1
|
Kusakabe KT, Seto M, Harada Y, Kusakabe A, Yustinasari LR, Hyoto M, Nakahara C, Gondo A, Kondo T, Kano K, Kiso Y, Imai H. Characteristics of pectens in diurnal and nocturnal birds and a new functional proposal relating to non-visual opsins. Anat Histol Embryol 2024; 53:e13071. [PMID: 38868938 DOI: 10.1111/ahe.13071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 11/21/2023] [Accepted: 05/25/2024] [Indexed: 06/14/2024]
Abstract
The pecten is a fold-structured projection at the ocular fundus in bird eyes, showing morphological diversity between the diurnal and nocturnal species. However, its biological functions remain unclear. This study investigated the morphological and histological characteristics of pectens in wild birds. Additionally, the expression of non-visual opsin genes was studied in chicken pectens. These genes, identified in the chicken retina and brain, perceive light periodicity regardless of visual communication. Similar pleat numbers have been detected among bird taxa; however, pecten size ratios in the ocular fundus showed noticeable differences between diurnal and nocturnal birds. The pectens in nocturnal brown hawk owl show extremely poor vessel distribution and diameters compared with that of diurnal species. RT-PCR analysis confirmed the expression of Opn5L3, Opn4x, Rrh and Rgr genes. In situ hybridization analysis revealed the distribution of Rgr-positive reactions in non-melanotic cells around the pecten vessels. This study suggests a novel hypothesis that pectens develop dominantly in diurnal birds as light acceptors and contribute to continuous visual function or the onset of periodic behaviour.
Collapse
Affiliation(s)
- Ken Takeshi Kusakabe
- Laboratory of Veterinary Anatomy, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
- Laboratory of Basic Veterinary Science, Joint Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi, Japan
| | - Miho Seto
- Laboratory of Veterinary Anatomy, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Yumiko Harada
- Graduate School of Science and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
| | - Asako Kusakabe
- Laboratory of Veterinary Anatomy, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Lita Rakhma Yustinasari
- Laboratory of Basic Veterinary Science, Joint Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi, Japan
- Department of Veterinary Science, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Muneyoshi Hyoto
- Laboratory of Basic Veterinary Science, Joint Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi, Japan
| | - Chihiro Nakahara
- Laboratory of Veterinary Anatomy, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Ai Gondo
- Laboratory of Veterinary Anatomy, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Tomohiro Kondo
- Department of Laboratory Animal Science, Graduate School of Veterinary Science, Osaka Metropolitan University, Osaka, Japan
| | - Kiyoshi Kano
- Laboratory of Basic Veterinary Science, Joint Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi, Japan
- Laboratory of Biomedical Science - Developmental Genetics, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Yasuo Kiso
- Laboratory of Veterinary Anatomy, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Hiroyuki Imai
- Laboratory of Veterinary Anatomy, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
- Laboratory of Basic Veterinary Science, Joint Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi, Japan
| |
Collapse
|
2
|
Farag HI, Murphy BA, Templeman JR, Hanlon C, Joshua J, Koch TG, Niel L, Shoveller AK, Bedecarrats GY, Ellison A, Wilcockson D, Martino TA. One Health: Circadian Medicine Benefits Both Non-human Animals and Humans Alike. J Biol Rhythms 2024; 39:237-269. [PMID: 38379166 PMCID: PMC11141112 DOI: 10.1177/07487304241228021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Circadian biology's impact on human physical health and its role in disease development and progression is widely recognized. The forefront of circadian rhythm research now focuses on translational applications to clinical medicine, aiming to enhance disease diagnosis, prognosis, and treatment responses. However, the field of circadian medicine has predominantly concentrated on human healthcare, neglecting its potential for transformative applications in veterinary medicine, thereby overlooking opportunities to improve non-human animal health and welfare. This review consists of three main sections. The first section focuses on the translational potential of circadian medicine into current industry practices of agricultural animals, with a particular emphasis on horses, broiler chickens, and laying hens. The second section delves into the potential applications of circadian medicine in small animal veterinary care, primarily focusing on our companion animals, namely dogs and cats. The final section explores emerging frontiers in circadian medicine, encompassing aquaculture, veterinary hospital care, and non-human animal welfare and concludes with the integration of One Health principles. In summary, circadian medicine represents a highly promising field of medicine that holds the potential to significantly enhance the clinical care and overall health of all animals, extending its impact beyond human healthcare.
Collapse
Affiliation(s)
- Hesham I. Farag
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
- Centre for Cardiovascular Investigations, University of Guelph, Guelph, ON, Canada
| | - Barbara A. Murphy
- School of Agriculture and Food Science, University College, Dublin, Ireland
| | - James R. Templeman
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | - Charlene Hanlon
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
- Department of Poultry Science, Auburn University, Auburn, Alabama, USA
| | - Jessica Joshua
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Thomas G. Koch
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Lee Niel
- Department of Pathobiology, University of Guelph, Guelph, ON, Canada
| | - Anna K. Shoveller
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | | | - Amy Ellison
- School of Natural Sciences, Bangor University, Bangor, UK
| | - David Wilcockson
- Department of Life Sciences, Aberystwyth University, Aberystwyth, UK
| | - Tami A. Martino
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
- Centre for Cardiovascular Investigations, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
3
|
Sato K, Ohuchi H. Molecular Property, Manipulation, and Potential Use of Opn5 and Its Homologs. J Mol Biol 2024; 436:168319. [PMID: 37865286 DOI: 10.1016/j.jmb.2023.168319] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/08/2023] [Accepted: 10/16/2023] [Indexed: 10/23/2023]
Abstract
Animal opsin is a G-protein coupled receptor (GPCR) and binds retinal as a chromophore to form a photopigment. The Opsin 5 (Opn5) group within the animal opsin family comprises a diverse array of related proteins, such as Opn5m, a protein conserved across all vertebrate lineages including mammals, and other members like Opn5L1 and Opn5L2 found in non-mammalian vertebrate genomes, and Opn6 found in non-therian vertebrate genomes, along with Opn5 homologs present in invertebrates. Although these proteins collectively constitute a single clade within the molecular phylogenetic tree of animal opsins, they exhibit markedly distinct molecular characteristics in areas such as retinal binding properties, photoreaction, and G-protein coupling specificity. Based on their molecular features, they are believed to play a significant role in physiological functions. However, our understanding of their precise physiological functions and molecular characteristics is still developing and only partially realized. Furthermore, their unique molecular characteristics of Opn5-related proteins suggest a high potential for their use as optogenetic tools through more specialized manipulations. This review intends to encapsulate our current understanding of Opn5, discuss potential manipulations of its molecular attributes, and delve into its prospective utility in the burgeoning field of animal opsin optogenetics.
Collapse
Affiliation(s)
- Keita Sato
- Department of Cytology and Histology, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Okayama City, Okayama 700-8558, Japan.
| | - Hideyo Ohuchi
- Department of Cytology and Histology, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Okayama City, Okayama 700-8558, Japan
| |
Collapse
|
4
|
Marchese NA, Ríos MN, Guido ME, Valdez DJ. Three different seasonally expressed opsins are present in the brain of the Eared Dove, an opportunist breeder. ZOOLOGY 2024; 162:126147. [PMID: 38277721 DOI: 10.1016/j.zool.2024.126147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 09/01/2023] [Accepted: 01/12/2024] [Indexed: 01/28/2024]
Abstract
Birds living at high latitudes perceive the photoperiod through deep-brain photoreceptors (DBP) located in deep-brain neurons. During long photoperiods the information transmitted by these photoreceptors increases the activity of the hypothalamic-pituitary-gonadal (HPG) axis, leading to gonadal development. The presence of photopigments such as VA-Opsin, Opn4, Opn5 and Opn2 in brain areas implicated in reproductive behaviors has been firmly established in several avian species with seasonal breeding, whereas their existence in opportunistic breeding birds remains unconfirmed. The Eared Dove is an urban and peri-urban dove that breeds throughout the year. Males of this species do not exhibit the typical gonadal regression/recrudescence cycle, thus posing the question of what occurs upstream of the HPG axis. We addressed this issue by first studying the presence of diverse opsins located in DBP in the brains of Eared Dove males and whether these photopigments changed their expression throughout the year. We carried out an immunohistochemistry analysis on three different opsins: Opn2 (rhodopsin), Opn3 and Opn5. Our results demonstrate the discrete neuroanatomical distribution of these opsins in the brain of Eared Dove males and strongly indicate different seasonal expressions. In the anterior region of the hypothalamus, Opn2-positive cells were detected throughout the year. By contrast, Opn5 was found to be strongly and seasonally expressed during winter in the anterior and the hypothalamic region. Opn3 was also found to be significantly and seasonally expressed during winter in the hypothalamic region. We thus demonstrate for the first time that males of the Eared Dove, have three different deep-brain opsin-expressing photoreceptors with differential location/distribution in the anterior and hypothalamic region and differential seasonality. The persistence of Opn2 and the strong seasonal expression of nonvisual photopigments Opn3 and Opn5 in two areas of the avian brain, which are associated with reproduction, could be the primary distinction between seasonal and opportunistic breeders.
Collapse
Affiliation(s)
- Natalia A Marchese
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina; Departamento de Química Biológica "Ranwel Caputto" Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Maximiliano N Ríos
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina; Departamento de Química Biológica "Ranwel Caputto" Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Mario E Guido
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina; Departamento de Química Biológica "Ranwel Caputto" Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Diego J Valdez
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales. Centro de Zoología Aplicada, Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Diversidad y Ecología Animal (IDEA), Córdoba, Argentina.
| |
Collapse
|
5
|
Majumdar G, Yadav G, Singh NS. Photoperiodic physiology of summer breeding birds and a search for the role of eye. Photochem Photobiol Sci 2024; 23:197-212. [PMID: 38038950 DOI: 10.1007/s43630-023-00505-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/06/2023] [Indexed: 12/02/2023]
Abstract
Photoperiod regulation of gonadal cycles is well studied and documented in both birds and mammals. Change in photoperiod is considered as the most effective and important cue to time the initiation of the annual physiological cycles in birds. Approaching of long days (as observed in summer months), signal long-day breeding birds to initiation reproduction and other related functions. Birds and other non-mammalian vertebrates use the extraocular photoreceptors which may be present in the mediobasal hypothalamus (MBH) or associated regions to measure the photoperiodic time and so are different from mammals where only the eyes are lone photoreceptive organs. The downstream signaling involves thyroid responsive genes playing a crucial role in mediating photoperiodic signals in both birds and mammals. Role of eyes in the avian seasonal cycle has been a questionable issue with evidences both favoring and negating any role. We propose that morphological as well as physiological data argue that retinal photoreceptors can participate in gonadal cycle, at least in the quail and duck. The present review details the studies of photoneuroendocrine control of gonadal axis in birds and review evidences to decipher the role eyes in photoperiodic mediated physiologies in birds.
