V, Mohammadi M, Pohl EE, Lanske B, Erben RG. FGF23 promotes renal calcium reabsorption through the TRPV5 channel. EMBO J 2014; 33:229-46. [PMID: 24434184 PMCID: PMC3983685 DOI: 10.1002/embj.201284188] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
αKlotho is thought to activate the epithelial calcium channel Transient Receptor Potential Vanilloid-5 (TRPV5) in distal renal tubules through its putative glucuronidase/sialidase activity, thereby preventing renal calcium loss. However, αKlotho also functions as the obligatory co-receptor for fibroblast growth factor-23 (FGF23), a bone-derived phosphaturic hormone. Here, we show that renal calcium reabsorption and renal membrane abundance of TRPV5 are reduced in Fgf23 knockout mice, similar to what is seen in αKlotho knockout mice. We further demonstrate that αKlotho neither co-localizes with TRPV5 nor is regulated by FGF23. Rather, apical membrane abundance of TRPV5 in renal distal tubules and thus renal calcium reabsorption are regulated by FGF23, which binds the FGF receptor-αKlotho complex and activates a signaling cascade involving ERK1/2, SGK1, and WNK4. Our data thereby identify FGF23, not αKlotho, as a calcium-conserving hormone in the kidney.
Collapse
|
39
|
Vadakke Madathil S, Coe LM, Casu C, Sitara D. Klotho deficiency disrupts hematopoietic stem cell development and erythropoiesis. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:827-41. [PMID: 24412515 DOI: 10.1016/j.ajpath.2013.11.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 10/30/2013] [Accepted: 11/04/2013] [Indexed: 12/15/2022]
Abstract
Klotho deficiency is a characteristic feature of chronic kidney disease in which anemia and cardiovascular complications are prevalent. Disruption of the Klotho gene in mice results in hypervitaminosis D and a syndrome resembling accelerated aging that includes osteopenia and vascular calcifications. Given that the bone microenvironment and its cellular components considerably influence hematopoiesis, in the present study, we addressed the in vivo role of klotho in blood cell formation and differentiation. Herein, we report that genetic ablation of Klotho in mice results in a significant increase in erythropoiesis and a decrease in the hematopoietic stem cell pool size in the bone marrow, leading to impaired hematopoietic stem cell homing in vivo. Our data also suggest that high vitamin D levels are only partially responsible for these hematopoietic changes in Klotho(-/-) mice. Importantly, we found similar hematopoietic abnormalities in Klotho(-/-) fetal liver cells, suggesting that the effects of klotho in hematopoietic stem cell development are independent of the bone microenvironment. Finally, injection of klotho protein results in hematopoietic changes opposite to the ones observed in Klotho(-/-) mice. These observations unveil a novel role for the antiaging hormone klotho in the regulation of prenatal and postnatal hematopoiesis and provide new insights for the development of therapeutic strategies targeting klotho to treat hematopoietic disorders associated with aging.
Collapse
Affiliation(s)
- Sangeetha Vadakke Madathil
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York
| | - Lindsay M Coe
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York
| | - Carla Casu
- Department of Pediatric Hematology, Weill Cornell Medical College, New York
| | - Despina Sitara
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York; Department of Medicine, New York University School of Medicine, New York, New York.
| |
Collapse
|
40
|
Dërmaku-Sopjani M, Kolgeci S, Abazi S, Sopjani M. Significance of the anti-aging protein Klotho. Mol Membr Biol 2013; 30:369-85. [PMID: 24124751 DOI: 10.3109/09687688.2013.837518] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The Klotho gene was identified as an 'aging suppressor' in mice. Overexpression of the Klotho gene extends lifespan and defective Klotho results in rapid aging and early death. Both the membrane and secreted forms of Klotho have biological activity that include regulatory effects on general metabolism and a more specific effect on mineral metabolism that correlates with its effect on aging. Klotho serves as a co-receptor for fibroblast growth factor (FGF), but it also functions as a humoral factor that regulates cell survival and proliferation, vitamin D metabolism, and calcium and phosphate homeostasis and may serve as a potential tumor suppressor. Moreover, Klotho protects against several pathogenic processes in a FGF23-independent manner. These processes include cancer metastasis, vascular calcification, and renal fibrosis. This review covers the recent advances in Klotho research and discusses novel Klotho-dependent mechanisms that are clinically relevant in aging and age-related diseases.