Collapse
Affiliation(s)
- Gaurav Majumdar
- Department of Zoology, University of Allahabad, Prayagraj, Uttar Pradesh, 211002, India
| | - Garima Yadav
- Department of Biochemistry, University of Allahabad, Prayagraj, Uttar Pradesh, 211002, India
| | | |
Collapse
|
6
|
McElroy KE, Audino JA, Serb JM. Molluscan Genomes Reveal Extensive Differences in Photopigment Evolution Across the Phylum. Mol Biol Evol 2023; 40:msad263. [PMID: 38039155 PMCID: PMC10733189 DOI: 10.1093/molbev/msad263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/14/2023] [Accepted: 11/14/2023] [Indexed: 12/03/2023] Open
Abstract
In animals, opsins and cryptochromes are major protein families that transduce light signals when bound to light-absorbing chromophores. Opsins are involved in various light-dependent processes, like vision, and have been co-opted for light-independent sensory modalities. Cryptochromes are important photoreceptors in animals, generally regulating circadian rhythm, they belong to a larger protein family with photolyases, which repair UV-induced DNA damage. Mollusks are great animals to explore questions about light sensing as eyes have evolved multiple times across, and within, taxonomic classes. We used molluscan genome assemblies from 80 species to predict protein sequences and examine gene family evolution using phylogenetic approaches. We found extensive opsin family expansion and contraction, particularly in bivalve xenopsins and gastropod Go-opsins, while other opsins, like retinochrome, rarely duplicate. Bivalve and gastropod lineages exhibit fluctuations in opsin repertoire, with cephalopods having the fewest number of opsins and loss of at least 2 major opsin types. Interestingly, opsin expansions are not limited to eyed species, and the highest opsin content was seen in eyeless bivalves. The dynamic nature of opsin evolution is quite contrary to the general lack of diversification in mollusk cryptochromes, though some taxa, including cephalopods and terrestrial gastropods, have reduced repertoires of both protein families. We also found complete loss of opsins and cryptochromes in multiple, but not all, deep-sea species. These results help set the stage for connecting genomic changes, including opsin family expansion and contraction, with differences in environmental, and biological features across Mollusca.
Collapse
Affiliation(s)
- Kyle E McElroy
- Ecology, Evolutionary, and Organismal Biology, Iowa State University, Ames, IA, USA
| | - Jorge A Audino
- Ecology, Evolutionary, and Organismal Biology, Iowa State University, Ames, IA, USA
- Department of Zoology, University of São Paulo, São Paulo, Brazil
| | - Jeanne M Serb
- Ecology, Evolutionary, and Organismal Biology, Iowa State University, Ames, IA, USA
| |
Collapse
|
7
|
Andrabi M, Upton BA, Lang RA, Vemaraju S. An Expanding Role for Nonvisual Opsins in Extraocular Light Sensing Physiology. Annu Rev Vis Sci 2023; 9:245-267. [PMID: 37196422 DOI: 10.1146/annurev-vision-100820-094018] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
We live on a planet that is bathed in daily and seasonal sunlight cycles. In this context, terrestrial life forms have evolved mechanisms that directly harness light energy (plants) or decode light information for adaptive advantage. In animals, the main light sensors are a family of G protein-coupled receptors called opsins. Opsin function is best described for the visual sense. However, most animals also use opsins for extraocular light sensing for seasonal behavior and camouflage. While it has long been believed that mammals do not have an extraocular light sensing capacity, recent evidence suggests otherwise. Notably, encephalopsin (OPN3) and neuropsin (OPN5) are both known to mediate extraocular light sensing in mice. Examples of this mediation include photoentrainment of circadian clocks in skin (by OPN5) and acute light-dependent regulation of metabolic pathways (by OPN3 and OPN5). This review summarizes current findings in the expanding field of extraocular photoreception and their relevance for human physiology.
Collapse
Affiliation(s)
- Mutahar Andrabi
- The Visual Systems Group, Abrahamson Pediatric Eye Institute, Division of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA; ,
- Science of Light Center, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Brian A Upton
- The Visual Systems Group, Abrahamson Pediatric Eye Institute, Division of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA; ,
- Science of Light Center, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Molecular and Developmental Biology Graduate Program, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
- Medical Scientist Training Program, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Richard A Lang
- The Visual Systems Group, Abrahamson Pediatric Eye Institute, Division of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA; ,
- Science of Light Center, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Ophthalmology, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Shruti Vemaraju
- The Visual Systems Group, Abrahamson Pediatric Eye Institute, Division of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA; ,
- Science of Light Center, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| |
Collapse
|
8
|
Sato K, Yamashita T, Ohuchi H. Mammalian type opsin 5 preferentially activates G14 in Gq-type G proteins triggering intracellular calcium response. J Biol Chem 2023; 299:105020. [PMID: 37423300 PMCID: PMC10432815 DOI: 10.1016/j.jbc.2023.105020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 06/28/2023] [Accepted: 07/01/2023] [Indexed: 07/11/2023] Open
Abstract
Mammalian type opsin 5 (Opn5m), a UV-sensitive G protein-coupled receptor opsin highly conserved in vertebrates, would provide a common basis for UV sensing from lamprey to humans. However, G protein coupled with Opn5m remains controversial due to variations in assay conditions and the origin of Opn5m across different reports. Here, we examined Opn5m from diverse species using an aequorin luminescence assay and Gα-KO cell line. Beyond the commonly studied major Gα classes, Gαq, Gα11, Gα14, and Gα15 in the Gq class were individually investigated in this study, as they can drive distinct signaling pathways in addition to a canonical calcium response. UV light triggered a calcium response via all the tested Opn5m proteins in 293T cells, which was abolished by Gq-type Gα deletion and rescued by cotransfection with mouse and medaka Gq-type Gα proteins. Opn5m preferentially activated Gα14 and close relatives. Mutational analysis implicated specific regions, including α3-β5 and αG-α4 loops, αG and α4 helices, and the extreme C terminus, in the preferential activation of Gα14 by Opn5m. FISH revealed co-expression of genes encoding Opn5m and Gα14 in the scleral cartilage of medaka and chicken eyes, supporting their physiological coupling. This suggests that the preferential activation of Gα14 by Opn5m is relevant for UV sensing in specific cell types.
Collapse
Affiliation(s)
- Keita Sato
- Department of Cytology and Histology, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama City, Okayama, Japan.
| | - Takahiro Yamashita
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Hideyo Ohuchi
- Department of Cytology and Histology, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama City, Okayama, Japan.
| |
Collapse
|
9
|
Mizuno M, Sato K, Yamashita T, Sakai K, Imamoto Y, Yamano Y, Wada A, Ohuchi H, Shichida Y, Mizutani Y. Chromophore Structure in an Inactive State of a Novel Photosensor Protein Opn5L1: Resonance Raman Evidence for the Formation of a Deprotonated Adduct at the 11th Carbon Atom. J Phys Chem B 2023; 127:2169-2176. [PMID: 36857774 DOI: 10.1021/acs.jpcb.2c08780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Opsins are photosensitive G protein-coupled receptor proteins and are classified into visual and nonvisual receptors. Opn5L1 is a nonvisual opsin that binds all-trans retinal as a chromophore. A unique feature of Opn5L1 is that the protein exhibits a photocyclic reaction upon photoexcitation. Determining the chromophore structures of intermediates in the photocycle is essential for understanding the functional mechanism of Opn5L1. A previous study revealed that a long-lived intermediate in the photocycle cannot activate the G protein and forms a covalent bond between the retinal chromophore and a nearby cysteine residue. However, the position of this covalent bond in the chromophore remains undetermined. Here, we report a resonance Raman study on isotopically labeled samples in combination with density functional theory calculations and reveal that the 11th carbon atom of the chromophore of the intermediate forms a covalent linkage to the cysteine residue. Furthermore, vibrational assignments based on the isotopic substitutions and density functional theory calculations suggested that the Schiff base of the intermediate is deprotonated. The chromophore structure determined in the present study well explains the mechanism of the photocyclic reaction, which is crucial to the photobiological function of Opn5L1.
Collapse
Affiliation(s)
- Misao Mizuno
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Keita Sato
- Department of Cytology and Histology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama, Okayama 700-8558, Japan
| | - Takahiro Yamashita
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Kazumi Sakai
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Yasushi Imamoto
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Yumiko Yamano
- Comprehensive Education and Research Center, Kobe Pharmaceutical University, Kobe 658-8558, Japan
| | - Akimori Wada
- Laboratory of Organic Chemistry for Life Science, Kobe Pharmaceutical University, 4-19-1 Motoyamakita-cho, Higashinada, Kobe, Hyogo 658-8558, Japan
| | - Hideyo Ohuchi
- Department of Cytology and Histology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama, Okayama 700-8558, Japan
| | - Yoshinori Shichida
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan.,Research Organization for Science and Technology, Ritsumeikan University, Shiga 525-8577, Japan
| | - Yasuhisa Mizutani
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
10
|
Kojima K, Sudo Y. Convergent evolution of animal and microbial rhodopsins. RSC Adv 2023; 13:5367-5381. [PMID: 36793294 PMCID: PMC9923458 DOI: 10.1039/d2ra07073a] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/05/2023] [Indexed: 02/15/2023] Open
Abstract
Rhodopsins, a family of photoreceptive membrane proteins, contain retinal as a chromophore and were firstly identified as reddish pigments from frog retina in 1876. Since then, rhodopsin-like proteins have been identified mainly from animal eyes. In 1971, a rhodopsin-like pigment was discovered from the archaeon Halobacterium salinarum and named bacteriorhodopsin. While it was believed that rhodopsin- and bacteriorhodopsin-like proteins were expressed only in animal eyes and archaea, respectively, before the 1990s, a variety of rhodopsin-like proteins (called animal rhodopsins or opsins) and bacteriorhodopsin-like proteins (called microbial rhodopsins) have been progressively identified from various tissues of animals and microorganisms, respectively. Here, we comprehensively introduce the research conducted on animal and microbial rhodopsins. Recent analysis has revealed that the two rhodopsin families have common molecular properties, such as the protein structure (i.e., 7-transmembrane structure), retinal structure (i.e., binding ability to cis- and trans-retinal), color sensitivity (i.e., UV- and visible-light sensitivities), and photoreaction (i.e., triggering structural changes by light and heat), more than what was expected at the early stages of rhodopsin research. Contrastingly, their molecular functions are distinctively different (e.g., G protein-coupled receptors and photoisomerases for animal rhodopsins and ion transporters and phototaxis sensors for microbial rhodopsins). Therefore, based on their similarities and dissimilarities, we propose that animal and microbial rhodopsins have convergently evolved from their distinctive origins as multi-colored retinal-binding membrane proteins whose activities are regulated by light and heat but independently evolved for different molecular and physiological functions in the cognate organism.
Collapse
Affiliation(s)
- Keiichi Kojima
- Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University Japan
| | - Yuki Sudo
- Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University Japan
| |
Collapse
|
11
|
Liddle TA, Stevenson TJ, Majumdar G. Photoperiodic regulation of avian physiology: From external coincidence to seasonal reproduction. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2022; 337:890-901. [PMID: 35535960 DOI: 10.1002/jez.2604] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/22/2022] [Accepted: 04/22/2022] [Indexed: 06/14/2023]
Abstract
Seasonal cycles of environmental cues generate variation in the timing of life-history transition events across taxa. It is through the entrainment of internal, endogenous rhythms of organisms to these external, exogenous rhythms in environment, such as cycling temperature and daylight, by which organisms can regulate and time life history transitions. Here, we review the current understanding of how photoperiod both stimulates and terminates seasonal reproduction in birds. The review describes the role of external coincidence timing, the process by which photoperiod is proposed to stimulate reproductive development. Then, the molecular basis of light detection and the photoperiodic regulation of neuroendocrine timing of seasonal reproduction in birds is presented. Current data indicates that vertebrate ancient opsin is the predominant photoreceptor for light detection by the hypothalamus, compared to neuropsin and rhodopsin. The review then connects light detection to well-characterized hypothalamic and pituitary gland molecules involved in the photoperiodic regulation of reproduction. In birds, Gonadotropin-releasing hormone synthesis and release are controlled by photoperiodic cues via thyrotropin-stimulating hormone-β (TSHβ) independent and dependent pathways, respectively. The review then highlights the role of D-box and E-box binding motifs in the promoter regions of photoperiodic genes, in particular Eyes-absent 3, as the key link between circadian clock function and photoperiodic time measurement. Based on the available evidence, the review proposes that at least two molecular programs form the basis for external coincidence timing in birds: photoperiodic responsiveness by TSHβ pathways and endogenous internal timing by gonadotropin synthesis.
Collapse
Affiliation(s)
- Timothy Adam Liddle
- Laboratory of Seasonal Biology, Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Tyler John Stevenson
- Laboratory of Seasonal Biology, Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Gaurav Majumdar
- Laboratory of Seasonal Biology, Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| |
Collapse
|
12
|
Pérez JH. Light receptors in the avian brain and seasonal reproduction. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2022; 337:985-993. [PMID: 36052512 DOI: 10.1002/jez.2652] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 05/29/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
Detection and transduction of photic cues by nonvisual photoreceptors, located in the deep brain, is a critical component of timing seasonal reproduction in birds. However, the precise identity of the photoreceptors responsible for detection of salient photic cues remains uncertain and debated. Here I review of the existing evidence for each of the three candidate photoreceptive opsins: Vertebrate Ancient Opsin, Melanopsin, and Neuropsin, including localization, action spectrum, and data from experimental manipulation of opsin expression. These findings are compared to an updated list of key criteria established in the literature as a litmus for classifying an opsin as the "breeding photoreceptor." Integrating evidence for each of the candidate photoreceptors with respect to these criteria reveals support for all three opsins in regulation of seasonal reproduction. Taken together these findings strongly suggest that transduction of seasonal photoperiodic information involves the activity of multiple photoreceptor types and populations functioning in concert. This review also highlights the need to shift attention from simply identifying "the breeding photoreceptor" to a more integrative approach aiming to parse the contribution of specific photoreceptor populations within the brain.
Collapse
Affiliation(s)
- Jonathan H Pérez
- Department of Biology, The University of South Alabama, Mobile, Alabama, USA
| |
Collapse
|
13
|
Whole genome assembly of the armored loricariid catfish Ancistrus triradiatus highlights herbivory signatures. Mol Genet Genomics 2022; 297:1627-1642. [PMID: 36006456 PMCID: PMC9596584 DOI: 10.1007/s00438-022-01947-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 08/12/2022] [Indexed: 11/01/2022]
Abstract
The catfish Ancistrus triradiatus belongs to the species-rich family Loricariidae. Loricariids display remarkable traits such as herbivory, a benthic lifestyle, the absence of scales but the presence of dermal bony plates. They are exported as ornamental fish worldwide, with escaped fishes becoming a threat locally. Although genetic and phylogenetic studies are continuously increasing and developmental genetic investigations are underway, no genome assembly has been formally proposed for Loricariidae yet. We report a high-quality genome assembly of Ancistrus triradiatus using long and short reads, and a newly assembled transcriptome. The genome assembly is composed of 9530 scaffolds, including 85.6% of ray-finned fish BUSCOs, and 26,885 predicted protein-coding genes. The genomic GC content is higher than in other catfishes, reflecting the higher metabolism associated with herbivory. The examination of the SCPP gene family indicates that the genes presumably triggering scale loss when absent, are present in the scaleless A. triradiatus, questioning their explanatory role. The analysis of the opsin gene repertoire revealed that gene losses associated to the nocturnal lifestyle of catfishes were not entirely found in A. triradiatus, as the UV-sensitive opsin 5 is present. Finally, most gene family expansions were related to immunity except the gamma crystallin gene family which controls pupil shape and sub-aquatic vision. Thus, the genome of A. triradiatus reveals that fish herbivory may be related to the photic zone habitat, conditions metabolism, photoreception and visual functions. This genome is the first for the catfish suborder Loricarioidei and will serve as backbone for future genetic, developmental and conservation studies.
Collapse
|
14
|
Amino acid residue at position 188 determines the UV-sensitive bistable property of vertebrate non-visual opsin Opn5. Commun Biol 2022; 5:63. [PMID: 35042952 PMCID: PMC8766551 DOI: 10.1038/s42003-022-03010-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 12/28/2021] [Indexed: 11/09/2022] Open
Abstract
AbstractOpsins are G protein-coupled receptors specialized for photoreception in animals. Opn5 is categorized in an independent opsin group and functions for various non-visual photoreceptions. Among vertebrate Opn5 subgroups (Opn5m, Opn5L1 and Opn5L2), Opn5m and Opn5L2 bind 11-cis retinal to form a UV-sensitive resting state, which is inter-convertible with the all-trans retinal bound active state by photoreception. Thus, these opsins are characterized as bistable opsins. To assess the molecular basis of the UV-sensitive bistable property, we introduced comprehensive mutations at Thr188, which is well conserved among these opsins. The mutations in Opn5m drastically hampered 11-cis retinal incorporation and the bistable photoreaction. Moreover, T188C mutant Opn5m exclusively bound all-trans retinal and thermally self-regenerated to the original form after photoreception, which is similar to the photocyclic property of Opn5L1 bearing Cys188. Therefore, the residue at position 188 underlies the UV-sensitive bistable property of Opn5m and contributes to the diversification of vertebrate Opn5 subgroups.
Collapse
|
15
|
White ND, Batz ZA, Braun EL, Braun MJ, Carleton KL, Kimball RT, Swaroop A. A novel exome probe set captures phototransduction genes across birds (Aves) enabling efficient analysis of vision evolution. Mol Ecol Resour 2021; 22:587-601. [PMID: 34652059 DOI: 10.1111/1755-0998.13496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 08/17/2021] [Accepted: 08/20/2021] [Indexed: 11/27/2022]
Abstract
The diversity of avian visual phenotypes provides a framework for studying mechanisms of trait diversification generally, and the evolution of vertebrate vision, specifically. Previous research has focused on opsins, but to fully understand visual adaptation, we must study the complete phototransduction cascade (PTC). Here, we developed a probe set that captures exonic regions of 46 genes representing the PTC and other light responses. For a subset of species, we directly compared gene capture between our probe set and low-coverage whole genome sequencing (WGS), and we discuss considerations for choosing between these methods. Finally, we developed a unique strategy to avoid chimeric assembly by using "decoy" reference sequences. We successfully captured an average of 64% of our targeted exome in 46 species across 14 orders using the probe set and had similar recovery using the WGS data. Compared to WGS or transcriptomes, our probe set: (1) reduces sequencing requirements by efficiently capturing vision genes, (2) employs a simpler bioinformatic pipeline by limiting required assembly and negating annotation, and (3) eliminates the need for fresh tissues, enabling researchers to leverage existing museum collections. We then utilized our vision exome data to identify positively selected genes in two evolutionary scenarios-evolution of night vision in nocturnal birds and evolution of high-speed vision specific to manakins (Pipridae). We found parallel positive selection of SLC24A1 in both scenarios, implicating the alteration of rod response kinetics, which could improve color discrimination in dim light conditions and/or facilitate higher temporal resolution.