Collapse
|
41
|
Lam-Rachlin J, Romero R, Korzeniewski SJ, Schwartz AG, Chaemsaithong P, Hernandez-Andrade E, Dong Z, Yeo L, Hassan SS, Chaiworapongsa T. Infection and smoking are associated with decreased plasma concentration of the anti-aging protein, α-klotho. J Perinat Med 2013; 41:581-94. [PMID: 23770558 PMCID: PMC4144357 DOI: 10.1515/jpm-2013-0084] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 05/14/2013] [Indexed: 02/06/2023]
Abstract
OBJECTIVE The objective of this study was to determine whether maternal plasma concentrations of soluble α-klotho are different between women with microbial invasion of the intra-amniotic cavity (MIAC) and those without MIAC among preterm labor and intact membranes (PTL) or preterm prelabor rupture of membranes (pPROM). METHODS A cross-sectional study was conducted to include women in the following groups: i) PTL with MIAC (n=14); ii) PTL without MIAC (n=79); iii) pPROM with MIAC (n=30); and iv) pPROM without MIAC (n=33). MIAC was defined as a positive amniotic fluid culture for microorganisms (aerobic/anaerobic bacteria or genital mycoplasmas). Amniotic fluid samples were obtained within 48 h of maternal blood collection. Plasma concentration of soluble α-klotho was determined by ELISA. RESULTS i) The median plasma concentration (pg/mL) of soluble α-klotho was significantly lower in patients with MIAC than in those without MIAC (787.0 vs. 1117.8; P<0.001). ii) Among patients with PTL, those with MIAC had a lower median plasma concentration (pg/mL) of soluble α-klotho than those without MIAC (787.0 vs. 1138.9; P=0.007). iii) Among patients with pPROM, those with MIAC had a lower median plasma concentration (pg/mL) of soluble α-klotho than those without MIAC (766.4 vs. 1001.6; P=0.045). iv) There was no significant difference in the median plasma concentration of soluble α-klotho between PPROM without MIAC and PTL without MIAC (1001.6 pg/mL vs. 1138.9 pg/mL, respectively; P=0.5). v) After adjustment for potential confounders (maternal age, tobacco use, gestational age at venipuncture), soluble α-klotho remained significantly associated with MIAC (P=0.02); and vi) Among patients without MIAC, smoking was significantly associated with a lower median plasma concentration soluble α-klotho than in non-smokers (794.2 pg/mL vs. 1382.0 pg/mL, respectively; P<0.001); however, this difference was not observed in patients with MIAC. CONCLUSIONS Intra-amniotic infection occurring at preterm gestations (regardless of membrane status) was associated with a decrease in maternal plasma concentrations of soluble α-klotho. Moreover, among patients without infection, the plasma concentration of α-klotho was lower in smokers.
Collapse
Affiliation(s)
- Jennifer Lam-Rachlin
- Perinatology Research Branch, Wayne State University/Hutzel Women ’ s Hospital, MI 48201, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Andrukhova O, Zeitz U, Goetz R, Mohammadi M, Lanske B, Erben RG. FGF23 acts directly on renal proximal tubules to induce phosphaturia through activation of the ERK1/2-SGK1 signaling pathway. Bone 2012; 51:621-8. [PMID: 22647968 PMCID: PMC3419258 DOI: 10.1016/j.bone.2012.05.015] [Citation(s) in RCA: 156] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Revised: 04/09/2012] [Accepted: 05/22/2012] [Indexed: 12/17/2022]
Abstract
Fibroblast growth factor-23 (FGF23) is a bone-derived endocrine regulator of phosphate homeostasis which inhibits renal tubular phosphate reabsorption. Binding of circulating FGF23 to FGF receptors in the cell membrane requires the concurrent presence of the co-receptor αKlotho. It is still controversial whether αKlotho is expressed in the kidney proximal tubule, the principal site of phosphate reabsorption. Hence, it has remained an enigma as to how FGF23 downregulates renal phosphate reabsorption. Here, we show that renal proximal tubular cells do express the co-receptor αKlotho together with cognate FGF receptors, and that FGF23 directly downregulates membrane expression of the sodium-phosphate cotransporter NaPi-2a by serine phosphorylation of the scaffolding protein Na(+)/H(+) exchange regulatory cofactor (NHERF)-1 through ERK1/2 and serum/glucocorticoid-regulated kinase-1 signaling.
Collapse
Affiliation(s)
| | - Ute Zeitz
- University of Veterinary Medicine Vienna, Vienna, Austria
| | - Regina Goetz
- New York University School of Medicine, New York, USA
| | | | | | - Reinhold G. Erben
- University of Veterinary Medicine Vienna, Vienna, Austria
- Corresponding author at: Institute of Physiology, Pathophysiology and Biophysics, Dept. of Biomedical Sciences, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria. Fax: + 43 1 250 77 4599.
| |
Collapse
|