Collapse
Affiliation(s)
- Noor D White
- Neurobiology Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA.,Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, District of Columbia, USA.,Behavior, Ecology, Evolution and Systematics Program, University of Maryland, College Park, Maryland, USA
| | - Zachary A Batz
- Neurobiology Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Edward L Braun
- Department of Biology, University of Florida, Gainesville, Florida, USA
| | - Michael J Braun
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, District of Columbia, USA.,Behavior, Ecology, Evolution and Systematics Program, University of Maryland, College Park, Maryland, USA.,Department of Biology, University of Maryland, College Park, Maryland, USA
| | - Karen L Carleton
- Behavior, Ecology, Evolution and Systematics Program, University of Maryland, College Park, Maryland, USA.,Department of Biology, University of Maryland, College Park, Maryland, USA
| | - Rebecca T Kimball
- Department of Biology, University of Florida, Gainesville, Florida, USA
| | - Anand Swaroop
- Neurobiology Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
16
|
Hanlon C, Ramachandran R, Zuidhof MJ, Bédécarrats GY. Should I Lay or Should I Grow: Photoperiodic Versus Metabolic Cues in Chickens. Front Physiol 2020; 11:707. [PMID: 32670092 PMCID: PMC7332832 DOI: 10.3389/fphys.2020.00707] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 05/29/2020] [Indexed: 12/11/2022] Open
Abstract
While photoperiod has been generally accepted as the primary if not the exclusive cue to stimulate reproduction in photoperiodic breeders such as the laying hen, current knowledge suggests that metabolism, and/or body composition can also play an influential role to control the hypothalamic-pituitary gonadal (HPG)-axis. This review thus intends to first describe how photoperiodic and metabolic cues can impact the HPG axis, then explore and propose potential common pathways and mechanisms through which both cues could be integrated. Photostimulation refers to a perceived increase in day-length resulting in the stimulation of the HPG. While photoreceptors are present in the retina of the eye and the pineal gland, it is the deep brain photoreceptors (DBPs) located in the hypothalamus that have been identified as the potential mediators of photostimulation, including melanopsin (OPN4), neuropsin (OPN5), and vertebrate-ancient opsin (VA-Opsin). Here, we present the current state of knowledge surrounding these DBPs, along with their individual and relative importance and, their possible downstream mechanisms of action to initiate the activation of the HPG axis. On the metabolic side, specific attention is placed on the hypothalamic integration of appetite control with the stimulatory (Gonadotropin Releasing Hormone; GnRH) and inhibitory (Gonadotropin Inhibitory Hormone; GnIH) neuropeptides involved in the control of the HPG axis. Specifically, the impact of orexigenic peptides agouti-related peptide (AgRP), and neuropeptide Y (NPY), as well as the anorexigenic peptides pro-opiomelanocortin (POMC), and cocaine-and amphetamine regulated transcript (CART) is reviewed. Furthermore, beyond hypothalamic control, several metabolic factors involved in the control of body weight and composition are also presented as possible modulators of reproduction at all three levels of the HPG axis. These include peroxisome proliferator-activated receptor gamma (PPAR-γ) for its impact in liver metabolism during the switch from growth to reproduction, adiponectin as a potential modulator of ovarian development and follicular maturation, as well as growth hormone (GH), and leptin (LEP).
Collapse
Affiliation(s)
- Charlene Hanlon
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | - Ramesh Ramachandran
- Center for Reproductive Biology and Health, Department of Animal Science, Pennsylvania State University, University Park, PA, United States
| | - Martin J. Zuidhof
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | | |
Collapse
|
17
|
Suh S, Choi EH, Atanaskova Mesinkovska N. The expression of opsins in the human skin and its implications for photobiomodulation: A Systematic Review. PHOTODERMATOLOGY PHOTOIMMUNOLOGY & PHOTOMEDICINE 2020; 36:329-338. [PMID: 32431001 DOI: 10.1111/phpp.12578] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 04/28/2020] [Accepted: 05/12/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Skin is the organ most extensively exposed to light of a broad range of wavelengths. Several studies have reported that skin expresses photoreceptive molecules called opsins. However, the identity and functional role of opsins in the human skin remain elusive. We aim to summarize current scientific evidence on the types of opsins expressed in the skin and their biological functions. METHODS A primary literature search was conducted using PubMed to identify articles on dermal opsins found in nonhuman animals and humans. RESULTS Twenty-two articles, representing, however, a non-exhaustive selection of the scientific papers published in this specific field, met the inclusion criteria. In nonhuman animals, opsins and opsin-like structures have been detected in the skin of fruit fly, zebrafish, frog, octopus, sea urchin, hogfish, and mouse, and they mediate skin color change, light avoidance, shadow reflex, and circadian photoentrainment. In humans, opsins are present in various skin cell types, including keratinocytes, melanocytes, dermal fibroblasts, and hair follicle cells. They have been shown to mediate wound healing, melanogenesis, hair growth, and skin photoaging. CONCLUSION Dermal opsins have been identified across many nonhuman animals and humans. Current evidence suggests that opsins have biological significance beyond light reception. In nonhuman animals, opsins are involved in behaviors that are critical for survival. In humans, opsins are involved in various functions of the skin although the underlying molecular mechanisms remain unclear. Future investigation on elucidating the mechanism of dermal opsins will be crucial to expand the therapeutic benefits of photobiomodulation for various skin disorders.
Collapse
Affiliation(s)
- Susie Suh
- Department of Dermatology, University of California, Irvine, Irvine, CA, USA.,Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA, USA.,Department of Pharmacology, Case Western Reserve University, Cleveland, OH, USA
| | - Elliot H Choi
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA, USA.,Department of Pharmacology, Case Western Reserve University, Cleveland, OH, USA
| | | |
Collapse
|
18
|
Unexpected molecular diversity of vertebrate nonvisual opsin Opn5. Biophys Rev 2020; 12:333-338. [PMID: 32152922 DOI: 10.1007/s12551-020-00654-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 02/17/2020] [Indexed: 01/01/2023] Open
Abstract
Animals depend on light from their external environment to provide information for physiological functions such as vision, photoentrainment of circadian and circannual rhythms, photoperiodism, and background adaptation. Animals have a variety of photoreceptor cells that perform these functions, not only in the retina but also in other tissues, including brain tissue. In these cells, opsins function as universal photoreceptive proteins responsible for both visual and nonvisual photoreception. All opsins identified thus far bind either 11-cis or all-trans retinal as a chromophore and are classified into several groups based on their amino acid sequences. Opn5 forms an independent group that has diversified among vertebrate species. Most mammals only have one Opn5 gene, Opn5m, while nonmammalian vertebrates have two additional Opn5 subtypes, Opn5L1 and Opn5L2. Among these subtypes, Opn5m and Opn5L2 are UV-sensitive pigments in the dark. UV irradiation converts them into the visible light-sensitive active state, which converts back to the dark state by visible light irradiation. Opn5m and Opn5L2 therefore behave as bistable pigments. By contrast, Opn5L1 exclusively binds all-trans retinal to form the active state in the dark. Opn5L1 is converted to the resting state by light irradiation and subsequently reverts to the active state by a thermal process. Thus, Opn5L1 is categorized as a unique reverse photoreceptor whose activity is regulated by its photocyclic reaction. In this review, I introduce the diversity of molecular properties that have been described for vertebrate Opn5 subtypes and their physiological relevance.
Collapse
|
19
|
Buhr ED, Vemaraju S, Diaz N, Lang RA, Van Gelder RN. Neuropsin (OPN5) Mediates Local Light-Dependent Induction of Circadian Clock Genes and Circadian Photoentrainment in Exposed Murine Skin. Curr Biol 2019; 29:3478-3487.e4. [PMID: 31607531 DOI: 10.1016/j.cub.2019.08.063] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 05/21/2019] [Accepted: 08/22/2019] [Indexed: 01/06/2023]
Abstract
Nearly all mammalian tissues have functional, autonomous circadian clocks, which free-run with non-24 h periods and must be synchronized (entrained) to the 24 h day. This entrainment mechanism is thought to be hierarchical, with photic input to the retina entraining the master circadian clock in the suprachiasmatic nuclei (SCN) and the SCN in turn synchronizing peripheral tissues via endocrine mechanisms. Here, we assess the function of a population of melanocyte precursor cells in hair and vibrissal follicles that express the photopigment neuropsin (OPN5). Organotypic cultures of murine outer ear and vibrissal skin entrain to a light-dark cycle ex vivo, requiring cis-retinal chromophore and Opn5 gene function. Short-wavelength light strongly phase shifts skin circadian rhythms ex vivo via an Opn5-dependent mechanism. In vivo, the normal amplitude of Period mRNA expression in outer ear skin is dependent on both the light-dark cycle and Opn5 function. In Opn4-/-; Pde6brd1/rd1 mice that cannot behaviorally entrain to light-dark cycles, the phase of skin-clock gene expression remains synchronized to the light-dark cycle, even as other peripheral clocks remain phase-locked to the free-running behavioral rhythm. Taken together, these results demonstrate the presence of a direct photic circadian entrainment pathway and direct light-response elements for clock genes in murine skin, similar to pathways previously described for invertebrates and certain non-mammalian vertebrates.
Collapse
Affiliation(s)
- Ethan D Buhr
- Department of Ophthalmology, Campus Box 358058, University of Washington School of Medicine, 750 Republican St., Seattle, WA 98109, USA.
| | - Shruti Vemaraju
- Center for Chronobiology, University of Cincinnati, College of Medicine, 3333 Burnet Ave., Cincinnati, OH 45229-3039, USA; The Visual Systems Group, Abrahamson Pediatric Eye Institute, University of Cincinnati, College of Medicine, 3333 Burnet Ave., Cincinnati, OH 45229-3039, USA; Division of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, University of Cincinnati, College of Medicine, 3333 Burnet Ave., Cincinnati, OH 45229-3039, USA
| | - Nicolás Diaz
- Department of Ophthalmology, Campus Box 358058, University of Washington School of Medicine, 750 Republican St., Seattle, WA 98109, USA
| | - Richard A Lang
- Center for Chronobiology, University of Cincinnati, College of Medicine, 3333 Burnet Ave., Cincinnati, OH 45229-3039, USA; The Visual Systems Group, Abrahamson Pediatric Eye Institute, University of Cincinnati, College of Medicine, 3333 Burnet Ave., Cincinnati, OH 45229-3039, USA; Division of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, University of Cincinnati, College of Medicine, 3333 Burnet Ave., Cincinnati, OH 45229-3039, USA; Department of Ophthalmology, University of Cincinnati, College of Medicine, 3333 Burnet Ave., Cincinnati, OH 45229-3039, USA.
| | - Russell N Van Gelder
- Department of Ophthalmology, Campus Box 358058, University of Washington School of Medicine, 750 Republican St., Seattle, WA 98109, USA; Department of Biological Structure and Department of Pathology, University of Washington School of Medicine, 750 Republican St., Seattle, WA 98109, USA
| |
Collapse
|
20
|
Kato M, Sato K, Habuta M, Fujita H, Bando T, Morizane Y, Shiraga F, Miyaishi S, Ohuchi H. Localization of the ultraviolet-sensor Opn5m and its effect on myopia-related gene expression in the late-embryonic chick eye. Biochem Biophys Rep 2019; 19:100665. [PMID: 31463372 PMCID: PMC6709407 DOI: 10.1016/j.bbrep.2019.100665] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 05/24/2019] [Accepted: 07/05/2019] [Indexed: 12/31/2022] Open
Abstract
Recent studies show that exposure to ultraviolet (UV) light suppresses ocular elongation, which causes myopia development. However, the specific mechanisms of this process have not been elucidated. A UV-sensor, Opsin 5 (Opn5) mRNA was shown to be present in extraretinal tissues. To test the possibility that UV-signals mediated by Opn5 would have a direct effect on the outer connective tissues of the eye, we first examined the expression patterns of a mammalian type Opn5 (Opn5m) in the late-embryonic chicken eye. Quantitative PCR showed Opn5m mRNA expression in the cornea and sclera. The anti-Opn5m antibody stained a small subset of cells in the corneal stroma and fibrous sclera. We next assessed the effect of UV-A (375 nm) irradiation on the chicken fibroblast cell line DF-1 overexpressing chicken Opn5m. UV-A irradiation for 30 min significantly increased the expression of Early growth response 1 (Egr1), known as an immediate early responsive gene, and of Matrix metalloproteinase 2 (Mmp2) in the presence of retinal chromophore 11-cis-retinal. In contrast, expression of Transforming growth factor beta 2 and Tissue inhibitor of metalloproteinase 2 was not significantly altered. These results indicate that UV-A absorption by Opn5m can upregulate the expression levels of Egr1 and Mmp2 in non-neuronal, fibroblasts. Taken together with the presence of Opn5m in the cornea and sclera, it is suggested that UV-A signaling mediated by Opn5 in the extraretinal ocular tissues could influence directly the outer connective tissues of the chicken late-embryonic eye. Opsin 5 (Opn5) is a non-visual ultraviolet-A (UV-A) absorbing photopigment. We found an Opn5 (Opn5m) is present in cornea and sclera of late-embryonic chick. UV-A absorption by Opn5m upregulated Egr1 and Mmp2 expression in chick fibroblasts. UV-A signaling via Opn5m may have a direct effect on the ocular fibroblasts.
Collapse
Key Words
- Chicken
- Egr1
- Egr1, Early growth response 1
- Fibroblasts
- Gapdh, Glyceraldehyde-3-phosphate dehydrogenase
- MAP kinase, mitogen-activated protein kinase
- Mmp2
- Mmp2, Matrix metalloproteinase 2
- Opn5, Opsin 5
- Opn5m, mammalian type Opn5
- Opsin 5
- Tgfb2, Transforming growth factor beta 2
- Timp2, Tissue inhibitor of metalloproteinase 2
- UV, ultraviolet
- UV-A, ultraviolet-A
- UV-Absorbing pigment
- cAMP, cyclic adenosine monophosphate
- qPCR, quantitative polymerase chain reaction
Collapse
Affiliation(s)
- Mutsuko Kato
- Department of Cytology and Histology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Japan, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Keita Sato
- Department of Cytology and Histology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Japan, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Munenori Habuta
- Department of Cytology and Histology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Japan, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Hirofumi Fujita
- Department of Cytology and Histology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Japan, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Tetsuya Bando
- Department of Cytology and Histology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Japan, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Yuki Morizane
- Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Japan, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Fumio Shiraga
- Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Japan, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Satoru Miyaishi
- Department of Legal Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Japan, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Hideyo Ohuchi
- Department of Cytology and Histology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Japan, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| |
Collapse
|
21
|
Xu J, Jiang Y, Zhao Z, Zhang H, Peng W, Feng J, Dong C, Chen B, Tai R, Xu P. Patterns of Geographical and Potential Adaptive Divergence in the Genome of the Common Carp ( Cyprinus carpio). Front Genet 2019; 10:660. [PMID: 31354795 PMCID: PMC6640160 DOI: 10.3389/fgene.2019.00660] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 06/24/2019] [Indexed: 02/04/2023] Open
Abstract
The common carp, Cyprinus carpio, is a cyprinid fish species cultured in Europe and Asia. It accounts for >70% of freshwater aquaculture production worldwide. We conducted a population genomics analysis on C. carpio using high-throughput SNP genotyping of 2,198 individuals from 14 populations worldwide to determine the genetic architecture of common carp populations and the genetic bases for environmental adaptation. Structure analyses including phylogeny and principal component analysis were also conducted, showing distinct geographical patterns in European and Asian populations. The linkage disequilibrium block average lengths of the 14 populations ranged from 3.94 kb to 36.67 kb. Genes within selective sweep regions were identified by genome scanning among the different populations, including gdf6a, bmpr1b, and opsin5. Gene Ontology and KEGG enrichment analyses revealed potential trait-related loci and genes associated with body shape, scaling patterns, and skin color. This population genomics analysis may provide valuable clues for future genome-assisted breeding of C. carpio.
Collapse
Affiliation(s)
- Jian Xu
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture, CAFS Key Laboratory of Aquatic Genomics and Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing, China
| | - Yanliang Jiang
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture, CAFS Key Laboratory of Aquatic Genomics and Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing, China
| | - Zixia Zhao
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture, CAFS Key Laboratory of Aquatic Genomics and Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing, China
| | - Hanyuan Zhang
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture, CAFS Key Laboratory of Aquatic Genomics and Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing, China
| | - Wenzhu Peng
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Jianxin Feng
- Henan Academy of Fishery Science, Zhengzhou, China
| | - Chuanju Dong
- College of Fishery, Henan Normal University, Xinxiang, China
| | - Baohua Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Ruyu Tai
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture, CAFS Key Laboratory of Aquatic Genomics and Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing, China
| | - Peng Xu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
22
|
Opn5L1 is a retinal receptor that behaves as a reverse and self-regenerating photoreceptor. Nat Commun 2018; 9:1255. [PMID: 29593298 PMCID: PMC5871776 DOI: 10.1038/s41467-018-03603-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 02/25/2018] [Indexed: 11/09/2022] Open
Abstract
Most opsins are G protein-coupled receptors that utilize retinal both as a ligand and as a chromophore. Opsins' main established mechanism is light-triggered activation through retinal 11-cis-to-all-trans photoisomerization. Here we report a vertebrate non-visual opsin that functions as a Gi-coupled retinal receptor that is deactivated by light and can thermally self-regenerate. This opsin, Opn5L1, binds exclusively to all-trans-retinal. More interestingly, the light-induced deactivation through retinal trans-to-cis isomerization is followed by formation of a covalent adduct between retinal and a nearby cysteine, which breaks the retinal-conjugated double bond system, probably at the C11 position, resulting in thermal re-isomerization to all-trans-retinal. Thus, Opn5L1 acts as a reverse photoreceptor. We conclude that, like vertebrate rhodopsin, Opn5L1 is a unidirectional optical switch optimized from an ancestral bidirectional optical switch, such as invertebrate rhodopsin, to increase the S/N ratio of the signal transduction, although the direction of optimization is opposite to that of vertebrate rhodopsin.
Collapse
|
23
|
Banerjee S, Shahin S, Chaturvedi CM. Age dependent variations in the deep brain photoreceptors (DBPs), GnRH-GnIH system and testicular steroidogenesis in Japanese quail, Coturnix coturnix japonica. Exp Gerontol 2018; 108:7-17. [PMID: 29580815 DOI: 10.1016/j.exger.2018.03.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 03/17/2018] [Accepted: 03/22/2018] [Indexed: 12/19/2022]
Abstract
The complex physiology of aging involves a number of molecular and biochemical events, manifested as signs of senescence. Japanese quail is a very unique and advantageous model to study the signs and symptoms of senescence in the central and peripheral modules of HPG axis. In the present study, we have investigated the age dependent variations in hypothalamic deep brain photoreceptors (DBPs), central GnRH-I/II-GnIH-Mel1cR system, testicular GnRH-GnIH system, testicular steroidogenic genes and proteins, androgen receptor (AR) and serum testosterone level in quail of different age groups [3-wk (sexually immature), 6-wk (sexually mature and crossed the puberty), 16-wk (adult, sexually active and showing full breeding phase) and 144-wk (aged)]. Findings of our present study showed the differential expression of these genes/proteins in quail of different age groups. The low levels of the DBPs, GnRH-I, GnIH, Mel1cR in hypothalamus and GnRH-II in midbrain, significantly decreased testicular GnRH/GnRH-R-GnIH, steroidogenic genes/proteins and serum testosterone were observed in immature quail. The significantly increased expression of opsins in the DBPs, GnRH-I, GnIH, Mel1cR in hypothalamus and GnRH-II in midbrain influences the testicular GnRH-GnIH and stimulate the testicular steroidogenesis in mature and adult quail. In aged quail, the significantly decreased levels of hypothalamic DBPs, GnRH-I, GnIH, Mel1cR and midbrain GnRH-II modulates the testicular GnRH-GnIH and further suppresses the genes/proteins involved in steroidogenesis and results in reduced serum testosterone. Hence, it can be concluded from our findings that the testicular steroidogenesis and its neuroendocrine regulation varies with age, in Japanese quail.
Collapse
Affiliation(s)
- Somanshu Banerjee
- Department of Zoology, Banaras Hindu University, Varanasi 221005, India
| | - Saba Shahin
- Department of Zoology, Banaras Hindu University, Varanasi 221005, India
| | | |
Collapse
|
24
|
Sakai K, Tsutsui K, Yamashita T, Iwabe N, Takahashi K, Wada A, Shichida Y. Drosophila melanogaster rhodopsin Rh7 is a UV-to-visible light sensor with an extraordinarily broad absorption spectrum. Sci Rep 2017; 7:7349. [PMID: 28779161 PMCID: PMC5544684 DOI: 10.1038/s41598-017-07461-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 06/28/2017] [Indexed: 01/15/2023] Open
Abstract
The genome of Drosophila melanogaster contains seven rhodopsin genes. Rh1-6 proteins are known to have respective absorption spectra and function as visual pigments in ocelli and compound eyes. In contrast, Rh7 protein was recently revealed to function as a circadian photoreceptor in the brain. However, its molecular properties have not been characterized yet. Here we successfully prepared a recombinant protein of Drosophila Rh7 in mammalian cultured cells. Drosophila Rh7 bound both 11-cis-retinal and 11-cis-3-hydroxyretinal to form photo-pigments which can absorb UV light. Irradiation with UV light caused formation of a visible-light absorbing metarhodopsin that activated Gq-type of G protein. This state could be photoconverted back to the original state and, thus Rh7 is a Gq-coupled bistable pigment. Interestingly, Rh7 (lambda max = 350 nm) exhibited an unusual broad spectrum with a longer wavelength tail reaching 500 nm, whose shape is like a composite of spectra of two pigments. In contrast, replacement of lysine at position 90 with glutamic acid caused the formation of a normal-shaped absorption spectrum with maximum at 450 nm. Therefore, Rh7 is a unique photo-sensor that can cover a wide wavelength region by a single pigment to contribute to non-visual photoreception.
Collapse
Affiliation(s)
- Kazumi Sakai
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, 606-8502, Japan
| | - Kei Tsutsui
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, 606-8502, Japan
| | - Takahiro Yamashita
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, 606-8502, Japan
| | - Naoyuki Iwabe
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, 606-8502, Japan
| | - Keisuke Takahashi
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, 606-8502, Japan
| | - Akimori Wada
- Department of Organic Chemistry for Life Science, Kobe Pharmaceutical University, Kobe, 658-8558, Japan
| | - Yoshinori Shichida
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, 606-8502, Japan. .,Research Organization for Science and Technology, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan.
| |
Collapse
|
25
|
Emerling CA. Genomic regression of claw keratin, taste receptor and light-associated genes provides insights into biology and evolutionary origins of snakes. Mol Phylogenet Evol 2017; 115:40-49. [PMID: 28739369 DOI: 10.1016/j.ympev.2017.07.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 06/16/2017] [Accepted: 07/13/2017] [Indexed: 01/11/2023]
Abstract
Regressive evolution of anatomical traits often corresponds with the regression of genomic loci underlying such characters. As such, studying patterns of gene loss can be instrumental in addressing questions of gene function, resolving conflicting results from anatomical studies, and understanding the evolutionary history of clades. The evolutionary origins of snakes involved the regression of a number of anatomical traits, including limbs, taste buds and the visual system, and by analyzing serpent genomes, I was able to test three hypotheses associated with the regression of these features. The first concerns two keratins that are putatively specific to claws. Both genes that encode these keratins are pseudogenized/deleted in snake genomes, providing additional evidence of claw-specificity. The second hypothesis is that snakes lack taste buds, an issue complicated by conflicting results in the literature. I found evidence that different snakes have lost one or more taste receptors, but all snakes examined retained at least one gustatory channel. The final hypothesis addressed is that the earliest snakes were adapted to a dim light niche. I found evidence of deleted and pseudogenized genes with light-associated functions in snakes, demonstrating a pattern of gene loss similar to other dim light-adapted clades. Molecular dating estimates suggest that dim light adaptation preceded the loss of limbs, providing some bearing on interpretations of the ecological origins of snakes.
Collapse
|
26
|
Sato K, Yamashita T, Haruki Y, Ohuchi H, Kinoshita M, Shichida Y. Two UV-Sensitive Photoreceptor Proteins, Opn5m and Opn5m2 in Ray-Finned Fish with Distinct Molecular Properties and Broad Distribution in the Retina and Brain. PLoS One 2016; 11:e0155339. [PMID: 27167972 PMCID: PMC4864311 DOI: 10.1371/journal.pone.0155339] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 04/27/2016] [Indexed: 12/02/2022] Open
Abstract
Opn5 is a group within the opsin family of proteins that is responsible for visual and non-visual photoreception in animals. It consists of several subgroups, including Opn5m, the only subgroup containing members found in most vertebrates, including mammals. In addition, recent genomic information has revealed that some ray-finned fishes carry paralogous genes of Opn5m while other fishes have no such genes. Here, we report the molecular properties of the opsin now called Opn5m2 and its distributions in both the retina and brain. Like Opn5m, Opn5m2 exhibits UV light-sensitivity when binding to 11-cis-retinal and forms a stable active state that couples with Gi subtype of G protein. However, Opn5m2 does not bind all-trans-retinal and exhibits exclusive binding to 11-cis-retinal, whereas many bistable opsins, including fish Opn5m, can bind directly to all-trans-retinal as well as 11-cis-retinal. Because medaka fish has lost the Opn5m2 gene from its genome, we compared the tissue distribution patterns of Opn5m in medaka fish, zebrafish, and spotted gar, in addition to the distribution patterns of Opn5m2 in zebrafish and spotted gar. Opn5m expression levels showed a gradient along the dorsal–ventral axis of the retina, and preferential expression was observed in the ventral retina in the three fishes. The levels of Opn5m2 showed a similar gradient with preferential expression observed in the dorsal retina. Opn5m expression was relatively abundant in the inner region of the inner nuclear layer, while Opn5m2 was expressed in the outer edge of the inner nuclear layer. Additionally, we could detect Opn5m expression in several brain regions, including the hypothalamus, of these fish species. Opn5m2 expression could not be detected in zebrafish brain, but was clearly observed in limited brain regions of spotted gar. These results suggest that ray-finned fishes can generally utilize UV light information for non-image-forming photoreception in a wide range of cells in the retina and brain.
Collapse
Affiliation(s)
- Keita Sato
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Takahiro Yamashita
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Yoshihiro Haruki
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Hideyo Ohuchi
- Department of Cytology and Histology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Masato Kinoshita
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Yoshinori Shichida
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
- * E-mail:
| |
Collapse
|
27
|
Sakai K, Yamashita T, Imamoto Y, Shichida Y. Diversity of Active States in TMT Opsins. PLoS One 2015; 10:e0141238. [PMID: 26491964 PMCID: PMC4619619 DOI: 10.1371/journal.pone.0141238] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 10/05/2015] [Indexed: 11/28/2022] Open
Abstract
Opn3/TMT opsins belong to one of the opsin groups with vertebrate visual and non-visual opsins, and are widely distributed in eyes, brains and other internal organs in various vertebrates and invertebrates. Vertebrate Opn3/TMT opsins are further classified into four groups on the basis of their amino acid identities. However, there is limited information about molecular properties of these groups, due to the difficulty in preparing the recombinant proteins. Here, we successfully expressed recombinant proteins of TMT1 and TMT2 opsins of medaka fish (Oryzias latipes) in cultured cells and characterized their molecular properties. Spectroscopic and biochemical studies demonstrated that TMT1 and TMT2 opsins functioned as blue light-sensitive Gi/Go-coupled receptors, but exhibited spectral properties and photo-convertibility of the active state different from each other. TMT1 opsin forms a visible light-absorbing active state containing all-trans-retinal, which can be photo-converted to 7-cis- and 9-cis-retinal states in addition to the original 11-cis-retinal state. In contrast, the active state of TMT2 opsin is a UV light-absorbing state having all-trans-retinal and does not photo-convert to any other state, including the original 11-cis-retinal state. Thus, TMT opsins are diversified so as to form a different type of active state, which may be responsible for their different functions.
Collapse
Affiliation(s)
- Kazumi Sakai
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Takahiro Yamashita
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Yasushi Imamoto
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Yoshinori Shichida
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
- * E-mail:
| |
Collapse
|
28
|
Neuropsin (OPN5)-mediated photoentrainment of local circadian oscillators in mammalian retina and cornea. Proc Natl Acad Sci U S A 2015; 112:13093-8. [PMID: 26392540 DOI: 10.1073/pnas.1516259112] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The molecular circadian clocks in the mammalian retina are locally synchronized by environmental light cycles independent of the suprachiasmatic nuclei (SCN) in the brain. Unexpectedly, this entrainment does not require rods, cones, or melanopsin (OPN4), possibly suggesting the involvement of another retinal photopigment. Here, we show that the ex vivo mouse retinal rhythm is most sensitive to short-wavelength light but that this photoentrainment requires neither the short-wavelength-sensitive cone pigment [S-pigment or cone opsin (OPN1SW)] nor encephalopsin (OPN3). However, retinas lacking neuropsin (OPN5) fail to photoentrain, even though other visual functions appear largely normal. Initial evidence suggests that OPN5 is expressed in select retinal ganglion cells. Remarkably, the mouse corneal circadian rhythm is also photoentrainable ex vivo, and this photoentrainment likewise requires OPN5. Our findings reveal a light-sensing function for mammalian OPN5, until now an orphan opsin.
Collapse
|
29
|
Kuenzel WJ, Kang SW, Zhou ZJ. Exploring avian deep-brain photoreceptors and their role in activating the neuroendocrine regulation of gonadal development. Poult Sci 2015. [PMID: 25828571 DOI: 10.3382/ps.2014-04370] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In the eyes of mammals, specialized photoreceptors called intrinsically photosensitive retinal ganglion cells (ipRGC) have been identified that sense photoperiodic or daylight exposure, providing them over time with seasonal information. Detectors of photoperiods are critical in vertebrates, particularly for timing the onset of reproduction each year. In birds, the eyes do not appear to monitor photoperiodic information; rather, neurons within at least 4 different brain structures have been proposed to function in this capacity. Specialized neurons, called deep brain photoreceptors (DBP), have been found in the septum and 3 hypothalamic areas. Within each of the 4 brain loci, one or more of 3 unique photopigments, including melanopsin, neuropsin, and vertebrate ancient opsin, have been identified. An experiment was designed to characterize electrophysiological responses of neurons proposed to be avian DBP following light stimulation. A second study used immature chicks raised under short-day photoperiods and transferred to long day lengths. Gene expression of photopigments was then determined in 3 septal-hypothalamic regions. Preliminary electrophysiological data obtained from patch-clamping neurons in brain slices have shown that bipolar neurons in the lateral septal organ responded to photostimulation comparable with mammalian ipRGC, particularly by showing depolarization and a delayed, slow response to directed light stimulation. Utilizing real-time reverse-transcription PCR, it was found that all 3 photopigments showed significantly increased gene expression in the septal-hypothalamic regions in chicks on the third day after being transferred to long-day photoperiods. Each dissected region contained structures previously proposed to have DBP. The highly significant increased gene expression for all 3 photopigments on the third, long-day photoperiod in brain regions proposed to contain 4 structures with DBP suggests that all 3 types of DBP (melanopsin, neuropsin, and vertebrate ancient opsin) in more than one neural site in the septal-hypothalamic area are involved in reproductive function. The neural response to light of at least 2 of the proposed DBP in the septal/hypothalamic region resembles the primitive, functional, sensory ipRGC well characterized in mammals.
Collapse
Affiliation(s)
- Wayne J Kuenzel
- Department of Poultry Science, University of Arkansas, Fayetteville 72701
| | - Seong W Kang
- Department of Poultry Science, University of Arkansas, Fayetteville 72701
| | - Z Jimmy Zhou
- Department of Ophthalmology and Visual Science, Yale University School of Medicine, New Haven, CT 06510
| |
Collapse
|
30
|
García-Fernández JM, Cernuda-Cernuda R, Davies WIL, Rodgers J, Turton M, Peirson SN, Follett BK, Halford S, Hughes S, Hankins MW, Foster RG. The hypothalamic photoreceptors regulating seasonal reproduction in birds: a prime role for VA opsin. Front Neuroendocrinol 2015; 37:13-28. [PMID: 25448788 DOI: 10.1016/j.yfrne.2014.11.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 10/25/2014] [Accepted: 11/02/2014] [Indexed: 01/30/2023]
Abstract
Extraretinal photoreceptors located within the medio-basal hypothalamus regulate the photoperiodic control of seasonal reproduction in birds. An action spectrum for this response describes an opsin photopigment with a λmax of ∼ 492 nm. Beyond this however, the specific identity of the photopigment remains unresolved. Several candidates have emerged including rod-opsin; melanopsin (OPN4); neuropsin (OPN5); and vertebrate ancient (VA) opsin. These contenders are evaluated against key criteria used routinely in photobiology to link orphan photopigments to specific biological responses. To date, only VA opsin can easily satisfy all criteria and we propose that this photopigment represents the prime candidate for encoding daylength and driving seasonal breeding in birds. We also show that VA opsin is co-expressed with both gonadotropin-releasing hormone (GnRH) and arginine-vasotocin (AVT) neurons. These new data suggest that GnRH and AVT neurosecretory pathways are endogenously photosensitive and that our current understanding of how these systems are regulated will require substantial revision.
Collapse
Affiliation(s)
- José M García-Fernández
- Departamento de Morfología y Biología Celular, Universidad de Oviedo, INEUROPA (Instituto de Neurociencias del Principado de Asturias), Spain
| | - Rafael Cernuda-Cernuda
- Departamento de Morfología y Biología Celular, Universidad de Oviedo, INEUROPA (Instituto de Neurociencias del Principado de Asturias), Spain
| | - Wayne I L Davies
- School of Animal Biology and University of Western Australia Oceans Institute, University of Western Australia, Perth, Western Australia, Australia
| | - Jessica Rodgers
- Sleep and Circadian Neuroscience Institute, Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Headley Way, Oxford OX3 9DU, United Kingdom
| | - Michael Turton
- Sleep and Circadian Neuroscience Institute, Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Headley Way, Oxford OX3 9DU, United Kingdom
| | - Stuart N Peirson
- Sleep and Circadian Neuroscience Institute, Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Headley Way, Oxford OX3 9DU, United Kingdom
| | - Brian K Follett
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, United Kingdom.eNuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Headley Way, Oxford OX3 9DU, United Kingdom
| | - Stephanie Halford
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Headley Way, Oxford OX3 9DU, United Kingdom
| | - Steven Hughes
- Sleep and Circadian Neuroscience Institute, Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Headley Way, Oxford OX3 9DU, United Kingdom
| | - Mark W Hankins
- Sleep and Circadian Neuroscience Institute, Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Headley Way, Oxford OX3 9DU, United Kingdom
| | - Russell G Foster
- Sleep and Circadian Neuroscience Institute, Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Headley Way, Oxford OX3 9DU, United Kingdom.
| |
Collapse
|
31
|
Kuenzel WJ, Kang SW, Zhou ZJ. Exploring avian deep-brain photoreceptors and their role in activating the neuroendocrine regulation of gonadal development. Poult Sci 2015; 94:786-98. [DOI: 10.3382/ps.2014-4370] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
32
|
Kang SW, Kuenzel WJ. Deep-brain photoreceptors (DBPs) involved in the photoperiodic gonadal response in an avian species, Gallus gallus. Gen Comp Endocrinol 2015; 211:106-13. [PMID: 25486342 DOI: 10.1016/j.ygcen.2014.11.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 11/26/2014] [Accepted: 11/28/2014] [Indexed: 11/30/2022]
Abstract
Three primitive photoreceptors [melanopsin (Opn4), neuropsin/opsin5 (Opn5) and vertebrate ancient opsin (VAOpn)] were reported as possible avian deep-brain photoreceptors (DBPs) involved in the perception of photoperiodic information affecting the onset and development of reproduction. The objective of this study was to determine the effect of long-day photostimulation and/or sulfamethazine treatment (SMZ, a compound known to advance light-induced testes development) on gene expression of DBPs and key hypothalamic and pituitary genes involved in avian reproductive function. Two-week old chicks were randomly selected into four experimental groups: short-day control (SC, LD8:16), short-day+SMZ (SS, LD8:16, 0.2% diet SMZ), long-day control (LC, LD16:8), and long-day+SMZ (LS, LD16:8, 0.2% diet SMZ). Birds were sampled on days 3, 7, and 28 after initiation of a long-day photoperiod and/or SMZ dietary treatments. Three brain regions [septal-preoptic, anterior hypothalamic (SepPre/Ant-Hypo) region, mid-hypothalamic (Mid-Hypo) region, posterior-hypothalamic (Post-Hypo) region], and anterior pituitary gland were dissected. Using quantitative real-time RT-PCR, we determined changes of expression levels of genes in distinct brain regions; Opn4 and Opn5 in SepPre/Ant-Hypo and Post-Hypo regions and, VAOpn in the Mid-Hypo region. Long-day treatment resulted in a significantly elevated testes weight on days 7 and 28 compared to controls, and SMZ augmented testes weight in both short- and long-day treatment after day 7 (P<0.05). Long-day photoperiodic treatment on the third day unexpectedly induced a large 8.4-fold increase of VAOpn expression in the Mid-Hypo region, a 15.4-fold increase of Opn4 and a 97.8-fold increase of Opn5 gene expression in the Post-Hypo region compared to SC birds (P<0.01). In contrast, on days 7 and 28, gene expression of the three DBPs was barely detectable. LC group showed a significant increase in GnRH-1 and TRH mRNA in the Mid-Hypo compared to SC on day 3. Pituitary LHβ and FSHβ mRNA were significantly elevated in LC and LS groups compared to SC on days 3 and 7 (P<0.05). On days 3 and 7, TSHβ mRNA level was significantly elevated by long-day treatment compared to the SC groups (P<0.05). Results suggest that long-day photoperiodic activation of DBPs is robust, transient, and temporally related with neuroendocrine genes involved in reproductive function. Additionally, results indicate that two subsets of GnRH-1 neurons exist based upon significantly different gene expression from long-day photostimulation and long-day plus SMZ administration. Taken together, the data indicate that within 3 days of a long-day photoperiod, an eminent activation of all three types of DBPs might be involved in priming the neuroendocrine system to activate reproductive function in birds.
Collapse
Affiliation(s)
- Seong W Kang
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States.
| | - Wayne J Kuenzel
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States.
| |
Collapse
|
33
|
Bester-Meredith JK, Fancher AP, Mammarella GE. Vasopressin Proves Es-sense-tial: Vasopressin and the Modulation of Sensory Processing in Mammals. Front Endocrinol (Lausanne) 2015; 6:5. [PMID: 25705203 PMCID: PMC4319160 DOI: 10.3389/fendo.2015.00005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Accepted: 01/12/2015] [Indexed: 11/29/2022] Open
Abstract
As mammals develop, they encounter increasing social complexity in the surrounding world. In order to survive, mammals must show appropriate behaviors toward their mates, offspring, and same-sex conspecifics. Although the behavioral effects of the neuropeptide arginine vasopressin (AVP) have been studied in a variety of social contexts, the effects of this neuropeptide on multimodal sensory processing have received less attention. AVP is widely distributed through sensory regions of the brain and has been demonstrated to modulate olfactory, auditory, gustatory, and visual processing. Here, we review the evidence linking AVP to the processing of social stimuli in sensory regions of the brain and explore how sensory processing can shape behavioral responses to these stimuli. In addition, we address the interplay between hormonal and neural AVP in regulating sensory processing of social cues. Because AVP pathways show plasticity during development, early life experiences may shape life-long processing of sensory information. Furthermore, disorders of social behavior such as autism and schizophrenia that have been linked with AVP also have been linked with dysfunctions in sensory processing. Together, these studies suggest that AVP's diversity of effects on social behavior across a variety of mammalian species may result from the effects of this neuropeptide on sensory processing.
Collapse
Affiliation(s)
- Janet K. Bester-Meredith
- Department of Biology, Seattle Pacific University, Seattle, WA, USA
- *Correspondence: Janet K. Bester-Meredith, Department of Biology, Seattle Pacific University, 3307 3rd Avenue W, Seattle, WA 98119, USA e-mail:
| | | | | |
Collapse
|
34
|
Yamashita T, Ono K, Ohuchi H, Yumoto A, Gotoh H, Tomonari S, Sakai K, Fujita H, Imamoto Y, Noji S, Nakamura K, Shichida Y. Evolution of mammalian Opn5 as a specialized UV-absorbing pigment by a single amino acid mutation. J Biol Chem 2014; 289:3991-4000. [PMID: 24403072 DOI: 10.1074/jbc.m113.514075] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Opn5 is one of the recently identified opsin groups that is responsible for nonvisual photoreception in animals. We previously showed that a chicken homolog of mammalian Opn5 (Opn5m) is a Gi-coupled UV sensor having molecular properties typical of bistable pigments. Here we demonstrated that mammalian Opn5m evolved to be a more specialized photosensor by losing one of the characteristics of bistable pigments, direct binding of all-trans-retinal. We first confirmed that Opn5m proteins in zebrafish, Xenopus tropicalis, mouse, and human are also UV-sensitive pigments. Then we found that only mammalian Opn5m proteins lack the ability to directly bind all-trans-retinal. Mutational analysis showed that these characteristics were acquired by a single amino acid replacement at position 168. By comparing the expression patterns of Opn5m between mammals and chicken, we found that, like chicken Opn5m, mammalian Opn5m was localized in the ganglion cell layer and inner nuclear layer of the retina. However, the mouse and primate (common marmoset) opsins were distributed not in the posterior hypothalamus (including the region along the third ventricle) where chicken Opn5m is localized, but in the preoptic hypothalamus. Interestingly, RPE65, an essential enzyme for forming 11-cis-retinal in the visual cycle is expressed near the preoptic hypothalamus of the mouse and common marmoset brain but not near the region of the chicken brain where chicken Opn5m is expressed. Therefore, mammalian Opn5m may work exclusively as a short wavelength sensor in the brain as well as in the retina with the assistance of an 11-cis-retinal-supplying system.
Collapse
Affiliation(s)
- Takahiro Yamashita
- From the Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Ernst OP, Lodowski DT, Elstner M, Hegemann P, Brown L, Kandori H. Microbial and animal rhodopsins: structures, functions, and molecular mechanisms. Chem Rev 2014; 114:126-63. [PMID: 24364740 PMCID: PMC3979449 DOI: 10.1021/cr4003769] [Citation(s) in RCA: 793] [Impact Index Per Article: 79.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2013] [Indexed: 12/31/2022]
Affiliation(s)
- Oliver P. Ernst
- Departments
of Biochemistry and Molecular Genetics, University of Toronto, 1 King’s College Circle, Medical Sciences Building, Toronto, Ontario M5S 1A8, Canada
| | - David T. Lodowski
- Center
for Proteomics and Bioinformatics, Case
Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Marcus Elstner
- Institute
for Physical Chemistry, Karlsruhe Institute
of Technology, Kaiserstrasse
12, 76131 Karlsruhe, Germany
| | - Peter Hegemann
- Institute
of Biology, Experimental Biophysics, Humboldt-Universität
zu Berlin, Invalidenstrasse
42, 10115 Berlin, Germany
| | - Leonid
S. Brown
- Department
of Physics and Biophysics Interdepartmental Group, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada
| | - Hideki Kandori
- Department
of Frontier Materials, Nagoya Institute
of Technology, Showa-ku, Nagoya 466-8555, Japan
| |
Collapse
|
36
|
Koyanagi M, Terakita A. Diversity of animal opsin-based pigments and their optogenetic potential. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1837:710-6. [PMID: 24041647 DOI: 10.1016/j.bbabio.2013.09.003] [Citation(s) in RCA: 331] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2013] [Revised: 08/30/2013] [Accepted: 09/06/2013] [Indexed: 10/26/2022]
Abstract
Most animal opsin-based pigments are typical G protein-coupled receptors (GPCR) and consist of a protein moiety, opsin, and 11-cis retinal as a chromophore. More than several thousand opsins have been identified from a wide variety of animals, which have multiple opsin genes. Accumulated evidence reveals the molecular property of opsin-based pigments, particularly non-conventional visual pigments including non-visual pigments. Opsin-based pigments are generally a bistable pigment having two stable and photointerconvertible states and therefore are bleach-resistant and reusable, unlike vertebrate visual pigments which become bleached. The opsin family contains Gt-coupled, Gq-coupled, Go-coupled, Gs-coupled, Gi-coupled, and Gi/Go-coupled opsins, indicating the existence of a large diversity of light-driven GPCR-signaling cascades. It is suggested that these molecular properties might contribute to different physiologies. In addition, various opsin based-pigments, especially nonconventional visual pigments having different molecular characteristics would facilitate the design and development of promising optogenetic tools for modulating GPCR-signaling, which is involved in a wide variety of physiological responses. We here introduce molecular and functional properties of various kinds of opsins and discuss their physiological function and also their potentials for optogenetic applications. This article is part of a Special Issue entitled: Retinal proteins - you can teach an old dog new tricks.
Collapse
Affiliation(s)
- Mitsumasa Koyanagi
- Department of Biology and Geosciences, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Akihisa Terakita
- Department of Biology and Geosciences, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan.
| |
Collapse
|
37
|
Kosonsiriluk S, Mauro LJ, Chaiworakul V, Chaiseha Y, El Halawani ME. Photoreceptive oscillators within neurons of the premammillary nucleus (PMM) and seasonal reproduction in temperate zone birds. Gen Comp Endocrinol 2013; 190:149-55. [PMID: 23453962 DOI: 10.1016/j.ygcen.2013.02.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 01/31/2013] [Accepted: 02/09/2013] [Indexed: 11/21/2022]
Abstract
The pathway for light transmission regulating the reproductive neuroendocrine system in temperate zone birds remains elusive. Based on the evidence provided from our studies with female turkeys, it is suggested that the circadian clock regulating reproductive seasonality is located in putatively photosensitive dopamine-melatonin (DA-MEL) neurons residing in the premammillary nucleus (PMM) of the caudal hypothalamus. Melanopsin is expressed by these neurons; a known photopigment which mediates light information pertaining to the entrainment of the clock. Exposure to a gonad stimulatory photoperiod enhances the activity of the DAergic system within DA-MEL neurons. DAergic activity encoding the light information is transmitted to the pars tuberalis, where thyroid-stimulating hormone, beta (TSHβ) cells reside, and induces the release of TSH. TSH stimulates tanycytes lining the base of the third ventricle and activates type 2 deiodinase in the ependymal which enhances triiodothyronine (T3) synthesis. T3 facilitates the release of gonadotropin-releasing hormone-I which stimulates luteinizing hormone/follicle stimulating hormone release and gonad recrudescence. These data taken together with the findings that clock genes are rhythmically expressed in the PMM where DA-MEL neurons are localized imply that endogenous oscillators containing photoreceptors within DA-MEL neurons are important in regulating the DA and MEL rhythms that drive the circadian cycle controlling seasonal reproduction.
Collapse
|
38
|
Cornelius JM, Boswell T, Jenni-Eiermann S, Breuner CW, Ramenofsky M. Contributions of endocrinology to the migration life history of birds. Gen Comp Endocrinol 2013; 190:47-60. [PMID: 23602795 DOI: 10.1016/j.ygcen.2013.03.027] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2012] [Revised: 03/24/2013] [Accepted: 03/25/2013] [Indexed: 11/29/2022]
Abstract
Migration is a key life cycle stage in nearly 2000 species of birds and is a greatly appreciated phenomenon in both cultural and academic arenas. Despite a long research tradition concerning many aspects of migration, investigations of hormonal contributions to migratory physiology and behavior are more limited and represent a comparatively young research field. We review advances in our understanding of the hormonal mechanisms of migration with particular emphasis on the sub-stages of the migration life history: development, departure, flight and arrival. These sub-stages vary widely in their behavioral, ecological and physiological contexts and, as such, should be given appropriate individual consideration.
Collapse
Affiliation(s)
- J M Cornelius
- Department of Neurobiology, Physiology and Behavior, University of California-Davis, One Shields Avenue, Davis, CA 95616, USA.
| | | | | | | | | |
Collapse
|
39
|
Chen SC, Robertson RM, Hawryshyn CW. Possible involvement of cone opsins in distinct photoresponses of intrinsically photosensitive dermal chromatophores in tilapia Oreochromis niloticus. PLoS One 2013; 8:e70342. [PMID: 23940562 PMCID: PMC3734035 DOI: 10.1371/journal.pone.0070342] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 06/17/2013] [Indexed: 01/09/2023] Open
Abstract
Dermal specialized pigment cells (chromatophores) are thought to be one type of extraretinal photoreceptors responsible for a wide variety of sensory tasks, including adjusting body coloration. Unlike the well-studied image-forming function in retinal photoreceptors, direct evidence characterizing the mechanism of chromatophore photoresponses is less understood, particularly at the molecular and cellular levels. In the present study, cone opsin expression was detected in tilapia caudal fin where photosensitive chromatophores exist. Single-cell RT-PCR revealed co-existence of different cone opsins within melanophores and erythrophores. By stimulating cells with six wavelengths ranging from 380 to 580 nm, we found melanophores and erythrophores showed distinct photoresponses. After exposed to light, regardless of wavelength presentation, melanophores dispersed and maintained cell shape in an expansion stage by shuttling pigment granules. Conversely, erythrophores aggregated or dispersed pigment granules when exposed to short- or middle/long-wavelength light, respectively. These results suggest that diverse molecular mechanisms and light-detecting strategies may be employed by different types of tilapia chromatophores, which are instrumental in pigment pattern formation.
Collapse
Affiliation(s)
- Shyh-Chi Chen
- Department of Biology, Queen's University, Kingston, Ontario, Canada.
| | | | | |
Collapse
|
40
|
Amann B, Hirmer S, Hauck SM, Kremmer E, Ueffing M, Deeg CA. True blue: S-opsin is widely expressed in different animal species. J Anim Physiol Anim Nutr (Berl) 2012; 98:32-42. [PMID: 23173557 DOI: 10.1111/jpn.12016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Colour vision in animals is an interesting, fascinating subject. In this study, we examined a wide variety of species for expression of S-opsin (blue sensitive) and M-/L-opsin (green-red sensitive) in retinal cones using two novel monoclonal antibodies specific for peptides from human opsins. Mouse, rat and hare did not express one of the investigated epitopes, but we could clearly prove existence of cones through peanut agglutinin labelling. Retinas of guinea pig, dog, wolf, marten, cat, roe deer, pig and horse were positive for S-opsin, but not for M-/L-opsin. Nevertheless all these species are clearly at least dichromats, because we could detect further S-opsin negative cones by labelling with cone arrestin specific antibody. In contrast, pheasant and char had M-/L-opsin positive cones, but no S-opsin expressing cones. Sheep, cattle, monkey, men, pigeon, duck and chicken were positive for both opsins. Visual acuity analyzed through density of retinal ganglion cells revealed least visual discrimination by horses and highest resolution in pheasant and pigeon. Most mammals studied are dichromats with visual perception similar to red-green blind people.
Collapse
Affiliation(s)
- B Amann
- Institute of Animal Physiology, Department of Veterinary Sciences, LMU Munich, München, Germany Research Unit Protein Science, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany Institute of Molecular Immunology, Helmholtz Zentrum München, German Research Center for Environmental Health, München, Germany Centre of Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
| | | | | | | | | | | |
Collapse
|